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Key-value stores such as LevelDB and RocksDB offer excellent write

throughput, but suffer high write amplification. The write amplification prob-

lem is due to the Log-Structured Merge Trees data structure that under-

lies these key-value stores. To remedy this problem, this thesis presents a

novel data structure that is inspired by Skip Lists, termed Fragmented Log-

Structured Merge Trees (FLSM). FLSM introduces the notion of guards to

organize logs (sstables or files containing the data on storage), and avoids

rewriting data in the same level. Theoretically, we show how FLSM can ad-

dress the problem of write amplification.

We build PebblesDB, a high-performance key-value store, by modifying

HyperLevelDB to use the FLSM data structure. We evaluate PebblesDB using

micro-benchmarks and show that for write-intensive workloads, PebblesDB re-

duces write amplification by 2.4-3× compared to RocksDB, while increasing

write throughput by 6.7×. We evaluate PebblesDB extensively under a vari-

ety of benchmarks, workload patterns, and environmental factors and analyze
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how it performs in different scenarios. We modify two widely-used NoSQL

stores, MongoDB and HyperDex, to use PebblesDB as their underlying stor-

age engine. Evaluating these applications using the YCSB benchmark shows

that throughput is increased by 18-105% when using PebblesDB (compared

to their default storage engines) while write IO is decreased by 35-55%.
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Chapter 1

Introduction

Key-value stores have become a fundamental part of the infrastruc-

ture for modern systems. Much like how file systems are an integral part

of operating systems, distributed systems today depend on key-value stores

for storage. For example, key-value stores are used to store state in graph

databases [31, 21], task queues [5, 55], stream processing engines [7, 51], appli-

cation data caching [43, 35], event tracking systems [46], NoSQL stores [40, 18],

and distributed databases [30]. Improving the performance of key-value stores

has the potential to impact a large number of widely-used data intensive ser-

vices.

Great progress has been made in improving different aspects of key-

value stores such as memory efficiency [59, 9, 42, 34, 17] and energy effi-

ciency [6]. One fundamental problem that remains is the high write am-

plification of key-value stores for write-intensive workloads. Write amplifi-

cation is the ratio of total write IO performed by the store to the total user

data. High write amplification increases the load on storage devices such

as SSDs, which have limited write cycles before the bit error rate becomes

unacceptable [3, 26, 39]. With the increasing size of user data sets (e.g,. Pin-
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Figure 1.1: Write Amplification. The figure shows the total write IO (in
GB) for different key-value stores when 500 million key-value pairs (totaling
45 GB) are inserted or updated. The write amplification is indicated in paren-
thesis.

terest’s stateful systems process tens of petabytes of data every day [46]),

high write amplification results in frequent device wear out and high stor-

age costs [41]. Write amplification also reduces write throughput: in the

RocksDB [20] key-value store, it results in write throughput being reduced

to 10% of read throughput [54]. Thus, reducing write amplification will both

lower storage costs and increase write throughput.

Figure 1.1 shows the high write amplification (ratio of total IO to total

user data written) that occurs in several widely-used key-value stores when 500

million key-value pairs are inserted or updated in random order. Techniques

from prior research tackling write amplification have not been widely adopted

since they either require specialized hardware [38, 56] or sacrifice other aspects

such as search (range query) performance [58]. Conventional wisdom is that

reducing write amplification requires sacrificing either write or read through-

put [34]. In today’s low-latency, write-intensive environments [27], users are

not willing to sacrifice either.
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Key-value stores such as LevelDB [25] and RocksDB are built on top of

the log-structured merge trees [44] (LSM) data structure, and their high write

amplification can be traced back to the data structure itself (chapter 2). LSM

stores maintain data in sorted order on storage, enabling efficient querying of

data. However, when new data is inserted into an LSM-store, existing data is

rewritten to maintain the sorted order, resulting in large amounts of write IO.

This thesis presents a novel data structure, termed the Fragmented

Log-Structured Merge Trees (FLSM), which combines ideas from the Skip

List [48, 47] and Log-Structured Merge trees data structures along with a

novel compaction algorithm. FLSM strikes at the root of write amplification

by drastically reducing (and in many cases, eliminating) data rewrites, instead

fragmenting data into smaller chunks that are organized using guards on stor-

age (chapter 3). Guards allow FLSM to find keys efficiently. Write operations

on LSM stores are often stalled or blocked while data is compacted (rewritten

for better read performance); by drastically reducing write IO, FLSM makes

compaction significantly faster, thereby increasing write throughput.

Building a high-performance key-value store on top of the FLSM data

structure is not without challenges; the design of FLSM trades read perfor-

mance for write throughput. This thesis presents PebblesDb [49], a modifica-

tion of the HyperLevelDB [29] key-value store that achieves the trifecta of low

write amplification, high write throughput, and high read throughput. Peb-

blesDb employs a collection of techniques such as parallel seeks, aggressive

seek-based compaction, and sstable-level bloom filters to reduce the overheads
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inherent to the FLSM data structure (chapter 4). Although many of the tech-

niques PebblesDb employs are well-known, together with the FLSM data

structure, they allow PebblesDb to achieve excellent performance on both

read-dominated and write-dominated workloads.

PebblesDb outperforms mature, carefully engineered key-value stores

such as RocksDB and LevelDB on several workloads (chapter 5). On the

db bench micro-benchmarks, PebblesDb obtains 6.7× the write throughput

of RocksDB and 27% higher read throughput, while doing 2.4-3× less write

IO. When the NoSQL store MongoDB [40] is configured to use PebblesDb

instead of RocksDB as its storage engine, MongoDB obtains the same overall

performance on YCSB benchmark [16] while doing 37% lesser IO (chapter 5).

While the FLSM data structure is useful in many scenarios, it is not

without its limitations. On a fully compacted key-value store, PebblesDb

incurs a 30% overhead for small range queries. While the overhead drops to

11% for large range queries, the FLSM data structure is not the best fit for

workloads which involve a lot of range queries after an initial burst of writes.

Note that PebblesDb does not incur an overhead if the range queries are

interspersed with writes.

The work in thesis was published in SOSP 2017 [49], done in collabo-

ration with Rohan Kadekodi (Masters student at The University of Texas at

Austin), Prof. Vijay Chidambaram (Assistant Professor at The University of

Texas at Austin), and Ittai Abraham (researcher in VMware Research).
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Chapter 2

Background

This chapter provides some background on key-values stores and log-

structured merge trees. It first describes common operations on key-values

stores (section 2.1) and discusses why log-structured merge trees are used to

implement key-value stores in write-intensive environments (section 2.2). It

shows that the log-structured merge tree data structure fundamentally leads

to large write amplification.

2.1 Key-Value Store Operations

Get. The get(key) operation returns the latest value associated with key.

Put. The put(key, value) operation stores the mapping from key to value

in the store. If key was already present in the store, its associated value is

updated.

Iterators. Some key-value stores such as LevelDB provide an iterator over

the entire key-value store. it.seek(key) positions the iterator it at the

smallest key ≥ key. The it.next() call moves it to the next key in sequence.

The it.value() call returns the value associated with the key at the current
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iterator position. Most key-value stores allow the user to provide a function

for ordering keys.

Range Query. The range query(key1, key2) operation returns all key-

value pairs falling within the given range. Range queries are often implemented

by doing a seek() to key1 and doing next() calls until the iterator passes

key2.

2.2 Log-Structured Merge Trees

Embedded databases such as KyotoCabinet [32] and BerkeleyDB [45]

are typically implemented using B+ Trees [14]. However, B+ Trees are a

poor fit for write-intensive workloads since updating the tree requires multiple

random writes (10-100× slower than sequential writes). Inserting 100 million

key-value pairs into KyotoCabinet writes 829 GB to storage (61× write am-

plification). Due to the low write throughput and high write amplification

of B+ Trees, developers turned to other data structures for write-intensive

workloads.

The log-structured merge trees (LSM) data structure [44] takes ad-

vantage of high sequential bandwidth by only writing sequentially to storage.

Writes are batched together in memory and written to storage as a sequential

log (termed an sstable). Each sstable contains a sorted sequence of keys.

Sstables on storage are organized as hierarchy of levels. Each level

contains multiple sstables, and has a maximum size for its sstables. In a 5-
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level LSM, Level 0 is the lowest level and Level 5 is the highest level. The

amount of data (and the number of sstables) in each level increases as the

levels get higher. The last level in an LSM may contain hundreds of gigabytes.

Application data usually flows into the lower levels and is then compacted into

the higher levels. The lower levels are usually cached in memory.

LSM maintains the following invariant at each level: all sstables contain

disjoint sets of keys. For example, a level might contain three sstables: {1..6}1,

{8..12}, and {100..105}. Each key will be present in exactly one sstable on

a given level. As a result, locating a key requires only two binary searches:

one binary search on the starting keys of sstables (maintained separately) to

locate the correct sstable and another binary search inside the sstable to find

the key. If the search fails, the key is not present in that level.

