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Environmental policies, reduced manufacturing costs, and technology im-

provements have all contributed to the growing installation of wind turbines and

solar photovoltaic arrays in the electric grid. While these new sources of renew-

able electrical power provide environmental and economic benefits to the electric

grid, they also complicate the balancing of supply and demand required to reliably

operate the grid. The seasonal, daily, and sub-hourly fluctuations in the energy out-

put of wind and solar generators must be compensated by operating the existing

power plant fleet more flexibly or by providing more flexible sources of electricity

demand. This dissertation categorizes and quantifies this compensation by studying

the “flexibility requirements” imposed by wind and solar generation, approximates

the economically optimal capacities of regional wind and solar resources in the grid,

and explores the ability of a central utility plant to add a flexible source of demand
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to the electric grid system. These topics are covered in the four chapters described

below.

Chapter 3 utilizes a unit commitment and dispatch (UC&D) model to simu-

late large solar generation assets with different geographic locations and orientations.

The simulations show the sensitivity of the wholesale energy price, reserve market

prices, total dispatch cost, fuel mix, emissions, and water use to changes in net

load flexibility requirements. The results show that generating 22,500 GWh of solar

energy in a 2011 simulation of the Electric Reliability Council of Texas (ERCOT)

reduces total dispatch cost by approximately $900 Million (a 10.3% decrease) while

increasing ancillary services costs by approximately $10 Million (a 3% increase). The

results also show that solar PV reduces water consumption, water withdrawals, and

CO2, NOx, and SOx emissions. Installing sufficient solar panel capacity to generate

that much electricity also reduces peak load by 4% but increases net load volatility

by 40–79% and ramping by 11–33%. In addition, west-located, west-oriented solar

resources reduce total dispatch cost more than the other simulated solar scenarios.

The west-located, west-oriented solar simulation required greater system flexibility,

but utilized more low-cost generators and fewer high-cost generators for energy pro-

duction than other simulated scenarios. These results suggest that the mix of energy

provided by different generation technologies influences the dispatch cost more than

the net load flexibility requirements.

Chapter 4 develops a quantitative framework for calculating flexibility re-

quirements and performs a statistical analysis of load, wind, and solar data from the

Electric Reliability Council of Texas (ERCOT) to show how wind and solar capacity
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impacts these grid flexibility requirements. Growing wind capacity shows only mi-

nor correlation with increasing flexibility requirements, but shows some correlation

with ramp down rates and daily volatility in the net load. Growing solar capacity

shows a direct correlation with increasing flexibility requirements if load patterns

do not change. While adding 15.7 GW of wind power had only minor effects on

system flexibility requirements, adding 14.5 GW of solar to the ERCOT grid in-

creases maximum 1-hr ramp rates by 135%, 3-hr ramp rates by 30%, ramp factors

by 140%, 1-hr volatility by 100%, and 1-day volatility by 30%. Wind and solar im-

pact flexibility requirements at different times of the day: wind tends to intensify

demand-driven flexibility events by ramping up energy production at night when

demand is decreasing and ramping down energy production in the morning when

demand is increasing, while solar tends to intensify flexibility requirements due to its

quick changes in energy output driven by the rising and setting sun. Adding wind to

a system with large amounts of solar does not tend to increase flexibility requirements

except for the daily volatility. The geographic location and orientation of solar arrays

also influences flexibility requirements, with fixed, southeast-facing panels providing

a significant reduction. These results can inform strategies for managing the grid

flexibility requirements created by growing renewable capacity.

Chapter 5 develops a model for calculating the optimal amount of transmis-

sion, wind, and solar capacity that should be built in a grid’s different regions. It also

presents a framework for choosing CO2 prices by balancing increasing system cost

and flexibility requirements with CO2 emissions reductions. In a simulation of the

ERCOT grid, the model suggests a 60 $/ton CO2 price and an optimal investment
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of 27.0 GW of transmission capacity to five different regions. These regions install

a total of 26.6 GW of wind and 11.1 GW of solar, representing a grid with about

60% thermal and 40% renewable capacity. This renewable mix produces 110 TWh

of energy per year, 34% of the total electricity demand. The grid emits 82.2 million

tons of CO2 per year under this scenario, a 65% reduction from the 237 million tons

produced when no renewable capacity is installed. At the optimal renewable devel-

opment solution, all coal and natural gas boiler generators have capacity factors less

than 20% with many of them not being dispatched at all. While these results are

specific to ERCOT, the methods and model can be used by any grid considering

renewable energy capacity expansion.

Chapter 6 develops a mixed-integer linear program for modeling the optimal

equipment capacity and dispatch of a central utility plant (CUP) in a residential

neighborhood and its ability to improve rooftop solar integration. The CUP equip-

ment includes a microturbine, battery, chiller plant, and cooling storage. The CUP

model is exposed to a variety of electricity rate structures to see how they influence

its operation.The model finds the optimal capacity for each piece of CUP equip-

ment, optimizing their hourly dispatch to meet neighborhood cooling and electric

demand while maximizing profit. In an Austin, TX, USA base case, the neighbor-

hood benefits economically by including the CUP, although the CUP demonstrates

limited potential to integrate high penetrations of rooftop solar resources. While

peak demand and reverse power flows are reduced under all tested rate structures,

the CUP worsens net demand ramp rates. A time-of-use rate with no demand charge

and moderate differences between off-peak and on-peak prices balances the output
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parameters, reducing reverse power flows by 43%, peak demand by 51%, and annual

cost by 9.1% versus the “No CUP” base case while limiting net demand ramp rate

increase to 84% more than the base case.

Building a clean, resilient, and reliable electric grid for the future is a worth-

while endeavor that will require innovative supply-side and demand-side solutions

for integrating the intermittent power output of renewable generation into the elec-

tric grid. As a cohesive document, this dissertation communicates the scale and

severity of the flexibility requirements that will be required to operate systems with

large amounts of wind and solar generation and explores one demand-side method

for providing that needed flexibility. There are many opportunities to expand these

analyses and explore new sources of grid flexibility in future work.
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Chapter 1

Introduction

1.1 Purpose and motivation

Wind and solar generation offer opportunities to provide clean, domestic, and

affordable power in the future [140]. Driven by environmentally-minded regulations,

such as the United States’ Production Tax Credit and Investment Tax Credit (PTC

& ITC) [31] or the European Commission’s 2020 climate and energy package [36],

the installed capacities of wind and solar are on the rise globally [18]. Many of these

policies, including the EU 2020 and renewable portfolio standards (RPS) in many

states in the U.S., have specific goals for renewable energy capacity development, ei-

ther in terms of actual capacity or percentage of annual energy production. However,

these goals seldom consider how renewable generation will influence the flexibility

and reliability of the electric grid, where new renewable generation and transmission

capacity should be installed, or which technologies and strategies can be used to

integrate renewable resources into the grid. This dissertation explores each of these

questions to improve our understanding of renewable integration issues and explore

technology and policy solutions for improving them.

The variability and timing of renewable energy generation can make its output

difficult to balance and integrate [21, 111]. These variability and timing issues exac-
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erbate “flexibility requirements”, such as ramp rates (the change in net demand over

a period of time) [90, 91]. Flexibility is normally provided by dispatchable thermal

power plants and ancillary services [91]. Requiring greater flexibility from the grid

can cause increased cycling and ramping at power plants, inflating system costs [38].

It can also increase the need for operating reserves [53] and can reduce the stability

of the grid’s frequency and voltage [10].

Independent System Operators (ISOs) are especially concerned with accom-

modating over-generation and increased ramping requirements from solar generation

as illustrated by the California ISO experience with the so called “duck curve” (where

low net loads are followed by steep ramp rates) [21] and Germany’s experience with

widespread negative wholesale prices [76]. These experiences illustrate how existing

electricity markets might struggle to provide the operational flexibility required for

the successful integration of renewable generation. The view that renewable genera-

tion can reduce the total dispatch cost and environmental impacts of the electric grid

must be considered in context with the understanding that increasing wind and solar

capacities might also bring integration costs, grid-balancing challenges, and stability

issues.

Moreover, these issues cannot be effectively studied without considering how

the geographic location of renewable energy resources influences their generation

profiles. Wind and solar generation produce electricity intermittently depending on

wind speed and solar radiation. Thus, different climates and seasons will experience

different generation profiles, and the generation timing for different locations in an

electric grid will also vary. Whether these generation profiles coincide with the load

2



and with each other influences grid flexibility requirements and the market value of

that wind and solar resource [188].

While a geographically-sensitive understanding of utility-scale wind and so-

lar generation can help grid operators anticipate future flexibility requirements, it is

also valuable to understand renewable energy integration issues at the distribution

level, particularly in reference to rooftop solar generation in residential neighbor-

hoods. Three issues deserve special attention. First, when distributed solar gener-

ation exceeds local demand, it reverses power flow toward the substation and can

create control and protection problems at the transformer [16]. Reverse power flow

also incurs losses at the transformer and power lines [103] and requires additional

distribution hardware and controls for managing reactive power and voltage regula-

tion [109]. In response, many utilities are moving towards rate structures that will

reduce compensation for selling excess solar generation to the grid [16].

Second, since maximum solar output is not always coincident with peak de-

mand, solar capacity does little to reduce local peak demand [38] and, thus, con-

tributes to the under-utilization of grid infrastructure. Electric grids are built to

handle a peak system demand that seldom occurs, leaving some of the grid’s in-

frastructure sitting idle for much of the year. In the Electric Reliability Council

of Texas (ERCOT, the system operator of the electric grid covering about 90% of

Texas’ population), for example, the annual utilization (average demand/peak de-

mand) is just 55%, and only 1,000 hours each year exceed 75% of the peak demand

[59]. Adding more solar, which reduces average demand without strongly influencing

peak demand, can reduce the capital investment efficiency of an already over-built
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infrastructure.

Third, as solar output ramps up and down with sunrise, sunset, and cloud

cover variation, net demand ramp rates can be quite steep in local grids. Large

ramp rates in distribution networks increase the need for flexibility both locally and

in the bulk transmission grid, which can further exacerbate power plant cycling and

ramping, ancillary service shortages, and grid stability issues.

These adverse, solar-related effects can be even more pronounced for residen-

tial neighborhoods, where solar penetration can be quite high [11], and in cooling-

dominated climates, where cooling demand creates strong diurnal demand spikes.

For example, Figs 1.1 and 1.2 show the August 14 and October 26, 2015, aggregated

electricity demand for a 750-house neighborhood in Austin, Texas, USA, with 1.2

MW of rooftop solar (approximately 30% penetration). These figures show the influ-

ence of solar and cooling on the net demand (demand minus solar). Solar does little

to reduce peak demand, creates steep net demand ramp rates (derivative of the net

demand in MW/hr), and can create reverse power flow (negative net demand).

Improving these issues in residential neighborhoods would benefit the whole

grid, especially in systems like ERCOT where over 50% of the annual peak demand

comes from the residential sector [149]. Specifically, residential distribution feeders

could add value to the grid by selling less power (decreasing their reverse power

flows), lowering their peak demand (reducing infrastructure needs), and decreasing

their ramp rates (simplifying reliable grid operation).

While many strategies aim to improve these issues for individual houses [152],
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Figure 1.1: Aggregated demand for a 750-house neighborhood in Austin, TX, USA
on August 14, 2015. Solar and cooling contribute to high peak demand, and steep
net demand ramp rates (changes in the net demand in MW/hr).
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Figure 1.2: Aggregated demand for a 750-house neighborhood in Austin, TX, USA
on October 26, 2015. Solar and cooling contribute to reverse power flow (negative
net demand), and steep net demand ramp rates (changes in net demand in MW/hr).
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it can be more effective to coordinate multiple loads simultaneously [25]. This co-

ordination can be achieved by virtually organizing the behavior of load, generation,

and storage resources spread across the electric grid. Examples include demand re-

sponse, where a regulator uses price or command signals to influence load shifting, or

energy aggregation, where a community of distributed resources act collaboratively

to appear as a single power plant or load to the grid operator [139]. Alternatively,

the coordination of multiple loads can be achieved by physically connecting them

via a microgrid or central utility network, where electricity, cooling, and heating are

produced in a central plant and delivered to multiple buildings via local infrastruc-

ture.

Central utility networks have been implemented in commercial and industrial

settings such as hospitals [132] and university campuses [167], and could be applied

in a residential setting. Compared to using small equipment at individual buildings,

a central utility plant (CUP) can take advantage of economies of scale resulting in

lower operation and maintenance cost [132]. Though these operational benefits are

the primary reason for constructing a CUP, there is growing interest in the added

benefit of using CUPs for providing grid services that improve the flexibility of the

electric grid and the integration of renewables [167].

In summary, wind and solar generation require greater system flexibility to

maintain stability in both local distribution networks and larger transmission grids.

Traditional strategies, such as ancillary services and the flexible operation of the

dispatchable power plant fleet, can provide some flexibility at the transmission level.

Energy aggregation and centralized utility services in the residential sector can pro-
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vide transmission-level grid services while also improving rooftop solar integration at

the local level.

1.2 Scope and organization

This dissertation explores these topics in four chapters addressing the follow-

ing objectives:

• Objective 1: Explore the effects of adding large amounts of solar generation to

the grid and assess the importance of array orientation and geographic location.

Chapter 3 contributes to the growing area of research on the grid-integration

of renewable energy by providing a holistic study of how generator dispatch,

system flexibility requirements, environmental considerations, and market dis-

patch costs are influenced by the orientation and geographic location of solar

generation assets. The information in this study can encourage utilities, grid

operators, and other entities involved with influencing the development of the

electric grid to develop renewable energy portfolios, tax incentives, and invest-

ment plans that consider the comprehensive costs of integrating solar into the

grid.

• Objective 2: Determine how growing wind and solar capacities correlate with

increasing flexibility requirements. Chapter 4, in response to a lack of consensus

in the existing literature [113], illustrates a framework for quantifying flexibility

requirements by analyzing the correlation of increasing wind and solar genera-

tion with grid flexibility requirements in ERCOT. The trends discussed in this
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study are intended to provide meaningful insight for grid planners as they antic-

ipate the growth of renewable energy resources and the strategies they should

implement to maintain reliability and manage integration costs. This insight

is especially valuable for grids with rapid penetrations of renewables already

underway or looming, such as Germany, China, Australia, Ireland, ERCOT,

and many others.

• Objective 3: Project the amount of wind and solar capacity that should be in-

stalled in different regions of the electric grid. Chapter 5 builds a model that

recommends the optimal investment of wind, solar, and transmission capacity

in the different regions of an electric grid and develops a framework for bal-

ancing system costs, flexibility requirements, and CO2 emissions. Improving

over existing capacity expansion models that tend to develop wind and solar

based on their capacity factors alone, this model values regional wind and solar

resources based on their time coincidence with the load and with the renewable

energy profiles of other grid regions as well as considering the available export

capacity of the region’s transmission infrastructure. This analysis uses ERCOT

as a demonstration case, but its methods are applicable to other grids.

• Objective 4: Analyze opportunities for system integration and demand-side

management to add flexibility to the electric grid. Chapter 6 hypothesizes

that a central utility plant (CUP) could economically improve rooftop solar

integration in a residential neighborhood and support grid-wide operational

stability. It contributes novel research by bridging a gap in the academic lit-

erature between distributed, residential solar integration and micro-grid/CUP
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optimization. It adds to the micro-grid/CUP modeling literature by developing

a generalized, linear model to optimize CUP equipment capacity and hourly

dispatch simultaneously and by analyzing a microgrid’s ability to integrate

rooftop solar in the residential sector of a cooling-dominated climate.

1.3 Major findings

The major findings from this dissertation are summarized below, and are

explored in greater detail in the following chapters.

1. In an electric grid with large amounts of solar generation, the percentage sav-

ings in dispatch cost exceeds the percentage of annual energy produced by solar

generation.

2. Solar generation increases ancillary service prices, though the increase is small

relative to dispatch cost savings.

3. Solar generation intensifies net load ramp rates and volatility while doing little

to reduce peak demand.

4. Solar generation reduces emissions and water consumption in the electric grid.

5. During the daytime, solar generation tends to reduce utilization of high-cost

generators and increase utilization of fast ramping generators.

6. Total dispatch cost in a high-penetration solar system is influenced more by

the efficient use of thermal generation assets than by costs associated with

flexibility requirements.
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7. Increased wind capacity does not correlate strongly with increased flexibility

requirements, except for 1-hr and 3-hr ramp down rates.

8. Increased solar capacity correlates strongly with increased flexibility require-

ments in systems with large amounts of wind generation, especially net load

volatility and ramp up rates.

9. Solar tracking arrays increase energy production and exacerbate grid flexibility

requirements, while fixed, southeast facing panels impact flexibility require-

ments much less with only minor reductions in energy production.

10. A 60 $/ton CO2 price incentivizes 40% renewable capacity (71% wind, 29%

solar) and reduces annual CO2 emissions by 65% in ERCOT.

11. Increasing wind and solar penetration beyond 40% total capacity is not eco-

nomically optimal in ERCOT, even with a 60 $/ton CO2 price, unless renew-

able energy capital costs decrease or the minimum amount of on-line thermal

generation required to maintain system stability is reduced.

12. Optimal renewable capacity expansion results are most sensitive to solar capital

cost, wind capital cost, and the operating costs of the existing generator fleet,

and least sensitive to transmission cost.

13. The grid experiences diminishing returns from increasing the CO2 price as

steadily rising costs produce fewer reductions in CO2 emissions.

14. Reducing the grid’s minimum stable net load can significantly increase the

optimal capacity of wind and solar generation.
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15. Renewable generation will greatly reduce the need for high marginal cost gen-

erators in the electric grid.

16. A central utility plant with microturbine, chiller plant, and cooling storage

could operate economically in a residential neighborhood under a time-of-use

electricity rate structure.

17. Battery capital costs are currently too high to economically justify using them

for load shifting in a residential neighborhood setting if microturbine or thermal

storage alternatives are available.

18. A residential central utility plant can increase demand flexibility, but incen-

tivizing CUP operational behavior that benefits the electric grid will require

appropriately designed electricity rate structures or plant control schemes.

In concert, these findings suggest that future wind and solar development in

the electric grid will provide economic and environmental benefits while also increas-

ing the need for greater operational flexibility of the electricity system. A residential

central utility plant with cooling thermal storage might economically provide some of

that needed operational flexibility from a demand-side source. The following chapters

explore and support these findings in greater detail.
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Chapter 2

Background

This background section provides information for understanding the methods

and analyses presented in Chapters 3–6 and places the academic contributions of this

dissertation in the context of the existing scholarly literature. Section 2.1 discusses

characteristics of the Electric Reliability Council of Texas, which this dissertation

uses frequently as a case study. Section 2.2 describes how renewable generation

integrates with the existing power plant fleet. Section 2.3 summarizes the academic

literature relevant to this dissertation.

2.1 Electric Reliability Council of Texas

While the analysis and modeling methods used in this dissertation are gen-

erally applicable to different electric grids, the Electric Reliability Council of Texas

(ERCOT, the system operator serving 90% of Texas’ load) is used to demonstrate the

functionality and output of those methods. This section provides some background

information about the ERCOT electric grid.

There are a number of characteristics about ERCOT that make it a useful case

study. It is an isolated grid with a competitive wholesale energy market and a diverse

set of existing generators [38]. It also has significant wind and solar resources covering
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a large geographic area that is generally distinct from its load locations. Fig 2.1 [128]

shows that Texas’ best wind resources are in the northwest and central-west parts of

the state. Fig 2.2 [128] shows that Texas’ best solar resources exist in the west part

of the state, with resources generally degrading to the east. The majority of Texas’

electricity load is located in the east third of the state.

The ERCOT test cases used in this dissertation are based on data from the

2011, 2012, and 2015 market. For reference, in 2016, ERCOT experienced a peak de-

mand of 71.1 GW with a total energy consumption of 351 TWh. It procured roughly

44% of that energy from natural gas, 29% from coal, 15% from wind, and 12% from

nuclear generators [58]. The ERCOT load is driven by summer cooling demand with

more than a quarter of its peak load coming from residential air conditioning [149], so

it experiences the effects of renewable energy penetration during both high-demand

(summer and early-autumn) and low-demand (late-winter and spring) seasons.

2.2 Merit Order and Flexibility

Wind and solar energy resources bring an interesting new aspect to the op-

eration of electricity markets. Since wind and solar have low operational costs, they

can bid into the day-ahead electricity market at a zero price [34] moving them to

the front of the merit order (the list of dispatchable generators arranged by their

energy bid price, see Fig 2.3). This favorable bid position means that it is economi-

cally desirable (and sometimes required per feed-in regulations [34]) to integrate all

available wind and solar generation into the electric grid. In response to this inte-

gration, the remaining dispatchable generation must transition from simply meeting
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Figure 2.1: Wind resources in Texas are strongest in the northwest part of the state
with some strong resources in the central-west as well [128].

Figure 2.2: Solar resources in Texas are strongest in the west part of the state and
generally degrade to the east [128].
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the load to balancing the residual load or net load (load minus wind, solar, and other

intermittent renewable generation) [133]. This requirement exposes the generation

fleet to additional ramping (quick changes in generator power output), cycling (pow-

ering down and up in short time periods), and other operational difficulties called

“flexibility requirements” [38, 91].

These flexibility requirements can be observed in the electric grid’s net de-

mand, as shown in Fig 2.4. Many different methods can provide the flexibility needed

to integrate wind and solar into the electric grid and match dispatchable supply to the

net demand. Currently, grid operators respond to flexibility requirements primarily

by utilizing the capabilities of the generation fleet [113], where net load ramping is

balanced by quick changes in the generator fleet’s power output, and large swings

between daily or sub-daily minimum and maximum net loads are balanced by turn-

ing power plants on and off. Additionally, using ancillary services to procure reserve

capacity is a common market tool for responding to flexibility requirements [32, 72].

It has been hypothesized that these strategies will lose their efficacy at higher re-

newable energy levels and require additional support, such as energy storage [44] or

demand response from interruptible loads.

Storage technologies are capable of providing many services to the grid that

would improve the integration of variable renewable generation, such as bulk energy

storage, energy management, power quality management, and intermittency mitiga-

tion, but are likely to see limited use until they become more economical [63, 79].

Another growing opportunity for meeting flexibility requirements is the use of de-

mand response, whereby flexible loads, such as water treatment that can be ramped
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Figure 2.3: The merit order curve sorts an electricity market’s power plants by their
marginal cost, visualizing how the power plants with least expensive marginal cost
will be dispatched first. Zero-marginal-cost resources (wind, solar, water) are added
to the front of the merit order curve, pushing thermal generators (nuclear, coal,
natural gas) later in the order. This shift reduces wholesale prices. This figure shows
an example of how 15 GW of renewable generation might reduce wholesale market
prices from 50 $/MWh to 35 $/MWh.
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up and down [33], adjust their consumption in response to signals from the grid,

allowing the grid to soften demand spikes or large ramping events [24, 143]. Addi-

tional grid-supporting strategies continue to be developed, including the dispatch

of grid-connected electric vehicles [102], transmission restructuring, and market re-

design [113].

Figure 2.4: Projected demand, wind, and solar data for June 19, 2022 in the ERCOT
electric grid. Changes in the net demand can be quantified using the flexibility
requirement calculations described in Section 2.2.1.

An inability to provide the necessary grid flexibility, i.e. to match supply with

demand, can destabilize the electric grid as evidenced by changes in the alternating

18



current frequency. Grid frequency needs to be kept within certain bounds. Other-

wise, generators, motors, and other electrical equipment will automatically initiate

safety protocols that disconnect them from the grid, which can lead to cascading

black outs in severe cases [57].

The North American Electric Reliability Corporation (NERC) quantifies a

Balancing Authority’s ability to match supply and demand by calculating its Area

Control Error (ACE) and quantifies a grid Interconnection’s ability to manage fre-

quency excursions by calculating its Control Performance Standard 1 (CPS1). Ac-

cording to NERC,

“Over-generation makes ACE go positive and puts upward pressure on

Interconnection frequency. A large negative ACE causes Interconnection

frequency to drop. Highly variable, or noisy, ACE tends to contribute

similarly to noisy frequency [1].”

Increased flexibility requirements caused by intermittent renewable generation can

make it more difficult for Balancing Authorities to match supply and demand, which

complicates the management of Interconnection frequency and leads to poorer ACE

and CPS1 scores.

The correlation between larger flexibility requirements and increased difficulty

in regulating grid frequency might be highly situational and vary from grid to grid,

so the question of “When do net load ramp rates and volatility become too large

for the grid to handle?” can be difficult to answer quantitatively. Some analyses

have used historical data in actual electric grids to imply causation between intense
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ramping or volatility events and significant changes in system frequency [50]. This

dissertation assumes that frequency regulation in the electric grid will become in-

creasingly difficult as flexibility requirements grow larger, though it does not model

or quantify frequency directly.

2.2.1 Flexibility Requirement Calculations

To adequately analyze and discuss electric grid flexibility requirements, it is

helpful to define a framework for how they should be quantified. Existing literature

lacks consensus on how flexibility should be calculated [113], though there is some

agreement on the importance of ramp rate calculations with respect to the ramping

abilities of generators [72, 92]. In addition to ramp rate calculations, this chapter

also proposes “volatility” as a useful measure of net load flexibility that is being

underrepresented in the current literature. Volatility is the absolute value of the

net load curve’s second derivative, summed over various time frames. It describes

the amount of “chatter” or “noise” of the net load curve as it ramps up and down

over short time spans. These quick fluctuations can influence the grid to dispatch

faster-ramping resources [43], even though large ramp rates are not necessarily be-

ing experienced. To encourage more consensus on the quantification of flexibility

requirements, this dissertation proposes the calculations described below, which are

quantitatively illustrated using information from Fig 2.4.
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2.2.1.1 1-Hour Ramp Rate

The 1-hr ramp rate is calculated by subtracting the net load 1 hour prior from

the current net load as shown in equation 2.1, where t is time in 15-minute intervals.

For example, the June 19, 2022 net load changes from 36,996 MW at 11:00 to 39,752

MW at 12:00 for a 1-hr ramp rate of 2,756 (39,752 – 36,996). It is measured in

units of MW/hr and describes short-term ramping events that might be handled by

ancillary services. Thus, an increase in 1-hr ramp rates might indicate the need for

improved ancillary services or fast-response ramping resources on the grid.

1HrRampRate(t) = NetLoad(t)−NetLoad(t− 4) (2.1)

2.2.1.2 3-Hour Ramp Rate

The 3-hr ramp rate is calculated by subtracting the net load 3 hours prior

from the current net load as shown in equation 2.2, where t is time in 15-minute

intervals. For example, the June 19, 2022 net load changes from 36,996 MW at

11:00 to 41,900 MW at 14:00 for a 3-hr ramp rate of 4,904 (41,900 – 36,996). It

is measured in units of MW/3hr and describes medium-term ramping events that

might be handled by dispatching additional capacity rather than relying on ancillary

services. Thus, an increase in 3-hr ramp rates might indicate the need to displace

slow-ramping base load generators with faster resources.

3HrRampRate(t) = NetLoad(t)−NetLoad(t− 12) (2.2)
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2.2.1.3 Ramp Factor

The ramp factor is calculated by dividing the 15-minute ramp rate by the net

load of the previous 15-minute interval as shown in equation 3.2, where t is time in

15-minute intervals. It normalizes the ramp rate in terms of online capacity, where

a ramp factor of 0.10 indicates that the dispatchable generation fleet must increase

its output by 10% in the next 15 minutes. For example, the June 19, 2022 net load

changes from 36,996 MW at 11:00 to 37,637 MW at 11:15 for a ramp factor of 0.017

((37,637 – 36,996) / 36,996). It is measured in units of (MW/15min)/(MW online).

An increase in ramp factors might indicate the need to commit additional generators

but dispatch them at partial-capacity to increase the amount of reserve capacity on

the grid.

