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In this dissertation, we show a number of new results relating to stabil-

ity, optimal control, and value iteration algorithms for discrete-time Markov

decision processes (MDPs). First, we adapt two recent results in controlled

diffusion processes to suit countable state MDPs by making assumptions that

approximate continuous behavior. We show that if the MDP is stable under

any stationary policy, then it must be uniformly so under all policies. This

abstract result is very useful in the analysis of optimal control problems, and

extends the characterization of uniform stability properties for MDPs. Then

we derive two useful local bounds on the discounted value functions for a large

class of MDPs, facilitating analysis of the ergodic cost problem via the Arzelà-

Ascoli theorem. We also examine and exploit the previously underutilized

Harnack inequality for discrete Markov chains; one aim of this work was to

discover how much can be accomplished for models with this property.
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Convergence of the value iteration algorithm is typically treated in the

literature under blanket stability assumptions. We show two new sufficient

conditions for the convergence of the value iteration algorithm without blanket

stability, requiring only geometric ergodicity under the optimal policy. These

results form the theoretical basis to apply the value iteration to classes of

problems previously unavailable.

We then consider a discrete-time linear system with Gaussian white

noise and quadratic costs, observed via multiple sensors that communicate over

a congested network. Observations are lost or received according to a Bernoulli

random variable with a loss rate determined by the state of the network and

the choice of sensor. We completely analyze the finite horizon, discounted,

and long-term average optimal control problems. Assuming that the system

is stabilizable, we use a partial separation principle to transform the problem

into an MDP on the set of symmetric, positive definite matrices. A special case

of these results generalizes a known result for Kalman filters with intermittent

observations to the multiple-sensor case, with powerful implications.

Finally, we show that the value iteration algorithm converges without

additional assumptions, as the structure of the problem guarantees geometric

ergodicity under the optimal policy. The results allow the incorporation of

adaptive schemes to determine unknown system parameters without affecting

stability or long-term average cost. We also show that after only a few steps

of the value iteration algorithm, the generated policy is geometrically ergodic

and near-optimal.
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Chapter 1

Introduction

1.1 Summary of Contributions

This section serves as a guide to assist the reader in identifying the

central results, as the dissertation contains a large number of supporting tech-

nical lemmas and theorems. The main contributions are highlighted below,

with relevant theorem numbers noted in parentheses.

(a) For an MDP on a countable state space, we show that if all stationary poli-

cies are stable then the induced chains are uniformly recurrent (Theorem

4.2.1). That is, one can find a uniform bound on any function integrated

up to the time the chain hits a finite set. This abstract result is very useful

in the analysis of optimal control problems, and extends a known result

on uniform stability of MDPs. Next, substantial effort is usually expended

in the literature to apply Arzela-Ascoli to the discounted value functions

in order to pass to the ergodic optimality equation. We show that for

a large class of problems this is unnecessary, by demonstrating regularity

properties of the discounted value functions (Theorem 4.2.2). An essen-

tial element of these two results is a version of the Harnack inequality for

discrete Markov chains. Though the concept is not new and the result
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not complex, the inequality has been underutilized in previous work. One

of the goals of this study was to explore results for MDPs satisfying this

property.

(b) In the literature, value iteration results are typically shown under blan-

ket stability assumptions. We show convergence of the value iteration

(Theorems 5.3.1–5.3.2) given geometric ergodicity under only the optimal

policy, along with a norm-like running cost function. Without blanket

stability, one can then consider the value iteration for systems previously

unapproachable, including those like the linear quadratic system described

next.

(c) Finally, for linear quadratic systems with Gaussian white noise and inter-

mittent observations, we completely analyze the optimal sensor scheduling

problem (Theorems 7.3.1, 7.4.2, and 7.5.3). We also show a generalization

and extension of a known result on the critical loss rates for intermittent

observations (Theorems 7.6.1–7.6.2). The structure of the system means

that the optimal control guarantees geometric ergodicity, allowing us to

prove convergence of the value iteration (Theorems 8.3.1–8.3.2) without

additional assumptions, just as with a countable state space. Additionally,

the system structure and method of proving the main results allow the in-

corporation of adaptive schemes to determine unknown system parameters

and guarantee that only a few steps of the value iteration algorithm will

produce a stable, near-optimal control.

2



1.2 Background and Motivation

We begin with a discrete time controlled dynamic process: at each

time step the system state is observed, the controller chooses a control action,

and a cost is incurred based on the state and control action. The system

then evolves according to some transition rule (presumably dependent on the

control action), and the process repeats. The goal of the controller is to select

the control actions that will incur the least cost over some time horizon. Such

a process can be called a decision process, and the formulation is astonishingly

general.

The decision process model does not require that the state evolution be

deterministic, nor that the observation be perfect. Indeed, many of the more

potent and interesting results apply to systems with inherent randomness, such

as economic forecasting, queuing theory, and population dynamics. When

choosing control actions for a stochastic system, the goal is often to incur the

least expected cost over the time horizon, though other stochastic rubrics are

possible.

We are primarily interested in those decision processes which are also

Markov. Formally, a process is Markov if, given the entire knowledge of the

process up to the present time, only the system state and control at the present

time is useful for predicting future system behavior. As an example, consider

a simple linear system

xt+1 = −xt + 1, t = 0, 1, 2, . . . .
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When the system model is known exactly, knowing x2 allows one to predict xt

for t > 2; also knowing x0 and x1 does not improve one’s prediction. Markov

processes are desirable in that they are ubiquitous, appearing in numerous sci-

entific and engineering fields, and that they are computationally more tractable

than non-Markov processes. Modeling future events does not require the stor-

age or analysis of the entire state trajectory; only the current state must be

considered. Also, though it is not assumed, we seek decision rules or policies

that are Markov, so that the optimal control actions can be determined only

from the current observation. When the optimal control policies are Markov,

one can frequently calculate the optimal control action in “real time,” at the

moment of decision, via so-called dynamic programming algorithms.

The study of MDPs has its roots in sequential decision making meth-

ods developed in the 1940s [57], but the core of stochastic MDP analysis was

developed in the 1950s with the group of researchers at RAND, most notably

Richard Bellman [7, 8, 27]. His eponymous equation recursively calculates the

expected cost of using a particular policy to choose control actions, and with

the inclusion of a one-step minimization becomes the test of optimality. As

research into MDPs expanded, it quickly incorporated infinite time horizons

through discounting the future costs or averaging over a receding horizon,

resulting in the average expected one-step cost. Analysis also incorporated

countable and continuous state spaces, despite the lack of computational meth-

ods to implement the results. Research developments frequently followed a

common pattern, beginning with restrictive assumptions and steadily expand-

4



ing to include more and more general results. An extensive survey of research

and results is given in [2], and the various bibliographical notes in [47] also

provide a thorough perspective on early and current research.

As significant advances in computation and analysis of MDPs continue

to be made, the number of applications of MDPs expands accordingly. Systems

posed abstractly by early researchers are now finding practical, computational

uses, and the number of fields utilizing MDPs continues to grow. Discipline-

specific texts now proliferate, including finance [18], management [54], artificial

intelligence [55], and more.

1.3 Organization and Contents

In this work, we introduce new results on MDPs that expand the class

of problems that can be analyzed. As mentioned, our focus is on average cost

problems, but we also introduce several concepts and results that contribute

to the overall body of MDP research. As the field of MDP research continues

to expand and move forward, we fully expect future researchers, scientists, and

engineers to find new and unexpected ways to apply this knowledge. Since the

results presented here cover topics in various settings, we have arranged the

subsequent chapters to reflect the conceptual grouping of results.

In Chapter 2, we formally introduce the general MDP model that will

be utilized throughout the subsequent chapters. The basic structure and some

intrinsic assumptions are discussed. We introduce stability in terms of MDPs,

and define the fundamental optimization problems that allow the control of

5



MDPs: minimizing a cost function over a defined period of time. The most

basic problem is the finite horizon problem, which adds the cost over a fixed

number of time steps with a terminal penalty. The infinite horizon, discounted

cost problem considers the cumulative cost for all future times, but multiplies

the cost by a discount factor at each step, indicating that future costs are not

as important as immediate, present costs. Finally, the average cost problem

(also known as the ergodic cost problem) deals with the expected average cost

over time without discount.

We then proceed to study MDPs on particular state spaces. First,

Chapters 3–5 explore results in countable state spaces; that is, state spaces

that are equivalent to the infinite set of positive integers N. Chapter 3 defines

the details of the MDP model with a countable state space, and explores some

of the characteristics of Markov processes on such a space. The countable

space is topologically very different from Rn, and notions such as continuity

and compactness take on different meanings. Many of our results are based

on similar results for continuous processes on Rn, so we introduce several

structures and assumptions that will be utilized later to facilitate analysis on

the countable state space. We also prove countable-space versions of several

results from continuous diffusion processes. Notably, Harnack’s inequality,

though not difficult to prove, provides insight into the behavior of families of

linear operators. We also show the discrete version of the Dirichlet problem,

and present an appropriate version of Dynkin’s formula that proves repeatedly

useful for MDP analysis.

6



Chapter 4 begins with a result on the uniformity of recurrence proper-

ties for MDPs on countable spaces. Building on recent results in continuous

diffusion processes, the result requires particular assumptions are made about

the structure of the transition matrix, emulating in a general way the conti-

nuity properties needed to support the analysis. The same framework is also

used to show local equicontinuity and a local uniform boundedness property of

the discounted value function. Such a result facilitates the natural extension

of the discounted cost problem to the more difficult average cost problem.

Directly finding the optimal average cost and corresponding control pol-

icy involves simultaneously solving for a constant and a function on the entire

space, so is inherently intractable when the state space is infinite. In Chapter

5, we therefore seek conditions under which the well-known value iteration al-

gorithm will converge to a solution. We assume that the cost function satisfies

a near-monotone condition, which penalizes the system for moving away from

a “central” set. We provide two new sufficient conditions for the convergence

of the value iteration algorithm, neither of which rely on the blanket stability

conditions commonly assumed in the literature. Instead, our first result as-

sumes only that the value function is integrable with respect to the optimal

cost (an assumption on the optimal policy only), and our second assumes that

the cost function and value function have the same growth. These results

greatly expands the applicability of the value iteration to new problems, and

the structure of the assumptions motivates our extension to the linear systems

considered in the following chapters.

7



Chapters 6–8 move to an entirely different state space: the product

of a finite set and the set of symmetric positive definite matrices of fixed

dimension. As detailed in Chapter 6, the problem is based on the control of

a linear system with Gaussian noise and a quadratic cost function: the so-

called LQG system. Our system is observed via a finite number of sensors

over a congested network subject to random intermittency. At each time, the

controller chooses the input to the linear system and the sensor to be scheduled

next. The network congestion is modeled as a finite-state Markov process that

evolves based on the sensor selected; the probability that an observation is lost

depends on the network state and the chosen sensor. We derive a Kalman filter

estimate of the linear system incorporating the intermittent observations and

network congestion, and show some useful properties of the error covariance

update operator.

In Chapter 7, we show that for any sensor scheduling policy, the optimal

control for each of the optimal control problems consists of a predetermined

linear gain with the estimate of the state. Combined with the Kalman filter

estimate from the previous chapter, this allows the entire problem to be recast

into an MDP on the product of the network states and the set of possible

error covariances; that is, positive definite matrices. We derive new algebraic

optimality conditions for each of the optimal control problems. Following the

traditional method, we extend the horizon of the finite horizon problem to

approach solutions to the discounted problem, then show that as the discount

factor increases the limiting functions and policies are average cost optimal.

8



Of key importance is the concavity of the value function, which allows us to

generate estimates and bounds based on the trace of the error covariance. We

also present a special case of particular interest: with the network congestion

depending only on the sensor scheduled (i.e., a single, constant network state),

the system becomes a generalized version of a popular intermittent observation

model. We show that when each sensor has a different loss rate, there is a

critical hypersurface: the system is not stabilizable if and only if the vector of

loss rates lies above the hypersurface.

Chapter 8 shows the value iteration algorithm converges for the LQG

system, recast in terms of the error covariance. Unlike in Chapter 5, the LQG

system intrinsically satisfies near-monotonicity and geometric ergodicity by

virtue of the concavity of the value function. The proof of convergence then

follows naturally along the same lines as in Chapter 5, and notably does not

depend on the loss rates. This suggests that if the loss rates were not known, a

straightforward estimator or adaptive algorithm could estimate the loss rates

without affecting the long term average cost. Additionally, we show that the

sub-optimal control policy found after finitely many steps of the value iteration

algorithm is in fact a stable, near-optimal policy. Further, the convergence to

the optimal average cost is geometric, a result with significant implications for

computational effort.

Finally, Chapter 9 reviews the main contributions and discusses possible

extensions for future research.

9



1.4 General Mathematical Notation

The following standard notation will be used throughout:

• R is the set of real numbers

• R+ is the set of non-negative real numbers

• N is the set of non-negative integers

• For a topological space X , C(X ) is the set of continuous real-valued

functions on X , and C+(X ) ⊂ C(X ) be the set of non-negative functions

in C(X ). When X is finite or countable (as in X = N), continuity is

superfluous and each ϕ ∈ C(N) is equivalently represented as a (possibly

infinite) row vector.

• For a Borel space X , P(X ) is the set of probability measures on X

endowed with the topology of weak convergence.

• P and E are the classical probability measure and expectation operator.

10



Chapter 2

Discrete Time Markov Decision Processes

2.1 Introduction

In this chapter we present the underlying system model that will be uti-

lized throughout the rest of the dissertation. We begin by defining a Markov

decision process (MDPs) on a general state space and define some of the es-

sential properties of MDPs. Then, in the subsequent chapters, we will revise

the portions of the model and properties relevant to the specific systems being

considered. Though some of the definitions are somewhat convoluted com-

pared to the versions that appear in later chapters, the underlying general

model forms the link between the specific models studied later.

2.2 MDP Model

An MDP is an (S × U)-valued stochastic process {(Xn, Un) : n ∈ N},

where the state space S and the control space U are Borel spaces. We will refer

to {Xn} and {Un} respectively as the state process and control process, and

unless otherwise specified we will assume that U is a compact metric space.

The initial state is an S-valued random variable with distribution µ ∈ P(S),

and the state process dynamics are governed by a transition kernel P that

11



depends on the control. For any u ∈ U, x ∈ S, and measurable set A ⊂ S,

P u(x,A) := P
(
Xn+1 ∈ A | Xn = x, Un = u

)
.

Intuitively, the probability of the process being in a particular set at a

particular time are determined by the state and control of the process in the

immediately previous time; this is the Markov property of the process. Note

that for a fixed u ∈ U, a transition kernel P u can interchangeably be treated

as:

• an operator on probability measures: µ[P u](A) =
∫
S µ(dx)P u(x,A); and

• an operator on appropriately integrable functions on the state space:

P uf(x) =
∫
S P

u(x, dy)f(y) = E[f(X1) | (X0, U0) = (x, u)].

In order to appropriately relate limits in the control space to limits in the

induced probability distributions, we assume that transition probabilities P u
xy

are continuous in u. This assumption is fairly standard [16, 22], though some

authors make this assumption unnecessary by considering only finite or count-

able control spaces, [1, 9, 52].

To simplify notation and analysis, we will assume that all control ac-

tions u ∈ U are possible from any state x ∈ S. This does not affect the

generality of results: if (x, u) ∈ S × U is an impossible state-action combi-

nation, the kernel P u(x, ·) can be changed to match P u′(x, ·) for some action

u′ ∈ U that is possible in state x. At each time n, the system state is Xn, the

control Un is chosen according to some decision criteria, and a cost r(Xn, Un)

12



is incurred, where the cost function r : S × U → R. Hence, the MDP is de-

fined by the tuple (S,U, P, µ, r), and the decision-maker’s task is to define the

control process, usually with the goal of minimizing the cost in some manner.

Because we will frequently be conditioning on the initial distribution

µ, we will use the shorter notation

Eµ[ · ] = E[ · |X0 ∼ µ], Pµ( · ) = P( · |X0 ∼ µ).

When µ is a Dirac measure δx (i.e., P(X0 = x) = 1) for some x ∈ S, we will

abuse notation by simply writing x instead of µ:

Ex[ · ] = E[ · |X0 = x], Px( · ) = P( · |X0 = x).

2.3 Policies

For each n ∈ N, we define the history of the state process up to n as

the σ-algebra generated by the chain up to n and the control process up to

n− 1:

Fn := σ(X0, . . . , Un−1, Xn).

The control process U = {U0, U1, . . . } is called admissible if for each n, Un is

Fn-measurable, and we denote the set of all admissible controls U. A policy or

control strategy v = {v0, v1, v2, . . . } is a sequence of probability measures on

U that govern the control process dynamics:

P(Un ∈ A) = vn(A) for A a measurable subset of U .

13



We denote the set of admissible policies Π, and note that each element vn of

an admissible policy v is the probability distribution of Un on U. Following

the framework of [14], an admissible control U is called randomized Markov

if for each n ∈ N, (Un|Xn) is independent of {(Xm, Um) : m < n}. Then the

corresponding Markov policy v is can be treated as a sequence of functions

vn : S → P(U) such that the distribution of (Un|Xn) is given by vn(Xn). If

additionally v0 = v1 = v2 = · · · , the policy and corresponding control are

called stationary Markov. We denote the set of stationary Markov controls

(policies) as Usm (Πsm). With a slight abuse of notation, when v ∈ Πsm we

will interchangeably refer to the policy and the set of component functions

S → P(U) as v. When U is a compact metric space, P(U) is metrizable in

the topology of weak convergence [13]. In the case where S is countable, [14]

shows that Πsm is compact, which will prove useful in several results. Notably,

we will frequently use the notion of sequential compactness: every sequence

{vn} ∈ Πsm has a subsequence which converges to a policy v ∈ Πsm.

For a stationary policy v ∈ Πsm, define:

• P v as the transition kernel where

P v(x,A) := P(Xn+1 ∈ A | Xn = x),

when the chain is controlled under the policy v.

• Pvx as the probability measure on the canonical process space under con-

trol law v ∈ Πsm, conditioned on X0 = x ∈ S, and

14



• Evx as the expectation operator on the same.

One can likewise define PU , PUx , and EUx for any particular control U ∈ U.

For a given policy v ∈ Πsm (or control U ∈ U), the MDP is simply a

Markov chain on S with transition matrix P v (PU), and we will refer to it as

such when the particular policy or control is explicit or clear from context.

A Markov control (or policy) for which the distribution (Un|Xn) is a Dirac

measure is called precise, and we denote the set of such controls (policies) as

Usd (Πsd).

2.4 Recurrence Properties and Exit Times

For any set D ⊂ S, the exit time τ(D) is defined as

τ(D) := min{n ≥ 0 : Xn /∈ D},

and the first entry time τe(D) as

τe(D) := min{n ≥ 1 : Xn ∈ D}.

We define the return time probability L(x,A) := P(τ(Ac) <∞), and say that

a Markov chain is ψ-irreducible if there exists a measure φ on B(S) such that

φ(A) > 0 =⇒ L(x,A) > 0 for all x ∈ S. (2.1)

As detailed in [43], the name “ψ-irreducible” arises from the fact that if there

exists a φ satisfying (2.1), there also exists a maximal (in the sense of largest

support) probability measure ψ on B(S) also satisfying (2.1). Note that for
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finite or countable state spaces, the traditional definition of irreducibility (via

communicating classes) is naturally incorporated for any probability measure

ψ supported on the whole space.

Without delving to deeply into the details, we will generally assume

that under any admissible policy the induced chain is aperiodic. Intuitively,

this means that the chain can return to any set of non-zero ψ-measure at

irregular/acyclical times.

A set A ∈ B(S) is called recurrent if the expected number of times the

chain revisits A is infinite; that is, for any x ∈ A,

E

[
∞∑
n=1

IXn∈A
∣∣∣∣ X0 = x

]
=∞.

The entire chain is called recurrent if it is ψ-irreducible and every set of non-

zero ψ-measure is recurrent.

A chain with a transition kernel P is called positive if there exists an

invariant probability measure π ∈ P(S); that is, π(A) = π[P ](A) for any

A ∈ B(S), and a chain that is positive recurrent is equivalently called stable.

Any recurrent chain has a unique (up to scalar multiples) invariant measure,

but that measure may not be finite. To determine the existence of an invariant

probability measure, we need the following definition. A set A ∈ B(S) is called

petite if there exists a maximal irreducibility measure ψ such that

∞∑
n=0

(
1
2

)n+1
P n(x,B) ≥ ψ(B),
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for all x ∈ A and B ∈ B(S). Then, from [43], a ψ-irreducible chain is positive

and recurrent if there exists there exists a petite set C ∈ B(X) with ψ(C) > 0

such that

sup
x∈C

E[τe(C) | X0 = x] <∞.

When considering an MDP with a policy v ∈ Π that induces a stable Markov

chain, we will frequently indicate the corresponding invariant probability mea-

sure as µv. Define Ussm ⊂ Usm (Πssm ⊂ Πsm) as the set of stationary Markov

controls (policies) that induce a stable chain. We will refer to these controls

and policies as stable.

For a function h : S×U→ R, we define the function h̄ : S×P(U)→ R

by

h̄(x, µ) :=

∫
U
h(x, u)µ(du), µ ∈ P(U).

Further, for a particular v ∈ Usm, we treat v as a parameter and define

hv(x) := h̄(x, v(x)) =

∫
U
h(x, u)v(du|x).

2.5 Minimal Cost Problems

We generally assume that the cost function r is bounded below, and

without loss of generality that r : S × U → R+. Generality is maintained

because, as will be clear in the coming sections, translating the cost function

by a constant will not affect the choice of policy and will simply translate the

overall cost as well.
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2.5.1 Finite Horizon Control Problem

For a fixed time N ∈ N, in addition to a running cost r ∈ S×U→ R+,

we can consider a terminal cost rN : S→ R+. Then for an admissible control

U ∈ U, we define the finite-horizon cost as

JUN (x) := EUx

[
N−1∑
t=0

r(Xt, Ut) + rN(Xt)

]
.

The finite horizon control problem is then to minimize JN over all admissible

controls:

J∗N := inf
U∈U

JUN .

2.5.2 Infinite Horizon Discounted Control Problem

As the finite time horizon is lengthened, the total cost may be un-

bounded. Hence, one approach to considering the cost over an infinite horizon

is to introduce a discount factor α ∈ (0, 1). For a cost function r ∈ S×U→ R+

and an admissible control U ∈ U, we define the α-discounted cost:

JUα (x) := EUx

[
∞∑
t=0

αtr(Xt, Ut)

]
.

As before, the infinite horizon discounted control problem is to minimize Jα

over all admissible controls:

J∗α := inf
U∈U

JUα .

For brevity, we will sometimes refer to the infinite horizon discounted cost

problem as simply the discounted cost problem.
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2.5.3 Long Term Average Cost

For some situations, however, discounting future costs is not appropri-

ate. In such cases, we consider the long term average cost average cost, also

called the ergodic cost. With a running cost function r : S× U→ R+ and an

admissible control U ∈ U, the long term average cost is defined as:

JU := lim sup
n→∞

1

n

n∑
m=0

E[r(Xm, Um)].

The long term average cost control problem is to minimize J over all admissible

controls:

J∗ := inf
U∈U

JU .
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Chapter 3

Countable State Space: Model, Assumptions,

and General Results

3.1 Introduction

In this chapter and in Chapters 4–5, we consider Markov decision pro-

cesses (MDPs) on a countable state space, sometimes referred to as a denu-

merable state space. Though the theory of MDPs developed first on finite

spaces, several approachable problems intrinsically require an infinite set of

states. For example, queuing problems may lead to fundamentally different

results if the size of the queue is capped at any finite value. Infinite state

spaces also allow the possibility of unstable behavior (e.g., P(Xn ∈ A)→ 0 as

n→∞ for any finite A ∈ S) which is not possible with finitely many states.

In the following sections, we review some essential results about MDPs

and Markov chains on countable state spaces and introduce some notation that

will aid our later analysis. We identify or re-interpret some of the assumptions

we will make on the MDP in the subsequent chapters, and describe how the

structure of a countable-state MDP can be made to fundamentally mimic cer-

tain characteristics of Rn. We also show some important results for countable

state operators and chains which, though not very involved, are essential later
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and are in some cases unique formulations.

3.2 Countable State Model and Notation

We will resist the temptation to explicitly replace S with N because

the natural numbers hint at structure that may not be present. For example,

consider an autonomous chain on Z with

P(Xn+1 = j | Xn = i) =

{
p, j = i− 1 ,

1− p, j = i+ 1 .

