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My dissertation contains three chapters focusing on semi-/non-parametric

models in econometrics. The �rst chapter, which is a joint work with Sukjin Han,

considers parametric/semiparametric estimation and inference in a class of bivari-

ate threshold crossing models with dummy endogenous variables. We investigate

the consequences of common practices employed by empirical researchers using this

class of models, such as the speci�cation of the joint distribution of the unobserv-

ables to be a bivariate normal distribution, resulting in a bivariate probit model.

To address the problem of misspeci�cation, we propose a semiparametric estimation

framework with parametric copula and nonparametric marginal distributions. This

speci�cation is an attempt to ensure robustness while achieving point identi�cation

and e�cient estimation. We establish asymptotic theory for the sieve maximum like-

lihood estimators that can be used to conduct inference on the individual structural

parameters and the average treatment e�ects. Numerical studies suggest the sensi-

tivity of parametric speci�cation and the robustness of semiparametric estimation.

This paper also shows that the absence of excluded instruments may result in the
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failure of identi�cation, unlike what some practitioners believe.

The second chapter develops nonparametric signi�cance tests for quantile

regression models with duration outcomes. It is common for empirical studies to

specify models with many covariates to eliminate the omitted variable bias, even if

some of them are potentially irrelevant. In the case where models are nonparamet-

rically speci�ed, such a practice results in the curse of dimensionality. I adopt the

integrated conditional moment (ICM) approach, which was developed by Bierens

(1982); Bierens (1990), to construct test statistics. The proposed test statistics are

functionals of a stochastic process which converges weakly to a centered Gaussian

process. The test has non-trivial power against local alternatives at the parametric

rate. A subsampling procedure is proposed to obtain critical values.

The third chapter considers identi�cation of treatment e�ect and its distri-

bution under some distributional assumptions. I assume that a binary treatment is

endogenously determined. The main identi�cation objects are the quantile treatment

e�ect and the distribution of the treatment e�ect. I construct a counterfactual model

and apply Manski's approach (Manski (1990)) to �nd the quantile treatment e�ects.

For the distribution of the treatment e�ect, I adapt the approach proposed by Fan

and Park (2010). Some distributional assumptions called stochastic dominance are

imposed on the model to tighten the bounds on the parameters of interest. It also

provides con�dence regions for identi�ed sets that are pointwise consistent in level.

An empirical study on the return to college con�rms that the stochastic dominance

assumptions improve the bounds on the distribution of the treatment e�ect.
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Chapter 1

Sensitivity Analysis in Triangular Systems of Equations

with Binary Endogenous Variables

This is a joint work with Sukjin Han.

1.1 Introduction

This paper considers parametric/semiparametric estimation and inference in

a class of bivariate threshold crossing models with dummy endogenous variables.

Let Y denote the binary outcome variable and D the observed binary endogenous

treatment variable. We consider a bivariate triangular system for (Y,D):

Y = 1[X ′β + δ1D − ε ≥ 0],

D = 1[X ′α+ Z ′γ − ν ≥ 0],
(1.1.1)

where X denotes the vector of exogenous regressors that determine both Y and D,

and Z denotes a vector of exogenous regressors that directly a�ect D but not Y

(i.e., instruments for D). In this paper, we investigate the consequences of common

practices employed by empirical researchers using this class of models. As important

part of this investigation, we conduct a sensitivity analysis regarding the speci�cation

of the unobservables (ε, ν)'s joint distribution, which is the component of the model

that practitioners are mostly agnostic about and for which a parametric assumption
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is typically imposed. To address the problem of misspeci�cation, we propose a

semiparametric estimation framework with parametric copula and nonparametric

marginal distributions. This speci�cation is an attempt to ensure robustness while

achieving point identi�cation and e�cient estimation.

A parametric class of models (1.1.1) includes the bivariate probit model in

which the joint distribution of (ε, ν) is assumed to be a bivariate normal distribution.

This model has been widely used in empirical research such as Evans and Schwab

(1995), Neal (1997), Goldman et al. (2001), Altonji et al. (2005), Bhattacharya

et al. (2006), Rhine et al. (2006) and Marra and Radice (2011) to name a just few.

The distributional assumption in this model, however, is made out of convenience or

convention and hardly justi�ed by underlying economic theory, thereby susceptible to

misspeci�cation. With binary endogenous regressors, the objects of interest in model

(1.1.1) are mean treatment parameters besides the individual structural parameters.

As the outcome variable is also binary, mean treatment parameters such as the

average treatment e�ect (ATE) are expressed as the di�erential between the marginal

distributions of ε. The problem of misspeci�cation in estimating these treatment

parameters can therefore be even more severe than that in estimating individual

parameters.

To one extreme, a nonparametric joint distribution of (ε, ν) can be used in

bivariate threshold crossing models as in Shaikh and Vytlacil (2011). As their results

suggests, however, the ATE is only partially identi�ed in this fully �exible setting.

Instead of sacri�cing point identi�cation, we impose a parametric assumption on

the dependence structure between the unobservables using copula functions that are
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known up to a scalar parameter. At the same time, in order to ensure robustness,

we allow to be unspeci�ed the marginal distribution of ε (as well as of ν), which is

involved in the calculation of the ATE. In this way, our class of models encompasses

both parametric and semiparametric classes of models with parametric copula and

either parametric or nonparametric marginal distributions. This broad range of

models allows us to conduct a sensitivity analysis in terms of the speci�cation of the

joint distribution of (ε, ν).

The identi�cation of the individual parameters as well as the ATE in this

class of models is established in (Han and Vytlacil, 2017, hereafter HV17). They

show that when the copula function for (ε, ν) satis�es a certain stochastic order-

ing, identi�cation is achieved in both parametric and semiparametric models under

an exclusion restriction and mild support conditions. The present paper, building

on these results, considers estimation and inference in the same setting. For the

semiparametric class of models (1.1.1) with parametric copula and nonparametric

marginal distributions, the likelihood contains in�nite dimensional parameters, i.e.,

the unknown marginal distributions. For the estimation of this model, we consider

sieve maximum likelihood (ML) estimators for the �nite and in�nite dimensional

parameters of the model as well as the functionals of them. The estimation of the

parametric model is within the standard ML framework.

The contributions of this paper can be summarized as follows. This paper is

intended to provide a guideline to empirical researchers through these contributions.

First, we establish the asymptotic theory for the sieve ML estimators in a class of

semiparametric copula-based models. This result can be used to conduct inference

3



on the functionals of the �nite and in�nite dimensional parameters, such as inference

on the individual structural parameters and the ATE. We show that the sieve ML

estimators are consistent and their smooth functionals are root-n asymptotically

normal.

Second, based on these theoretical results, we conduct a sensitivity analysis

via Monte Carlo simulation studies. We �nd that the parametric ML estimates can

be very sensitive to the misspeci�cation of the marginal distributions of the unob-

servables. We show that, on the other hand, sieve ML estimates perform well in

terms of the mean squared error (MSE) as they are robust to this misspeci�cation,

while their performance is comparable to the parametric estimates under correct

speci�cation. We also show that copula misspeci�cation does not have substantial

e�ects in estimation as long as the true copula is within the stochastic ordering class

for identi�cation. Since copula misspeci�cation is a problem common to both para-

metric and semiparametric models, our sensitivity analysis suggests to practitioners

that semiparametric consideration can be desirable in estimation and inference.

Third, we formally show that identi�cation may fail without the exclusion

restriction, unlike what is argued in Wilde (2000). The bivariate probit model is

sometimes used in applied work without instruments (e.g., White and Wolaver (2003)

and Rhine et al. (2006)). We show, however, that this restriction is not only su�cient

but also necessary for identi�cation in parametric and semiparametric models when

there is a single binary exogenous variable common to both equations. We also show

that, under joint normality of the unobservables, the parameters are at best weakly

4



identi�ed when there are common (possibly continuous) exogenous variables1. We

also note that another source of identi�cation failure is the absence of restrictions

on the dependence structure of the unobservables as mentioned above.

The sieve estimation method is a useful nonparametric estimation framework

that allows �exible speci�cation while guarantees tractability of the estimation prob-

lem; see Chen (2007) for a survey of sieve estimation in semi-nonparametric models.

The estimation method is also easy to implement in practice. The sieve ML estima-

tion is used in various contexts: (Chen et al., 2006, hereafter CFT06) consider the

sieve estimation of semiparametric multivariate distributions that are modeled us-

ing parametric copulas; Bierens (2008) applies it to the mixed proportional hazard

model; Hu and Schennach (2008) and Chen et al. (2009) use the method to esti-

mate nonparametric models with non-classical measurement errors. The asymptotic

theory developed in this paper is based on the results established in the sieve ex-

tremum estimation literature, e.g., Chen et al. (2006); Chen (2007); Bierens (2014).

A semiparametric version of bivariate threshold crossing models is also considered

in Marra and Radice (2011) and Ieva et al. (2014), but unlike in the present paper,

�exibility is introduced for the index of the threshold and not for the distribution of

the unobservables.

The paper is organized as follows. We start the next section by review-

ing the identi�cation results of HV17, and then discuss the lack of identi�cation in

the absence of exclusion restrictions and in the absence of restrictions on the depen-

1HV17 only show su�ciency of this restriction for identi�cation. Mouri�é and Méango (2014)
show necessity of the restriction but their argument does not exploit all the information available
in the model; see Section 2.2 of the present paper for details.
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dence structure of the unobservables. Section 1.3 introduces the sieve ML estimation

framework for the semiparametric class of model (1.1.1), and Section 1.4 establishes

the large sample theory for the sieve ML estimators. The sensitivity analysis is con-

ducted in Section 1.5 by investigating �nite sample performances of parametric ML

and sieve ML estimates in various di�erent speci�cations. Section 1.6 concludes.

1.2 Identi�cation and Failure of Identi�cation

1.2.1 Identi�cation

In model (1.1.1), let X
(k+1)×1

≡ (1, X1, ..., Xk)
′ and Z

l×1
≡ (Z1, ..., Zl)

′, and

conformably, let α ≡ (α0, α1, ..., αk)
′, β ≡ (β0, β1, ..., βk)

′, and γ ≡ (γ1, γ2, ..., γl)
′.

Assumption 1.2.1. X and Z satisfy that (X,Z) ⊥ (ε, ν), where �⊥� denotes sta-

tistical independence..

Assumption 1.2.2. (X ′, Z ′) does not lie in a proper linear subspace of Rk+l a.s.2

Assumption 1.2.3. There exists a copula function C : (0, 1)2 → (0, 1) such that the

joint distribution Fεν of (ε, ν) satis�es Fεν(ε, ν) = C(Fε(ε), Fν(v)), where Fε and Fν

are marginal distributions of ε and ν, respectively, that are strictly increasing and

absolutely continuous with respect to Lebesgue measure.3

Assumption 1.2.4. As scale and location normalizations, α1 = β1 = 1 and α0 =

β0 = 0.

2A proper linear subspace of Rk+l is a linear subspace with a dimension strictly less than k+ l.
The assumption is that, if M is a proper linear subspace of Rk+l, then Pr[(X ′, Z′) ∈M ] < 1.

3The Sklar's theorem (e.g., Nelsen (1999)) guarantees the existence of such a copula, which is
in fact unique as Fε and Fν are continuous.
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Amodel with alternative scale and location normalizations, V ar(ε) = V ar(ν) =

1 and E[ε] = E[ν] = 0, can be seen as a reparametrized version of the model with

the normalizations in Assumption 1.2.4; see e.g., the reparametrization (1.2.1) be-

low. For x ∈ supp(X) and z ∈ supp(Z), write a one-to-one map (by Assumption

1.2.3) as

sxz ≡ Fν(x′α+ z′γ),

r0,x ≡ Fε(x′β), (1.2.1)

r1,x ≡ Fε(x′β + δ1).