RampFactor(t) = (NetLoad(t)−NetLoad(t− 1))/(NetLoad(t− 1)) (2.3)

2.2.1.4 Ramp Acceleration

As noted in prior work, the ramp acceleration is calculated by subtracting the

previous interval’s 15-minute ramp rate from the current interval’s 15-minute ramp

rate and taking the absolute value of the result [38] as shown in equation 2.4, where t

is time in 15-minute intervals. For example, the June 19, 2022 net load changes from

39,752 MW at 12:00 to 40,422 MW at 12:15 and 40,276 MW at 12:30 for 15-minute

ramp rates of 670 MW/15min (40,422 – 39,752) at 11:15 and -146 MW/15min (40,276

– 40,422) at 11:30 and a ramp acceleration of 816 MW/(15min·15min) (abs(-146 –

670)) at 11:30. It’s sole use in this study is for calculating volatility.

RampAccel.(t) = abs(15MinRampRate(t)− 15MinRampRate(t− 1)) (2.4)
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2.2.1.5 1-Hr Volatility

The 1-hr volatility is calculated by summing the ramp accelerations over the

previous hour as shown in equation 2.5, where t is time in 15-minute intervals. For

example, the June 19, 2022 net loads for each 15 minute period from 12:00 to 13:30 are

39,752, 40,422, 40,276, 40,136, 40,681, and 41,369 MW. These net loads yield ramp

accelerations of 816, 6, 685, and 143 MW/(15min·15min) for each 15 minute period

from 12:30 to 13:30. Adding these ramp accelerations together yields a volatility of

1,650 (816 + 6 + 685 + 143) at 13:30. The 1-hr volatility is measured in units of

MW/(15min·hr) and describes the intensity of short-term “chatter” in the net load

profile that might be handled by faster-ramping resources. Thus, an increase in 1-hr

volatility might indicate a temporary need to commit more fast-response resources

to the grid.

1HrV olatility(t) =
t−4∑
t=1

RampAcceleration(t) (2.5)

2.2.1.6 1-Day Volatility

The 1-day volatility is calculated by summing the ramp accelerations over the

previous 24 hours as shown in equation 2.6, where t is time in 15-minute intervals.

This calculation is similar to the example calculation for subsection 2.2.1.5 except

that 96 ramp accelerations (24 hours’ worth) are summed together instead of 4 (1

hour’s worth). It is measured in units of MW/(15min·day) and describes the intensity

of long-term “chatter” in the net load profile that might be handled by faster-ramping

resources. Thus, an increase in 1-day volatility might indicate a semi-permanent need
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to commit more fast-response resources to the grid.

1DayV olatility(t) =
t−96∑
t=1

RampAcceleration(t) (2.6)

2.3 Literature Review

This dissertation discusses how new renewable generation assets will be inte-

grated into the electric grid, quantifies their impact on grid flexibility requirements,

and tests the ability of a residential central utility plant to add flexibility to the

grid. Consequently, the dissertation covers a number of different sections of the aca-

demic literature, including the grid-integration of solar, the influence of renewable

generation on flexibility requirements, wind and solar capacity expansion, micro-

grid optimization, and rooftop solar integration. This dissertation contributes novel

research towards each of those areas as discussed below.

2.3.1 Grid-Integration of Solar

Existing research about integration costs shows that the value of solar ca-

pacity decreases as more of it is installed [45, 66]. Research also shows that larger

amounts of renewable energy generation require greater flexibility from dispatchable

generation assets [46, 66] while also reducing their utilization and potentially having

little impact on the overall peak demand [87]. Other studies use duration curves and

merit order analyses to show how renewable energy resources affect the spot price

of electricity [114, 161]. Because solar production varies based on astronomical and

meteorological conditions, gaining a deeper understanding of the impact of renew-
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able energy sources requires considering the time of day and season during which it

is produced [134, 153]. Historical data on renewable energy generation can be com-

pared with historical prices to gain a more temporal understanding of the impact

of renewable energy on wholesale prices [100, 190]. However, the impact of large

solar resources, or aggregations of many smaller units, can be better understood by

simulating their participation in the electricity market.

Electricity market operators decide how to dispatch their generation assets by

using unit commitment and dispatch (UC&D) algorithms that optimize the dispatch

to produce the lowest total dispatch cost [69]. UC&D models can be used to estimate

the value of renewable energy resources in electricity markets [82, 86], observe how

renewable generation influences the utilization of power plants [93, 155, 174], test

how different market structures can facilitate the integration of renewable energy

sources into the electric grid [164], and to assess transmission investments necessary

for meeting renewable energy goals [68].

The generation profile of a solar array is largely dependent on its geographic

location and azimuth orientation. Studies show that an owner can maximize the

value of a small solar array by optimizing its orientation and tilt according to his-

torical prices, peak demand timing, and pricing structures rather than simply maxi-

mizing its annual energy output [20, 153, 156, 158]. However, since large installations

of solar generation influence wholesale prices, generator dispatch, and net demand

timing, these studies provide limited insight regarding the optimal orientation for

large penetrations of solar generation in the grid.

Building on the existing literature above, which communicates many individ-
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ual, generalized aspects about integrating solar generation into the grid, Chapter 3

of this dissertation undertakes a comprehensive assessment of how large amounts

of solar generation might influence the system-wide flexibility requirements, hourly

generation fleet dispatch, and resulting dispatch costs and emissions in an actual

electricity market. This dissertation extends solar integration cost research by us-

ing an advanced and calibrated UC&D model to simulate the hourly dispatch of

the ERCOT generator fleet under different solar penetration scenarios. The simu-

lation results provide novel information about how grid-scale solar integration costs

change depending on the daily and seasonal timing of the solar generation profile, as

influenced by the location and orientation of solar assets.

2.3.2 Influence of Renewable Generation on Flexibility Requirements

An important consequence of the grid-integration of intermittent renewables

is an increased need for flexibility in the electric grid. While there are many viable

options for meeting this need, choosing the best strategies for improving grid flexibil-

ity begins with understanding how wind and solar generation influence grid flexibility

requirements in the first place [91]. Different studies have worked to advance this

knowledge. Hirth et al. [89] use economic analysis to dissect how variable renew-

able generation adds costs to the operation of the grid. One major cost category,

“profile costs”, derives from the temporal variability of renewable generation. These

costs are driven by the flexibility effect (the increased ramping and cycling of power

plants) and the utilization effect (the generators’ distribution of fixed annual capital

costs over fewer annual hours of energy production profit). Hirth shows how more

26



renewable generation leads to larger ramp rates, increased power plant cycling, and

reduced thermal utilization, which all add costs to the system.

Huber et al. [92] give a general look at how flexibility requirements change

across different European countries as their renewable generation and share of solar

generation increase. Using 1-hour resolution, simulated, wind and solar data, the

study uses time series analysis to calculate ramp rates on a 1 to 12 hour time scale.

They show that flexibility requirements will greatly increase at renewable generation

penetrations greater than 30%, especially with significant amounts of solar genera-

tion. They conclude that grid size and renewable generation full load hours (FLH)

also contribute to changing flexibility requirements.

Additionally, a consulting report published by GE Energy in 2008 [72] con-

ducts time series variability analysis of simulated wind data in ERCOT and assesses

the ability of ancillary services to accommodate growing flexibility needs. It is an

interesting counterpart to this dissertation as it was written in 2008 with a future-

looking perspective, while Chapter 4 of this dissertation utilizes historic 2008–2014

data, and both focus on the ERCOT grid. Key takeaways from the report show that

increased wind generation is correlated with increased ramp rates over all 1-minute

to 60-minute time spans, and that increasing 15-minute and 60-minute ramp rates

are driven by net load variability rather than stochastic variation. It also suggests

that the larger ramp rates created by significant wind penetration will increase the

maximum amount of regulation reserves that will need to be provided for maintaining

grid stability.

This dissertation improves on the aforementioned flexibility requirement stud-
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ies in a number of ways. It utilizes 15-minute data in Chapter 4 to perform calcula-

tions on a short time scale. While it does utilize simulated solar data, the majority

of its wind flexibility analysis is based on actual historical data from ERCOT. It also

discusses the influence of solar array orientation and geographic location on flexibil-

ity requirements. The dissertation is novel in both its proposal of a framework for

calculating flexibility requirements, and its further development of the concept of net

load “volatility” as shown in Section 2.2.1.

2.3.3 Wind and Solar Capacity Expansion

It is helpful to analyze how flexibility requirements change with growing wind

and solar generation scenarios. However, the actual flexibility requirements of a grid’s

future net load depends on the timing coincidence of wind output, solar output, and

electric demand. That timing coincidence depends on the regional development of

wind and solar capacity, which can be modeled using a capacity expansion model

with detailed geographic resolution.

Existing literature recognizes the significance of wind and solar timing coinci-

dence with the load, though a majority of studies seem to focus on the optimization

of small-scale hybrid systems [163, 193], or small utility districts [183]. However,

some studies have addressed the value of grid-level wind and solar based on their

generation timing coincidence. One publication stresses the need to study renewable

sources in combination when discussing future grid scenarios [188]. By analyzing dif-

ferent mixes of wind and solar capacity that produce 10 TWh of annual energy (7% of

the total annual Swedish supply), the study uses statistical analysis to calculate the
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correlation between wind and solar resources in different locations. It concludes that

wind and solar are negatively correlated, especially on monthly timescales, meaning

that their generation is out of phase with each other. Thus, system-wide renewable

electricity output will be more evenly distributed by combining both resources.

Heide et. al. [85] developed a model for choosing wind and solar capacity

locations around Europe that minimize the annual need for energy storage. Their

model predicts the optimal wind and solar mix given a certain amount of renewable

capacity, but does not recommend a total renewable capacity or argue that storage

minimization is the best objective for optimizing the renewable capacity mix. A

follow-up study expands this work to include different storage methods and discusses

the trade-off between energy storage and excess generation [84].

Schaber et. al [160] focuses on extending the European transmission grid to

reduce overproduction, storage, and reserve requirements. The study assumes that

wind and solar resources will be installed in locations and capacities proportional to

their power production potential (in Full Load Hours). Under this assumption, a

European grid dispatch model is used to find optimal transmission grid extensions,

depending on the wind and solar mix, for balancing overproduction, backup capacity,

emissions, and other factors. A follow-up study uses their model to quantify the

regional economic effects of projected wind and solar capacities in Europe [159].

Hirth [88] uses a grid dispatch model to analyze the optimal wind and solar

mix for maximizing social welfare. This analysis looks at the impacts of temporal

variability, forecast errors, storage, increased system flexibility, and climate policy.

One shortcoming is its lack of geographic capabilities. Consequently, it does not im-
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plement transmission congestion curtailment. It also does not optimize the renewable

capacity of different regions in the grid, but models wind and solar as having a fixed

geographic dispersion across Europe.

The market valuation of renewable energy generation also depends on CO2

emissions policies. Since Finland introduced the world’s first carbon tax in 1990,

many CO2 emissions taxes and commodity trading schemes have developed in power

market across the world [148]. Many more electricity markets, including those in

the United States, are likely to adopt some form of CO2 pricing in the future if

they haven’t already done so [110]. While there are many methods for pricing CO2

emissions, carbon taxes (where policy dictates a CO2 price) and emissions trading

schemes (where markets determine a CO2 price) are particularly popular [17]. In the

U.S., CO2 prices using either method could range from 25 to 53 $/ton by 2030, and

be as high as 120 $/ton by 2050 [110]. The social price of carbon, an approximation

of the agricultural, property, health and other damages that might be attributable

to CO2 emissions, is predicted to fall in a similar range [191]. Economic theory

suggests that emissions costs should be considered as a marginal cost of producing

electricity [184], and economic literature suggests that CO2 prices are passed down

into electricity prices [65]. Consequently, CO2 prices could have a significant impact

on electricity markets and decisions about renewable energy investment.

As electric grids establish future renewable energy goals and market struc-

tures or standards that will achieve them, it is important to consider how much

transmission, wind, and solar capacity there ought to be, and where it ought to be

built. Existing studies provide important analyses regarding the effects of different
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wind and solar mixes on the electrical grid, but they do not satisfactorily address

these grid planning questions. Chapter 5 of this dissertation expands on the existing

literature by using regional wind and solar generation profiles, existing generator

fleet data, market prices, capital costs, and grid flexibility considerations to model

the optimal wind, solar, and transmission capacity for each region in the grid. It also

provides a framework for balancing increasing system costs and flexibility require-

ments with reductions in CO2 emissions to choose an appropriate CO2 price for the

market.

2.3.4 Microgrids for Renewable Energy Integration

Literature on wind and solar capacity expansion, renewable generation flex-

ibility requirements, and the grid-integration of solar all contribute to our under-

standing of how renewable generation will influence the operation of the electric

grid. Many strategies can be used to provide the needed flexibility for integrating

renewables into the electric grid. This dissertation provides analysis of one spe-

cific strategy - using a central utility plant (CUP) in a residential neighborhood to

improve solar integration - by developing an optimization model.

Two bodies of research are especially significant when discussing the applica-

tion of a residential CUP for improving rooftop solar integration. The first identifies

issues caused by distributed solar generation and explores solutions for mitigating

them. The second discusses the operation, modeling, and optimization of micro-

grid/CUP equipment while considering their interactions with the electric grid.

A significant strategy for improving rooftop solar integration in the distri-
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bution grid revolves around the concept of “demand-side management,” where con-

sumers change their demand profiles to provide some service to the grid. The ap-

plication of batteries, thermal energy storage, building thermal mass, and demand

response are particularly well-discussed in the literature. For example, Alam et. al.

develop a new charge-discharge control strategy for distributed battery resources to

show how residential battery systems can help manage peak demand, reverse power

flow, and voltage-rise issues in residential neighborhoods with large solar resources [9].

Arteconi et. al. review thermal energy storage applications for demand-side manage-

ment and renewable energy integration. They conclude that only ice storage for air

conditioning has a good market in the US, though better policies could expand ther-

mal storage in other sectors and incentivize their use for peak demand shaving and

other beneficial behavior for the grid [13]. Hao et. al. explore the provision of ancil-

lary services using the thermal mass of a commercial building to act as short-term

cooling storage for shifting cooling demand [78]. Demand response is analyzed using

detailed bottom-up approaches such as using building energy models to assess the

impacts of thermostat set-point changes for shifting cooling demand [182], or using

top-down models where appliances are generalized based on their demand magnitude

and time-shifting capabilities [15].

These demand-side management studies often focus on single technologies

and/or modeling individual buildings. Under this focus, they fail to capture the

benefits of managing the demand of many buildings and coordinating multiple tech-

nologies to meet that demand. These topics, however, are regularly discussed in the

microgrid/CUP literature.

32



The microgrid literature covers the economics and operational strategies of

central utility plant equipment in great detail. These analyses are typically accom-

plished using optimization models, often with the objective of minimizing operating

costs by optimizing the dispatch of a microturbine, battery, chiller plant, and/or

other centralized equipment [122]. Some studies will also test the sensitivity of the

results to a parameter of interest, such as errors in load, solar, and temperature

forecasts [169].

A relevant study analyzes the economics and operation costs for commercial

building, hospital, and large campus microgrids in California. The results show

favorable economics for using a microturbine, solar panels, and purchased electricity

to meet demand. The CUP uses some battery capacity to shift electricity demand,

and is integrated with a centralized cooling plant and storage to help shift cooling

demand. While the CUP’s economic benefit is positive, the study shows that the

microturbine increases greenhouse gas emissions. The ability of the microgrid to

provide grid services or improve solar integration is not analyzed [77].

The microgrid/CUP literature often focuses on combined-heat-and-power (CHP,

where power plant waste heat is used to meet heating demand) in industrial or com-

mercial settings, and is somewhat sparse on residential applications, especially in

cooling dominated climates. A study by Ondeck et. al. builds a detailed engineering

model of a CHP plant with solar generation and a chiller plant for a 5,600-house,

residential neighborhood in Austin, TX [136]. While that model provides some new

insights about the applicability of a residential CUP, it lacks some important fea-

tures. It does not utilize storage of any kind or purchase electricity from the grid,
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and only simulates the equipment dispatch for a few weeks of the year.

Some microgrid studies do look more specifically at interactions between

CUPs and the broader electric grid, especially focusing on market signals and in-

centives. Siler-Evans et. al. present CHP in commercial buildings as an economical

way to improve the efficiency of the electric grid. They note, however, that flat

rate structures, where electricity prices do not vary with time or season, do not pro-

vide strong enough signals for CUP development, and that buildings have yet to

significantly participate in demand response and regulation markets, though strong

economic possibilies exist [162]. Another study analyzes the University of California

San Diego CUP’s ability to provide load shifting, solar PV firming (managing inter-

mittent solar generation), and grid support. Though the CUP is capable of providing

those services, existing tariff structures and market prices don’t incentivize it to do

so [167].

In summary, the academic literature recognizes the issues caused by large

amounts of distributed, rooftop, solar generation. It proposes a number of solutions

focused on individual customers and/or individual technologies including batteries,

thermal storage, and demand response. These solutions overlook the benefits of

aggregating demand management and utility equipment on a larger scale.

While the microgrid/CUP literature looks more at this aggregation concept,

it has little to say about the management of solar issues in residential neighborhoods,

especially in cooling climates where peak grid-wide demand is driven by residential

consumption. Many microgrid studies deal with industrial or commercial processes in

heating dominated climates where CHP is the technology of interest. The few studies
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that do look at residential CUPs in cooling climates provide little analysis regarding

solar integration or grid interactions. Microgrid studies that do focus on electric grid

interactions show that CUPs could contribute to grid efficiency, solar integration,

load shifting, and grid support, but that existing markets don’t incentivize that

behavior.

Chapter 6 of this dissertation adds to the literature by expanding the con-

versation on rooftop solar integration to look beyond individual technologies and

buildings towards integrated sets of technology and aggregated loads coordinated by

a single CUP/microgrid. It adds to the microgrid literature by providing additional

analysis of the under-examined sector of residential neighborhoods in cooling cli-

mates and by explicitly evaluating the microgrid as a strategy for improving rooftop

solar integration. It also examines the influence of different electricity rate structures

on the microgrid’s effectiveness, expanding the discussion on what market incentives

are necessary for incentivizing microgrid behavior that improves solar integration.
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Chapter 3

Solar PV integration cost variation due to array

orientation and geographic location in the Electric

Reliability Council of Texas

This chapter of the dissertation contributes to the growing area of research

on the grid-integration of renewable energy by providing a holistic study of how

generator dispatch, system flexibility requirements, and market dispatch costs are

influenced by the orientation and geographic location of solar generation assets. The

information in this study can encourage utilities, grid operators, and other entities

involved with influencing the development of the electric grid to develop renewable

energy portfolios, tax incentives, and investment plans that consider the comprehen-

sive costs of integrating solar into the grid.

This chapter is an updated study of “Solar PV integration cost variation due

to array orientation and geographic location in the Electric Reliability Council of

Texas” as published by Applied Energy in 2016 [38].

3.1 Methods

This study utilizes a UC&D model of the ERCOT electricity market devel-

oped by Garrison, et al. [69]. The model is built in the PLEXOS Integrated Energy
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Model (PLEXOS) software. The model includes each generator in the ERCOT grid,

and assigns them unique variable marginal heat rates, maximum capacities, and

performance parameters based on their fuel type and technology. It utilizes hourly

load, wind generation, and solar generation profiles, along with other system pa-

rameters to calculate the hourly dispatch of each generator, hourly prices, the total

dispatch cost, and other market information. These calculations are performed by a

mixed-integer linear program that includes the operating costs of each generator in

its objective function. The total dispatch cost includes generator start-up costs and

the cost of purchasing reserve capacity from the generators, but its largest portion

is calculated by multiplying the hourly energy price ($/MWh) by the total amount

of generation needed in each hour. The energy price is determined by the marginal

operating cost of the most expensive dispatched generator. With this calculation in

mind, the program chooses the hourly dispatch for each generator that minimizes the

total daily dispatch cost of the ERCOT system, provides enough hourly generation

and reserves to meet the hourly demand, and respects ramping, capacity, and other

generator operational constraints. This optimization is performed for each day of

the year producing an hourly dispatch schedule for all 8,760 hours of the year.

The ERCOT UC&D model has been calibrated to historical 2011 data for

wholesale prices, ancillary service prices, and fuel use, and can accurately reproduce

the historical 2011 ERCOT market [69]. While the model can produce accurate

results, its current version has several limitations. It does not include transmission

constraints treating ERCOT as a single node, assumes marginal cost bidding be-

havior by the generators, and uses perfect load and renewable electricity generation

37



Figure 3.1: The normalized generation curves for the three different solar scenarios
show the typical variation in the timing of their electricity generation during the
course of a summer day. The East and West scenarios peak approximately three
hours apart from each other and represent the bounds of solar generation timing in
ERCOT [129].

forecasts. The primary impact of these limitations is a poor representation of non-

marginal bidding behavior by the generators, which leads to an inability to reproduce

price spikes under scarcity conditions. Additional details on the development of this

ERCOT UC&D model can be found in Garrison’s doctoral dissertation [69].

The primary analysis in this study involves the comparison of different solar

arrays in Texas based on their geographic location and orientation. Rather than

compare dozens of scenarios with different locations and orientations around the

state of Texas, this study limits its scope to observing the extremes of possible

solar output profiles. An east-facing (90 degree) solar array installed in east Texas
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(Longview, Texas) and a west-facing (270 degree) solar array installed in west Texas

(El Paso, Texas) represent the range of solar generation possibilities in ERCOT.

Though El Paso is not connected to the ERCOT grid, it is the closest weather data

location for approximating far west ERCOT solar PV output in the PV generation

calculator utilized in this study. Figure 3.1 illustrates the normalized generation

profiles for a maximum-output summer day for each scenario showing that their peak

production times occur approximately 3 hours apart. The generation profile of any

other configuration of solar assets in ERCOT will fall within the timing bounded

by these two profiles. A south-facing (180 degree) solar array installed in central

Texas (Abilene, Texas) was also added to provide additional insight to the results.

All times are reported in Central Standard Time. The three solar scenarios will be

referred to as “East”, “South”, and “West” in this report as indicated in the map of

ERCOT shown in Figure 3.2.

The hourly output data for the East, South, and West solar generation curves

were created by utilizing the PVWatts Calculator developed by the National Renew-

able Energy Laboratory (NREL) [129]. This calculator uses solar insolation informa-

tion from typical meteorological year (TMY) data to estimate the hourly electricity

generation of a solar array based on its location, orientation, and other input crite-

ria. Each array is tilted at 20 degrees above horizontal, a common tilt used to favor

summer-time electricity generation, and the default value used by the PVWatts Cal-

culator. Default PVWatts data were also used for the array type, system loss, DC to

AC size ratio, inverter efficiency, and ground cover ratio values. The criteria chosen

for the East, South, and West scenarios are summarized in Table 3.1.
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Figure 3.2: This figure shows the State of Texas with the ERCOT boundary shaded
in blue. The cities associated with the East, South, and West scenarios are indicated.

Table 3.1: Input data used to generate the solar PV hourly generation curves for the
different scenarios. All parameters were set to the default values except the weather
data set and array azimuth.

Scenario Weather Data Array Array Array System DC to Inverter Ground

Set Azimuth Tilt Type Loss AC Size Efficiency Cover

(deg) (deg) Ratio Ratio

TMY3 Longview

East Gregg County 90 20 fixed 14% 1.1 96% 0.4

Airport, TX

TMY3 Abilene

South Regional 180 20 fixed 14% 1.1 96% 0.4

Airport, TX

TMY3 El Paso

West International 270 20 fixed 14% 1.1 96% 0.4

Airport, TX
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Rather than assigning the same installed capacity to each of the solar arrays

for the different scenarios, each array’s capacity was sized to generate 22,500 GWh of

annual energy, about 6.8% of annual generation in 2011. While specifying an identical

capacity for each of the arrays would provide a more straightforward comparison of

their net load profiles and flexibility requirements (see sections 4.2 and 4.3), the

scenarios would produce different amounts of annual solar energy - an aspect that

would greatly complicate the comparison of their dispatch costs, generator dispatch,

and emissions calculations (see sections 4.1, 4.4, and 4.5). Sizing the arrays to

produce the same annual solar energy allows their dispatch and emissions to be

easily compared while still allowing a reasonable opportunity to compare their net

load profiles and flexibility requirements. Based on trial-and-error model simulations,

22,500 GWh of energy generation was selected because it is large enough to impact

the market, but small enough to eliminate solar curtailment and avoid low net loads,

which can be difficult for the model to optimize. The East, South, and West arrays

were sized at 18.3 GW, 14.2 GW, and 15.0 GW, respectively to match this generation

level. The monthly energy production for each solar array is presented in Figure 3.3.

The shapes of these energy generation profiles are influenced by seasonal shifts in

weather and the sun’s path through the sky as well as the installed capacity of

the arrays. The one-year hourly generation data for each of these scenarios was

incorporated into the ERCOT UC&D model with historical 2011 hourly load and

2011 hourly wind generation data. All 8,760 hours of the year are simulated for each

solar scenario and for a base case that does not include solar.
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Figure 3.3: The monthly energy output of the different arrays is influenced by sea-
sonal shifts in weather and the sun’s path through the sky as well as the installed
capacity of the arrays.

3.2 Results and Discussion

Solar arrays with different locations and orientations will require different

capacities to generate the same amount of annual energy. While the South and

West array capacities are within 5% of each other, the East array has over 20%

more capacity than either of the other scenarios due to orientation and different

meteorological conditions that yield less overall solar insolation [189]. A system with

greater capacity can produce greater instantaneous generation and ramping. This

distinction should be kept in mind when analyzing the results. Additionally, while

this UC&D model can accurately simulate the ERCOT day-ahead market, it does not

completely predict all of the market behavior that affects prices and dispatch in the
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real-time market, such as extremely high prices caused by competitive bidding during

times of high grid stress. The results presented in this study are not meant to make

detailed predictions but to illustrate big-picture trends and intuitions. The results

show how total dispatch cost, net load reduction, net load flexibility requirements,

fuel use, and emissions vary between the different scenarios. Most of the results are

summarized in Table 3.2.

3.2.1 Prices and Total Dispatch Cost

The wholesale energy price is the compensation ($/MWh) paid to all gener-

ators for the amount of energy they produced for the wholesale electricity market

during a given time frame. Table 3.2 shows that solar generation reduces the av-

erage energy price over the entire year. When comparing the solar scenarios, the

East scenario has the lowest average annual energy price and the South scenario has

the highest. The simulation results also show that, when compared with the No

Solar scenario, solar generation reduces energy prices more in the summer than in

the winter. It also increases price volatility in the winter and reduces price volatility

in summer as shown in Figure 3.4.

In addition to purchasing energy generation, electricity markets also purchase

ancillary services that provide reserve generation capacity and grid stability features.

The 2011 ERCOT model developed for this work uses four types of ancillary services.

“Regulation Up” and “Regulation Down” services require on-line generators to raise

or lower their generation within five minutes. “Responsive” services require on-line

generators to raise their generation within ten minutes. “Non-Spinning” services re-
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Table 3.2: The results for each of the four 8,760-hour UC&D simulations of the
ERCOT electricity market are shown below. The information is categorized into
smaller tables corresponding to each of the “Results & Discussion” sub-sections in
this report.

East South West No Solar

S
o
la
r

D
a
ta

Array Size (GW Capacity) 18.3 14.2 15.0 0.0

Annual Total Solar Generation
(GWh) 22,500 22,500 22,500 -
(% of Annual Energy Demand) 6.8% 6.8% 6.8% -

4
.1

P
ri
ce
s
&

T
o
ta
l

D
is
p
a
tc
h
C
o
st Annual Total Dispatch Cost

($ Billion) 7.98 7.94 7.90 8.81
(% reduction vs. No Solar) 9.4% 9.9% 10.3% -
Ancillary Services Cost ($ Billion) 0.308 0.306 0.306 0.297

Average Yearly Prices

Energy ($/MWh) 33.73 33.92 33.80 35.53
Regulation Up ($/MWh) 10.55 10.51 10.59 10.23
Regulation Down ($/MWh) 6.85 6.66 6.28 5.09
Responsive ($/MWh) 12.94 12.96 13.03 12.88
Non-Spinning ($/MWh) 2.40 2.40 2.40 2.40

4
.2

N
et

L
o
a
d
R
ed

.