The state 0 seems to hold a special place in N, but in the example 0 is struc-

turally indistinguishable from any other state. Further, to re-enumerate the

states in the example to create an equivalent chain on N makes the transition

probabilities awkward to define. Hence, we leave the enumeration of the states

undefined until needed.

Even so, with a countable state space and an admissible control u ∈ U,

the transition kernel can be equivalently represented as an infinite stochastic

matrix, or transition probability matrix : P u
ij = Pu(Xn+1 = j|Xn = i), for any

states i, j ∈ S. For a set D ⊂ S and a transition probability matrix P on S,

define a matrix DP by

DPij :=

{
Pij for i, j ∈ D ,

0 otherwise.

Note that if D is finite, DP is equivalent to a finite (|D| × |D|) matrix. We

interchangeably use DP to refer to the infinite matrix with rows and columns

of zeros defined above, and to the equivalent |D| × |D| matrix.
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Further define a probability transition matrix DP on D ∪ {b}, by re-

placing Dc with a single absorbing state b:

DP ij :=


Pij for i, j ∈ D ,

0 for i = b, j ∈ D ,∑
k/∈D

Pik for i ∈ D, j = b.

Clearly, a truncated MDP on D ∪ {b} with a transition kernel DP u will share

several characteristics with an MDP on S with kernel P u; notably, the exit

time τ(D) will have the same distribution when both MDPs start in D.

The period of a state is the greatest common factor of possible return

times. That is, for a state i ∈ S, gcd{n > 0 : P(Xn = i|X0 = i)}. A state is

called aperiodic if it has period 1, and a Markov chain is said to be aperiodic

if every state is aperiodic. We will assume throughout that:

Assumption 3.2.1. The MDP is an aperiodic Markov chain under any ad-

missible U ∈ U.

Many of the results here can be adapted for chains with period N

by replacing functions of the chain with the N -step average. Additionally,

in many cases a periodic controlled Markov chain can be replaced with an

approximate aperiodic chain that will lead to the equivalent conclusions and

calculations [47, pp. 371]. In the current work, accounting for periodicity will

unnecessarily complicate the analysis.

Finally, a matrix P (or, equivalently, a Markov chain governed by tran-

sition matrix P ) is irreducible if for any i, j ∈ S, there exists an n ∈ N such
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that P
(n)
ij > 0. In other words, there is a non-zero probability of the chain

reaching j from i in finitely many steps. Similarly, DP is called irreducible if

for any i, j ∈ D, there exists an n ∈ N such that DP
(n)
ij > 0.

Assumption 3.2.2. The MDP is an irreducible Markov chain under any

admissible U ∈ U.

The assumption of irreducibility can also be relaxed under some cir-

cumstances (see, for example, [16, Section V4] and [24]), but again such as-

sumptions complicate the analysis. We will rather assume irreducibility and

leave extensions up to the reader.

3.3 Structural Assumptions

In order to apply concepts from continuous analysis, one requires a dis-

crete space that behaves in some sense like a continuous space. In topological

terms, a countable space with the discrete topology is intrinsically unlike a

Rn, whereas a discrete lattice with the taxicab metric is similar to Rn space

in fundamental ways.

In the same way, evolution of a Markov chain on a discrete space may

be entirely dissimilar to a continuous diffusion process without appropriate

assumptions on the transition probabilities. The following assumptions define

the structure of Markov chains that are sufficiently similar to allow the trans-

lation of some of the analyses of continuous processes. We point out examples

of the type of processes that these assumptions exclude, but also note that
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a very rich set of processes are allowed under all of the assumptions. These

assumptions will be used at various places throughout the following analyses,

and will be indicated either in the appropriate theorem or at the beginning of

the chapter.

3.3.1 Finitely Many Transitions

The following assumption is used to restrict the chain dynamics to

trajectories that behave in some sense like continuous trajectories.

Assumption 3.3.1. For any state i ∈ S:

(i) the set {j ∈ S : P u
ij > 0 for some i ∈ S, u ∈ U} is finite, and

(ii) the set {i ∈ S : P u
ij > 0 for some j ∈ S, u ∈ U} is finite.

A restatement of Assumption 3.3.1 (i)/(ii) is that there are at most

finitely many transitions into/out of any particular state. A key implication of

Assumption 3.3.1 is that for any finite set A ∈ S, there exists a finite set B ⊃ A

such that for any v ∈ Usm, Pv(X1 ∈ A|X0 ∈ Bc) = Pv(X1 ∈ Bc|X0 ∈ A) = 0.

In other words, the chain cannot reach A from Bc or Bc from A without an

intermediate step in Ac ∩ B; this approximates the behavior of a continuous

process. This assumption is essentially a strengthening of a sufficient condition

for stability under local perturbations as described in [16, VI, Lemma 1.1].

Some easily defined chains can violate Assumption 3.3.1, such as a chain

governed by P0i = (1/2)i, Pii−1 = 1, where 0 ∈ S is some particular state. A
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chain of this or similar form can move “infinitely far” in a single step, and

such behavior is problematic in some of the later analysis.

3.3.2 Filtration

For each v ∈ Πsm, define

Hv := {G ⊂ S : G finite, GP
v and GcP

v irreducible} ,

H :=
⋂

v∈Πsm

Hv = {G ⊂ S : G ⊂ Hv for all v ∈ Πsm} .

Using this notation we can state another assumption which ensures behavior

analogous to continuous processes:

Assumption 3.3.2. There is a filtration G = {Gk} ⊂ H, satisfying G0 ⊂

G1 ⊂ G2 ⊂ · · · , and
⋃∞
n=0 Gk = S.

A random walk on Z violates Assumption 3.3.2. For example, consider

the simple random walk Pi,i−1 = Pi,i+1 = 0.5. The only finite sets K ∈ Z such

that KP is irreducible are sets of consecutive integers: Ki,N = {i, i+ 1, . . . , i+

N}. However, Kc
i,N
P cannot be irreducible, as the chain must go through Ki,N

to get from i − 1 to i + N + 1. On the other hand, random walks on Zn for

n > 1 can satisfy Assumption 3.3.2, as in multiple dimensions the random

walker can walk “around” any finite set.

Assumption 3.3.2 has the following immediate implication:

Corollary 3.3.3. Assumption 3.3.2 is equivalent to the following: for any

finite D ⊂ S, there exists a G ∈ H such that D ⊂ G.
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When Assumption 3.3.2 is invoked, we will frequently be using the sets

G ∈ G as “neighborhoods” to show various results about the system trajectory.

Therefore, we will need the following:

Definition 3.3.4. Given a set D ∈ S, we say that a state i ∈ S is G-separated

from D if there is a G ∈ G such that D ⊂ G and i ∈ Gc.

3.3.3 Structural Results

For an infinite, non-negative matrix P (i.e., with non-negative entries),

recall that if DP is irreducible for some D ⊂ S, then for any i, j ∈ D, DP
(n)
ij > 0

for some finite n > 0. We say i  j in D if DP
(n)
ij > 0 for some finite n > 0,

and so D is irreducible if and only if i j for every i, j ∈ D. Equivalently, for

i, j ∈ D, there is a finite chain {k1, k2, . . . , kn−1} ⊂ D such that the product

Pik1Pk1k2 · · ·Pkn−1j > 0. We say that this chain connects i to j in D. For a set

D0 ⊂ D ⊂ S, i  D0 in D indicates that i  j in D for some j ∈ D0. We

can also, for any i, j ∈ D, select a (not necessarily unique) shortest chain of

length N , where N = min{n > 0 : DP
(n)
ij > 0}.

Lemma 3.3.5. Let Assumptions 3.3.1 and 3.3.2 hold. For any Gk ∈ G, there

is a m > k such that GmP
v ∩ Gck

P v is irreducible for all v ∈ Πsm.

Proof. Without loss of generality, let k = 0. Let G be the smallest Gm such

that P v
ij = P v

ji = 0 for all i ∈ G0, j ∈ Gc, and all v ∈ Πsm (i.e., it takes at least

two steps for the chain to enter Gc starting in G0, and visa versa). If G∩Gc0P
v

is not irreducible for all v ∈ Πsm, let Ĝ ⊂ S be the smallest set containing G
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such that Ĝ∩Gc0
P v is irreducible for all v ∈ Πsm, and let G ∈ G be the smallest

Gm containing Ĝ. (To construct such a Ĝ, for any i 6 j in G ∩ Gc
0, find the

shortest chain connecting i  j in Gc
0. Let Ĝ be the union of G and all such

chains.)

Suppose G∩Gc0
P is not irreducible for all v ∈ Πsm. Then there must

be states i, j ∈ G ∩ Gc
0 such that i 6 j in G ∩ Gc

0. By virtue of the various

irreducible matrices, either i ∈ G∩G̃c and i 6 G̃∩Gc
0 in G∩Gc

0, or j ∈ G∩G̃c

and G̃ ∩Gc
0 6 j in G ∩Gc

0. But i j in G, so there must be an k ∈ G ∩ G̃c

and a ` ∈ G0 such that either P v
k` > 0 or P v

`k > 0 for all v ∈ Πsm. However, by

construction both of these probabilities must be zero, so the supposition must

be false. Therefore choosing Gm = G satisfies the claim.

Corollary 3.3.6. Let Assumptions 3.3.1 and 3.3.2 hold. Any filtration G

defined as in Assumption 3.3.2 has a subfiltration {Gk} such that Gk+1∩GckP is

irreducible for each k ∈ N.

3.4 General Results for Countable Operators

Here we present several results relating to linear operators on a count-

able state space, framing the results in a manner similar to results in partial

differential equations. Though these results are not particularly complex, this

presentation is significant in supporting the understanding and development

of results in other chapters. We derive a simple version of Harnack’s inequality

for our context, and versions of the Dirichlet problem and Dynkin’s inequality

particularly suited to the problems addressed later.
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3.4.1 Harnack’s Inequality

Other researchers have derived more complex Harnack inequalities for

use in more complex discrete scenarios. For example, [17] derives a parabolic

Harnack inequality for continuous-time Markov processes on a countable space.

In [38], the authors derive and utilize a Harnack inequality for continuous-time

controlled Markov processes in a framework otherwise quite similar to the one

presented here. However, this general and simple presentation of Harnack’s

inequality is uniquely valuable in our MDP context, and does not require that

the chain be irreducible or aperiodic.

A function ϕ ∈ C+(S) is called (P − I)-harmonic on D ⊂ S if

(P − I)ϕ(i) = 0 ∀i ∈ D.

Lemma 3.4.1 (Harnack’s Inequality). Let D ⊂ S be finite, and let P be

an infinite non-negative matrix on S such that DP is irreducible. Suppose

ϕ ∈ C+(S) is (P − I)-harmonic on D. Then the following hold:

(i) Either ϕ > 0 or ϕ = 0 on D; and

(ii) There is a constant CH > 1 depending only on D and P , such that

ϕ(i) ≤ CHϕ(j) for every i, j ∈ D.

Proof. (i): Suppose ϕ(i) = 0 for some i ∈ D. 0 = ϕ(i) = Pϕ(i) =
∑

j Pijϕ(j).

Then Pij > 0 ⇒ ϕ(j) = 0. Iterating this argument, ϕ(j) = 0 for any j ∈ D

satisfying i  j, which by irreducibility is all of D. Hence ϕ(i) = 0 for any
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i ∈ D implies ϕ = 0 on D, and equivalently ϕ(i) > 0 for any i ∈ D implies

ϕ > 0 on D.

(ii): If ϕ(i) = 0 for i ∈ D then the claim is trivially true for any CH > 1,

so the same constant CH identified for ϕ > 0 will suffice. For ϕ > 0 on D,

suppose DP is aperiodic and let n = |D|, the number of states in D. Define

p := min
i,j∈D

DP
(n)
ij ,

and note that p > 0. Then for any i, j ∈ D, we have

ϕ(j) = P (n)ϕ(j) ≥ DP
(n)ϕ(j) =

∑
k∈D

DP
(n)
jk ϕ(k)

≥ DP
(n)
ji ϕ(i) ≥ pϕ(i) . (3.1)

Note that (3.1) with j = i implies that p ≤ 1, and that if p = 1 then (3.1)

will also hold for any p ∈ (0, 1). Since i and j were chosen arbitrarily from D,

CH = p−1 satisfies the requirement.

If DP is periodic with period d (≤ n), let D̂P := 1
n

∑n
m=1 DP

(m). It

follows that D̂P is aperiodic and irreducible, so we can choose

p = min
i,j∈D

D̂P ij, (3.2)

and again 0 < p < 1. Then for any i, j ∈ D, we have

ϕ(j) =
1

n

n∑
m=1

P (m)ϕ(j)

≥ D̂Pϕ(j)
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=
∑
k∈D

D̂P jkϕ(k) ≥ D̂P jiϕ(i) ≥ pϕ(i), (3.3)

and just as before we can guarantee p < 1 and let CH = p−1. Indeed, the

definition in (3.2) is sufficient even when DP is aperiodic.

An identical result can be shown for functions that are (P − I)-super-

harmonic on a finite D ∈ S; that is, a function ϕ ∈ C+(S) such that

(P − I)ϕ(i) ≤ 0 ∀i ∈ D.

Corollary 3.4.2 (Harnack for superharmonic functions). Let D ⊂ S be finite,

and let P be an infinite non-negative matrix on S such that DP is irreducible.

Suppose ϕ ∈ C+(S) satisfies (P − I)ϕ ≤ 0 on D. Then there is a constant

CH > 1 depending only on D and P , such that ϕ(i) ≤ CHϕ(j) for every

i, j ∈ D.

Proof. With Pϕ ≤ ϕ, the first equality in (3.1) and in (3.3) is replaced with

an inequality, and the rest of the proof follows.

Now, recalling that P v is the probability transition matrix induced by

policy v ∈ Πsm, we can show a more general result:

Lemma 3.4.3 (Harnack for all controls). Let D ⊂ S be finite such that DP
v

is irreducible for every v ∈ Πsm. Suppose that for some v ∈ Πsm, ϕ ∈ C+(S)

is (P v − I)-superharmonic on D. Then there is a constant CH > 1 depending

only on D, such that ϕ(i) ≤ CHϕ(j) for every i, j ∈ D.
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Proof. Lemma 3.4.1 proves that for each v there is a constant Cv
H > 1 satisfying

ϕv(i) ≤ Cv
Hϕ

v(j) for every i, j ∈ D. Elements of P v depend continuously on

v, so from (3.2) Cv
H also depends continuously on v. Therefore, since Πsm is

compact, CH = supv∈Πsm C
v
H exists and satisfies the requirement.

It is worth noting that removing the dependence on the matrix P will

not work for (P − I)-harmonic functions (or (P − I)-superharmonic functions)

unless, as with P v, the operators meeting the irreducibility requirement form

(or are continuously indexed by elements of) a compact space. However, as the

proof of Lemma 3.4.1 indicates, a global Harnack constant for superharmonic

functions can be found if the class of operators has a uniform lower bound on

the minimum averaged n-step probability defined in (3.2). More formally, for

some δ > 0 and finite D ⊂ S, let

h(δ,D) :=

{
matrices P ≥ 0 on S : DP is irreducible, min

i,j∈D
D̂P ij ≥ δ

}
.

We call a set of infinite matrices belonging to h(δ,D) uniformly irreducible on

D. The proof of the following lemma follows exactly as the others.

Lemma 3.4.4. Let D ⊂ S be finite and δ > 0. Suppose ϕ ∈ C(S), ϕ ≥ 0,

and ϕ is (P − I)-superharmonic on D for some P ∈ h(δ,D), then there exists

a constant CH = δ−1 > 1 depending only on D such that for any i, j ∈ D,

ϕ(i) ≤ CHϕ(j).

Uniformly irreducible matrices can also be identified directly: for an

infinite non-negative matrix P , if DP is irreducible and the smallest non-zero

entry of DP is greater than some γ > 0, then P ∈ h(γ|D|, D).
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Remark 3.4.5. As an example of how this insight can be useful, consider the

α-discounted cost Jvα defined in Section 2.5.2. In Chapter 4, we show that for

v ∈ Πsm,

(αP v − I)Jvα = −cv.

For a fixed α ∈ (0, 1), we can use Lemma 3.4.3 to find a Harnack constant

Cα
H . If we bound α below, say α ≥ 1/2, then the matrices (αP v) are uniformly

irreducible and have a Harnack constant C
1/2+

H .

In this particular case, however, we can also find a Harnack constant

for α ∈ (0, 1/2). Let i, j ∈ D, and let D̄ = {k ∈ S : P v
ik > 0 for some i ∈ D}.

Then

C
1/2−

H :=
Jvα(i)

Jvα(j)
=
cv(i) + αP vJvα(i)

cv(j) + αP vJvα(j)

≤ cv(i) + αmaxk∈D̄ J
v
α(k)

cv(j)

≤
maxk∈D cv(k) + 1

2
maxk∈D̄ J

v
1/2(k)

mink∈D cv(k)
.

Hence, we can let CH = max{C1/2−

H , C
1/2+

H }, so Jvα(i) ≤ CHJ
v
α(j) for all i, j ∈ D

and CH depends only on D (and not on P , v, or α).

3.4.2 A Dirichlet Problem

The following lemma is a discrete version of the Dirichlet problem for

irreducible Markov chains.

Lemma 3.4.6 (Dirichlet). Let D ⊂ S be finite, and let P be an irreducible
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countable stochastic matrix. For any h ∈ C(D), g ∈ C(Dc),

(P − I)ϕ = −h on D, ϕ = g in Dc, (3.4)

has a unique solution.

Proof. Any solution is clearly uniquely specified on Dc. Define the following:

Dϕ(i) =

{
ϕ(i) for i ∈ D,
0 for i ∈ Dc,

P ij =

{
Pij for i ∈ D, j ∈ Dc,

0 otherwise.

The problem (P −I)ϕ = −h on D can be rewritten as (DP −I)Dϕ = −h−Pg.

Since P is irreducible, DP
m → 0 as m → ∞. (This is equivalent to saying

Pi(τ(D) <∞) = 1 for all i ∈ D for a Markov chain with transition matrix P .)

Therefore (see, e.g., [50], lemma B1), (DP − I)−1 exists, so

ϕ =

{
(DP − I)−1(−h− Pg) on D ,

g on Dc,

is the unique solution of (3.4).

Next, a lemma that the limit of a sequence of controls induces a limit

of solutions of the Dirichlet problem described above.

Lemma 3.4.7. Let vn → v∗ ∈ Πsm, and let D ⊂ S be finite. If ϕn solves

(P vn − I)ϕn = −h on D, ϕn = g in Dc,

then ϕn → ϕ∗ where ϕ∗ solves

(P v∗ − I)ϕ∗ = −h on D, ϕ∗ = g in Dc.
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Proof. vn → v∗ in Πsm, so P vn → P v∗ element-wise, and there is a unique ϕ∗

that solves

(P v∗ − I)ϕ∗ = −h on D, ϕ∗ = g in Dc.

Consider ψn = ϕn − ϕ∗. ψn = 0 on Dc, and on D we have

(P vn − I)ψn = (P vn − I)ϕn − (P vn − I)ϕ∗

= −h− (P vn − I)ϕ∗

−−−→
n→∞

− h− (P v∗ − I)ϕ∗ = −h− (−h) = 0.

Since ψn = 0 on Dc, (DP
vn − I)ψn → 0 everywhere. Therefore, either ψn →

0 everywhere or at least one eigenvalue of (DP
vn − I) approaches 0. But

(DP
vn − I) → (DP

v∗ − I), which has nonzero eigenvalues. Since eigenvalues

depend continuously on the matrix elements, we can find N large enough

that the eigenvalues of (DP
vn − I) are bounded away from zero for n > N .

Then because no eigenvalues of (DP
vn − I) approach zero, ψn → 0 on D, and

therefore ϕn → ϕ∗.

3.4.3 Dynkin’s Formula

We first state Dynkin’s formula as traditionally presented:

Theorem 3.4.8 (Dynkin’s formula, Theorem 11.3.1 [43]). Let f be a real-

valued on S, let τ be a stopping time. Define another stopping time

τn := min
{
n, τ,min{k ≥ 0 : f(Xk) ≥ n}

}
.
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For each i ∈ S and n ∈ Z+,

Ei[f(Xτn)] = f(i) + Ei

[
τn∑
m=1

E[f(Xm)|Fm−1]− f(Xm−1)

]
.

In the current context, we will frequently wish to apply Dynkin’s for-

mula to a function not only of S but also of time:

f : S× N→ R; f(i, n) = fn(i).

To accomplish this, we define an augmented Markov chain Y which takes

values on (S× N) as follows:

• Yn = (Xn, Tn), where Tn takes values on N;

• P
(
Yn+1 = (j,m) | Yn = (i, n′), Un = u

)
= P u(i, j)Im=n′+1;

• Y is initialized with Y0 = (X0, 0). Combined with the transition rule,

Yn = (Xn, n) almost surely.

Now we can slightly abuse notation to say f(Yn) = f(Xn, n) = fn(Xn), and

use the following corollary.

Corollary 3.4.9. Let f be a positive function on S × N, let τ be a stopping

time. Define another stopping time

τn := min
{
n, τ,min{m ≥ 0 : fm(Xm) ≥ n}

}
.

For each i ∈ S and n ∈ N,

Ei[fτn(Xτn)] = f0(i) + Ei

[
τn−1∑
m=0

E[fm+1(Xm+1) | Fm]− fm(Xm)

]
.
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Note that in the definition of τn, the third component,

min{m ≥ 0 : fm(Xm) ≥ n},

is included to ensure that
∑τn−1

m=0 fm(Xm) is essentially bounded (by n2). How-

ever, if fm(Xm) is almost surely bounded for m < τ , then the third component

is unnecessary. For example, if τ = τ(D), the exit time from some finite set,

and fm is uniformly bounded on D for m < τ ∧n, then for m < τ we also have

fm(Xm) ≤ maxD fm and
∑τn−1

m=0 fm(Xm) is essentially bounded by n(maxD fm).

In such a case, we can simply drop the third component and define

τn := min{n, τ}.

Finally, the following formulation of Dynkin’s formula will prove repeatedly

useful, as it matches the structure used in Theorem 3.4.6 and the definition of

(P − I)-harmonic functions.

Lemma 3.4.10. Suppose D ⊂ S is finite, {Xn} a Markov chain on S governed

by an irreducible transition probability matrix P , and h ∈ C+(S). Then

ϕ(i) = Ei

τ(D)−1∑
m=0

h(Xm)


is a solution of

(P − I)ϕ = −h on D, ϕ = 0 in Dc .

Proof. Let g ∈ C+(S) be bounded, and to simplify notation let τ = τ(D). For

any T > 0, Define τn = min{n, τ}; hence, from Theorem 3.4.8 we get

Ei[g(Xτn)] = g(i) + Ei

[
τn∑
m=1

E[g(Xm) | Fm−1]− g(Xm−1)

]
,
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for each i ∈ S and n > maxi∈S g(i). Also let {X̂n} be another Markov chain

on S governed by P .

By irreducibility, P(τ <∞) = 1, and so letting n→∞ we get

Ei [g(Xτ )]− g(i) = Ei

[
τ∑

m=1

E
[
g(Xm)

∣∣ Xm−1

]]
− Ei

[
τ∑

m=1

g(Xm−1)

]

= Ei

[
τ−1∑
m=0

Pg(Xm)

]
− Ei

[
τ−1∑
m=0

g(Xm)

]

= Ei

[
EX1

[
τ−1∑
m=0

g(X̂m)

]]
− Ei

[
τ−1∑
m=0

g(Xm)

]

= (P − I)

(
Ei

[
τ−1∑
m=0

g(Xm)

])
. (3.5)

Now let g = IDh. Because g(Xτ ) = 0 by construction and τ = 0 for X0 ∈ Dc,

Ei

[
τ−1∑
m=0

g(Xm)

]
= Ei

[
τ−1∑
m=0

h(Xm)

]
= ϕ(i) ,

and so 3.5 becomes

(P − I)ϕ = −h on D, ϕ = 0 in Dc .

Uniqueness follows from Theorem 3.4.6.

Remark 3.4.11. Other applications of (3.5) are also frequently useful. For

example, consider nested finite sets D ⊂ B ⊂ S, and suppose ϕ solves (P −

I)ϕ = 0 on B ∩ Dc, ϕ = 1 on D, ϕ = 0 on Bc. Then with τ = τ(B ∩ Dc),

g = ϕ makes the right side of (3.5) zero, and so ϕ(i) = Pi (τ(Dc) < τ(B)). We

will refer to Lemma 3.4.10 for all such implications.
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Chapter 4

Countable State Space: Uniform Recurrence

Properties

4.1 Introduction

Two results are presented in this chapter, both adapted from the field

of continuous diffusion processes. First, we recall [15], in which Borkar showed

a series of equivalent properties for Markov decision processes (MDPs) when

Πsm = Πssm; that is, when all stationary Markov policies induce stable chains.