LSM Operations. The get() operation returns the latest value of the key.

Since the most recent data will be in lower levels, the key-value store searches

for the key level by level, starting from Level 0; if it finds the key, it returns

the value. Each key has a sequence number that indicates its version. Finding

the key at each level requires reading and searching exactly one sstable.

The seek() and next() operations require positioning an iterator over

the entire key-value store. This is implemented using multiple iterators (one

per level); each iterator is first positioned inside the appropriate sstable in

each level, and the iterator results are merged. The seek() operation requires

1Let {x..y} indicate a sstable with keys ranging from x to y

7



finding the appropriate sstables on each level, and positioning the sstable it-

erators. The results of the sstable iterators are merged (by identifying the

smallest key) to position the key-value store iterator. The next() operation

simply advances the correct sstable iterator, merges the iterators again, and

re-positions the key-value store iterator.

The put() operation writes the key-value pair, along with a monoton-

ically increasing sequence number, to an in-memory skip list [48] called the

memtable. When the memtable reaches a certain size, it is written to storage

as a sstable at Level 0. When a level obtains a threshold number of files, it

is compacted into the next level. Assume Level 0 contains {2, 3} and {10,

12} sstables. If Level 1 contains {1, 4} and {9, 13} sstables, then during

compaction, Level 1 sstables are rewritten as {1, 2, 3, 4} and {9, 10, 12, 13},

merging the sstables from Level 0 and Level 1. Compacting sstables reduces

the total number of sstables in the key-value store and pushes colder data into

higher levels. The lower levels are usually cached in memory, thus leading to

faster reads of recent data.

Updating or deleting keys in LSM-based stores does not update the key

in place, since all write IO is sequential. Instead, the key is inserted once again

into the database with a higher sequence number; a delete key is inserted again

with a special flag (often called a tombstone flag). Due to the higher sequence

number, the latest version of the flag will be returned by the store to the user.

Write Amplification: Root Cause. Figure 2.1 illustrates compaction in
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Figure 2.1: LSM Compaction. The figure shows sstables being inserted and
compacted over time in a LSM.

a LSM key-value store. The key-value store contains two sstables in Level 1

initially. Let us assume that Level 0 is configured to hold only one sstable at

a time; when this limit is reached, compaction is triggered. At time t1, one

sstable is added, and a compaction is triggered is at t2. Similarly, sstables are

added at t3 and t5 and compactions are triggered at t4 and t6. When compact-

ing a sstable, all sstables in the next level whose key ranges intersect with the

sstable being compacted are rewritten. In this example, since the key ranges of

all Level 0 sstables intersect with key ranges of all Level 1 sstables, the Level 1

sstables are rewritten every time a Level 0 sstable is compacted. In this worst-

case example, Level 1 sstables are rewritten three times while compacting a
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single upper level. Thus, the high write amplification of LSM key-value stores

can be traced to multiple rewrites of sstables during compaction.

The Challenge. A naive way to reduce write amplification in LSM is to

simply not merge sstables during compaction but add new sstables to each

level [19, 22]. However, read and range query performance will drop signifi-

cantly due to two reasons. First, without merge, the key-value store will end

up containing large number of sstables. Second, as multiple sstables can now

contain the same key and can have overlapping key ranges in the same level,

read operations will have to examine multiple sstables (since binary search to

find the sstable is not possible), leading to large overhead.
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Chapter 3

Fragmented Log-Structured Merge Trees

The challenge is to achieve three goals simultaneously : low write am-

plification, high write throughput, and good read performance. This chapter

presents our novel data structure, Fragmented Log-structured Merge Trees

(FLSM), and describes how it tackles this challenge.

FLSM can be seen as a blend of an LSM data structure with a Skip

List along with a novel compaction algorithm that overall reduces write am-

plification and increases write throughput. The fundamental problem with

log-structured merge trees is that sstables are typically re-written multiple

times as new data is compacted into them. FLSM counters this by frag-

menting sstables into smaller units. Instead of rewriting the sstable, FLSM’s

compaction simply appends a new sstable fragment to the next level. Doing so

ensures that data is written exactly once in most levels; a different compaction

algorithm is used for the the last few highest levels. FLSM achieves this using

a novel storage layout and organizing data using guards (section 3.1). This

chapter describes how guards are selected (section 3.2), how guards are in-

serted and deleted (section 3.3), how FLSM operations are performed (section

3.4), how FLSM can be tuned for different performance/write-IO trade-offs

11



(section 3.5), and its limitations (section 3.6).

3.1 Guards

In the classical LSM, each level contains sstables with disjoint key

ranges (i.e., each key will be present in exactly one sstable). The chief in-

sight in this work is that maintaining this invariant is the root cause of write

amplification, as it forces data to be rewritten in the same level. The FLSM

data structure discards this invariant: each level can contain multiple sstables

with overlapping key ranges, so that a key may be present in multiple sstables.

To quickly find keys in each level, FLSM organizes the sstables into guards

(inspired from the Skip-List data structure [48, 47]).

Each level contains multiple guards. Guards divide the key space (for

that level) into disjoint units. Each guard Gi has an associated key Ki, chosen

from among keys inserted into the FLSM. Each level in the FLSM contains

more guards than the level above it; the guards get progressively more fine-

grained as the data gets pushed deeper and deeper into the FLSM. As in a

skip-list, if a key is a guard at a given level i, it will be a guard for all levels

> i.

Each guard has a set of associated sstables. Each sstable is sorted. If

guard Gi is associated with key Ki and guard Gi+1 with Ki+1, an sstable with

keys in the range [Ki, Ki+1) will be attached to Gi. Sstables with keys smaller

than the first guard are stored in a special sentinel guard in each level. The

last guard Gn in the level stores all sstables with keys ≥ Kn. Guards within a

12



Level 0 (no guards)

Level 1

Level 2

Level 3

1 50 26 800 104 203 1024

Guard: 5

Sentinel

3 10 400 3000 200

Guard: 375

525 2750

Guard: 5

Guard: 5 Guard: 100 Guard: 375 Guard: 1023

2 5 35 40 7 101 125 380 400 1050

Figure 3.1: FLSM Layout on Storage. The figure illustrates FLSM’s guards
across different levels. Each box with dotted outline is an sstable, and the
numbers represent keys.

level never have overlapping key ranges. Thus, to find a key in a given level,

only one guard will have to be examined.

In FLSM compaction, the sstables of a given guard are (merge) sorted

and then fragmented (partitioned), so that each child guard receives a new

sstable that fits into the key range of that child guard in the next level.

Example. Figure 3.1 shows the state of the FLSM data structure after a few

put() operations. We make several observations based on the figure:

• A put() results in keys being added to the in-memory memtable (not

shown). Eventually, the memtable becomes full, and is written as an

sstable to Level 0. Level 0 does not have guards, and collects together

recently written sstables.

13



• The number of guards increases as the level number increases. The num-

ber of guards in each level does not necessarily increase exponentially.

• Each level has a sentinel guard that is responsible for sstables with keys

< than the first guard. In Figure 3.1, sstables with keys < 5 are attached

to the sentinel guard.

• Data inside an FLSM level is partially sorted : guards do not have over-

lapping key ranges, but the sstables attached to each guard can have

overlapping key ranges.

3.2 Selecting Guards

FLSM performance is significantly impacted by how guards are selected.

In the worst case, if one guard contains all sstables, reading and searching such

a large guard (and all its constituent sstables) would cause an un-acceptable

increase in latency for reads and range queries. For this reason, guards are

not selected statically; guards are selected probabilistically from inserted keys,

preventing skew.

Guard Probability. When a key is inserted into FLSM, guard probabil-

ity determines if it becomes a guard. Guard probability gp(key,i) is the

probability that key becomes a guard at level i. For example, if the guard

probability is 1/10, one in every 10 inserted keys will be randomly selected to

be a guard. The guard probability is designed to be lowest at Level 1 (which

has the fewest guards), and it increases with the level number (as higher levels
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have more guards). Selecting guards in this manner distributes guards across

the inserted keys in a smooth fashion that is likely to prevent skew.

Much like skip lists, if a key K is selected as a guard in level i, it

becomes a guard for all higher levels i + 1, i + 2 etc. The guards in level

i + 1 are a strict superset of the guards in level i. Choosing guards in this

manner allows the interval between each guard to be successively refined in

each deeper level. For example, in Figure 3.1, key 5 is chosen as a guard for

Level 1; therefore it is also a guard for levels 2 and 3.

FLSM selects guards out of inserted keys for simplicity; FLSM does

not require that guards correspond to keys present in the key-value store.

