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In this report a fully Convolution Neural Network (CNN) architecture

is used to segment multi-modal Brain Tumors from Magnetic Resonance (MR)

images. Due to the challenges in manual segmentation, computerized brain tu-

mor segmentation is one of the most important challenges in medical imaging.

The fully convolutional structure of the network makes it faster than any net-

work with a dense fully connected layer. The two phase training and entropy

sampling of data makes it easier to learn tumor boundaries and overcome the

data imbalance problem.
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Chapter 1

1.1 Introduction

Despite having been studied for centuries cancer remains one of the

biggest challenges in modern medicine. Malignant brain tumors are one of the

most lethal cancers, among these, Gliomas are the most commonly occurring

brain malignancies. They are usually classified into sub-regions based on their

histological heterogeneity i.e. edema, necrotic core, enhancing and nonenhanc-

ing tumor core.

To contain the damage caused by tumors, recover neurological functions, and

consequently increase the survival rate, early diagnosis of the tumor is essen-

tial. Magnetic resonance imaging (MRI) is the diagnostic tool of choice, it

provides detailed images of the brain and has multiple modes to better distin-

guish between healthy and tumorous tissues, e.g. T1 (spin-lattice relaxation),

T1-contrasted (T1C), T2 (spin-spin relaxation) and fluid attenuation inversion

recovery (FLAIR) pulse sequence.

In clinical practice brain tumors are identified and segmented manually from

MRI images. This is a tedious and time-consuming process and is becoming

increasingly complex with advancement in MRI imaging. This manual analysis

is also prone to errors due to inter-operator variability. All these problems de-
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mand computerized methods for medical image analysis, e.g. automatic brain

tumor identification, segmentation, and visualization to assist physicians in

qualitative diagnosis.

Automatic segmentation of brain tumors is a very challenging problem, Gliomas

are typically non-local with diffused and irregular boundaries. They also vary

greatly in their shape, size, and location in the brain. Data obtained from dif-

ferent machines is also prone to variation and biases. The use of multiple MRI

modalities for effective segmentation also adds complexity to the problem. In

addition to this it is a highly data imbalance problem with more than 98%

of the brain comprising of healthy tissues and the tumor core making up less

than 1% of the brain.

Automatic brain tumor segmentation methods are based on models that can

roughly be divided into discriminative and generative models [5].

Generative models rely heavily on prior knowledge of the location, appearance

and spatial extent of tumorous and healthy tissues. They typically work by

using an atlas computed from healthy brains as priors. This along with the

test brain is then used to compute posterior probabilities of healthy tissues on

the test brain.

Discriminative models on the other hand directly learn the relationship be-

tween input and segmentation label by extracting useful linear and non-linear

features from the image data. They typically work by extracting features like

local intensity difference [2], Gabor filterbanks [7], gradients, symmetry anal-

ysis etc. Standard classification algorithms e.g., Support Vector Machines or
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decision trees are then used to classify these features. The learned classifica-

tion maps are then applied to new data for segmentation. Even though these

methods dont rely on prior knowledge of brains anatomy they typically require

large amounts of data for training the classifiers.

Recently discriminative models using deep Convolution Neural Networks (CNN)

have shown a lot of promise, in fact most state of the art methods currently

employ CNNs [8]. The fully convolutional architecture of these methods makes

them faster than their generative counterparts. Havaei et al. [4] presented mul-

tiple fully convolutional architectures for segmentation of brain tumors using

neural networks of varying complexity.

The work in this report is based on the work of Havaei et al [4], with several

modifications in the formulation and sampling implemented with a different

software infrastructure.

First a mathematical description of the network and its components is given.

then the implementation is detailed in the second chapter describing in detail

the data sampling, hyper-parameter tuning and training techniques. Finally

the results are shown followed by a discussion

1.2 Mathematical Formulation

The network is based on the Deep Convolution neural network (CNN)

proposed by [4] which is a two layer patch-wise CNN. The input is a multi-

modal MRI from the BRATS data set. This 3D image has four channels:
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T1,T2,FLAIR, and T1ce. The segmentation is performed per axial slice, thus

the model processes 2D multi-modal slices. To perform classification multiple

patches of size n x n are extracted from each axial slice and the network is

trained to classify the center pixel of each patch.