The entire theorem is too detailed to reproduce here in its entirety, but the

strength of the result is indicated by the following three equivalent properties

[15, Theorem 8.1]:

(v) The set {fv(i, du) = µv(i)v(i, du) : v ∈ Πsm} of ergodic occupation mea-

sures is tight, where µv is the stationary distribution under v.

(vii) Let 0 ∈ S be a designated zero state. There exists an unbounded h→ R+

such that

sup
v∈Πsm

Evi

τ({0}c)∑
n=1

h(Xn)

 <∞ .

(viii) There exists a V : S → R+, a constant b > 0, a finite C ⊂ S, and a
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function h as in (vii) above, such that for any v ∈ Πsm,

E[V (Xn+1)|Fn] ≤ V (Xn)− h(Xn) + bIXn∈C .

Echoing the corresponding results for controlled diffusion processes,

begun in [15] and greatly extended in [3], we derive a more general condition

that is equivalent to [15, Theorem 8.1, (vii)], above. Our result is a property

called uniform recurrence, and says that a bound as in [15, Theorem 8.1, (vii)]

holds for any particular finite set and all policies, then it holds for any finite

set and for the supremum over policies. To adapt the result for the countable

state space and discrete time, however, we require some of the assumptions

formulated in Chapter 3 chosen to make the countable-state MDP behave like

a continuous process in specific ways.

Next, we show a result involving the discounted cost Jα from Sec-

tion 2.5.2. Under the same structural assumptions used in the first result,

we show that under any stationary Markov policy, the set of functions {Jα :

α ∈ (0, 1)} has bounded variation on finite sets; this result approximates

equicontinuity. We also show that (1 − α)Jα is uniformly bounded on finite

sets. Uniform bounds on particular forms of the discounted cost can facilitate

analysis of the average cost, as in [2, 52], for example.

4.2 Main Results

4.2.1 Uniform Recurrence

The main result extending [15, Theorem 8.1] is the following:
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Theorem 4.2.1. Let Assumptions 3.3.1 and 3.3.2 hold, and assume Πsm =

Πssm. If for some h ∈ C+(S×U), some finite D ⊂ S, and some i0 ∈ S that is

G-separated from D, we have

Evi0

τ(Dc)−1∑
n=0

hv(Xn)

 <∞ ∀v ∈ Πssm .

Then for any finite B ⊂ S, i ∈ Bc,

sup
v∈Πssm

Evi

τ(Bc)−1∑
n=0

hv(Xn)

 <∞ .

4.2.2 Regularity of Discounted Value Functions

We also show that under the same structural assumptions, uniform

bounds can be placed on the discounted cost function Jα. Note that this

result does not require Πsm = Πssm. Recall that for a set D ∈ S and a

function f : S→ R,

osc
G
f := max

i∈D
f(i)−min

j∈D
f(j) .

Theorem 4.2.2. Let Assumptions 3.3.1 and 3.3.2 hold, and let G ∈ G. There

exists a constant C0 depending only on G such that for all v ∈ Πssm and

α ∈ (0, 1),

osc
G
Jvα ≤ C0

%v
µv(G)

(
1 +

1

µv(G)

)
, (4.1)

sup
G

(1− α)Jvα ≤ C1
%v

µv(G)
. (4.2)
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4.3 Supporting Lemmas

Lemma 4.3.1. Let D ⊂ S be a finite set. Then

sup
v∈Πsm

max
i∈D

Evi [τ(D)] <∞ .

Proof. Since D ⊂ G ⇒ τ(D) ≤ τ(G), it suffices to show that for any G ∈ G,

i ∈ G, that supv∈Πsm Evi [τ(G)] <∞. Let G ∈ G. For any fixed i ∈ G, v ∈ Πsm,

Evi [τ(G)] <∞ by irreducibility of P v. (See [50, Appendix B]). Suppose claim

is false. Then there exists an i ∈ G, {vm} ⊂ Πsm such that Evmi [τ(G)] → ∞

as m → ∞. Since Πsm is compact, vm → v∗ ∈ Πsm. For any v ∈ Πsm, let ϕv

be the unique solution of

(P v − I)ϕv = −1 on G , ϕv = 0 on Gc.

From Lemma 3.4.10, ϕv(i) = Evi [τ(G)], and from Lemma 3.4.7, ϕvn → ϕv
∗

which is bounded on G, contradicting the supposition. Hence, claim is true.

Lemma 4.3.2. For any finite sets D ⊂ S and Γ ⊂ Dc, we have

0 < 1 ≤ inf
v∈Πsm

min
i∈Γ

Evi [τ(Dc)] ,

max
i∈Γ

Evi [τ(Dc)] <∞ ∀v ∈ Πssm .

Proof. First is trivial, second is precisely stability.

Lemma 4.3.3. Let D ⊂ S be finite, D ⊆ G ∈ G. Then

inf
v∈Πsm

min
i∈G

Pvi
(
τ(Dc) < τ(G)

)
> 0 .
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Proof. For any particular i ∈ G, v ∈ Πsm, Pvi
(
τ(Dc) < τ(G)

)
> 0 by irre-

ducibility of GP
v.

Suppose false. Then there exists i ∈ G and {vm} ∈ Πsm such that

Pvmi
(
τ(Dc) < τ(G)

)
−−−→
m→∞

0 .

Dropping to a subsequence if needed, vm → v∗ ∈ Πsm. For each v ∈ Πsm, let

ϕv be the unique solution of

(P v − I)ϕv = 0 on G ∩Dc , ϕv = 0 on Gc , ϕv = 1 on D .

From Lemma 3.4.10, ϕv(i) = Pvmi
(
τ(Dc) < τ(G)

)
, and from Lemma 3.4.7 we

have ϕm → ϕ∗ which is non-zero on G∩D, contradicting the supposition.

Lemma 4.3.4. Let D ⊂ S be finite, h ∈ C+(S), and v ∈ Πsm such that

Evi

τ(Dc)−1∑
n=0

h(Xn)

 <∞ ∀x ∈ Dc .

Then for any B ⊂ S,

Evi

τ(Bc)−1∑
n=0

h(Xn)

 <∞ ∀x ∈ Bc .

Proof. For a stopping time τ , define

βvi [τ ] := Evi

[
τ−1∑
n=0

hv(Xn)

]
.

It suffices to prove the claim for finite B. Further, for any finite B and D, we

can choose G ∈ G such that B ∪ D ⊂ G; then βvi [τ(Gc)] ≤ βvi [τ(Dc)] < ∞,
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and B ⊂ G ∈ G. So let B ⊂ G ∈ G and assume βvi [τ(Gc)] <∞ for all i ∈ Gc.

Choose G1 ∈ G such that G ⊂ G1, and let h1 = maxi∈G1 h(i) <∞. Define the

stopping times τ̂0 := min{n ≥ 0 : Xn ∈ G} and, for k ≥ 0,

τ̂2k+1 := min{n > τ̂2k : Xn ∈ Gc
1} ,

τ̂2k+2 := min{n > τ̂2k+1 : Xn ∈ G} .

Clearly, τ̂k − τ̂k−1 ≥ 1, βvi [τ̂0] = βvi [τ(Gc)] <∞. For βvi [τ̂2k] <∞,

βvi [τ̂2k+1] ≤ βvi [τ̂2k] + max
j∈G

βvj [τ(G1)]

≤ βvi [τ̂2k] + h1 max
j∈G

Evj [τ(G1)] <∞

by Lemma 4.3.1, and with ∂G1 := {i ∈ Gc
1 : P v

ji > 0 for some j ∈ G1}

βvi [τ̂2k+2] ≤ βvi [τ̂2k+1] + max
j∈∂G1

βvj [τ(Gc)] <∞

by assumption. So each βvj [τ̂2k] <∞, and τ̂k ↑ ∞.

Let ϕ(i) = Pvi (τ(G1) < τ(Bc)), which is the unique solution of

(P v − I)ϕ = 0 on G1 ∩Bc , ϕ = 0 on B , ϕ = 1 on Gc
1 .

Define

p0 := max
i∈G1∩Bc

ϕ(i) = max
i∈G1∩Bc

Pvi
(
τ(G1) < τ(Bc)

)
= 1− min

i∈G1∩Bc
Pvi
(
τ(G1) > τ(Bc)

)
< 1 ,

where the last step uses Lemma 4.3.3. By the strong Markov property,

Pvi
(
τ(Bc) > τ̂2k

)
≤ p0Pvi

(
τ(Bc) > τ̂2k−2

)
≤ · · · ≤ pk0 .
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So for any i ∈ G1 ∩Bc, we have

βvi [τ(Bc)] ≤
∞∑
k=1

Evi

[
Iτ̂2k−2<τ(Bc)≤τ̂2k

τ̂2k−1∑
n=0

h(Xn)

]

=
∞∑
k=1

Evi

Iτ̂2k−2<τ(Bc)≤τ̂2k

(τ̂0−1∑
n=0

h(Xn) +
k∑
`=1

τ̂2`−1∑
n=τ̂2`−2

h(Xn)

)
= βvi [τ̂0] +

∞∑
k=1

k∑
`=1

Evi

Iτ̂2k−2<τ(Bc)≤τ̂2k

τ̂2`−1∑
n=τ̂2`−2

h(Xn)


= βvi [τ̂0] +

∞∑
`=1

Evi

Iτ̂2k−2<τ(Bc)

τ̂2`−1∑
n=τ̂2`−2

h(Xn)


≤ βvi [τ̂0] +

∞∑
`=1

p`−1
0 max

j∈G
Evj

[
τ̂2−1∑
n=0

h(Xn)

]

≤ βvi [τ̂0] +
1

1− p0

max
j∈G

βvj [τ̂2] <∞ .

Note that G1 ∈ G can be chosen arbitrarily large, so βvi [τ(Bc)] < ∞ for any

i ∈ Bc.

Note the useful special case of the previous lemma for h = 1, in which

case the summations are replaced by the exit times themselves.

Lemma 4.3.5. Let D ⊂ S be finite, h ∈ C+(S), and {vk} ⊂ Πsm a sequence

of policies such that

lim
k→∞

Evki

τ(Dc)−1∑
n=0

h(Xn)

 <∞ ∀x ∈ Dc.
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Then for any B ⊂ S,

lim
k→∞

Evki

τ(Bc)−1∑
n=0

h(Xn)

 <∞ ∀i ∈ Bc.

Proof. As in Lemma 4.3.4, it suffices to prove the assertion for D = G ∈ G

and B ⊂ G. Following a familiar argument structure, define

pv := max
i∈G

Pvi (τ(G) < τ(Bc)) ,

∂G :=
{
i ∈ Gc : P v

ji > 0 for some j ∈ G and any v ∈ Πsm

}
.

Then for any k we have

βvki0 [τ(Bc)] ≤ βvki0 [τ(Gc)] + max
i∈G

βvki [τ(G ∪Bc)]

+
∞∑
`=1

p`vk

(
max
i∈∂G

βvki [τ(Gc)] + max
i∈G

βvkx [τ(G ∪Bc)]

)

≤
∞∑
`=0

p`vk

(
max

i∈{i0}∪∂G
βvki [τ(Gc)] + max

i∈G
βvki [τ(G ∪Bc)]

)

=
1

1− pvk

(
max

i∈{i0}∪∂G
βvki [τ(Gc)] + max

i∈G
βvki [τ(G ∪Bc)]

)
.

From Lemma 4.3.3, pvk is bounded away from 1 uniformly in k, so taking limits

as k →∞ on both sides of the inequality proves the result.

Lemma 4.3.6. Let D ⊂ S be finite, v ∈ Πsm, and h ∈ C+(S), and suppose

f(i) := Evi
[
τ(Dc)−1∑
n=0

h(Xn)

]
is finite at some i0 ∈ S that is G-separated from D

(i.e., there exists G ∈ G such that D ⊂ G and i0 ∈ Gc). Then f(i) is finite

for all i ∈ Dc, and f is the minimal non-negative solution of

(P v − I)f = −h on Dc , f = 0 on D .
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Proof. First, we will show that ϕ(i) := Evi

[
τ(Gc)−1∑
n=0

h(Xn)

]
is finite for all

i ∈ Gc, then that f(i) is finite for all i ∈ Dc, and finally that f is minimal.

Clearly, ϕ(i0) ≤ f(i0) < ∞. Let j ∈ Gc, and choose {Gk}∞k=0 ⊂ G such that⋃
kGk = S, G ∪ {i0, j} ⊂ G0 ⊂ G1 ⊂ · · · , and each Gk∪GcP is irreducible.

For m = 0, 1, · · · , let ϕm solve

(P v − I)ϕm = −h on Gm ∩Gc , ϕm = 0 on G ∪Gc
m .

From Lemma 3.4.10,

ϕm(i) = Evi

τ(Gc)∧τ(Gm)−1∑
n=0

h(Xn)

 .
Clearly, 0 ≤ ϕm ≤ ϕm+1, and ϕm(i0) ≤ ϕ(i0) <∞.

For each m, let ψm+1 = ϕm+1 − ϕm. By construction, (P v − I)ψm = 0 on

G0 ∩ Gc. Let ψ̄m =
m∑
k=1

ψm = ϕm − ϕ0. Then (P v − I)ψ̄m = 0 on G0 ∩ Gc

and ψ̄m(i0) ≤ ϕ(x0) < ∞, so (using Lemma 3.4.1) ψ̄m(j) ≤ CHψ̄m(i0) < ∞.

Then ψ̄m(j) ↑ ψ̄(j), and since j was arbitrarily chosen in Gc, ψ̄m ↑ ψ̄ ∈ C(S)

uniformly on finite subsets of Gc. Let ϕ = ψ̄ + ϕ0, which satisfies the original

definition and is finite for every i ∈ Gc. f(i) must therefore be finite at every

i ∈ Dc by direct application of Lemma 4.3.4.

To show that f is minimal, we now define

fm(i) := Evi

τ(Dc)∧τ(Gm)−1∑
n=0

h(Xn)

 ≤ f(i) <∞ .

For any f̄ ∈ C(S) that solves (P v − I)f̄ = −h on Dc, f̄ = 0 on D, f̄ ≥ 0, note

that (P v − I)(f̄ − fm) = 0 on Gm ∩ Gc and (f̄ − fm) = f̄ ≥ 0 on Gc
m ∪ G.
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P v is a positive operator and irreducibility guarantees that P v
ij > 0 for some

i ∈ Gc
m ∪G and some j ∈ Gc

m ∪G, so non-negativity of (f̄ − fm) will percolate

throughout Gm ∩Gc for every m. Since f is clearly the pointwise limit of fm,

(f̄ − f) ≥ 0 everywhere, and so f is minimal.

Lemma 4.3.7. Let G ∈ G, τ̂0 = 0, and inductively for k = 0, 1, . . .

τ̂2k+1 = min{n > τ̂2k : Xn ∈ Gc} ,

τ̂2k+2 = min{n > τ̂2k+1 : Xn ∈ G} .
(4.3)

Clearly, for any k ≥ 0, τ̂k+1 − τ̂k ≥ 1, and Pv (τ̂k+1 − τ̂k <∞) = 1 for every

v ∈ Πsm.

Define X̃n = Xτ̂2n, n ≥ 1. X̃n is an ergodic Markov chain on G (though

not necessarily on all of G). Under v ∈ Πssm, there exists δ ∈ (0, 1) (which

does not depend on v) such that if we define P̃ v(·, ·) and µ̃v to be the transition

kernel and invariant distribution of X̃n, then for all i ∈ G

‖P̃ v (n)(i, ·)− µ̃v(·)‖TV ≤ δn ∀n ∈ N ,

δP̃ v(i, ·) ≤ µ̃v(·) .
(4.4)

Proof. Let v ∈ Πssm and note that for any i ∈ G such that P v
ji = 0 for all

j ∈ Gc (i.e., the “interior” of G) we have P̃ v(·, i) = 0, so we can proceed only

considering those states i ∈ G that have non-zero probability P v
ji > 0 for some

j ∈ Gc (i.e., the “incoming boundary” of G):

∂G := {i ∈ G : P v
ji > 0 for some j ∈ Gc} .

Because GcP
v is irreducible, P̃ v(i, j) > 0 for all i, j ∈ ∂G; hence X̃n is ergodic

and has stationary distribution µ̃v(i) supported on ∂G.
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Let {Gm}∞m=1 ⊂ G such that G ⊂ G1 ⊂ G2 ⊂ · · · ,
⋃
mGm = S, and G1

is large enough that P v
ij = 0 when i ∈ G, j ∈ Gc. (I.e., it takes at least two

steps for the chain to move from G to Gc
1.) For h ∈ C(G), h ≥ 0, let ψm be

the unique solution of (P v − I)ψm = 0 on Gm ∩Gc, ψm = h on G, ψm = 0 on

Gc
m:

ψm(i) = Evi
[
h(Xτ(Gc))Iτ(Gc)<τ(Gm)

]
.

For each i ∈ S, by the Riesz representation theorem, there exists a measure

q1,m(i, ·) on G such that

ψm(i) =
∑
j∈G

q1,m(i, j)h(j) .

Note that for i ∈ G, q1,m(i, ·) = I{i}(·). For i ∈ Gc, j ∈ G, q1,m(i, j) ↑ q1(i, j) =

Pvi
(
Xτ(Gc) = j

)
.

Now let h2 ∈ C(Gc), h2 ≥ 0, and let ϕ solve (P v − I)ϕ = 0 on G,

ϕ = h2 on Gc. Then by the Riesz representation theorem,

ϕ(i) = Evi [h2(Xτ̂1)] =
∑
j∈Gc

q2(i, j)h2(j).

As before, q2(i, ·) = I{i}(·) for i ∈ Gc. For any i ∈ S, q2(i, j) = Pvi (Xτ̂1 = j).

For any fixed j ∈ Gc, we can choose h2(i) = I{j}(i) and solve the Dirichlet

problem above to get ϕ(i) = q2(i, j). Then, from Harnack (Lemma 3.4.3), for

all i, i′ ∈ G, j ∈ Gc, there is a CH > 1 such that q2(i, j) ≤ CHq2(i′, j). So,

noting that P̃ v(i, ·) =
∑
j∈Gc

q2(i, j)q1(j, ·), any fixed i0 ∈ G yields

P̃ v(i, ·) ≥ C−1
H P̃ v(i0, ·) ∀i ∈ G .
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This implies that P̃ v is a contraction under the TV norm, and∥∥∥∥∑
i∈G

(µ(i)− µ′(i))P̃ v(i, ·)
∥∥∥∥
TV

≤ (1− C−1
H )‖µ− µ′‖TV for µ, µ′ ∈ P(G) .

So (4.4) holds with δ = (1− C−1
H ).

Lemma 4.3.8. Let v ∈ Πssm and G ∈ G. For each k ∈ N, define τ̂k as in

(4.3), along with the induced chain X̃n, transition matrix P̃ v, and invariant

distribution µ̃v on G. Define ηv ∈ P(S) by

∑
S

fηv =

∑
i∈G Evi

[∑τ̂2−1
n=0 f(Xn)

]
µ̃v(i)∑

i∈G Evi [τ̂2] µ̃v(i)
. (4.5)

Then ηv is the invariant distribution of X under v (i.e., ηvP
v = ηv).

Proof. Define the measure µv by

∑
i∈S

g(i)µv(i) =
∑
i∈S

Evi

[
τ̂2−1∑
n=0

g(Xn)

]
µ̃v(i) for g ∈ Cb(S) .

Let s ≥ 0. For any f ∈ Cb(S), we have

Evi

[
τ̂2−1∑
n=0

EvXn [f(Xs)]

]
= Evi

[
∞∑
n=0

It<τ̂2Evi
[
f(Xs+n) | FXn

]]

= Evi

[
∞∑
n=0

Evi
[
In<τ̂2f(Xs+n) | FXn

]]

= Evi

[
τ̂2−1∑
n=0

f(Xs+n)

]
.

Since µ̃v is stationary at τ̂2k,∑
i∈G

Evi

[
τ̂2+s−1∑
n=τ̂2

f(Xn)

]
µ̃v(i) =

∑
i∈G

Evi

[
EvXτ̂2

[
s−1∑
n=0

f(Xn)

]]
µ̃v(i)
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=
∑
i∈G

Evi

[
s−1∑
n=0

f(Xn)

]
µ̃v(i) .

Combining yields

∑
i∈G

Evi

[
τ̂2−1∑
n=0

f(Xs+n)

]
µ̃v(i) =

∑
i∈G

Evi

[
τ̂2+s−1∑
n=0

f(Xn)−
s−1∑
n=0

f(Xn)

]
µ̃v(i)

=
∑
i∈G

Evi

[
τ̂2+s−1∑
n=0

f(Xn)−
τ̂2+s−1∑
n=τ̂2

f(Xn)

]
µ̃v(i)

=
∑
i∈G

Evi

[
τ̂2−1∑
n=0

f(Xn)

]
µ̃v(i)

=
∑
i∈S

f(i)µv(i) .

Then with g(i) = Evi [f(Xs)],

∑
i∈S

Evi [f(Xs)]µv(i) =
∑
i∈G

Evi

[
τ̂2−1∑
n=0

EvXn [f(Xs)]

]
µ̃v(i)

=
∑
i∈G

Evi

[
τ̂2−1∑
n=0

f(Xs+n)

]
µ̃v(i)

=
∑
i∈S

f(i)µv(i) .

So µv is invariant for X, and ηv :=
µv

µv(S)
is an invariant probability measure.

Since v ∈ Πssm, X is positive recurrent and irreducible, and so ηv is unique.
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4.4 Proofs of Main Results

Proof of Theorem 4.2.1. Let G0 ∈ G be the set that G-separates D from i0,

and note that

Evi0

τ(Gc)−1∑
n=0

hv(Xn)

 <∞ ∀v ∈ Πssm .

For a stopping time τ , define

βvi [τ ] := Evi

[
τ−1∑
n=0

hv(Xn)

]
.

Suppose that the claim does not hold for G0. Then there exists a sequence

of policies {vm} ⊂ Πsm such that βvmi0 [τ(Gc
0)] ↑ ∞ as m → ∞. Drop to a

subsequence of {vm}: choose a v0 ∈ Πssm such that βv0
i0

[τ(Gc
0)] > 2. Find a

sequence of sets {Gk} ⊂ G such that
⋃
kGk = S, G0 ∪ {i0} ⊂ Gk and Gk∩Gc0P

irreducible for each k. Noting that βv0
i0

[τ(Gc
0)∧ τ(Gk)] ↑ βv0

i0
[τ(Gc

0)] as k →∞,

choose Ĝ1 ∈ {Gk} such that βv0
i0

[τ(Gc
0)] ≤ 2βv0

i0
[τ(Gc

0) ∧ τ(Ĝ1)]. Let

∂Ĝ1 = {i ∈ Ĝc
1|P v

ij > 0 for some j ∈ Ĝ1, v ∈ Πssm} ;

∂Ĝ1 is finite by Assumption 3.3.1, and p1 := inf
v∈Πssm

Pvi0
(
τ(Gc

0) > τ(Ĝ1)
)

is

strictly positive by the irreducibility of Ĝ1
P v and of P v.

Note that Lemmas 4.3.4 and 4.3.6 imply that for any i ∈ ∂Ĝ1,

βvmi [τ(Ĝc
1)] ↑ ∞ as m→∞ ;

if not, the lemmas would imply that the claim does hold for G0. Choose

v1 ∈ {vm} such that min
i∈∂Ĝ1

βv1
i [τ(Ĝc

1)] > 8p−1
1 , and let

v̂1(i) =

{
v0 for i ∈ Ĝ1 ,

v1 for i ∈ Ĝc
1 .
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Clearly, v̂1 ∈ Πsm. Combining the above, we obtain

β v̂1
i0

[τ(Gc
0)] ≥ Pvi0

(
τ(Gc

0) > τ(Ĝ1)
)(

min
i∈∂Ĝ1

βv1
i [τ(Ĝc

1)]

)
> 8 .

As before we can choose Ĝ2 ∈ {Gk} such that Ĝ1∪∂Ĝ1 ⊂ Ĝ2 and β v̂1
i0

[τ(Gc
0)∧

τ(Ĝ2)] > 4.

Now we can see the induction needed: suppose that v̂k−1 ∈ Πssm and

Ĝk ∈ {Gk} such that β
v̂k−1

i0
[τ(Gc

0) ∧ τ(Ĝk)] > 2k. Choose vk ∈ Πssm such that

min
i∈∂Ĝk

βvki [τ(Ĝc
k)] > 2k+2

(
inf

v∈Πssm
Pvi0
(
τ(Gc

0) > τ(Ĝk)
))−1

,

which is always possible, as above. Define

v̂k(i) =

{
v̂k−1 for i ∈ Ĝk

vk for i ∈ Ĝc
k .