Take (x, z) and (x, z̃) for some x ∈ supp(X|Z = z) ∩ supp(X|Z = z̃) where

supp(X|Z) is the conditional support of X given Z. Then by Assumption 1.2.1,

model (1.1.1) implies that the �tted probabilities are written as

p11,xz = C(r1,x, sxz),

p11,xz̃ = C(r1,x, sxz̃),

p10,xz = r0,x − C(r0,x, sxz),

p10,xz̃ = r0,x − C(r0,x, sxz̃), (1.2.2)

p01,xz = sxz − C(r1,x, sxz),

p01,xz̃ = sxz̃ − C(r1,x, sxz̃),

where pyd,xz ≡ Pr[Y = y,D = d|X = x, Z = z] for (y, d) ∈ {0, 1}2. The equation

(1.2.2) serves as the basis for identi�cation and estimation of the model. Depending

upon whether one is willing to impose an additional assumption on the dependence
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structure of the unobservables (ε, ν) via C(·, ·), the underlying parameters of the

model is either point identi�ed or partially identi�ed.

We �rst consider point identi�cation. The results for point identi�cation can

be found in HV17, which we adapt here given Assumption 1.2.4. The additional

dependence structure can be characterized in terms of the stochastic ordering of the

copula parametrized with a scalar parameter.

De�nition 1.2.5 (Strictly More SI or Less SD). Let C(u2|u1) and C̃(u2|u1) be

conditional copulas, for which 1 − C(u2|u1) and 1 − C̃(u2|u1) are either increasing

or decreasing in u1 for all u2. Such copulas are called to be stochastically increasing

(SI) or stochastically decreasing (SD), respectively. Then C̃ is strictly more SI (or

less SD) than C if ψ(u1, u2) ≡ C̃−1(C(u2|u1)|u1) is strictly increasing in u1,
4 which

is denoted as C ≺S C̃.

This ordering is equivalent to having a ranking in terms of the �rst order

stochastic dominance. Let (U1, U2) ∼ C and (Ũ1, Ũ2) ∼ C̃. When C̃ is strictly

more SI (less SD) than C, then Pr[Ũ2 > u2|Ũ1 = u1] increases even more than

Pr[U2 > u2|U1 = u1] as u1 increases.5

Assumption 1.2.6. The copula in Assumption 1.2.3 satis�es C(·, ·) = C(·, ·; ρ) with

a scalar dependence parameter ρ ∈ Ω, is twice di�erentiable in u1, u2 and ρ, and

satis�es

C(u1|u2; ρ1) ≺S C(u1|u2; ρ2) for any ρ1 < ρ2. (1.2.3)

4Note that ψ(u1, u2) is increasing in u2 by de�nition.
5The SI dependence ordering is also called the (strictly) �more regression dependent� or �more

monotone regression dependent� ordering in the statistics literature; see Joe (1997) for details.
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The meaning of the last part of this assumption is that the copula is ordered

in ρ in the sense of the stochastic ordering de�ned above. This requirement de�nes

a class of copulas that we allow for identi�cation. Many well-known copulas sat-

isfy (1.2.3): the normal copula, Plackett copula, Frank copula, Clayton copula and

many more; see HV17 for the full list of copulas and their expressions. Under these

assumptions, we �rst discuss the identi�cation in a fully parametric model:

Assumption 1.2.7. Fε and Fν are known with means µ ≡ (µε, µν) and variances

σ2 ≡ (σ2
ε , σ

2
ν).

Given this assumption, Fν(ν) = Fν̃(ν̃) and Fε(ε) = Fε̃(ε̃) where Fν̃ and Fε̃

are the distributions of ν̃ ≡ (ν − µν)/σν and ε̃ ≡ (ε− µε)/σε, respectively. De�ne

X ≡
⋃

z′γ 6=z̃′γ
z,z̃∈supp(Z)

supp(X|Z = z) ∩ supp(X|Z = z̃).

Theorem 1.2.8. In model (1.1.1), suppose Assumptions 1.2.1�1.2.7 hold. Then

(α′, β′, δ1, γ, ρ, µ, σ) are point identi�ed in an open and convex parameter space if (i)

γ is a nonzero vector; and (ii) X does not lie in a proper linear subspace of Rk a.s.

The proofs of this theorem is minor modi�cation of the proof of Theorem 5.1

in HV17.

Although the parametric structure on the copula is necessary for point iden-

ti�cation of the parameters, HV17 show that the parametric assumption for Fε and

Fν are not necessary. Additionally, if we make a large support assumption, we can

also identify the nonparametric marginal distributions Fε and Fν .
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Assumption 1.2.9. (i) The distributions of Xj (for 1 ≤ j ≤ k) and Zj (for 1 ≤ j ≤

l) are absolutely continuous with respect to Lebesgue measure; (ii) There exists at least

one element Xj in X such that its support conditional on (X1, ..., Xj−1, Xj+1, ..., Xk)

is R and αj 6= 0 and βj 6= 0, where, without loss of generality, we let j = 1.

Theorem 1.2.10. In model (1.1.1), suppose Assumptions 1.2.1�1.2.6, and 1.2.9(i)

hold. Then (α′, β′, δ1, γ, ρ) are point identi�ed in an open and convex parameter space

if (i) γ is a nonzero vector; and (ii) X does not lie in a proper linear subspace of Rk

a.s. Additionally, if Assumption 1.2.9(ii) holds, Fε(·) and Fν(·) are identi�ed up to

additive constants.

An interesting function of the underlying parameters that are point identi-

�ed in under the parametric and semiparametric distributional assumptions is the

conditional ATE:

ATE(x) = E[Y1 − Y0|X = x] = Fε(x
′β + δ1)− Fε(x′β). (1.2.4)

1.2.2 The Failure of Identi�cation

In this section, we discuss two sources of identi�cation failure, namely, the

absence of exclusion restrictions and the absence of restrictions on the dependence

structure of the unobservables (ε, ν).

1.2.2.1 No Exclusion Restrictions

There is applied work where (1.1.1) is used without excluded instruments;

see e.g., White and Wolaver (2003) and Rhine et al. (2006). Identi�cation in these
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papers relies on Wilde (2000), which provides an identi�cation argument of count-

ing the number of equations and unknowns in the system. Here we show that this

argument is insu�cient for identi�cation. We show that without excluded instru-

ments, i.e., when γ = 0, the structural parameters are not identi�ed even with full

parametric speci�cation of the joint distribution (Assumptions 1.2.6 and 1.2.7). The

existence of common exogenous covariates X in both equations is not very helpful

for identi�cation in a sense that becomes clear below.

Before considering the lack of identi�cation in a general case with possibly

continuous X1 in X = (1, X1), we start the analysis with binary X1. Mouri�é and

Méango (2014) show the lack of identi�cation when there is no excluded instrument

in the bivariate probit model with binary X1. They, however, only provide a nu-

merical counter-example. Moreover, their analysis does not consider the full set of

observed �tted probabilities, and hence possibly neglects information that could have

contributed for identi�cation. Here we provide an analytical counter-example in a

more general parametric class of model (1.1.1) that nests the bivariate probit model.

We shows that there exists two distinct values of (δ1, ρ, µε, σε) that generate the

same observed �tted probabilities, even if the full set of probabilities are used. Note

that the reduced-form parameters (µν , σν) are always identi�ed from the equation

for D, and α = β = (0, 1)′ as normalization with scalar X1.

Theorem 1.2.11. In model (1.1.1) with X = (1, X1) where X1 ∈ supp(X1) = {0, 1},

suppose that the assumptions in Theorem 1.2.8 hold, except that γ = 0. Then there

exist two distinct sets of (δ1, ρ, µε, σε) that generate the same observed data.

In showing this result, we �nd a counter-example where the copula density
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induced by C(u1, u2) is symmetric around u2 = u1 and u2 = 1−u1, and the density

induced by Fε is symmetric. Note that the bivariate normal distribution, namely,

the normal copula with normal marginals, satis�es these symmetry properties. That

is, in the bivariate probit model with a common binary exogenous covariate and no

excluded instruments, the structural parameters are not identi�ed.

Under Assumption 1.2.4, let

q0 ≡ Fν̃(−µν/σν),

q1 ≡ Fν̃((1− µν)/σν),

t0 ≡ Fε̃(−µε/σε),

t1 ≡ Fε̃((1− µε)/σε),

we have

p̃11,0 = C(Fε̃(F
−1
ε̃ (t0) + δ1), q0; ρ),

p̃11,1 = C(Fε̃(F
−1
ε̃ (t1) + δ1), q1; ρ),

p̃10,0 = t0 − C(t0, q0; ρ),

p̃10,1 = t1 − C(t1, q1; ρ),

p̃00,0 = 1− t0 − q0 + C(t0, q0; ρ),

p̃00,1 = 1− t1 − q1 + C(t1, q1; ρ),

where p̃yd,x ≡ Pr[Y = y,D = d|X1 = x]. We want to show that, given (q0, q1)

which are identi�ed from the reduced-form equation, there are two distinct sets of

parameter values (t0, t1, δ1, ρ) and (t∗0, t
∗
1, δ
∗
1 , ρ
∗) (with (t0, t1, δ1, ρ) 6= (t∗0, t

∗
1, δ
∗
1 , ρ
∗))
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that generate the same observed �tted probabilities p̃yd,0 and p̃yd,1 for all (y, d) ∈

{0, 1}2. In showing this, the following lemma is useful:

Lemma 1.2.1. Assumption 1.2.6 implies that, for any (u1, u2) ∈ (0, 1)2 and ρ ∈ Ω,

Cρ(u1, u2; ρ) > 0. (1.2.5)

The proofs of this lemma and other results below are collected in the Ap-

pendix.

Now �x (q0, q1) ∈ (0, 1)2. First, consider the �tted probability p̃10,0. Given

t0 ∈ (0, 1) and ρ ∈ Ω, note that, for ρ∗ > ρ6, there exists a solution t∗0 = t∗0(t0, q0, ρ, ρ
∗)

such that

t0 − C(t0, q0; ρ) = Pr[u1 ≤ t0, u2 ≥ q0; ρ] (1.2.6)

= Pr[u1 ≤ t∗0, u2 ≥ q0; ρ∗] (1.2.7)

= t∗0 − C(t∗0, q0; ρ∗),

and note that by Assumption 1.2.6 and a variant of Lemma 1.2.1, we have that

t∗0 > t0. Here, (t0, q0, ρ) and (t∗0, q0, ρ
∗) result in the same observed probability

p̃10,0 = t0−C(t0, q0; ρ) = t∗0−C(t∗0, q0; ρ∗). Now consider the �tted probability p̃11,0.

Choose δ1 = 0. Also let Fε̃ ∼ Unif(0, 1) only for simplicity, which is relaxed in the

6The inequality here and other inequalities implied from this (e.g., t∗0 > t0, and etc.) are assumed
only for concreteness.
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Appendix. Then there exists a solution t†0 = t†0(t0, q0, ρ, ρ
∗) such that

C(t0, q0; ρ) = Pr[u1 ≤ t0, u2 ≤ q0; ρ] (1.2.8)

= Pr[u1 ≤ t†0, u2 ≤ q0; ρ∗] (1.2.9)

= C(t†0, q0; ρ∗),

and note that t†0 < t0 by Assumption 1.2.6 and Lemma 1.2.1. Then, by letting

δ∗1 = t†0 − t∗0, (t0, q0, δ1, ρ) and (t∗0, q0, δ
∗
1 , ρ
∗) satisfy p̃11,0 = C(t0 + 0, q0; ρ) = C(t∗0 +

δ∗1 , q0; ρ∗). Lastly, note that p̃00,0 = 1 − q0 − p̃10,0 and p̃01,0 = q0 − p̃11,0, and so

(t0, δ1, ρ) and (t∗0, δ
∗
1 , ρ
∗) above will also result in the same values of p̃00,0 and p̃01,0.

It is tempting to have a parallel argument for p̃10,1, p̃11,1, p̃00,1, and p̃01,1, but

there is a complication. Although other parameters are not, δ1 and ρ are common

in both sets of probabilities. Therefore, we proceed as follows. First, consider p̃10,1.