1.2.1 Convolution

The building blocks of this network are convolution layers, these layers

generate feature maps for a given input, the features extracted depend on

the parameters of the convolution filter. The values of these parameters are

learned during training. Given an input X and a convolution filter (kernel)

W of dimensions w1 × w2, the convolution operation is given by:

(X ∗W )ij =

w1−1∑
m=0

w2−1∑
n=0

X(i−m, j − n)W (m,n) (1.1)

The size of a convolution filter is also called its Receptivefield. For an input

with C input channels (or modalities) the feature map F is computed as:

F = b+
C∑

m=1

(Xm ∗Wm) (1.2)

where Wm is the convolution kernel for mth input Xm and b is a bias term.

1.2.2 Activation Function

Some important features of the image might not be linearly dependent

on the input, to extract such features a non-linear activation function is applied
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element-wise

F̃ = g(b+
∑
m

(Xm ∗Wm)) (1.3)

where g is the activation function. The non-linear activation functions used in

this network are discusses below.

Maxout : Proposed in [3] the Maxout non-linearity is shown to be

effective at extracting useful features especially when used with dropout reg-

ularization (discussed later). The function takes multiple feature maps (FMs)

as its input and takes the element-wise maximum over them. The kth FM

resulting from maxout on s convolution FMs {Fk+1, ..., Fk+s} of size m× n is

simply:

F̃max
k,i,j = max {Fk+1,i,j, .., Fk+s,i,j} where i = 1, ..,m and j = 1, .., n (1.4)

Max pooling : Max-pooling keeps the maximum value in a moving

window of size p × p over the feature map, the amount by which the filter

shifts (horizonally and vertically) is called stride. This operation shrinks the

size of the feature map and introduces local translation invariance. The output

of a max pooling layer applied to F̃max with stride = 1 can be written as:

F̃ pool
k,i,j = max{Fk,m,n : i ≤ m ≤ i+ p− 1, j ≤ n ≤ j + p− 1} (1.5)

Softmax : Softmax is used in the final layer of the neural network,

it normalizes the values of a vector such that they add up to 1 i.e. giving a
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multinomial distribution. Let F be a k dimensional vector output of a fully

connected layer, then the softmax output is given as:

σi(F ) =
eFi∑k
i e

Fi

and i = 1, .., k (1.6)

1.2.3 Loss function

The output of the network can be interpreted as a multinomial distri-

bution {qX(i)}i∈Labels where qX(i) is the probability that the evaluated input

X belongs to tumor class i. Softmax applied prior the output ensures that for

each input X the output is indeed a probability distribution

∑
i∈Labels

qX(i) = 1 (1.7)

One can construct another distribution pX(i) corresponding to the Ground

Truth (GT) segmentation for each X.The loss function is then defined as the

mismatch between the obtained and desired probability distributions, which

is given by the Kullback-Leibler divergence (KL-Divergence) of the two distri-

butions. For discrete distributions over i labels the divergence of q from p is

defined as:

L(X) = DKL(p||q) = −
∑
i

pX(i) ln
qX(i)

pX(i)
(1.8)

Note that the KL-Divergence is well defined because

qX(i) = σi(F (X)) ∈ (0, 1) and lim
p→0

p ln p = 0 (1.9)
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L(X) =
∑
i

pX(i) ln pX(i)−
∑
i

pX(i) ln qX(i) (1.10)

where H(pX) =
∑
i

pX(i) ln pX(i) (1.11)

Is the Shannon Entropy of p for a given input X, since for all training data

GT labels are already known H(p) = 0

L(X) = −
∑

i∈Labels

pX(i) ln qX(i) (1.12)

1.2.4 Regularization

To reduce the generalization error following regularization techniques

have been used in the network:

Max-norm : The absolute value of the weight is bounded in each layer

of the network. This allows the network to have a bigger value of learning rate.

|W | < c (1.13)

This is implemented during training by clipping the gradient norm (see opti-

mization) if it exceeds a certain value.

L1 and L2 : The L1 and L2 norms of the weights are added as a

penalty to the total loss function to prevent over-fitting. The total loss func-
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tion after regularization looks like:

L(X,W ) = −
∑
i

pX(i) ln qX(i) + λ1||W ||1 + λ2||W ||2 (1.14)

where λ1 and λ2 are regularization coefficients

Early stopping : A validation set is used to limit the training time

i.e. the training is stopped when the performance on validation set stops

improving.

Dropout : Dropout works by adding noise to the input (or hidden

layers) of the network this reduces co-adaptations of inputs (or neurons) and

effectively reduces the generalization error. all units of each layer are multiplied

with Pd – the probability of retaining a unit.

