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Origin and detection of microstructural clustering in fluids with spatial-range
competitive interactions
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Fluids with competing short-range attractions and long-range repulsions mimic dispersions of charge-stabilized
colloids that can display equilibrium structures with intermediate-range order (IRO), including particle clusters.
Using simulations and analytical theory, we demonstrate how to detect cluster formation in such systems from the
static structure factor and elucidate links to macrophase separation in purely attractive reference fluids. We find
that clusters emerge when the thermal correlation length encoded in the IRO peak of the structure factor exceeds
the characteristic length scale of interparticle repulsions. We also identify qualitative differences between the
dynamics of systems that form amorphous versus microcrystalline clusters.
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I. INTRODUCTION

Complex fluids frequently possess one or more frustrating
interaction length scales that, regardless of origin, generate
micro- to mesoscale structural heterogeneity. Archetypical
examples include microemulsions [1], block copolymers [2,3],
confined fluids [4,5], and colloidal dispersions, including
proteins [6–11], wherein the surfactant size, block length, pore
size, and screened electrostatic repulsions set the respective
length scales of frustration. Despite their contextual differ-
ences, all exhibit similar transitions between homogeneous
fluid states and emergent heterogeneous phases with density
correlations characterized by intermediate-range order (IRO),
typically identified by the presence of a prepeak at low but
finite k in the static structure factor S(k) [12].

In the case of a pore-glass confined binary fluid system [13],
the experimental emergence of IRO has been rationalized via
the behavior of the fluid thermal correlation length ξT , which
quantifies the range of correlated concentration fluctuations
and the associated IRO peak width in S(k). In particular, it was
demonstrated that the crossover in the temperature-density
(T − ρ) plane from dispersed fluid to strong IRO corresponds
to the conditions at which ξT reaches the pore size, i.e., the
characteristic frustrating length scale. Such conditions enable
strong, preferential segregation of the wall-attracted species
from the other component which, in turn, migrates into the pore
centers. Additionally, the IRO (T − ρ) crossover conditions
correspond to state points close to where the unconfined
fluid reference system would otherwise exhibit liquid-liquid
macrophase segregation.

Here, we extend thermal correlation length concepts to a
simple model system characterized by IRO: the short-range
attractive, long-range repulsive (SL) fluid, which mimics
charge-stabilized colloids with van der Waals, depletion,
and/or hydrophobic attractions. Various studies have demon-
strated that the long-range repulsive interaction suppresses
macrophase separation—which would occur for strong short-
range attractions alone—in favor of IRO structures including
clusters [14–18]. However, an ongoing challenge has been
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to distinguish between generic IRO (i.e., presence of any
prepeak) and clustering specifically, particularly in a way
accessible to experiments [12,17]. One such criterion [17]
suggests that clustering emerges when the IRO peak reaches
a magnitude S(k∗

SL) � 2.7; this bears similarity to the empir-
ical Hansen-Verlet single-phase rule for tracing macroscopic
freezing boundaries in simple fluids [19].

Section II presents the SL models under consideration and
the simulation protocol and theoretical methodology used
to characterize their behaviors. In Sec. III, we propose a
conceptual framework and accurate criterion for clustering:
namely, clusters form when the thermal correlation length
ξT encoded in the IRO prepeak of S(k) exceeds the charac-
teristic length scale of the frustrating interparticle repulsive
interaction. We find that this criterion also bolsters previously
proposed connections between emergent IRO in SL fluids
and macroscopic phase separation in corresponding reference
attractive (RA) models [17] lacking long-range repulsions.
Finally, we show that the criterion makes useful predictions
for fluids that form either amorphous or microcrystalline
clusters, despite striking qualitative differences in the dynamic
behaviors of these two types of systems. The paper concludes
in Sec. IV with a brief summary of our results and their
relevance to experiment.