Other schemes for selecting guards. The advantage of the current method

for selecting guards is that it is simple, cheap to compute, and fairly distributes

guards over inserted keys. However, it does not take into account the amount of

IO that will result from partitioning sstables during compaction (this chapter

will describe how compaction works shortly). FLSM could potentially select

new guards for each level at compaction time such that sstable partitions are

minimized; however, this could introduce skew. We leave exploring alternative

selection schemes for future work.

3.3 Inserting and Deleting Guards

Guards are not inserted into FLSM synchronously when they are se-

lected. Inserting a guard may require splitting an sstable or moving an sstable.
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If a guard is inserted on multiple levels, work is generated on all those levels.

For this reason, guards are inserted asynchronously into FLSM.

When guards are selected, they are added to an in-memory set termed

the uncommitted guards. Sstables are not partitioned on storage based on (as

of yet) uncommitted guards; as a result, FLSM reads are performed as if these

guards did not exist. At the next compaction cycle, sstables are partitioned

and compacted based on both old guards and uncommitted guards; any sstable

that needs to be split due to an uncommitted guard is compacted to the next

level. At the end of compaction, the uncommitted guards are persisted on

storage and added to the full set of guards. Future reads will be performed

based on the full set of guards.

We note that in many of the workloads that were tested, guard deletion

was not required. A guard could become empty if all its keys are deleted, but

empty guards do not cause noticeable performance degradation as get() and

range query operations skip over empty guards. Nevertheless, deleting guards

is useful in two scenarios: when the guard is empty or when data in the level is

spread unevenly among guards. In the second case, consolidating data among

fewer guards can improve performance.

Guard deletion is also performed asynchronously similar to guard inser-

tion. Deleted guards are added to an in-memory set. At the next compaction

cycle, sstables are re-arranged to account for the deleted guards. Deleting

a guard G at level i is done lazily at compaction time. During compaction,

guard G is deleted and sstables belonging to guard G will be partitioned and
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appended to either the neighboring guards in the same level i or child guards

in level i+ 1. Compaction from level i to i+ 1 proceeds as normal (since G is

still a guard in level i+1). At the end of compaction, FLSM persists metadata

indicating G has been deleted at level i. If required, the guard is deleted in

other levels in a similar manner. Note that if a guard is deleted at level i, it

should be deleted at all levels < i; FLSM can choose whether to delete the

guard at higher levels > i.

3.4 FLSM Operations

Get Operations. A get() operation first checks the in-memory memtable.

If the key is not found, the search continues level by level, starting with level

0. During the search, if the key is found, it is returned immediately; this is

safe since updated keys will be in lower levels that are searched first. To check

if a key is present in a given level, binary search is used to find the single guard

that could contain the key. Once the guard is located, its sstables are searched

for the key. Thus, in the worst case, a get() requires reading one guard from

each level, and all the sstables of each guard.

Range Queries. Range queries require collecting all the keys in the given

range. FLSM first identifies the guards at each level that intersect with the

given range. Inside each guard, there may be multiple sstables that intersect

with the given range; a binary search is performed on each sstable to identify

the smallest key overall in the range. Identifying the next smallest key in the
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range is similar to the merge procedure in merge sort; however, a full sort does

not need to be performed. When the end of range query interval is reached,

the operation is complete, and the result is returned to the user. Key-value

stores such as LevelDB provide related operations such as seek() and next();

a seek(key) positions an iterator at the smallest key larger than or equal to

key, while next() advances the iterator. In LSM stores, the database iterator

is implemented via merging level iterators; in FLSM, the level iterators are

themselves implemented by merging iterators on the sstables inside the guard

of interest.

Put Operations. A put() operation adds data to an in-memory memtable.

When the memtable gets full, it is written as a sorted sstable to Level 0. When

each level reaches a certain size, it is compacted into the next level. In contrast

to compaction in LSM stores, FLSM avoids sstable rewrites in most cases by

partitioning sstables and attaching them to guards in the next level.

Key Updates and Deletions. Similar to LSM, updating or deleting a key

involves inserting the key into the store with an updated sequence number

or a deletion flag respectively. Reads and range queries will ignore keys with

deletion flags. If the insertion of a key resulted in a guard being formed, the

deletion of the key does not result in deletion of the related guard; deleting

a guard will involve a significant amount of compaction work. Thus, empty

guards are possible.

Compaction. When a guard accumulates a threshold number of sstables, it
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is compacted into the next level. The sstables in the guard are first (merge)

sorted and then partitioned into new sstables based on the guards of the next

level; the new sstables are then attached to the correct guards. For example,

assume a guard at Level 1 contains keys {1, 20, 45, 101, 245}. If the next level

has guards 1, 40, and 200, the sstable will be partitioned into three sstables

containing {1, 20}, {45, 101}, and {245} and attached to guards 1, 40, and 200

respectively.

Note that in most cases, FLSM compaction does not rewrite sstables.

This is the main insight behind how FLSM reduces write amplification. New

sstables are simply added to the correct guard in the next level. There are

two exceptions to the no-rewrite rule. First, at the highest level (e.g,. Level

5) of FLSM, the sstables have to be rewritten during compaction; there is no

higher level for the sstables to be partitioned and attached to. Second, for

the second-highest level (e.g,. Level 4), FLSM will rewrite an sstable into the

same level if the alternative is to merge into a large sstable in the highest level

(since we cannot attach new sstables in the last level if the guard is full). The

exact heuristic is rewrite in second-highest-level if merge causes 25× more IO.

FLSM compaction is trivially parallelizable because compacting a guard

only involves its descendants in the next level; the way guards are chosen in

FLSM guarantees that compacting one guard never interferes with compacting

another guard in the same level. For example, in Figure 3.1 if guard 375 in

Level 2 is split into guards 375 and 1023 in Level 3, only these three guards

are affected. Compacting guard 5 (if it had data) will not affect the on-going
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compaction of guard 375 in any way. Thus, the compaction process can be

carried out in parallel for different guard files at the same time. Parallel IO

from compaction can be efficiently handled by devices such as flash SSDs that

offer high random write throughput with multiple flash channels. Such parallel

compaction can reduce the total time taken to compact significantly. A com-

pacted key-value store has lower latency for reads; since parallel compaction

gets the store to this state faster, it also increases read throughput.

3.5 Tuning FLSM

FLSM performance for reads and range queries depends upon a single

parameter: the number of sstables inside each guard. If guards contain a large

number of sstables, read and range query latencies become high. Therefore,

FLSM provide users a knob to tune behavior, max sstables per guard, which

caps the maximum number of sstables present inside each guard in FLSM.

When any guard accumulates max sstables per guard number of sstables,

the guard is compacted into the next level.

Tuning max sstables per guard allows the user to trade-off more write

IO (due to more compaction) for lower read and range query latencies. Inter-

estingly, if this parameter is set to one, FLSM behaves like LSM and obtains

similar read and write performance. Thus, FLSM can be viewed as a general-

ization of the LSM data structure.
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3.6 Limitations

The FLSM data structure significantly reduces write amplification and

has faster compaction (as compaction in FLSM requires lower read and write

IO). By virtue of faster compaction, write throughput increases as well. How-

ever, the FLSM data structure is not without limitations.

Since get() and range query operations need to examine all sstables

within a guard, the latency of these operations is increased in comparison

to LSM. Chapter 4 describes how this limitation can be overcome; using a

combination of well-known techniques can reduce or eliminate the overheads

introduced by the FLSM data structure, resulting in a key-value store that

achieves the trifecta of low write amplification, high write throughput, and

high read throughput.

3.7 Asymptotic Analysis

This section provides an analysis of FLSM operations using a theoret-

ical model.

Model. We use the standard Disk Access Model (DAM) [2] and assume that

each read/write operation can access a block of size B in one unit cost. To

simplify the model, we will assume a total of n data items are stored.

FLSM Analysis. Consider a FLSM where the guard probability is 1/B

(so the number of guards in level i + 1 is in expectation B times more than
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the number of guards in level i). Since the expected fan-out of FLSM is B,

with high probability, an FLSM with n data items will have H = logB n

levels. It is easy to see that each data item is written just once per level

(it is appended once and never re-written to the same level), resulting in a

write cost of O(H) = O(logB n). Since in the DAM model, FLSM writes a

block of B items at unit cost, the total amortized cost of any put operation is

O(H/B) = O((logB n)/B) over its entire compaction lifetime. However, FLSM

compaction in the last level does re-write data. Since this last level re-write

will occur with high probability O(B) times then the final total amortized cost

of any put operation is O((B + logB n)/B).