As before, choose Ĝk+1 ∈ {Gk} such that Ĝk ∪ ∂Ĝk ∈ Ĝk+1 and β v̂ki0 [τ(Gc
0)] ≤

2β v̂ki0 [τ(Gc
0) ∧ τ(Ĝk+1)], so β v̂ki0 [τ(Gc

0) ∧ τ(Ĝk+1)] > 2k+1.

Each v̂k agrees with v̂k−` on Ĝk−`+1, and the sequence v̂k converges

to a control v̂ ∈ Πssm that agrees with v̂k on Ĝk for each k ≥ 1. Thus

β v̂i0 [τ(Gc
0)∧ τ(Ĝk)] > 2k for all k ≥ 0, and so β v̂i0 [τ(Gc

0)] =∞ which contradicts

the original assumption.

Since the claim holds for G0 and i0, Lemmas 4.3.4, 4.3.5, and 4.3.6

imply that the claim also holds for any finite B ∈ S and any i ∈ Bc.

Remark 4.4.1.

Jvα(i) = Evi

[
∞∑
n=0

αncv(Xn)

]
= Evi

[
cv(X0) +

∞∑
n=1

αncv(Xn)

]
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= Evi [cv(X0)] + Evi

[
∞∑
n=1

αncv(Xn)

]

= cv(i) + αEvi

[
∞∑
n=0

αncv(Xn+1)

]
.

Therefore,

Jvα = cv + αP vJvα =⇒ (αP v − I)Jvα = −cv .

Now, if %v = µvcv =
∑
i∈S
µv(i)cv(i) is finite, then:

%v
1− α

= %v

∞∑
n=0

αn = µvcv

∞∑
n=0

αn

= µv

∞∑
n=0

(P v)ncvα
n

=
∑
i∈S

µv(i)Evi

[
∞∑
n=0

αncv(Xn)

]
= µvJ

v
α .

Proof of Theorem 4.2.2. Let τ̂ := min{n > τ(G) : Xn ∈ G}. Then for i ∈ G,

Jvα(i) = Evi

[
∞∑
n=0

αncv(Xn)

]

= Evi

[
τ̂−1∑
n=0

αncv(Xn) + Jvα(Xτ̂ )− (1− ατ̂ )Jvα(Xτ̂ )

]
. (4.6)

From Lemma 4.3.7, there exists a δ ∈ (0, 1) depending only on G such that

osc
G

(
Ev(·) [Jvα(Xτ̂ )]

)
≤ δ osc

G
Jvα. (4.7)

Then from (4.6) and (4.7),

osc
G
Jvα ≤ max

i∈G
Evi

[
τ̂−1∑
n=0

αncv(Xn)

]
+ max

i∈G
Evi
[
(1− ατ̂ )Jvα(Xτ̂ )

]
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+ max
i∈G

Evi [Jvα(Xτ̂ )]−min
i∈G

Evi [Jvα(Xτ̂ )]

≤ max
i∈G

Evi

[
τ̂−1∑
n=0

αncv(Xn)

]
+ max

i∈G
Evi
[
(1− ατ̂ )Jvα(Xτ̂ )

]
+ δ osc

G
Jvα ,

and therefore

(1− δ) osc
G
Jvα ≤ max

i∈G
Evi

[
τ̂−1∑
n=0

αncv(Xn)

]
+ max

i∈G
Evi
[
(1− ατ̂ )Jvα(Xτ̂ )

]
. (4.8)

For any i ∈ G,

Evi
[
(1− ατ̂ )Jvα(Xτ̂ )

]
≤ Evi

[
1− ατ̂

1− α

]
max
j∈G

(1− α)Jvα(j)

≤ Evi [τ̂ ] max
j∈G

(1− α)Jvα(j) , (4.9)

and from Remark 4.4.1 we get the estimate

min
G

(1− α)Jvα ≤
%v

µv(G)
.

Note that (αP v − I)Jvα = −cv < 0, which, as detailed in Remark 3.4.5 implies

the existence of a constant C1 > 1 depending only on G such that

max
G

Jvα ≤ C1 min
G
Jvα .

Therefore

max
G

(1− α)Jvα ≤ C1
%v

µv(G)
, (4.10)

which proves (4.2). Let

Jvα := Evi

[
τ̂−1∑
n=0

αncv(Xn)

]
,
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and note that Jvα also satisfies

(αP v − I)Jvα = −cv .

Hence, following an identical argument to Remark 3.4.5, we find that the

constant C1 also satisfies

max
G
Jvα ≤ C1 min

G
Jvα .

Then using the bound

min
i∈G

Evi

[
τ̂−1∑
n=0

cv(Xn)

]
≤ %v max

i∈G
Evi [τ̂ ]

derived from (4.5), we get

max
i∈G

Evi

[
τ̂−1∑
n=0

αncv(Xn)

]
≤ C1%v max

i∈G
Evi [τ̂ ] . (4.11)

Finally, Evi [τ̂ ] is (P v − I)-superharmonic, and so Lemma 3.4.3 guarantees a

constant C2 such that

Evi [τ̂ ] ≤ C2Evj [τ̂ ] ∀i, j ∈ G, v ∈ Πsm . (4.12)

Applying Lemma 4.3.8 with f(·) = IG(·) and using Lemma 4.3.1 to find a

constant C3 yields

min
i∈G

Evi [τ̂ ]µv(G) ≤
∑
i∈G

Evi [τ̂ ]µ̃v(i)µv(G) =
∑
i∈G

Evi [τ(G)]µ̃v(i)

≤ max
i∈G

Evi [τ(G)] ≤ C3 <∞ . (4.13)
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Then combining (4.8) with (4.9), (4.10), (4.11), (4.12), and (4.13) we get

(1− δ) osc
G
Jvα ≤

(
1 +

1

µ(G)

)
C1C2C3%v
µv(G)

. (4.14)

Since the constants δ, C1, C2, and C3 depend only on G, we can indeed rewrite

(4.14) in the form of (4.6).
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Chapter 5

Countable State Space: Value Iteration

5.1 Introduction

In this chapter, we consider the value iteration and relative value it-

eration algorithms to determine the average cost and optimal policy for the

average cost problem in Section 2.5.3. The optimal policy is can be found

via the value function V : S→ R+ which satisfies the average cost optimality

equation (ACOE):

V (i) = min
u∈U

[r(i, u) + P uV (i)]− %∗, i ∈ S. (5.1)

A stationary policy v∗ is optimal if it satisfies

v∗(i) ∈ arg min
u∈U

[r(i, u) + P uV (i)] , i ∈ S.

We therefore take v∗ ∈ Πsm to be a selector from the minimizer. For an

infinite state space, it is generally not feasible to solve the ACOE directly, so

a common approach is to a find a sequence of functions that might converge

to the value function. Two closely related sequences frequently considered are

given by the relative value iteration (RVI),

ϕn+1(i) = min
u∈U

[r(i, u) + P uϕn(i)]− ϕn(0), (5.2)
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and the value iteration (VI)

ϕn+1(i) = min
u∈U

[r(i, u) + P uϕn(i)]− %∗, ϕ0 = ϕ0. (5.3)

We seek conditions and initial values ϕ0 that will ensure the VI and RVI

converge to a valid solution of (5.1). Our main assumption will be that the

cost function is near-monotone; that is, it satisfies the following condition:

Assumption 5.1.1.{
i ∈ S : min

u∈U
r(i, u) ≤ %∗ + δ

}
is finite for some δ ∈ (0, 1). (5.4)

The near-monotone condition encourages stable behavior by penalizing

the system for moving away from a “central” set, and also implies that %∗ is

finite. We will also impose additional assumptions relating the cost function

to the value function.

Note that by standard dynamic programming iteration (see, e.g., [10]),

the VI (5.3) can be written in the following stochastic form:

ϕn(i) = inf
U∈U

EUi

[
ϕ0(Xn) +

n−1∑
k=0

(r(Xk, Uk)− %∗)

]
. (5.5)

This representation makes it clear that ϕn is simply the n-horizon optimal

control problem with running cost (r − %∗) and terminal cost ϕ0. If the MDP

is appropriately ergodic, in the long-term the minimizing policy in the VI will

approach the optimal policy, and ϕn will converge to a solution of (5.1) (i.e.,

the optimal value function plus a constant). Also, by (5.5), if ϕn converges to
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a solution of (5.1) then

inf
U∈U

EUi

[
n−1∑
k=0

(r(Xk, Uk)− %∗)

]

also converges to a solution of (5.1). Hence, we may say that the VI is truly

representative of the long-term asymptotics of the finite horizon problem.

On the other hand, the RVI is normalized at every step, so although the

minimizing policy will approach the optimal policy, the relative value function

ϕn may converge while moving arbitrarily far away from the optimal value

function. The distinction is clearly visible in the following relationships, proved

later in Lemma 5.4.1:

ϕn(i) = ϕn(i)− n%∗ +
n−1∑
m=0

ϕm(0),

ϕn(i) = ϕn(i)−ϕn−1(0) + %∗, for all i ∈ S, n ≥ 1.

The first relationship shows that the RVI might converge while the cumula-

tive sum of normalizing terms makes the VI diverge. However, the second

relationship clearly implies that if the VI converges, then the RVI must also.

Though VI algorithms can be traced back to sequential decision models

[53], developed around the time that dynamic programming was being formal-

ized, results for countably many states and average cost were not developed

until the 1970s and later. For non-finite state spaces, results showing the con-

vergence of the VI algorithm rely on strong blanket stability assumptions. [34]

showed that the value iteration converges when V − ϕ0 is bounded, thereby

limiting the one-step behavior of the algorithm. Sennott [51] instead assumed
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that the value function is bounded above by another function that is integrable

with respect to the optimal stationary distribution, a condition that is difficult

to verify. Aviv and Federgruen in [6] address the VI by first showing conver-

gence under a strong blanket stability assumption involving the optimal value

function. They then show a sufficient condition involving an order function in

lieu of the optimal value function, but the condition still requires blanket sta-

bility for policies. Hence, in the literature, convergence of the VI depends on

blanket atability assumptions that are overly restrictive or difficult to verify.

Other efforts have focused almost exclusively on the more tractable

RVI rather than the VI. An assumption similar to that of [51] is used in

[52], combined with various conditions based on several others’ frameworks,

to show convergence of the average cost. The sufficient conditions include

some from [21] requiring bounded costs, as well as a near monotone condition

(5.4) from Borkar, as in [16]. Authors in [22] proved that the RVI converges

for unbounded costs when one assumes that there is a global (in the sense

of all possible controls) Lyapunov function. In [20], Cavazos-Cadena showed

that the RVI converges under a slightly stronger version of the near monotone

condition. Rather than the single set defined in (5.4), the author requires that

all of the sub-level sets of the cost function are finite:{
i ∈ S : min

u∈U
r(i, u) ≤ b

}
is finite for any b > 0.

In a related work, [24] argue convergence by initializing the RVI with a regular
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policy v0, a function V0 > 0, and a constant %0 that satisfy

P v0V0 ≤ V0 − rv0 + %0.

With such an initialization, each step of the RVI algorithm yields a regular

policy and a Lyapunov function, thereby guaranteeing convergence to a reg-

ular policy with Lyapunov stability. However, finding an initial policy and

corresponding function effectively requires solving an equation (or inequality)

of precisely the type which the value iteration algorithm is intended to avoid.

Ultimately, though, all of these results avoid convergence of the VI, which for

the models used is not guaranteed.

In this work, we present two new sufficient conditions for the conver-

gence of the VI algorithm that do not require a uniform stability condition.

Our weaker assumption is that the value function is integrable with respect to

the optimal invariant distribution. Note that this requires stability under the

optimal policy only, not in general. Under this condition, the VI algorithm

converges when initialized with a function that is similar in growth to the

value function. We also assert a stronger condition requiring that the value

function grow no faster than the cost function. While somewhat restrictive,

various problems with near-monotone cost do satisfy this requirement struc-

turally, including problems with quadratic-like costs. Under this assumption,

initializing with a constant function will guarantee convergence. Our approach

adapts the controlled diffusion results in [4], for the countable state space, but

unlike in Chapter 4 does not require onerous structural assumptions on the

transition probabilities.
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In the next section we describe our main assumptions and lay out some

additional notation needed for the ensuing results. Then, in Section 5.3 we

present the main results and discuss some of the implications thereof. Proofs

are deferred until Sections 5.4–5.5, where we show a number of supporting

lemmas before proving the main theorems.

5.2 Assumptions and Additional Notation

Throughout this chapter, we will assume that the Markov decision pro-

cess (MDP) is irreducible and aperiodic (see Assumptions 3.2.1–3.2.2) for all

admissible controls. Since the transition kernel is a stochastic matrix, if V

solves (5.1) then so does V + c for any c ∈ R. We therefore fix a particular so-

lution V that solves (5.1) with mini∈S V (i) = 1. We then define for f : S→ R

the norm

‖f‖V := sup
i∈S

|f(i)|
V (i)

,

and the set

OV := {f : S→ R : ‖f‖V <∞, f ≥ 0}.

Let v = {vm,m ∈ N} be a selector from the minimizer in (5.3) corresponding

to a solutionϕ. Note that v is also a selector from the minimizer in (5.2) when

ϕ and ϕ are initialized with the same ϕ0. At the nth step of the VI, define the

(nonstationary) Markov control

v̂n := {v̂nm = vn−m,m ∈ N,m < n}. (5.6)

If the cost function r is replaced with r+c for some c ∈ R, the resulting
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average cost will simply be %∗ + c and the optimal policy will be unchanged.

Hence, without loss of generality we will assume minS×U r = 1. To simplify

analysis, we will also occasionally use

r := r − %∗.

Assumption 5.2.1. There exist positive constants θ1 and θ2 such that

min
u∈U

r(i, u) ≥ θ1V (i)− θ2 ∀i ∈ S.

Since V is positive everywhere, without loss of generality we assume θ1 ∈ (0, 1),

which will be useful in proving some essential results.

When a policy v induces a stable process, we denote by µv the cor-

responding invariant probability distribution on S. The existence of an op-

timal invariant distribution µv∗ is shown in [16] to be a consequence of the

near-monotone assumption. Clearly, when the average cost %∗ is finite, %∗ =

µv∗ [r] < ∞. Hence, the following assumption is also asserting a very general

structural similarity between r and V .

Assumption 5.2.2. There exists an optimal invariant probability distribution

µv∗ such that

µv∗ [V ] =
∑
i∈S

V (i)µv∗(i) <∞ .

Equation 5.2.1 implies 5.2.2 because

µv∗ [V ] ≤ µv∗ [minu∈U r(·, u)] + θ2

θ1

≤ µv∗ [r(·, v∗(·))] + θ2

θ1

=
%∗ + θ2

θ1

<∞ .

63



5.3 Main Results

Using the notation of dynamical systems, we consider the semi-cascades

Φn[ϕ0] of (5.3) and Φn[ϕ0] of (5.2). Let E denote the set of solutions of the

ACOE in (5.1). Recalling that the solution of (5.1) is unique up to a constant,

define

E := {V + c : c ∈ R}.

For any particular c ∈ R, we define the set

Gc := {h : S→ R : ‖h‖V <∞, h− V ≥ c}.

Theorem 5.3.1. Suppose Assumption 5.2.2 holds and ϕ0 ∈ Gc for some c ∈ R.

Then Φn[ϕ0] converges to c0 + V ∈ E for some c0 ∈ R such that

0 ≤ c0 ≤ µv∗ [ϕ0 − V ], (5.7)

and Φn[ϕ0] converges to V − V (0) + %∗.

Under the stronger assumption 5.2.1, the same convergence can be

shown with notably relaxed conditions on the initial function ϕ0:

Theorem 5.3.2. Suppose Assumption 5.2.1 holds and ϕ0 ∈ OV . Then the

semi-cascade Φn[ϕ0] converges to a point c0 + V ∈ E satisfying

−%
∗ + θ2

θ1

≤ c0 ≤ ‖ϕ0‖V
%∗ + θ2

θ1

, (5.8)

and therefore Φn[ϕ0] converges to V − V (0) + %∗ as t→∞.
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5.4 Supporting Lemmas

We begin by proving a number of essential, intermediate results.

Lemma 5.4.1. The solutions ϕ and ϕ of (5.2) and (5.3), respectively, satisfy

ϕn(i) = ϕn(i)− n%∗ +
n−1∑
m=0

ϕm(0) , (5.9)

ϕn(i)− ϕn(0) = ϕn(i)−ϕn(0) , (5.10)

ϕn(i) = ϕn(i)−ϕn−1(0) + %∗ . (5.11)

for all i ∈ S and n ≥ 1.

Proof. Let ϕ be a solution of (5.2) and suppose (5.9) is true for a particular

n ∈ N. Then

ϕn+1(i) = min
u∈U

[r(i, u) + P uϕn(i)]− %∗

= min
u∈U

[
r(i, u) + P u

(
ϕn(i)− n%∗ +

n−1∑
m=0

ϕm(0)

)]
− %∗

= min
u∈U

[r(i, u) + P uϕn(i)]− n%∗ +
n−1∑
m=0

ϕm(0)− %∗

= ϕn+1(i) + ϕn(0)− (n+ 1)%∗ +
n−1∑
m=0

ϕm(0)

= ϕn+1(i)− (n+ 1)%∗ +
n∑

m=0

ϕm(0) .

Since (5.9) is trivially satisfied for n = 0, it must also be true for all n ≥ 0.

(5.10) then follows directly from (5.9). Also from (5.9), and using (5.10),

ϕn(i)−ϕn−1(i) = ϕn(i)− ϕn−1(i) + ϕn−1(0)− %∗
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= ϕn(i)−ϕn−1(i) +ϕn−1(0)− %∗.

and rearranging yields (5.11).

Lemma 5.4.2. For each n ≥ 0 and i ∈ S, with v̂n as in (5.6), ϕ satisfies

P v̂n(ϕn(i)− V (i)) ≤ ϕn+1(i)− V (i) ≤ P v∗(ϕn(i)− V (i)) , (5.12a)

Ev̂ni [ϕ0(Xn)− V (Xn)] ≤ ϕn+1(i)− V (i) ≤ Ev∗i [ϕ0(Xn)− V (Xn)] . (5.12b)

Proof. For the right inequality in (5.12a), from (5.3) and (5.1), we have

0 ≤ r(i, v∗(i)) + P v∗ϕn(i)−min
u∈U

[r(i, u) + P uϕn(i)]

= P v∗ϕn(i)− P v∗V (i)−min
u∈U

[r(i, u) + P uϕn(i)] + r(i, v∗(i)) + P v∗V (i)

= P v∗(ϕn(i)− V (i))− (ϕn+1(i)− V (i)).

For the left, again from (5.1) and using the definition of v̂ with (5.3), we have

0 ≤ r(i, v̂n(i)) + P v̂nV (i)−min
u∈U

[r(i, u) + P uV (i)]

= r(i, v̂n(i)) + P v̂nϕn(i)−min
u∈U

[r(i, u) + P uV (i)] + P v̂nV (i)− P v̂nϕn(i)

= (ϕn+1(i)− V (i))− P v̂n(ϕn(i)− V (i)).

Extending to (5.12b) is accomplished by iterating (5.12a) and treating P v∗

and P v̂n as operators on (ϕ0 − V ).

The following result is well-known but reproduced here for complete-

ness.
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Lemma 5.4.3. If a non-negative function f : S→ R and transition probability

kernel P satisfy

Pf ≤ α + βf

for constants α ∈ R and β ∈ (0, 1), then a chain {X0, X1, . . . } governed by P

with X0 = i satisfies

Ei[f(Xn)] ≤ α

1− β
+ βnf(i) ∀i ∈ S.

Proof. Using recursion, with a chain {Xi} as described,

Ei[f(X1)] = Pf(i) ≤ α + βf(i) ≤ α

1− β
+ βf(i) i ∈ S .

Then for n ≥ 2,

Ei[f(Xn−1)] ≤ α
n−2∑
k=0

βk + βn−1f(i)

=⇒ Ei[f(Xn)] = PEi[f(Xn−1)] ≤ P

(
α
n−2∑
k=0

βk + βn−1f(i)

)

= α
n−2∑
k=0

βk + βn−1Pf(i) ≤ α
n−1∑
k=0

βk + βnf(i)

≤ α
∞∑
k=0

β + βnf(i) =
α

1− β
+ βnf(i) .

Lemma 5.4.4. Under Assumption 5.2.1,

Ev∗i [V (Xn)] ≤ %∗ + θ2

θ1

+ (1− θ1)nV (i) .

Proof. Applying (5.1), we obtain

(P v∗ − I)V = P v∗V − P v∗V − r(·, v∗) + %∗
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= %∗ − r(·, v∗) ≤ %∗ + θ2 − θ1V ,

and thus,

P v∗V ≤ %∗ + θ2 + (1− θ1)V .

Then an application of Lemma 5.4.3 yields the result.

Lemma 5.4.5. For any filtration {D` : ` ∈ N} of S,

Ev̂ni
[
ϕn−τ(D`)

(Xτ(D`))Iτ(D`)<n

]
−−−→
`→∞

0 .

Proof. Iterating (5.3) using the definition of v̂n, we get for any n, τ > 0

ϕn(i) =
τ∧n−1∑
k=0

P v̂n (k)
r(i, v̂n(i)) + P v̂n (n) (Iτ≥n ϕ0(i) + Iτ<n ϕn−τ (i)

)
= Ev̂ni

[
τ∧n−1∑
k=0

r(Xk, v̂
n(Xk)) + Iτ≥n ϕ0(i)

]
+ Ev̂ni

[
Iτ<n ϕn−τ (i)

]
. (5.13)

If τ = τ(D`) then

Pv̂n (τ(D`) ≥ n) −−−→
`→∞

1,

so the first term in (5.13) tends to the right-hand side of (5.5) by monotone

convergence and the result follows.

Lemma 5.4.6. When ϕ0 ∈ OV , ϕn ≥ −n%∗ and satisfies

‖ϕn‖V ≤ (1 + n%∗) max{1, ‖ϕ0‖V }

for all n ∈ N.
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The following results and implications are restated here for clarity, and

to direct the reader to the appropriate sources.

Lemma 5.4.7 (See [16, Chapter V]). Under 5.4 and 3.2.2, there exists an

optimal stationary policy v∗ with an invariant distribution µv∗.

Lemma 5.4.8. Under Assumptions 5.4 and 3.2.2, the chain satisfies the con-

ditions of the f -Norm Ergodic Theorem [43, Theorem 14.0.1] with f(i) =

r(i, v∗(i)).

Proof. Since r is finite-valued, 5.4 implies that %∗ < ∞. With optimal policy

v∗ and µv∗ corresponding invariant distribution, let f(i) = r(i, v∗(i)). Then

µv∗ [f ] = %∗ <∞, satisfying condition (i) of [43, Theorem 14.0.1].

Lemma 5.4.9. Under Assumption 5.2.2, Ev∗i [V (Xn)]→ µv∗ [V ] as n→∞.

Proof. Assumption 5.2.2 directly satisfies condition (i) of [43, Theorem 14.0.1],

and the hypothesis is a direct consequence.

A related essential result is the following:

Lemma 5.4.10. Under Assumption 5.2.2, there exists a constant M > 0 such

that

sup
n≥0

Ev∗i [V (Xn)] ≤M(V (i) + 1), ∀i ∈ S. (5.14)

Proof. Let B ⊂ S be the finite set defined in 5.4, and recall %∗ and δ from the

same definition. Also let r∗(i) = r(i, v∗(i)), and define a function f : S → R
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as

f(x) =


r∗(x)− %∗

δ
x ∈ Bc,

1 x ∈ B.

Then f ≥ 1 and V/δ satisfies [43, Theorem 14.0.1, (iii)]:

P v∗V − V = %∗ − r∗ ≤ −δf + (δ + %∗ − r∗)IB

≤ −δf + (δ + %∗)IB.

Assumption 5.2.2 with [43, Theorem 14.0.1] then further implies that there

exists a constant M1 <∞ such that

∞∑
k=0

‖(P v∗)k(i, ·)− µv∗‖(f) ≤M1

(V (i)
δ

+ 1
)
,

where for any signed measure ‖·‖(f) is defined as

‖ν‖(f) := sup
g:|g|≤f

|ν[g]| .