Maximum Net Load (GW) 62.9 62.6 63.2 65.8
Hours Net Load Above 60 GW (Hours) 50 28 12 204
Minimum Net Load (GW) 9.1 11.4 12.3 15.4
Hours Net Load Below 15 GW (Hours) 61 36 13 0

4
.3

N
et

L
o
a
d

F
le
x
ib
il
it
y
R
eq

.

Ramp Down Requirement
Average(GW/hr) 4.4 3.9 3.9 3.5
Std. Dev. (GW/hr) 1.3 1.1 1.0 1.1

Ramp Up Requirement
Average(GW/hr) 4.5 4.1 4.6 3.6
Std. Dev. (GW/hr) 1.5 1.5 1.5 1.3

Ramp Up Factor Requirement

Average(GW/hr per GW) 0.16 0.14 0.16 0.12
Std. Dev. (GW/hr per GW) 0.06 0.05 0.07 0.03
Year Max. (GW/hr per GW) 0.51 0.42 0.47 0.22
Year # Hrs Ramp Fact.> 0.35 5 2 5 0

Volatility Requirement
Average(GW/(hr*day)) 36.1 28.3 32.6 20.2
Std. Dev. (GW/(hr*day)) 10.5 8.7 9.4 4.0

4
.4

G
en

er
a
ti
o
n
b
y

G
en

er
a
to
r
T
y
p
e

Coal
(GWh) 123,800 123,500 124,100 128,700
(% Reduction vs. No Solar) 3.8% 4.0% 3.6% -

Hydroelectricity
(GWh) 815 815 815 820
(% Reduction vs. No Solar) 0.6% 0.6% 0.6% -

Nat. Gas Boiler
(GWh) 3,580 3,050 2,350 5,310
(% Reduction vs. No Solar) 32.6% 42.6% 55.7% -

Nat. Gas Combined Cycle
(GWh) 106,300 106,800 107,300 121,700
(% Reduction vs. No Solar) 12.7% 12.2% 11.8% -

Nat. Gas Internal Combustion
(GWh) 700 700 680 740
(% Reduction vs. No Solar) 5% 5% 8% -

Nuclear
(GWh) 40,000 40,000 40,000 40,000
(% Reduction vs. No Solar) 0% 0% 0% -

Open Cycle Gas Turbine
(GWh) 3,630 3,700 3,440 3,920
(% Reduction vs. No Solar) 7.4% 5.6% 12.2% -

Wind
(GWh) 31,000 31,000 31,000 31,000
(% Reduction vs. No Solar) 0% 0% 0% -

4
.5

E
m
is
si
o
n
s

&
W

a
te
r
U
se

CO2
(million tons) 193 192 192 207
(% Reduction vs. No Solar) 6.8% 7.2% 7.2% -

NOx
(thousand tons) 99.6 99.1 98.9 105.5
(% Reduction vs. No Solar) 5.6% 6.1% 6.3% -

SOx
(thousand tons) 321 319 321 336
(% Reduction vs. No Solar) 4.5% 5.1% 4.5% -

Water Consumption
(billion gallons) 106 106 106 112
(% Reduction vs. No Solar) 5.4% 5.4% 5.4% -

Water Withdrawals
(billion gallons) 8,440 8,420 8,410 8,720
(% Reduction vs. No Solar) 3.2% 3.4% 3.6% -44



quire off-line generators to come online and provide generation within thirty minutes.

New ancillary service markets being designed by ERCOT [177] will affect future it-

erations of the model used for this study, but the model does not currently account

for these pending market updates.

While prices communicate some information about how solar generation af-

fects the electricity market, total dispatch cost (the cost of providing energy and

ancillary services for the electric grid) is a more useful metric for judging the overall

impact of solar generation. Total dispatch cost amounted to $8.81 Billion for the No

Solar scenario. This amount was reduced in the East, South, and West scenarios by

9.4%, 9.9%, and 10.3%, respectively - a reduction of approximately $900 Million. A

10% reduction in total dispatch cost resulting from solar energy producing only 6.8%

of total energy demand indicates a high value for the electricity generated by solar.

Figure 3.5 shows how each solar scenario reduces the monthly total dispatch cost

throughout the year. When comparing the solar scenarios with each other, the East

scenario reduces total dispatch costs most in July and August, the South scenario

most from October through February, and the West scenario most for March through

June and for September. Many factors influence the difference in total dispatch costs

between the solar scenarios, but there is a strong correlation between the dispatch

costs and the seasonal solar output of the arrays shown in Figure 3.3. Noticeably,

the East array only reduces the July and August dispatch costs slightly compared

to the other scenarios, though it produces significantly more energy during those

months. This result speaks to the lower quality of the East array’s production as its

peak power output occurs a few hours before peak demand and it introduces higher
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flexibility requirements as discussed in Section 3.2.3.

While solar generation reduces total dispatch cost, it increases the cost of

procuring ancillary services. As seen in Table 2, solar generation causes the average

yearly ancillary services prices to increase by 2.7–3.5% for Regulation Up, 23–35%

for Regulation Down, and 1% or less for the other ancillary services. The West

array increases Regulation Up prices and the East array increases Regulation Down

prices more than the other scenario, a result that correlates with the Ramp Up and

Ramp Down Requirements discussed in Section 3.2.3, where a system with greater

Ramp Down Requirements might be expected to pay more for Regulation Down

services. Ancillary services cost, the annual amount paid to generators for procuring

ancillary services, amounted to $297 Million for the No Solar scenario. This amount

increased by approximately 3.1%, or $10 Million, for the solar scenarios. Since this

cost accounts for only 3.4–3.9% of the total dispatch cost, a 3.1% increase in ancillary

services cost has a small effect on the market as a whole. The $900 Million reduction

in total dispatch cost created by solar generation is much more substantial than the

$10 Million increase in ancillary services cost.

3.2.2 Net Load Reduction

Since wind and solar electricity resources have zero marginal costs, they are

usually dispatched first (unless there is curtailment because of transmission conges-

tion or oversupply), and dispatchable generation resources meet the remaining de-

mand. This tendency is captured in the net load, where net load is equal to the total

load minus the electricity generated by solar and wind resources. The peak-period
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Figure 3.4: The monthly price averages and standard deviations change depending
on the solar scenario. Solar tends to increase monthly price standard deviation in
the winter and decrease it in the summer. It also decreases energy prices more in
the summer than in the winter.

and off-peak net loads encountered during the UC&D simulation are useful tools for

comparing the different solar scenarios. Smaller peak-period net loads indicate that

fewer dispatchable resources are needed to meet demand and suggest that peak-load

generation assets might be dispatched less often. Smaller off-peak net loads indicate

that more dispatchable resources must be turned off or operate at their minimum

capacities. This situation can increase dispatch costs by incurring more generator

start-up costs and causing generators to operate at less-efficient capacities. Wind

and solar resources can also be curtailed to balance low net loads, though this study

uses a no-curtailment constraint.

The net loads for each scenario are illustrated in the Figure 3.6 duration curve.
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Figure 3.5: Each solar scenario reduces the monthly total dispatch cost when com-
pared to the No Solar scenario. Summer months see more savings due to greater
solar output and the alignment of solar generation with peak demand.

This figure indicates that the West array will generally reduce the highest net load

values more than the South or East arrays. These results suggest that electricity

generation from the West array is more aligned with peak summer demand than the

other scenarios and will require less energy generation from peak-load generators.

However, all three scenarios have similar maximum net loads for the year requiring

similar dispatchable generation capacity to meet maximum net demand. The figure

also indicates that the East array will create the lowest net loads of the three ar-

rays. These results suggest that electricity generation from the East array is more

aligned with minimum shoulder-season demand than the other scenarios and will

force base-load generators to shut-down or operate at minimum capacity more often.
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Figure 3.6: The net load duration curve with insets magnifying the highest and
lowest net load values shows the number of hours per year experienced at different
net loads by each scenario. During the highest net load hours of the year, the West
net load is generally smaller than the South net load which is smaller than the East
net load. However, all three solar scenarios have similar maximum net loads for the
year. During the lowest net load hours of the year, the West net load is larger than
the South net load which is larger than the East net load.
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3.2.3 Net Load Flexibility Requirements

The hourly profile of the net load indicates the load and ramp rates that must

be met by dispatchable resources to accommodate the full solar and wind capacity.

Increased volatility and ramping in the net load curve imply the need for more flexible

generation resources or renewable energy curtailment. The flexibility requirements of

the different scenarios can be compared by calculating a number of net load ramping

characteristics.

Ramp rates are calculated by subtracting the previous hour’s net load from

the current hour’s net load as shown in equation 3.1, where t is time in hours.

“Average Ramp Down Requirements” are calculated by taking the steepest negative

ramp rate during each day of the year and averaging these 365 ramp rates together.

Similarly, “Average Ramp Up Requirements” are derived by averaging the largest

positive ramp rates for each day of the year.

RampRate(t) = NetLoad(t)−NetLoad(t− 1) (3.1)

“Ramp Factors” are calculated by dividing the 1-hour net load ramp rate by the pre-

vious hour’s net load as shown in equation 3.2. A ramp factor of 0.50 means that the

generation fleet must increase its generation output by 50% over the next hour. “Av-

erage Ramp Up Factor Requirements” are calculated by taking the maximum ramp

factor during each day of the year and averaging these 365 ramp factors together.

While ramp requirements communicate the megawatt-per-hour changes needed from

the generation fleet, ramp up factor requirements anticipate the difficulties of quickly
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ramping up a generator fleet with limited on-line capacity.

RampFactor(t) =
RampRate(t)

NetLoad(t− 1)
(3.2)

Finally, “Volatility” is used to observe the effects of intermittent solar output on

the net load. First, “Ramp Acceleration” is calculated by subtracting the previous

hour’s ramp rate from the current hour’s ramp rate and taking the absolute value

of the result as shown in equation 3.3. Then, the “Daily Volatility” is calculated by

summing the 24 ramp acceleration values for each hour in a day. “Average Volatility

Requirements” are calculated by taking the volatility for each day of the year and

averaging these 365 volatilities together.

RampAcceleration(t) = abs(RampRate(t)−RampRate(t− 1)) (3.3)

Average ramp down and ramp up requirements are 11–28% greater, average

ramp up factor requirements are 17–33% greater, and average volatility requirements

are 40–79% greater for the solar scenarios than for the No Solar base case. The

maximum annual ramp up factors are 91–132% greater for the solar scenarios than

for the No Solar base case. Though these maximum values indicate extreme ramping

situations that might occur only once per year, the generation fleet must be capable

of providing that flexibility to meet reliability expectations.

The results in Table 2 show that the East scenario has the greatest aver-

age ramp down and volatility requirements, the South scenario has the lowest re-

quirements in all of the categories, and the West scenario has the greatest average

maximum ramp up requirements. The scenarios can be listed in order of greatest

flexibility requirements as East > West > South.
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3.2.4 Generation by Generator Type

The ERCOT UC&D model utilized in this study tracks the hourly energy

production of each generator in the fleet. Categorizing these generators based on

their fuel type and technology reveals which types of generators will be dispatched

more or less often with greater solar penetration. Table 3.2 shows the total energy

(GWh) produced by each generator type for each of the four scenarios. Among the

solar scenarios, energy generation from natural gas boilers was greatly reduced, and

energy generation from natural gas combined cycle (NGCC) resources was reduced

by a greater percentage than for open cycle gas turbines (OCGT) even though OCGT

resources are more expensive to operate. Figure 3.7 shows the 24-hour generator mix

for July 25th. It illustrates how the net load and generation fuel mix changes for

each scenario during a day of maximum solar output in the summer and shows how

solar can reduce maximum net load in the summer displacing the most expensive

generators in the bid stack.

In addition to reducing the maximum net load, solar generation also changes

the way generators are dispatched by utilizing them to handle the increased net

load ramp rates and volatility. Figure 3.8 shows the 24-hour generator mix for

March 5th. It illustrates how the net load and generation fuel mix changes for each

scenario during a day of maximum solar output in the spring and shows how solar can

create low net loads followed by steep ramp rates requiring dispatchable generation

to operate more flexibly. Figure 3.9 charts the average hourly dispatch for NGCC

(slow-ramping, mid-load) and OCGT (fast-ramping, peak-load) generators during

the year. While fast-ramping generators (e.g. OCGT) help compensate for solar PV
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Figure 3.7: These charts show each scenario’s hourly fuel mix during a typical sum-
mer day. The net load is represented by the bottom of the wind generation area. The
“duck curve” is not as apparent during the summer season when solar generation is
aligned with peak demand.
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generation by ramping up in the evening, slow-ramping, mid-load generators (e.g.

NGCC) play an important role by absorbing much of the mid-day solar generation

as well as providing ramping support. In most markets, where mid-load capacity

greatly exceeds fast-ramping capacity, the mid-load generation will compensate for

large, bulk changes to the net load, while fast-ramping generation will act to increase

short-term ramping capabilities.

While utilization of the least expensive generation resources (hydroelectric-

ity, nuclear, wind) is almost unchanged, the dispatch of slow-ramping generators is

reduced by percentages roughly corresponding to their marginal cost (i.e. natural

gas boilers, having greater marginal costs than coal, are dispatched less than coal

overall). Alternatively, fast ramping, expensive, peak-load generators such as open

cycle gas turbines are also displaced during peak solar generation hours but recover

some of their utilization by providing ramping support in the evening.

3.2.5 Emissions & Water Use

Since solar generation displaces existing thermal generation resources without

producing emissions or using cooling water, it has a significant impact on the amount

of emissions produced and water utilized in the electricity market. The production

of CO2, NOx, and SOx emissions as well as the withdrawal and consumption of

water are calculated in the model. Water withdrawals denote the total amount of

water entering the cooling system of a power plant (much of which is returned to a

water body) and water consumption denotes the amount of water lost to evaporation

during the cooling process.
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Figure 3.8: These charts show each scenario’s hourly fuel mix during a typical spring
day. The net load is represented by the bottom of the wind generation area. The
“duck curve” manifests itself in ERCOT during the shoulder seasons when there is
abundant spare capacity. ISOs have expressed concern about accommodating the
steep evening ramp rates shown here.
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Figure 3.9: The top two charts show the hourly output of natural gas combined cycle
(NGCC) and open cycle gas turbine (OCGT) generators averaged over the year for
each scenario. The bottom two charts show the annual average hourly dispatch of
a solar scenario minus the annual average hourly dispatch of the No Solar scenario
where negative values indicate hours of the day when the generator category is being
dispatched less than in the No Solar scenario.
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The results in Table 3.2 show that increased solar generation leads to re-

ductions in emissions and water. The West scenario reduces NOx emissions and

water withdrawals more than the other scenarios while the South Scenario reduces

SOx emissions more. The East scenario has a lower impact on CO2 emissions, NOx

emissions, and water withdrawals than the other scenarios.

3.3 Conclusions

While the four scenarios produce different results, they all support some gener-

alizations about solar penetration in ERCOT. First, 22,500 GWh of solar generation

reduces the total dispatch cost in the ERCOT market by approximately $900 Million

per year. The cost reduction percentages in all three scenarios (9.4–10.3%) exceed

the percentage of total energy provided by the arrays (6.8%), which is a non-obvious

result. This result occurs partly because the energy that is being displaced by low-

cost solar tends to come from higher-than-average cost generators rather than from

lower-than-average cost generators. The solar arrays in this study also increased

ancillary services costs by approximately $10 Million per year. This 3% increase is

small when compared to the overall reduction in total dispatch cost.

Second, 22,500 GWh of solar generation reduces peak demand by 2.6–3.2 GW

and increases net load flexibility requirements. Solar generation is not always closely

aligned with load, but it is aligned enough to reduce the amount of thermal generation

capacity needed by the electricity system during peak demand. However, the solar

PV arrays only reduce annual peak demand by 15–23% of their installed capacity.

Solar will eliminate the need for some existing dispatchable capacity, however most
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of the generators in the generator fleet will still be needed to meet peak summer

demand, though they will be utilized for fewer hours during the year. Solar will

also intensify ramping and volatility, particularly during shoulder seasons, requiring

spare capacity to be available to provide increased system flexibility.

Third, solar affects how dispatchable generation is utilized in ERCOT. There

appear to be two effects that influence this utilization. One, solar tends to reduce

day-time net load which displaces higher-cost generators and reduces total dispatch

cost. Slow-ramping, mid-load generation provides much of the flexibility needed to

accommodate this net load reduction. Two, solar requires greater system flexibility,

and, without broader system changes, needs dispatchable generators to support its

large-scale integration, some of which are expensive faster-ramping generators that

increase total dispatch cost. This dichotomy along with relatively small reductions

to the annual maximum net load are notable characteristics of an electric grid with

large solar penetration. This situation presents opportunities for demand response,

electricity storage, and other supporting technologies to gain additional value by

reducing solar integration costs.

Fourth, solar generation reduces emissions and water consumption. If carbon

dioxide emission reductions, water conservation, and other environmental considera-

tions continue to gain support, solar technology could be an important contributor for

realizing those goals. For instance, if CO2 were priced at $10/ton and SOx and NOx

at $10k/ton, the emissions reductions from these solar scenarios would contribute an

additional $350 million in value.

The differences in the value of solar generation based on location and ori-
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entation can be explained by comparing the integration costs of the different solar

scenarios. The integration costs from the UC&D simulations can be categorized as

flexibility costs and thermal utilization costs. Transmission constraints, which can

also contribute to integration costs, are ignored in this model. When compared to

the other scenarios, the East scenario did not excel in efficient power plant utilization

or reduced flexibility requirements and was the worst scenario at minimizing total

dispatch cost. Even though the East array is better aligned with the seasonal load

of the ERCOT market, its daily summer generation peaks a few hours before the

peak demand. This incongruence should be examined in future studies to see if solar

arrays with both seasonal and daily correlations with peak demand can be employed.

When comparing the South and West scenarios, the South array produces a net load

profile with lower ramp rates and less volatility, which translates to lower flexibility

requirements and lower costs. However, the West array utilizes the existing thermal

resources more effectively by dispatching more of the efficient coal and natural gas

combined cycle resources and less of the inefficient natural gas boiler and open cycle

gas turbine resources as shown in Table 3.2. This efficient use of the thermal gener-

ation fleet also translates to lower costs. The West scenario reduces dispatch costs

more than the South scenario by a non-trivial amount. This comparison strongly

suggests that the total dispatch cost is influenced more by the efficient use of thermal

generation assets than by flexibility requirements.

A number of these conclusions should be insightful as electric grids plan for

future capacity expansion. Encouraging the growth of solar energy generation can

be a good step towards achieving sustainability goals, but it must be done with
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care. The orientation and geographic location of solar panels within an electric grid

not only affects emissions, but influences the generator dispatch, total dispatch cost,

system flexibility requirements, and other parameters that grid developers might not

have considered. This study aims to contribute new knowledge about the holistic

affects of integrating solar generation into the grid that will help inform these grid

development decisions.
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Chapter 4

The impacts of wind and solar on grid flexibility

requirements in the Electric Reliability Council of

Texas

Chapter 4 illustrates a framework for quantifying flexibility requirements by

analyzing the correlation of increasing wind and solar generation with grid flexibility

requirements in ERCOT. The trends discussed in this study are intended to provide

meaningful insight for grid planners as they anticipate the growth of renewable en-

ergy resources and the strategies they should implement to maintain reliability and

manage integration costs. This insight is especially valuable for grids with rapid

penetrations of renewables already underway or looming, such as Germany, China,

Australia, Ireland, ERCOT, and many others.

This chapter is an updated study of “The impacts of wind and solar on grid

flexibility requirements in the Electric Reliability Council of Texas” as published by

Energy in 2017 [41].

4.1 Methods

The methods for this study are presented in three separate subsections. Sec-

tion 4.1.1 discusses the calculation of the peak output, a proxy for installed capacity,
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and illustrates the renewable energy capacity growth used in this analysis. Sec-

tion 4.1.2 discusses the data sources used for this study and the methods used to

expand them. Section 4.1.3 discusses the limitations of the analysis.

4.1.1 Peak Output Calculation

Portions of this paper compare the flexibility requirements with the amount

of renewable energy installed on the grid. Rather than using the installed capacity,

this study compares the flexibility requirements with the greatest demonstrated wind

and solar output up to the date being analyzed, referred to now as the “peak out-

put”. While installed capacity does not account for capacity factors or solar resource

efficacy, these properties are inherent in the peak output, which simplifies its com-

parison between grids with different solar resources. Additionally, the peak output,

being calculated directly from the data used in this study, is more quantitatively ro-

bust than the approximate installed capacity numbers shown herein. Fig 4.1 shows

the growing installed capacity and peak output for wind and solar from 2008–2025.

As seen in the figure, the peak output can be roughly divided into the 2008–2015

“wind era” where wind output grows steadily and solar output remains negligible

and the 2016–2025 “solar era”, which is a simulated forward-looking era during which

wind output is held constant and solar output grows steadily. This capacity growth

scenario is not meant to suggest that wind capacity will not grow in ERCOT in the

future; it simply provides a useful analytical scenario. Thus, this study assumes that

changes in flexibility requirements during the wind era are driven by increasing wind

output, and changes in flexibility requirements during the solar era are driven by
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increasing solar output.

Figure 4.1: Growth of the wind and solar peak output can be organized into the
2008–2015 “wind era” and the 2016–2025 “solar era”.

4.1.2 Data Generation

This study analyzes a set of 15-minute resolution, load, wind, and solar data

from 2008–2025. This data set was created using different data sets acquired from

ERCOT and NREL as described in Table 4.1. When creating the data, discontinu-

ities between the first interval of any calculated year of load, wind, or solar data and

the last interval of the previous year’s data are connected by a linear interpolation

with a slight slope (less than 500 (MW/15min)) until the discontinuity has been

removed. This adjustment preserves continuity between years without creating arti-

ficial periods of significant ramping. See Table 4.2 for an example of this calculation.
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By basing all load, wind, and solar projections off of a single year of data (2012),

potential weather-related correlations between load, wind, and solar are preserved.

ERCOT advised the authors to use 2012 as a base year due to their perception of

2012 as a typical grid operation year without extreme weather, outage, or other

outlier events.

Portions of the 15-minute resolution 2008–2025 load, wind generation, and

solar generation data are visualized in Figs 4.2-4.4. Fig 4.2 shows the net load for

each 15-minute interval, averaged over all the days in January for each year. It

exhibits the two-peak net load often seen during the winter and shoulder seasons

in ERCOT. From 2016–2025, an increase in projected load drives the load curve

upward each year, but increasing solar generation drives the net load down from

8:00 to 18:00 when solar generation is producing electricity. This reduction of the

daytime net load creates steep ramp rates around 10:00 and 17:00 and moves the

minimum net load to the middle of the day. Fig 4.3 shows the net load at each

15-minute interval on February 8th of each year after 2016, when solar capacity

begins to trend upward. In addition to steeper ramp rates, this figure also shows

the increasing volatility of the net load curve as solar penetration increases. Fig 4.4

shows the net load for each 15-minute interval, averaged over all the days in June for

each year. It exhibits the large mid-day peak driven significantly by air conditioning

demand. From 2016–2025, an increase in projected load drives the net load curve

upward each year. As solar generation turns on around 6:30, it reduces the net load,

creating steep downward ramp rates. As solar generation falls off around 18:30, the

net load quickly rises, creating steep upward ramp rates.
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Table 4.1: Different data sets acquired from ERCOT and the National Renewable
Energy Laboratory (NREL) [130] were used to create the “Model Data” described
in this table.

Name Resolution Description Source

S
o
u
rc
e
D
a
ta

ERCOT
2008–2014

15-minute
Load and wind data from 2008–2014. Solar data from 2012–2014
(solar generation was not tracked until 2012).

ERCOT

ERCOT 2015 60-minute Load, wind, and solar data. ERCOT

ERCOT Load
Projections

60-minute Projected load data for 2016–2025, based on 2012 weather data. ERCOT

NREL
NSRDB [130]

30-minute
Historical weather data and calculated solar insolation data,
such as global horizontal radiation (GHI), needed to calculate
solar panel power output.

NREL

M
o
d
el

D
a
ta

2008–2014 Load,
Wind, Solar

15-minute Taken verbatim from “ERCOT 2008–2014” data set.

2015 Load 15-minute

The 2012 load data from the “ERCOT 2008–2014” data set was
multiplied by a constant scaling factor. The resulting load profile
has the same annual peak demand as the “ERCOT 2015” data
set.

2015 Wind 15-minute

The 2012 wind data from the “ERCOT 2008–2014” data set was
multiplied by a linear scaling factor. The resulting wind profile
has the same January installed wind capacity as January 2015,
and the same December installed wind capacity as December
2015.

2016–2025 Wind 15-minute

The 2012 wind data from the “ERCOT 2008–2014” data set was
multiplied by a linear scaling factor. The resulting wind profile
has the same January installed wind capacity as December 2015,
and the same December installed wind capacity as December
2015. This wind profile is repeated annually for 2016–2025,
assuming that the installed wind capacity at the end of 2015
(15.7 GW) remains constant through 2025 with no additional
wind being installed.

2015–2025 Solar 15-minute

Using the “NREL NRSDB” database, 2012 weather profiles for
eleven locations across west and central Texas were compiled.
These eleven weather profiles are read into the NREL System
Advisor Model software [127], which translates the weather
profiles and solar array properties into 30-minute resolution,
1-axis tracking, solar generation profiles. By weighting these
profiles to accentuate west and central Texas, normalizing the
output to the installed capacity, and averaging each pair of
adjacent, 30-minute interval data points to create 15-minute
interval data points, a 15-minute solar generation profile is
created. Each year in the 2015-2025 solar data set is created by
multiplying this normalized generation profile by the installed
capacities in Table 4.3.

2015–2025
Comparison Solar

15-minute

The method for creating the “2015–2025 Solar” data set is used
to create a variety of different solar installation scenarios as
shown in Table 4.3. The flexibility requirements of these
scenarios are compared against each other in the analysis.
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Table 4.2: Since portions of the data are created by connecting December 31 to
January 1 of the same year, discontinuities will arise, as shown here for the load.
The discontinuity between the actual load at 12/31 23:45 and 1/1 0:00 leads to an
artificial ramp rate of -2,792 MW/15min. Adjusting the load to the indicated values
removes the artificial ramp rate and creates continuity between the data.

12/31

23:15

12/31

23:30

12/31

23:45

1/1

0:00

1/1

0:15

1/1

0:30

1/1

0:45

1/1

1:00

1/1

1:15

Actual Load 29,860 29,570 29,313 26,521 26,441 26,358 26,269 26,058 25,892

Actual Ramp -290 -257 -2,792 -80 -83 -89 -211 -166

Adjusted Load 29,860 29,392 28,892 28,392 27,892 27,392 26,892 26,392 25,892

Adjusted Ramp -468 -500 -500 -500 -500 -500 -500 -500

Table 4.3: The installed solar capacity increases according to the top portion of this
table. The bottom portion of this table describes the different solar location and
orientation scenarios used for comparison in this study.

In
st
a
ll
ed

S
o
la
r

C
a
p
a
ci
ty

2015 300 MW total

2016 1,000 MW total

2017–2024 +1,500 MW of new capacity added each year’

2025 14,500 MW total

S
o
la
r

S
ce
n
a
ri
o
s

Location Comparisons

(all 1-axis tracking arrays)

(see Table 4.4 for detailed

geographic information)

West: emphasis on west and central Texas (best solar resource locations)

Central: emphasis on central Texas (best proximity to population centers

and transmission infrastructure)

South: emphasis on south and central Texas (another good solar resource

location)

Orientation Comparisons

(all West located; 20-deg

above-horizontal tilt

for all fixed panels)

Fixed West: all solar is fixed, west-facing panels

Fixed Southwest: all solar is fixed, southwest-facing panels

Fixed South: all solar is fixed, south-facing panels

Fixed Southeast: all solar is fixed, southeast-facing panels

1-axis: all solar is 1-axis tracking (identical to the West scenario)

2-axis: all solar is 2-axis tracking panels
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Table 4.4: Solar data from 19 different cities is used in this study [130]. The solar
profile for each “location comparison” scenario is built from the indicated fractions
of each city’s solar profile.