The guards in FLSM induce a degree B Skip List. A detailed theoreti-

cal analysis of the B-Skip List data structure shows that with high probability

each guard will have O(B) children, each guard will have at most O(B) ssta-

bles, and each sstable will have at most O(B) data items [1, 24, 12]. Naively,

searching for an item would require finding the right guard at each level (via bi-

nary search), and then searching inside all sstables inside the guard. Since the

last level has the most guards (BH), binary search cost would be dominated by

the cost for the last level: O(log2B
H) = O(H log2B) = O(logB n ∗ log2B) =

O(log2 n). Since there are O(H) = O(logBn) levels to search, this yields a to-

tal cost of O(log2 n logB n) in-memory operations for finding the right guards

at each level.

However, in FLSM, the guards and bloom filters are all stored in mem-

ory. FLSM performs O(log2 n logB n) in-memory operations during the binary
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search for the right guard in each level. Then, for each of the H = logB n

guards found, FLSM does a bloom filter query on each of the O(B) sstables

associated with the guard, with each query costing O(log(1/ε)) in memory

operations. In the DAM model all this in-memory work has no cost.

Finally, on average, the bloom filter will indicate only 1 + o(1) sstables

to be read (with high probability). Reading these sstables will cost 1 + o(1) in

the DAM model. Therefore, the total read cost of a get operation (assuming

sufficient memory to store guards and bloom filters) is just O(1) in the DAM

model.

FLSM cannot leverage bloom filters for range queries. The binary

search per level is still done in memory. For each level, the binary search

outputs one guard and FLSM needs to read all the O(B) associated sstables.

So the total cost for a range query returning k elements is O(B logB n+k/B).

23



Chapter 4

Building PebblesDB over FLSM

This chapter presents the design and implementation of PebblesDb, a

high-performance key-value store built using fragmented log-structured merge

trees. This chapter describes how PebblesDb offsets FLSM overheads for

reads (section 4.1) and range queries (section 4.2), different PebblesDb op-

erations (section 4.3), how PebblesDb recovers from crashes (section 4.3.1),

its implementation (section 4.4), and its limitations (section 4.5).

4.1 Improving Read Performance

Overhead Cause. A get() operation in FLSM causes all the sstables of one

guard in each level to be examined. In contrast, in log-structured merge trees,

exactly one sstable per level needs to be examined. Thus, read operations

incur extra overhead in FLSM-based key-value stores.

Sstable Bloom Filters. A Bloom filter is a space-efficient probabilistic data

structure used to test whether an element is present in a given set in constant

time [13]. A bloom filter can produce false positives, but not false negatives.

PebblesDb attaches a bloom filter to each sstable to efficiently detect if a

given key could be present in the sstable. The sstable bloom filters allow Peb-
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blesDb to avoid reading unnecessary sstables off storage and greatly reduces

the read overhead due to the FLSM data structure.

RocksDB also employs sstable-level bloom filters. Many key-value

stores (including RocksDB and LevelDB) employ bloom filters for each block

of the sstable. If sstable-level bloom filters are used, block-level filters are not

required.

4.2 Improving Range Query Performance

Overhead Cause. Similar to get() operations, range queries (implemented

using seek() and next() calls) also require examining all the sstables of a

guard for FLSM. Since LSM stores examine only one sstable per level, FLSM

stores have significant overhead for range queries.

Seek-Based Compaction. Similar to LevelDB, PebblesDb implements

compaction triggered by a threshold number of consecutive seek() operations

(default: 10). Multiple sstables inside a guard are merged and written to

the guards in the next level. The goal is to decrease the average number of

sstables within a guard. PebblesDb also aggressively compacts levels: if

the size of level i is within a certain threshold ratio (default: 25%) of level

i+ 1, level i is compacted into level i+ 1. Such aggressive compaction reduces

the number of active levels that need to be searched for a seek(). Although

such compaction increases write IO, PebblesDb still does significantly lower

amount of IO overall (chapter 5).
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Parallel Seeks. A unique optimization employed by PebblesDb is using

multiple threads to search sstables in parallel for a seek(). Each thread reads

one sstable off storage and performs a binary search on it. The results of the

binary searches are then merged and the iterator is positioned correctly for the

seek() operation. Due to this optimization, even if a guard contains multiple

sstables, FLSM seek() latency incurs only a small overhead compared to LSM

seek() latency.

Parallel seeks must not be carelessly used: if the sstables being ex-

amined are cached, the overhead of using multiple threads is higher than the

benefit obtained from doing parallel seeks. Given that there is no way to know

whether a given sstable has been cached or not (since the operating system

may drop a cached sstable under memory pressure), PebblesDb employs a

simple heuristic: parallel seeks are used only in the last level of the key-value

store. The reason to choose this heuristic is that the last level contains the

largest amount of data; furthermore, the data in the last level is not recent,

and therefore not likely to be cached. This simple heuristic seems to work well

in practice.

4.3 PebblesDB Operations

This section briefly describes how various operations are implemented

in PebblesDb, and how they differ from doing the same operations on the

FLSM data structure. The put() operation in PebblesDb is handled similar

to puts in FLSM.
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Get. PebblesDb handles get() operations by locating the appropriate guard

in each level (via binary search) and searching the sstables within the guard.

PebblesDb get() differs from FLSM get() in the use of sstable-level bloom

filters to avoid reading unnecessary sstables off storage.

Range Query. PebblesDb handles range queries by locating the appro-

priate guard in each level and placing the iterator at the right position for

each sstable in the guard by performing binary searches on the sstables. Peb-

blesDb optimizes this by reading and searching sstables in parallel, and ag-

gressively compacting the levels if a threshold number of consecutive seek()

requests are received.

Deleting Keys. PebblesDb deletes a key by inserting the key into the store

with a flag marking it as deleted. The sequence number of inserted key identi-

fies it as the most recent version of the key, instructing PebblesDb to discard

the previous versions of the key for read and range query operations. Note

that bloom filters are created over sstables; since sstables are never updated in

place, existing bloom filters do not need to be modified during key deletions.

Keys marked for deletion are garbage collected during compaction.

4.3.1 Crash Recovery

By only appending data, and never over-writing any data in place,

PebblesDb builds on the same foundation as LSM to provide strong crash-

consistency guarantees. PebblesDb builds on the LevelDB codebase, and
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LevelDB already provides a well-tested crash-recovery mechanism for both

data (the sstables) and the metadata (the MANIFEST file). PebblesDb simply

adds more metadata (guard information) to be persisted in the MANIFEST

file. PebblesDb sstables use the same format as LevelDB sstables. Crash-

recovery tests (testing recovered data after crashing at randomly picked points)

confirm that PebblesDb recovers inserted data and associated guard-related

metadata correctly after crashes.

4.4 Implementation

PebblesDb is implemented as a variant of the LevelDB family of key-

value stores. PebblesDb was built by modifying HyperLevelDB [29], a vari-

ant of LevelDB that was engineered to have improved parallelism and bet-

ter write throughput during compaction. We briefly examined the RocksDB

code base, but found that the HyperLevelDB code base was smaller, better

documented (as it derives from LevelDB), and easier to understand. Thus,

HyperLevelDB was chosen as the base for PebblesDb.

We added/modified 9100 LOC in C++ to HyperLevelDB. Most of the

changes involved introducing guards in HyperLevelDB and modifying com-

paction. Since guards are built on top of sstables, PebblesDb was able to

take advantage of the mature, well-tested code that handled sstables. Peb-

blesDb is API-compatible with HyperLevelDB since all changes are internal

to the key-value store.
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Selecting Guards. Similar to skip lists, PebblesDb picks guards randomly

out of the inserted keys. When a key is inserted, a random number is selected

to decide if the key is a guard. However, obtaining a random number for every

key insertion is computationally expensive; instead, PebblesDb hashes every

incoming key, and the last few bits of the hash determine if the key will be a

guard (and at which level).

The computationally cheap MurmurHash [8] algorithm is used to hash

each inserted key. A configurable parameter top level bits determines how

many consecutive Least Significant Bits (LSBs) in the bit representation of

the hashed key should be set for the key to be selected as a guard key in

Level 1. Another parameter bit decrement determines the number of bits by

which the constraint (number of LSBs to be set) is relaxed going each level

higher. For example, if top level bits is set to 17, and bit decrement is

set to 2, then a guard key in level 1 should have 17 consecutive LSBs set in its

hash value, a guard key in level 2 should have 15 consecutive LSBs set in its

hash value and so on. The top level bits and bit decrement parameters

need to be determined empirically; based on our experience, a value of two

seems reasonable for bit decrement, but the top level bits may need to be

increased from our default of 27 if the users expect more than 100 million keys

to be inserted into PebblesDb. Over-estimating the number of keys in the

store is harmless (leads to many empty guards); under-estimating could lead

to skewed guards.

Implementing Guards. Each guard stores metadata about the number of
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sstables it has, the largest and smallest key present across the sstables, and

the list of sstables. Each sstable is represented by a unique 64-bit integer.