II. METHODS

Various SL interaction models are known to exhibit IRO;
here we consider a canonical example given by the pairwise
potential [14]

ϕSL(x) ≡ 4ε(x−2α − x−α) + A
e−x/ξR

x/ξR

, (1)

where x = r/d is a nondimensionalized particle separation,
d is the measure of particle size, ε quantifies the attractive
strength, and A and ξR , respectively, characterize the repulsion
magnitude and range. We set α = 100 in Eq. (1) to mimic
archetypical colloids governed by core repulsions with an
attraction range of O(1%) of the core diameter induced via
depletant effects. The long-range Yukawa tail mimics screened
electrostatic interactions common to charge-stabilized suspen-
sions. The corresponding RA potentials [17] are defined by
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ϕRA(x) ≡ H (x0 − x)ϕSL(x), where H is the Heaviside step
function and x0 is the nearest point for x > 1 where ϕSL(x) is
zero, which eliminates the repulsive tail.

Model SL fluids defined by Eq. (1) can lose stability to
microcrystalline cluster phases at high attraction strengths
[14], in contrast to many experimental systems of interest (e.g.,
proteins) that do not easily crystallize. To study the latter, we
also examine a simple ternary mixture of SL particles designed
to frustrate crystallization. The mixture pair potentials are
described by

ϕSL|i,j (xi,j ) ≡ 4[ε + (1 − 2δi,j )�ε]
(
x−2α

i,j − x−α
i,j

)

+A
e−xi,j /ξR

xi,j /ξR

, (2)

where δi,j is the Kronecker delta, i,j = −1,0,1 correspond
to small, medium (d = 1), and large particles respectively,
xi,j ≡ x − (1/2)(i + j )�d , and perturbative parameter shifts
to interaction size and energy, �d = 0.158 and �ε = 0.25,
help to thwart crystallization and promote mixing, respectively.
We use systems comprised of 20% small, 60% medium, and
20% large particles. This combination of �d and composition
represents a three-component approximation of 10% polydis-
persity in particle size.

In examining both models, we set various combinations of
the repulsive range ξR and the thermally nondimensionalized
repulsive strength βA (where β = 1/kBT and kB is the
Boltzmann constant) while varying the nondimensionalized at-
tractive strength βε. This treatment mimics systems for which
the short- and long-range aspects of constituent interactions
are approximately orthogonal, such as colloids with screening
lengths set by particle-solvent interactions and attractions
tuned via introduction of depletants [18].

To generate equilibrium particle configurations, we perform
three-dimensional (3D) molecular dynamics simulations of
N = 2960 particles interacting via Eqs. (1) and (2) in the
NVT ensemble with periodic boundary conditions using
LAMMPS [20]. Due to the steepness of the repulsion, we
use an integration time step of 0.0005, and due to the
long-range repulsion, we include interactions out to a cutoff
distance of rcut = 8.0. For all state points, the temperature
is fixed at kBT = 1.0 via a Nosé-Hoover thermostat with
time constant τ = 1.0. We calculate the structure factor
S(k) from simulations by numerical Fourier transform (FT)
inversion of the radial distribution function g(r). To determine
whether state points are fluid, clustered, or percolating, we
calculate cluster-size distributions (CSDs), which quantify
the probabilistic formation of n-particle aggregates, where
particles are considered part of the same aggregate if their
centers are within the narrow range of the attractive well.
Similar to other studies [14,15,17,18], a system is considered
clustered with aggregates of preferred size n∗ by the presence
of a local maxima in the CSD at n∗ occurring in the range
1 � n∗ � N , and is considered percolated (at the level of the
box) by a CSD peak comprised of all particles, i.e., n∗ � N .

To obtain analytical results for a broader range of potentials,
we also derive theoretical thermodynamic and pair structure
results via the Ornstein-Zernike (OZ) integral equation relation
h(k) ≡ c(k) + ρc(k)h(k), where h(k) ≡ FT[g(r) − 1], c(k) ≡
FT[c(r)], g(r) is the radial distribution function, c(r) is the

direct correlation function, and ρ is the number density.
The OZ relation is closed via the Percus-Yevick hard-sphere
reference, nonlinear optimized random phase approximation,
c(r) ≈ exp[−βϕ(r)] − 1 + G(r), where G(r) = 0 for r > d,
while for r � d it is optimized to enforce h(r) = −1 [thus, we
approximate Eq. (1) with a literal hard core for r � d] [21]. In
carrying out these calculations, we consider only the Eq. (1)
potential since noncrystalline states are avoided due to the
enforcement of homogeneity. This closure yields a spinodal
locus at all densities, which is an important feature for the RA
cases.