If we define a new constant M2 = max{%∗ + δ,maxx∈B r
∗(x)}, then r∗ ≤M2f

on all of S and therefore ‖·‖(r∗) ≤ ‖·‖(M2f) ≤ M2‖·‖(f). Then using (5.1), for

any n ≥ 0,

Ev∗i [V (Xn)] = (P v∗)nV (i) = V (i) +
n−1∑
k=0

(P v∗)k(P v∗V (i)− V (i))

= V (i) +
n−1∑
k=0

(P v∗)k(%∗ − r∗(i))

≤ V (i) +
∞∑
k=0

|(P v∗)kr∗(i)− %∗|

≤ V (i) +
∞∑
k=0

‖(P v∗)k(i, ·)− µv∗‖(r∗)
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≤ V (i) +
∞∑
k=0

M2‖(P v∗)k(i, ·)− µv∗‖(f)

≤ V (i) +M2M1

(V (i)
δ

+ 1
)

≤ V (i) +
M2M1

δ
(V (i) + 1),

Then (5.14) is satisfied with M = (M2M1)
δ

+ 1.

5.5 Proofs of the Main Results

Proof of Theorem 5.3.1. Under Assumption 5.2.2, Gc is positively invariant for

Φn since (using Lemma 5.4.2)

c ≤ϕn − V ⇒ c = P v̂nc ≤ P v̂n(ϕn − V ) ≤ϕn+1 − V

and with Lemma 5.4.8, for all i ∈ S and n ∈ N,

c ≤ ϕn+1(i)− V (i) ≤ Ev∗i [ϕ0(Xn)− V (Xn)]

≤ ‖ϕ0 − V ‖V Ev∗i [V (Xn)]

≤ mr‖ϕ0 − V ‖V (V (i) + 1) . (5.15)

Since translating ϕ0 by a constant translates the entire orbit {Φn[ϕ0], n ≥ 0}

by the same constant, without loss of generality assume c = 0.

From (5.5), for each i ∈ S and n ∈ N,

Φn[ϕ0](i) ≤ Ev∗i

[
n−m−1∑
k=0

(r(Xk, v
∗(Xk))− %∗) +Φm[ϕ0](Xn−m)

]
(5.16)
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for any m ∈ {0, · · · , n}. Since Φn[ϕ0](i)− V (i) ≥ 0, and µv∗
[
Φn[ϕ0]

]
is finite,

then (5.16) with m = n− 1 yields

µv∗
[
Φn[ϕ0]

]
≤ µv∗

[
Φn−1[ϕ0]

]
.

Since the cascade remains in G0, the map n → µv∗
[
Φn[ϕ0]

]
is therefore non-

increasing and bounded below, so must be constant on the ω-limit set of ϕ0 un-

der Φn, denoted ω(ϕ0). Because (5.15) implies supn≥0‖Φn[ϕ0]‖V <∞, {Φn[ϕ0]}

are uniformly bounded in the weighted norm. By a standard diagonal argu-

ment, it follows that the limit set ω(ϕ0) is non-empty. Let h ∈ ω(ϕ0), and

define the non-negative (by Lemma 5.4.2) function

f(n, i) = P v∗
(
Φn−1[h](i)− V (i)

)
−
(
Φn[h](i)− V (i)

)
.

Then

Ev∗i

[
n−1∑
m=0

f(n−m,Xm)

]
= Ev∗i [h(Xn)− V (Xn)] + V (i)−Φn[h](i) . (5.17)

Integrating with respect to the invariant distribution µv∗ yields

n−1∑
m=0

∑
i∈S

f(n−m, i)µv∗(i) =
∑
i∈S

(
h(i)−Φn[h](i)

)
µv∗(i) ∀n ∈ N. (5.18)

Since both h and Φn[h] are in ω(ϕ0), the right-hand side of (5.18) is equal to

zero and therefore f(n, i) = 0, (n, i)-almost everywhere. Using Lemma 5.4.9,

(5.17) becomes

lim
n→∞

Φn[h](i) = V (i) + µv∗ [h− V ] .

Therefore ω(ϕ0) ⊂ E ∩ G0, and since µv∗ [V − h] is a constant, the limit set

must be a singleton. Because µv∗
[
Φn[ϕ0]

]
is non-increasing in n, the inequality
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(5.7) is satisfied. Therefore, by Lemma 5.4.1, Φn[ϕ0] converges pointwise to

V − V (0)− %∗.

Proof of Theorem 5.3.2. For ε > 0, let ϕε be the solution of (5.3) with initial

data ϕ0 +εV , and let {v̂nε : n = 0, 1, . . . } be the corresponding Markov control,

as in (5.6). For convenience let α = (1− θ1), C = %∗+θ2
θ1

, and let

f εn(i) := ϕεn(i)− (1− αn)(V (i)− C).

Noting that (P v̂nε − I)V (i) ≥ −r(i, v̂nε ) + %∗ from (5.1), we have

F ε
n(i) := f εn(i)− P v̂nε f εn−1(i)

= r(i, v̂nε (i))− %∗ − θ1α
n−1(V (i)− C)

+ (1− αn−1)(P v̂nε − I)(V (i)− C)

≥ r(i, v̂nε (i))− %∗ − θ1α
n−1(V (i)− C)

+ (1− αn−1)(−r(i, v̂nε (i)) + %∗ − C)

= αn−1 (−θ1V (i) + θ2 + r(i, v̂nε (i)) + C)

≥ αn−1 (−θ1V (i) + θ2 + θ1V (i)− θ2)

= 0 ∀(i, n) ∈ S× N .

Let {Dm : m ∈ N} be a filtration of S; that is, each Dm ⊂ S is finite,

D0 ⊂ D1 ⊂ · · · , and
⋃∞
m=0 Dm = S. Let

τnm = min{n, τ(Dm)},
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and using Dynkin’s formula from Corollary 3.4.9,

f εn(i) = Ev̂
n
ε
i

[
τnm−1∑
k=0

F ε
(n−k)(Xk) + f ε(n−τnm)(Xτnm)

]

= Ev̂
n
ε
i

[
τnm−1∑
k=0

F ε
(n−k)(Xk) + (ϕ0(Xn) + εV (Xn))I{n≤τ(Dm)}

]

+ Ev̂
n
ε
i

[
f ε(n−τ(Dm))(Xτ(Dm))I{n>τ(Dm)}

]
. (5.19)

From Lemma 5.4.5 we have

Ev̂
n
ε
i

[
f ε(n−τ(Dm))(Xτ(Dm))I{n > τ(Dm)}

]
−−−→
m→∞

0 ∀(n, i) ∈ N× S . (5.20)

Then letting m → ∞ in (5.19), using Fatou’s lemma and (5.20), we have

f εn(i) ≥ 0 for all (n, i) ∈ N. By construction, ϕε ≥ ϕ and ϕε decreases with ε.

So each ϕε satisfies

ϕεn+1(i) = min
u∈U

[r(i, u) + P uϕεn(i)]− %∗,

ϕε0(i) = ϕ0(i) + εV (i) ,

and ϕε ↓ϕ0 for some pointwise limit ϕ0. Clearly, ϕ0
0 = ϕ0, and so if we suppose

that ϕ0
n =ϕn for some n > 0, then

ϕεn+1(i)−ϕn+1(i) = min
u∈U

[r(i, u) + P uϕεn(i)]− %∗ −ϕn+1(i)

= min
u∈U

[r(i, u) + P uϕn + P u(ϕεn(i)−ϕn(i))]− %∗ −ϕn+1(i)

≤ r(i, v̂n(i)) + P v̂nϕn(i) + P v̂n(ϕεn(i)−ϕn(i))− %∗ −ϕn+1(i)

= P v̂n(ϕεn(i)−ϕn(i)) −−→
ε→0

0 .
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Hence, inductively, ϕ0 =ϕ everywhere, and so

ϕn(i)−
(
1− αn)(V (i)− %∗+θ2

θ1

)
= lim

ε↓0
f εn(i) ≥ 0 . (5.21)

for all (n, i) ∈ N× S.

From Lemmas 5.4.2 and 5.4.3, we have

ϕn(i)− V (i) ≤ Ev∗i [ϕ0(Xn)− V (Xn)] ,

from which we obtain

ϕn(i) ≤ V (i) + Ev∗i [ϕ0(Xn)]

≤ V (i) + Ev∗i [‖ϕ0‖V V (Xn)]

≤ V (i) + ‖ϕ0‖V
(
%∗ + θ2

θ1

+ αnV (i)

)
.

Combining this inequality with (5.21) yields

(1− αn)(V (i)− %∗ + θ2

θ1

) ≤ ϕn(i)

≤ V (i) + ‖ϕ0‖V
(
%∗ + θ2

θ1

+ αnV (i)

)
. (5.22)

From (5.22), every ω-limit point of Φn[ϕ0] lies in the set

G(ϕ0) :=

{
h : S→ R,−%

∗ + θ2

θ1

≤ h− V ≤ ‖ϕ0‖V
%∗ + θ2

θ1

}
,

and G(ϕ0) ⊂ G−C . The ω-limit set is invariant under Φn, and by Theorem

5.3.1 the only invariant subsets of G−C are also subsets of E . Thus (5.8) holds,

and the rest of the result follows from Lemma 5.4.1.
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Chapter 6

LQG System with Sensor Scheduling and

Intermittent Observations

6.1 Introduction

In this chapter, we define a discrete-time linear control system with

multiple available sensors that communicate with the controller via an imper-

fect network channel. New results based on this model will be presented in

Chapters 7–8.

Since our model combines elements of two fields of research, we first

review the existing work before explicitly defining the system. Technological

advances in various areas have led to a number of control applications with dis-

tributed, networked sensors, from communications networks [40] to structural

health monitoring [12] and even to wearable computing [59]. In such systems,

network capacity can cause data packets to be lost, and energy constraints

can limits how many or which sensors can transmit observations in each time

step. This has led to considerable research into finding optimal scheduling

of sensors, as well as into handling randomness in the observation of linear

systems.

The field of sensor scheduling, also known as sensor querying, is very
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rich, dating back to the 1960s with the seminal work of Meier, et al [42].

In recent years, however, new applications for efficient and robust sensor net-

works has led to a resurgence of research in optimal sensor scheduling, and has

also converged with research on partially-observed Markov decision processes.

The problem was developed under the classical MDP optimization framework

in [58], which demonstrated that the dynamic programming equations and

optimality conditions can be recast in terms of the error covariance via the

same separation principle established by [42]. [31] considered a controller that

randomly chooses a sensor at each time step, and derived upper and lower

bounds on the error covariance. This approach, continued in [45] and others,

introduces randomness that allows stochastic approaches to the analysis of

convergence and stability. Other research efforts seek computationally feasible

methods of calculating optimal or near-optimal control strategies, such as [36],

or focused on particular system structures to facilitate analysis [35, 41].

In [56], Sinopoli et al studied a discrete linear system with a single

sensor subject to intermittent observations, modeling lost observations as a

Bernoulli process with a fixed loss rate λ. The authors show that there is a

critical loss rate λc ∈ (0, 1) such that the error covariance is sure to remain

bounded when λ < λc, and sure to diverge for some initial condition when

λ ≥ λc. The framework of [56] has been extended to include more details

of the random error covariance behavior [46], weak convergence of the error

covariance [37], and extension to more general transmission loss models [49].

In this work, we combine the areas of sensor scheduling and control
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with intermittent observations. Our approach to the optimal sensor schedul-

ing problem is inspired by [58], but the intermittent observations introduce

another layer of randomness. As in [58], the linear control problem reduces to

a Kalman filter and optimal feedback, each computed via a discrete algebraic

Riccati equation. However, as in [56], the error covariance is itself stochas-

tic, and we therefore consider the stability of the expected value over time.

Optimal policies for an LQG system with two sensors, one of which has per-

fect transmission while the other is subject to random observation losses, are

derived in [32]. Our framework is much more general, considering multiple sen-

sors with different loss rates, combined with a dynamic congestion model that

enables complex network behavior. Some limited results for sensor scheduling

with intermittency are shown in [44], but the authors do not consider optimal

scheduling and control. A special case of our system generalizes the result of

[56] to multiple sensors each with a unique loss rate, and show that there is a

multi-dimensional critical surface rather than a single critical loss rate.

The following sections describe the detailed system model and some

additional notation. We then consider the concept of stability for linear sys-

tems with noise, and make a simple assumption on the stabilizability of the

system. The Kalman filter is introduced as an optimal estimator, regardless of

scheduling scheme or lost observations, and we conclude with some important

properties of the stochastic covariance update operator.

78



6.2 Plant, Observation, and Network Model

We consider a linear quadratic Gaussian (LQG) system

Xt+1 = AXt +BUt +DWt , t ≥ 0

X0 ∼ N (x̄0,Σ0) ,
(6.1)

where Xt ∈ RNx is the system state, Ut ∈ RNu is the control, and {Wt} is the

noise process. We assume that each Wt ∼ N (0,Σw) is i.i.d. and independent

of X0 and that (A,B) is stabilizable. The system is observed via a finite

number of sensors scheduled or queried by the controller at each time step.

The queried sensor attempts to send information to the controller through

the network; depending on the state of the network, the information may be

received or lost. This behavior is modeled as

Yt = γtCQt−1Xt + FQt−1Wt , t ≥ 1, (6.2)

with Yt ∈ RNy . The query process {Qt} takes values in the finite set of

allowable sensor queries Q, and {γt} is a Bernoulli process indicating if the

data is lost in the network: each observation is either received (γt = 1) or

lost (γ = 0). For any allowable query q ∈ Q, we assume that det(FqF
T
q ) 6= 0

and (primarily to simplify the analysis) that DF T
q = 0. Also without loss of

generality, we assume that rank(B) = Nu; if not, we restrict control actions to

the row space of B.

The network congestion is modeled as a random process St, also con-

trolled by Qt, taking values on a finite set S of network states:

P (St+1 = s′ | St = s,Qt = q) = pq(s, s
′) , s, s′ ∈ S , t ≥ 0, (6.3)
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with a known initial state S0 = s0 ∈ S. The observed information is either

lost or received according to

P (γt = 0) = λ(St, Qt), P (γt = 1) = (1− λ(St, Qt)), (6.4)

where the loss rate λ : S×Q→ [0, 1]. The network state St is assumed to be

known by the controller at every time step and, though not necessary for most

of the analysis, we assume that the chain {St} is irreducible and aperiodic.

At each time t, the controller makes a decision vt = {Ut, Qt}, the system

state evolves as in (6.1), and the network state transitions according to (6.3).

Then the observation at t + 1 is either lost or received, determined by (6.2)

and (6.4). The decision vt must be non-anticipative, i.e., should depend only

on the history Ft of observations up to time t defined by

Ft := σ(S0, x̄0,Σ0, S1, Y1, γ1, . . . , St, Yt, γt).

The complete sequence of decisions v = {vt; t ≥ 0} is called a policy, and we

call the set of admissible policies V .

For an initial condition (S0, X0) and a policy v ∈ V , let Pv be the

unique probability measure on the trajectory space, and Ev the corresponding

expectation operator. When necessary, the explicit dependence on (the law

of) X0 will be denoted as Pv(S0,X0) and Ev(S0,X0).

Let M+
0 ⊂ RNx×Nx be the closed cone of Nx ×Nx symmetric, positive

semi-definite matrices. We also define M+ ⊂ M+
0 , the set of Nx × Nx sym-

metric, positive definite matrices. For Σ1,Σ2 ∈ RNx×Nx , we say Σ1 ≥ Σ2 or
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Σ1 > Σ2 when Σ1 − Σ2 ∈ M+
0 or Σ1 − Σ2 ∈ M+, respectively. Note that the

zero matrix 0 ∈ M+
0 is the Nx × Nx matrix with all zero entries, and is the

unique “smallest” element of M+
0 , in that

{Σ ∈M+
0 : Σ ≤ Σ′ for all Σ′ ∈M+

0 } = {0}.

For a square matrix G, let σ(G) be the set of eigenvalues of G, and

let σmin(G) and σmax(G) be the eigenvalues with the smallest and largest

magnitude, respectively. The trace of a matrix acts as a norm on the cone of

positive semidefinite symmetric matrices, and for a matrix Σ ∈ M+
0 , tr(Σ) =∑

σ(Σ).

6.2.1 Kalman Filtering

Since the system state cannot be observed directly, feedback controls

are based on an estimate of the state process. Standard linear estimation

theory tells us that the expected value of the state X̂t := E[Xt|Ft] is a sufficient

statistic, and can be dynamically calculated via the Kalman filter:

X̂t+1 = AX̂t +BUt + K̂Qt,γt+1(Π̂t)
(
Yt+1 − CQt(AX̂t +BUt)

)
, X̂0 = x̄0. (6.5)

where Π̂ is the error covariance

Π̂t = cov(Xt − X̂t) = E[(Xt − X̂t)(Xt − X̂t)
T ].

The Kalman gain K̂q,γ is given by

K̂q,γ(Π̂) := Ξ(Π̂)γCT
q

(
γ2CqΞ(Π̂)CT

q + FqF
T
q

)−1
,
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Ξ(Π̂) := DDT + AΠ̂AT ,

and the error covariance evolves on M+
0 as

Π̂t+1 = Ξ(Π̂t)− K̂Qt,γt+1(Π̂t)CQtΞ(Π̂t), Π̂0 = Σ0. (6.6)

Note that when an observation is lost (γt = 0), K̂q,γt = 0 and the observer

(6.5) simply evolves without any correction factor, and the evolution of Π̂t

does not depend on the state control Ut.

6.3 Stability

A well-known necessary condition for stability is that (A,B) is stabiliz-

able and (A,C) is detectable, whereC = [C1 | C2 | · · · | C|Q|]. In the absence of

intermittency it has been shown in [58] that these conditions are also sufficient.

However, with intermittency these conditions are clearly not sufficient. More-

over, algebraic sufficient conditions for stability with intermittent observations

do not seem possible, even for a system without sensor scheduling [56].

Suppose that a particular query process {Qs
t} and estimation scheme

are known that result in a bounded trajectory of the error covariance matrix.

Then it is clear, by the optimality of the Kalman filter, that {Qs
t} together

with the Kalman filter estimator will also keep the error covariance bounded.

Moreover, since (A,B) is stabilizable then a feedback controller can be de-

signed so that the variance of X stays bounded. Note that there is not strict

separation principle in this case, but the partial separation result in [58] makes

this possible.
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As a result, in this work we will assume that the estimation is sta-

bilizable under some scheduling policy, then investigate the optimal control

problem under quadratic running cost.

Assumption 6.3.1. There exists a query process Qs = {Qs
t : t ≥ 0} and a

system state estimator for which the error covariance remains bounded. That

is, for some initial (x0,Σ0)

sup
t>0

EQ
s

x0,Σ0

[
tr(Π̂t)

]
< ∞ . (6.7)

Without loss of generality, the estimator is the Kalman filter.

Remark 6.3.2. If (A,D) is controllable then (6.7) holds for some (x0,Σ0)

if and only if the same holds for any initial condition under some policy.

Therefore it suffices that (6.7) holds with (x0,Σ0) = (0, 0). There is also a

dichotomy: Unless Assumption 6.3.1 holds, then supt>0 EQx,Σ[Π̂t] = ∞ for all

initial points (x,Σ) and all admissible policies Q. Therefore Assumption 6.3.1

is a necessary condition for long-term average control problem to be well posed.

Remark 6.3.3. If follows by the results of Chapter 7 that, provided (A,D)

is controllable, then Assumption 6.3.1 is equivalent to the following seemingly

weaker condition: There exists a constant M > 0 such that for every n ∈ N it

holds that

max
t=1,...,n

EQn0,0

[
tr(Π̂t)

]
< M

for some admissible policy Qn. Indeed, this condition is all that is required for

Lemma 7.4.1 on which the rest of the results are based.
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An algebraic characterization of Assumption 6.3.1 based on the param-

eters of the problem does not seem possible, though results for sensor schedul-

ing without intermittency [58] and intermittent observations with a single sen-

sor [56] suggest an important necessary condition for Assumption 6.3.1. Let

Q = {q1, . . . , qNq} and define C := [CT
q1
| · · · |CT

qNq
]T . Then Assumption 6.3.1

holds only if (C,A) is detectable. Moreover, as we show later in Corollary

7.6.3, if (C,A) is detectable then Assumption 6.3.1 holds for an open set of the

parameters λ, and therefore this assumption is generally non-vacuous.

This enables us to derive a wealth of interesting results: (a) Stabilizabil-

ity leads necessarily to geometric stability; (b) The value iteration algorithm,

linking the finite horizon control problem and the infinite horizon ergodic con-

trol problem, converges; (c) We extend the seminal result of Sinopoli [56], who

showed that there is a stability threshold for the intermittency loss rate, to the

sensor scheduling problem with multiple, sensor-dependent loss rates; (d) The

analysis and results also facilitate various extensions: in the case of unknown

sensor-dependent loss rates, a simple adaptive scheme can be coupled with the

estimation that stabilizes the system. Also, when the loss rates depend on the

dynamic network congestion (6.3), and adaptive identification scheme as in [5]

can be devised which again renders the system stable.

6.3.1 Concavity and Continuity

Recall that a function f :M+
0 → R is concave if for Σ1,Σ2 ∈M+

0 ,

f((1− β)Σ1 + βΣ2) ≥ (1− β)f(Σ1) + βf(Σ2), for all β ∈ [0, 1]. (6.8)
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Concavity for functions on f : M+
0 → M+

0 is defined in precisely the same

way, but replacing the inequality in (6.8) with the ordering defined in Section

6.2. We will sightly abuse the terminology by calling a function f on S×M+
0

concave/continuous/monotone if f(s, ·) is concave/continuous/monotone for

all s ∈ S.

For a sensor query q ∈ Q, we define a function Tq :M+
0 →M+

0 by

Tq(Π̂) := Ξ(Π̂)− K̂q,1(Π̂)CqΞ(Π̂)

and an operator T̃q on functions f : S×M+
0 → R,

T̃qf(s, Π̂) :=
∑
s′∈S

pq(s, s
′)((1− λ(s, q))f(s′, Tq(Π̂)) + λ(s, q)f(s′,Ξ(Π̂))

= Eq
[
f(St+1, Π̂t+1)

∣∣ St = s , Π̂t = Π̂
]
.

Lemma 6.3.4. T̃q preserves concavity and monotonicity for non-decreasing

functions.

Proof. Ξ(Π̂) is linear in Π̂, so also concave and non-decreasing. Concavity of

Tq is a standard result (see, e.g., [31, Lemma 1]), as is the fact that Σ ≥ Σ′

implies Tq(Σ) ≥ Tq(Σ′) (e.g, [31, Lemma 2]). Since T̃qf(s, Π̂) is a convex

combination of f(s′,Ξ(Π̂)) and the various possible f(s′, Tq(Π̂)) functions, if

f : S×M+
0 → R is concave and non-decreasing in its second argument, so is

T̃qf .

Trace is concave and non-decreasing, so T̃q tr(·) is also. Hence, for any
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constant M > 1, query q ∈ Q, and Π̂ ∈M+
0 ,

T̃q tr(Π̂) ≥
(

1− 1

M

)
T̃q tr(0) +

1

M
T̃q tr(MΠ̂).

Rearranging and iterating for a sequence of sensor queries {q0, . . . , qk} yields

T̃k ◦ · · · ◦ T̃0 tr(MΠ̂) ≤ M T̃k ◦ · · · ◦ T̃0 tr(Π̂). (6.9)

Let vs = {(Qt, Ut)} be the stable policy from Assumption 6.3.1, and recall that

Π̂t does not depend on the state control {Ut}. Hence under any admissible

policy of the form ṽ = {(Qt, Ũt)} for any Σ0 ∈M+
0 , (6.9) gives us the following

useful bound:

Eṽ[tr(Π̂t)] ≤ max

{
c1,

c1

c0

tr(Σ0)

}
≤ c1 +

c1

c0

tr(Σ0) (6.10)

for all t ≥ 0.

We also get the following straightforward result:

Lemma 6.3.5. T̃q preserves continuity and lower semi-continuity.

Proof. Both Ξ and Tq are continuous by inspection, and so T̃q is a convex

combination of continuous functions. Hence T̃qf is continuous when f is con-

tinuous. If g is lower semi-continuous, there exists an increasing sequence

of continuous functions fn → g. Each T̃ fn is continuous and the increasing

sequence T̃ fn → T̃ g, so g is lower semi-continuous.
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Chapter 7

LQG System: Optimal Control

7.1 Introduction

We now formulate and address the optimal control problem for the

linear quadratic Gaussian (LQG) system defined in the previous chapter. As

with the general Markov decision process (MDP) model from Chapter 2, we

introduce a running cost function on the set of states and controls. In this

case however, the cost function is assumed to be quadratic in the system state

x and control u. (This quadratic cost assumption is the “Q” in LQG.)