Guards are persisted to storage along with metadata about the sstables in

the key-value store. Guards are recovered after a crash from the MANIFEST

log and the asynchronous write-ahead logs. Recovery of guard data is woven

into the key-value store recovery of keys and sstable information. The guard

deletion is not implemented in PebblesDb yet since extra guards did not

cause significant performance degradation for reads in our experiments and

the cost of persisting empty guards is relatively insignificant, and the guard

deletion can be added as part of the future work.

Multi-threaded Compaction. Similar to RocksDB, PebblesDb uses mul-

tiple threads for background compaction. Each thread picks one level and

compacts it into the next level. Picking which level to compact is based on the

amount of data in each level. When a level is compacted, only guards contain-

ing more than a threshold number of sstables are compacted. The guard-based

parallel compaction is not implemented in PebblesDb yet; even without par-

allel compaction, compaction in PebblesDb is much faster than compaction

in LSM-based stores such as RocksDB (section 5.2). Adding guard-based par-

allel compaction (as part of future work) will make the compaction in Peb-

blesDb even more faster.
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4.5 Limitations

This section describes three situations where a traditional LSM-based

store may be a better choice over PebblesDb.

First, if the workload data will fit entirely in memory, PebblesDb

has higher read and range query latency than LSM-based stores. In such a

scenario, read or range query requests will not involve storage IO and the

computational overhead of locating the correct guard and processing ssta-

bles inside a guard will contribute to higher latency. Given the increasing

amount of data being generated and processed every day [50], most datasets

will not fit in memory. For the rare cases where the data size is small, setting

max sstables per guard to one configures PebblesDb to behave similar to

HyperLevelDB, reducing the latency overhead for reads and range queries.

Second, for workloads where data with sequential keys is being inserted

into the key-value store, PebblesDb has higher write IO than LSM-based

key value stores. If data is inserted sequentially, sstables don’t overlap with

each other. LSM-based stores handle this case efficiently by simply moving

an sstable from one level to the next by modifying only the metadata (and

without performing write IO); in the case of PebblesDb, the sstable may be

partitioned when moving to the next level, leading to write IO. We believe

that real-world workloads that insert data sequentially are rare since most

workloads are multi-threaded; in such rare cases, we advocate the use of LSM-

based stores such as RocksDB.
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Third, if the workload involves an initial burst of writes followed by

a large number of small range queries, PebblesDb may not be the best fit.

For such range queries over a compacted key-value store, PebblesDb experi-

ences a significant overhead (30%) compared to LSM-based stores. However,

the overhead drops as the range queries get bigger and entirely disappears

if the range queries are interspersed with insertions or updates (as in YCSB

Workload E).
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Chapter 5

Evaluation

This chapter evaluates the performance of PebblesDb by answering

the following questions:

• What is the write amplification of PebblesDb? (section 5.2) What

is the performance of various PebblesDb key-value store operations?

(section 5.2) What are the strengths and weaknesses of PebblesDb?

• How does PebblesDb perform on workloads resembling access patterns

in various applications? (section 5.3)

• How do NoSQL applications perform when they use PebblesDb as their

storage engine? (section 5.4)

• How much memory and CPU does PebblesDb consume? (section 5.5)

5.1 Experimental Setup

Our experiments are run on a Dell Precision Tower 7810 with an Intel

Xeon 2.8 GHz processor, 16 GB RAM, and running Ubuntu 16.04 LTS with

the Linux 4.4 kernel. The ext4 file system is run on top of a software RAID0

array used over two high-performance Intel 750 SSDs (each 1.2 TB).
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All workloads use datasets 3× larger than the main memory on test ma-

chine. All reported numbers are the mean of at least five runs. The standard

deviation in all cases was less than 5% of the mean. PebblesDb performance

is compared with widely-used key-value stores LevelDB, RocksDB and Hy-

perLevelDB. To simplify results, compression is turned off in all stores. We

have verified that compression does not change any of our performance results;

it simply leads to a smaller dataset. HyperLevelDB does not employ bloom

filters for sstables; to make a fair comparison (and to show our results do not

derive just from sstable bloom filters), this optimization is added to Hyper-

LevelDB: all numbers presented for HyperLevelDB are with bloom filters for

sstables.

Key-Value Store Configurations. The key-value stores being evaluated

have three configuration parameters that affect performance: memtable-size,

level0-slowdown, level0-stop. Note that Level 0 can have sstables with

overlapping ranges; new sstables are simply appended to Level 0 (otherwise

adding an sstable to Level 0 would trigger compaction, affecting write through-

put). However, letting Level 0 grow without bounds will reduce read and

range query throughput. The memtable-size parameter controls how big the

memtable can grow before being written to storage. The other two parameters

are used to slow down or stop writes to Level 0.

HyperLevelDB and RocksDB have different default values for these

parameters. HyperLevelDB uses 4 MB memtables with level0-slowdown of 8

and level0-stop of 12. RocksDB uses 64 MB memtables, level0-slowdown
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of 20, and level0-stop of 24. When comparing PebblesDb with these

systems, the default HyperLevelDB parameters are used. Certain experiments

also report performance under RocksDB parameters.

5.2 Micro-benchmarks

This section evaluates PebblesDb performance using different single-

threaded and multi-threaded micro-benchmarks and in various conditions.

The single-threaded benchmarks help us understand the performance of dif-

ferent PebblesDb operations. The multi-threaded benchmark evaluates how

PebblesDb performs in the more realistic setting of multiple readers and

writers. PebblesDb is evaluated in different conditions such as when the

dataset fits in memory, with small key-value pairs, with an aged file system

and key-value store, and finally under extremely low memory conditions.

Write Amplification. We measure write amplification for workloads that

insert or update keys in random order (key:16 bytes, value:128 bytes). Fig-

ure 5.1 (a) presents the results. PebblesDb write IO (in GB) is shown over

the bars. PebblesDb consistently writes the least amount of IO, and the

difference in write amplification between PebblesDb and other stores goes

up as the number of keys increases. For 500M keys, PebblesDb lowers write

amplification by 2.5× compared to RocksDB and HyperLevelDB and 1.6×

compared to LevelDB.

Single-threaded Workloads. We use db bench (a suite of micro-benchmarks
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Figure 5.1: Micro-benchmarks. The figure compares the throughput of sev-
eral key-value stores on various micro-benchmarks. Values are shown relative
to HyperLevelDB, and the absolute value (in KOps/s or GB) of the baseline is
shown above the bar. For (a), lower is better. In all other graphs, higher is bet-
ter. PebblesDb excels in random writes, achieving 2.7× better throughput,
while performing 2.5× lower IO.

that comes bundled with LevelDB) [33] to evaluate PebblesDb performance

on various operations: 50M sequential writes, 50M random writes, 10M ran-

dom reads and 10M random seeks. Reads and seeks were performed on the

previously (randomly) inserted 50M keys. Each key was 16 bytes and the

value was 1024 bytes. The results, presented in Figure 5.1 (b), show both the

strengths and weaknesses of PebblesDb.

Random Writes and Reads. PebblesDb outperforms all other key-value

stores in random writes due to the underlying FLSM data structure. Peb-

blesDb throughput is 2.7× that of HyperLevelDB, the closest competitor.
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PebblesDB HyperLevelDB

Average 17.23 13.33
Median 5.29 16.59
90th percentile 51.06 16.60
95th percentile 68.31 16.60

Table 5.1: SSTable Size. The table shows the distribution of sstable size
(in MB) for PebblesDB and HyperLevelDB when 50 million key-value pairs
totaling 33 GB were inserted.

PebblesDb compaction finishes 2.5× faster than HyperLevelDB compaction.

Random reads perform better in PebblesDb due to the larger sstables of

PebblesDb (as shown in Table 5.1). The index blocks of all PebblesDb

sstables are cached, whereas there are cache misses for the index blocks of

the many HyperLevelDB sstables. With larger caches for index blocks, Peb-

blesDb read performance is similar to HyperLevelDB.

Sequential Writes. PebblesDb obtains 3× less throughput than Hyper-

LevelDB on the sequential write workload; this is because sequential workloads

result in disjoint sstables naturally (e.g,. first 100 keys go to the first sstable,

next 100 keys go to the second sstable, etc.), LSM-based stores can just move

the sstable from one level to another without doing any IO. On the other hand,

PebblesDb always has to partition sstables based on guards (and therefore

perform write IO) when moving sstables from one level to the next. As a re-

sult, PebblesDb performs poorly when keys are inserted sequentially. Many

real-world workloads are multi-threaded, resulting in random writes; for ex-

ample, in the YCSB workload suite which reflects real-world access patterns,

none of the workloads insert keys sequentially [16].