III. RESULTS AND DISCUSSION

To begin our discussion, we first consider the behavior of the
structure factor S(k) for SL fluids with different relative (inte-
grated) repulsive strengths and corresponding RA systems [see
Figs. 1(a)–1(c)] as predicted from integral equation theory. The
two SL fluids exhibit prepeaks characteristic of IRO at wave-
lengths k∗

SL > 0, indicating preferential structuring on micro-
scopic length scales of 2π/k∗

SL ≈ 12.6d and 5.0d, respectively.
In contrast, for the RA fluids lacking long-range repulsions,
the short-range attractions drive ordering on the macro-
scopic length scale, corresponding to the peak at k∗

RA = 0.
Crucially, we see that for the very weak repulsive case
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FIG. 1. (Color online) (a) Structure factors S(k) for reference
attractive (RA, red dashed curve) and short-range attractive long-
range repulsive (SL, blue solid curve) fluids at packing fraction
φ = 0.125 for repulsions with ranges ξR and strengths βA. Curves
are derived from integral equation theory, where the ξR = 10 curves
are shown for attraction βε = 4.35 and the ξR = 2 curves (shifted
vertically) are shown for βε = 4.75. (b),(c) S(k) curves from (a)
replotted to highlight k → 0 behaviors. (d) Fourier transforms βω(k)
of the potentials from (a) with ξR = 2 curves shifted vertically. (e)
RA and SL potentials βϕ(r) for the ξR = 2 case.
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(ξR = 10, βA = 5 × 10−4), the S(k) for the SL fluid traces
the RA curve down to low k, supporting the conceptual notion
of SL fluids as perturbations to underlying RA fluids for which
only the principal ordering length scale has been shifted.

To understand why one should naturally expect SL fluids to
aggregate on smaller length scales than their RA counterparts,
we examine in Fig. 1(d) the Fourier-space analogs of the
SL and RA pair potentials, ω(k) = FT[ϕ0(r)], where ϕ0(r) =
H (r − d)ϕ(r). Viewing the potentials in this way makes
explicit the idea that structural oscillations of different length
scales are weighted by the energy profile ω(k), which is
evidenced by the close reciprocal correspondence between
basins in ω(k) [Fig. 1(d)] and peaks in S(k) [Fig. 1(a)]. This
connection can also be made more formal by considering
microstate configurational energies (see the Appendix).

Moving beyond the above discussion concerning generic
IRO, we demonstrate in Fig. 2 that particle clustering emerges
when the thermal correlation length ξT surpasses the char-
acteristic length scale of interparticle repulsion ξR . Here, we
estimate ξT from the well-known S(k) approximation (inverse
expansion) near k∗ [21]:

S(k) ≡ S(k∗)

1 + (k − k∗)2d2ξ 2
T

. (3)

That ξT is a correlation length is evident by considering the
long-range real-space form of Eq. (3), limr→∞[g(r) − 1] ∝
r−1 exp[−r/dξT ] cos[rk∗ − θ ], where g(r) is the radial distri-
bution function, θ is a constant, and ξT gives the characteristic
decay length of static correlations, while the cosine term
reflects modulated structure. In practice, ξT can be extracted
from S(k) by fitting S(k∗)/S(k) to the form 1 + (k − k∗)2d2ξ 2

T

about k∗.
In Fig. 2(a), we catalog the phase behavior as a function of

attractive strength βε for various packing fractions φ. It is evi-
dent that for the lower-density isochores, the ξT � ξR criterion
demarcates when clustering begins in our polydisperse system,
as indicated by a characteristic CSD peak with increasing
attractions [Fig. 2(c)] and reflected by a growing IRO prepeak
in S(k) [Fig. 2(d)]. As is intuitively expected and seen by
others [15,17,22], for denser isochores such as φ = 0.250, it
is challenging to identify precisely when “clustering” begins
because the CSD indicates boxwide percolation (geometrically
merged clusters) even down to relatively low βε. Figure 2(a)
also shows that correlation lengths of monodisperse and
polydisperse systems coincide upon approach to the ξT = ξR

threshold, where this boundary also approximately identifies
where the monodisperse fluid loses stability with respect to
formation of microcrystalline clusters.