Given t1 ∈ (0, 1) and the above choice of ρ∗ ∈ Ω, note that there exists a solution

t∗1 = t∗1(t1, q1, ρ, ρ
∗) such that

t1 − C(t1, q1; ρ) = Pr[u1 ≤ t1, u2 ≥ q1; ρ] (1.2.10)

= Pr[u1 ≤ t∗1, u2 ≥ q1; ρ∗] (1.2.11)

= t∗1 − C(t∗1, q1; ρ∗),

and similarly as before, we have t∗1 > t1. Here, (t1, q1, ρ) and (t∗1, q1, ρ
∗) result in

the same observed probability p̃10,1 = t1 − C(t1, q1; ρ) = t∗1 − C(t∗1, q1; ρ∗). Now

consider p̃11,1. Recall δ1 = 0 and Fε ∼ Unif(0, 1). Then there exists a solution
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t†1 = t†1(t1, q1, ρ, ρ
∗) such that

C(t1, q1; ρ) = Pr[u1 ≤ t1, u2 ≤ q1; ρ] (1.2.12)

= Pr[u1 ≤ t†1, u2 ≤ q1; ρ∗] (1.2.13)

= C(t†1, q1; ρ∗),

and thus t†1 < t1. Then, if we can show that

t†1 = t∗1 + δ∗1 , (1.2.14)

where t∗1 and δ∗1 are the values already determined above, then (t1, q1, δ1, ρ) and

(t∗1, q1, δ
∗
1 , ρ
∗) result in p̃11,1 = C(t1 + 0, q1; ρ) = C(t∗1 + δ∗1 , q1; ρ∗). Then similar as

before, the two sets of parameters will generate the same values of p̃00,1 = 1−q1−p̃10,1

and p̃01,1 = q1 − p̃11,1. Consequently, (t0, t1, q0, q1, δ1, ρ) and (t∗0, t
∗
1, q0, q1, δ

∗
1 , ρ
∗)

generate the same entire observed �tted probabilities. The remaining question is

whether we can �nd (t0, t1, δ1, ρ) and (t∗0, t
∗
1, δ
∗
1 , ρ
∗) such that (1.2.14) holds; this is

shown in the Appendix where Fε̃ ∼ Unif(0, 1) is also relaxed.

One might argue that the lack of identi�cation in Theorem 1.2.11 is due to

the limited variation of X. Although it is a plausible conjecture, this does not seem

to be the case with the model considered in this paper.7 We now consider a general

case with possibly continuous X1 and discuss what can be said about the existence

of two distinct sets of (β, δ1, ρ, µε, σε) that generate the same observed data. To this

7In fact, in Heckman (1979)'s sample selection model under normality, although identi�cation
fails with binary exogenous covariates in the absence of exclusion restriction, it is well-known that
identi�cation is achieved with continuous covariates by exploiting the nonlinearity of the model
(Vella (1998)).
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end, de�ne

q(x) ≡ Fν̃((x′α− µν)/σν),

t(x) ≡ Fε̃((x′β − µε)/σε),

and then

p11,x = C(Fε̃(F
−1
ε̃ (t(x)) + δ1), q(x); ρ),

p10,x = t(x)− C(t(x), q(x); ρ),

p00,x = 1− t(x)− q(x) + C(t(x), q(x); ρ).

Similar to the proof strategy for the binary X1 case, we want to show that, given

(α, µν , σν), there are two distinct sets of parameter values (β, δ1, ρ, µε, σε) and (β∗, δ∗1 , ρ
∗, µ∗ε, σ

∗
ε)

that generate the same observed �tted probabilities pyd,x for all (y, d) ∈ {0, 1}2 and

x ∈ supp(X).

Let t(x) ≡ Fε̃(x
′β) ∈ (0, 1) for all x and for some β. Also, choose δ1 = 0

and some ρ ∈ Ω. For ρ∗ > ρ, we will show that there exists (β∗, δ∗1) such that, for

t∗(x) ≡ Fε̃(x′β∗),

p10,x = t(x)− C(t(x), q(x); ρ) = t∗(x)− C(t∗(x), q(x); ρ∗) (1.2.15)

p11,x = C(Fε̃(F
−1
ε̃ (t(x)) + 0), q(x); ρ) = C(s†(x), q(x); ρ∗) (1.2.16)

for all x, where

s†(x) = Fε̃(F
−1
ε̃ (t∗(x)) + δ∗1). (1.2.17)

The question is whether we �nd (β, δ1, ρ) and (β∗, δ∗1 , ρ
∗) such that (1.2.15)�(1.2.17)
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simultaneously hold. First note that, since ρ∗ > ρ, t∗ > t and hence β∗ 6= β by the

assumption that there is no linear subspace in the space of X. Now as before, take

C(·, ·; ρ) to be a normal copula and choose ρ = 0 and ρ∗ = 1. Then by arguments

similar to the binary case, we obtain

t∗(x) = q(x) + (1− q(x))t(x), (1.2.18)

and s†(x) = q(x)t(x). Then (1.2.17) can be rewritten as

δ∗1 = F−1
ε̃ (s†(x))− F−1

ε̃ (t∗(x))

= F−1
ε̃ (q(x)t(x))− F−1

ε̃ (q(x) + (1− q(x))t(x)). (1.2.19)

The complication here is to make this equation satis�ed for all x. Note that

(1.2.18) and (1.2.19) are consistent with the de�nition of a distribution function

of a continuous r.v.: Fε̃(+∞) = 1, Fε̃(−∞) = 0, and Fε̃(ε) is strictly increasing.

We can then numerically show that a distribution function that is close to a normal

distribution satis�es the conditions with a particular choice of (β∗, δ∗1); see Figure 1.1.

This �gure compares that distribution function (blue line) to a normal distribution

function (green line).

Although, no formal derivation of counterexample is given, this result sug-

gests the following: (i) In the bivariate probit model with continuous common exoge-

nous covariates and no excluded instruments, the parameters will be at best weakly

identi�ed; (ii) This also implies that the structural parameters and the marginal

distributions of the semiparametric model considered in Theorem 1.2.10 are not
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Figure 1.1: A Numerical Calculation of a Distribution Function under which Iden-
ti�cation Fails

identi�ed without an exclusion restriction even if X1 has large support.

1.2.2.2 No Restrictions on Dependence Structures

When the restriction imposed on C(·, ·) (i.e., Assumption 1.2.6) is completely

relaxed, the underlying parameters of model (1.1.1) may fail to be identi�ed whether

or not the exclusion restriction holds. That is, a structure on how the unobservables

(ε, ν) are dependent to each other is necessary for identi�cation. This is closely

related to the results in the literature that the treatment parameters (which is a

lower dimensional function of the individual parameters) in triangular models similar

to (1.1.1) is only partially identi�ed without distributional assumptions; see Bhat-

tacharya et al. (2008), Chiburis (2010), Shaikh and Vytlacil (2011), and Mouri�é

(2015).
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Suppose Assumptions 1.2.1�1.2.4 hold. Then the model becomes a semipara-

metric threshold crossing model in that the joint distribution is completely unspec-

i�ed. Then as a special case of Shaikh and Vytlacil (2011), one can easily derive

bounds for the ATE Fε(x
′β+ δ1)−Fε(x′β). The sharpness of these bounds is shown

in their paper under a rectangular support assumption for (X,Z), which in turn is

relaxed in Mouri�é (2015). Additionally with Assumption 1.2.7, one can also derive

bounds for the individual parameters x′β and δ1, as it is shown in Chiburis (2010).

When there is no excluded instruments in the model, Chiburis (2010) shows that the

bounds on the ATE do not improve over Manski (1990)'s bounds, which argument

applies for the individual parameters.

1.3 Estimation

Let Wi ≡ (Yi, Di, X
′
i , Z

′
i)
′
be an observation of individual i and let w be a

realization of Wi. We denote the supports of W , ε, and ν by SW , Sε, and Sν , re-

spectively. We assume that the distribution functions Fε and Fν admit the density

functions fε and fν , respectively. Then we can de�ne θ ≡ (ψ
′
, fε, fν)

′
as the param-

eter of the model. The parameter space needs to be de�ned carefully. Since we want

the density functions fε and fν to be nonnegative, we de�ne the parameter spaces

of fε and fν by using square root density functions. That is, we consider

Fj = {f = g2 : g ∈ F,

∫
{g(x)}2dx = 1}, (1.3.1)

where j ∈ {ε, ν} and F is a space of functions, which will be speci�ed later, as the

parameter space of fj . Then we can de�ne Θ̃ ≡ Ψ̃ × Fε × Fν as the parameter
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space of θ. Note that, by de�ning θ as the parameter of the model, we can consider

Fε(ε) =
∫
Sε
1[t ≤ ε]fε(t)dt and Fν(ν) =

∫
Sν

1[t ≤ ν]fν(t)dt as functionals of θ. To

distinguish an element θ ∈ Θ̃ from the true parameter, let θ0 = (ψ
′
0, fε0, fν0)

′ ∈ Θ̃

be the true parameter.

We adopt the maximum likelihood (ML) method to estimate the parameters

in the model. Assuming that the data are i.i.d, we de�ne the conditional density

function of (Yi, Di) on (X
′
i , Z

′
i)
′
as

f(Yi, Di|Xi, Zi; θ) =
∏

y,d=0,1

[pyd(Xi, Zi; ξ)]
1{Yi=y,Di=d},

where pyd(x, z; ξ) abbreviates the right hand side expression that equates pyd,xz in

(1.2.2) and f(y, d|x, z; θ) is the conditional density of (Yi, Di) on (X
′
i , Z

′
i) = (x

′
, z
′
).

Then the log of density l(θ, w) ≡ log f(y, d|x, z; θ) becomes

l(θ,Wi) ≡
∑

y,d=0,1

1yd(Yi, Di) · log pyd(Xi, Zi; θ), (1.3.2)

where 1yd(Yi, Di) ≡ 1{Yi = y,Di = d}. Then the ML estimator of θ0, θ̃n, is de�ne

as

θ̃n ≡ arg max
θ∈Θ̃

Qn(θ), (1.3.3)

where Qn(θ) = 1
n

n∑
i=1

l(θ,Wi) is the log-likelihood function.

Since function l(θ,Wi) contains both �nite-dimensional and in�nite-dimensional

parameters, it is not easy to solve the optimization problem in Equation (1.3.3) with-

out additional information on fε and fν . If the in�nite-dimensional parameters fε

and fν are fully characterized by �nite-dimensional parameters, say η ≡ (η
′
ε, η
′
ν)
′ ∈
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H ⊂ Rdη for some integer dη > 0, then the estimator θ̃n becomes a standard ML

estimator. For example, if one imposes Assumption 1.2.7, then ηε = (µε, σε)
′
and

ην = (µν , σν)
′
. This parametrization leads us to rede�ne the parameter θ and the

parameter space Θ̃ as θ = (ψ
′
, η
′
)
′ ∈ Ψ̃×H ⊂ Rdψ+dη and Θ̃ ≡ Ψ̃×H, and the ML

estimator θ̃n is obtained by maximizing Qn(θ) over the parameter space Θ̃ = Ψ̃×H.

One can show that the parametric ML estimator θ̃n is consistent, asymptotically

normal, and e�cient under some regularity conditions, and those conditions are

provided by, for example, Newey and McFadden (1994).

Although the parametric ML estimator possesses many desirable proper-

ties, the model needs to be correctly speci�ed to guarantee that those properties

of the ML estimator hold. Since most of economic theories do not suggest choice

of distributions, people have tried to seek for more robust estimation methods to

misspeci�cation. In this paper, we adopt the sieve method to estimate the unknown

density functions to obtain robustness and �exibility of the model.

Let Fεn and Fνn be appropriate sieve spaces for Fε and Fν , respectively,

and let fεn(·; aεn) and fνn(·; aνn) be the sieve approximations of fε and fν on their

sieve spaces Fεn and Fνn, respectively. Then we de�ne the sieve ML estimator θ̂n as

following :

θ̂n ≡ arg max
θ∈Θ̃n

Qn(θ), (1.3.4)

where Θ̃n ≡ Ψ̃× Fεn × Fνn.

We also point out that the sieve ML estimator can be equivalently obtained
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from the following unconstrained optimization problem:

max
ψ,an

n∑
i=1
l(ψ, an,Wi)−λnPen(an)+τε

{
1−

∫
Sε

fε(t, aεn)dt

}
+τν

{
1−

∫
Sν

fν(t, aνn)dt

}
,

where an = (a
′
εn, a

′
νn)
′
, l(Wi, ψ, an) is the log likelihood with sieve approximations

fε(·, aεn) and fν(·, aνn), Pen(an) is the penalization term that imposes, for example,

the properties of Holder space, and the remaining penalization terms are to impose

the properties of a density function. Note that τε > 0 and τν > 0.