37



Range Queries. A range query is comprised of an seek() operation followed

by a number of next() operations. Range-query performance depends mainly

on two factors: the number of levels in the key-value store on storage, and

the number of next() operations. Figure 5.1 (b) shows key-value store per-

formance for range queries comprising of only seek() operations, performed

after allowing the key-value store time to perform compaction. As such, it

represents a worst case for PebblesDb: the expensive seek() operation is

not amortized by successive next() operations, and other key-value stores

compact more aggressively than PebblesDb, since they do not seek to min-

imize write IO. In this worst-case scenario, PebblesDb has a 30% overhead

compared to HyperLevelDB, due to the fact that a seek() in PebblesDb

requires reading multiple sstables from storage in each level. We note that

in real-world workloads such as YCSB, there are many next() operations

following a seek() operation.

Next, we measure range query performance in a slightly different set-

ting. We insert 50M key-value pairs (key: 16 bytes, value: 1 KB), and im-

mediately perform 10M range queries (each range query involves 50 next()

operations). In this more realistic scenario, we find that PebblesDb overhead

(as compared to HyperLevelDB) reduces to 15% from the previous 30%. If we

increase range query size to 1000, the overhead reduces to 11%.

Unfortunately, even with many next() operations, PebblesDb range-

query performance will be lower than that of LSM key-value stores. This is

because PebblesDb pays both an IO cost (reads more sstables) and a CPU
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PebblesDB HyperLevelDB LevelDB RocksDB

Insert 50M values 56.18 40.00 22.42 14.12
Update Round 1 47.85 24.55 12.29 7.60
Update Round 2 42.55 19.76 11.99 7.36

Table 5.2: Update Throughput. The table shows the throughput in KOps/s
for inserting and updating 50M key-value pairs in different key-value stores.

cost (searches through more sstables in memory, merges more iterators) for

range queries. While the overhead will drop when the number of next()

operations increase (as described above), it is difficult to eliminate both IO

cost and CPU cost.

To summarize range-query performance, PebblesDb has significant

overhead (30%) for range queries when the key-value store has been fully

compacted. This overhead derives both from the fact that PebblesDb has to

examine more sstables for a seek() operation, and that PebblesDb does not

compact as aggressively as other key-value stores as it seeks to minimize write

IO. The overhead is reduced for large range queries, and when range queries

are interspersed with writes (such as in YCSB workload E).

Deletes and Updates. Deletes and Updates are handled similar to writes in

LSM-based key-value stores. Updates do not check for the previous value of

the key, so updates and new writes are handled identically. Deletes are simply

writes with a zero-sized value and a special flag. We ran an experiment where

we inserted 200M key-value pairs (key: 16 bytes, value: 128 bytes) into the

database and deleted all inserted keys. We measure the deletion throughput.
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The results are presented in Figure 5.1 (b) and follow a pattern similar to

writes: PebblesDb outperforms the other key-value stores due to its faster

compaction.

We ran another experiment to measure update throughput. We inserted

50M keys (value: 1024 bytes) into the store, and then updated all keys twice.

The results are presented in Table 5.2. We find that as the database becomes

larger, insertion throughput drops since insertions are stalled by compactions

and compactions involve more data in larger stores. While the other key-value

stores drop to 50% of the initial write throughput, PebblesDB drops to only

75% of original throughput; we attribute this difference to the compaction

used by the different key-value stores. The update throughput of PebblesDB

is 2.15× that of HyperLevelDB, the closest competitor.

Multi-threaded Reads and Writes. We use four threads to perform 10M

read and 10M write operations (each) on the evaluated key-value stores. The

reads are performed on the store after the write workload finishes. We use the

default RocksDB configuration (64 MB memtable, large Level 0). Figure 5.1

(c) presents the results. PebblesDb performs the best on both workloads,

obtaining 3.3× the write throughput of RocksDB (1.7× over baseline).

Concurrent Reads and Writes. In this experiment, two threads perform

10M reads each, while two other threads perform 10M writes each. Figure 5.1

(c) reports the combined throughput of reads and writes (mixed). PebblesDb

outperforms the other stores. The lower write amplification leads to higher
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write throughput. Since compaction in PebblesDb is faster than the other

stores, PebblesDb reaches a compacted state earlier with larger (and fewer)

sstables, resulting in lower read latency and higher read throughput. Note

that PebblesDb outperforms HyperLevelDB even when HyperLevelDB uses

sstable-level bloom filters, thus demonstrating the gains are due to the under-

lying FLSM data structure.

Small Workloads on Cached Datasets. We run an experiment to deter-

mine the performance of PebblesDb on data sets that are likely to be fully

cached. We insert 1M random key-value pairs (key:16 bytes, value: 1KB) into

HyperLevelDB and PebblesDb. The total dataset size is 1 GB, so it is com-

fortably cached by the test machine (RAM: 16 GB). We do 1M random reads

and seeks. Figure 5.1 (d) presents the results. Even for small datasets, Peb-

blesDb gets better write throughput than HyperLevelDB due to the FLSM

data structure. Due to extra CPU overhead of guards, there is a small 7%

overhead on reads and 47% overhead on seeks. When PebblesDb is config-

ured to run with max sstables per guard (section 3.5) set to one so that it

behaves more like an LSM store (PebblesDB-1 ), PebblesDb achieves 11%

higher read throughput and the seek overhead drops to 13%.

Performance for Small Sized Key-Value Pairs. We insert 300M key-

value pairs into the database (key: 16 bytes, value: 128 bytes). As shown in

Figure 5.1 (e), PebblesDb obtains higher write throughput and equivalent

read and seek throughputs (similar to results with large keys).
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Figure 5.2: Effect of environmental parameters. The figure compares the
throughput of several key-value stores on varying the environmental parame-
ters like the age of file system (or key-value store), and the amount of memory
available. Values are shown relative to HyperLevelDB, and the absolute value
(in KOps/s) of the baseline is shown above the bar. The higher is better.

Impact of File-System and Key-Value Store Aging. Recent work has

shown that file-system aging has a significant impact on performance [15]. To

assess the impact of file-system and key-value store aging on PebblesDb, we

run the following experiment. File-system Aging : We create a new file system

on a 1.1 TB SSD, then use sequential key-value pair insertion to fill up the file

system. We then delete all data in the file system, and fill the file system using

the same process again until 130 GB of free space (11% of the file-system size) is

left. Key-Value Store Aging : We then age the key-value store under evaluation

by using four threads to each insert 50M key-value pairs, delete 20M key-value

pairs, and update 20M key-value pairs in random order. Once both file-system

and key-value store aging is done, we then run micro-benchmarks for writes,

reads, and seeks (all in random order). The results are presented in Figure 5.2

(a). We find that the absolute performance numbers drop: 18% for reads and

16% for range queries (mainly because there is more data in the key-value
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store from the aging). As with a fresh file system, PebblesDb outperforms

the other key-value stores on writes (although the throughput speedup reduces

to 2× from 2.7×). Similarly, PebblesDb outperforms HyperLevelDB by 8%

(down from 20% on a fresh file system) on reads, and incurs a 40% penalty

on range queries (as compared to 30% on a fresh file system) compared to

HyperLevelDB.

Performance Under Low Memory. We evaluate the performance of Peb-

blesDb when the total available memory is a small percentage of the dataset

size. We insert 100M key-value pairs (key:16 bytes, value: 1K) for a total

dataset size of 65 GB. We restrict the RAM on our machine using the mem ker-

nel boot parameter to 4 GB. Thus, the total available DRAM is only 6% of the

total dataset size (in our previous experiments, it was 30%). We evaluate the

performance of PebblesDb under these conditions using micro-benchmarks.

The results are presented in Figure 5.2 (b). All key-values stores evaluated

use a 64 MB memtable and a large Level 0 (with level0-slowdown as 20

and level0-stop as 24). We find that PebblesDb still outperforms the

other key-value stores at random writes, although the margin (with respect

to HyperLevelDB) reduces to 64%. PebblesDb outperforms HyperLevelDB

on random reads by 63%. On the range query micro-benchmark, PebblesDb

experiences a 40% penalty compared to HyperLevelDB. Thus, PebblesDb

still achieves good performance in reads and writes when memory is scarce,

although range queries experience more performance degradation.
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Figure 5.3: Space amplification. The figure compares the space amplifica-
tion of the different key-value stores. Values are shown relative to the actual
data size and the absolute value (in GB) of the baseline is shown above the
bar. PebblesDb doesn’t incur high space amplification compared to the other
key-value stores even on inserting 10x times duplicate keys.

Space Amplification. The storage space used by PebblesDb is not signif-

icantly higher compared to LSM-based stores. LSM-based stores only reclaim

space if the key has been updated or deleted. For a workload with only in-

sertions of unique keys, the space used by RocksDB and PebblesDB will be

identical. For workloads with updates and deletions, PebblesDB will have a

slight overhead due to delay in merging. Figure 5.3 shows the results of ex-

periments on space amplification. We inserted 50M unique key-value pairs.