Utilizing a partial separation principle and the optimal estimate derived

in Section 6.2.1, in this chapter we derive the optimal feedback controller and

recast the optimal control problems in terms of the state error covariance and

network state only. We show optimality conditions and prove the existence of

optimal controls and value functions first for the finite horizon, then for the

discounted cost optimization using a receding horizon technique, and lastly

for the average cost optimal control problem using a vanishing discount ap-

proach. Throughout, the concavity- and continuity-preserving properties of

the operator T̃q greatly facilitate the analysis. Finally, we show two results for

the reduced model without network state dynamics that generalize the result
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from [56] to sensor-dependent observation loss rates.

7.2 Overview of Optimal Control Problems

Much of the following development follows standard patterns; see, for

example, [10, 11]. The running cost is made up of a non-negative network cost

rS and a quadratic plant cost rP :

rS(s, q) + rP (x, u) = rS(s, q) + xTRx+ uTMu ,

where R,M ∈ M+. To help with later analysis, we choose one network state

to be the network zero state 0 ∈ S

0 ∈ arg min
s∈S

(
min
q∈Q

rS(s, q)
)
,

and without loss of generality assume minq∈Q rS(0, q) = 1. We are interested

in finding admissible policies in V that minimize the average cost,

Jv := lim sup
T→∞

1

T
Ev
[
T−1∑
t=0

(
rS(St, Qt) + rP (Xt, Ut)

)]
.

To approach this problem, we will also consider, for α ∈ (0, 1), the α-discounted

finite horizon cost

Jvα,N := Ev
[
N−1∑
t=0

αt
(
rS(St, Qt) + rP (Xt, Ut)

)
+ αNXT

NΠfinXN

]
, (7.1)

where Πfin ∈M+
0 is a terminal cost, and the α-discounted cost,

Jvα := Ev
[
∞∑
t=0

αt
(
rS(St, Qt) + rP (Xt, Ut)

)]
.
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In each of these problems and throughout the analysis, we assume that S0 =

s ∈ S and X0 ∼ N (x̄0,Σ0) unless otherwise specified.

Unsurprisingly, in the following sections the α-discounted finite horizon

problem will lead to results for the α-discounted problem, which will in turn

lead to results for the average cost problem.

7.3 Optimal Control for the Finite Horizon Problem

The optimal control for the finite horizon problem is well understood;

details of the following derivations can be found in, for example, [11, Sec. 5.2].

For the finite horizon α-discounted problem with any particular sequence of N

sensor queries, the optimal control policy can be derived directly from (7.1),

and is given by the linear feedback

Uα,t = −Kα,t E[Xt | Ft] , (7.2)

with the feedback gain determined using backward recursion:

Kα,t = α(M + αBTΠα,t+1B)−1BTΠα,t+1A ,

Πα,t = R + αATΠα,t+1A− αATΠα,t+1BKα,t ,

(7.3)

with Πα,N = Πfin. However, to facilitate extension to the infinite horizon

case, we note that since the system is stabilizable, there exists a unique matrix

Π∗α ∈M+ that solves the algebraic Riccati equation

Π∗α = R + αATΠ∗αA− α2ATΠ∗αB(M + αBTΠ∗αB)−1BTΠ∗αA . (7.4)

By setting Πfin = Π∗α, the backward recursion in (7.3) is t-invariant and, as

noted in Section 6.2.1, the expected value of the state can be dynamically
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calculated via the Kalman filter estimate X̂. So we can define the optimal

stationary linear feedback as

Uα∗
t = −K∗αX̂t ,

K∗α = (M + αBTΠ∗αB)−1αBTΠ∗αA .

(7.5)

The following result recasts the finite horizon optimal control problem

in terms of the error covariance rather than the system state and control.

Theorem 7.3.1. Let v∗ = {Uα∗
t , Qα∗

t }, where Uα∗
t is the linear feedback defined

in (7.5) and {Qα∗
t } is a selector from the minimizer in the N-step dynamic

programming equation

f
(N)
t (s, Π̂) = min

q

{
rS(s, q) + tr(Π̃αΠ̂) + αT̃qf (N)

t+1 (s, Π̂)
}

(7.6)

for t = 0, . . . , N − 1 with f
(N)
N = 0 and Π̃α := R− Π∗α + αATΠ∗αA.

Then v∗ is optimal in that with Πfin = Π∗α,

Jv
∗

α,N = inf
v∈V

Jvα,N

= f
(N)
0 (s0,Σ0) + x̄T0 Π∗αx̄0 + tr(Π̃αΣ0) +

N∑
k=1

αktr(Π∗αDD
T ) . (7.7)

Proof. Using the same approach as in [58], we note that the linear feedback

(7.2) is optimal relative to Jvα,N . That is, for any admissible query sequence

{Qt : t ≥ 0} and Ũ the corresponding set of admissible state control policies,

inf
Ũ∈Ũ

J Ũ ,Qα,N = J
U∗α,Q
α,N .
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A straightforward calculation gives

EUα∗,Q[αXT
t+1Π∗αXt+1] = EUα∗,Q[αX̂T

t+1Π∗αX̂t+1]

+ EUα∗,Q[α(Xt+1 − X̂t+1)TΠ∗α(Xt+1 − X̂t+1)]

= αEUα∗,Q[X̂T
t+1Π∗αX̂t+1] + αEUα∗,Q[tr(Π∗αΠ̂t+1)]

= EUα∗,Q[X̂T
t (Π∗α −R−K∗α

TMK∗α)X̂t]

+ αEUα∗,Q[tr(Π∗α(Ξ(Π̂t)− Π̂t+1)) + tr(Π∗αΠ̂t+1)]

= EUα∗,Q[X̂T
t (Π∗α −R−K∗α

TMK∗α)X̂t]

+ αEUα∗,Q[tr(Π∗αDD
T ) + tr(Π∗αAΠ̂tA

T )].

Similarly,

EUα∗,Q[r(Xt, U
α∗
t )] = EUα∗,Q[X̂T

t (R +K∗α
TMK∗α)X̂t]

+ EUα∗,Q[tr(RΠ̂t)] . (7.8)

So for t = 0, . . . , N − 1,

EUα∗,Q[rP (Xt, U
α∗
t )] + αEUα∗,Q[XT

t+1Π∗αXt+1]

= EUα∗,Q[X̂T
t Π∗αX̂t] + αEUα∗,Q[tr(Π∗αDD

T )

+ tr(Π∗αAΠ̂tA
T )] + EUα∗,Q[tr(RΠ̂t)]

= EUα∗,Q[X̂T
t Π∗αX̂t] + αEUα∗,Q[tr(Π∗αDD

T )]

+ EUα∗,Q[tr(Π∗αΠ̂t) + tr(Π̃αΠ̂t)]
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= EUα∗,Q[X̂T
t Π∗αX̂t] + EUα∗,Q[(Xt − X̂t)

TΠ∗α(Xt − X̂t)]

+ αEUα∗,Q[tr(Π∗αDD
T )] + EUα∗,Q[tr(Π̃αΠ̂t)]

= EUα∗,Q[XT
t Π∗αXt] + αEUα∗,Q[tr(Π∗αDD

T )] + EUα∗,Q[tr(Π̃αΠ̂t)] .

Then iterating backwards yields

J
U∗α,Q
α,N = x̄T0 Π∗αx̄0 +

N∑
k=1

αktr(Π∗αDD
T )

+ EUα∗,Q
[
N−1∑
t=0

αt
(
rS(St, Qt) + tr(Π̃αΠ̂t)

)]
, (7.9)

where the first two terms are clearly independent of the scheduling policy. If

we define f
(N)
t as the cost-to-go function for

EUα∗,Q
[
N−1∑
t=0

αt
(
rS(St, Qt) + tr(Π̃αΠ̂t)

)]
,

then the optimal scheduling policy {Qα∗
t } can be found via (7.6) by dynamic

programming.

7.4 Optimal Control for the α-Discounted Problem

Before proceeding to results about the infinite horizon optimization, we

show an essential application of the bound in (6.10):

Lemma 7.4.1. There exists a positive constant Ms such that with the query

process Qs = {Qs
t : t ≥ 0} from Assumption 6.3.1, for any N > 0 and

α ∈ (0, 1)

Jv
∗

α,N ≤ J
U∗α,Q

s

α,N ≤Ms

(
‖x̄0‖2 +

1

1− α
+

tr(Σ0)

1− α

)
. (7.10)

92



Proof. Let r̄S = maxS×Q rS, and from (7.9),

J
U∗α,Q

s

α,N ≤ σmax(Π
∗
α)‖x̄0‖2 +

∞∑
k=1

αktr(Π∗αDD
T )

+ EUα∗,Qs
[
∞∑
t=0

αt
(
rS(St, Qt) + tr(Π̃αΠ̂t)

)]
≤ σmax(Π

∗
α)‖x̄0‖2 +

1

1− α
tr(Π∗αDD

T )

+
1

1− α
r̄S +

1

1− α
σmax(Π̃α)

(
c1 +

c1

c0

tr(Σ0)

)
.

Define

Ms := max

{
σmax(Π

∗
α) , (tr(Π∗αDD

T ) + r̄S + c1σmax(Π̃α)) ,
c1

c0

σmax(Π̃α)

}
,

and recalling that v∗ is the policy that minimizes Jvα,N , the result follows.

Once again, we can recast the optimal control problem in terms of the

error covariance rather than the state and control processes. In the infinite

horizon case, this leads to a modified discounted optimality equation.

Theorem 7.4.2. For α ∈ (0, 1), there exists a unique lower semicontinuous

function f ∗α : S×M+
0 → R+ that satisfies

f ∗α(s, Π̂) = min
q
{rS(s, q) + tr(Π̃αΠ̂) + αT̃qf ∗α(s, Π̂)}, (7.11)

with Π̃α := R − Π∗α + αATΠ∗αA. If q∗α : S ×M+
0 → Q is a selector of the

minimizer in (7.11), then the policy given by v∗ = (q∗α(St, Π̂t), U
α∗
t ) for t ≥ 0

is optimal in the sense that Jv
∗
α = infv∈V J

v
α, and

Jv
∗

α = f ∗α(s0,Σ0) + x̄T0 Π∗αx̄0 + tr(Π̃αΣ0) +
α

1− α
tr(Π∗αDD

T ). (7.12)
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Further, the querying component of any optimal stationary Markov policy is

an a.e. selector of the minimizer in (7.11).

Proof. First, note that from (7.6), thanks to the choice of Πfin = Π∗α,

f
(N+1)
0 (s, Π̂) = min

q
{rS(s, q) + tr(Π̃αΠ̂) + αT̃qf (N)

0 (s, Π̂)}, (7.13)

with f
(0)
0 = 0. Let v∗N be an optimal policy for the N -step optimization from

Theorem 7.3.1, and let v̄N = {Uα∗
t , Qt} be the optimal feedback policy (7.2)

with the scheduling policy from Assumption 6.3.1. From (7.10) with (7.7),

{f (N)
0 } are bounded pointwise in S ×M+

0 . Since they are also monotonically

increasing in N , f
(N)
0 ↑ f ∗α for some lower semicontinuous f ∗α : S×M+

0 → R+.

Taking monotone limits in (7.13) implies (7.11), and similarly in (7.7) yields

(7.12).

Consider the structure of (7.13). Trace is non-decreasing and concave,

and the minimum of concave, non-decreasing functions is also concave and

non-decreasing. T̃q preserves concavity for non-decreasing functions, so for

any s ∈ S, initializing (7.13) with a non-decreasing and concave function (e.g.,

f
(0)
0 = 0) guarantees that f ∗α(s, ·) is non-decreasing and concave.

Let q∗α be the selector from the minimizer in (7.11), and using (7.8),

J
v∗N
αN ≥ Eq∗α

[
N−1∑
t=0

αtrP (Xt, U
α∗
t )

]
≥ σmax(R)

N−1∑
t=0

αtEq∗α
[
tr(Π̂t)

]
.

Since we know that limN→∞ J
v∗N
αN < ∞, it follows that αtEq∗α [tr(Π̂t)] → 0 as

t→∞. Then the structure of Jv
∗
α in (7.12) with the estimate in (7.10) imply
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αtEq∗α [f ∗α(St, Π̂t)]→ 0 as t→∞. Iterating (7.11) with the selector q∗α yields

f ∗α(s0,Σ0) = Eq
∗
α

(s0,X0)

[
t−1∑
k=0

αk
(
rS(Sk, Qk) + tr(Π̃αΠ̂k)

)]

+ αtEq
∗
α

(s0,X0)

[
f ∗α(St, Π̂t)

]
,

and letting t→∞ leaves

f ∗α(s0,Σ0) = Eq
∗
α

(s0,X0)

[
∞∑
k=0

αk
(
rS(Sk, Qk) + tr(Π̃αΠ̂k)

)]
.

Finally, for any other v ∈ V with Jvα <∞, iterating (7.11) with v yields

f ∗α(s0,Σ0) ≤ Ev(s0,X0)

[
∞∑
k=0

αk
(
rS(Sk, Qk) + tr(Π̃αΠ̂k)

)]
, (7.14)

and so the structure of (7.12) implies q∗α is optimal and f ∗α is unique. Any

optimal policy v can equivalently utilize the optimal feedback Uα∗
t , so consider

a stationary Markov policy v = {Uα∗
t , Qt}. If Qt is not an a.e. selector of the

minimizer in (7.11), then the inequality in (7.14) is strict and v cannot be

optimal.

7.5 Optimal Control for the Average Cost Problem

Now we can proceed to the average cost problem. We adopt vanish-

ing discount approach, using uniform properties of the discounted-cost value

functions proved in the following sections.

Let M+
ε := {Π̂ ∈ M+ : σmin(Π̂) > ε}, and for a constant c > 0, define

a closed ball Bc ⊂M+
0 as Bc := {Σ ∈M+

0 : tr(Σ) ≤ c}.
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Lemma 7.5.1. With (A,D) controllable, there exists an ε > 0 such that for

any query sequence {q0, . . . , qNx−1} ∈ QNx,

P{q0,...,qNx−1}(Π̂Nx ∈M+
ε | Σ0 = 0) = 1 .

Proof. Adapting the result from [58, Lemma 3.5], we can rewrite (6.6) as

Π̂t+1 = Ξ(Π̂t)− K̂Qt,γt+1(Π̂t)
(
CQtΞ(Π̂)CT

Qt + FQtF
T
Qt

)
K̂T
Qt,γt+1

(Π̂t).

Consider an update when γt+1 = 1: FqF
T
q is positive definite for any q ∈ Q,

which means z ∈ ker(Π̂t+1) only if z ∈ ker(K̂Qt,1(Π̂)) and z ∈ ker(Ξ(Π̂t)).

However, from the definition of K̂q,1, ker(K̂Qt,1(Π̂t)) ⊂ ker(Ξ(Π̂t)), and there-

fore ker(Π̂t+1) = ker(Ξ(Π̂t)). On the other hand when γt+1 = 0, Π̂t+1 = Ξ(Π̂t),

so whether the observation is lost or received,

ker(Π̂t+1) = ker(Ξ(Π̂t)) = ker(Π̂tA
T ) ∩ ker(DT ).

Hence, along any fixed Nx-step query sequence {q0, . . . , qN−1}, if Π̂t = 0,

ker(Π̂t+Nx) = ker(DT ) ∩ ker(DTAT ) ∩ · · · ∩ ker
(
DT (AT )Nx−1

)
.

Since (A,D) is controllable, ker(Π̂t+Nx) = {0}, so whether observations are

lost or received, the process noise drives the error covariance into the interior

of M+
0 . Since there are only finitely many possible Nx-step query sequences

and finitely many network states, we can choose ε to be the minimal eigenvalue

of Π̂t+Nx over the possible query and state sequence combinations.
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Note that in the proof of Theorem 7.4.2 we showed that f ∗α(s, ·) is non-

decreasing, so infΣ∈M+
0
f ∗α(s,Σ) = f ∗α(s, 0). We define

f̄α := f ∗α − f ∗α(0, 0) ,

and for a set B ∈M+
0 ,

span
B

(f ∗α(s, ·)) := sup
Σ∈B

f ∗α(s,Σ)− inf
Σ∈B

f ∗α(s,Σ) ,

span
S×B

(f ∗α) := sup
s∈S,Σ∈B

f ∗α(s,Σ)− inf
s∈S,Σ∈B

f ∗α(s,Σ).

Lemma 7.5.2. The differential discounted value function f̄α is locally bound-

ed, uniformly in α ∈ (0, 1), and {f̄α : α ∈ (0, 1)} is locally Lipschitz equicon-

tinuous on compact subsets of M+
0 .

Proof. Choose a constant c̄ such that c̄ ≥Ms, the constant from Lemma 7.4.1,

and P(Π̂Nx ∈ Bc̄|Π̂0 = 0) = 1 (which is possible because there are only finitely

many state/query/γ sequences of length Nx). Fix an s ∈ S, and with ε from

Lemma 7.5.1, let Σ∗α ∈ Bc̄ such that

f ∗α(s,Σ∗α) ≥ sup
Bc̄

f ∗α(s, ·)− ε.

For an α-optimal policy q∗α we have

f ∗α(s, 0) = Eq
∗
α
s,0

[
Nx−1∑
t=0

αt(rS(St, Qt) + tr(Π∗αΠ̂t) + αNxf ∗α(SNx , Π̂Nx)

]

≥ αNxEq
∗
α
s,0

[
f ∗α(SNx , Π̂Nx)

]
.
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Thus,

span
Bc̄

(f ∗α(s, ·)) ≤ f ∗α(s,Σ∗α)− f ∗α(s, 0) + ε

≤ f ∗α(s,Σ∗α)− αNxEq
∗
α
s,0

[
f ∗α(SNx , Π̂Nx)

]
+ ε

= (1− αNx)f ∗α(s,Σ∗α)

+ αNxEq
∗
α
s,0

[
f ∗α(s,Σ∗α)− f ∗α(SNx , Π̂Nx)

]
+ ε

≤ (1− αNx)f ∗α(s,Σ∗α) + αNx
(

sup
Bc̄

f ∗α(s, ·)− f ∗α(s, εI)

)
+ ε

≤ (1− αNx)f ∗α(s,Σ∗α) + αNx span
Bc̄

(f ∗α(s, ·))

− αNx (f ∗α(s, εI)− f ∗α(s, 0)) + ε

≤ (1− αNx)f ∗α(s,Σ∗α) + αNx span
Bc̄

(f ∗α(s, ·))

− αNx ε
c̄

span
Bc̄

(f ∗α(s, ·)) + ε

≤ (1− αNx)f ∗α(s,Σ∗α) + αNx(1− ε/c̄) span
Bc̄

(f ∗α(s, ·)) + ε .

Therefore,

span
Bc̄

(f ∗α(s, ·)) ≤ (1− αNx)f ∗α(s,Σ∗α) + ε

1− αNx(1− ε/c̄)

≤ (1 + α + α2 + · · ·+ αNx−1)(1− α)f ∗α(s,Σ∗α) + ε

ε/c̄

≤ Nxc̄

ε
(1− α)f ∗α(s,Σ∗α) + c̄ .

Since, by (7.10) and (7.12), (1 − α)f ∗α is bounded uniformly in α, the

same is true of spanBc̄(f
∗
α(s, ·)), and since there are only finitely many states,
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spanS×Bc̄(f
∗
α) is also bounded uniformly in α. Define

m1 := max
s∈S

span
Bc̄

f ∗α(s, ·) .

Now consider Σ ∈ M+
0 such that tr(Σ) ≥ c̄. Clearly, Σ′ :=

(
c̄

tr(Σ)
Σ
)
∈ Bc̄.

Using the concavity of f ∗α we obtain

f ∗α(s,Σ′) = f ∗α

(
s, c̄

tr(Σ)
Σ +

(
1− c̄

tr(Σ)

)
0
)

≥ c̄
tr(Σ)

f ∗α(s,Σ) +
(
1− c̄

tr(Σ)

)
f ∗α(s, 0) ,

and therefore, we have

f ∗α(s,Σ)− f ∗α(s, 0) ≤ tr(Σ)

c̄
(f ∗α(s,Σ′)− f ∗α(s, 0)) .

Hence, for any Σ ∈M+
0 ,

f ∗α(s,Σ)− f ∗α(s, 0) ≤ span
Bc̄

f ∗α(s, ·)
(

1 +
tr(Σ)

c̄

)
.

Let m0 := maxs∈S(f
∗
α(s, 0)− f ∗α(0, 0)). Then

f̄α(s,Σ) = f ∗α(s,Σ)− f ∗α(0, 0)

≤ f ∗α(s,Σ)− f ∗α(s, 0) + f ∗α(s, 0)− f ∗α(0, 0)

≤ m1

c̄
tr(Σ) + (m1 +m0) . (7.15)

The function f̄α inherits concavity from f ∗α, so the bound in (7.15)

implies Lipschitz equicontinuity of {f̄} on bounded subsets of S ×M+
ε [48,

Theorem 10.6]. Fix an initial (s,Σ) ∈ S ×M+
0 , and let q = {q0, . . . , qNx} be
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the first Nx + 1 queries from the α-discounted optimal control; i.e., selectors

from the minimizer in (7.11). For k = 0, . . . , Nx, define T̃qk = T̃qk ◦ · · · ◦ T̃q0 ,

and let Σ′ ∈M+
0 . Iterative applications of (7.11) yield

f ∗α(s,Σ′)− f ∗α(s,Σ) ≤ tr(Π̃∗α(Σ′ − Σ)) +
Nx−1∑
k=1

αkT̃qktr(Π̃∗α(Σ′ − Σ))

+ αNx
(
T̃qNxf

∗
α(s,Σ′)− T̃qNxf

∗
α(s,Σ)

)
. (7.16)

Each T̃qk preserves continuity in M+
0 , and the order-preserving property of

T̃q guarantees that for any Σ′ ∈ M+
0 , Π̂Nx ∈ M+

ε with probability 1 for the

constant ε from Lemma 7.5.1. f̄α(s, ·) is equicontinuous on bounded subsets of

M+
ε , so (7.16) implies f̄α(s, ·) must be equicontinuous on bounded subsets of

M+
0 . Again noting that there are finitely many states and query combinations,

we can take the maximal Lipschitz constant for a particular compact set in

M+
0 .

Theorem 7.5.3. There exists a continuous function f ∗ : S×M+
0 → R+ and

a constant %∗ that satisfy

f ∗(s, Π̂) + %∗ = min
q

{
rS(s, q) + tr(Π̃∗Π̂) + T̃qf ∗(s, Π̂)

}
, (7.17)

with Π̃∗ := R−Π∗+ATΠ∗A and Π∗ ∈M+ the unique solution of the algebraic

Riccati equation

Π∗ = R + ATΠ∗A− ATΠ∗B(M +BTΠ∗B)−1BTΠ∗A . (7.18)

If q∗ : S ×M+
0 → Q is a selector of the minimizer in (7.17), then the policy
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given by v∗ = (U∗t , q
∗(St, Π̂t) for t ≥ 0 with

U∗t := −K∗X̂t ,

K∗ := (M +BTΠ∗B)−1BTΠ∗A ,

(7.19)

is optimal in the sense that Jv
∗

= infv∈V J
v, and

Jv
∗

= %∗ + tr(Π∗DDT ) .

Further, the querying component of any optimal stationary Markov policy is

an a.e. selector of the minimizer in (7.17).

Proof. Since the system is stabilizable, the Riccati equation (7.4) converges as

α → 1 to (7.18) which has a unique solution Π∗ ∈ M+. The feedback given

by (7.19) is then optimal for any given querying sequence, and we only need

consider optimal sensor scheduling.

The collection {f̄α} is locally Lipschitz equicontinuous and bounded, so

(repeatedly dropping to subsequences as needed) along some sequence αk → 1,

each f̄αk(s, ·) converges to some continuous function h̄(s, ·) and (1−α)f ∗α(s, 0)

converges to a positive constant %(s).

Letting f ∗(s, Π̂) = h̄(s, Π̂) + %(s)− %(0) and %∗ = %(0), we get

f ∗αk(s, Π̂) −−−→
k→∞

f ∗(s, Π̂) + %∗,

and taking limits in (7.11) yields (7.17). With q∗ a selector of the minimizer

in (7.17), since the network running cost is bounded above and using (7.15),

there exist constants M0,M1 with M1 > 0 such that for all (s,Σ) ∈ S×M+
0 ,

T̃q∗f ∗(s,Σ)− f ∗(s,Σ) = −rS(s, q∗)− tr(Π̃∗Σ) + %∗
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≤ −M1f
∗(s,Σ) +M0 . (7.20)

Note that if f ∗ solves (7.17), so does f ∗+ c for any constant c, and that (7.20)

still holds with M0 → (M0 + M1c). Therefore, without loss of generality, we

assume that

min
S×M+

0

f ∗ = 1.