As proposed in [3] the element-wise multiplication with Pd is performed right

before convolution . In our network we apply dropout to the input units with

Pd = 0.8 and Pd = 0.5 for hidden units as suggested in [6]

1.2.5 Optimization

The goal is to bring the learned distribution qX as close to the GT

distribution pX by minimizing the loss function L(X). To perform this task

Stochastic Gradient Descent (SGD) is used.
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For a given input X we can write L(X) as a function of the parameters (W, b)

L(X) = −
∑
i

pX(i) ln qX(i) (1.15)

L(X) = −
∑
i

pX(i) lnσi(F (X)) (1.16)

LX(W, b) = −
∑
i

pX(i) lnσi(b+
∑
m

(X ∗W )) (1.17)

LX(W, b, λ1, λ2) = −
∑
i

pX(i) lnσi(b+
∑
m

(X ∗W )) + λ1||W ||1 + λ2||W ||2

(1.18)

To minimize this loss we need to calculate the gradient

∇LX(W, b, λ1, λ2) =



∂L
∂W

∂L
∂b

∂L
∂λ1

∂L
∂λ2


(1.19)

where

∂LX
∂W

= −
∑
i

pX(i)
∂

∂W
lnσi(b+

∑
m

(X ∗W )) (1.20)

∂LX
∂b

= −
∑
i

pX(i)
∂

∂b
lnσi(b+

∑
m

(X ∗W )) (1.21)

∂LX
∂λ1

= ||W ||1 (1.22)

∂LX
∂λ2

= ||W ||2 (1.23)
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The first two terms are calculated by taking derivatives of the filters (kernels)

and activation functions in each layer and then using chain rule.

To train the network the loss is minimized using stochastic gradient descent. In

each iteration j of SGD the parameters are updated via the following recursive

relation

W j+1 = W j − α∇LX(W, b, λ1, λ2)
j (1.24)

Where α called the LearningRate is an important hyper-parameter and needs

to be tuned prior to training (discussed in Chapter 2) . For a mini-batch of

N samples the average is used

W j+1 = W j − α

N

N∑
X=1

∇LX(W, b, λ1, λ2)
j (1.25)

To improve optimization SGD is used with a momentum correction. This

helps the optimizer escape local minima. For a learning rate α and momentum

coefficient β the updated parameters after every iteration j are given by:

∆W j = W j −W j−1 (1.26)

∆W j+1 = β∆W j − α

N

N∑
X=1

∇LX(W, b, λ1, λ2)
j (1.27)

Wj+1 = Wj + ∆Wj+1 (1.28)
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1.3 Network

As mentioned earlier this network is a two-branch CNN based on the

work by [4]. The branch with smaller 7 × 7 receptive field is called Local −

pathway and another with larger 13 × 13 receptive field is called Global −

pathway. This allows the prediction to be influenced by the high resolution

details of the neighborhood around that pixel and its larger context i.e. overall

location in the brain. The local pathway has two hidden layers which allow for

the concatenation of both branches The concatenated feature maps are then

fed to the fully connected layer.The full architecture along with its details is

illustrated in Figure 1.1

Figure 1.1: Architecture of the Convolution Neural Network
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Chapter 2

2.1 Implementation Details

The available BRATS data is split into Training Data (80% of the

total data) and Validation Data (20% of the total data). The network is

implemented in python using tensorflow-gpu.

Training is done in two phases to over-come the data imbalance between the

different segmentation classes. In Phase 1 (P1) a uniform distribution over

all the classes is assumed and the patches are generated accordingly. In Phase

2 (P2) the unbalanced nature of data is accounted for by assuming a more

realistic distribution of data and training only the last layer of the network

2.1.1 Pre-processing

The raw images can be noisy, have bias field artifacts, motion artifacts,

as well as other anatomy like eyes and skull. The BRATS data is already skull-

stripped therefore we don’t apply any skull-stripping. The data is normalized

to an intensity range of [0, 1] within each modality (channel) by subtracting

the channel’s mean and dividing by the channel’s standard deviation. The

images of different subjects are then affinely registered using the T1 modality.

The resulting transformation is applied to the remaining images.
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2.1.2 Patch Extraction

Before training, 4D patches are extracted from the given MRI images

to create training and validation data. the patch extraction is in accordance

to the two phase training

Uniform distribution Equal number of patches from all segmenta-

tion classes are extracted and a total of 1.8 mil patches are used for training

in the first phase.