The storage-space consumption of RocksDB, LevelDB, and PebblesDb were

within 2% of each other (52 GB). We performed another experiment where we

inserted 5M unique keys, and updated each key 10 times (total 50M writes).

Since the keys aren’t compacted yet, PebblesDb consumes 7.9 GB while

RocksDB consumes 7.1 GB. LevelDB consumed 7.8 GB of storage space.
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Figure 5.4: Time-series data. The figure compares the throughput of the
different key-value stores on time-series data (to measure impact of empty
guards). Values are shown relative to the to the first iteration, and the absolute
value (in KOps/s) of the baseline is shown above the bar. The performance of
PebblesDb is unaffected by time-series pattern of the data.

Impact of Empty Guards. We run an experiment to measure the perfor-

mance impact of empty guards. We insert 20M key-value pairs (with keys from

0 to 20M, value size: 512B, dataset size: 10 GB), perform 10M read operations

on the data, and delete all keys. We then repeat this, but with keys from 20M

to 40M. We do twenty iterations of this experiment and the results are pre-

sented in Figure 5.4. Since we are always reading the currently inserted keys,

empty guards due to old deleted keys will accumulate (there are 9000 empty

guards at the beginning of the last iteration). Throughout the experiment,

read throughput varied between 70 and 90 KOps/s. Read throughput did not

reduce with more empty guards and so write and delete throughputs.

Impact of Different Optimizations. We briefly describe how the different

optimizations described in the thesis affect PebblesDb performance. If Peb-
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Workload Description Represents

Load A 100% writes Insert data for workloads
A–D and F

A 50% reads, 50% writes Session recording recent
actions

B 95% reads, 5% writes Browsing and tagging
photo album

C 100% reads Caches

D 95% reads (latest values),
5% writes

News feed or status feed

Load E 100% writes Insert data for Workload
E

E 95% Range queries, 5%
writes

Threaded conversation

F 50% reads, 50% Read-
modify-writes

Database workload

Table 5.3: YCSB Workloads. The table describes the six workloads in
the YCSB suite. Workloads A–D and F are preceded by Load A, while E is
preceded by Load E.

blesDb doesn’t use any optimizations for range queries, range query through-

put drops by 66% (48 GB dataset). The overhead drops to 48% if parallel seeks

are used, and only 7% if only seek-based compaction is used. Using sstable-

level bloom filters improves read performance by 63% (53 GB dataset).

5.3 Yahoo Cloud Serving Benchmark

The industry standard in evaluating key-value stores is the Yahoo Cloud

Serving Benchmark [16]. The suite has six workloads (described in Table 5.3),

each representing a different real-world scenario. We modify db bench [33]
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Figure 5.5: YCSB Performance. The figure shows the throughput (bigger
is better except for Total-IO bars) of different key-value stores on the YCSB
Benchmark suite run with four threads. PebblesDb gets higher throughput
than RocksDB on almost all workloads, while performing 2× lower IO than
RocksDB.

to run the YCSB benchmark with 4 threads (one per core) and using default

RocksDB parameters (64MB memtable and large Level 0). We run RocksDB

with 4 background compaction threads to further boost its performance. Load-

A and Load-E do 50M operations each, all other workloads do 10M operations

each. Figure 5.5 presents the results: PebblesDb outperforms both RocksDB

and HyperLevelDB on write workloads, while obtaining nearly equal perfor-

mance on all other workloads. Overall, PebblesDb writes 50% less IO than

RocksDB.

On write-dominated workloads like Load A and Load E, PebblesDb

achieves 1.5–2× better throughput due to the faster writes offered by the

underlying FLSM data structure.

For the read-only Workload C, PebblesDb read performance is bet-

ter than other key-value stores due to the larger sstables of PebblesDb. The

47



key-value stores cache a limited number of sstable index blocks (default: 1000):

since PebblesDb has fewer, larger files, most of its sstable-index-blocks are

cached. The cache misses for the other key-value stores result in reduced read

performance. When we increase the number of index blocks cached, Peb-

blesDb read performance becomes similar to the other key-value stores. Note

that the larger sstables of PebblesDb result from compaction: in workloads

such as B and D, the constant stream of writes adds new sstables that are

not compacted; as a result, PebblesDb throughput is similar to the other

key-value stores.

For the range-query-dominated Workload E, PebblesDb surprisingly

has performance close (6% overhead) to the other key-value stores. When

we analyzed this, we found that the small amount of writes in the workload

(Workload E has 5% writes) prevent any key-value store from full compacting;

as a result, every key-value store has to examine multiple levels, which reduces

the performance impact of the extra sstables examined by PebblesDb. When

the YCSB workload is modified to contain only range queries, PebblesDb

throughput is 18% lower than HyperLevelDB as expected. Each range query

in this workload does N next() operations (N picked randomly from 1 to 100),

and the next() operations also contribute in reducing range-query overhead.

In Workload F, all writes are read-modify-writes: the workload does a

get() before every put() operation. As a result, the full write throughput of

PebblesDb is not utilized, resulting in performance similar to that of other

key-value stores. We see similar read-modify-write behavior in applications
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(a) HyperDex Throughput (b) MongoDB Throughput

Figure 5.6: Application Throughput. The figure shows the YCSB through-
put (bigger is better except last bar) of the HyperDex document store and
MongoDB NoSQL store when using different key-value stores as the storage
engine. The throughput is shown relative to the default storage option (Hy-
perLevelDB for HyperDex, WiredTiger for MongoDB). The raw throughput
in KOps/s or total IO in GB of the default option is shown above the bars.

such as HyperDex and MongoDB.

5.4 NoSQL Applications

We evaluate the performance of two real-world applications, the Hy-

perDex and MongoDB NoSQL stores, when they use PebblesDb as the un-

derlying storage engine. We use the Java clients provided by HyperDex and

MongoDB for running the YCSB benchmark, with both the server and client

running on the same machine (no network involved).

HyperDex. HyperDex is a high-performance NoSQL store that uses Hyper-

LevelDB as it storage engine by default [18]. We evaluate the performance

impact of using PebblesDb as the storage engine by running the YCSB

benchmark with 4 threads. Load-A inserts 20M values, Load-E inserts 30M
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values, A–D and F perform 10M operations each, and E performs 250K opera-

tions (lower number of ops as HyperDex range-query latency is very high). We

use the same setup used by HyperDex developers to benchmark their system

using YCSB [28]. Both HyperLevelDB and PebblesDb are configured with

the default HyperDex parameters (16 MB memtable size).

Figure 5.6 (a) presents the results. In every workload, using Peb-

blesDb improves HyperDex throughput, with the highest gain of 59% coming

when inserting 30M key-value pairs in the Load-E workload. HyperDex adds

significant latency to operations done by YCSB. For example, the average la-

tency to insert a key in HyperDex is 151 µs, of which PebblesDb accounts for

only 22.3 µs (14.7%). Furthermore, HyperDex checks whether a key already

exists before inserting, turning every put() operation in the Load workloads

into a get() and a put(). This behavior of HyperDex reduces the perfor-

mance gain from PebblesDb, because PebblesDb can handle much higher

rate of insertions. Despite this, PebblesDb increases HyperDex throughput

while simultaneously reducing write IO.

We measure the throughput loss that PebblesDb suffers as a storage

backend to HyperDex because of the read-then-write behavior of HyperDex.

We insert 5M key-value pairs to HyperDex; we measure the write through-

put of both PebblesDb and HyperLevelDB on HyperDex for two scenarios

- with the default read-then-write behavior, and by disabling reads before

writes. For a value size of 8 KB, write throughput of PebblesDb is 7% bet-

ter than HyperLevelDB while the same is 38% better on disabling the reads
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before writes. For value size of 16 KB, write throughput of PebblesDb is

24% better than HyperLevelDB while the same is 110% better on disabling

the reads before writes. This experiment shows that the throughput gain of

PebblesDb compared to HyperLevelDB is limited by the read-then-write be-

havior of HyperDex. In general, PebblesDb is able to achieve higher write

throughput compared to the other key-value stores if not limited by the latency

introduced by the application itself.

When we increase the value size from the YCSB default of 1 KB to

16 KB, the speedup HyperDex achieves from using PebblesDb drastically

increases: the geometric mean of the speedup is 105% (not shown). As the

value size increases, more IO is required for all operations, making the extra

CPU overhead of PebblesDb negligent, and highlighting the benefits of the

FLSM data structure.