The bound in (7.20) implies the geometric drift condition [43, (V4)], so the

chain is geometrically ergodic and supt≥0 E
q∗

s0,X0
[tr(Π̂t)] < ∞ for all (s0, X0).

With K∗ from (7.19), (A − BK∗) is stable, so from the closed-loop state

dynamics

Xt+1 = (A−BK∗)Xt +BK∗(Xt − X̂t) +DWt ,

the system is stable under (q∗, U∗).

To show optimality, let {Qt} be any admissible querying sequence. It-

erating (7.17),

%∗ +
f ∗(s0,Σ0)− EQts0,X0

[f ∗(SN , Π̂N)]

N

≤ 1

N
EQts0,X0

[
N−1∑
t=0

rs(St, Qt) + tr(Π̃∗Π̂t)

]
, (7.21)

with equality if Qt = q∗. Since the covariance Π̂t is stable, using (7.15) we

have,
EQts0,X0

[f ∗(SN , Π̂N)]

N
−−−→
N→∞

0 ,

so taking limits on both sides of (7.21) yields

%∗ ≤ lim sup
N→∞

1

N
EQts0,X0

[
N−1∑
t=0

rs(St, Qt) + tr(Π̃∗Π̂t)

]
, Pq

∗

s0,X0
– a.s.
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Indeed, for any policy v ∈ V such that the limit supremum of the r.h.s. of

(7.21) is finite, we have 1
Nk

Evs0,X0
[f ∗(s0, Π̂Nk)] → 0 along some subsequence

Nk →∞, and so

lim inf
n→∞

Evs0,X0
[f ∗(Sn, Π̂n)]

n
= 0 Pvs0,X0

– a.s..

Combining the above, for any v ∈ V ,

%∗ ≤ lim sup
N→∞

1

N
Evs0,X0

[
N−1∑
t=0

rs(St, Qt) + tr(Π̃∗Π̂t)

]
, (7.22)

and q∗ is optimal. As in the discounted case, any policy with a query process

that is not an a.e. selector of the minimizer in (7.17) induces a strict inequality

in (7.22), and therefore such a policy cannot be optimal.

Remark 7.5.4. It is worth noting that f ∗ is concave and non-decreasing in

M+
0 , and that using (7.15) and the definition of f ∗, there exist constants

m∗1 > 0 and m∗0 ∈ R such that

f ∗(s,Σ) ≤ m∗1 tr(Σ) +m∗0 . (7.23)

Furthermore, directly from (7.17),

f ∗(s,Σ) ≥ σmin(Π̃∗)tr(Σ)− %∗ ,

so f ∗ must be strictly increasing in Σ.

Remark 7.5.5. For computational purposes, the complete coneM+
0 is clearly

impractical. However, the following result shows that we can approximate the
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process on a bounded subset BR = S×{Σ ∈M+
0 : tr(Σ) ≤ R} for R > 0. The

truncated, approximate value function restricted to BR solves

fR(s,Σ) + %R = min
q∈Q
{rS(s, q) + tr(Π̃∗Σ) + T̃ Rq fR(s,Σ)} ,

for (s,Σ) ∈ BR. We extend fR on BcR with a known function that is the same

order as the true value function, namely, tr(Π̃∗ · ).

Let qR be a measurable selector of the minimizer on BR and any fixed,

stable control on BcR. fR again satisfies the geometric drift condition, so the

process under qR is stable. It can be shown that as R→∞, %R → %∗, and so

the truncated system is a good approximation of the complete system.

7.6 A Special Case: Sensor-Dependent Loss Rates

We now turn our attention to a special case of the previous results,

with a single network state. In this case, the network cost is simply a function

of the query process {Qt}, taking values in the finite set of allowable sensor

queries Q = {q1, . . . , qNq}. The loss rate depends only on the query, as

P (γ = 1) = (1− λq), P (γ = 0) = λq, (7.24)

where the loss rate λ = [λ1, . . . , λNq ]
T is vector in [0, 1]Nq . For two vectors

λ, φ ∈ RN , we say λ ≤ φ if λi ≤ φi for each i ∈ {1, . . . , N}, and λ < φ if

λi < φi for each i ∈ {1, . . . , N}.

We are interested in characterizing the set of loss rates Λs ⊂ [0, 1]Nq for

which the system is stabilizable. Our formulation generalizes the problem in
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[56], which analyzes the system (6.1)–(6.2) without sensor scheduling (Cq = C)

and with a uniform loss rate (λq = λ̄). The authors prove that there is a

critical loss rate λc ∈ (0, 1) such that the system is stabilizable if and only if

λ̄ < λc (i.e., Λs = [0, λc). Here, we generalize that result, showing that when

selecting different sensors induces different loss rates, there is a critical surface

W ⊂ [0, 1]Nq . The system is stabilizable if and only if the vector λ < λ′ ∈ W .

We also present a numerical example illustrating the critical surface.

7.6.1 Main Results

Recalling the discussion around Assumption 6.3.1, Λs = ∅ unless

(A,B) is stabilizable and (C,A) is detectable. Hence, without loss of gen-

erality, we assume (A,B) is stabilizable and (C,A) is detectable and therefore,

by the results in [58], 0 ∈ Λs.

Theorem 7.6.1. If the system (6.1)–(6.2) with (7.24) is stabilizable for a loss

rate λ ∈ [0, 1]Nq , then it is also stabilizable for any other loss rate λ ≤ λ′. In

other words, the set Λs is order-convex with respect to the natural ordering of

positive vectors in RNq .

Proof. In order to distinguish between operations with different loss rates, we

will indicate the corresponding rate in a superscript, as in

T̃ λq f(Σ) = (1− λq)f(Tq(Σ)) + λqf(Ξ(Σ)).

Suppose that the system (6.1)–(6.2) with (7.24) is stabilizable for an loss rate

λ′ ∈ [0, 1]Nq , and let {Qt} be a stabilizing query sequence. Let λ ∈ [0, 1]Nq
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such that λ ≤ λ′. For a non-decreasing function f :M+
0 → R and any q ∈ Q,

T̃ λq f(Σ)− T̃ λ′q f(Σ) = (λ′q − λq)(f(Tq(Σ))− f(Ξ(Σ))) ≤ 0.

Applying to tr(·), which is non-decreasing in M+
0 , we get

T̃ λq tr(Σ)− T̃ λ′q tr(Σ) = −(λ′q − λq)tr(K̂q,1(Σ)CqΞ(Σ)) ≤ 0 (7.25)

because K̂q,1(Σ)CqΞ(Σ) ∈ M+
0 . Iterating (7.25) with the stabilizing query

sequence yields

EQt,λΣ ‖Xt − X̂t‖2 ≤ EQt,λ
′

Σ ‖Xt − X̂t‖2, for all t ≥ 0,

and stability with λ follows.

Moreover, a lower loss rate leads to a smaller error covariance at every

time step. Another important result is the following:

Theorem 7.6.2. If the system (6.1)–(6.2) with (7.24) is stabilizable for a loss

rate λ ∈ [0, 1]Nq , there exists an open neighborhood B ⊂ [0, 1]Nq around λ such

that the system is stabilizable for λ′ ∈ B.

Proof. Let λ ∈ [0, 1]Nq and assume the system is stabilizable for λ. Also let f ∗

and q∗ be the solution and selector from the minimizer of (7.17). Let λ′ > λ

such that

λ′q − λq <
m1 σmin(Π̃∗)

c̄ σmax(ATA)
.

Then, using the bound (7.20),

T̃ λ′q f ∗(Σ)− f ∗(Σ) ≤ (λ′q − λq)f ∗(Ξ(Σ))− tr(Π̃∗Σ) + %∗ − rS(q)
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≤ (λ′q − λq)
(
c̄

m1

tr(Ξ(Σ)) +m1 +m0

)
− tr(Π̃∗Σ) + %∗ − rS(q)

≤
(

(λ′q − λq)
c̄

m1

σmax(A
TA)− σmin(Π̃∗)

)
tr(Σ)

+ (λ′q − λq)
(
tr(DDT ) +m1 +m0

)
+ %∗ − rS(q)

≤ −δ f ∗(Σ) + M̄

for some δ > 0 and M̄ ∈ R. Hence the chain is still geometrically ergodic (and

therefore stabilizable) under λ′ ∈ [0, 1]Nq such that

(λ′q − λq)+ <
m1 σmin(Π̃∗)

c̄ σmax(ATA)
.

An immediate corollary of Theorems 7.6.1–7.6.2 is the following.

Corollary 7.6.3. Suppose that (A,B) is stabilizable and (C,A) is detectable.

Then, there exists a critical surface W in (0, 1]Nq such that the system is stabi-

lizable with loss rate λ if and only if λ < λ′ ∈ W. More precisely, there exists a

function F : RNq−1 → [0, 1] which is nonincreasing in each argument such that

the system is stabilizable with loss rate λ if and only if λNq < F(λ1, . . . , λNq−1).

In other words, Λs is the epigraph of F.

Proof. As shown in [58], under the hypotheses of the corollary, the system

is stabilizable with λ = 0. The result then follows by Theorems 7.6.1 and

7.6.2 .

We call the set of sensor queries Q = {q1, . . . , qNq} non-redundant if the

system is not detectable with any proper subset of the sensor queries. That is,
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the system using only Q \ {qi} for any i = 1, . . . , Nq is not stabilizable for any

admissible query sequence. When Q is non-redundant and q is a stabilizing

stationary Markov policy, the set of states where any particular query qi is

chosen,

Sqi = {Σ ∈M+
0 : q(Σ) = qi} ,

satisfies µq(Sqi) > 0 for each qi ∈ Q. Furthermore, there must be a subset

Ŝqi ⊂ Sqi with µq(Ŝqi) > 0 such that Tqi(Σ̂) < Ξ(Σ̂) for all Σ̂ ∈ Ŝqi ; if not,

then a different sensor could be queried instead of qi and the system would

still be stable.

Theorem 7.6.4. Suppose that the set of sensors is non-redundant and that

λ, λ′ ∈ Λs such that λ ≤ λ′ and λ 6= λ′. Then %∗λ < %∗λ′.

Proof. Without loss of generality, let λ, λ′ ∈ Λs such that λ1 < λ′1 and λi = λ′i

for i = 2, . . . Nq. For the system with loss rate λ (respectively, λ′), let f ∗λ (f ∗λ′)

be the solution of the ACOE, and let qλ (qλ
′
) be a selector of the corresponding

minimizer. Define the set

Sλ
′

1 = {Σ ∈M+
0 : qλ

′
(Σ) = q1, Tqi(Σ) < Ξ(Σ)} ,

which from the preceding discussion satisfies µqλ′ (S
λ′
1 ) > 0. Because f ∗λ′ is

strictly increasing, for any query q ∈ Q we have

T̃ λ′q f ∗λ′(Σ)− T̃ λq f ∗λ′(Σ) = (λq − λ′q) (f ∗λ′(Tq(Σ))− f ∗λ′(Ξ(Σ))) ≥ 0 ,
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with strict inequality when Σ ∈ Sλ
′

1 and q = q1. Define the non-negative

function gq(Σ) := T̃ λ′q f ∗λ′(Σ)− T̃ λq f ∗λ′(Σ). Then, for any Σ ∈M+
0 ,

%∗λ′ = rS(qλ
′
(Σ)) + tr(Π̃∗Σ) + T̃ λ′

qλ′
f ∗λ′(Σ)− f ∗λ′(Σ)

= rS(qλ
′
(Σ)) + tr(Π̃∗Σ) + gq1(Σ)Iqλ′ (Σ)=q1

+ T̃ λ
qλ′
f ∗λ′(Σ)− f ∗λ′(Σ)

=
1

T
Eλ,q

λ′

Σ

[
T−1∑
t=0

rS(Qt) + tr(Π̃∗Π̂t)

]
+

1

T
Eλ,q

λ′

Σ

[
T−1∑
t=0

gQt(Σ)IQt=q1

]
+

1

T
Eλ,q

λ′

Σ

[
f ∗λ′(Π̂T )− f ∗λ′(Π̂0)

]
.

For all T large enough, the second term must be strictly positive because the

process must query sensor q1 with non-zero average frequency. Taking limits

as T →∞, the third term approaches 0 and we are left with

%∗λ′ > Jq
λ′

λ ,

where Jq
λ′

λ is the average cost for the system with loss rate λ and using policy

qλ
′
. Since qλ

′
suboptimal, it follows that %∗λ ≤ Jq

λ′

λ < %∗λ′ .

Noting that the average cost %∗λ →∞ as the system becomes less stable,

the set Λ(κ) := {λ : %∗λ < κ} is a ray-connected neighborhood of 0 for all

κ > 0. Clearly,
⋃
κ>0 Λ(κ) = Λs.

Remark 7.6.5. Note that similar results could be shown for the more general

case with network states dictating loss rates. However, the analysis is much

more involved, and may require additional assumptions on the structure of the

network state transition probabilities. We present the simpler version here to

facilitate the analysis and the comparison to the previous works.
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Remark 7.6.6. Suppose that the loss rates depend only on the query, as

in (7.24), but are unknown. Then the implications of Theorem 7.6.2 are re-

markable. Since stability is shown to be an open property, if one can find

an estimator sequence λ̂t → λ a.s., then the system will retain stability and

the long-term average performance would be the same as the if the rates were

known beforehand. Since the channel is Bernoulli, recursive estimation of the

loss rates leading to a.s. convergence to the true value is rather straightfor-

ward. For example, a maximum likelihood estimator can be employed, as in

[29].

7.6.2 Diagonal Structures

Consider two independent one-dimensional systems

x
(i)
k+1 = aix

(i)
k + w

(i)
k

yk = x
(i)
k + fiv

(i)
k ,

(7.26)

where {w(i)
k , v

(i)
k , k ∈ N , i = 1, 2} are i.i.d. Gaussian random variables. Note

that we can always scale the system so that ci = 1 and w
(i)
k has unit variance,

so the above representation is without loss of generality. Without loss of gen-

erality we focus on the estimation problem. It is well known that the Kalman

filter with intermittent observations is stable for each subsystem separately if

and only if λi < a−2 [56].

We concentrate on the case where a1 = a2 = a and assume that a > 1;

otherwise the problem is trivial. Suppose that the intermittency rate is of the

form (λ, λ) with λ ∈ [0, a−2). Let ξ1 and ξ2 be the estimation error variances
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of x(1) and x(2), respectively, and define ξ := (ξ1, ξ2). Note that

T1(ξ) =

(
f 2

1 (1 + a2ξ1)

1 + a2ξ1 + f 2
1

, 1 + a2ξ2

)
,

and the analogous expression holds for T2. We have the bound

f 2
i (1 + a2ζ)

1 + a2ζ + f 2
i

≤ max (f 2
1 , f

2
2 ) ∀ζ ∈ R+ , i = 1, 2 .

For ε > 0, let Vε : R2
+ → R+ be defined as follows:

Vε(ξ) :=

{
ε ξ1 + (1− ε) ξ2 , if ξ1 ≥ ξ2

(1− ε) ξ1 + ε ξ2 , otherwise.

Let ε be small enough that

ε0 :=
(

ε
1−ε + λ

)
a2 < 1 , (7.27)

and suppose m0 := max (f 2
1 , f

2
2 ) ≤ ξ2 ≤ ξ1. Then we have

T̃1Vε(ξ)− Vε(ξ) = (1− λ)Vε
(
T1(ξ)

)
+ λVε

(
1 + a2ξ1, 1 + a2ξ2

)
− Vε(ξ)

≤ (1− λ)(1− ε)m0 + (1− λ)ε (1 + a2ξ2) + λ ε (1 + a2ξ1)

+ λ (1− ε) (1 + a2ξ2)− ε ξ1 − (1− ε) ξ2

≤ C0 +
(

(1− λ) ε a
2

1−ε + λ a2 − 1
)
Vε(ξ)

≤ C0 − (1− ε0)Vε(ξ) ,

where C0 is a constant depending on ε, λ, and m0. On the other hand, if

ξ1 ≥ ξ2, and ξ2 < m0, then Vε
(
T1(ξ)

)
is bounded and we obtain

T̃1Vε(ξ)− Vε(ξ) ≤ C ′0 + (λa2 − 1)Vε(ξ)
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for some constant C ′0. Therefore, by symmetry, we obtain

min
q=1,2

T̃qVε(ξ)− Vε(ξ) ≤ C ′′0 − (1− ε0)Vε(ξ) ∀ξ ∈ R2
+

for some constant C ′′0 . Since (1 − ε0) > 0 by (7.27), geometric ergodicity

follows.

The same technique applies for a diagonal system as in (7.26) of any

order, and thus we have proved the following.

Theorem 7.6.7. Consider a system in diagonal form as in (7.26), with ai =

a > 1, i = 1, . . . , Nq. Then Λs = [0, 1/a2)Nq .

7.6.3 Numerical Example

Our example is a one-dimensional unstable linear system with two avail-

able sensors:
A = [2] B = [1] DDT = [0.05]
C1 = [0.1] C2 = [1] FF T = [0.02]
R = [0.01] Q = [0] rS(·) = 1

The first sensor has a much lower gain than the second, so is more vulnerable

to the observation noise. With this structure, optimal policies either dictate

that one sensor is queried continuously, or that one sensor is queried until the

error covariance exceeds a threshold value, at which point the other sensor is

queried.

Using a relative value iteration algorithm, the optimal policy was calcu-

lated for values of (λ1, λ2) ∈ (0, 1)2. Figure 7.1 shows the calculated threshold

value for each λ pair where the system was stabilizable. The dark region
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Figure 7.1: Critical surface and threshold values for λ1 and λ2

(0.25 ≤ λ1 ≤ 1, 0.25 ≤ λ2 ≤ 1) corresponds to the loss rates that are too

high to admit a stabilizing solution; the critical surface described in Corollary

7.6.3 is the border of the dark region. On other side of the critical surface

(0 ≤ λ1 < 0.2, 0 ≤ λ2 < 0.2) the color of the graph indicates the threshold

value corresponding to the optimal policy. For the left portion of the graph,

sensor 2 is used exclusively. However, when λ1 < 0.2, as λ2 increases sensor 1

becomes more desirable, and the optimal policy begins to select sensor 1 when

the error covariance becomes large. In the lower right region (0 ≤ λ1 < 0.2,

λ2 → 1), the high loss rate of sensor 2 drives the optimal policy to use sensor

1 exclusively.
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Figure 7.2: Number of iterations for the relative value iteration to converge.

Also of interest, Figure 7.2 shows how many iterations were needed

by the relative value iteration to converge. The more colorful region in the

lower middle indicates an area where the algorithm required significantly more

iterations than elsewhere. For these λ-values, the expected average costs of

using either the loss-prone stronger sensor or the reliable weaker sensor were

nearly the same. Hence the difference between policies was small, and the

algorithm took longer to determine the optimal policy choice.
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Chapter 8

LQG System: Value Iteration

8.1 Introduction

We now investigate the convergence of the value iteration and relative

value iteration algorithms for the linear quadratic Gaussian (LQG) system.

Though more is known about the structure of the value function than in the

countable state space (e.g., concavity, monotonicity), it is still an infeasible

problem to calculate the value function and optimal policy directly. Whereas

in the countable state space version we were forced to impose structural as-

sumptions on the state space, the evolution of the error covariance Π̂ on the set

of positive semi-definite matrices has a natural structure that allows results

without additional assumptions. The structure of the LQG system in fact

guarantees that the cost function and optimal average cost satisfy the near-

monotone condition, and that the cost function and value function satisfy an

inequality of the form 5.2.1.

Here, we will use these properties to prove results of the same form

as for the countable state space, ensuring that the value iteration converges

for any bounded initialization, and therefore relative value iteration does also.

We use the same notation as in Chapter 5, but in this context have systems
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evolving on S×M+
0 . Hence, we must consider ordering and continuity which

were irrelevant previously. Based on the analysis of Chapter 7, we seek a

concave, non-decreasing function f ∗ : S ×M+
0 → R+ and a constant %∗ that

solve the modified ACOE (7.17):

f ∗(s, Π̂) + %∗ = min
q

{
rS(s, q) + tr(Π̃∗Π̂) + T̃qf ∗(s, Π̂)

}
.

The relative value iteration (RVI) and value iteration (VI) algorithms provide a

sequence of functions and associated constants that, as we will show, approach

f ∗ and %. Respectively, the RVI and VI are given by

ϕn+1(s, Π̂) = min
q∈Q

{
rS(s, q) + tr(Π̃∗Π̂) + T̃qϕn(s, Π̂)

}
− ϕn(0, 0) , (8.1)

ϕn+1(s, Π̂) = min
q∈Q

{
rS(s, q) + tr(Π̃∗Π̂) + T̃qϕn(s, Π̂)

}
− %∗ , (8.2)

where both algorithms are initialized with a function ϕ0 ∈ C+(S×M+
0 ).

8.2 Additional Notation and Remarks

One of the useful characteristics of the linear system with quadratic

costs is that the differential value function f ∗ has the same type of growth as

the one step cost. Recalling the transformation under the optimal feedback

control, the cost function

r(s, q,Σ) := rS(s, q) + tr(Π̃∗Σ)

yields equivalent solutions to the optimal average cost problem. Then, since

f ∗ is bounded above by an affine function of trace, as in (7.23), there exist

116



positive constants θ1 and θ2 such that

min
q∈Q

r(s, q,Σ) ≥ θ1f
∗(s,Σ)− θ2 .

Without loss of generality we can assume θ1 < 1 to facilitate some later esti-

mates.

If the cost function rS is replaced with rS + c for some c ∈ R, the

resulting average cost will simply be %∗ + c and the optimal policy will be

unchanged. Hence, without loss of generality we will assume minS×U rS = 1.

To simplify analysis, we will also occasionally use

r(s, q, Π̂) := rS(s, q) + tr(Π̃∗Π̂)− %∗,

and for a Markov policy q̄ : S×M+
0 → Q,

rq̄(s, Π̂) := rS(s, q̄(s,Σ)) + tr(Π̃∗Π̂)− %∗.

For a function f : S×M+
0 → R, define

‖f‖f∗ := sup
(s,Σ)∈S×M+

0

|f(s,Σ)|
f ∗(s,Σ)

,

O(f ∗) := {f : S×M+
0 → R : ‖f‖f∗ <∞ , f ≥ 0} .

We also define

Ĉ(S×M+
0 ) := {h : S×M+

0 → R+ : h(s, ·) is concave and non-decreasing}.
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8.3 Main Results

The VI and RVI can be treated as discrete time dynamical systems,

and we define the associated semi-cascades

Φn[ϕ0] := {ϕ0,ϕ1,ϕ2, . . . } ,

Φn[ϕ0] := {ϕ0, ϕ1, ϕ2, . . . }.

We also let E = {f ∗ + c : c ∈ R} denote the set of solutions of the ACOE

(7.17), and define for c ∈ R the set

Gc :=
{
h : C+(S×M+

0 ) ∩ Ĉ(S×M+
0 ) : ‖h‖f∗ <∞, h− f ∗ ≥ c

}
.

Theorem 8.3.1. If ϕ0 ∈ Gc for some c ∈ R, then Φn[ϕ0] converges to c0 +f ∗ ∈

E for some c0 ∈ R such that

0 ≤ c0 ≤ µq∗ [ϕ0 − f ∗]. (8.3)

Also, Φn[ϕ0] converges to f ∗ − f ∗(0, 0) + %∗.

Theorem 8.3.2. If ϕ0 ∈ Of∗, then Φn[ϕ0] converges to c0 + f ∗ ∈ E for some

c0 ∈ R satisfying

−%
∗ + θ2

θ1

≤ c0 ≤ ‖ϕ0‖f∗
%∗ + θ2

θ1

. (8.4)

Also, Φn[ϕ0] converges to f ∗ − f ∗(0, 0) + %∗.

8.4 Supporting Lemmas

Before proving the results, we introduce some essential intermediate

results. The first is a direct consequence of Lemmas 6.3.4 and 6.3.5:
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Lemma 8.4.1. If ϕ0 is continuous, concave, and non-decreasing, ϕn and ϕn

are also continuous, concave, and non-decreasing for all n > 0.