In Fig. 2(b), we also examine phase behaviors for the SL
and RA fluids derived for a wider βε − φ parameter space
via theory, which reveals close correspondence between the
SL ξT = ξR boundary and the spinodal associated with RA
macrophase separation. Their similar shapes (and, in this case,
locations) suggest that the SL ξT = ξR boundary echoes the
RA thermodynamic instability, where the frustrating repulsion
has erased (or highly suppressed) liquid-gas coexistence in
favor of clustering. (We also include the ξT = 5 curve to
demonstrate the general propagation of the RA spinodal shape
with increasing βε.) As a further comparison, the empirical

3.0 3.5 4.0 4.5 5.0 5.5 6.0
βε

0.5

1.0

1.5

2.0

2.5

3.0

3.5

ξ T

0.0 0.1 0.2 0.3 0.4 0.5
φ

4.5

5.0

5.5

6.0

β ε

1 10 100 1000
n

10
-4

10
-3

10
-2

10
-1

p(
n)

0 2 4 6 8 10
kd

0

4

8

12

S
(k

)

5.4
5.3
5.2
5.1
5.0
4.9
4.8
4.7
4.5
4.0

ξR=2,βA=2x10-1

RA,L+G
SL,C

F

φ

βε

(a)(b)

(c) (d)

βε

φ=0.125 φ=0.125

SL,ξT

fluid

clustered

percolated

ξT=ξR

FIG. 2. (Color online) (a) Symbols show thermal correlation
lengths ξT for SL simulations of polydisperse (filled) and monodis-
perse (unfilled) systems with attractive strengths βε and packing
fractions φ = 0.050, 0.125, and 0.250. Symbol shapes indicate
whether the state point is dispersed fluid (triangles), clustered (circle),
or percolated (diamond), and the horizontal dashed line indicates
ξT = ξR . Solid lines show ξT calculated via theory. (b) Phase
behavior calculated via theory for potentials from (a), including
RA macrophase spinodal (red unfilled squares); SL curves (blue
filled squares) corresponding to ξT = 2 and ξT = 5; and S(k∗

SL) =
2.7 curve (black x). “L+G” indicates liquid-gas coexistence, “C”
indicates clustered phase, and “F” indicates fluid phase. (c) Cluster-
size distributions indicating probability p(n) of n-particle cluster
formation and (d) S(k) profiles from polydisperse simulations at
φ = 0.125.

clustering condition S(k∗
SL) � 2.7 is also shown. While it lies

within similar proximity to the RA spinodal, it possesses a
noticeably different, shallower contour.

To elucidate deeper connections between the contours in
Fig. 2(b), we explore in Fig. 3 whether the ξT = ξR and RA
spinodal boundaries truly converge for ultraweak repulsions,
which might be expected if the latter can be considered
a natural weak-repulsion limit of the former. In Figs. 3(a)
and 3(b), we examine two potentials with different repulsive
strengths: for βA = 1 × 10−2, the repulsion is evidently
“strong” and there is no overlap between the ξT = ξR and RA
spinodal boundaries [note: this highlights that these boundaries
do not generally overlap as in Fig. 2(b)]. However, as repulsion
strength is lowered to βA � 1 × 10−5, the two curves collapse
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FIG. 3. (Color online) (a) Phase diagrams calculated via theory,
comprising RA macrophase spinodals (unfilled red symbols) and SL
ξT = ξR curves (filled blue symbols) for ξR = 10 and two repulsive
strengths βA. (b) RA spinodals and curves along which S(k∗