Solar Array

Location (City)

Location Comparisons

West Central South

Abilene 0.08 0.08 0

Alpine 0.13 0 0

Amarillo 0.08 0 0

College Station 0 0.08 0.06

Del Rio 0 0 0.14

Fort Worth 0.04 0.2 0

Guthrie 0.08 0 0

Houston 0 0.2 0.06

Laredo 0 0 0.14

Longview 0 0.08 0

Lubbock 0.08 0 0

Lufkin 0 0.04 0

McAllen 0 0 0.14

Midland 0.13 0.08 0.06

Pecos 0.13 0 0

San Antonio 0.04 0.16 0.14

Sheffield 0.13 0 0.06

Sonora 0.08 0.04 0.06

Victoria 0 0.04 0.14
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Figure 4.2: This chart shows the net load for each 15-minute interval, averaged over
all the days in January for each year. January exhibits the two-peak net load often
seen during the winter and shoulder season months in ERCOT. The years 2008 to
2015 are a period of rapid growth in wind capacity. From 2016–2025, as more solar
is added to the grid, it generates power from 8:00 to 18:00, reducing the net load
and creating steep ramp rates as the sun rises and sets.
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Figure 4.3: The net load is shown for each 15-minute interval on February 8th of each
year after 2016, when solar capacity begins to trend upward. These profiles strongly
exhibit the tendency for solar generation to increase the ramping and volatility of
the net load as discussed later in this study.
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Figure 4.4: This chart shows the net load for each 15-minute interval, averaged over
all the days in June for each year. June exhibits the dramatic single-peak net load
seen during the summer months in ERCOT where peak net load is driven significantly
by air conditioning demand. The years 2008 to 2015 are a period of rapid growth
in wind capacity. From 2016–2025, as more solar is added to the grid, it generates
power from 6:30 to 18:30, reducing the net load and creating steep ramp rates as the
sun rises and sets.
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A hypothesis can be developed by observing the general timing, ramping,

and volatility of the curves in Fig 4.5, which shows the capacity factors for the load,

wind, and solar profiles in 2025 averaged over the months of January (winter), April

(shoulder season), and August (summer). Considering that peak demand (80.0 GW)

is six to seven times greater than the peak wind (13.1 GW) and solar (11.1 GW) out-

put, it is likely that flexibility requirements will be driven by changes in the demand

profile, where the maximum ramp up rates tend to occur in the morning and the

most severe ramp down rates tend to occur in the evening. Renewable generation

will accentuate these demand-driven flexibility requirements whenever changes in re-

newable output are asynchronous with demand, e.g. flexibility requirements caused

by simultaneously decreasing demand and increasing wind output will exceed the

flexibility requirements caused by decreasing demand alone. Alternatively, abrupt

changes in renewable output might create flexibility requirements of greater magni-

tude than the existing demand-driven flexibility requirements, e.g. large amounts of

solar capacity might ramp up and down with the sun quickly enough to create net

demand ramp rates that are greater than the demand-driven ramp rates.

Wind output shows some asynchronization with the demand profile, which

might cause correlations between increasing wind capacity and increasing flexibility

requirements. On average, wind output undergoes sustained, multiple-hour ramp

ups as demand is ramping down in the evening, particularly in the winter and sum-

mer, suggesting that greater wind capacity might cause minimum 1-hour and 3-hour

ramp down rates to worsen. However, wind output is somewhat flatter during the

morning as demand is ramping up, suggesting that additional wind capacity will not
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Figure 4.5: This chart shows load, wind, and solar capacity factors averaged over the
months of January (winter), April (shoulder season), and August (summer). Peak
demand, wind output, and solar output are 80.0, 13.1, and 11.1 GW, respectively.
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significantly impact maximum 1-hour or 3-hour ramp up rates.

Solar output tends to be more synchronized with the demand profile, mean-

ing that it has a limited ability to intensify the existing demand-driven flexibility

requirements. However, solar output does change dramatically with sunrise and sun-

set. These quick changes in solar output suggest that large amounts of solar capacity

might cause a shift from demand-driven to solar-driven flexibility requirements. In

this case, the largest net demand ramp up rates will occur in the evening as solar

output falls off with the setting sun and the most severe net demand ramp down

rates will occur in the morning as solar output spikes with the rising sun.

Both the wind and solar output curves exhibit chatter or noisiness that will

contribute to net demand volatility. This chatter is unrelated to the noisiness of the

demand profile, meaning that the net demand curve will likely have more volatility

than the demand profile, and increasing wind and solar capacity might both cause

greater net load volatility.

4.1.3 Limitations

While this study offers some improvements over previous flexibility analyses

as discussed in Section 6.1, it also experiences some limitations. First, this study

fails to address the contribution of random stochastic noise to the overall flexibility

requirements. Random noise contributes to flexibility requirements, especially in the

5-minute or less time scale [72]. Forecast errors due to the weather-related uncertain-

ties of renewable energy power output also contribute to flexibility requirements [89].

Since this study assumes perfect knowledge of 15-minute resolution renewable energy
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generation, it ignores forecast errors and overlooks much of the random variation that

can increase flexibility requirements on shorter timescales.

Additionally, the quality of the solar data might fail to capture extreme flex-

ibility requirements caused by infrequent weather events. While this study uses

multiple solar generation locations to simulate the smoothing effect of geographic

diversity as recommended by Lettendre et al. [107], data collection over a larger

geographic area might better represent this effect. Additionally, while converting

the solar data from 30-minute to 15-minute intervals allows this study to be per-

formed on a 15-minute time frame, thus preserving the resolution of the load and

wind data, it produces a solar curve that is smoother than actual 15-minute data

would be. Higher resolution solar data would improve the model’s ability to observe

its variability at this time interval. Historical solar generation data would also be an

improvement over the calculated solar data used in this study. Still, a large degree

of solar variability results from the path of the sun through the sky, a variable that

is easily anticipated [107] and is captured in the data used in this analysis. With

these limitations in mind, the results from this study will be used to communicate

the general flexibility trends associated with increased renewable energy generation,

rather than analyzing specific dates or events.

Finally, though this study quantifies flexibility requirements using five differ-

ent ramping and volatility metrics, there are numerous other calculations that could

be used to discuss changing flexibility requirements [113]. Some of these metrics,

such as the range in daily net load, have been excluded either due to their limited

correlation with wind and solar peak output or with the brevity of this paper in
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mind.

4.2 Results and Discussion

The majority of the results are visualized using three different chart types.

Density charts, as shown in Fig 4.6, plot the density function of the flexibility re-

quirements calculated for each 15-minute interval of each year. The area under each

density curve sums to 1. The x-axis is truncated to highlight the changing shape

and center of the density curves. The maximum values, being excluded during these

truncations, are shown in other chart types.

Contour charts, as shown in Figs 4.7 and 4.8, plot the median or maximum

value of the flexibility requirements for each week of each year. Moving up the y-axis

shows how increasing wind and solar peak output changes the flexibility requirements

(since the wind and/or solar output increases each year per Subsection 4.1.2). Moving

across the x-axis shows how flexibility requirements change throughout the seasons.

Scatter charts, as shown in Figs 4.9 and 4.10, plot wind and solar peak output

on the x-axis and flexibility units on the y-axis. These charts give a sense of the

flexibility requirement quantities being experienced during each week. The solar

section of the chart has a constant wind peak output of 13.1 GW while solar increases

annually per Subsection 4.1.2. The regression lines suggest whether increased wind

or solar peak output is noticeably correlated with flexibility requirements. Additional

statistical analysis of the results can be found in the Appendix (Chapter A).
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4.2.1 Wind and Solar Peak Output Comparison

The following subsection analyzes the changes to the net load caused by in-

creasing wind and solar peak output. The analysis is performed using the West

scenario described in Subsection 4.1.2. Detailed results are presented in subsec-

tions 4.2.1.1-4.2.1.5 with a summary of the results shown in Table 4.5. In each

subsection, the results will be discussed in consideration of both the wind era, where

wind peak output increases from 2.4 GW to 13.1 GW during 2008–2015, and the

solar era, where solar peak output increases from 0.6 to 12.0 GW during 2016-2025.

4.2.1.1 1-Hr Ramp Rates

The 1-Hr ramp rate requirements for 2008–2025 are summarized in Figs 4.6

through 4.11. As wind peak output increases, the density curves in Fig 4.6 show no

discernible trend and the median stays relatively centered on 0 MW/hr. Fig 4.8 shows

a possible correlation between increasing wind peak output, decreasing December–

March ramping, and increasing June–August ramping, but the effect is minor. Based

on Fig 4.11 lower minimums seem to be the only 1-hr ramp rate statistic that corre-

lates with increasing wind penetration.

As solar peak output increases, the density curves in Fig 4.6 tend to widen,

showing fewer ramp rates in the -1,000 to 2,000 MW/hr range and more in the

<-1,000 and >3,000 MW/hr range with the median staying near 0. Fig 4.8 shows

a noticeable correlation between maximum 1-hr ramp rates and solar peak output,

especially from November to May. February 2023–2025 experiences some 1-hr ramp

rates in excess of 12,000 MW/hr, the highest in this study. Figs 4.10 and 4.11 suggests
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that the minimum and maximum 1-hr ramp rates both correlate with increasing peak

solar output.

Figure 4.6: The 1-hr ramp rate becomes wider as the solar peak output increases
while remaining relatively centered on 0 MW/hr.

Figure 4.7: The small changes in median 1-hr ramp rate do not appear to be corre-
lated with season or year, remaining relatively centered on 0 MW/hr.
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Figure 4.8: The maximum 1-hr ramp rate increases with solar peak output, especially
between November and April.

Figure 4.9: The median 1-hr ramp rate does not appear to be correlated with wind
or solar peak output.

Figure 4.10: The maximum 1-hr ramp rate appears to be positively correlated with
peak solar output, while the first additions of wind peak output might have slightly
reduced the maximum.
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Figure 4.11: The minimum 1-hr ramp rate worsens slightly with increasing wind and
solar peak output.

4.2.1.2 3-Hr Ramp Rates

The 3-Hr ramp rate requirements for 2008–2025 are summarized in Figs 4.12

through 4.17. As wind peak output increases, the density curves in Fig 4.12 show

no discernible trend, though Fig 4.13 suggests higher medians during the shoulder

seasons in general. Fig 4.14 shows an increase in summer 3-Hr ramp rates as wind

peak output increases, but the effect seems to level off. Figs 4.16 and 4.17 suggest

that greater wind peak output correlates with worsening minimum and maximum

3-Hr ramp rates.

As solar peak output increases, the density curves in Fig 4.12 tend to widen,

showing fewer ramp rates in the -1,500 to 6,000 MW/3hr range and more in the

<-1,500 and >6,000 MW/3hr range with the median shifting to the right. In Fig 4.13,

the median summer 3-hr ramp rates change from negative to positive. Fig 4.14 shows

a noticeable correlation between maximum 3-hr ramp rates and solar peak output

from November through April. The maximum 3-hr ramp rates in the summer, being

dominated by trends in the load, are not significantly altered by adding solar peak
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output. January and February 2023–2025 experiences some 3-hr ramp rates in excess

of 18,000 MW/3hr, the highest in this study. Figs 4.15, 4.16, and 4.17 suggests that

3-hr ramp rate medians, maximums, and minimums tend to worsen with peak solar

output.

Figure 4.12: The 3-hr ramp rate becomes wider as the solar peak increases while
shifting slightly towards the right.

4.2.1.3 Ramp Factors

The ramp rate requirements for 2008–2025 are summarized in Figs 4.18 through 4.22.

As wind peak output increases, Figs 4.19 and 4.21 suggest that median ramp factor

increases slightly. Figures 4.20 and 4.22 show that maximum ramp factor may tend

to slightly decrease as wind peak output increases.

As solar peak output increases, the density curves in Fig 4.18 tend to widen
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Figure 4.13: The median 3-hr ramp tends to be greater during the shoulder seasons
and less during the summer and winter. Increased solar peak output appears to
increase the summer median and reduce the winter and spring median.

Figure 4.14: Increased wind peak output appears to increase maximum 3-hr ramp
rates during the summer. Increased solar peak output appears to increase maximum
3-hr ramp rates from November through April.
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Figure 4.15: The median 3-hr ramp rate does not show a strong correlation with
wind peak output, and appears to increase slightly with initial increases in solar
peak output.

Figure 4.16: The maximum 3-hr ramp rate increases with wind peak output, espe-
cially at higher wind penetrations, and increases slightly with solar peak output.

Figure 4.17: The minimum 3-hr ramp rate worsens steadily with increasing wind
peak output and slightly with increased solar output.
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and shift to the left, showing fewer ramp factors in the -0.005 to 0.025 ((MW/15min)/(MW

online)) range and more in the <-0.005 range with the median shifting to the left.

Fig 4.20 shows a noticeable correlation between maximum ramp Factors and solar

peak output, especially from November to April. February 2025 experiences some

ramp factors near 0.25 when 4.9 GW/15min ramp rates occur after net loads of just

over 20 GW, situations where total dispatchable generation would need to increase

by almost 25% during a 15-minute interval. Figs 4.21 and 4.22 suggest that ramp

factor medians tend to decrease and maximums tend to increase with peak solar

output.

Figure 4.18: The ramp factor distribution becomes wider as the solar peak increases
while shifting towards the left.
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Figure 4.19: The median ramp factor tends to be greater during April–June and
September–November. Increased wind peak output appears to slightly increase the
median in the summer while increased solar peak output tends to reduce it.

Figure 4.20: Maximum ramp factors are lowest in the summer when large amounts
of online generation can more easily handle ramping from the net load. Increasing
solar peak output increases the ramp factor, especially from October–May where
ramp factors can reach over 0.20.
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Figure 4.21: The median ramp factor tends to increase with wind peak output and
decrease with solar peak output, though it doesn’t stray far from 0.00.

Figure 4.22: The maximum ramp factor tends to decrease slightly with wind peak
output and increase with solar peak output.
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4.2.1.4 1-Hr Volatility

The 1-hr volatility requirements for 2008–2025 are summarized in Figs 4.23

through 4.27. As wind peak output increases, Figs 4.26 and 4.27 suggest a small

correlation with 1-hr volatility that increases at higher wind penetrations.

As solar peak output increases, the 1-hr volatility density curves in Fig 4.23

widen and shift to the right, suggesting that the solar in ERCOT increases the

median and maximum 1-hr volatilities. This result is corroborated by Figs 4.24

through 4.27, with the contour charts suggesting a seasonal shift towards higher

volatility from February through August and lower volatility from September through

January. April–June of 2024–2025 experience some 1-hr volatilities in excess of 9,500

MW/(15min·hr), the highest in this study.

The year 2011, one the hottest and driest years in Texas history, shows un-

characteristically high maximum volatilities in the range of 6,500 MW/(15min·hr).

While this year might be considered an outlier, it might provide a historical case

study for future work on observing the effects of volatility on prices and dispatch

costs.

4.2.1.5 1-Day Volatility

The 1-day volatility requirements for 2008–2025 are summarized in Figs 4.28

through 4.32. As wind peak output increases, Figs 4.26 and 4.27 suggest a small

correlation with 1-day volatility that increases at higher wind penetrations.

As solar peak output increases, the 1-day volatility density curves in Fig 4.28
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Figure 4.23: Increasing solar peak output widens the 1-hr volatility density curve
and shifts it to the right.

Figure 4.24: Wind does not show a strong correlation with the median 1-hr volatility,
while adding solar tends to increase it.
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Figure 4.25: Increased solar peak output strongly correlates with increased maximum
1-hr volatility, especially from February through August. Note 2011, an outlier year,
which shows strong maximum 1-hr volatility.

Figure 4.26: Increased wind peak output does not correlate strongly with the median
1-hr volatility except at high penetrations. In the 9,500+ MW wind peak output
range, a small amount of solar peak output (150-1,000 MW) might contribute to
the sharp increase in median 1-hr volatility. Additional solar peak capacity slightly
increases the median 1-hr volatility.
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Figure 4.27: Wind does not appear to be correlated with maximum 1-hr volatility
except at high penetrations, while peak solar output shows a strong direct relation-
ship.

widen and shift to the right, suggesting that solar shows a strong correlation with

increased 1-day volatility. This result is corroborated by Figs 4.29 through 4.32,

with the contour charts suggesting a seasonal shift towards higher volatility from

January through September and lower volatility from October through December.

February and March of 2024–2025 experience some 1-day volatilities in excess of

40,000 MW/(15min·day), the highest in this study.

4.2.1.6 Section 4.2.1 Results Summary

A summary of the results presented in subsections 4.2.1.1–4.2.1.5 is shown in

Table 4.5. Table A.1, in the appendix (Chapter A), shows a more complete picture

of the results for each year. The results indicate a number of significant correlations

between solar capacity and the flexibility requirements analyzed in this study, while

wind capacity tends to show only a few slight correlations. Based on Table A.1,

adding 14.5 GW of solar (from 2016–2025) to the ERCOT grid increases maximum

1-hr ramp rates by 135%, 3-hr ramp rates by 25%, ramp factors by 125%, 1-hr
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Figure 4.28: Increasing solar peak output widens the 1-day volatility density curve
and shifts it to the right.

Figure 4.29: Increased solar peak output tends to raise the median 1-day volatility,
especially from February through September.
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Figure 4.30: Increased solar peak output strongly correlates with increased maximum
1-day volatility, especially from January through September. Note 2011, an outlier
year, which shows strong maximum 1-day volatility.

Figure 4.31: Increased wind peak output does not correlate strongly with the median
1-day volatility except at high penetrations. In the 9,500+ MW wind peak output
range, a small amount of solar peak output (150-1,000 MW) might contribute to the
sharp increase in median 1-day volatility. Additional solar peak capacity increases
the median 1-day volatility.
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Figure 4.32: Wind does not appear to be correlated with maximum 1-day volatility
except at high penetrations, while peak solar output shows a strong direct relation-
ship.

volatility by 100%, and 1-day volatility by 30%. Solar tends to influence ramp rates

most strongly from November to April and volatility from February through August.

Since ERCOT’s load is lowest in January, February, and March, it is likely that

the most significant ramping and flexibility events will occur when fewer generators

are on-line to provide flexibility resources and many generators are traditionally shut

down for maintenance. Grid operators will need to anticipate these difficult flexibility

situations and procure more flexibility resources on the grid as needed.

Likewise, scaling wind up to 16.1 GW of capacity from 2008 to 20016 increases

maximum 1-hr volatility by 65% and maximum 1-day volatility by 40% and decreases

minimum 1-hr ramp rates by 50% and minimum 3-hr ramp rates by 26% without

significantly impacting other flexibility requirements.

The lack of correlation between wind capacity and flexibility requirements

contrasts with the results from the GE Energy study [72] discussed in Section 2. The

GE Energy study predicts that ramp rates on all time frames from 1 minute to 1
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hour will increase as wind capacity increases. The disagreement between these results

and those presented in subsections 4.2.1.1–4.2.1.5 could be due to the GE Energy

study’s use of modeled weather data to produce calculated wind generation curves.

This method for wind data generation might fail to capture the smoothing effects

of geographic dispersion of renewable capacity [107] or other factors that influence

wind variability. The GE Energy study does conclude that increasing ramp rates

caused by wind generation will drive up the maximum amount of regulation reserves

that will need to be provided for maintaining grid stability. If this conclusion holds

for solar-induced ramp rate increases, then a more robust ancillary services market

might be a necessary market response to increasing flexibility requirements.

4.2.1.7 Wind and Solar Confounding

The results indicate that increasing solar capacity correlates strongly with

increasing flexibility requirements in a system that already has significant amount

of wind generation. To test whether the impact of wind and solar on flexibility

requirements are confounded, it is helpful to observe the timing of the different

flexibility requirements as shown in Figs 4.33–4.37. As solar capacity grows, the

timing of the maximum ramp rates shift from morning to evening, the timing of

the shoulder season minimum ramp rates shift from late evening to morning, and

the timing of the maximum 1-hour volatility shifts from an assortment of times to

evening. These timing shifts represent a system whose largest flexibility requirements

are shifting from being driven by the mismatch of demand and wind output to being

driven by the daily ramp up and ramp down of solar generation due to the rising
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Table 4.5: The results for Section 4.2.1 are summarized in this table.
Effect of Increasing
Wind Capacity

Cause
Effect of Increasing

Solar Capacity
Cause

1-Hr

Ramp

Rate

Min. Consistent decrease
Simultaneous rising

wind output and falling
demand in the evening

Consistent decrease
Rising solar output in

the morning

Med. No correlation
Demand drives ramp

rates during most times
No correlation

Demand drives ramp
rates during most times

Max.
Slight or negligible

correlation

Falling wind output not
generally synchronized
with rising demand in

the morning

Significant increase,
especially in

November–April

Falling solar output in
the evening

3-Hr

Ramp

Rate

Min. Consistent decrease
Simultaneous rising

wind output and falling
demand in the evening

Slight decrease

Rising solar output in
the morning occurs on a
shorter timescale than 3
hours, which limits its

impact

Med. Negligible correlation
Demand drives ramp

rates during most times

Slight correlation,
increase in

June–September,
decrease in

December–March

Summer from
10:00–16:00, solar
output falls slowly

during rising demand.
Winter from

10:00–14:00, solar
output falls slowly

during falling demand

Max.
Slight increase,
especially in

June–September

Falling wind output not
generally synchronized
with rising demand in

the morning

Moderate increase,
especially in

November–April

Falling solar output in
the evening occurs on a
shorter timescale than 3
hours, which limits its

impact

Ramp

Factor

Med. No correlation
Demand drives ramp

rates during most times
Negligible correlation

Demand drives ramp
rates during most times

Max.
Slight increase,

especially
June–September

Falling wind output not
generally synchronized
with rising demand in

the morning

Significant increase,
especially in

November–April

Falling solar output in
the evening, accentuated
by low net demand in

November–April

1-Hr

Volatility

Med. Moderate increase Noisiness of wind output Moderate increase

Noisiness of solar output
plus quick changes in
morning and evening

solar output

Max. Slight increase Noisiness of wind output
Significant increase,

especially in
February–September

Noisiness of solar output
plus quick changes in
morning and evening

solar output

1-Day

Volatility

Med. Moderate increase Noisiness of wind output Significant increase

Noisiness of solar output
plus quick changes in
morning and evening

solar output

Max. Moderate increase Noisiness of wind output
Significant increase,

especially in
February–September

Noisiness of solar output
plus quick changes in
morning and evening

solar output
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and setting sun.

Figure 4.33: As solar capacity increases, the timing of the maximum 1-hour ramp rate
shifts from the morning (6:00–9:00, driven by increasing demand and decreasing wind
output) to the evening (17:00–19:00, driven by decreasing solar output) especially
between November and March when lower demand contributes less to net demand
ramp rates.

Figure 4.34: As solar capacity increases, the timing of the minimum 1-hour ramp rate
shifts from the evening (21:00–23:00, driven by decreasing demand and increasing
wind output) to the morning (8:00–10:00, driven by increasing solar output) from
November through March.

Removing the wind generation from the system and recalculating the results

provides another useful comparison between an all-solar system and a solar-plus-

wind system. The results of this additional analysis are shown in detail in Table A.2
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Figure 4.35: As solar capacity increases, the timing of the maximum 3-hour ramp
rate shifts from the morning (5:00–8:00, driven by increasing demand and decreasing
wind output) to the evening (17:00–19:00, driven by decreasing solar output) from
November through March. Maximum 3-hour ramp rates from May through October
continue to occur in the late morning, driven by increasing demand.

Figure 4.36: As solar capacity increases, the timing of the minimum 3-hour ramp rate
shifts from the evening (22:00–24:00, driven by decreasing demand and increasing
wind output) to the late morning (9:00–11:00, driven by increasing solar output)
from November through March. Minimum 3-hour ramp rates from April through
November continue to occur in the late evening, driven by decreasing demand and
increasing wind output.
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Figure 4.37: As solar capacity increases, the timing of the maximum 1-hour volatil-
ity shifts from occurring throughout the day to occurring during the evening
(17:00–18:00, driven by decreasing solar output).

in the appendix (Chapter A) and summarized in Fig 4.38. Additional wind capac-

ity has a trivial impact on the annual maximum ramp rates and maximum 1-hour

volatility. These annual maximums are driven by the diurnal ramp up and ramp

down of solar power, with wind slightly increasing them if it is ramping in sync with

solar capacity. Fig 4.11 shows that the minimum 1-hour ramp rate might be a bit of

an outlier, though Fig 4.34 and the tightening gap between the “Min. 1-hr Ramp”

lines in Fig 4.38 suggests that the minimum 1-hour ramp rate, initially caused by

falling demand and rising wind output, will eventually be driven by solar generation

ramping up in the morning, in which case additional wind capacity will not signifi-

cantly impact the flexibility requirement. Wind capacity does appear to significantly

increase the maximum 1-day volatility and minimum 3-hour ramp rate versus a solar

only system.

97



Figure 4.38: Comparison of annual maximum and minimum flexibility requirements
in all-solar and solar-plus-wind systems.
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4.2.2 Solar Array Orientation and Location Comparisons

The following subsection analyzes the changes to the net load caused by chang-

ing the solar array orientation or location. The analysis is performed for the year

2025 using the scenarios described in Subsection 4.1.2. A table has been created

for each scenario comparison listing the maximum, 95th percentile, median, 5th per-

centile, and minimum values for each flexibility requirement and each scenario. Dark

green and dark red cell shading indicates when the absolute value of a cell is 20%

less or more than the average value. Light green and light red cell shading indicates

when the absolute value of a cell is 10% less or more than the average value. By this

convention, green cells represent easier-to-manage flexibility requirements, while red

cells represent more-difficult ones, and darker shading represents a stronger sense of

that definition.

4.2.2.1 Orientation Comparison

Table 4.6 lists the flexibility requirement statistics for the different solar array

orientation scenarios in 2025. For example, reading across the “1-Hr Ramp Rate;

Max” row, averaging the maximum 1-hr ramp rates of the six scenarios yields 12,401

MW/hr. The “Fixed W” and “Fixed SW” maximum values are within 10% of this

average value and do not warrant special attention. The “Fixed S” maximum of

10,546 MW/hr is more than 10% lower than the average and is shaded light green

to indicate this benefit. Additionally, the “Fixed SE” maximum of 7,568 MW/hr

is more than 20% lower than the average and is shaded dark green to indicate this

benefit. Likewise, the “1-Axis Tr.” and “2-Axis Tr.” maximums of 14,854 and 16,869
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MW/hr are more than 10% and 20% greater than the average, respectively, and are

shaded light and dark red to indicate this difficulty.

The cell shading indicates a strong tendency for tracking arrays to introduce

more difficult-to-manage flexibility requirements to the grid. Among the fixed panel

arrays, the south- and southeast-facing arrays show noticeable benefits over the west-

and southwest- facing arrays.

There is a give-and-take between energy production, which is maximized by

using tracking arrays, and flexibility requirements, which are minimized by using

fixed arrays. Grid planners might consider these effects when thinking strategically

about future solar capacity, especially as it might pertain to balancing commercial,

1-axis tracking arrays and distributed, roof-top arrays.

Additionally, there is little support here for the theory that west-facing panels

might better align with load and reduce flexibility requirements [176]. The other fixed

orientations analyzed in this study all produce greater energy with lower flexibility

requirements than the west-facing scenario.