We are interested in a class of �smooth� univariate densities and focus on

approximation of a square root density. Speci�cally, we assume that
√
fε and

√
fν

belong to the class of p-smooth functions 8and we restrict our attention to the linear

sieve spaces for Fε and Fν . In this case, the choice of sieve spaces for Fε and Fν

depends on Sε and Sν , respectively. If the supports are bounded, then one can use

the polynomial sieve, the trigonometric sieve, or the cosine sieve. When the supports

are unbounded, then we can use the Hermite polynomial sieve or the spline wavelet

sieve to approximate a square root density.

We con�ne our attention to cases where the copula function is correctly

speci�ed for establishing the asymptotic theory. Since the copula is speci�ed by

some �nite-dimensional parameter, the model is vulnerable to misspeci�cation of

the copula function. It is well-known that if the density function is misspeci�ed in a

ML problem, the ML estimator converges to a pseudo-true value which minimizes the

Kullback-Leibler Information Criterion (KLIC) (e.g. White (1982), Chen and Fan

8The de�nition of p-smooth functions can be found on in (Chen, 2007, p.5570) or CFT06
(p.1230). We give the formal de�nition of p-smooth functions in Section 4.
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(2006a) and Chen and Fan (2006b)). We do not pursue investigating the asymptotic

properties of the sieve estimators under copula misspeci�cation, but there are several

tests that can be useful to check misspeci�cation of the copula in some classes of

models. Chen and Fan (2006a) propose a test procedure for model selection, which

is based on the test of Vuong (1989). Liao and Shi (2017) extend Vuong's test

to the one for models containing in�nite dimensional parameters and propose a

uniformly asymptotically valid Vuong test for semi/non-parametric models. Their

setting encompasses the models that can be estimated by the sieve ML as a special

case, so one may refer to the paper for model selection in our context. Even if

we assume that the copula function is correctly speci�ed to develop the asymptotic

theory, we address the issue on misspeci�cation of the copula in part by conducting

some simulations to see how misspeci�cation of copula a�ects the performance of

estimators.

1.4 Asymptotic Theory for Semiparametric Models

In this section, we provide the asymptotic theory for the sieve ML estimator.

We slightly modify the model to investigate the asymptotic properties of the sieve

M-estimator. Speci�cally, we consider the following speci�cation:

Fε0(x) = Hε0(Gε(x))

Fν0(x) = Hν0(Gν(x)), (1.4.1)

where Hε0(·) and Hν0(·) are unknown distribution functions on [0, 1] and Gε(·) and

Gν(·) are known and strictly increasing functions mapping from R into [0, 1]. It is
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possible that Gε(·) and Gν(·) are di�erent from each other, but this is not crucial

when it comes to estimating the parameters in the model as the main di�culty

with estimation relies on the unknown functions Hε0 and Hν0. We assume that

Gε(·) = Gν(·) ≡ G(·) to avoid the complexity of notations. The transformation in

Equation (1.4.1) can be found in the literature (e.g. Bierens (2014)) and we do not

have any loss of generality. Furthermore, the transformation may make it easier

to derive the asymptotic properties of the estimator because the unknown in�nite-

dimensional parameters are de�ned on a bounded set. For the known distribution

function G, we can choose G(x) ≡ Φ(x) for x ∈ R, where Φ(·) is the standard

normal distribution function, and assume that Hε0(·) and Hν0(·) have their density

functions hε0(·) and hν0(·), respectively, on [0, 1]. With this modi�cation, we rede�ne

the parameter as θ = (ψ
′
, hε0, hν0)

′ ∈ Θ̃†, where Θ̃† = Ψ̃ ×Hε ×Hν , and the sieve

space becomes Θ̃†n = Ψ̃×Hεn ×Hνn.

Let G be a mapping from R to [0, 1], which is strictly increasing on R. Then

one may wonder if there exist Hε0 and Hν0 satisfying (1.4.1). Since G is assumed

to be strictly increasing, there exists its inverse function G−1. Letting Hε0(·) =

Fε0(G−1(·)) and Hν0(·) = Fν0(G−1(·)), it is straightforward to see that Hε0 and

Hν0 are mapping from [0, 1] to [0, 1] and satisfying the relations in (1.4.1). We also

note that such a transformation does not change identi�cation results. Since G(·) is

strictly increasing on R, it has the inverse function G−1(·). Then it is straightforward

to show that, with the transformation given by Equation (1.4.1), H0(·) = F0(G−1(·))

and thus F0 is identi�ed on R if and only ifH0 is identi�ed on [0, 1]. Assuming that G

is di�erentiable and that its derivative is bounded away from zero on R and bounded
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above, the unknown density function h0 can be written as h0(x) = f0(G−1(x))
g(G−1(x))

, where

g(x) = dG(x)
dx . This expression draws the conclusion that f0 is identi�ed if any only if

h0(x) is identi�ed. Hence, we can conclude that hε0 and hν0 are identi�ed if and only

if the unknown marginal density functions fε0 and fν0 are identi�ed and G admits

the density g on R. Therefore, we choose G such that G is di�erentiable and that

the derivative, denoted by g, is bounded away from zero on R. It is clear that using

Φ as G satis�es those requirements.

1.4.1 Consistency of the Sieve MLE

The consistency of the sieve ML estimator has been established in several

papers (e.g. Geman and Hwang (1982); Gallant and Nychka (1987); White and

Wooldridge (1991); Bierens (2014)). Chen (2007) provides su�cient conditions un-

der which the sieve M-estimator is consistent, and we establish the consistency by

verifying the conditions in Theorem 3.1 in Chen (2007).

We rede�ne the parameter space to facilitate developing the asymptotic the-

ory. The identi�cation requires the space of the �nite-dimensional parameter Ψ̃ to

be open and convex (see Theorems 1.2.8 and 1.2.10), and thus Ψ̃ cannot be com-

pact. We introduce an �optimization space� which contains the true parameter ψ0

and consider it as the parameter space of ψ. Formally, we restrict the parameter

space for estimation in the following way.

Assumption 1.4.1. There exists a compact and convex subset Ψ ⊆ Ψ̃ such that

ψ0 ∈ int(Ψ), where int(A) is the interior of a set A.

With the optimization space, we de�ne the parameter space as Θ ≡ Ψ×Hε×
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Hν and the corresponding sieve space is denoted by Θn ≡ Ψ×Hεn×Hνn. Then the

sieve ML estimator in Equation (1.3.4) is also rede�ned as following :

θ̂n ≡ arg maxθ∈ΘnQn(θ) (1.4.2)

De�ne Q0(θ) ≡ E[l(θ,Wi)] and let || · ||c be a norm on Θ, whose the form is

of ||θ||c ≡ ||ψ||E + ||hε||Hε + ||hν ||Hν , where || · ||E is the Euclidean norm and || · ||Hε

and || · ||Hν are norms on Hε and Hν , respectively. Let dc(·, ·) : Θ×Θ→ [0,∞) be

a pseudo metric induced by the norm || · ||c.

We introduce some classes of functions to de�ne the parameter space. Let

Cm(X) be the space of m-times continuously di�erentiable real-valued functions on

X. Let ζ ∈ (0, 1] and, given a d-tuple ω, let [ω] = ω1 + ...+ωd. Denote the di�erential

operator by D and let Dω = ∂[ω]

∂x
ω1
1 ...∂x

ωd
d

. Letting p = m + ζ, we de�ne the Hölder

norm for h ∈ Cm(X) as following :

||h||Λp ≡ sup
[ω]≤m,x

|Dωh(x)|+ sup
[ω]=m

sup
x,y∈X,||x−y||E 6=0

|Dωh(x)−Dωh(y)|
||x− y||ζE

<∞,

where ζ is the Hölder exponent. We de�ne a Hölder class as Λp(X) ≡ {h ∈ Cm(X) :

||h||Λp < ∞}. A Hölder ball with radius R, ΛpR(X), is de�ned as ΛpR(X) ≡ {h ∈

Λp(X) : ||h||Λp ≤ R <∞}.

We �rst need to choose the norms || · ||Hε and || · ||Hν on Hε and Hν , respec-

tively, to prove the consistency. It is important to choose appropriate norms to ensure

compactness of the original parameter space as compactness plays an important role

in establishing the asymptotic theory. Since the parameter space contains in�nite
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dimensional spaces, the parameter space may be compact under certain norms and

may not be compact under other norms. Since closedness and boundedness of an

in�nite dimensional space are no longer equivalent to compactness, it is much harder

to show that the parameter space is compact under certain norms. To overcome this

di�culty, we take the approach introduced by Gallant and Nychka (1987), which uses

two norms to obtain the consistency. Their idea is to use the strong norm to de�ne

the parameter space as a ball and then obtain compactness of the parameter space

by equipping another norm, the consistency norm. Freyberger and Masten (2015)

recently extend the idea to more cases and present compactness results for several

parameter spaces. Note that, using the transformation of the distribution functions

in Equation (1.4.1), the unknown in�nite dimensional parameters are de�ned on

bounded domains.

We present assumptions under which the sieve ML estimator in Equation

(1.4.2) is consistent with respect to some pseudo-metric dc(·, ·).

Assumption 1.4.2. There exists a measurable function p(X,Z) such that for all

θ ∈ Θ and for all y, d = 0, 1, pyd,XZ(θ) ≥ p(X,Z) with E| log(p(X,Z))| < ∞ and

E[ 1
p(X,Z)2 ] <∞.

Assumption 1.4.3. (Wi)
n
i=1 are i.i.d. and E[||(X ′i , Z

′
i)
′ ||2E ] <∞.

Assumption 1.4.4. (i)
√
hε0,
√
hν0 ∈ ΛpR([0, 1]) with p > 1

2 and some R > 0; (ii)

H = {h = b2 : b ∈ ΛpR([0, 1]),
∫ 1

0 h = 1}, where R is the same to the one in (i), and

Hε = Hν = H; (iii) the density functions hε0 and hν0 are bounded away from zero

on [0, 1]; (iv) For h ∈ H,||h||H ≡ supx∈[0,1] |h(x)|, denoted by ||h||∞.
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Assumption 1.4.5. (i)Hεn = Hνn = {h ∈ H : h(x) = pkn(x)
′
akn , akn ∈ Rkn , ||h||∞ <

2R2}, where kn → ∞ and kn/n → 0 as n → ∞; (ii) For all j ≥ 1, we have

Θj ⊆ Θj+1 and there exists sequence {πjθ0}j such that dc(πjθ0, θ0)→ 0 as j →∞.

Assumption 1.4.6. For j = 1, 2, denote Cj(u1, u2; ρ) ≡ ∂C(u1,u2;ρ)
∂uj

and Cρ(u1, u2; ρ) ≡
∂C(u1,u2;ρ)

∂ρ . The derivatives Cj(·, ·; ·) and Cρ(·, ·; ·) are uniformly bounded for all

j = 1, 2.

Assumption 1.4.2 guarantees that the log-likelihood function l(θ,Wi) is well-

de�ned for all θ ∈ Θ and that Q0(θ0) > −∞. Assumption 1.4.3 restricts the data

generating process and assumes existence of moments of the data. Assumption 1.4.4

de�nes the parameter space and implies that the in�nite dimensional parameters

are in some smooth class. Note that the conditions (i) and (ii) in Assumption 1.4.4

together imply that hε0 and hν0 belong to Λp
R̃

([0, 1]) where R̃ ≡ 2m+1R2 <∞9. Thus,

we may assume that hε0 and hν0 belong to a Hölder ball with smoothness p under

Assumption 1.4.4. While the condition (i) implicitly de�nes the strong norm (Hölder

norm), Assumption 1.4.4-(iv) de�nes the sup-norm as the weak norm (consistency

norm). Note that since the parameter space for the �nite-dimensional parameter ψ,

Ψ, is assumed to be compact in Assumption 1.4.1, the whole parameter space Θ is

compact under the || · ||c by Theorems 1 and 2 in Freyberger and Masten (2015). The

�rst part of Assumption 1.4.5 restricts our choice of sieve spaces for Hε and Hν to be

among linear sieve spaces with order kn, and this can be relaxed so that the choice

of kn is di�erent for hε and hν . The latter part of Assumption 1.4.5 requires that

9See Appendix A for details.
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the sieve space should be appropriately chosen so that the unknown parameters can

be well-approximated. Since the unknown in�nite-dimensional parameters belong

to a Hölder ball and they are de�ned on bounded supports, one may choose the

polynomial sieve, the trigonometric sieve, the cosine sieve, or the spline sieve 10.