High Entropy For the second phase of training we sample from the

regions of brain with multiple classes and class boundaries. Since such regions

have high entropy we use an entropy filter. For each pixel in the input im-

age the filter outputs the entropy value of a d × d neighborhood around the

corresponding pixel, the entropy is calculated using:

S = −
∑
i

Pi log2 Pi (2.1)

where Pi is the probability that the difference between the values of two adja-

cent pixels is i.

Figure 2.1: High entropy filter results with different neighborhood sizes
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Training on these patches allows the network to learn segmentation bound-

aries more effectively. In addition to having a high entropy these patches are

distributed similar to the natural frequencies of the classes (in the data) which

removes a lot of false positives.

2.1.3 Hyper-parameter selection and tuning

Hyper-parameters refer to variables within the model that can not be

directly learned from the training process. Defined in [1] as “hyper-parameter

for a learning algorithm A is a variable to be set prior to the actual applica-

tion of A to the data, one that is not directly selected by the learning algorithm

itself”

This tuning process is a meta optimization task that runs on top of loss op-

timization. The hyper-parameters in this model include learning rate (α),

momentum coefficient (β) and the L1 and L2 regularization coefficients (λ1 ,

λ2).

Learning rate and Momentum : α is arguably the most important

hyper-parameter that needs to be tuned. A good approximation is to use a

value close to the largest learning rate that doesn’t cause the training loss to

diverge. For this purpose uniform grid search is used on G with increasing

resolution after every full sweep see Figure 2.2

G = {(α, β) : α ∈ (1× 10−5, 1× 10−1), β ∈ (0.2, 0.8)} (2.2)

The results are shown in Figure 2.3
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Figure 2.2: Sampled values from uniform grid G (a) Coarse Grid (b) Fine Grid

L1 and L2 regularization coefficients: Selecting a suitable value

for λ1 and λ2 (weight regularization co-efficeints) is not an easy task. A com-

mon practice is to use Grid Search to explore possible values between (0,1).

Since the co-efficeints are regularizes its important to select their value based

on their performance on out of sample data to compare generalization capabil-

ities. For this purpose Cross Validation is used to select the best performing

pair.

The results are shown in Figure 2.4
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Figure 2.3: Tuning (α,β) (a) Coarse grid (b) Fine grid.

Figure 2.4: Tuning (λ1,λ2) (a) Training loss (b) Validation loss
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2.1.4 Training

The number of training iterations is restricted by early stopping. The

learning rate is decayed and momentum is gradually increased over the course

of training. The reference strategy for adapting (α,β) is compared with two

other schedules. Results are shown in Figure 2.5 and best performing method

on validation set is used

step-decay: α̃ = α rb
Globalstep
Decaystep

c and β is step-wise increased to 0.9 (2.3)

exp-decay: α = α r
Globalstep
Decaystep and β is gradually increased to 0.9 (2.4)

where r is the decay rate and is set to 0.1

Figure 2.5: (a) Training results for different adaptive methods. (b) Validation accuracy of
each method. (c) Learning rate decay schedule. (d) Momentum increase schedule
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2.2 Results

The network is trained for 55 epochs for P1 and 10 epochs for P2 .

Figure 2.6: Training results for Phase-1 (top) and Phase-2 (bottom) for different epochs

Figure 2.7: Validation results for Phase-1 (top) and Phase-2 (bottom) for different epochs
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Segmenting one brain MRI with the trained model takes 1-2 minute. Figure

2.6 shows the improvement in prediction as the model undergoes training in

both phases. Figure 2.7 shows the best validation prediction among the out

of sample data.

Typical measures of performance are Dice, Sensitivity and Specificity.

Sensitivity measures the probability of a true positive i.e. the proportion of

tumorous voxels that are correctly identified.

Specificity measures the probability of a true negative i.e. the proportion of

healthy voxels that are correctly identified.

Performance Tumor Healthy
Dice 0.53 0.64

Sensitivity 0.78 -
Specificity 0.68 -

Table 2.1: Summary of results on validation data.

2.3 Conclusion

A fully convolutional deep neural network has been implemented suc-

cessfully. It yields promising results however several issues remain open. The

sensitivity and specificity values show that even though the model manages to

correctly identify the tumor it is also prone to false positives.

The use of a convolution layer instead of the dense fully connected layer for

output reduces both training and testing times. The data set containing 3.4

mil patches (2.2 mil healthy, 1.2 mil tumorous) was trained (1 epoch) in 1hr 40

minutes. For testing on a trained model it took 1-2 minutes to fully segment

the 3D MR image.
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