4.2.2.2 Location Comparison

Table 4.7 lists the flexibility requirement statistics for the different solar array

location scenarios in 2025. The cell shading indicates less diversity in flexibility

requirements than shown for the orientation scenarios in Table 4.6. There is a slight

tendency for the arrays that generate less energy to require less flexibility from the

grid, but this tendency could simply be due to the amount of energy being generated

rather something inherent in the geographic location.
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Table 4.6: The statistical distribution for each flexibility requirement and orientation
scenario is shown below. Dark green and dark red cell shading indicates when a the
absolute value of a cell is 20% less or more than the average value of the six scenarios.
Light green and light red cell shading indicates when a the absolute value of a cell is
10% less or more than the average value.

Avg Fixed W Fixed SW Fixed S Fixed SE 1-Axis Tr. 2-Axis Tr.

Energy

Gen.
(TWh) 26.2 20.8 23.5 24.7 23.8 29.9 34.4

Max 12,401 12,152 12,417 10,546 7,568 14,854 16,869

95% 3,801 3,538 3,515 3,444 3,535 4,323 4,449

Med -7 51 59 55 6 -114 -100

5% -3,839 -3,669 -3,722 -3,760 -3,791 -3,936 -4,156

1
-H

r

R
a
m
p
R
a
te

Min -8,895 -8,375 -8,375 -8,375 -8,375 -8,873 -10,997

Max 20,384 19,839 20,838 19,861 17,344 21,096 23,328

95% 9,412 8,389 8,578 8,960 9,457 10,196 10,892

Med 294 577 515 413 190 55 15

5% -10,320 -10,083 -10,286 -10,365 -10,331 -10,221 -10,634

3
-H

r

R
a
m
p
R
a
te

Min -18,866 -18,523 -18,523 -18,523 -18,523 -18,523 -20,581

Max 0.18 0.15 0.15 0.10 0.09 0.24 0.32

95% 0.03 0.03 0.03 0.03 0.03 0.03 0.03

Med 0.00 0.00 0.00 0.00 0.00 0.00 0.00

5% -0.03 -0.02 -0.03 -0.03 -0.03 -0.03 -0.03

R
a
m
p

F
a
ct
o
r

Min -0.10 -0.07 -0.07 -0.08 -0.09 -0.13 -0.18

Max 7,943 8,333 7,037 5,184 5,184 10,405 11,518

95% 2,605 2,216 2,209 1,810 1,601 3,491 4,300

Med 614 581 589 597 599 651 667

5% 203 195 201 206 205 206 206

1
-H

r

V
o
la
ti
li
ty

Min 7 7 7 7 7 7 7

Max 41,319 37,526 37,670 38,011 38,509 44,268 51,933

95% 28,295 26,410 26,252 25,083 24,236 32,323 35,467

Med 20,482 18,871 18,652 17,420 16,821 23,852 27,276

5% 14,451 12,751 12,769 11,923 11,294 17,206 20,765

1
-D

a
y

V
o
la
ti
li
ty

Min 9,226 7,557 7,583 7,096 8,251 10,253 14,613
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Table 4.7: The statistical distribution for each flexibility requirement and location
scenario is shown below. Dark green and dark red cell shading indicates when a
the absolute value of a cell is 20% less or more than the average value of the three
scenarios. Light green and light red cell shading indicates when a the absolute value
of a cell is 10% less or more than the average value.

Avg West Central South

Energy

Gen.
(TWh) 27.5 29.9 24.8 27.9

Max 13,259 14,854 12,044 12,879

95% 4,174 4,323 4,036 4,163

Med -91 -114 -58 -100

5% -3,847 -3,936 -3,771 -3,834

1
-H

r

R
a
m
p
R
a
te

Min -9,676 -8,873 -9,660 -10,496

Max 19,460 21,096 18,422 18,862

95% 9,924 10,196 9,742 9,833

Med 86 55 127 75

5% -10,093 -10,221 -10,010 -10,049

3
-H

r

R
a
m
p
R
a
te

Min -18,632 -18,523 -18,523 -18,851

Max 0.20 0.24 0.15 0.21

95% 0.03 0.03 0.03 0.03

Med 0.00 0.00 0.00 0.00

5% -0.03 -0.03 -0.03 -0.03

R
a
m
p

F
a
ct
o
r

Min -0.11 -0.13 -0.09 -0.10

Max 9,312 10,405 7,951 9,579

95% 3,077 3,491 2,699 3,040

Med 671 651 682 681

5% 208 206 210 210

1
-H

r

V
o
la
ti
li
ty

Min 7 7 7 7

Max 44,856 44,268 46,034 44,268

95% 31,975 32,323 31,277 32,323

Med 23,481 23,852 22,738 23,852

5% 16,894 17,206 16,268 17,206

1
-D

a
y

V
o
la
ti
li
ty

Min 10,364 10,253 10,588 10,253
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4.3 Conclusions

The primary goal of this study is to quantitatively assess the correlation of

growing wind and solar peak output with changing flexibility requirements. When

observing the effects of solar generation on the net load flexibility, this study finds a

number of strong correlations. In relation to ramp rates, solar significantly increases

maximum ramp factors and 1-hr and 3-hr ramp rates, especially during the winter

and spring. It flips the median 3-hr summer ramp rates from negative to positive.

These trends indicate that grids with growing solar capacity should anticipate their

ability to double or triple their historical peak ramp up rates, especially during

low-demand seasons (winter and spring), and to ramp up more regularly during

seasons of high demand (summer).

In relation to volatility, solar shows even stronger tendencies to increase flex-

ibility requirements. The median and maximum 1-hr and 1-day volatilities show

a significant correlation with increased peak solar output. While this effect is less

intense during the fall and winter, increased volatility during the spring and summer

can be quite severe. The increasing maximum values require some consideration,

though ERCOT experienced a few events with very high volatility in 2011 that it

was able to accommodate. But the fact that median volatility also increases means

that extreme volatility will be a much more regular occurrence. Based on the results

in this study, adding 8+ GW of solar to ERCOT could create a grid where almost

every week will be more volatile than the majority of weeks to date.

When observing the effects of wind generation on the net load flexibility, how-

ever, this study discovers only minor correlations. Greater wind peak generation does
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correlate with reduced 1-hr and 3-hr ramp rates and might slightly increase 3-hr ramp

rates, 1-hr volatility, and 1-day volatility, particularly at higher wind capacities, but

in most other metrics its influence is either very small or does not follow a consistent

trend. This independence is surprising as it contradicts correlations suggested by the

GE Energy study discussed in Section 2 [72]. Perhaps the GE Energy study’s use

of modeled weather data and calculated wind generation profiles might have failed

to reproduce the smoothing effects of geographic dispersion of wind farms or other

factors that influence the variability of wind. The GE Energy study’s conclusion

that increasing ramp rates will drive up the need for regulation reserves insinuate

that a more robust ancillary services market might be a necessary response to the

increasing flexibility requirements discussed in Section 4.2.1 of this paper.

Comparing the general shapes of the demand, wind, and solar profiles explains

why greater wind and solar capacity might cause certain flexibility requirements to

increase. Solar generation follows a predictable pattern of daily ramping with the

rising and setting sun punctuated by periods of cloudiness that add noise to its

generation profile. The intensity of this daily pattern causes significant, solar-driven

flexibility requirements that supersede the existing demand-driven flexibility require-

ments. Wind output does not generally change as quickly as solar, but it is often

asynchronous with the demand profile. This anti-correlation means that wind output

causes some flexibility requirements to increase by intensifying the existing demand-

driven flexibility trends. Additionally, daily and seasonal trends in wind profile shape

are not as consistent or as predictable as the daily solar generation profile [185]. This

unpredictability suggests that, while solar output will more regularly cause the flexi-

104



bility requirement increases indicated in this study, wind output will vary more from

day to day and might not impact flexibility requirements as consistently.

The results in Section 4.2.1.7 show that wind and solar influence the flexibility

requirements in different ways. Since wind output tends to negatively correlate with

demand, it can intensify some of the flexibility requirements inherent to the demand

profile, such as increasing morning net load ramp rates when its reduced output

coincides with increased demand. As solar capacity grows, the dominating flexibility

events are no longer driven by this wind/demand anti-correlation but are driven by

diurnal solar output ramping instead. When solar output dominates the flexibility

requirements, the existing wind capacity does not appear to intensify the worst

flexibility situations, except for the minimum 3-hr ramp rate and the daily volatility.

This study also draws some important conclusions about the influence of solar

array orientation and geographic location on flexibility requirements. Tracking ar-

rays, while they produce more energy over the year, also create significantly greater

flexibility requirements than fixed arrays. Facing panels to the west, sometimes sug-

gested as an option for decreasing flexibility requirements [176], actually increases

them when compared to other fixed orientations and produces less energy as well.

Rather unintuitively, southeast-facing panels appear to significantly reduce flexibility

requirements with minor reductions in energy generation when compared to other

fixed panels. Solar array location only shows small correlations with flexibility re-

quirements, and those correlations might depend solely on their different annual

energy generation amounts.

This study gives a specific look at how flexibility requirements might be chang-
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ing in the ERCOT marketplace, and a general intuition about how other grids can

anticipate the influence of renewable generation on their own net loads. Some of these

flexibility requirement issues might be reduced with future shifts in the demand curve

or increased geographic diversity of renewable generation. For example, widespread

implementation of energy storage and demand response schemes would change the

demand curve, which would affect the net load and flexibility requirements. Still,

planning for increasing ramping and volatility in the grid is an important aspect

of solar capacity expansion. Electric grids that have demonstrated their ability to

handle large amounts of wind generation should not assume they can handle large

amounts of solar. They should consider their future flexibility requirements in light

of their existing flexibility capabilities. In this way, shortcomings can be addressed

by adjusting the geographic location and orientation of future solar assets, or by em-

ploying energy storage, market redesign, or one of the numerous strategies discussed

in Section 6.1, and our electric grids can continue to provide reliable power at the

lowest possible cost.
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Chapter 5

Modeling the optimal mix and location of wind

and solar with transmission and carbon pricing

considerations

This dissertation chapter builds a model that recommends the optimal invest-

ment of wind, solar, and transmission capacity in the different regions of an electric

grid by evaluating wind and solar resources based on their timing coincidence with

the load and with the renewable energy output of other grid regions. This chapter

also develops a framework for balancing system costs, flexibility requirements, and

CO2 emissions when considering CO2 prices or other market policies. This analysis

uses ERCOT as a demonstration case, but its methods are applicable to other grids.

This chapter is an updated study of “Modeling the optimal mix and location

of wind and solar with transmission and carbon pricing considerations” as published

by Renewable Energy in 2018 [39].

5.1 Methods

The methods for this study are presented in five separate subsections. Sec-

tion 5.1.1 discusses the system cost minimization technique used in the model opti-

mization process. Section 5.1.2 describes how the ERCOT grid was split into different
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transmission regions. Section 5.1.3 outlines the steps that the model takes as it looks

for an optimal solution. Section 5.1.4 lists some of the capital costs and market prices

used in the model. Section 5.1.5 discusses the model’s limitations.

5.1.1 System cost minimization theory

The optimization calculations performed by the model developed for this

study rely on the concept of “system cost minimization”. In this context, “sys-

tem cost” Csys is the total annual cost of meeting the grid-wide energy load. It is the

sum of the annual capital cost Ccap and thermal cost Cth as described in Equation 5.1,

where t is each 30-minute interval of the year (and one year has 17,520 30-minute

intervals). Capital cost is the annual amortized cost of financing transmission and

renewable generation investments. Thermal cost is the cost of operating the system’s

conventional thermal generators during each of the year’s 30-minute intervals to meet

the net load (load – renewable generation). As shown in Fig 5.1, the thermal cost

at time t is the integral of the merit order curve bounded by the net load at time t,

where the merit order curve is the list of dispatchable generators arranged by their

marginal cost. Each generator’s marginal cost is a function of its heat rate, CO2

emission rate and variable operation costs along with the market prices for fuel and

CO2 emissions.

Csys = Ccap +
17520∑
t=1

Cth(t) (5.1)

The system cost is a function of many different factors. Adding renewable

capacity to a particular region of the grid will reduce the net load during certain
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Figure 5.1: “Thermal Cost” is the integral of the merit order curve bounded by the
net load. Renewable generation pushes the merit order curve to the right, reducing
the thermal cost.
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time intervals of the year, which reduces the system’s thermal cost. However, these

capacity additions require wind, solar, and transmission investments, which increases

the system’s capital cost. Additionally, the ability of a region’s renewable generation

to reduce the system net load is constrained by curtailment. The model curtails a

region’s renewable generation whenever its renewable energy output exceeds the ca-

pacity of the transmission line connecting that region to the load center. Curtailment

also occurs to prevent the system net load from falling below a fixed threshold. This

requirement comes from an assumption that the total power output of an electric

grid’s on-line, inertial generators must exceed a specific percentage of the grid’s max-

imum annual load to maintain frequency stability [44]. Based on informal guidelines

from ERCOT, a minimum net load constraint of 16.45 GW (25% of the 65.8 GW

maximum annual ERCOT load in 2012) is used in the base case scenario [56]. The

model balances these different factors to choose the mix of wind and solar capacity

that minimizes the system cost.

One shortcoming of the system cost calculation is its failure to include CO2

emissions. Though the merit order curve does change in response to CO2 prices,

higher CO2 prices only lead to higher system costs. This situation fails to recog-

nize that a market with higher CO2 prices and, thus, higher system costs, might

be more desirable depending on the value of CO2 emissions reductions. To address

this shortcoming, the system cost Csys can be expanded to include the “unaccounted

environmental cost” Cenviron of CO2 emissions. As shown in Equation 5.2, the unac-

counted environmental cost is calculated by multiplying the annual CO2 emissions

CO2,emissions by the difference between the CO2 price PriceCO2 and the social price
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of CO2 emissions SPC (a constant price representing the environmental cost of each

ton of CO2 emissions). For example, society might place a social price of 100 $/ton

on CO2 emissions even though the market price might be only 20 $/ton. In this

scenario, the 20 $/ton CO2 price will influence the merit order curve and market

behavior, reducing CO2 emissions slightly and paying for a portion of the CO2 envi-

ronmental cost. The 80 $/ton residual price (100 $/ton social price – 20 $/ton CO2

price) represents the unaccounted environmental cost of CO2 emissions. Adding the

unaccounted environmental cost to the system cost yields the “comprehensive sys-

tem cost” Ccompr, as shown in Equation 5.3. This expanded equation considers the

trade-off between higher CO2 prices (economic cost) and lower CO2 emissions (eco-

nomic benefit). While the model works by minimizing the system cost to simulate

the market’s response to real prices, the comprehensive system cost is used to process

the model results and compare different scenarios.

Cenviron = CO2,emissions × (SPC − PriceCO2) (5.2)

Ccompr = Csys + Cenviron (5.3)

5.1.2 Transmission regions

Building transmission to different regions of the electric grid provides access

to the unique renewable energy resources in those regions. To simulate this effect,

this study has divided ERCOT into a number of independent transmission regions.
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These regions were developed using geographic information and line characteristics

of the existing ERCOT transmission infrastructure and following the criteria below:

• each region should be well interconnected within itself

• region borders should cut as few transmission lines as possible

• the number of regions should remain small for model tractability

• regions should have higher spatial resolution where renewable resources are

abundant to capture differences in renewable generation profile timing

Following these design principles, fifteen notional ERCOT regions were cre-

ated. Fig 5.2 shows these regions superimposed on a population density map of Texas

(representing the location of the load). For comparison, Fig 5.2 also bubbles in the

five “Competitive Renewable Energy Zones” (CREZ) used by ERCOT in their own

transmission expansion planning [106].

In general, the majority of ERCOT load is located in regions 6, 15, and 16.

Regions 5, 10, and 17 show the portions of Texas that are served by electric grids

other than ERCOT and are not considered in the model. The remaining regions

tend to have lower loads and substantial renewable energy resources. When modeling

transmission expansion, it is assumed that the three load regions (6, 15, and 16) are

well-connected, and that other regions need only connect to the nearest load region

to be integrated into the entire network.

Each of the modeled regions have unique wind and solar generation profiles.

The wind profiles are based on the normalized output of the existing wind farms in
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each region (data provided by ERCOT). The solar profiles are calculated by feeding

solar radiation data [130] into the NREL System Advisor Model software [127], which

translates the radiation data and solar array properties into generation profiles. Each

region’s solar profile is the normalized output of three different locations within the

region using 1-axis tracking solar arrays.

Figure 5.2: The regions of ERCOT are designed according to Section 5.1.2. The
underlying population density map (green - sparsely populated to red - densely
populated) indicates the approximate location of the loads. The five “Competi-
tive Renewable Energy Zones” (CREZ) used by ERCOT in their own transmission
expansion planning are bubbled in for comparison.
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5.1.3 Model optimization process

Using the methods discussed in Section 5.1.1, the model begins by calculating

the minimum system cost and optimized wind and solar capacities that would result

from extending 500 MW of new transmission to a specific region. It performs this

calculation for all of the regions in the model. An example of these calculations is

shown in Table 5.1. The region that achieves the lowest system cost will receive

500 MW of additional transmission capacity. The model then repeats this process,

expanding the transmission network 500 MW at a time, until new transmission

investment can no longer reduce the system cost indicating that a grid-wide minimum

system cost has been reached. The flow chart in Fig 5.3 visualizes the steps taken

by the model optimization process.

When a region is selected for development, the system net load during each

time interval is reduced by the corresponding renewable energy output of that region.

Consequently, as a region is developed, it cannibalizes its ability to reduce system

thermal cost. These diminishing returns increase the attractiveness of regions whose

solar and wind profiles are dissimilar from the over-invested region. In this man-

ner, the model tends to invest in a set of regions with solar and wind profiles that

complement each other’s generation timing, and that collectively coincide with the

timing of the load.

There are benefits and disadvantages to solving the model using this sequen-

tial/iterative process. The iterative framework helps make the program computa-

tionally tractable by separate the large optimization problem into smaller parts that

can be parallelized across multiple processors. In addition, analyzing the results
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Figure 5.3: This flow chart visualizes the model optimization process described in
Section 5.1.3.
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Table 5.1: During the first optimization step, the model extends 500 MW of trans-
mission to each of the 15 regions and finds the wind and solar capacity for each region
that will minimize system cost. Based on these optimization results, the model will
choose to build transmission to the region that reduces system cost the most (“11
Big Bend” in this example, highlighted green). The model repeats this process until
adding 500 MW of new transmission to the grid can no longer reduce system costs.

Region

Name

Optimal Wind

Capacity

(GW)

Optimal Solar

Capacity

(GW)

Transmission

Distance

(Miles)

Renewable

Capital

($Billion)

Transmission

Capital

($Billion)

Thermal

Cost

($Billion)

System

Cost

($Billion)

01 Panhandle 686 242 325 0.122 0.014 19.433 19.569

02 Lubbock 696 315 300 0.132 0.013 19.426 19.571

03 Wichita Falls 663 348 150 0.132 0.006 19.429 19.567

04 Red River 590 494 75 0.140 0.003 19.451 19.594

06 Central 721 385 0 0.144 0.000 19.435 19.579

07 Abilene 701 389 185 0.142 0.008 19.426 19.576

08 Midland 719 447 265 0.152 0.011 19.414 19.577

09 Guadalupe 566 568 375 0.147 0.016 19.451 19.614

11 Big Bend 637 461 335 0.143 0.014 19.408 19.565

12 Pecos 661 430 250 0.142 0.011 19.423 19.576

13 Hill Country 671 407 150 0.140 0.006 19.421 19.567

14 Del Rio 604 637 150 0.160 0.006 19.468 19.634

15 South Central 590 508 0 0.142 0.000 19.449 19.591

16 Coast 570 593 0 0.150 0.000 19.477 19.627

18 South 813 275 175 0.143 0.008 19.459 19.610
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for each step of the solution yields some conclusions that could not be drawn from

a non-iterative, global optimization method. However, the solution might not be

mathematically optimal since early decisions about transmission, wind, and solar

capacity investments cannot be changed during later solving time steps.

5.1.4 Economic costs and prices

The model uses a number of annualized capital costs and market prices when

finding a solution, shown in Tables 5.2 and 5.3. Transmission costs were derived

from information about the recently completed CREZ transmisison project where

ERCOT installed 3,600 miles of transmission at a cost of $7B USD [116]. If the

project is mostly 345kV, double-circuit lines, each mile is assumed to have a 1.5

GW capacity [144], and the average cost is 1300 $/MW-mile. In this study, a more

conservative 1500 $/MW-mile is used. Annual capital costs for solar and wind are

based on reports from the National Renewable Energy Laboratory (NREL) [67, 123]

and an LCOE calculator developed by the University of Texas at Austin Energy

Institute [170]. Overnight construction costs for transmission, wind, and solar are

amortized for 25 years at 3.00% interest to translate them into annual costs. (Using

5.00% or 7.00% interest rates for wind and solar capital investment increased the

system cost of the solution by 4.5% and 7.5%, respectively. See Appendix Chapter B

for interest rate sensitivity charts). By adding fixed annual operation and mainte-

nance costs to these annualized capital costs, an annual cost per MW of capacity

is calculated. Fuel prices are based on average historical prices and feedback from

ERCOT about typical, conservative, fuel prices used for planning purposes at power
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Table 5.2: Table of annualized capital costs used in the model.
Overnight

Cost

Fixed O&M

Cost

Annualized

Cost

Transmission 1500 ($/MW-mile) - 86.14 ($/MW-mile)

Wind (on-shore) 1710 ($/kW) 35 ($/kW-yr) 133,200 ($/MW)

Solar (1-axis) 1830 ($/kW) 20 ($/kW-yr) 123,100 ($/MW)

Table 5.3: Table of fuel and CO2 prices used in the base case model.
Fuel

Type

Price

($/MMBtu)

Coal 2.50

Natural Gas 4.50

Uranium 0.50

Biomass 5.00

CO2 Emissions 60 ($/ton)

plants in Texas [56].

5.1.5 Limitations

This study develops a transmission expansion planning model that requires

only a merit order curve, regional renewable energy profiles, and a list of capital costs

and commodity prices. While this model can produce meaningful results with limited

data and computation, its simplifying assumptions introduce some limitations. For

example, using the merit order curve (generator marginal cost) as the sole source of

thermal costs and electricity prices overlooks many other market characteristics that

influence costs, such as reserve requirements and ancillary services. Since the model

does not perform unit commitment or dispatch, it overlooks generator operational

costs and constraints such as start-up costs and ramping restrictions. Additionally,

the integration of renewable energy into the grid might require new ancillary services,

118



firming power, and frequency support, introducing costs that are not reflected in this

model (though previous work from the author suggests that these costs are an order

of magnitude smaller than the reductions in wholesale energy costs resulting from

renewable investment [38]). Changes in the load profile or load flexibility would also

influence the model solution, but are not discussed in this study.

The model results recommend a significant amount of renewable capacity pen-

etration (around 40%) for the ERCOT case study. Getting to such high renewable

penetrations complicates the reliable management of the electric grid due to excess

power production risk, supply/demand mismatch, transmission flow constraints, and

system frequency and voltage security [64]. A recent study of the ERCOT system

suggests that some of these issues might begin to manifest when wind power pro-

duces 20% of annual energy production [44]. These reliability issues can be managed

by increasing the flexibility of the generation fleet [44], adding energy storage to

the system [35], extending the transmission network [160], or other methods. These

management strategies might influence the operation of the power plant fleet, in-

troduce new system inefficiencies, and add variable and capital costs to the system.

These consequences might influence generator fuel consumption, emissions, and mar-

ket prices. While this study approximates some of these effects by using a minimum

net load constraint and performing a qualitative analysis of net load flexibility, it

does not explicitly quantify the influence of generator fleet improvements, energy

storage, or other system upgrades on the solution.

Another important aspect of electric grid capacity expansion planning is the

consideration of future technologies. A grid with high CO2 prices, for example, might
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incentivize investments in low-CO2-emission technologies other than renewables, such

as carbon capture and sequestration or nuclear generation [88]. New investments

in storage or demand response capabilities could also influence market dynamics.

Since the model considers a static generation fleet, it does not consider how future,

non-renewable investments would change the optimal solution.

5.2 Results and discussion

The results for this study are presented in six separate subsections. Sec-

tion 5.2.1 walks through the base case scenario to demonstrate the model functional-

ity and optimal solution for the ERCOT market. Section 5.2.2 compares ERCOT’s

existing regional renewable energy capacity with a model solution using the same

market conditions. Sections 5.2.3, 5.2.4, and 5.2.5 test the sensitivity of the model

solution to CO2 prices, the minimum net load constraint, and natural gas prices. Sec-

tion 5.2.6 shows how the utilization of different power plants in the existing generator

fleet changes depending on the CO2 price and the model solution.

5.2.1 Base case scenario

Analyzing the solution of a base scenario with a CO2 price of 60 $/ton gives

some insight into how the model operates, and shows what a fully developed transmis-

sion grid and renewable capacity investment might look like in ERCOT. Figs 5.4, 5.5,

and 5.6 show that the model chooses to primarily invest in the Panhandle, Wichita

Falls, and Big Bend regions, with minor investments elsewhere. Fig 5.7 shows how

these investments are distributed around the ERCOT grid.
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Figure 5.4: Transmission investments in the base case scenario are split among five
different regions, with three regions receiving the majority of the investment.

Figure 5.5: Each region that is connected to the transmission network has unique
wind and solar generation profiles, and installs the amount of renewable energy
capacity that minimizes system cost.
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Figure 5.6: Each region that is connected to the transmission network has a unique
wind and solar generation profiles, and installs the mix of wind and solar capacity
that minimizes system cost.

Dividing the renewable capacity of each region by the transmission capacity,

shows that the Panhandle, Wichita Falls, and Big Bend regions install 1.35, 1.33, and

1.69 renewable GW per transmission GW, respectively. Big Bend’s transmission uti-

lization efficiency likely contributes to the model’s tendency to prioritize investment

in that region. The geographic dispersion of capacity in the solution suggests that

the model capitalizes on the variation of wind and solar resources throughout Texas,

prioritizing development in a set of regions that complement each other’s unique gen-

eration profiles. This complementary output is illustrated in Fig 5.8, which shows

the capacity factors of the renewable output of the three main regions, their com-

bined output, and the load, for an average day in August. Big Bend, the first choice

for investment, has good output during the peak load hours (16:00), but less out-

put before and after, and significant output in the morning (7:00-11:00) when wind
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Figure 5.7: The transmission, wind, and solar investments are distributed among
different regions in the ERCOT grid. Each region contributes to reducing system
costs based on its unique renewable profiles and capacities as wind and solar resources
vary throughout Texas.
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and solar are both strong. Wichita Falls has its lowest output during the morning,

balancing the Big Bend morning generation spike, and has good output during peak

load, but it produces a large amount of night time, off-peak energy (22:00-4:00).

The Panhandle also has its lowest output during the morning, helping to balance

the Big Bend morning generation spike, and adding more output during peak load

hours, especially during the early afternoon (12:00-16:00) when the other regions are

producing less. The combined output profile is an improvement over the individual

regions, producing more renewable energy during the peak load hours (12:00-20:00)

and maintaining higher capacity factors overall.

Figure 5.8: This figure shows capacity factors for an average day in August. While
the interaction between these regions is nuanced, this figure suggests that the model
develops regions that produce large amounts of energy during the peak load hours
(12:00–20:00) and that complement each other’s minimum and peak output (espe-
cially evident from 6:00–12:00).
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Installing more transmission and renewables causes thermal costs to fall as

traditional thermal generators are pushed higher up the merit order curve. However,

capital costs rise as the new transmission and renewable infrastructure must be paid

for. Fig 5.9 shows how this effect influences the overall system cost. Eventually, the

capital cost of new investments cannot be recovered by reductions in thermal cost,

and the minimum system cost is reached. This minimization occurs as inefficient

portions of the merit order curve are used less often, which leaves fewer opportu-

nities for thermal cost reduction, and as curtailment due to the minimum net load

constraint makes new renewable capacity less effective, as shown in Fig 5.10. Fig 5.11

shows how CO2 emissions fall as more transmission and renewables are built.