For example, if we choose the polynomial sieve or the spline sieve, then one can

show that dc(πknθ0, θ0) = O(k−pn ) (e.g. Lorentz (1966)). Assumption 1.4.6 imposes

boundedness of the derivatives of the copula function.

The following theorem demonstrates that under the assumptions above, the

sieve estimator θ̂n is consistent with respect to the pseudo metric dc.

Theorem 1.4.7. Suppose that Assumptions 1.2.1-1.2.6 and 1.2.9 hold. If Assump-

tions 1.4.1-1.4.6 are satis�ed, then dc(θ̂n, θ0)
p→ 0.

1.4.2 Convergence Rates

The convergence rate is one of objects of interest in the semiparametric or

nonparametric estimation by itself. More importantly, the convergence rate plays

an important role in deriving the asymptotic normality. To be more speci�c, the

convergence rate needs to be fast enough to establish the asymptotic normality.

Therefore, in this section we derive the convergence rate of the sieve ML estimator

with respect to a certain norm. The convergence rate of sieve M-estimators has been

studied by, for example, Shen and Wong (1994); Chen and Shen (1998), and Chen

(2007). Unlike that we use a sup-norm type pseudo-metric to show consistency, we

10Refer to Chen (2007) or CFT06 for more details on choice of sieve spaces.
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establish the convergence rate with respect to a L2-type norm given below:

||θ − θ0||2 ≡ ||ψ − ψ0||E + ||hε − hε0||2 + ||hν − hν0||2, (1.4.3)

where ||h − h̃||22 ≡
∫ 1

0 (h(t) − h̃(t))2dt for any h, h̃ ∈ H. It is straightforward to

show that ||θ − θ0||2 ≤ dc(θ, θ0). To establish the convergence rate with respect to

the norm || · ||2, we consider the assumption which imposes the equivalence between

K(·, ·) and || · ||22, where K(θ0, θ) is the Kullback-Leibler information.

Assumption 1.4.8. LetK(θ0, θ) ≡ E[l(θ0,Wi)−l(θ,Wi)]. Then there exist B1, B2 >

0 such that

B1K(θ0, θ) ≤ ||θ − θ0||22 ≤ B2K(θ0, θ)

for all θ ∈ Θn with dc(θ, θ0) = o(1).

Assumption 1.4.8 implies that the norm || · ||2 and the square-root of the

Kullback-Leibler information are equivalent. The next theorem demonstrates the

convergence rate of the sieve ML estimator with respect to the norm || · ||2.

Theorem 1.4.9. Suppose that Assumptions 1.2.1-1.2.6 and 1.2.9-1.4.8 hold. Then

we have

||θ̂n − θ0||2 = Op(max{
√
kn
n
, k−pn }). (1.4.4)

Furthermore, if we choose kn ∝ n
1

2p+1 , then we have

||θ̂n − θ0||2 = Op(n
− p

2p+1 ).

The convergence rate given in (1.4.4) depends on two components. The �rst
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component is related to the convergence rate of the �variance term�, and this rate

increases as the complexity of the sieve space, kn, becomes higher. In contrast, the

latter component, which re�ects the convergence rate of the deterministic approxi-

mation error ||θ0−πkθ0||2, decreases as kn becomes larger. The choice of kn ∝ n
1

2p+1

yields the best convergence rate, and we can see that with this choice, the conver-

gence rate of the sieve estimator θ̂n becomes faster as the degree of the smoothness,

p, increases.

1.4.3 Asymptotic Normality a Smooth Functional

Once the parameters of the model are estimated, it is important to �nd

out the asymptotic distribution of the parameters to conduct statistical inference.

Since the parameters in our model consist of both �nite and in�nite dimensional

parameters and many objects of interest in inference are considered as a functional

of the parameters, we focus on establishing the asymptotic distribution of functionals

rather than the parameters themselves.

In the literature,
√
n-estimable functionals are called regular functionals and

functional slower than
√
n-estimable are referred to as irregular functionals. While

the asymptotic distribution of a class of regular functionals has been established

in the sieve M-estimation literature (e.g. Chen and Shen (1998), CFT06, Bierens

(2014)), there are few studies on the asymptotic theory on irregular functionals11.

Since the class of smooth functionals encompasses a large class of objects of interest,

11See Chen et al. (2014) or Chen and Pouzo (2015) for inference for the irregular functionals
based on the sieve methods.
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we restrict our attention to a class of smooth functionals.

Let T : Θ→ R be a functional and de�ne V as the linear span of Θ− {θ0}.

We also let r10 = Fε0(x
′
β0 + δ10), r00 = Fε0(x

′
β0), and s0 = Fν0(x

′
α0 + z

′
γ0). For

t ∈ [0, 1], de�ne the directional derivative of l(θ,W ) at the direction v ∈ V as

dl(θ0 + tv,W )

dt
|t=0 = lim

t→0

l(θ0 + tv,W )− l(θ0)

t

=
∂l(θ0,W )

∂ψ′
[vψ] +

∑
j∈{ε,ν}

∂l(θ0,W )

∂hj
[vj ]

=
∂l(θ0,W )

∂ψ′
vψ +

∑
j∈{ε,ν}

∂l(θ0,W )

∂hj
[vj ], (1.4.5)

where for v = (v
′
ψ, vε, vν)

′
,

∂l(θ0, w)

∂ψ′
vψ =

∑
ỹ,d̃∈{0,1}

(1ỹ,d̃ ·
1

pỹd̃,xz(θ0)
·
∂pỹd̃,xz(θ0)

∂ψ′
)vψ,

∂l(θ0, w)

∂hε
[vε] = 111(y, d)× [

1

p11,xz(θ0)
C1(r10, s0; ρ0)

∫ G(x
′
β0+δ0)

0
vε(t)dt]]

+ 110(y, d)× [
1

p10,xz(θ0)
[(1− C1(r00, s0; ρ0))

∫ G(x
′
β0)

0
vε(t)dt]]

+ 101(y, d)× [
1

p01,xz(θ0)
[−C1(r10, s0; ρ0)

∫ G(x
′
β0+δ0)

0
vε(t)dt]]

+ 100(y, d)× [
1

p00,xz(θ0)
[(1− C1(r00, s0; ρ0))

∫ G(x
′
β0)

0
vε(t)dt]],

32



and

∂l(θ0, w)

∂hν
[vν ] = { 111(y, d)

p11,xz(θ0)
C2(r10, s0; ρ0) +

110(y, d)

p10,xz(θ0)
(−C2(r00, s0; ρ0))

+
101(y, d)

p01,xz(θ0)
(1− C2(r10, s0; ρ0)) +

100(y, d)

p00,xz(θ0)
(1− C2(r00, s0; ρ0))}

×
∫ G(x

′
α0+z

′
γ0)

0
vν(t)dt.

Before presenting results on the asymptotic normality of smooth function-

als, we strengthen the smoothness condition in Assumptions 1.2.6 and 1.4.6. We

let Cij(u1, u2; ρ) denote the second-order partial derivative of a copula function

C(u1, u2; ρ) w.r.t. i and j for i, j ∈ {u1, u2, ρ}.

Assumption 1.4.10. The copula function C(u1, u2; ρ) is twice continuously di�er-

entiable with respect to u1, u2, and ρ and its �rst- and second- order partial derivatives

are well-de�ned in a neighborhood of θ0.

De�ne the Fisher inner product on the space V as

< v, ṽ >≡ E[(
∂l(θ0,W )

∂θ
[v])(

∂l(θ0,W )

∂θ
[ṽ])] (1.4.6)

and the Fisher norm for v ∈ V as ||v||2 =< v, v >. If we let V̄ be the closed

linear span of V under the Fisher norm, then (V̄, || · ||) is a Hilbert space as CFT06

demonstrated.

For the functional T and for any v ∈ V, we denote

∂T (θ0)

∂θ′
[v] ≡ lim

t→0

T (θ0 + tv)− T (θ0)

t
.
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Note that for any θ1, θ2 ∈ Θ, we have

||θ1 − θ2||2 = E(
∂l(θ0,Wi)

∂θ
[θ1 − θ2])2

≤ B{E[
∂l(θ0,Wi)

∂ψ′
(ψ1 − ψ2)]2 + E[

∂l(θ0,Wi)

∂hε
[hε1 − hε2]]2

+ E[
∂l(θ0,Wi)

∂hν
[hν1 − hν2]]2}

≤ B||θ1 − θ2||22 (1.4.7)

for some B > 0 under Assumptions 1.4.3, 1.4.4, and 1.4.6. This implies that we can

use the convergence rate of the sieve estimator θ̂n w.r.t. the norm || · ||2 for the one

w.r.t. the norm || · ||.

Assumption 1.4.11. The following conditions hold:

(i) there exist a constants w > 1 + 1
2p and a small ε0 > 0 such that for any

v ∈ V with ||v|| ≤ ε0,

|T (θ0 + v)− T (θ0)− ∂T (θ0)

∂θ′
[v]| = O(||v||w);

(ii) For any v ∈ V, T (θ0 + tv) is continuously di�erentiable in t ∈ [0, 1]

around t = 0, and

||∂T (θ0)

∂θ′
|| ≡ sup

v∈V,||v||>0

|∂T (θ0)

∂θ′
[v]|

||v||
<∞.

Assumption 1.4.11 de�nes a smooth functional T and guarantees the exis-

tence of v∗ ∈ V̄ such that < v∗, v >= ∂T (θ0)

∂θ′
[v] for all v ∈ V and ||v∗||2 = ||∂T (θ0)

∂θ′
||2,

and we call v∗ the Riesz representer for the functional T . The next assumption re-

quires the Riesz representer be well-approximated over the sieve space and converge
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at a rate with respect to the Fisher norm.

Assumption 1.4.12. There exists πnv
∗ ∈ Θn − {θ0} such that ||πnv∗ − v∗|| =

o(n−1/4).

We derive the asymptotic normality of a smooth functional T by modifying

the conditions in CFT06. Let µn(g) = 1
n

∑n
i=1{g(Wi)− E[g(Wi)]} be the empirical

process indexed by g. We denote the convergence rate of the sieve estimator by δn

(i.e. ||θ̂n − θ0|| = Op(δn)).

Assumption 1.4.13. There exist ξ1 > 0 and ξ2 > 0 with 2ξ1 + ξ2 < 1 and a

constant K such that (δn)3−(2ξ1+ξ2) = o(n−1), and the followings hold for all θ̃ ∈ Θn

with ||θ̃ − θ0|| ≤ δn and all v ∈ V with ||v|| ≤ δn :

(i) |E[∂
2l(θ̃,W )

∂ψ∂ψ′
− ∂2l(θ0,W )

∂ψ∂ψ′
]| < K||θ̃ − θ0||1−ξ2;

(ii) |E[
∑

j∈{ε,ν}{
∂2l(θ̃,W )
∂ψ∂hj

[vj ]− ∂2l(θ0,W )
∂ψ∂hj

[vj ]}| ≤ K||v||1−ξ1 ||θ̃ − θ0||1−ξ2 ;

(iii) |E[
∑

i,j∈{ε,ν}{
∂2l(θ̃,W )
∂hi∂hj

[v, v]− ∂2l(θ0,W )
∂hi∂hj

[v, v]}] ≤ K||v||2(1−ξ1)||θ̃−θ0||1−ξ2.

Assumption 1.4.14. The followings hold:

(i) supθ∈Θn:||θ−θ0||=O(δn) µn(∂l(θ,W )

∂ψ′
− ∂l(θ0,W )

∂ψ′
) = op(n

− 1
2 ) ;

(ii) For all j ∈ {ε, ν},

sup
θ∈Θn:||θ−θ0||=O(δn)

µn(
∂l(θ,W )

∂hj
[πnv

∗
j ]−

∂l(θ0,W )

∂hj
[πnv

∗
j ]) = op(n

− 1
2 ).