SL) = 2.7
(filled black symbols) for the same systems as in (a). (c) Phase diagram
calculated via theory comprising RA macrophase spinodal (unfilled
red triangles); SL curves corresponding to macrophase spinodal at
low φ (right-pointing blue triangles) and ξT = ξR = 2 at high φ (left-
pointing blue triangles); and disorder line (purple squares) in the
fluid region (see text). “L+G” indicates liquid-gas coexistence, “C”
indicates clustered phase, and “F” indicates fluid phase.

and become truly indistinguishable, reflecting a deep SL-RA
connection. In Fig. 3(b), we also show corresponding S(k∗

SL) =
2.7 curves. Clear discrepancies in shape are apparent when
comparing the RA spinodals and the S(k∗

SL) = 2.7 boundaries,
and the two types of curves increasingly move apart as βA is
reduced.

To further generalize the connection of the RA spinodal to
the phase behaviors of SL systems, we consider in Fig. 3(c)
a less long-ranged weak repulsion (ξR = 2,βA = 5 × 10−3),
which exhibits intriguing properties: a true SL spinodal sepa-
ration occurs for φ � 0.09, while for higher volume fractions
there is a ξT = ξR clustering boundary. The low-density fluid
also exhibits a disorder line, below which the IRO peak is
present and above which the IRO peak transitions to a k∗

SL = 0
peak. The intimate correspondence between the SL boundaries
and the RA spinodal further reflects that the condition ξT = ξR

reflects a muted thermodynamic instability, which for very
weak repulsions can also emerge within the SL fluid itself.

Finally, we consider the morphologies and lifetimes of
the clusters that form in polydisperse and monodisperse
SL systems. Clusters in the former exhibit amorphous and
irregular shapes, as exemplified by the simulation snapshots
in Fig. 4(a), which correspond to the system in Fig. 2 at

FIG. 4. (Color online) Cluster phase simulation snapshots of (a)
polydisperse and (b) monodisperse systems at φ = 0.125 with
attractive strength βε = 5.2 and repulsions defined by ξR = 2 and
βA = 0.20. Particles comprising a single cluster (determined at
time t) are rendered opaque in their positions at times t (left) and
t ′ = t + �t (right). The lag time is �t = 25τd , where τd = d2/D

is the characteristic time for d = 1 particles to diffuse and D is the
long-time bulk diffusion coefficient determined via mean-squared
displacements. Colors correspond to small, medium (d = 1), and
large particles, which are shaded yellow, red, and blue, respectively.
Visualizations created with VMD [23].

conditions slightly above the clustering transition. Here, it is
evident based on the time-lag snapshots that the clusters are
transient and continuously redistribute particles to create new
clusters at the expense of others. By significantly increasing
the attractive strength βε, one can eventually observe arrested,
percolating, amorphous gels as exemplified by the simulation
snapshots for φ = 0.125 systems in Fig. 5. Interestingly, our
model gels may be thermoreversible with no local crystallinity,
possibly providing a simpler alternative to valence-limited
gel formers [24]. Thermoreversibility is highly desired to
facilitate fabrication of massively reconfigurable, reversible
materials.

In contrast, monodisperse systems at similar attraction
strengths can undergo highly regular clustering via local crys-
tallization, as exemplified in Fig. 4(b). While the crystalline
nature of such simulated clusters has been observed previously
by others [14,15,18], we do note that the relatively weaker
repulsion examined here drives the formation of much larger
clusters that are more obviously crystalline in nature. The
crystalline clusters are relatively static objects once formed, as
demonstrated by the time-lag snapshots, in direct contrast to
the amorphous clusters.
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FIG. 5. (Color online) Cluster phase simulation snapshots of
polydisperse systems at φ = 0.125 with various attractive strengths
βε and repulsions defined by ξR = 2 and βA = 0.20. In all snapshots,
particles comprising a single cluster (determined at time t) are
rendered opaque in their positions at time t . For cases (a) and (b) that
are not gelled, the same particles are also shown in their positions
at t ′ = t + �t . The lag time in (a) and (b) is �t = 25τd , where
τd = d2/D is the characteristic time for d = 1 particles to diffuse
and D is the long-time bulk diffusion coefficient determined via
mean-squared displacements. For cases (c) and (d), the configurations
are dynamically arrested and τd cannot be practically measured within
the time scale of simulations. Colors correspond to small, medium
(d = 1), and large particles, which are shaded yellow, red, and blue,
respectively. Visualizations created with VMD [23].