Figure 5.9: As transmission and renewables are invested in, system costs fall as falling
thermal costs offset rising capital costs until the minimum system cost is reached.

The solution to the base case recommends a build-out of 27 GW of transmis-

sion to five different regions in ERCOT. The model suggests that these regions should
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Figure 5.10: Curtailment occurs when too much renewable energy is being generated
to meet the line capacity and/or minimum net load constraints. The model chooses
wind and solar capacities that balance the disadvantages of curtailment with the
benefits of having greater renewable generation during periods when curtailment is
not binding.

Figure 5.11: As more renewable capacity is installed, traditional thermal generators
are pushed higher up in the merit order and are utilized less often, reducing CO2

emissions throughout ERCOT.
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build a total of 26.6 GW and 11.1 GW of wind and solar capacity, respectively, pro-

viding 110 TWh of energy (34% of annual electricity demand). Renewable capacity

exceeds transmission capacity (regionally and for the whole system) because wind

and solar outputs typically peak at different times, so their combined output is usu-

ally less than the transmission capacity, or it is curtailed. The 57.0 GW peak annual

net load at this renewable build-out would need to be met by traditional thermal

generators. Thus, this optimal build-out of renewables represents a grid with 60.2%

thermal capacity and 39.8% renewable capacity at a mix of 70.6% wind and 29.4%

solar. The results also suggest that the grid will experience diminishing returns from

these investments. Thus, if other non-economic factors encouraged fewer renewables

on the grid, a less than optimal investment, such as 20 GW of transmission, could

be justifiable.

Base Case Uncertainty

The uncertainty of the base case solution depends on the uncertainty of the

model inputs, particularly the variables that make up the capital cost and thermal

cost components of the system cost objective (see Equation 5.1). These variables

include the power plant properties that comprise the thermal cost curve, the trans-

mission capital cost, and the wind and solar capital and operation costs.

Data from the Annual Technology Baseline published by the National Re-

newable Energy Laboratory [131] indicate large uncertainties in the cost of wind

and solar. The study’s 2025 projections show solar and wind capital costs falling

to 1,200 and 1,400 $/kW and fixed operation and maintenance cost falling by 26%
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and 8%, respectively. These future costs would reduce the annualized capital costs

in Table 5.2 by 33.1% for solar and 15.5% for wind.

Transmission costs and power plant properties are derived from historical ER-

COT data and should be relatively reliable. An uncertainty of ±25% for transmission

cost and ±10% for thermal cost are assumed.

The uncertainty analysis in Table 5.4 shows how the base case results change

depending on the different variable uncertainties. Thermal cost uncertainty has a

strong influence on all of the results. Wind and solar cost uncertainties also have

a significant impact. Transmission cost uncertainty, however, has a limited effect

on the solution. Solar capacity is the most uncertain result, with lower solar prices

incentivizing solar capacity growth and lower thermal cost discouraging it. When

including uncertainty, the base case solution will fall between 24–30 GW of trans-

mission and 31.2–52.5 GW of renewable capacity with wind accounting for 45–81%

of the renewable capacity.

Table 5.4: Uncertainty analysis showing alternate solutions to the base case scenario.
Scenario Transmission Wind Solar System Cost

GW % Change GW % Change GW % Change $Billion % Change

Low Solar Cost 30.0 +11.1 22.4 -15.8 27.6 +148.6 15.78 -4.5

Low Wind Cost 30.0 +11.1 33.5 +25.9 8.0 -27.9 15.89 -3.9

Low Solar & Low Wind Cost 31.5 +16.7 26.5 -0.4 26.0 +134.2 15.29 -7.5

Low Transmission Cost 27.5 +1.9 27.9 +4.9 9.8 -11.7 16.37 -1.0

High Transmission Cost 26.5 -1.9 25.6 -3.8 12.0 +8.1 16.65 +0.7

Low Thermal Cost 24.0 -11.1 25.1 -5.6 6.1 -45.0 15.35 -7.1

High Thermal Cost 30.0 +11.1 29.1 +9.4 13.7 +23.4 17.60 +6.5
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5.2.2 Model vs existing ERCOT renewables

This model can also provide insights about the existing buildout of renewables

in ERCOT. First, a model approximation of the existing ERCOT renewable and

transmission infrastructure must be made. The existing renewable capacity for each

region is given to the model along with the base case fuel prices, a 0 $/ton CO2

price, 2,750 $/kW solar capital costs, and a 15 $/MWh production tax credit that

subtracts $15 from the system cost for every MWh of wind energy produced. Using

these existing market conditions, the model builds out the transmission network

shown in column 2 of Table 5.5 with the system performance shown at the bottom

of the table.

For comparison, the model is run from scratch using the same market condi-

tions to see where it will invest if allowed to build the same amount of transmission as

in the previous simulation. The last column of Table 5.5 shows that the model prefers

to invest in the 01 Panhandle and 03 Wichita Falls regions. No investment is made in

the 11 Big Bend region as low CO2 prices and high solar capital costs do not justify

investing in that region. This solution yields a lower system cost and comprehensive

system cost with less renewable capacity than the existing ERCOT infrastructure.

It also creates slightly less CO2 emissions but greater flexibility requirements.

The difference between these two scenarios shows discrepancy between ER-

COT’s historical build-out and the model solution. ERCOT likely considers many

decision variables when designing transmission expansion projects, such as grid sta-

bility, line congestion, and policy factors. While the existing build-out might be
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justifiable when considering these factors, the model suggests that it does not mini-

mize the system cost.

5.2.3 CO2 price sensitivity

As environmental considerations gain importance in the electric grid, it is

helpful to test how CO2 prices might influence the market. The results in this section

are calculated by simulating the base case with a variety of CO2 prices. The CO2

price herein can be interpreted as a policy-dictated CO2 tax or the price resulting

from an emissions trading system. A comparative analysis of the results uses 100

$/ton as the social price of CO2 emissions, based on the ranges reported by [191],

though other values could be justifiable.

CO2 prices can have a large effect on system costs and CO2 emissions. In-

creasing the CO2 price adds to the marginal cost of any CO2 emitting generators,

which increases the thermal and system costs of the grid, as shown in Fig 5.12 along

the vertical axis. However, Fig 5.13 shows that CO2 prices also reduce emissions

by reorganizing the merit order curve and encouraging more renewable energy de-

velopment. For reference, the model calculates 237 million tons of CO2 emissions

with no renewables and a 0 $/ton CO2 price. Yet, Fig 5.14 shows that CO2 price

increases have diminishing returns on reducing the comprehensive system cost. This

observation holds even when the social price of CO2 is increased to 250 $/ton, per

Fig 5.15. These results are summarized in Fig 5.16, which shows the various capac-

ity, emissions and cost results at the optimal solution using different CO2 prices, and

Fig 5.17, which shows how the development of different regions changes with the
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Table 5.5: A model solution approximating ERCOT’s existing renewable capacity
build-out (column 2) is compared with a model solution run from scratch (column
3). Each solution uses a 0 $/ton CO2 price, 2,750 $/kW solar capital costs, and a 15
$/MWh wind production tax credit in addition to the base case market conditions.

Modeled

Transmission for

Existing Renewable

Capacity

Model at Existing

Market Conditions

(stopped at 10 GW

Transmission)

T
ra
n
sm

is
si
o
n
In
st
a
ll
ed

p
er

R
eg

io
n
(G

W
)

01 Panhandle 1.5 1.9

02 Lubbock 1.2 0

03 Wichita Falls 0.5 8.0

04 Red River 0 0

06 Central 0.9 0

07 Abilene 2.4 0

08 Midland 2.2 0

09 Guadelupe 0 0

11 Big Bend 0 0

12 Pecos 0 0

13 Hill Country 0 0

14 Del Rio 0 0

15 South Central 0 0

16 Coast 0 0

18 South 1.2 0

All Regions 9.9 10.0

Total Wind (GW) 13.7 12.9

Total Solar (GW) 0.0 0.0

System Cost ($Billion) 8.345 8.135

CO2 Emissions (Million Tons) 202.9 201.8

Ext. System Cost ($Billion) 16.46 16.21

Max 1-Hr Ramp (MW/hr) 6.36 7.32

Max 3-Hr Ramp (MW/3hr) 14.84 16.73

Max 2-Hr Volatility (MW/(30min·2hr)) 4.22 7.67
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CO2 price.

Figure 5.12: As the CO2 price rises, the marginal cost of any CO2 emitting generators
increases, and the thermal and system costs increase as a result.

Figure 5.13: Adding even a small CO2 price to the market greatly reduces CO2

emissions, while large prices have a diminishing return. For reference, the model
calculates 237 million tons of CO2 emissions with no renewables and a 0 $/ton CO2

price.
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Figure 5.14: The comprehensive system cost at a 100 $/ton social price of CO2

experiences diminishing reductions at higher CO2 prices.

Figure 5.15: Even at a 250 $/ton social price of CO2, higher CO2 prices tend to have
diminishing returns on reducing the comprehensive system cost.
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Figure 5.16: Increasing CO2 price causes (a): more wind and solar capacity, (b):
larger capital and CO2 cost, but lower thermal cost, and (c): lower CO2 emissions
and comprehensive system cost, but higher system cost.
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Figure 5.17: Increasing CO2 price changes the regions the model chooses to invest
in, and the optimal wind/solar mix in those regions.
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Changes in flexibility requirements provide an additional metric for compar-

ing the solutions under different CO2 prices. Flexibility requirements refer to aspects

of the grid’s net load profile that must be compensated for by dispatchable genera-

tors, storage, or other equipment on the grid. These flexibility requirements include

ramping, a measurement of how quickly the dispatchable generator fleet must turn

their generation capacity up or down, and volatility, a measurement of the “choppi-

ness” of the net load profile [43, 91]. Generally, as flexibility requirements increase,

grid maintenance and ancillary service costs increase [38, 89], and grid voltage and

frequency stability become more difficult to maintain [10, 19, 145]. Therefore, smaller

flexibility requirements are desirable.

Fig 5.18 shows how higher CO2 prices tend to reduce the annual peak net

load with diminishing returns after 70 $/ton. Figs 5.19–5.21 show how CO2 prices

influence the ramping and volatility of the net load. Larger ramping and volatility

maximums require more flexible resources for maintaining the ability of the grid to

match supply with demand. In each of Figs 5.19 –5.21, CO2 prices of 70 $/ton and

higher tend to substantially increase flexibility requirements.

This CO2 sensitivity analysis suggests that an effective CO2 price might need

to strike a balance between system operation costs, environmental benefits, and flex-

ibility requirements. Specifically, the Section 5.2.3 results suggest that a CO2 price

of 60 $/ton could provide substantial environmental value while keeping flexibility

requirements in a familiar, manageable range. Higher CO2 prices would steadily

increase the system cost without any substantial benefit. Consequently, a 60 $/ton

CO2 price is used in the majority of the simulations in this study.
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Figure 5.18: As the CO2 price increases and more renewables are built, the annual
peak net load is reduced as well. CO2 prices higher than 70 $/ton have a diminishing
effect on reducing the peak net load.

Figure 5.19: The maximum 1-Hour Ramp Rate is relatively consistent for lower CO2

prices, but begins increasing for prices of 70 $/ton and higher.
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Figure 5.20: The maximum 3-Hour Ramp Rate is greatest for CO2 prices of 30, 40,
and 70+ $/ton.

Figure 5.21: The maximum 2-Hour Volatility is relatively consistent for lower CO2

prices, but begins increasing for prices of 60 $/ton and higher.
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5.2.4 Minimum net load constraint sensitivity

As described in Section 5.1.1, a minimum net load constraint is used by the

model to approximate a frequency stability requirement that a certain amount of

system power should be generated by traditional, spinning-inertia power plants. The

base case model enforces a minimum net load requirement of 25% of peak demand,

or 16.45 GW.

Increasing the minimum net load constraint would increase renewable energy

curtailment, encouraging less renewable investment, per Fig 5.22(b). Adding fewer

renewables to the grid increases costs and emissions, per Figs 5.22(c)&(d), but de-

creases the flexibility requirements, as shown in Fig 5.22(a). These results suggest

that a grid might benefit from investing in technology that can help it maintain

frequency stability using less inertial power generation. But if that technology in-

vestment does not also increase the system’s flexibility, large ramp rates and volatility

could introducing new instabilities to the grid.

5.2.5 Natural gas price sensitivity

Natural gas prices can also have a significant influence on the optimal trans-

mission and renewables investment, as shown in Fig 5.23(a). Rising natural gas

prices, like rising CO2 prices, increase the thermal costs of the system and encourage

increasing renewable generation capacity. However, while rising CO2 prices reorga-

nize the merit order curve to prioritize thermal generators with lower CO2 emissions,

rising natural gas prices tend to do the opposite. This effect occurs as natural gas

generators move up higher in the merit order curve, and coal generators take their
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Figure 5.22: Increasing the minimum load constraint causes (a): lower flexibility
requirements, (b): less wind and solar capacity, (c): larger thermal and CO2 cost,
but lower capital cost, and (d): higher CO2 emissions and system cost.
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place as the low-cost base load capacity. Therefore, from a CO2 emissions perspec-

tive, higher natural gas prices exhibit a trade-off between encouraging renewable

energy development and increasing the CO2 intensity of the merit order curve. This

effect is shown in Fig 5.23(c), where there is little difference between the CO2 emis-

sions at natural gas prices from 5.00 to 8.00 $/MMBtu. Nonetheless, according to

Fig 5.23(c), if the social price of CO2 is 100 $/ton, the system will generally prefer

lower natural gas prices.

5.2.6 Existing power plant capacity factors

One consequence of integrating more renewables into the grid is the reduced

utilization of existing power plants as renewable energy displaces the need for energy

from traditional thermal generators. Fig 5.24 shows the capacity factors of different

portions of the merit order at a 60 $/ton CO2 price with 0.0 GW of transmission to

renewable energy regions. In contrast, Fig 5.25 shows the merit order utilization at

the optimal solution of 27.0 GW of transmission investment. The market transitions

from the majority of existing power plants being dispatched during some of the year,

and 36 GW experiencing capacity factors of 40% or better to a market where the

majority of existing generators are dispatched less than 20% of the year, and just

24 GW experience capacity factors of 40% or better. Fig 5.26 shows the different

generator types that make up the merit order curve at a 60 $/ton CO2 price. In

this scenario, all coal and natural gas boiler generators have capacity factors less

than 20% with many of them not being dispatched at all. Nuclear and natural gas

combined cycle generators provide the majority of non-renewable energy throughout
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Figure 5.23: Increasing the natural gas price causes (a): more wind and solar capac-
ity, (b): larger thermal and capital cost, but lower CO2 cost, and (c): higher system
costs and lower CO2 emissions (up to 7.00 $/MMBtu).
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the year.

Figure 5.24: At a CO2 price of 60 $/ton and 0.0 GW of transmission to renewable
energy regions, all of the demand is met by the existing generator fleet. Most of the
generators are dispatched during the year, with 36 GW of capacity experiencing a
40% or better capacity factor.

Figure 5.25: At a CO2 price of 60 $/ton and 27.0 GW of transmission at the optimal
solution, less of the demand is met by the existing generator fleet. Only 24 GW of
the existing generator fleet experiences a 40% or better capacity factor.

For comparison, Figs 5.27–5.30 show the merit order makeup and utilization
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Figure 5.26: A CO2 price of 60 $/ton creates a merit order curve that dispatches
natural gas combined cycle generators (left) before a coal and less-efficient natural
gas generators (right).

at the optimal solutions at CO2 prices of 20 $/ton (17.0 GW transmission) and 100

$/ton (33.0 GW transmission). Rising CO2 prices push coal generators to the end

of the merit order and bring natural gas boiler and simple cycle generators closer

to the front. At a 20 $/ton CO2 price, all coal generators are dispatched some, and

many of them experience capacity factors greater than 20%. At a 100 $/ton CO2

price, coal generators are hardly dispatched at all.

5.3 Conclusions

This study shows how system cost minimization is used to develop a model

for geographically optimizing regional transmission, wind, and solar investments in

an electric grid. This model can also provide useful feedback for setting CO2 prices

and anticipating the changing flexibility requirements that will result from more

renewable energy capacity.
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Figure 5.27: At a CO2 price of 20 $/ton and 17.0 GW of transmission at the optimal
solution, 30 GW of the existing generator fleet experiences a 40% or better capacity
factor.

Figure 5.28: A CO2 price of 20 $/ton begins to move coal power plants higher up
the merit order curve in favor of cleaner natural gas combined cycle generators. Coal
still has a lower marginal cost than natural gas boilers and simple cycle generators.
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Figure 5.29: At a CO2 price of 100 $/ton and 33.0 GW of transmission at the optimal
solution, only 20.5 GW of the existing generator fleet experiences a 40% or better
capacity factor.

Figure 5.30: A CO2 price of 100 $/ton moves coal power plants towards the end of
the merit order. Their CO2 emissions are too large to justify their dispatch at such
a high CO2 price.
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In the specific example of ERCOT with a 60 $/ton CO2 price, the model

results recommended 27.0 GW of transmission capacity to five different ERCOT

regions. These regions installed a total of 26.6 GW of wind and 11.1 GW of solar,

representing a grid with 60.2% thermal capacity and 39.8% renewable capacity at

a mix of 70.6% wind and 29.4% solar. This renewable mix produced 110 TWh of

energy meeting 34% of the annual energy demand. The grid emits 82.2 million tons

of CO2 per year under this scenario, a 65% reduction from the 237 million tons

produced when no renewable capacity is installed and the CO2 price is 0 $/ton.

Uncertainty analysis suggests that changes in thermal cost, solar capital cost,

and wind capital cost can significantly impact the solution. Other case studies using

this modeling method should use high quality power plant fleet data and define their

wind and solar cost assumptions carefully.

Sensitivity analyses suggest that there are diminishing returns for raising

the market CO2 price. At higher CO2 prices, the small gains in comprehensive

system cost attributable to reduced CO2 emissions might not be justifiable given the

steady increase in system cost and flexibility requirements. Since this study does

not quantify flexibility costs or provide economic theory for balancing real market

costs with unaccounted environmental costs, it does not provide an optimal CO2

price. However, qualitative assessment points toward a CO2 price of 60 $/ton as a

good balance between system cost, environmental benefit, and flexibility requirement

management, whether implemented as a CO2 tax or through an emissions trading

scheme.

Sensitivity analyses also suggest that the minimum net load constraint in
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the model has a significant impact on the optimal solution. This result means that

an accurate assessment of this constraint is important for calculating the optimal

renewable capacity. It also indicates that technologies that could allow the net load

to drop below this requirement without compromising the grid’s stability could be

valuable additions to the system.

Finally, the results communicate a diminishing need for high marginal cost

generators as renewable generation reduces the capacity factor of most of the gener-

ators in the merit order curve. Generators with inherently high marginal costs, such

as natural gas boilers, or high marginal costs resulting from CO2 prices, such as coal

power plants, will see limited use in an ERCOT market with reasonable CO2 prices

and an optimal investment in renewables.
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Chapter 6

Optimal dispatch and equipment sizing of a

residential central utility plant for improving

rooftop solar integration

This dissertation chapter hypothesizes that a central utility plant (CUP) could

economically improve rooftop solar integration in a residential neighborhood and sup-

port the stability of the larger electric grid. It contributes novel research by bridging

a gap in the academic literature between distributed, residential solar integration and

micro-grid/CUP optimization. It adds to the micro-grid/CUP modeling literature

by developing a generalized, linear model to optimize CUP equipment capacity and

hourly dispatch simultaneously and by analyzing a microgrid’s ability to integrate

rooftop solar in the residential sector of a cooling-dominated climate.

This chapter is an updated study of “Optimal dispatch and equipment siz-

ing of a residential central utility plant for improving rooftop solar integration” as

published by Energy in 2018 [42].

6.1 Model background

While the CUP model’s variables can be adjusted to represent different tech-

nology costs, efficiencies, price data, demand data, etc., it is helpful to provide a case
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Table 6.1: Nomenclature: Exogenous Variables
Symbol Description Bounds

h Superscript denoting the hour of the year ∈ Z,∈ [0, 8760]

H Microturbine generator rated heat rate [Btufuel/kWhelectricity] -

Th Ambient temperature [◦C] in hour h -

gen Equipment subscript denoting the microturbine generator -

bat Equipment subscript denoting the battery -

ch Equipment subscript denoting the chiller plant -

ctes Equipment subscript denoting the cooling thermal energy storage -

piping Subscript denoting the chilled water piping network -

solar Equipment subscript denoting the neighborhood rooftop solar -

λh
e− Electricity buy price in hour h [$/MWh] -

λh
e+ Electricity sell price in hour h [$/MWh] -

λd Electricity peak demand charge [$/MW] -

λng Natural gas buy price [$/MMBtu] -

C0
equipment Intercept of equipment’s capital cost equation (see Table 6.5) [$] -

C1
equipment Slope of equipment’s capital cost equation (see Table 6.5) [$/capacity] -

Oequipment Equipment’s operation and maintenance cost -

R Capital amortization factor = 0.0944 (7% interest over 20 years [77]) -

A Annualized cost of equipment [$] -

B Big number = 10,000 (for modeling purposes) -

ηbat Battery round trip efficiency [%] -

ηctes CTES round trip efficiency [%] -

COPh
cool Chiller coefficient of performance for cooling in hour h [MWhth/MWh] -

COPh
ice Chiller coefficient of performance for ice-making in hour h [MWhth/MWh] -

Kh
solar Capacity factor for solar in hour h [%] -

dhe Neighborhood electric demand in hour h [MWh] ∈ +R
dhc Neighborhood cooling demand in hour h [MWhth] ∈ +R
Dh

gen,cap Ambient de-rating factor for generator capacity in hour h -

Dh
gen,hr Ambient de-rating factor for generator heat rate in hour h -
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Table 6.2: Nomenclature: Decision Variables
Symbol Description Bounds

4h
e Net electric demand in hour h [MWh] ∈ R

4h
e− Electricity purchased from the grid in hour h [MWh] ∈ +R

4h
e+ Electricity sold to the grid in hour h [MWh] ∈ +R

Fh Fuel (natural gas) purchased in hour h [MWh] ∈ +R
Fh
gen,on Generator fuel consumption if in “on” mode in hour h [MWh] ∈ +R

M4 Annual peak electricity demand [MW] ∈ +R
Mequipment Equipment capacity (maximum output [MW] or[MWth] or storage size [MWh] or [MWhth]) ∈ +R
Ph
e Net electricity production in hour h [MWh] ∈ +R

Ph
e,gen Generator electric output in hour h [MWh] ∈ +R

Ph
e,solar Solar electric output in hour h [MWh] ∈ +R

Ph
e,bat,c Electricity charged into battery in hour h [MWh] ∈ +R

Ph
e,bat,d Electricity discharged from battery in hour h [MWh] ∈ +R

Ph
e,ch Chiller plant electric demand in hour h [MWh] ∈ +R

Ph
c,ch Chiller plant cooling output in hour h [MWhth] ∈ +R

Ph
c,ctes,c Cooling charged into CTES in hour h [MWhth] ∈ +R

Ph
c,ctes,d Cooling discharged from CTES in hour h [MWhth] ∈ +R

Sh
bat Electric energy stored in battery in hour h [MWh] ∈ +R

Sh
ctes Cooling energy stored in CTES in hour h [MWhth] ∈ +R

yhgen,on Binary equal to “1” when generator is on ∈ {0, 1}
yhgen,off Binary equal to “1” when generator is off ∈ {0, 1}
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study to illustrate how to apply the model to a real world scenario. This section

explains the data, equations, and calculations that have been compiled to create the

neighborhood and CUP model along with a case study of a residential neighborhood

in Austin, TX, USA. Section 6.1.1 presents the data for the neighborhood and solar

models. Section 6.1.2 presents the equations for the efficiency, operation, and cost of

the CUP equipment. Sections 6.1.3 and 6.1.4 discuss electricity rate structures and

CO2 emissions calculations.

6.1.1 Neighborhood and solar models

The neighborhood model provides an exogenous source of electric demand,

cooling demand, and rooftop solar generation for the optimization program. While

the model framework can solve for any set of hourly neighborhood data, capital cost,

fuel cost, and other inputs, this study uses information from a residential neighbor-

hood in Austin, TX, USA as an illustrative case study. Hourly data from 2015 for

123 houses in Austin are compiled via Pecan Street Incorporated [142], a non-profit

entity that collects energy use data and makes it freely available to university re-

searchers [154]. That dataset is scaled up to represent a neighborhood of 750 houses

with 1.2 MW of solar capacity. That solar capacity represents approximately 30%

rooftop penetration, a value similar to the most solar-dense neighborhoods in Cal-

ifornia [11]. Table 6.3 summarizes some of the neighborhood data, Figs 1.1, 1.2,

and 6.1 show 24-hour and annual profiles for the neighborhood, and Fig 6.2 shows

Austin’s hourly ambient temperature in 2015 [186].

While the dataset provides cooling demand in the form of the electrical draw
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Table 6.3: Data summary for the Austin, TX neighborhood case study with 750
houses and 1.2 MW solar.

Data Summary Description Value

Annual cooling demand [MWhth] 8800

Peak cooling demand [MWth] 4.7

Annual electric demand (incl. cooling) [MWh] 9300

Peak electric demand (incl. cooling) [MW] 3.2

Annual net demand (demand – solar) [MWh] 7770

Peak net demand (demand – solar) [MW] 2.98

Minimum net demand ramp rate [MW/hr] -0.51

Maximum net demand ramp rate [MW/hr] 0.70

Annual CO2 emissions [tons] 5920

Figure 6.1: Daily sums for the 750-house neighborhood model with 1.2 MW solar.

153



Figure 6.2: Hourly ambient temperature in Austin, TX, USA in 2015.

for each house’s cooling equipment, it is necessary to convert that data from electrical

to thermal demand to more accurately represent the cooling needs of the neighbor-

hood. The coefficient of performance (COP) describes an air conditioner’s efficiency

at converting electrical energy into cooling energy in units of MWhth/MWh. Since

COP varies with ambient temperature, this study uses a prior COP model [28] along

with weather data [186] to estimate each house’s hourly thermal cooling demand

from the electrical demand dataset.

The thermal demand data can be used to estimate the cooling equipment ca-

pacity at each house. This estimation assumes that the cooling equipment capacity

equals the peak thermal cooling demand rounded up to the nearest half-ton. This

calculation estimates 7.3 MWth of total installed cooling capacity for the neighbor-

154



hood.

The capital cost of the neighborhood’s outdoor condenser units (the equip-

ment that would be replaced by a central chiller plant) is not used in the optimization

model, but is helpful for comparing the results with a neighborhood baseline. This

capital cost is estimated using construction cost data from [157]. This method esti-

mates condenser capital cost at $1.85 Million overnight or $175,000 per year when

amortized at 7% interest over 20 years (per R description in Tables 6.1 and 6.2).

Solar capital cost for the Austin case study is estimated at 1.65 Million $/MW

based on [75] and assuming a 30% Investment Tax Credit [31]. Annual fixed main-

tenance cost is modeled as 23,000 $/MW [170].

6.1.2 Central utility plant equipment models

This study utilizes a central utility plant (CUP) to act as an intermediary

between the neighborhood and the electric grid. The CUP design includes a gas

microturbine generator, battery, chiller plant, and cooling thermal energy storage

(CTES). It uses this equipment, supplemented by neighborhood solar generation

and electricity purchased from the grid, to meet the neighborhood’s demand for

cooling and electricity, as shown in Fig 6.3.

While the literature contains many detailed models of microturbines, batter-

ies, and chilled water production and storage systems, especially when the equipment

capacity is specified (as in a case study), the equations used for this CUP model need

to be more generalized to allow the optimization program to choose different equip-

ment capacities. The remainder of this section presents models for each piece of CUP
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Figure 6.3: CUP flowchart. A microturbine, battery, chiller plant, and CTES system
comprise a CUP that acts as an intermediary between the electric grid and the
neighborhood’s electric demand, cooling demand, and solar generation.

equipment. The models are general enough to be scalable with equipment capacity

but still capture the most important aspects of the equipments’ operation. Tables 6.4

and 6.5 summarize the equipment operation and cost models.