Assumptions 1.4.13 and 1.4.14 are modi�cations of Assumptions 5 and 6

in CFT06, which are needed to control for the second-order expansion of the log-

likelihood function l(θ,W ). Under Assumption 1.4.10, these conditions require the
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unknown marginal density functions to be smooth enough. For example, the sieve

estimator needs to converge at a faster rate than 1/(3 − (2ξ1 + ξ2)) to satisfy

(δn)3−(2ξ1+ξ2) = o(n−1). Usually, the convergence rate positively depends on the

smoothness parameter p in Assumption 1.4.4 and thus the class of models should be

restricted to one whose density functions are smooth enough.

Proposition 1.4.1. Suppose that Assumptions 1.2.1-1.2.6 and 1.2.9-1.4.14 are sat-

is�ed. If kn ∝ n
1

2p+1 , then we have

√
n(T (θ̂n)− T (θ0))

d→ N(0, ||∂T (θ0)

∂θ′
||2).

1.4.3.1 Asymptotic normality of ψ̂n

In many cases, the �nite-dimensional parameter ψ0 is the parameter of in-

terest and we demonstrate the asymptotic normality of the sieve estimators of the

�nite-dimensional parameter ψ0. For any arbitrary λ ∈ Rdψ with |λ| ∈ (0,∞), let

T : Θ→ R be a functional of the form T (θ) = λ
′
ψ. Then we have for any v ∈ V,

∂T (θ0)

∂θ
[v] = λ

′
vψ (1.4.8)

and that there exist a small η > 0 such that ||v|| ≤ η and a constant c̃ > 0 such that

|T (θ0 + v)− T (θ0)− ∂T (θ0)

∂θ
| ≤ c̃||v||w (1.4.9)
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with w =∞. In addition, we have

sup
v∈V:||v||>0

|λ′vψ|2

||v||2
= sup

v∈V:||v||>0

|λ′vψ|2

E[(∂l(θ0,W )

∂ψ′
vψ +

∑
j∈{ε,ν}

∂l(θ0,W )
∂hj

[vj ])2]

= λ
′
I∗(θ0)−1λ

= λ
′
E[Sψ0S

′
ψ0

]−1λ,

where

S
′
ψ0

=
∂l(θ0,W )

∂ψ′
− (

∂l(θ0,W )

∂hε
[b∗ε ] +

∂l(θ0,W )

∂hν
[b∗ν ]), (1.4.10)

b∗ε = (b∗ε1, ..., b
∗
εdψ

) ∈ Π
dψ
k=1(Hε − {hε0}), and b∗ν = (b∗ν1, ..., b

∗
νdψ

) ∈ Π
dψ
k=1(Hν − {hν0})

are the solutions to the following optimization problems for k = 1, 2, ..., dψ,

inf
(bεk,bνk)∈V̄ε×V̄ν

E[(
∂l(ξ0,W )

∂θk
− (

∂l(ξ0,W )

∂hε
[bεk] +

∂l(ξ0,W )

∂hν
[bνk]))

2].

Since the Riesz representer v∗ exists if and only if E[Sψ0S
′
ψ0

] = I∗(ψ0) is non-singular,

we impose the following assumption.

Assumption 1.4.15. E[Sψ0S
′
ψ0

] is non-singular.

Theorem 1.4.16. Suppose that Assumptions 1.2.1-1.2.6, 1.2.9-1.4.10, 1.4.11-(iii),

and 1.4.13-1.4.15 hold. Then we have

√
n(ψ̂n − ψ0)

d→ N(0, I∗(ψ0)−1). (1.4.11)

The covariance matrix in Equation (1.4.11) needs to be estimated, and

CFT06 adopt the covariance estimation established in Ai and Chen (2003). Since an

in�nite-dimensional optimization is involved in calculating Sψ0 , we provide a sieve
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estimator of I∗(θ0)−1 and the sieve spaces for bε and bν are the same to the ones for

hε and hν , respectively. By the same way in Ai and Chen (2003), we �rst estimate

b∗j 's in Equation (1.4.10) by solving the following minimization problem : for all

k = 1, 2, ..., dψ,

(b̂εk, b̂νk) ≡ arg min
(bεk,bνk)∈Hεn×Hνn

1

n

n∑
i=1

[(
∂l(θ̂n,Wi)

∂ψk
−(
∂l(θ̂n,Wi)

∂hε
[bεk]+

∂l(θ̂n,Wi)

∂hν
[bνk]))

2].

Let b̂j = (b̂j1, b̂j2, ..., b̂jdψ)
′
for given j ∈ {ε, ν}, then we compute

Î∗(ψ̂n) =
1

n

n∑
i=1

{[∂l(θ̂n,Wi)

∂ψ
− (

∂l(θ̂n,Wi)

∂hε
[b̂ε] +

∂l(θ̂n,Wi)

∂hν
[b̂ν ])]

× [
∂l(θ̂n,Wi)

∂ψ
− (

∂l(θ̂n,Wi)

∂hε
[b̂ε] +

∂l(θ̂n,Wi)

∂hν
[b̂ν ])]

′}

to obtain a consistent estimator of I∗(ψ0). We illustrate the following result and the

proof can be found in Theorem 5.1 in Ai and Chen (2003).

Theorem 1.4.17. Suppose that Assumptions in Theorem 1.4.16 hold. Then Î∗(ψ̂n) =

I∗(ψ0) + op(1).

1.4.3.2 Asymptotic normality of ψ̂n when the unknown marginals are

equal

CFT06 consider the case where the unknown marginal distributions are the

same. Let hε0 = hν0 = h0 ∈ H and H0 is the distribution function which has the

density h0. With the Fisher norm de�ned by Equation (1.4.6), we can show that

∂l(θ0,W )

∂θ
[v] =

∂l(θ0,W )

∂ψ′
vψ +

∂l(θ0,W )

∂h
[vh],
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where ∂l(θ0,W )
∂h [vh] = (∂l(θ0,W )

∂hε
[vh] + ∂l(θ0,W )

∂hν
[vh])|hε0=hν0=h0 . We can obtain the

asymptotic distribution of ψ̂n with the following one :

Assumption 1.4.18. E[S̃ψS̃
′
ψ0

] is non-singular, where

S̃ψ0 = inf
bh∈Π

dψ
k=1V̄h

{(∂l(θ0,W )

∂ψ′
− ∂l(θ0,W )

∂h
[bh])

′
(
∂l(θ0,W )

∂ψ′
− ∂l(θ0,W )

∂h
[bh])} (1.4.12)

and V̄h = V̄ε = V̄ν .

We present the asymptotic normality of ψ̂n under the assumption of the same

marginal distributions in the following theorem.

Theorem 1.4.19. Suppose that the conditions in Theorem 1.4.16 are satis�ed. If

Assumption 1.4.18 hold and the unknown marginal distributions Hε0 and Hν0 are

equal, then

√
n(ψ̂n − ψ0)⇒ N(0, Ĩ∗(ψ0)−1),

where Ĩ∗(ψ0)−1 ≡ E[S̃ψ0 S̃
′
ψ0

]−1. Furthermore, I∗(ψ0)−1 ≥ Ĩ∗(ψ0)−1 and the inequal-

ity holds in the sense that I∗(ψ0)−1 − Ĩ∗(ψ0)−1 is positive semi-de�nite.

Remark 1.4.20. We can also estimate the covariance matrix Ĩ∗(ψ0)−1 in the same

way of Theorem 1.4.17. Since we assume that both marginal distributions are the

same, the in�nite-dimensional parameter in S̃ψ0 is estimated by b̂ ≡ (b̂1, b̂2, ..., b̂dψ)
′
,

where

b̂k ≡ arg min
bk∈Hn

1

n

n∑
i=1

[(
∂l(θ̂n,Wi)

∂ψk
− (

∂l(θ̂n,Wi)

∂h0
[bk])

2]

for k = 1, 2, ..., dψ and Hn is the sieve space for H. Then we can construct an

estimator of Ĩ∗(ψ0)−1 by using b̂ and this estimator is consistent.
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1.4.3.3 Asymptotic Normality of the CATEs

As mentioned above, the CATE is one of parameters of interest. Under the

model in this paper, we de�ne the CATE on X = x as E[Y1 − Y0|X = x], where

E[Yd|X = x] = Fε0(x
′
β0 + d) with d ∈ {0, 1}, denoted by CATE(x) . To derive the

asymptotic normality of CATE(x), we consider the case of T (θ0) = CATE(θ0). For

all v ∈ V, we have

∂CATE(θ0)

∂θ′
[v] = {fε0(x

′
β0 + δ0)(x

′
vβ + vδ)− fε0(x

′
β0)x

′
vβ}+

∫ G(x
′
β0+δ0)

G(x′β0)
vε(t)dt,

(1.4.13)

where fε0(x) = hε0(G(x))g(x).

From Proposition 1.4.1, we present the following result without proof :

Theorem 1.4.21. Let x ∈ supp(X) be given. Suppose that the conditions in Propo-

sition 1.4.1 hold with T (θ0) = CATE(θ0, x). Then we have

√
n(CATE(θ̂n;x)− CATE(θ0;x))

d→ N(0, ||∂CATE(θ0;x)

∂θ′
[v]||2), (1.4.14)

where ||∂CATE(θ0;x)

∂θ′
[v]||2 = supv∈V,||v||>0

| ∂CATE(θ0;x)

∂θ
′ [v]|
||v|| .

The asymptotic variance in Equation (1.4.14) can be estimated by the same

way described above and an estimator is given as following :

σ2
CATE = max

v∈Θn
||∂CATE(θ̂n;x)

∂θ′
[v]||2.
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1.5 Monte Carlo Simulation and Sensitivity Analysis

1.5.1 Simulation Design

We carry out a simulation study to investigate the �nite sample performance

of the sieve M-estimator θ̂n de�ned in equation (1.4.2). We consider a various data

generating processes (DGPs) for both copulas and marginal distributions. The iden-

ti�cation of the model requires the copula function to satisfy the stochastic increasing

property. HV17 provide several examples of copulas, including the Gaussian, Frank,

Clayton, and Gumbel copulas. We consider these copulas to generate the sample.

We are also interested in a comparison of performances of the parametric estima-

tors and the semiparametric ones when the marginal distributions are misspeci�ed.

To do so, we consider two marginal distributions for ε and ν: the standard normal

distribution and a mixture of normal distributions. To estimate parametric models,

we specify normal distributions with unknown mean and variance parameters for

the marginal distributions due to their popularity. We refer to the parameters char-

acterizing the marginal distributions as the nuisance parameters. Speci�cally, the

nuisance parameters are the marginal distribution functions (or density functions)

of ε and ν themselves in semiparametric models. On the other hand, the nuisance

parameters in parametric estimation are the mean and variance parameters of the

marginal distribution functions of ε and ν. We consider two sample sizes 500 and

1000, and all results are obtained from 2000 Monte Carlo replications.
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In simulations, we consider the following data generating process:

Yi = 1{Xiβ +Diδ1 ≥ ε}

Di = 1{Xiα+ Ziγ ≥ ν},

where (α, γ, β, δ1) = (−1, 0.8,−1, 1.1) and (X,Z) ∼ N

((
0

0

)
,

(
1 −0.1

−0.1 1

))
.

There are several ways to normalize location and scale for the model, and we

impose a restriction that X has no constant for location normalization and set the

coe�cient on X1 to one for scale normalization. As we mentioned in the previous

section, this normalization allows us to easily compare the performances of paramet-

ric and semiparametric estimators and can be used in more generalized models. To

apply this normalization to our simulation design, α and β are assigned -1 in our

simulation design.