Lemma 8.4.2. For any n ≥ 0 and (s,Σ) ∈ S×M+
0 ,

ϕn(s,Σ) = ϕn(s,Σ)− n%∗ +
n−1∑
k=0

ϕk(0, 0), (8.5)

ϕn(s,Σ)− ϕn(0, 0) = ϕn(s,Σ)−ϕn(0, 0), (8.6)

ϕn(s,Σ) = ϕn(s,Σ)−ϕn−1(0, 0) + %∗. (8.7)

Proof. Note that (8.5) holds trivially for n = 0, and that if true for any

particular n ≥ 0, then

ϕn+1(s,Σ) = min
q∈Q

{
rS(s, q) + tr(Π̃∗Σ) + T̃qϕn(s,Σ)

}
− %∗

= min
q∈Q

{
rS(s, q) + tr(Π̃∗Σ) + T̃qϕn(s,Σ)

}
− (n+ 1)%∗ +

n−1∑
k=0

ϕk(0, 0)

= ϕn+1(s,Σ)− (n+ 1)%∗ +
n∑
k=0

ϕk(0, 0).

(8.6) follows directly, and (8.7) follows because

ϕn(s,Σ)−ϕn−1(s,Σ) = ϕn(s,Σ)− ϕn−1(s,Σ) + ϕn−1(0, 0)− %∗

= ϕn(s,Σ)−ϕn−1(s,Σ) +ϕn−1(0, 0)− %∗.

A direct result of (8.7) is the following:

Corollary 8.4.3. If ϕn converges pointwise to a function f : S ×M+
0 → R,

then ϕn converges to f − f(0, 0) + %∗.
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Let q∗ : S×M+
0 → Q be a measurable selector from the minimizer of

(7.17), and let q = {qm,m ∈ N} be a measurable selector from the minimizer

in (8.2) corresponding to a solution ϕ. q is also a measurable selector from the

minimizer in (8.1) since ϕ andϕ are related by (8.5) and (8.7). At the nth step

of the VI, define the (nonstationary) Markov control

q̂n := {q̂nm = qn−m,m ∈ N,m < n} . (8.8)

Recalling that the inequality (7.20) satisfies the geometric drift condition [43,

(V4)], we note the following direct implication.

Lemma 8.4.4. There exists an invariant probability measure µq∗ such that

µq∗ [f
∗] <∞ and Eq

∗

s0,Σ0
[f ∗(Sn, Π̂n)]→ µq∗ [f

∗] as n→∞.

Iterating the VI equation (8) using the standard dynamic programming

formulation yields the following form:

ϕn(s,Σ) = inf
U∈U

EUs,Σ

[
ϕ0(Sn, Π̂n) +

n−1∑
k=0

r̄(Sk, Π̂k, Uk)

]

= Eq̂
n

s,Σ

[
ϕ0(Sn, Π̂n) +

n−1∑
k=0

r̄
(
Sk, Π̂k, q̂

n(Sk, Π̂k)
)]

. (8.9)

Lemma 8.4.5. For any n ≥ 0, it holds that

T̃q̂n1 (ϕn − f ∗) ≤ ϕn+1 − f ∗ ≤ T̃q∗(ϕn − f ∗) .

Proof. By optimality we have

ϕn+1(s,Σ)− f ∗(s,Σ) = rS(s, q̂)− rS(s, q∗) + T̃q̂ϕn(s,Σ)− T̃q∗ f ∗(s,Σ)
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≤ T̃q∗(ϕn(s,Σ)− f ∗(s,Σ)) ,

and

ϕn+1(s,Σ)− f ∗(s,Σ) = rS(s, q̂n1 )− rS(s, q∗) + T̃q̂n1 ϕn(s,Σ)− T̃q∗ f ∗(s,Σ)

≥ T̃q̂n1 (ϕn(s,Σ)− f ∗(s,Σ)) .

Lemma 8.4.6. There exist constants α ∈ (0, 1) and c2 ∈ R such that

Eq
∗

s,Σ[f ∗(Sn, Π̂n)] ≤ c2 + αnf ∗(s,Σ).

Proof. Note that the inequality in (7.20) holds without loss of generality for

M1 < 1. Letting α = 1−M1 and rearranging, we get

T̃q∗f ∗(s,Σ) ≤ αf ∗(s,Σ) +M0,

and iterating yields

Eq
∗

s,Σ[f ∗(Sn, Π̂n] ≤
n−1∑
k=0

αkM0 + αnf ∗(s,Σ)

≤ M0

1− α
+ αnf ∗(s,Σ).

Recall that for R > 0, BR = {Σ ∈ M+
0 : tr(Σ) ≤ R}, and define the

following shortened notation:

τR := τ(S× BR), τnR := min{n, τR}.

Lemma 8.4.7. For (s,Σ) ∈ S×M+
0 , n ∈ N, and R > 0,

Eq̂
n

s,Σ

[
ϕ(n−τR)(SτR , Π̂τR)IτR>n

]
−−−→
m→∞

0 .
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Proof. Iterating (8) with q̂n and using the notation T̃ (k)
q̂n = T̃q̂nk ◦ · · · ◦ T̃q̂n0 , for

any n > 0 and stopping time τ we get

ϕ(s,Σ) =
τ∧n−1∑
k=0

T̃ (k)
q̂n r

q̂n(s,Σ) + T̃ (n)
q̂n

(
Iτ≥n ϕ0(s,Σ) + Iτ<n ϕn−τ (s,Σ)

)
= Eq̂

n

s,Σ

[
τ∧n−1∑
k=0

rq̂
n

(s,Σ) + Iτ≥n ϕ0(s,Σ)

]
+ Eq̂

n

s,Σ

[
Iτ<n ϕn−τ (s,Σ)

]
. (8.10)

Letting τ = τR, Pq̂n (τR ≥ n) → 1 as R → ∞. So the first term in (8.10)

tends to the right-hand side of (8.9) by monotone convergence, and the result

follows.

8.5 Proofs of Main Results

Proof of Theorem 8.3.1. Using Lemma 8.4.5 and recalling that T̃q is order-

preserving,

c ≤ϕn − f ∗ =⇒ c = T̃q̂ c ≤ T̃q̂n1 (ϕn − f ∗) ≤ϕn+1 − f ∗.

Also, with Lemma 8.4.6,

c ≤ ϕn+1(s0,Σ0)− f ∗(s0,Σ0)

≤ Eq
∗

s0,Σ0

[
ϕ0(Sn, Π̂n)− f ∗(Sn, Π̂n)

]
≤ (‖ϕ0‖f∗ − 1)Eq

∗

s0,Σ0
[f ∗(Sn, Π̂n)]

≤ (‖ϕ0‖f∗ − 1)(c2 + αnf ∗(s0,Σ0)) . (8.11)
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Since translating ϕ0 by a constant simply translates the entire orbit by the

same constant, without loss of generality we will assume c = 0. Because the

cascade remains in G0, Φn[ϕ0]−f ∗ ≥ 0 and µq∗
[
Φn[ϕ0]

]
is finite. By optimality,

Φn[ϕ0](s,Σ) ≤ Eq
∗

s,Σ

[
n−m−1∑
k=0

r(Sk, q
∗(Sk, Π̂k), Π̂k) +Φm[ϕ0](Sn−m, Π̂n−m)

]
,

and so with m = n− 1, we get

µq∗
[
Φn[ϕ0]

]
≤ µq∗

[
Φn−1[ϕ0]

]
.

The map n → µq∗
[
Φn[ϕ0]

]
is non-increasing and bounded below, so it must

be constant on the ω-limit set of ϕ0 under Φn, denoted ω(ϕ0). Because (8.11)

implies supn≥0‖Φn[ϕ0]‖f∗ <∞, {Φn[ϕ0]} are uniformly bounded by a multiple

of f ∗. On compact subsets of S ×M+
0 , {Φn[ϕ0]} are equicontinuous and uni-

formly bounded and so by the Arzela-Ascoli theorem {Φn[ϕ0]} is precompact

on compact subsets. Therefore the limit set ω(ϕ0) is non-empty and invariant

[39]. Let h ∈ ω(ϕ0), and define the non-negative (by Lemma 8.4.5) function

gn(s,Σ) := T̃q∗
(
Φn−1[h](s,Σ)− f ∗(s,Σ)

)
−
(
Φn[h](s,Σ)− f ∗(s,Σ)

)
.

Then

Eq
∗

s,Σ

[
n−1∑
m=0

gn−m(Sm, Π̂m)

]
= Eq

∗

s,Σ

[
h(Sn, Π̂n)− f ∗(Sn, Π̂n)

]
+ f ∗(s,Σ)−Φn[h](s,Σ) . (8.12)

Integrating with respect to the invariant distribution µv∗ yields

n−1∑
m=0

µq∗ [gn−m] = µq∗
[
h−Φn[h]

]
∀n ∈ N. (8.13)
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Since both h and Φn[h] are in ω(ϕ0), the right-hand side of (8.13) is equal to

zero and therefore gn(s,Σ) = 0, (n, s,Σ)-almost everywhere. Using Lemma

8.4.4, (8.12) becomes

lim
n→∞

Φn[h](s,Σ) = f ∗(s,Σ) + µq∗ [h− f ∗] .

Therefore ω(ϕ0) ⊂ E∩G0, and since µq∗ [f ∗ − h] is a constant, the limit set must

be a single function. Because µq∗
[
Φn[ϕ0]

]
is non-increasing in n, the inequality

(8.3) is satisfied. Finally, by Lemma 8.4.3, Φn[ϕ0] converges pointwise to

f ∗ − f ∗(0)− %∗.

Proof of Theorem 8.3.2. For ε > 0, let ϕε be the solution of (8.2) with initial

data ϕ0 +εf ∗, and let {q̂nε : n = 0, 1, . . . } be the corresponding Markov control,

as in (8.8). For convenience let α = (1− θ1), C = %∗+θ2
θ1

, and let

f εn(s,Σ) := ϕεn(s,Σ)− (1− αn)(f ∗(s,Σ)− C).

Noting that from (7.17),

(T̃q̂nε − I)f ∗(s,Σ) ≥ −rS(s, q̂nε )− tr(Π̃∗Σ) + %∗,

we have

F ε
n(s,Σ) := f εn(s,Σ)− T̃q̂nε f

ε
n−1(s,Σ)

= rq̂
n
ε (s,Σ)− θ1α

n−1(f ∗(s,Σ)− C)

+ (1− αn−1)(T̃q̂nε − I)(f ∗(s,Σ)− C)

≥ rq̂
n
ε (s,Σ)− θ1α

n−1(f ∗(s,Σ)− C)
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+ (1− αn−1)(−rq̂nε (s,Σ)− C)

= αn−1 (−θ1f
∗(s,Σ) + θ2 + r(s,Σ, q̂nε (s,Σ) + C))

≥ αn−1 (−θ1f
∗(s,Σ) + θ2 + θ1f

∗(s,Σ)− θ2)

= 0 ∀(s,Σ) ∈ S×M+
0 and n ∈ Z+ .

Note that the formulation of Dynkin’s formula in Corollary 3.4.9 is in fact

applicable to general state spaces. Hence, applying Dynkin’s formula to f ε:

f εn(s,Σ) = Eq̂
n
ε
s,Σ

τnR−1∑
k=0

F ε
(n−k)(Sk, Π̂k) + f ε(n−τnR)(SτnR , Π̂τnR

)


= Eq̂

n
ε
s,Σ

τnR−1∑
k=0

F ε
(n−k)(Sk, Π̂k) + f ε0(Sn, Π̂n)I{n≤τR}


+ Eq̂

n
ε
s,Σ

[
f ε(n−τR)(SτR , Π̂τR)I{n>τR}

]
. (8.14)

From Lemma 8.4.7 we have for any (s,Σ) ∈ S×M+
0 and n ∈ N,

Eq̂
n
ε
s,Σ

[
f ε(n−τR)(SτR , Π̂τR)IτR>n

]
−−−→
R→∞

0. (8.15)

Then letting R → ∞ in (8.14), using Fatou’s lemma and (8.15), we have

f εn(s,Σ) ≥ 0 for all (s,Σ) ∈ S×M+
0 and n ∈ N. By construction, ϕε ≥ϕ and

ϕε decreases with ε, so each ϕε satisfies

ϕεn+1(s,Σ) = min
q∈Q

[
r(s,Σ, q) + T̃qϕεn(s,Σ)

]
,

ϕε0(s,Σ) = ϕ0(s,Σ) + εf ∗(s,Σ) ,
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and ϕε ↓ϕ0 for some pointwise limit ϕ0. Clearly ϕ0
0 = ϕ0, and so if we suppose

that ϕ0
n =ϕn then

ϕεn+1(s,Σ)−ϕn+1(s,Σ) = min
q∈Q

[
r(s,Σ, q) + T̃qϕεn(s,Σ)

]
−ϕn+1(s,Σ)

≤ rq̂n(s,Σ) + T̃q̂nϕn(s,Σ)−ϕn+1(s,Σ)

+ T̃q̂n(ϕεn(s,Σ)−ϕn(s,Σ))

= T̃q̂n(ϕεn(s,Σ)−ϕn(s,Σ)) −−−→
ε→∞

0 .

Hence, inductively, ϕ0 =ϕ everywhere, and so

ϕn(s,Σ)−
(
f ∗(s,Σ)− %∗ + θ2

θ1

)
= lim

ε↓0
f εn(s,Σ) ≥ 0 (8.16)

for all ∀(s,Σ) ∈ S×M+
0 and n ∈ N. From Lemmas 8.4.5 and 8.4.6, we have

ϕn+1(s,Σ)− f ∗(s,Σ) ≤ Eq
∗

(s,Σ)[ϕ0(Sn, Π̂n)− f ∗(Sn, Π̂n)]

≤ (‖ϕ0‖f∗ − 1)Eq
∗

(s,Σ)[f
∗(Sn, Π̂n)]

≤ (‖ϕ0‖f∗ − 1)(c2 + αnf ∗(s,Σ)).

Combining this inequality with (8.16) yields

(1− αn)

(
f ∗(s,Σ)− %∗ + θ2

θ1

)
≤ ϕn(s,Σ)

≤ f ∗(s,Σ) + ‖ϕ0‖f∗
(
%∗ + θ2

θ1

+ αnf ∗(s,Σ)

)
. (8.17)

From (8.17), every ω-limit point of Φn[ϕ0] lies in the set

G(ϕ0) :=

{
h : S→ R,−%

∗ + θ2

θ1

≤ h− f ∗ ≤ ‖ϕ0‖f∗
%∗ + θ2

θ1

}
,
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and G(ϕ0) ⊂ G−C . The ω-limit set is invariant under Φn, and by Theorem

8.3.1 the only invariant subsets of G−C are also subsets of E . Thus (8.4) holds,

and the rest of the result follows from (8.7).

8.6 Rolling Horizon Estimates

The value iteration procedure is promising as a method to generate

near-optimal policies, but stability of the generated policy is not guaranteed.

One would hope that the Markov policy computed at the nth stage of the

value iteration is a stable Markov policy and its performance converges to

the optimal performance as n → ∞. This topic is commonly referred to as

rolling horizon, and is well understood for finite state MDPs [26] but it is

decidedly unexplored for nonfinite state models. Among the very few results

in the literature is the study in [19] for bounded running cost and under a

simultaneous Doeblin hypothesis, and the results in [33] under strong blan-

ket stability assumptions. For the model considered here there is no blanket

stability; instead, the inf-compactness of the running cost penalizes unstable

behavior. Exploiting the constructive steps of the value iteration convergence

proofs allows us to show that the rolling horizon policies are indeed stable.

Assume for simplicity that ϕ0 = 0. Using the bounds in (8.17) and

(7.23) we get

|ϕn+1 −ϕn| ≤
%∗ + θ2

θ1

+ αn
(
f ∗ − %∗ + θ2

θ1

)
≤ αnm∗1tr(·) + Ĉ , (8.18)
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where Ĉ is the appropriate combination of constants. Recalling the definition

of q̂n from (8.8),

T̃q̂nϕn+1 −ϕn+1 = T̃q̂n(ϕn+1 −ϕn)− tr(Π̃∗ · )− rS + %∗

≤ αnĈ1tr(·)− tr(Π̃∗ · ) + Ĉ0 , (8.19)

where Ĉ0 and Ĉ1 are appropriate combinations of constants from (8.18) and

(6.10) along with %∗ and the minimal value of rS. But in (8.19), after some

finite number of steps N , the second trace term will dominate the first:

T̃q̂nϕn+1 −ϕn+1 ≤ −Ĉ2 tr(Π̃∗ · ) + Ĉ0 , for all n > N.

In fact, since in (8.17) we have ϕn+1 ≤ f ∗, we can use the bound in (7.23)

again to show that with appropriate constants Ĉ3 > 0 and Ĉ4 the chain is

geometrically ergodic:

T̃q̂nϕn+1 −ϕn+1 ≤ −Ĉ3 ϕn+1 + Ĉ4 , for all n > N.

So the policy generated by the nth stage of the value iteration algorithm is

geometrically stable for n large enough.

Let %∗n be the average cost obtained under the stable policy q̂n, and let

rn(s,Σ) = rS(s, q̂(s,Σ),Σ) + tr(Π̃∗Σ). Following the method in [26], since µq̂n

is invariant under q̂n we have

%∗n = µq̂n [rn] = µq̂n
[
ϕn+1 − T̃q̂nϕn + %∗

]
= µq̂n

[
ϕn+1 −ϕn + %∗

]
.

Therefore, as n → ∞, (ϕn+1 −ϕn) → 0 and so %∗n → %∗. In fact, from the

bound in (8.18) the convergence to the optimal average cost is geometric.
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This result has significant implications for computational effort. The

geometric convergence rate indicates that only a few iterates of the VI algo-

rithm are needed to find a stable control that is near-optimal.
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Chapter 9

Conclusion and Future Work

9.1 Overview

In this dissertation, we have produced several new results in Markov

decision processes (MDPs), focusing on countable state systems and a dis-

crete linear system with intermittent observations. Notably, we extend the

concept of uniform stability for MDPs on countable state spaces, and show

new sufficient conditions for the convergence of the value iteration algorithm

that do not require global stability assumptions. We also analyze the optimal

control and value iteration algorithm for a new class of linear quadratic Gaus-

sian (LQG) systems with multiple sensors and query-dependent intermittent

observations. This new system can be applied to various remote sensing and

control applications in various fields.

9.2 MDPs on a Countable State Space

In the first area, MDPs on countable state spaces, we present a number

of results on structure, recurrence, and value iteration for the average cost

optimization problem.

In Chapter 3 we propose a set of assumptions that facilitate the trans-
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lation of continuous diffusion process results into the area of countable state

MDPs. These assumptions capture the fundamental aspects of the continuous

behavior of diffusion processes applied to the countable state space. We also

derive analogous discrete and countable versions of Harnack’s inequality and

re-frame related results for the countable state space.

Two new results for countable state MDPs are presented in Chapter

4, utilizing the structural assumptions from Chapter 3. First, a uniform re-

currence result extends the uniform stability theorem of [15]. The theorem

shows that, under appropriate assumptions, if the hitting time for finite set

from any particular initial state (appropriately separated from the finite set) is

finite under any particular policy, then the supremum over policies of hitting

times from any state to any set is also finite. This result fills a gap in [15]

suggested by [3, Section 3.3.2]. The second result shows useful uniform bounds

on the variation and value of the discounted value function on certain finite

sets. Since these sets, by construction, cover the entire space, the result can

be used to show pointwise convergence in vanishing discount problems.

Similar results can be explored in the future for other types of Markov

processes. All of the results for the countable state space should have analogous

results in for continuous time, countable state processes and for discrete time,

general state processes. Even if results can only be shown under somewhat

restrictive structural assumptions, the nature of those assumptions can provide

insight into the underlying structure of the various processes.

In Chapter 5, we give two new sufficient conditions for the convergence
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of the value iteration for MDPs with the near-monotone property. These

conditions do not require global stability, instead making assumptions only

about the system under the optimal policy. The first result assumes that the

value function is integrable with respect to the optimal invariant distribution.

In that case, if the initial function of the value iteration dominates and is of

the order of the value function, then the value iteration converges. The second

result relies on a more specific assumption: if the cost function plus a constant

dominates the value function then the value iteration converges with any initial

function of order less than the value function (such as a constant). These

results dramatically expand research into convergence of the value iteration,

as previous results required blanket stability assumptions.

Future efforts should investigate the rate of convergence of the value

iteration under the new conditions. It is anticipated that, as in [24], initializing

the algorithm with a function of appropriate form will significantly improve the

convergence rate, but the problem is open. Also, the structural relationship

between the value function and cost function can be exploited in many value

iteration problems. One example is the LQG value iteration algorithm in

Chapter 8, where the system and cost structure imply structural properties of

the value function. Future work can investigate other examples of this implied

structure for countable and other state spaces.
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9.3 LQG System with Sensor Scheduling and Intermit-
tent Observations

Chapters 6–8 study a discrete time linear system with additive Gaussian

white noise and quadratic costs. Additionally, the observations are randomly

received or lost, where the loss rate is determined by a network state and

sensors chosen by the controller. Chapter 6 describes the system in detail

and shows that a modified Kalman filter provides optimal estimates of the

system state despite the intermittency. We also show that the covariance

update operator (which is an operator because the covariance is itself random)

preserves concavity and continuity for non-decreasing functions, a result which

is essential in the subsequent analysis.

The various optimal control problems (finite horizon, discounted cost,

average cost) are detailed in Chapter 7, and we show that for each problem,

the optimal control policy consists of a fixed feedback of the expected value

of the state. The optimality conditions are then transformed into MDPs on

the network state and error covariance processes, with modified cost functions

depending on the trace of the error covariance. We show existence of value

functions and optimality criteria for all three control problems, and note the

special structure of the resulting average cost value function. We also show

how a special case of the result generalizes a known result in Kalman filtering

with intermittent observations. For a system with N possible sensor queries,

when the observation loss rate depends only on the query we can write the

loss rates as a vector in [0, 1]N . We then show that there exists a critical
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surface in [0, 1]N ; loss rate vectors below the critical surface imply the system

is stabilizable, while vectors above the surface lead to systems that cannot be

stabilized.

We assume in Chapters 6–8 that the network state St is known at each

time t ≥ 0, but this is not necessarily required. One can treat the network

as a partially-observed MDP being controlled simultaneously with the linear

system, and estimate the network state based on knowledge of the process

γt and the loss probabilities given by λ(s, q). The traditional approach (e.g.,

see [28, Chapter 8] and [2]) is to treat the observation as an extension of the

process state. In this case the extended system (St, Π̂t, γt) would take values on

S×M+
0 ×{0, 1}, where only the second and third components are available to

the controller. One can then create an equivalent completely observed model

(Ψt, Π̂t, γt), where Ψt is a process that evolves on P(S), the set of probability

measures on the network state space. Provided that the loss rates and size

of the network state space is known, the transition matrices can be estimated

up to identifiability, via well studied algorithms (e.g., [5]), and since we are

dealing with the ergodic cost, the performance of an adaptive algorithm would

be the same as if the transition matrix were known.

If the loss rates corresponding to each network state are also unknown,

the problem is more complicated, but still may be solvable. We augment the

state space S to S × {0, 1}. If pij is the transition matrix of S, then the

transition matrix of the new state space is given by p̃(i,k),(j,1) = λjpij, and

p̃(i,k),(j,0) = (1 − λj)pij, for k = 0, 1. Then we are dealing with a Markovian
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identification problem, except that the transition matrix is constrained to a

particular form. The problems seem tractable, although it is unclear if it has

been studied in the existing literature.

Another obvious area for future work is jump linear systems, in which

the state matrix and input gain are also subject to random, controller-dependent

switching. Such a system is modeled as [25]:

Xt+1 = AθtXt +BθtUt +DθtWt,

Yt = CθtXt + FθtWt,

where θt is a Markov chain on a (usually finite) set of states. There has been

extensive research into controlling the state dynamics of jump linear systems

with uncontrolled Markov chains ([23, 30], among others), but little has been

done incorporating controlled chains and intermittent network channels.

9.4 General Conclusions

A recurring theme throughout much of the dissertation is the exploita-

tion of structural similarities between the cost function and value function

when considering average cost optimal control. For the countable state sys-

tem, we posed the similar structure as an assumption, but for the LQG system

the inherent properties of the system guaranteed structural similarity. The

utility of this theme suggests that a more general framework may exist for

analyzing MDPs on other spaces and with other constraints. Informally, if

the cost function and value function are similar enough, the value iteration

algorithm will converge. However, the “similarity” used here varies from both
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being integrable, to both being bounded above by the same function, to explic-

itly sharing a growth rate. An interesting area for future research is to better

quantify the similarity between the cost and value functions, and to extend

the results to a general state space. As the areas of application increase, one

might pose a quite generalized statement of how and under what conditions

the structural relationship between the cost and value functions affects the

optimal control and value iteration problems.
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