Note that this generalized model uses continuous variables for equipment

capacity though the actual capacity options available to a central utility plant might

depend on manufacturer offerings. The model also assumes that CUP equipment

can reduce its part-load operation or state-of-charge to nearly zero though actual

equipment might be subject to stricter operational limitations. When developing a

specific CUP design, the modular combination of different equipment sizes might be

able to achieve a variety of operational capabilities and total system capacities.

Though each CUP component might have a different lifetime, this study as-

sumes that the entire CUP will be financed with a single loan, and amortizes its

capital costs over a period of 20 years with an interest rate of 7% [77]. These pa-
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rameters reflect costs associated with financing the entire CUP over the plausible

lifetime of a microgrid using lower medium grade corporate bonds [77].

Table 6.4: CUP operation and efficiency equations.
Relationship Equation R2 fit

Generator fuel consumption vs. electricity output Fh
gen,on = 0.137HMgen + 0.863HPh

e,gen 0.988

Generator capacity de-rating factor vs. ambient temperature Dgen,cap = 1.136− 0.00907T 0.939

Generator heat rate de-rating factor vs. ambient temperature Dgen,hr = 1 + 0.000768T + 0.00768T 2 0.982

Battery round trip (charge-discharge) energy efficiency ηbat = 0.85 -

Chiller COP vs. ambient temperature during cooling mode COPcool = 6.35− 0.0985T 0.967

Chiller COP vs. ambient temperature during ice-making mode COPice = 5.41− 0.0985T -

CTES round trip (charge-discharge) energy efficiency ηctes = 0.97 -

Table 6.5: CUP capital cost and the operation and maintenance (O&M).
Equipment Capital Cost [$] Annual O&M Cost [$]

Microturbine generator 1, 280, 000Mgen Ogen = 0.0105Σ8760
h=0P

h
e,gen

Lithium-ion battery 375, 000Mbat -

Chiller plant 48, 120 + 174, 245Mch Och = 12, 750 + 268Mch

Ice CTES 42, 650Mctes -

Chilled water piping 2, 900, 000 -

Rooftop solar 1, 650, 000Msolar Osolar = 23, 000Msolar

Gas microturbine generator:

The term “microturbine” describes a subset of open-cycle gas turbine tech-

nology that burns fuel to produce electricity and heat for individual buildings or

small distribution networks [23]. The fuel required to produce a certain amount of

electricity depends on the microturbine’s heat rate, an efficiency metric with units of

Btufuel/kWhelectricity. A microturbine’s heat rate worsens when it generates less elec-

tricity than its rated capacity (“part-load” operation) and when ambient temperature

increases. Similarly, its output capacity decreases at higher ambient temperatures.
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The microturbine model in this study converts natural gas fuel into electric

energy that can be used to meet neighborhood electric demand, operate the chiller

plant, charge the battery, or sell energy to the grid. The microturbine’s fuel-to-

electricity conversion depends on the heat rate and capacity equations described

below. For illustrative purposes, this study prices natural gas λng at 3.04 $/MMBtu

based on the average Henry Hub spot price since 2012 [180].

Initially, the microturbine is assigned a rated or baseline heat rate. Manufac-

turer data from Capstone [2], Kawasaki [5], Solar Turbines [8], Siemens [7], Dresser-

Rand [3], and Opra [6] are plotted in Fig 6.4. The data show that, for microturbines

with a rated capacity of 0 to 4 MW, the rated efficiency does not correlate strongly

with rated capacity. As an illustrative value, the microturbine model assumes a rated

efficiency of 25% (a heat rate of 13,648 Btu/kWh) for microturbines of any capacity.

The microturbine’s heat rate worsens when operating at part-load output.

From the academic literature, data showing the relationship between normalized

fuel consumption and normalized electrical output under part-load operation for

microturbines of 30kW [117], 30kW [99], 60kW [121], 150kW [121], and 1000kW [73]

capacities are shown in Fig 6.5 along with a linear regression. The positive y-intercept

indicates larger heat rates (more fuel burnt per electric energy generated) at lower

outputs.

The regression equation in Fig 6.5 is converted to a form in terms of hourly fuel

consumption F h
gen,on, rated heat rate H, rated capacity Mgen, and hourly generator

output P h
gen as F h

gen,on = 0.137HMgen + 0.863HP h
e,gen. This form interfaces better

with the optimization program, allowing fuel consumption to be calculated directly
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Figure 6.4: Manufacturer data indicate a lack of correlation between rated capacity
and rated efficiency for microturbines in the 0 to 4 MW capacity range.
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Figure 6.5: Microturbine normalized fuel consumption versus normalized electrical
output under part-load operation. Results from Malinowski [117], Ismail [99], Mi-
lan [121], and Gilette [73] support a linear relationship between fuel consumption
and electrical output.
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from the rated capacity and generator output parameters.

The microturbine’s heat rate increases and capacity decreases when oper-

ating at higher ambient temperatures. These capacity and heat rate de-rating

factors are approximated by as Dgen,cap = 1.136 − 0.00907T and Dgen,hr = 1 +

0.000768T +0.000077T 2. These approximations are regressions of ambient tempera-

ture performance data for Kawasaki microturbines with capacities ranging from 1.4

to 5.4 MW [5]. The regressions have average R2 values of 0.939 and 0.982, respec-

tively, when compared to the original performance data.

A microturbine’s capital cost increases directly with its capacity, ranging from

910 to 1650 $/kW when including installation [23]. Variable maintenance costs range

from 0.005 to 0.016 $/kWh [23]. This study uses 1280 $/kW and 0.0105 $/kWh for

capital and maintenance costs, respectively, for the Austin case study.

Battery:

Batteries use the chemical potential between anode and cathode materials

to store and discharge electrical energy. Lithium-ion batteries, in particular, are

becoming the preferred battery technology for utility grid electrical storage due to

their high energy density, voltage rating, cycle life, and efficiency [4].

The battery model in this study consumes electric energy, stores it, and dis-

charges that energy later to meet neighborhood electric demand, chiller plant de-

mand, or sell energy to the grid.

The battery’s charge-discharge cycle incurs energy losses due to battery inef-
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ficiencies. Its hourly dispatch can be modeled linearly by assuming a constant energy

efficiency for charging and discharging the battery cells [169]. Based on a 92% d.c.-to-

d.c. battery efficiency and a 96% d.c.-to-a.c. inverter efficiency, this study gives the

battery a roundtrip a.c.-to-a.c. efficiency ηbat of 85% [61] as an illustrative value.

Historically, grid-level batteries have been relatively expensive [30], but recent

trends show a steady reduction in cost [150]. The balance of system (BOS) costs for

installation, which include battery modules, soft costs, and engineering and procure-

ment, can range from 670 $/kWh [137] in 2015 to 350 [30] or 400 $/kWh [137] in

2020. This study uses a BOS cost of 375 $/kWh in anticipation of the lower prices

expected in 2020.

Chiller plant and cooling storage:

Air conditioning moves heat from the interior of a building to the outdoors

via the vapor-compression refrigeration cycle [26]. A chiller plant accomplishes this

heat transfer by raising the temperature of a working fluid above ambient conditions,

cooling the working fluid by rejecting heat to the atmosphere via a condenser coil,

and returning that working fluid to the building to absorb heat from the the building

interior [118].

These “air-cooled” chillers operate more efficiently at lower temperatures,

though cooling demand is often greatest during the hottest parts of the day (when

the chiller is least efficient). Cooling thermal energy storage (CTES), however, can

decouple chiller operation from cooling demand. It accomplishes this decoupling by
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storing a block of ice produced by the chiller early in the day when temperatures are

lower and chiller efficiency is higher, and by melting that ice later in the day to help

meet cooling demand, which allows chiller output to be lower than cooling demand.

(Though not used in this model, note that an alternate CTES method stores cooling

in a large, thermally-stratified, tank of chilled water).

In a typical “internal melt”, ice-based, CTES design, the chiller cools a water-

glycol working fluid down to 25 ◦F (-3.9 ◦C). This fluid flows through a heat exchanger

coil in a small water tank to generate ice. Once the ice tank is fully “charged”, the

chiller can operate in normal cooling mode, or it can shut off, allowing the CTES to

“discharge” and provide cooling to the building without consuming electricity at the

chiller [60].

The chiller model in this study converts electric energy into cooling for satisfy-

ing the neighborhood’s cooling demand or charging the CTES system. The efficiency

of that conversion process depends on the chiller plant’s coefficient of performance

(COP), expressed in units of kWhth/kWh. Based on chiller performance data [172]

and curves [173] from the Trane Corporation, Fig 6.6 shows that a chiller’s rated

COP does not correlate with its capacity, and Fig 6.7 supports a one-to-one rela-

tionship between cooling output and power consumption. As an illustrative value,

this study assumes a rated COP of 2.9 at 95 ◦F (35 ◦C) for the air-cooled chiller,

regardless of chiller capacity or part-load operation.

Ambient temperature greatly influences chiller COP. Fig 6.8 shows perfor-

mance data for a variety of Trane, air-cooled chiller models [173] and supports a

linear relationship between ambient temperature and COP.
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Figure 6.6: Data indicate a lack of correlation between rated capacity and rated
COP for air-cooled chillers of various models and sizes manufactured by the Trane
corporation [172].
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Figure 6.7: Data support a one-to-one relationship between part-load chiller cooling
output and power demand [173].
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Charging the ice-storage system also influences chiller COP. When a chiller

switches from cooling to ice-making mode, it must cool the working fluid to a lower

temperature, which requires more energy. This study assumes working fluid temper-

atures of 42 ◦F (5.55 ◦C) for cooling (with a return temperature of 56 ◦F (13.33 ◦C))

and 25 ◦F (-3.89 ◦C) for ice-making [172]. It adjusts the ice-making COP curve,

accordingly, as shown in Fig 6.8.

Figure 6.8: Chiller COP varies directly with ambient temperature [173] and whether
the chiller is in cooling or ice-making mode [97].

Though ice-making consumes more electricity than cooling at the same ambi-

ent temperature, making ice at night when ambient conditions are cooler and chiller

COP is higher can compensate for this adverse effect [40]. In Fig 6.8, for example,

cooling at ambient temperatures of 30 ◦C (daytime) has the same COP as ice-making
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at ambient temperatures of 20.5 ◦C (nighttime).

The CTES model in this study consumes cooling energy, stores it, and dis-

charges that energy later to meet neighborhood cooling demand.

Internal melt, ice-based, thermal energy storage systems operate at very high

efficiencies, with losses mainly due to heat transfer from the atmosphere to the ice

block. While the round trip, charge-discharge efficiency of these CTES systems

depends on the storage operational strategy and the ambient temperature, efficiency

varies from 97% to 99% under most conditions [115]. This study assumes that CTES

efficiency dynamics will have limited impact on the solution, and uses a constant,

round trip efficiency of 97% for the ice-storage CTES system.

Chiller plant costs include capital cost and fixed maintenance cost, which both

depend on the chiller plant capacity. Overnight capital cost is modeled as 48, 120 +

174, 245Mch using construction cost data from [157]. Annual fixed maintenance cost

is modeled as 12, 750+268Mch using data from [126]. Ice storage system capital cost

is modeled as 42, 650Mctes [95].

Another capital cost component of a centralized cooling system is the un-

derground distribution piping that connects the chiller plant with the individual

buildings. Heuristics or actual examples of chilled water piping network costs are

not widely available in the literature. This study estimates the chilled water piping

network capital cost by designing a rudimentary network for an Austin, TX neigh-

borhood representative of the 750-house neighborhood model (see Section 6.1.1).

The design is shown in Fig 6.9 and assumes a centrally-located chiller plant. It is
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sized for peak cooling demand, assumes that each house contributes an equal share

to the peak neighborhood cooling demand, and chooses pipe diameters according

to the design guidelines in [165]. The design requires 1130, 1300, 1940, and 14790

linear feet of 6”, 4”, 3”, and 2” diameter insulated, steel, hydronic distribution pip-

ing at a total cost of $2.9 Million (including design, procurement, and construction

costs) [157]. The uncertainty of this cost is non-trivial as actual costs might depend

on neighborhood density, construction, network design, and other factors.

Figure 6.9: A rudimentary design for the neighborhood chilled water distribution
system using design guidelines from [165] helps estimate the capital cost of the piping
network at $2.9 Million.

6.1.3 Electricity rate structures

Observing the response of the CUP to different electricity rate structures is an

important analysis component of this study. Residential rate structures are normally

“flat,” meaning that price does not change with season or time of day. However,

“time-of-use” (TOU) rate structures, where prices do change with season and time

of day, are becoming more common, especially in the commercial and industrial
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sectors. California requires these sectors to be on a TOU plan and offers TOU rate

structures to its residential customers [22]. Another price mechanism, “real time

pricing” (RTP), mimics the wholesale prices paid to power plants that can change

every 15 minutes. While RTP structures are not generally available to residential

customers, this study includes it to illustrate the effects of a pricing structure that

is more dynamic than what is typically available.

Switching from flat to TOU or RTP rate structures encourages customers to

reduce their peak demand and shift their consumption to times of the day when

electric grid costs are lower. These dynamic rate structures might help utilities

achieve lower costs, greater reliability, and better renewable energy integration [171].

More dynamic pricing structures might be more effective at accomplishing

these goals, and this study uses 5 different energy-only rate structures to test this

hypothesis. Three TOU rates are designed to mimic the seasonal and daily timing

of a TOU rate structure in Austin, TX, USA with off-peak, mid-peak, and on-peak

prices [14]. Each TOU rate has a different spread between those three prices. An

RTP rate, mimicking the historic 2015 energy prices in the Texas electricity market,

is also used in the analysis. Though constantly changing, real-time prices might be

difficult for an actual residential CUP to forecast and respond to, the RTP rate used

in this study assumes that the CUP has perfect foreknowledge and tests whether

such a volatile rate structure would provide better incentives than a TOU rate.

The rates are designed so a 1 MW constant load would pay the same total

annual energy cost under any of the rate structures, at an average price of 120

$/MWh, based on the average US residential electricity rate [179]. Figs 6.10 and 6.11
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summarize the timing and price values of the different rate structures.

Figure 6.10: Energy only rate structures for electricity purchased during peak season
(June 1–September 30). Real time prices vary hourly, based on the historic wholesale
market.

Beyond energy-only prices, electricity rate structure can also include demand

charges that apply a price to a customer’s peak instantaneous consumption. These

charges might encourage lower peak demand and flatter demand profiles [74]. This

study tests that hypothesis by adding an increasing demand charge to a TOU rate

with a moderate spread between off-peak and on-peak prices, as shown in Table 6.6,

where the demand charge is multiplied by the annual maximum amount of electricity

bought or sold by the CUP during any hour of the simulation. The demand charge

rate structures in Table 6.6 are designed by reducing the energy price in 10% incre-
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Figure 6.11: Energy only rate structures for electricity purchased during off-peak
season (October 1–May 31). Real time prices vary hourly, based on the historic
wholesale market.
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ments and choosing the demand charge that allows a 1 MW constant load to pay

the same annual cost under each rate structure.

Table 6.6: Rate structures with demand charges are created by lowering the energy
price of a medium TOU rate and introducing a demand charge. A 1 MW constant
load will pay the same annual cost under each rate structure.

Demand 0 Demand 1 Demand 2 Demand 3 Demand 4

Annual Demand Charge [$/MW] 0 43,900 106,800 169,800 232,700

Energy Price Reduction [%] 0 10 20 30 40

Energy Price (Off-Peak) [$/MWh] 61.69 59.11 55.42 51.72 48.03

Energy Price (Mid-Peak) [$/MWh] 142.46 136.51 127.98 119.4 110.92

Energy Price (On-Peak) [$/MWh] 195.89 187.72 175.98 164.5 152.52

Another aspect of electricity rate design is the remuneration structure for

selling power back to the grid. Net energy metering, a common method for US utili-

ties, subtracts a customer’s monthly generation from their monthly consumption and

bases their bill on that net energy amount. Utilities have raised concerns, however,

that net metering fails to capture the true costs and benefits of distributed solar [16].

In this study, the CUP can sell electricity at the wholesale market price, but cannot

sell it for more than the local electricity rate [120].

The 2015 ERCOT wholesale market prices range from 5 to 2200 $/MWh with

an average price of 26.05 $/MWh. Prices exceeded 50 $/MWh for 271 hours of the

year, mostly in the spring and summer, and exceeded 250 $/MWh for only 18 hours

of the year. See Fig 6.12 for a profile of the ERCOT wholesale prices in 2015.

6.1.4 CO2 emissions calculations

Emitting CO2 into the atmosphere is an important consequence of burning

fossil fuels to generate electricity, especially in connection with climate change and
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Figure 6.12: Hourly wholesale prices for the ERCOT market, 2015.

climate policies. While this study’s optimization model does not include CO2 prices

or policies when solving, it is useful to calculate the annual CO2 emissions generated

under different model scenarios.

This study assumes that CO2 emissions come from either the CUP’s mi-

croturbine generator or the power plants operating in the electric grid. The mi-

croturbine’s CO2 emissions are calculated by multiplying its annual fuel consump-

tion by the amount of CO2 generated from burning one unit of natural gas (117

lbs/MMBtu) [181]. The microturbine’s CO2 emissions average 1820 lbs/MWh and

range from 1590 to 3000+ lbs/MWh, depending on the microturbine’s efficiency as

influenced by part-load operation and ambient temperature.

The power sector’s CO2 emissions are estimated by projecting a merit order
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curve (power plants organized by increasing marginal cost) onto Texas’ 2015 hourly

load to estimate which power plant is the marginal generator during each hour of

the year [69]. The study assumes that the CO2 emissions intensity of that marginal

power plant can be applied to the CUP’s electricity consumption during the same

hour. The electric grid’s marginal CO2 emissions average 1460 lbs/MWh and range

from 775 to 2520 lbs/MWh, depending on whether the marginal producer is a coal

plant or a cleaner technology.

6.2 Optimization description

This study uses a linear optimization program to analyze how a CUP can

reduce electricity sales, lower the peak demand, and decrease net load ramp rates

in a residential neighborhood. In the optimization model, the CUP responds to an

electricity rate structure by choosing the capacity and hourly dispatch for each piece

of CUP equipment to maximize its annual profit. The model’s decisions about how

much equipment to buy and how that equipment should be operated depend on the

costs and efficiencies described in Section 6.1.2 and the operational constraints in

Section 6.2.1.

This paper’s main interest lies in whether electricity rate structures incen-

tivize the CUP to operate in ways that improve rooftop solar integration. Thus,

the optimization scenarios are created by applying the different rate structures and

demand charges discussed in Section 6.1.3.
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6.2.1 Linear program description

The CUP optimization model is a mixed integer linear program (MILP) writ-

ten using the Pyomo [81] optimization package for the Python [147] programming

language and solved using the CPLEX optimizer [96]. The combined-heat-and-power

program developed by Mitra et. al. [122] provided a helpful framework for incorpo-

rating the Section 6.1.2 equipment models into a linear program form.

The objective function of the model, shown in Eq 6.1, maximizes the system

profit by considering the net sum of electricity sales, electricity purchases, fuel cost,

variable O&M cost, demand charge cost, and annualized equipment cost. Annualized

equipment cost (Eq 6.2) is the sum of the equipment’s amortized capital cost and its

annual, fixed O&M cost. The linear program is subject to the constraints in Table 6.7.

Electricity sold 4h
e+, electricity bought 4h

e−, fuel consumption F h, microturbine

output P h
e,gen, and peak demand M4 all impact the objective function and depend

on the hourly dispatch of the CUP equipment (see Table 6.7). Annualized equipment

cost A (Eq 6.2) is the sum of the equipment’s amortized capital cost and its annual,

fixed O&M cost and depends on the CUP equipment capacities.

max(
∑
h

(4h
e+λ

h
e+ −4h

e−λ
h
e− − F hλng − P h

e,genOgen)−M4λd − A (6.1)
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Capital = C1
genMgen + C1

batMbat + C0
ch + C1

chMch + C0
piping + C1

ctesMctes + C1
solarMsolar

O&M = OchMch +OsolarMsolar

A = Capital ×R +O&M

(6.2)

This study assumes data for electricity prices and net demand are known

with perfect foresight, and that the community-system optimally dispatches equip-

ment based on these conditions. Because future day-ahead conditions are not known

with certainty, results from this approach establish an upper-bound or “best-case”

scenario [49]. Previous work has shown that the value of perfect information is rela-

tively small compared to approaches that incorporate historical information for daily

load patterns and weekend/weekday relationships, which supports using optimiza-

tion with perfect foresight to compute reasonable approximations of CUP opera-

tions [164].

6.3 Results and discussion

Table 6.8 summarizes the results from optimizing the CUP in response to

the different energy-only rate structures from Section 6.1.3. It shows that a residen-

tial neighborhood can reduce its annual cost under all rate structure scenarios by

investing capital in a CUP to reduce its energy costs.

The CUP’s success in improving solar integration, however, is mixed. It

reduces electricity sales and peak demand for all rate structures, when compared

to the “No CUP” scenario. However, ramp rates increase significantly due to the
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Table 6.7: Linear program constraints
Constraint Description

Energy balance

4h
e = 4h

e− −4h
e+ Net demand = electricity bought – electricity sold

4h
e = Ph

e − dhe Net demand = net electricity production – electric demand

4h
e− ≤ M4 Electricity bought ≤ peak demand

4h
e+ ≤ M4 Electricity sold ≤ peak demand

Ph
e = Ph

e,gen − Ph
e,ch − Ph

e,ice + Ph
e,bat,d − Ph

e,bat,c + Ph
e,solar Net electricity production = generator output – chiller

electricity demand – chiller ice-making mode penalty +

battery discharge – battery charge + solar output

0 = Ph
c − dhc Net cooling production = cooling demand

Ph
c = Ph

c,ch + Ph
c,ctes,d − Ph

c,ctes,c Net cooling production = chiller cooling output + CTES

discharge – CTES charge

Microturbine generator

Ph
e,gen ≤ MgenDh

gen,cap Generator output ≤ generator capacity × de-rating factor

Ph
e,gen ≤ Byhgen,on Generator output is 0 unless generator binary is “on”

yhgen,on + yhgen,off = 1 Generator binary must be “on” or “off”

Fh
gen,on = HDh

gen,hr(0.137MgenDh
gen,cap + 0.863Ph

gen) Generator “on-mode fuel consumption” depends on the

de-rated heat rate, de-rated capacity, and generator output

Fh ≥ −Byhgen,off + Fh
gen,on Generator fuel consumption is 0 if the generator binary is

“off”, or the “on-mode fuel consumption” otherwise

Battery

Sh
bat ≤ Mbat Stored battery energy ≤ battery capacity

Sh=0
bat = Mbat Stored battery energy = battery capacity at time h = 0

Sh
bat = Sh−1

bat + Ph−1
e,bat,c

√
ηbat − Ph−1

e,bat,d/
√
ηbat Stored battery energy in hour h = stored battery energy

+ battery charge - battery discharge in hour h− 1,

considering the battery efficiency

Chiller plant

Ph
ch ≤ Mch Chiller output ≤ chiller capacity

COPh
cool = 6.35− 0.0985Th and COPh

ice = 5.41− 0.0985Th Chiller COP depends on the ambient temperature

Ph
e,ch = Ph

c,ch/COPh
cool Chiller electric demand depends on cooling output and COP

Ph
e,ice = Ph

c,ctes,c/COPh
ice − Ph

c,ctes,c/COPh
cool Additional electricity for ice production depends on

CTES charge and chiller COP

CTES

Sh
ctes ≤ Mctes Stored CTES energy ≤ CTES capacity

Sh=0
ctes = 0 Stored CTES energy = 0 at the beginning of the simulation

Sh
ctes = Sh−1

ctes + Ph−1
c,ctes,c

√
ηctes − Ph−1

c,ctes,d/
√
ηctes Stored CTES energy in hour h = stored CTES energy

+ CTES charge - CTES discharge in hour h− 1,

considering the CTES efficiency

Neighborhood solar

Ph
e,solar ≤ MsolarK

h
solar Solar output ≤ solar capacity × solar capacity factor
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Table 6.8: Results for optimal CUP operation under flat, time-of-use (TOU), and
real-time-price (RTP) electricity rate structures (see Section 6.1.3).

Flat, No CUP Flat TOU Weak TOU Med TOU Strong RTP

Annual Capital Cost [$M] 0.39 0.67 0.67 0.69 0.71 0.69

Annual Energy Cost [$M] 0.93 0.52 0.52 0.51 0.46 0.50

Annual Cost [$M] 1.32 1.19 1.19 1.20 1.17 1.19

Annual CO2 Emissions [tons] 5920 6410 6410 6420 5890 6360

Electricity Bought [MWh] 7770 1210 1080 1010 3560 1220

Electricity Sold [MWh] 56.5 34.9 29.8 32.3 38.6 32.8

Peak Demand [MW] 2.98 1.72 1.59 1.46 2.30 1.75

Minimum Ramp [MW/hr] -0.51 -0.91 -0.81 -0.81 -1.86 -1.65

Maximum Ramp [MW/hr] 0.70 1.28 1.28 1.29 2.00 1.55

Microturbine Capacity [MW] 0.00 1.02 1.04 1.05 1.01 1.03

Battery Capacity [MWh] 0.0 0.0 0.0 0.0 0.0 0.0

Chiller Capacity [MWth] 0.00 3.74 3.38 3.00 3.55 3.44

CTES Capacity [MWhth] 0.0 4.0 7.0 11.0 15.0 11.0

Solar Capacity [MW] 1.2 1.2 1.2 1.2 1.2 1.2

Microturb. Annual Capacity Factor - 0.72 0.73 0.73 0.44 0.72
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CUP’s operation. Microturbine generation and CTES load shifting both contribute

to lowering peak demand and reducing electricity sales. With a CUP, electricity

sales can happen more purposefully in response to high wholesale prices, rather than

just as a consequence of solar output exceeding demand. The larger ramp rates are

the consequence of volatile chiller plant operation, as the chiller reduces its capacity

significantly to avoid the hottest 1 or 2 hours of the day (when it is least efficient).

The “weak” and “medium” TOU structures perform better in reducing elec-

tricity sales, peak demand, and ramp rates than the flat, “strong” TOU, or RTP

rates. This result suggests that even small steps from flat rates to TOU rates can

improve solar integration, but that large differences between off-peak and on-peak

prices or the high time-resolution of RTP might not be necessary. The medium TOU

provides, perhaps, the best balance between the output parameters, reducing elec-

tricity sales by 43%, peak demand by 51%, and annual cost by 9.1% versus the “No

CUP” base case while limiting net demand ramp rate increase to 84% more than the

base case.

The microturbine marginal operating cost (fuel + O&M) averages 57.30 $/MWh

with a minimum of 51.90 $/MWh, providing an important pivot point for the CUP’s

operation. Whenever the CUP can buy electricity for less or sell electricity for

more than the microturbine’s operating cost, it usually will, depending on other

model constraints. This interaction explains the low microturbine capacity factor

and large amount of electricity bought under the strong TOU structure, where the

49.00 $/MWh off-peak price always undercuts the generator, causing the CUP to

purchase electricity from the grid.
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Electricity purchases also correlate negatively with CO2 emissions. Though

microturbine emissions are sometimes lower than the grid’s generation fleet, it ends

up emitting more CO2 on average.