IV. CONCLUDING REMARKS

In closing, we have presented a framework for under-
standing and detecting cluster phases in SL fluids based on
the thermal correlation length ξT . This framework should
prove useful for probing microstructural transitions in diverse
systems governed by frustrated interactions, e.g., lattice spin
models with opposing nearest-neighbor and higher-order
couplings. We have also presented a nonmicrocrystallizing
SL fluid, which exhibits amorphous transient clusters; this
should prove useful for examining the (zeroth-order) physics
of real dispersions known to be resistant to crystallization, e.g.,
proteins.

Finally, we remark that the ξT = ξR clustering criterion
can be implemented in experiments provided that, in addition
to extracting ξT from an S(k) profile (described earlier), one
can also obtain a reasonable measure of the repulsive length
scale between particles ξR . For systems accurately described
by simple screening models, ξR can be directly estimated.
Otherwise, one can first obtain the r-space total correlation
function h(r) via an inverse FT of S(k). Likewise, one can cal-
culate the direct correlation function c(k) = ρ−1 − [ρS(k)]−1

and then obtain its r-space equivalent c(r) = FT−1[c(k)],
which provides information about the interparticle interactions
because limr→∞ c(r) ≈ ϕ(r) [21]. By plotting ln{|rh(r)|} and
ln{|rc(r)|} versus r (where |x| is the absolute value of x)
and comparing their (negative) slopes, one directly compares
the range of interparticle correlations (as captured by ξT )
and the characteristic range of the interparticle interactions,
respectively. Thus, given an S(k) profile exhibiting an IRO
peak, if ln{|rh(r)|} decays more slowly than ln{|rc(r)|},
then the ξT associated with IRO exceeds the characteristic
(repulsive) length scale ξR .
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APPENDIX: FOURIER-SPACE CONNECTIONS BETWEEN
ω(k) AND S(k)

An N -particle configuration [ri] that does not violate the
hard-core constraint is weighted according to the Boltzmann
factor exp[−β�([ri])], where

�([ri]) ≡ 1

2

N∑
i �=j=1

ϕ0(|ri − rj |) (A1)

is the total potential energy due to the non-hard-core portion
of the pair potential ϕ0(r). Equation (A1) can be recast using
the definition of the 3D Dirac delta function δ(x),

�([ri]) ≡ 1

2

N∑
i �=j=1

∫
dR1

∫
dR2δ(ri − R1)

×ϕ0(|R1 − R2|)δ(rj − R2). (A2)

Since Eq. (A2) is a convolution with respect to R1 and R2,
it can be recast as a single integral in Fourier space using the
Fourier-transformed potential ω(k) ≡ FT[ϕ0(r)],

�([ri]) ≡ 1

2

N∑
i �=j=1

1

(2π )3

∫
dke−ik·ri ω(k)eik·rj . (A3)

Moving the sum inside the integral in Eq. (A3) and using
the definition of the non-ensemble-averaged total correlation
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function,

h̃(k; [ri]) ≡ (ρN )−1
N∑

i �=j=1

exp[−ik · (ri − rj )], (A4)

one can subsequently write

�([ri]) = Nρ

2(2π )3

∫
dkω(k)h̃(k; [ri]), (A5)

which makes explicit the role ω(k) plays in favoring [ri]
states possessing certain oscillatory structural correlations.
Namely, any thermodynamically favorable configuration [r∗

i ],
as weighted by exp[−β�([ri])], is captured by the equilib-
rium average total correlation function h(k) ≈ h̃(k; [r∗

i ]). In
turn, ω(k) sets the energetic “preference” for configurations
structured at certain wavelengths k, which appear as peaks in
the structure factor since S(k) ≡ 1 + ρh(k).
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