The dependence structure between ε and ν is characterized by one-dimensional

parameters in all copulas considered in this paper, but the interpretation of the

dependence parameter di�ers across the copulas. To resolve the di�culty in com-

parison of the degree of dependence between ε and ν, we report the Spearman's

ρ corresponding to the estimated dependence parameter in each copula speci�ca-

tion. We also estimate the models with several values of Spearman's ρ to examine

whether the performances of estimators vary across the degree of dependence. Since

the Clayton and the Gumbel copulas do not allow negative dependence, we only

examine the results from the Gaussian and the Frank copulas in the case where

negative dependence is imposed.
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We consider two marginal distributions for the DGPs: (i) the standard nor-

mal distribution and (ii) a mixture of normal distributions, and we set parameters

so that E[ε] = E[ν] = 0 and V ar(ε) = V ar(ν) = 1 in both cases. Speci�cally, ε

and ν are generated from 0.6N(−1, σ2) + 0.4N(1.5, σ2) for some σ > 0 when the

true marginal distributions are the mixture of normals. We denote the mixture

distribution of normals by TN .

The �nite dimensional parameter ψ and the marginal e�ect of the treatment

at some value of the covariate (i.e. CATE) are objects of interest in this class of

models. In particular, we focus on CATE at the mean of covariate X as well as ψ.

As a performance measure of estimators, we consider the root mean squared errors

(RMSEs) in our simulation.

1.5.2 Parametric Models

The parametric models can be estimated by the standard maximum like-

lihood method. Since it is common to use bivariate probit models for parametric

estimation, we specify normal distributions for the marginal distributions. With such

a choice of marginal distributions, the model becomes the bivariate probit model if

we choose the Gaussian copula. Even if it is commonly assumed that E[ε] = E[ν] = 0

and V ar(ε) = V ar(ν) = 1 as location and scale normalizations in parametric binary

choice models, we adopt the same normalization to the one for the semiparametric

model and thus we can easily compare performance of estimators between parametric

and semiparametric models.
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1.5.3 Semiparametric Models

Since we assume that
√
hj ∈ Λp([0, 1]), we approximate hj to

hj(x) =
(
∑knj

k=0 ajkψjk(x))2∫ 1
0 (
∑knj

k=0 ajkψjk(x))2dx
,

where j ∈ {ε, ν}, {ψjk(·)}
knj
k=0 is the set of approximating functions for hj(·), and knj

is the number of approximating functions. Since hj 's are density functions on the

unit interval, we need to impose a restriction that
∫ 1

0 hj(x)dx = 1 for all j ∈ {ε, ν}.

However, the approximation above implies
∫ 1

0 hj(x)dx = 1 by construction, so we can

omit this restriction on the unknown density functions when estimating the model.

We take the space of polynomials as the sieve space for hε and hν . The orders of

polynomials (knε and knν) are set to be proportional to n1/7. To incorporate the

speci�cation given in(1.4.1), we choose the standard normal distribution function for

G(·) (i.e. G(·) = Φ(·)).

1.5.4 Copula Misspeci�cation

Although we assume that the copula is correctly speci�ed, the economic the-

ory does not provide a justi�cation for the choice of the copula. In this simulation

study, we examine the e�ect of copula misspeci�cation on the performance of esti-

mators. Misspeci�cation problems in copula-based models have been addressed in

the statistic literature (e.g. Kim et al. (2007a,b); Lawless and Yilmaz (2011)). As a

related work, Lawless and Yilmaz (2011) compare the performances of the paramet-

ric and the semiparametric ML estimators in a copula-based model and show that

the semiparametric two-step method performs better than the parametric estimation
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method when the copula function is misspeci�ed. To examine the e�ect of copula

misspeci�cation, we only consider a family of copulas that satisfy the stochastic or-

dering property (Assumption 1.2.6) to ensure the identi�cation of the model in our

simulations.

1.5.5 Simulation Results

To compare the performance of the sieve ML estimators with the one of

parametric ML estimators, we examine the results from the cases where both the

marginal distributions and the copula function are correctly speci�ed (i.e. the true

marginal distributions are the standard normal distribution). Table 1.1 shows the

estimation results and we �nd that the estimators of ψ and CATE perform well in

both the parametric and the semiparametric models. The biases of estimators are

negligible in both models and the variances are small. In addition, the performances

of estimators in the semiparametric models are as good as those in the parametric

models. For example, the RMSE of the estimator of δ1 in the semiparametric model

with the Gaussian copula is 0.4181 and the one in the parametric model is 0.3982

when the sample size is 500. We also �nd that the marginal distribution functions

are estimated well in the parametric models, and thus both the parametric and

the semiparametric models estimate CATE well. The estimator of the dependence

parameter ρ also performs well in both models. These results remain the same

when the sample size increases. Table 1.7 contains the simulation results with 1000

observations. The results in Table 1.7 demonstrate that the RMSEs decrease and

that the parameters are more precisely estimated in both models as the sample size
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increases.

Now we consider the cases where the marginal distributions are misspeci�ed

in parametric models. Table 1.2 shows simulation results from the cases where the

true marginal distributions are TN but a researcher speci�es normal distributions

for them. Table 1.8 is obtained from simulations under the same situation but with

1000 observations. From these tables, we can �nd that the MSEs of estimators in

parametric models are larger than those in semiparametric models uniformly in the

parameters and thus all parameters are estimated more precisely in semiparametric

models under the misspeci�cation of the marginal distributions. Moreover, the para-

metric estimators of the CATE are hugely distorted when the marginal distributions

are misspeci�ed and the poor performance of parametric estimators is attributed not

only to bias, but also to variance. To be more speci�c, the bias of the CATE esti-

mator from the parametric model with the Gaussian copula is 0.1377 which is about

8 times larger than the one from the corresponding semiparametric model when the

sample size is 500. These biases of CATE estimators are substantial regarding that

they do not disappear even when we increase the sample size. Comparing Tables

1.2 and 1.8, we can �nd that the decreases in RMSEs of CATE estimators with

a larger sample size are due to smaller variances and that biases of estimators are

generally not reduced even with a larger sample size. Therefore, the simulation

results demonstrate that when the marginal distributions are misspeci�ed, the semi-

parametric models outperform the parametric models since the CATE is one of the

most important quantities in the sense that many empirical studies are interested

in the CATE in this class of models rather than individual structural parameters
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themselves.

Finally, we examine the simulation results when both the copula and the

marginal distributions are misspeci�ed. Tables 1.3-1.6 and 1.9-1.12 show the simula-

tion results under misspeci�cation of both copula and marginal distributions. If both

copula and marginal distributions are misspeci�ed, the performance of parametric

ML estimators are comparable to or slightly worse than the one under marginal

misspeci�cation. For example, when the true copula function is a Frank copula and

the sample size is 500, we �nd out that the RMSEs of parametric estimators under

marginal misspeci�cation (Table 1.2) are similar to those under both copula and

marginal misspeci�cation (Table 1.4). The estimators of ψ under both copula and

marginal misspeci�cation (Table 1.4) have slightly larger RMSEs than correspond-

ing ones under marginal misspeci�cation (Table 1.2), but the performance of CATE

estimators varies across copula speci�cations. The degree of distortion is more severe

when the true copula function is either the Clayton or the Gumbel copula and the

copula function is misspeci�ed (Tables 1.5 and 1.6). In particular, when the true

DGP is based on the Gumbel copula, copula misspeci�cation has a signi�cant e�ect

on the performance of estimators of ψ and CATE in parametric models. The RMSEs

of estimators of ψ and CATE under copula and marginal misspeci�cation are larger

than those under marginal misspeci�cation. Considering Tables 1.2 and 1.6 with a

focus on the CATE, the RMSE under marginal misspeci�cation is 0.1637, whereas

the RMSEs under both copula and marginal misspeci�cation are 0.1835, 0.2178, and

0.2732 for the Gaussian, Frank, and Clayton copulas, respectively). Even if the sam-

ple size increases, these observations remain the same. On the other hand, there is
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no clear evidence that the performance of the semiparametric estimators under mis-

speci�cation of marginal distributions is better than the one under both copula and

marginal misspeci�cation. For example, when the true copula is the Frank family,

we can see that the �nite dimensional parameter except for γ and the CATE in the

semiparametric model are estimated better under both misspeci�cation than under

misspeci�cation of marginal distributions if the copula is speci�ed by the Gaussian

or the Gumbel copula. In contrast, the Clayton copula speci�cation provides the ex-

actly reverse conclusion. Regardless of which copula is used for estimation, however,

we can conclude that the semiparametric models dominate the parametric models

in terms of RMSE in the presence of marginal misspeci�cation and that the CATE

estimators in parametric models are very misleading.

The simulation results suggest that researchers use semiparametric models

proposed in this paper when they are concerned about the model misspeci�cation

in respect of the marginal distributions. We summarize the main �ndings from our

simulation study:

1. The performance of the sieve ML estimators is comparable to the one of the

parametric ML estimators when the model is correctly speci�ed.

2. When the marginal distributions are misspeci�ed, the sieve ML estimator is

recommended in regard to the performance of the CATE estimator.

3. If both the copula and the marginal distributions are misspeci�ed, the perfor-

mance of the parametric ML estimators becomes worse and the semiparametric

models are preferred over the parametric models.
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Table 1.1: Correctly Speci�ed Models (n = 500)
Parametric Estimation Semiparametric Estimation

Gaussian Copula
γ δ1 ρsp ATE γ δ1 ρsp ATE

True Values 0.8000 1.1000 0.5000 0.3643 0.8000 1.1000 0.5000 0.3643

Estimate 0.8074 1.1469 0.4956 0.3657 0.8070 1.1577 0.5037 0.3584

S.D 0.0934 0.3954 0.1537 0.0897 0.0940 0.4141 0.1528 0.0935

Bias 0.0074 0.0469 -0.0044 0.0014 0.0070 0.0577 0.0038 -0.0060

RMSE 0.0936 0.3982 0.1537 0.0897 0.0943 0.4181 0.1528 0.0937

Frank Copula
γ δ1 ρsp ATE γ δ1 ρsp ATE

True Values 0.8000 1.1000 0.5000 0.3643 0.8000 1.1000 0.5000 0.3643

Estimate 0.8027 1.1450 0.4909 0.3681 0.8028 1.1556 0.4981 0.3598

S.D 0.0936 0.3379 0.1310 0.0781 0.0943 0.3588 0.1314 0.0829

Bias 0.0027 0.0450 -0.0091 0.0037 0.0028 0.0556 -0.0019 -0.0045

RMSE 0.0936 0.3409 0.1313 0.0781 0.0944 0.3631 0.1314 0.0830

Clayton Copula
γ δ1 ρsp ATE γ δ1 ρsp ATE

True Values 0.8000 1.1000 0.5000 0.3643 0.8000 1.1000 0.5000 0.3643

Estimate 0.8024 1.1083 0.5075 0.3598 0.8027 1.1275 0.5140 0.3504

S.D 0.0942 0.3371 0.1368 0.0791 0.0935 0.3719 0.1354 0.0816

Bias 0.0024 0.0083 0.0075 -0.0045 0.0027 0.0275 0.0139 -0.0139

RMSE 0.0942 0.3372 0.1370 0.0792 0.0936 0.3729 0.1361 0.0828

Gumbel Copula
γ δ1 ρsp ATE γ δ1 ρsp ATE

True Values 0.8000 1.1000 0.5000 0.3643 0.8000 1.1000 0.5000 0.3643

Estimate 0.8026 1.1339 0.5060 0.3605 0.8035 1.1564 0.5102 0.3562

S.D 0.0974 0.4002 0.1488 0.0894 0.0994 0.4300 0.1535 0.0978

Bias 0.0026 0.0339 0.0060 -0.0038 0.0035 0.0564 0.0102 -0.0081

RMSE 0.0974 0.4016 0.1489 0.0895 0.0995 0.4337 0.1539 0.0981

* The true DGP marginal distributions are the standard normal distribution.
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Table 1.2: Marginal Misspec�cation (n = 500)
Parametric Estimation Semiparametric Estimation