Figs 6.13 and 6.14 provide a more detailed look at the hourly CUP dispatch

in the summer and shoulder seasons under the medium TOU rate. Fig 6.13 shows

the CUP dispatch for August 14, 2015, one of the hottest days of the year. The

microturbine and rooftop solar operate at full output with electric grid purchases

(i.e. the “net demand”) making up the difference. CTES is used to balance the

difference between the cooling profile and the chiller plant output. This balancing

allows the chiller plant to pursue three beneficial, operational strategies. First, it can

shift energy demand from on-peak/mid-peak to off-peak energy prices. Second, it

augments the chiller’s maximum output, enabling the chiller capacity to be lower than

the peak cooling demand, which reduces capital costs. (Note that the chiller operates

at full output at 14:00, 15:00, and 18:00–23:00 with the CTES discharging to meet

cooling demand.) Third, any CTES storage not used for augmenting chiller capacity

can discharge during on-peak prices. In this figure, since chiller efficiency degrades

with higher ambient temperatures, the chiller reduces its consumption during 17:00,

the hottest hour during on-peak prices, until net demand (electric grid purchases)

is zero. Then it uses the remaining excess CTES storage to reduce its consumption

during 16:00, the next hottest hour.

In comparison to the neighborhood’s demand without a CUP (see Fig 1.1),

peak net demand falls from 2.65 to 1.25 MW, but the maximum ramp rate rises

from 0.52 to 0.94 MW/hr. The chiller’s avoidance of the on-peak price hours with
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the highest ambient temperatures creates the sudden demand changes that lead

to larger ramp rates. While avoiding these high-temperature, low-efficiency hours

is technically optimal, the chiller could plausibly produce a smoother net demand

curve without significantly impacting the CUP’s annual profit.

Figure 6.13: Dispatch of the CUP equipment for August 14, 2015, one of the hottest
days of the summer (see Fig 1.1). The “Electric Grid” series is equivalent to the net
demand.

Fig 6.14 shows the CUP dispatch for October 26, 2015, a shoulder-season day

where solar output exceeds total neighborhood demand. The microturbine output

matches total neighborhood demand, except when solar is producing, and the tur-

bine adjusts its output to try and keep electricity purchases (net demand) at zero.

The CTES charges from 13:00 to 15:00 to avoid selling electricity to the grid, and
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discharges from 18:00 to 21:00 to avoid buying electricity when the microturbine is

at maximum capacity.

In comparison with the neighborhood’s demand without a CUP (see Fig 1.2),

the CUP is able to completely eliminate electricity purchases and reverse power flow.

Even though cooling demand is quite low, the CTES is still able to absorb the excess

solar energy, using some of its storage that evening, and discharging the remainder

of its storage the following day.

Figure 6.14: Dispatch of the CUP equipment for October 26, 2015, a day where solar
output exceeds total neighborhood demand and should lead to reverse power flow
(see Fig 1.2). The “Electric Grid” series is equivalent to the net demand.

Including a demand charge in the rate structure also influences the operation

of the CUP. Table 6.9 and Fig 6.15 summarize the results for the different demand
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charge scenarios.

Table 6.9: Results for 1.2 MW solar under different demand charges.
Flat, No CUP Demand 0 Demand 1 Demand 2 Demand 3 Demand 4

Annual Capital Cost [$M] 0.39 0.68 0.70 0.75 0.79 0.84

Annual Energy Cost [$M] 0.93 0.52 0.54 0.54 0.53 0.48

Annual Cost [$M] 1.32 1.20 1.24 1.29 1.32 1.32

Annual CO2 Emissions [Tons] 5920 6360 6330 6320 6900 7170

Electricity Bought [MWh] 7770 1190 1260 1330 160 0

Electricity Sold [MWh] 56.5 29 41 54 69 0

Peak Demand [MW] 2.98 1.52 1.10 0.67 0.35 0.00

Minimum Ramp [MW/hr] -0.51 -0.89 -1.08 -1.30 -0.49 0.00

Maximum Ramp [MW/hr] 0.70 1.32 1.37 1.21 0.49 0.00

Microturbine Capacity [MW] 0.00 1.02 1.10 1.28 1.61 2.03

Battery Capacity [MWh] 0.0 0.0 0.0 0.0 0.0 0.0

Chiller Capacity [MWth] 0.00 3.09 3.14 3.29 3.40 3.36

CTES Capacity [MWhth] 0.0 10.0 13.0 18.0 19.0 19.0

Solar Capacity [MW] 1.2 1.2 1.2 1.2 1.2 1.2

Microturb. Annual Capacity Factor - 0.74 0.68 0.59 0.55 0.44

Demand charges generally lead to lower peak demand, but more reverse power

flow. Larger demand charges incentivize the CUP to invest in larger equipment

to reduce its peak demand and lower its annual demand charge cost. That larger

equipment improves the CUP’s ability to produce more energy than is needed, giving

it more opportunities to sell power and take advantage of price spikes in the wholesale

market.

Consequently, the increased ability to sell power can lead to larger ramp

rates. The largest ramp rates in these scenarios occur when the CUP switches from

buying in one hour to selling in the next (or vice versa). Incentivizing a lower peak

demand counteracts the intensity of this switching by limiting the buying and selling
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Figure 6.15: Sensitivity of the results to demand charges. “No CUP” is the neigh-
borhood at flat energy rates and no CUP. “Demand 0” through “Demand 4” are
TOU energy rates with increasing demand charges as shown in Table 6.6.
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magnitude. Thus, small demand charges tend to increase ramp rates, but medium

demand charges can reduce them.

Large demand charges lead to the “Demand 4” case, where the charge is high

enough to incentivize islanding. In this case, no electricity is bought or sold and all

energy costs go towards purchasing natural gas for the microturbine.

Comparing the energy-only rate results (Table 6.8) with the demand-charge

rate results (Table 6.9), demand charges tend to increase both capital and energy

cost. Small demand charges tend to increase electricity sold and ramp rates, and

reduce peak demand and microturbine capacity factor. Large demand charges push

the neighborhood towards islanding. Only the “Demand 3” rate structure reduces

ramp rates more than any of the energy-only rate structures without moving the

neighborhood towards islanding, but is at least 10% more expensive to operate,

annually.

Finally, it is helpful to consider the equipments’ part-load operation results,

given that manufacturer limitations might prevent different equipment from oper-

ating at very low output. Figure 6.16 presents a normalized duration curve for the

microturbine, chiller plant, and CTES. For example, the microturbine produces elec-

tricity for 8180 hours per year operating at 40% of rated capacity or greater for 6960

of those hours (85% of the time) and at 20% of rated capacity or greater for 7990

of those hours (98% of the time) per year. Thus, a single microturbine capable of

operating at 20% part load could meet the majority of the results’ operation sched-

ule. However, the chiller plant regularly operates at low part-load output and might

benefit from a CUP design that uses multiple chiller units to efficiently meet the
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results’ operation schedule.

Figure 6.16: Hours per year that each CUP component spends at different output
levels under the Medium TOU scenario. While the microturbine seldom operates at
low part-loads, the chiller plant regularly operates at low output. An actual CUP
design might use multiple chiller units to achieve the dispatch schedule in these
results.

6.4 Conclusions

This study uses a MILP optimization model to test the hypothesis that a

residential central utility plant can improve the integration of rooftop solar in the

electric grid and provide economic benefit to the community. It models a 750-house

neighborhood with 1.2 MW of rooftop solar and optimizes a CUP’s equipment ca-

pacities and hourly dispatch to maximize profit in response to various electricity rate
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structures.

Results suggest that a central utility plant could be economically constructed

and operated in a residential neighborhood, reducing annual costs by 9.1% under

the medium TOU rate. This strategy requires a large up-front capital investment in

exchange for lower energy costs in the long run. Though the piping network capital

cost estimate is uncertain, the plant’s economic benefit is large enough that a more

expensive piping network estimation might still be economically feasible, especially in

denser neighborhoods being developed at greenfield sites (where underground piping

construction might be more manageable than in an existing community).

The optimization does not build a battery under any circumstances, preferring

to use a microturbine and CTES storage to provide similar flexibility at a consider-

ably lower capital cost. However, this study uses an hourly time resolution, which

undervalues the sub-second flexibility that a battery can provide for voltage support

and other beneficial services. In addition, battery costs might drop low enough to

make them economically competitive, or a residential neighborhood might not want

to operate a microturbine and opt for some battery capacity as a substitute. Thus,

batteries might be justifiable in real-world circumstances and should not be excluded

from future analyses.

Regarding the study’s primary hypothesis, the results indicate that a residen-

tial CUP can economically improve some aspects of rooftop solar integration and

might be a viable strategy for improving the flexibility of the distribution grid. A

variety of rate structures seem to support CUP operation that reduces peak demand

and lowers electricity sales. Net demand ramp rates, however, tend to increase except
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under rate structures with large demand charges (and high annual costs).

The largest ramp rates result from quickly changing the chiller plant’s output

to avoid the hottest, least efficient hours of the day. Though this operational strategy

is economically optimal, it is unclear if an actual chiller control strategy would place

as much emphasis on avoiding peak daily temperature. It seems plausible that a

chiller plant could produce a smoother net demand profile without much loss in

profit. In any case, the results still suggest that a CUP is a much more flexible

system than an uncoordinated neighborhood of houses, and it is capable of large net

demand ramp rates that might complicate the operation of the grid. Thus, CUPs

might provide new opportunities for solar integration, but they might also provide

new challenges depending on the utility’s incentives or signals.

Utilities in cooling climates with significant solar integration might find value

in supporting microgrid and utility district development, though they should antic-

ipate erratic behavior that leads to increased net demand ramp rates. Electricity

rates should be designed carefully to achieve the utility’s goals. A time-of-use rate

with a medium spread between off-peak and on-peak prices provides a good balance

between reducing electricity sales by 43%, peak demand by 51%, and annual cost

by 9.1% versus the “No CUP” base case, while increasing ramp rates less than most

of the other dynamic rates (an 84% increase over the base case). Adding a demand

charge can reduce peak demand further, though it increases annual CUP cost and

can incentivize islanding. Additional measures could help manage ramp rates, such

as rewarding microgrids for keeping a flatter demand profile.
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Chapter 7

Summary

This dissertation explores the integration of renewable energy in the electric

grid by studying its impact on the dispatch of power plants, its influence on net

load flexibility requirements, and its regional representation in capacity expansion

models. It also explores how demand-side management in the form of a residential

utility plant can help integrate renewable energy resources. The following objectives

were used to frame the research:

• Objective 1: Explore the effects of adding large amounts of solar generation to

the grid and assess the importance of array orientation and geographic location

• Objective 2: Determine how growing wind and solar capacities correlate with

increasing flexibility requirements

• Objective 3: Project the amount of wind and solar capacity that should be

installed in different regions of the electric grid

• Objective 4: Analyze opportunities for system integration and demand-side

management to add flexibility to the electric grid.
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7.1 Solar PV integration cost variation due to array orien-
taiton and geographic location in the Electric Reliability
Council of Texas

Chapter 3 uses unit commitment and dispatch techniques to provide a holis-

tic study of how generator dispatch, system flexibility requirements, and market

dispatch costs are influenced by the orientation and geographic location of solar gen-

eration assets. Increased solar generation reduces overall costs, emissions, and water

use in the electric grid but intensifies the flexibility requirements needed to match

dispatchable generation with the net load. Solar generation also changes how gener-

ators are dispatched in the electric grid, because it displaces generation during the

day but requires dispatchable ramping in the evening as solar power drops off.

7.2 The impacts of wind and solar on grid flexibility require-
ments in the Electric Reliability Council of Texas

Chapter 4 uses a data-driven approach to quantify the correlation of increasing

wind and solar generation with grid flexibility requirements. The results show that

increasing solar capacity correlates strongly with a number of flexibility requirements.

Increasing wind capacity correlates slightly with some flexibility requirements, but

its main correlation is with reduced 1-hr and 3-hr ramp downs. Wind and solar

do not show significant confounding, except that a grid with wind and solar has

much greater 1-day volatility than a system with only wind or solar alone. These

trends provide meaningful insight for grid planners as they anticipate the growth of

renewable energy resources and the strategies they should implement to maintain
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reliability and manage integration costs.

7.3 Modeling the optimal mix and location of wind and solar
with transmission and carbon pricing considerations

Chapter 5 develops a regionally-sensitive capacity expansion model that rec-

ommends the optimal investment of wind, solar, and transmission capacity in the

different regions of an electric grid. It also develops a framework for balancing sys-

tem costs, flexibility requirements, and CO2 emissions when considering CO2 prices

or other policies. The results show regional wind and solar resources might be devel-

oped based not only on their capacity factors but on the timing coincidence of their

generation with load and with renewable generation in other regions. The results

show that increased CO2 prices yield diminishing returns for reducing emissions, that

some curtailment of wind and solar is economically appropriate, and provide some

insights into the scale of the flexibility requirements that will be required to maintain

the stability of a system with large, regionally-dispersed, renewable energy assets.

7.4 Optimal dispatch and equipment sizing of a residential
central utility plant for improving rooftop solar integra-
tion

Chapter 6 develops a capacity and dispatch optimization model to show how

a central utility plant (CUP) might economically improve rooftop solar integration

in a residential neighborhood. The simulation results show that the CUP allows the

neighborhood to operate much more flexibly, but that the CUP operational strategy
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depends on electricity rate structure and other market policies. The optimization

program does not select the option to build a battery under any scenario but chooses

to use less expensive cooling thermal energy storage to accomplish some of the same

load shifting tasks at a smaller capital cost. In cooling climates with significant solar

integration, CUPs might provide a reasonable way to reduce neighborhood costs and

increase neighborhood flexibility for integrating rooftop solar if the right markets

and policies are employed.

7.5 Overall considerations

The insights gained from the studies within this dissertation build on each

other in the following ways. Chapter 3 looks holistically at the integration of renew-

able energy in the electric grid and identifies an important drawback of increased

renewable energy penetration - that it requires the dispatchable generator fleet to

operate much more flexibly, which could increase some operational costs and com-

plicate the grid’s ability to balance supply and demand. Chapter 4 explores the

correlation of increasing flexibility requirements with larger wind and solar capacity

to help characterize the magnitude, severity, and frequency of increased flexibility

requirements due to renewable generation. Chapter 5 quantifies the location and

scale of potential renewable energy resources in the electric grid. These three chap-

ters together provide a cohesive look of the different aspects of integrating renewable

energy into the electric grid and call for some solutions for providing the increased

flexibility needed for improving that integration. Chapter 6 examines on-site gen-

eration and thermal energy storage in the residential cooling sector as a potential

192



avenue for increasing grid flexibility by leveraging demand-side technology, energy

aggregation, and consumer behavior.

As a whole, this body of work communicates the importance of improving the

flexibility of the electric grid if large amounts of renewable energy capacity are to

be developed and properly integrated. It examines demand-side management as an

important contributer for providing that flexibility. It sets a trajectory of looking fur-

ther into the technologies, consumer behavior, electricity rates, and policies that will

transition electricity demand from being a mostly passive portion of the electricity

system to being a dynamic asset that can modulate its energy consumption patterns

to respond to needs in the electric grid, reduce system costs, and increase reliability

and resilience, especially in the context of greater renewable energy capacity.

7.6 Future work

Future work will expand the research scope beyond some of the assumptions

that have been used throughout this dissertation. In particular, this dissertation

assumes that supply and demand balancing issues are handled on a grid-wide basis

without local or nodal variations and that energy demand is a static input variable

that responds inelastically to market conditions. It also excludes utility-scale storage

and power plant retirements in the scope of its analyses.

For addressing local variations in supply and demand issues, future work

might include representations of transmission congestion when modeling unit com-

mitment and dispatch of the grid’s power plant fleet. Future projects will also explore

renewable energy integration at the local distribution level, allowing distributed en-
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ergy resources and dispatchable loads to help balance supply and demand in feeders

with high solar penetration and allowing local utility-scale renewables to be utilized

at a higher transmission efficiency and lower congestion rate than resources located

far from load centers.

For addressing the static portrayal of electricity demand, future projects will

explore demand from the perspective of human decisions and needs, and model de-

mand as an extension of consumer behavior, including the “rebound effect” where

consumers might demand more of an energy product after efficiency investments

have reduced its apparent cost. This new trajectory can also include technology

deployment in urban areas that enable demand to be more dynamic, including en-

ergy storage, smart appliances, and central utility plants and will explore how local

dynamic pricing structures can encourage flexible demand behavior that benefits the

stability, reliability, and resilience of the electric grid.

For addressing the exclusion of storage and power plant retirements at the

utility level, future models could incorporate these aspects by making energy storage

a possible technology in capacity expansion planning and by creating criteria that

removes generators from the generation fleet whenever their profits are too low to

justify their continued operation.
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Appendix A

Statistical Tables for Chapter 4

The following tables contains some statistical information about the 2008-2025

scenarios discussed in Chapter 4. The tables show the maximum, 95th percentile,

median, 5th percentile, and minimum values for each of the flexibility requirements

over every 15-minute interval per year. Table A.1 shows the calculated values used

for the majority of the study. Table A.2 shows the same results if wind generation is

removed from the analysis to test for any confounding between the influence of wind

and solar on flexibility requirements. It is informative to read across the rows and

see how different aspects of the flexibility requirements change with increasing wind

and solar peak output.
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Table A.1: The following table shows the maximum, 95th percentile, median, 5th percentile, and minimum
values for each flexibility requirement over each year.

Wind Era Solar Era

2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025

1
-H

r

R
a
m
p
R
a
te

Max 6,548 6,023 6,538 6,013 6,426 6,334 6,484 6,223 6,364 7,157 8,125 9,089 10,050 11,010 11,971 12,932 13,893 14,854

95% 3,049 3,188 3,243 3,471 3,302 3,338 3,327 3,268 3,369 3,397 3,442 3,507 3,613 3,730 3,883 4,035 4,186 4,323

Med -14 -25 -48 -37 0 -22 -15 21 25 25 14 -3 -14 -40 -65 -80 -94 -114

5% -3,026 -3,034 -3,121 -3,318 -3,253 -3,279 -3,280 -3,340 -3,442 -3,449 -3,468 -3,491 -3,542 -3,596 -3,657 -3,734 -3,819 -3,936

Min -5,594 -5,739 -6,024 -6,006 -6,645 -5,739 -6,006 -7,844 -8,241 -8,260 -8,277 -8,293 -8,305 -8,319 -8,333 -8,347 -8,360 -8,873

3
-H

r

R
a
m
p
R
a
te

Max 12,714 13,300 14,498 15,765 14,975 14,341 14,437 16,380 16,675 16739 16,796 16,810 16,798 16,809 17,879 18,951 20,023 21,096

95% 7,859 8,069 8,285 9,079 8,460 8,504 8,356 8,688 8,866 8,805 8,799 8,885 8,999 9,166 9,347 9,571 9,834 10,196

Med 126 129 16 88 175 72 127 184 222 281 312 315 326 301 261 200 131 55

5% -8,182 -8,262 -8,556 -9,258 -8,990 -8,950 -9,006 -9,250 -9,482 -9,509 -9,542 -9,586 -9,645 -9,703 -9,803 -9,937 -10,097 -10,221

Min -14,248 -14,078 -15,260 -16,043 -15,565 -15,180 -15,383 -17,337 -17,919 -18,008 -18,089 -18,156 -18,216 -18,277 -18,338 -18,400 -18,462 -18,523

R
a
m
p

F
a
ct
o
r

Max 0.0770 0.0799 0.0747 0.0840 0.0674 0.0840 0.0904 0.0839 0.1076 0.1049 0.1020 0.1088 0.1216 0.1439 0.1672 0.1916 0.2171 0.2438

95% 0.0241 0.0251 0.0256 0.0259 0.0258 0.0259 0.0255 0.0254 0.0267 0.0268 0.0272 0.0275 0.0282 0.0289 0.0296 0.0302 0.0308 0.0316

Med -0.0002 -0.0003 -0.0004 -0.0004 -0.0002 -0.0003 -0.0003 0.0001 0.0001 0.0001 -0.0001 -0.0003 -0.0005 -0.0007 -0.0009 -0.0010 -0.0012 -0.0014

5% -0.0234 -0.0237 -0.0241 -0.0247 -0.0248 -0.0247 -0.0245 -0.0252 -0.0264 -0.0260 -0.0257 -0.0254 -0.0255 -0.0257 -0.0261 -0.0265 -0.0271 -0.0275

Min -0.0537 -0.0600 -0.0581 -0.0560 -0.0555 -0.1128 -0.0917 -0.0620 -0.0750 -0.0733 -0.0714 -0.0692 -0.0732 -0.0859 -0.0983 -0.1102 -0.1219 -0.1332

1
-H

r

V
o
la
ti
li
ty

Max 3,132 3,776 4,280 6,866 3,284 4,608 4,773 4,875 5,188 5,187 5,187 5,186 5,874 6,780 7,686 8,593 9,499 10,405

95% 1,316 1,299 1,343 1,469 1,281 1,275 1,316 1,136 1,281 1,400 1,589 1,826 2,089 2,349 2,629 2,905 3,196 3,491

Med 566 528 570 602 566 559 576 450 497 522 542 559 575 592 608 622 637 651

5% 209 187 207 226 214 216 228 149 163 169 176 183 187 193 196 200 203 206

Min 23 23 19 22 37 20 17 7 7 7 7 7 7 7 8 7 7 7

1
-D

a
y

V
o
la
ti
li
ty

Max 24,168 26,740 26,907 43,328 25,067 24,663 25,560 29,585 34,145 34,544 35,269 36,022 36,942 38,066 39,461 40,942 42,570 44,268

95% 19,080 19,565 20,138 25,288 18,934 18,763 19,798 18,019 20,782 21,556 22,511 23,575 24,781 26,128 27,640 29,145 30,663 32,323

Med 15,279 14,629 15,328 15,902 15,155 15,052 15,275 12,204 13,525 14,412 15,413 16,482 17,620 18,805 20,034 21,280 22,584 23,852

5% 11,764 9,981 11,303 11,912 11,499 11,589 12,087 7,724 8,423 9,336 10,421 11,433 12,370 13,365 14,296 15,286 16,266 17,206

Min 8,176 7,384 7,188 6,975 7,455 7,514 8,421 4,893 5,175 5,701 6,297 7,085 7,917 8,434 8,858 9,278 9,763 10,253
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Table A.2: The following table shows the maximum, 95th percentile, median, 5th percentile, and minimum
values for each flexibility requirement over each year if wind generation is removed from the analysis.

Wind Era Solar Era

2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025

1
-H

r

R
a
m
p
R
a
te

Max 6,020 5,797 5,685 5,774 5,360 5,429 5,338 5,725 5,816 6,239 6,715 7,417 8,089 8,719 9,362 10,006 10,663 11,295

95% 2,973 3,070 3,118 3,300 3,136 3,191 3,133 3,343 3,369 3,403 3,460 3,552 3,642 3,724 3,855 3,995 4,155 4,287

Med -34 -44 -69 -58 -43 -44 -53 -50 -48 -43 -39 -41 -53 -63 -71 -86 -101 -113

5% -2,914 -2,882 -2,911 -3,103 -3,027 -3,011 -3,009 -3,235 -3,274 -3,320 -3,383 -3,474 -3,546 -3,616 -3,723 -3,835 -3,948 -4,054

Min -4,930 -4,981 -5,008 -5,706 -5,316 -5,171 -5,300 -5,678 -5,754 -5,831 -5,929 -6,066 -6,167 -6,221 -6,670 -7,252 -7,842 -8,418

3
-H

r

R
a
m
p
R
a
te

Max 12,077 12,305 12,949 14,819 14,366 13,145 13,247 15,332 15,478 15,558 15,694 15,935 16,079 16,097 16,153 16,211 16,481 17,372

95% 7,648 7,771 8,024 8,649 8,003 8,111 7,914 8,533 8,569 8,562 8,605 8,715 8,835 8,934 9,119 9,314 9,596 9,873

Med 89 65 -30 27 85 85 24 81 130 180 236 281 305 292 285 264 207 136

5% -7,870 -7,849 -7,970 -8,646 -8,428 -8,369 -8,327 -9,008 -9,121 -9,244 -9,406 -9,631 -9,807 -9,918 -10,046 -10,197 -10,352 -10,476

Min -12,882 -13,140 -13,374 -13,625 -13,835 -13,403 -14,414 -14,776 -14,974 -15,175 -15,430 -15,786 -16,049 -16,190 -16,368 -16,548 -16,768 -16,915

R
a
m
p

F
a
ct
o
r

Max 0.0669 0.0598 0.0648 0.0633 0.0586 0.0577 0.0604 0.0586 0.0586 0.0586 0.0586 0.0639 0.0750 0.0914 0.1083 0.1257 0.1433 0.1623

95% 0.0221 0.0224 0.0222 0.0217 0.0215 0.0215 0.0208 0.0215 0.0215 0.0216 0.0220 0.0225 0.0232 0.0240 0.0246 0.0251 0.0257 0.0262

Med -0.0003 -0.0004 -0.0005 -0.0005 -0.0003 -0.0003 -0.0004 -0.0004 -0.0003 -0.0003 -0.0003 -0.0004 -0.0006 -0.0007 -0.0008 -0.0009 -0.0011 -0.0012

5% -0.0209 -0.0207 -0.0203 -0.0202 -0.0205 -0.0200 -0.0198 -0.0205 -0.0205 -0.0205 -0.0207 -0.0210 -0.0212 -0.0215 -0.0219 -0.0222 -0.0226 -0.0230

Min -0.0469 -0.0417 -0.0417 -0.0385 -0.0411 -0.0804 -0.0595 -0.0411 -0.0411 -0.0411 -0.0411 -0.0740 -0.0520 -0.0616 -0.0709 -0.0800 -0.0887 -0.0977

1
-H

r

V
o
la
ti
li
ty

Max 2,691 2,887 2,650 2,788 2,350 4,362 4,840 2,489 2,492 2,912 3,500 4,483 5,107 5,947 6,790 7,633 8,480 9,320

95% 1,195 1,116 1,174 1,152 1,151 1,141 1,180 1,230 1,255 1,379 1,547 1,761 1,991 2,248 2,528 2,806 3,102 3,392

Med 507 436 465 486 473 471 491 507 523 545 570 599 625 644 666 688 710 730

5% 179 149 163 180 171 175 187 182 187 194 202 211 217 222 227 233 238 242

Min 0 23 26 18 18 13 28 0 0 0 0 38 0 0 0 0 0 0

1
-D

a
y

V
o
la
ti
li
ty

Max 21,532 18,805 19,299 18,565 19,471 19,406 21,644 20,800 21,611 23,284 25,203 27,276 29,307 31,176 33,093 35,014 37,004 38,946

95% 17,078 15,827 16,764 16,366 16,340 16,061 17,027 17,470 17,897 18,859 20,102 21,635 23,227 24,740 26,355 28,067 29,877 31,656

Med 13,880 12,558 13,300 13,550 13,240 13,157 13,634 14,171 14,549 15,472 16,664 18,047 19,390 20,663 21,964 23,281 24,650 25,960

5% 10,317 8,230 8,685 9,857 9,847 10,072 10,164 10,551 10,865 11,489 12,314 13,402 14,202 15,163 16,180 17,117 18,082 19,043

Min 0 6,201 5,437 5,828 6,229 6,821 6,142 4,913 6,850 7,563 8,304 9,273 10,221 10,639 11,668 12,234 12,745 13,252
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Appendix B

Interest Rate Sensitivity Figures for Chapter 5

The following figures illustrate the sensitivity of the model solution presented

in Chapter 5 to the interest rate used for wind and solar for capital investment using

a 60 $/ton CO2 price.

Figure B.1: Annual system cost for different capital investment interest rates.
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Figure B.2: Annual CO2 emissions for different capital investment interest rates.

Figure B.3: Comprehensive system cost at a 100 $/ton social price of CO2 for different
capital investment interest rates.
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Figure B.4: Renewable capacity installed for different capital investment interest
rates.
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David AWalling, Paul A Navrátil, Ariane L Beck, Kazunori Nagasawa, Robert L

Fares, Wesley J Cole, et al. Experimental and data collection methods for

a large-scale smart grid deployment: Methods and first results. Energy,

65:462–471, 2014.

[155] Amy Rose, Robert Stoner, and Ignacio Pérez-Arriaga. Prospects for grid-
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