MongoDB. We configure MongoDB [40], a widely-used NoSQL store, to use

PebblesDb as the storage engine. MongoDB can natively run with either the

Wired Tiger key-value store (default) or RocksDB. We evaluate all three op-

tions using the YCSB Benchmark suite. All three stores are configured to use

8 MB cache and a 16 MB memtable. Since Wired Tiger is not a LSM-based

store (it uses checkpoints + journaling), it does not use memtables; instead, it

collects entries in a log in memory. We configure the max size of this log to be

16 MB. Figure 5.6 (b) presents the results. We find that both RocksDB and

PebblesDb significantly outperform Wired Tiger on all workloads, demon-

strating why LSM-based stores are so popular. While RocksDB performs 40%
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more IO than Wired Tiger, PebblesDb writes 4% lesser IO than Wired Tiger.

We investigated why PebblesDb write throughput is not 2× higher

than RocksDB as in the YCSB benchmark. As in HyperDex, MongoDB it-

self adds a lot of latency to each write (PebblesDb write constitutes only

28% of latency of MongoDB write) and provides requests to PebblesDb at

a much lower rate than PebblesDb can handle. The slower request rate

allows RocksDB’s compaction to keep up with the inserted data; thus, Peb-

blesDb’s faster compaction is not utilized, and the two key-value stores have

similar write throughput. Note that PebblesDb still writes 40% lesser IO

then RocksDB, providing lower write amplification.

Due to lack of time before the conference submission deadline, this

particular evaluation section (evaluating PebblesDb on MongoDB) was done

by my co-author, Rohan Kadekodi, Masters student at The University of Texas

at Austin, and I helped him run the experiments.

Summary. PebblesDb does not increase performance on HyperDex and

MongoDB as significantly as in the YCSB macro-benchmark. This is both

due to PebblesDb latency being a small part of overall application latency,

and due to application behavior such as doing a read before every write. If the

application is optimized for PebblesDb, we believe the performance gains

would be more significant. Despite this, PebblesDb reduces write amplifica-

tion, providing either equal (MongoDB) or better performance (HyperDex).
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Workload HyperLevelDB RocksDB PebblesDB

Writes (100M) 159 896 434

Reads (10M) 154 36 500

Seeks (10M) 111 34 430

Table 5.4: Memory Consumption. The table shows the memory consumed
(in MB) by key-value stores for different workloads.

5.5 Memory and CPU Consumption

Memory Consumption. We measure memory used during the insertion

of 100M keys (key size: 16 bytes, value size: 1024 bytes, total: 106 GB)

followed by 10M reads and range queries. The results are shown in Table 5.4.

PebblesDb consumes about 300 MB more than HyperLevelDB. PebblesDb

uses 150 MB for storing sstable bloom filters, and 150 MB for temporary

storage for constructing the bloom filters.

CPU Cost. We measured the median CPU usage during the insertion of 30M

keys, followed by reads of 10M keys. The median CPU usage of PebblesDb

is 170.95%, while the median for the other key-value stores ranged from 98.3–

110%. The increased CPU usage is due to the PebblesDb compaction thread

doing more aggressive compaction.

Bloom Filter Construction Cost. Bloom filters are calculated over all

the keys present in an sstable. The overhead of calculating the bloom filter is

incurred only the first time the sstable is accessed. The time taken to calculate

depends on the size of sstable. We observed the rate of calculation to be 1.2 s

per GB of sstable; for 3200 sstables totaling 52 GB, it took around 62 seconds.
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Chapter 6

Related Work

The work in this thesis builds on extensive prior work in building and

optimizing key-value stores. The key contribution relative to prior work is the

FLSM data structure and demonstrating that a high performance key-value

store that drastically reduces write amplification can be built on top of FLSM.

This chapter briefly describes prior work and places the work in this thesis in

context.

Reducing Write Amplification. Various data structures have been pro-

posed for implementing key-value stores. Fractal Index trees [11] (see TokuDB

[36]) were suggested to reduce the high IO cost associated with traditional B-

Trees. While FLSM and Fractal index trees share the same goal of reducing

write IO costs, Fractal index trees do not achieve high write throughput by

taking advantage of large sequential writes, and do not employ in-memory

indexes such as bloom filters to improve performance like PebblesDb.

NVMKV [38] uses a hashing-based design to reduce write amplification

and deliver close to raw-flash performance. NVMKV is tightly coupled to the

SSD’s Flash Translation Layer (FTL) and cannot function without using FTL

features such as atomic multi-block write. Similarly, researchers have proposed
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building key-value stores based on vector interfaces (that are not currently

available) [56]. In contrast, PebblesDb is device-agnostic and reduces write

amplification on both commodity hard drives and SSDs. We should note

that we have not tested PebblesDb on hard-drives yet; we believe the write

behavior will be similar, although range query performance may be affected.

The HB+-trie data structure is used in ForestDB [4] to efficiently index

long keys and reduce space overhead of internal nodes. FLSM and HB+trie

target different goals resulting in different design decisions; FLSM is designed

to reduce write amplification, not space amplification.

The LSM-trie [58] data structure uses tries to organize keys, thereby

reducing write amplification; however, it does not support range queries. Sim-

ilarly, RocksDB’s universal compaction reduces write amplification by sacrific-

ing read and range query performance [22]. PebblesDb employs additional

techniques over FLSM to balance reducing write amplification with reasonable

range query performance.

TRIAD [10] uses a combination of different techniques such as separat-

ing hot and cold keys, using commit logs as sstables, and delaying compaction

to reduce write IO and improve performance. The TRIAD techniques are

orthogonal to our work and can be incorporated into PebblesDb.

Improving Key-Value store Performance. Both academia and indus-

try have worked on improving the performance of key-value stores based

on log-structured merge trees. PebblesDb borrows optimizations such as
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sstable bloom filters and multi-threaded compaction from RocksDB. Hyper-

LevelDB [29] introduces fine-grained locking and a new compaction algorithm

that increases write throughput. bLSM [52] introduces a new merge scheduler

to minimize write latency and maintain write throughput, and uses bloom

filters to improve performance. VT-Tree [53] avoids unnecessary data copy-

ing for data that is already sorted using an extra level of indirection. Wis-

cKey [37] improves performance by not storing the values in the LSM struc-

ture. LOCS [57] improves LSM compaction using the internal parallelism

of open-channel SSDs. cLSM [23] introduces a new algorithm for increasing

concurrency in LSM-based stores. We have a different focus from these work:

rather than making LSM-based stores better, we introduce a better data struc-

ture, FLSM, and demonstrate that it can be used to build high performance

key-value stores. Many of the techniques in prior work can be readily adapted

for FLSM and PebblesDb.
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Chapter 7

Future Work

Although PebblesDb performs better in many workloads compared

to the other key-values stores (as discussed in chapter 5), it is not without

limitations. This chapter outlines some of the shortcomings of PebblesDb

and describes few possible methods to address the shortcomings, as part of

the future work.

Optimizing Range Queries. One of the main challenges that PebblesDb

faces is having to examine multiple sstables per level during a get() or a

range query operation leading to higher latency. PebblesDb employs some

techniques like sstable level bloom filters and parallel seeks to optimize the

get() and range query operations but the overhead is still not eliminated

completely. Recent work on Succinct Range Filter (SuRF) [60] introduces

Fast Succinct Trie (FST) which can be used to optimize the range queries

(similar to bloom filters for get queries).

Increasing the parallelism of compaction. The guards in FLSM are ar-

ranged in form of a skip-list: a guard in level i serves as a guard in all levels

greater than i as well. Because of this property, the background compaction

can be trivially parallelized at the granularity of a guard instead of level. Since
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the write throughput also directly depends on the rate of compaction happen-

ing in the background, introducing a guard-based compaction will speed up the

overall compaction rate and hence increase the write throughput even further.

Optimizing Memory utilization. PebblesDb has a higher overhead in

terms of the amount of memory used since it stores all the sstable level bloom

filters in memory. This also affects the performance of reads since it leads to

more cache misses for the read operations (higher the memory used by sstable

level bloom filters, lower the memory available to cache the user data). As

part of the future work, the memory utilization can be optimized by storing

the sstable level bloom filters on the storage along with the sstables’ index

blocks instead of storing in memory and the filters can be fetched on demand

from the storage. Although this results in extra overhead of reading the bloom

filters from storage, a cache of sstable level bloom filters can be maintained

in memory to reduce the number of storage reads (to fetch bloom filters) for

frequently and recently used sstables.

Making Guards dynamic and adaptive. The guards in FLSM are stati-

cally determined probabilistically during the insertion of keys and the guards

are not deleted currently in PebblesDb since having empty guards doesn’t

affect the performance. Empty guards can be deleted periodically to have

cleaner and lighter meta-data. Static selection of guards can also lead to skew

in the amount of data that is distributed between the guards. As part of

future work, the selection of guards can be made dynamic and the data can
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be re-balanced between the guards during background compaction (by adding

new guards or deleting existing guards, thereby making the guards adaptive

to the distribution of data) which will make PebblesDb more robust against

any kind of data distribution.
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