Gaussian Copula
γ δ1 ρsp ATE γ δ1 ρsp ATE

True Values 0.8000 1.1000 0.5000 0.1066 0.8000 1.1000 0.5000 0.1066

Estimate 0.7994 1.0925 0.4496 0.2443 0.8562 1.2696 0.4895 0.1241

S.D 0.1281 0.6285 0.1651 0.1129 0.1113 0.3728 0.1059 0.0653

Bias -0.0006 -0.0075 -0.0504 0.1377 0.0562 0.1696 -0.0105 0.0174

RMSE 0.1281 0.6285 0.1726 0.1780 0.1247 0.4096 0.1064 0.0675

Frank Copula
γ δ1 ρsp ATE γ δ1 ρsp ATE

True Values 0.8000 1.1000 0.5000 0.1066 0.8000 1.1000 0.5000 0.1066

Estimate 0.8056 1.3088 0.3976 0.2894 0.8377 1.2541 0.4829 0.1276

S.D 0.1272 0.5093 0.1221 0.0883 0.1141 0.3564 0.0963 0.0689

Bias 0.0056 0.2088 -0.1024 0.1827 0.0377 0.1541 -0.0171 0.0210

RMSE 0.1273 0.5504 0.1594 0.2030 0.1202 0.3883 0.0978 0.0720

Clayton Copula
γ δ1 ρsp ATE γ δ1 ρsp ATE

True Values 0.8000 1.1000 0.5000 0.1066 0.8000 1.1000 0.5000 0.1066

Estimate 0.8099 1.1439 0.4236 0.2555 0.8441 1.2234 0.4948 0.1192

S.D 0.1309 0.5236 0.1412 0.0913 0.1134 0.3611 0.0999 0.0611

Bias 0.0099 0.0439 -0.0764 0.1488 0.0441 0.1234 -0.0053 0.0126

RMSE 0.1312 0.5254 0.1605 0.1746 0.1217 0.3816 0.1001 0.0624

Gumbel Copula
γ δ1 ρsp ATE γ δ1 ρsp ATE

True Values 0.8000 1.1000 0.5000 0.1066 0.8000 1.1000 0.5000 0.1066

Estimate 0.7892 1.0326 0.4650 0.2373 0.8484 1.2692 0.4900 0.1259

S.D 0.1333 0.5297 0.1338 0.0986 0.1142 0.3646 0.0986 0.0645

Bias -0.0108 -0.0674 -0.0350 0.1307 0.0484 0.1692 -0.0099 0.0193

RMSE 0.1337 0.5340 0.1383 0.1637 0.1241 0.4019 0.0991 0.0673

* The true DGP marginal distributions are the mixture of normals.
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Table 1.3: Copula and Marginals Misspeci�cation 1 (n = 500)
Parametric Estimation Semiparametric Estimation

Frank Copula
γ δ1 ρsp ATE γ δ1 ρsp ATE

True Values 0.8000 1.1000 0.5000 0.1066 0.8000 1.1000 0.5000 0.1066

Estimate 0.8140 1.3080 0.3775 0.2916 0.8463 1.3514 0.4499 0.1351

S.D 0.1257 0.4899 0.1202 0.0862 0.1137 0.3502 0.0964 0.0686

Bias 0.0140 0.2080 -0.1225 0.1849 0.0463 0.2514 -0.0501 0.0285

RMSE 0.1265 0.5322 0.1716 0.2040 0.1227 0.4311 0.1087 0.0743

Clayton Copula
γ δ1 ρsp ATE γ δ1 ρsp ATE

True Values 0.8000 1.1000 0.5000 0.1066 0.8000 1.1000 0.5000 0.1066

Estimate 0.8244 1.5699 0.3691 0.3176 0.8534 1.4386 0.4945 0.1586

S.D 0.1271 0.6609 0.1697 0.0999 0.1128 0.3398 0.1044 0.0734

Bias 0.0244 0.4699 -0.1308 0.2110 0.0534 0.3386 -0.0054 0.0520

RMSE 0.1294 0.8109 0.2143 0.2335 0.1248 0.4797 0.1046 0.0899

Gumbel Copula
γ δ1 ρsp ATE γ δ1 ρsp ATE

True Values 0.8000 1.1000 0.5000 0.1066 0.8000 1.1000 0.5000 0.1066

Estimate 0.7981 1.0706 0.4232 0.2448 0.8546 1.2025 0.4697 0.1137

S.D 0.1281 0.5795 0.1519 0.1077 0.1118 0.3611 0.1027 0.0600

Bias -0.0019 -0.0294 -0.0767 0.1382 0.0546 0.1025 -0.0302 0.0070

RMSE 0.1281 0.5802 0.1702 0.1752 0.1244 0.3754 0.1070 0.0604

* The true DGP copula and marginals are the Gaussian and mixture of normals,
respectively.
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Table 1.4: Copula and Marginals Misspeci�cation 2 (n = 500)
Parametric Estimation Semiparametric Estimation

Gaussian Copula
γ δ1 ρsp ATE γ δ1 ρsp ATE

True Values 0.8000 1.1000 0.5000 0.1066 0.8000 1.1000 0.5000 0.1066

Estimate 0.7992 1.1673 0.4517 0.2527 0.8500 1.1788 0.5173 0.1192

S.D 0.1342 0.6901 0.1680 0.1179 0.1158 0.3602 0.1000 0.0652

Bias -0.0008 0.0673 -0.0483 0.1461 0.0500 0.0788 0.0173 0.0126

RMSE 0.1342 0.6934 0.1748 0.1877 0.1262 0.3687 0.1015 0.0664

Clayton Copula
γ δ1 ρsp ATE γ δ1 ρsp ATE

True Values 0.8000 1.1000 0.5000 0.1066 0.8000 1.1000 0.5000 0.1066

Estimate 0.8235 1.6132 0.3870 0.3184 0.8484 1.3679 0.5212 0.1548

S.D 0.1329 0.7039 0.1670 0.1018 0.1188 0.3416 0.1012 0.0755

Bias 0.0235 0.5132 -0.1130 0.2118 0.0484 0.2679 0.0212 0.0482

RMSE 0.1350 0.8711 0.2017 0.2350 0.1283 0.4341 0.1034 0.0896

Gumbel Copula
γ δ1 ρsp ATE γ δ1 ρsp ATE

True Values 0.8000 1.1000 0.5000 0.1066 0.8000 1.1000 0.5000 0.1066

Estimate 0.8001 1.1697 0.4202 0.2564 0.8485 1.1059 0.4997 0.1071

S.D 0.1347 0.6697 0.1608 0.1165 0.1161 0.3548 0.0997 0.0601

Bias 0.0001 0.0697 -0.0798 0.1498 0.0485 0.0059 -0.0003 0.0005

RMSE 0.1347 0.6733 0.1795 0.1897 0.1258 0.3548 0.0997 0.0601

* The true DGP copula and marginal distributions are the Frank copula and mixture
of normals, respectively.
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Table 1.5: Copula and Marginals Misspeci�cation 3 (n = 500)
Parametric Estimation Semiparametric Estimation

Gaussian Copula
γ δ1 ρsp ATE γ δ1 ρsp ATE

True Values 0.8000 1.1000 0.5000 0.1066 0.8000 1.1000 0.5000 0.1066

Estimate 0.7986 1.0471 0.4017 0.2392 0.8533 1.1780 0.4493 0.1076

S.D 0.1346 0.6366 0.1731 0.1181 0.1164 0.3438 0.1033 0.0569

Bias -0.0014 -0.0529 -0.0983 0.1325 0.0533 0.0780 -0.0508 0.0009

RMSE 0.1346 0.6388 0.1991 0.1775 0.1281 0.3525 0.1151 0.0569

Frank Copula
γ δ1 ρsp ATE γ δ1 ρsp ATE

True Values 0.8000 1.1000 0.5000 0.1066 0.8000 1.1000 0.5000 0.1066

Estimate 0.8083 1.1559 0.3611 0.2712 0.8412 1.2404 0.4199 0.1160

S.D 0.1318 0.4453 0.1143 0.0856 0.1166 0.3408 0.0965 0.0611

Bias 0.0083 0.0559 -0.1389 0.1646 0.0412 0.1404 -0.0802 0.0094

RMSE 0.1321 0.4488 0.1799 0.1855 0.1237 0.3686 0.1255 0.0619

Gumbel Copula
γ δ1 ρsp ATE γ δ1 ρsp ATE

True Values 0.8000 1.1000 0.5000 0.1066 0.8000 1.1000 0.5000 0.1066

Estimate 0.8046 1.1937 0.3316 0.2680 0.8542 1.1610 0.4148 0.1046

S.D 0.1355 0.6663 0.1748 0.1220 0.1166 0.3283 0.1032 0.0557

Bias 0.0046 0.0937 -0.1684 0.1613 0.0542 0.0610 -0.0852 -0.0020

RMSE 0.1356 0.6728 0.2427 0.2022 0.1285 0.3339 0.1339 0.0557

* The true DGP copula and marginal distributions are the Clayton copula and
mixture of normals, respectively.
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Table 1.6: Copula and Marginals Misspeci�cation 4 (n = 500)
Parametric Estimation Semiparametric Estimation

Gaussian Copula
γ δ1 ρsp ATE γ δ1 ρsp ATE

True Values 0.8000 1.1000 0.5000 0.1066 0.8000 1.1000 0.5000 0.1066

Estimate 0.7978 1.1488 0.4658 0.2523 0.8609 1.3801 0.4957 0.1460

S.D 0.1304 0.6489 0.1598 0.1117 0.1132 0.3749 0.1052 0.0730

Bias -0.0022 0.0488 -0.0342 0.1456 0.0609 0.2801 -0.0042 0.0393

RMSE 0.1304 0.6508 0.1634 0.1835 0.1286 0.4679 0.1053 0.0829

Frank Copula
γ δ1 ρsp ATE γ δ1 ρsp ATE

True Values 0.8000 1.1000 0.5000 0.1066 0.8000 1.1000 0.5000 0.1066

Estimate 0.8140 1.4128 0.3834 0.3064 0.8532 1.4755 0.4543 0.1611

S.D 0.1290 0.5211 0.1184 0.0867 0.1177 0.3466 0.0969 0.0752

Bias 0.0140 0.3128 -0.1166 0.1998 0.0532 0.3755 -0.0457 0.0545

RMSE 0.1297 0.6078 0.1662 0.2178 0.1292 0.5110 0.1072 0.0929

Clayton Copula
γ δ1 ρsp ATE γ δ1 ρsp ATE

True Values 0.8000 1.1000 0.5000 0.1066 0.8000 1.1000 0.5000 0.1066

Estimate 0.8276 1.8999 0.3208 0.3614 0.8603 1.6010 0.4823 0.1960

S.D 0.1321 0.7365 0.1753 0.0986 0.1172 0.3103 0.1065 0.0799

Bias 0.0276 0.7999 -0.1791 0.2548 0.0603 0.5010 -0.0177 0.0894

RMSE 0.1350 1.0873 0.2506 0.2732 0.1318 0.5893 0.1079 0.1199

* The true DGP copula and marginal distributions are the Gumbel copula and
mixture of normals, respectively.
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Table 1.7: Correctly Speci�ed Models (n = 1, 000)
Parametric Estimation Semiparametric Estimation

Gaussian Copula
γ δ1 ρsp ATE γ δ1 ρsp ATE

True Values 0.8000 1.1000 0.5000 0.3643 0.8000 1.1000 0.5000 0.3643

Estimate 0.8025 1.1165 0.4996 0.3632 0.8026 1.1205 0.5031 0.3596

S.D 0.0654 0.2737 0.1081 0.0656 0.0655 0.2939 0.1092 0.0668

Bias 0.0025 0.0165 -0.0004 -0.0011 0.0026 0.0205 0.0031 -0.0048

RMSE 0.0655 0.2742 0.1081 0.0656 0.0655 0.2946 0.1092 0.0670

Frank Copula
γ δ1 ρsp ATE γ δ1 ρsp ATE

True Values 0.8000 1.1000 0.5000 0.3643 0.8000 1.1000 0.5000 0.3643

Estimate 0.8017 1.1188 0.5010 0.3635 0.8007 1.1164 0.5042 0.3594

S.D 0.0658 0.2605 0.1023 0.0620 0.0652 0.2663 0.1066 0.0652

Bias 0.0017 0.0188 0.0010 -0.0009 0.0007 0.0164 0.0042 -0.0049

RMSE 0.0658 0.2612 0.1023 0.0620 0.0652 0.2668 0.1067 0.0653

Clayton Copula
γ δ1 ρsp ATE γ δ1 ρsp ATE

True Values 0.8000 1.1000 0.5000 0.3643 0.8000 1.1000 0.5000 0.3643

Estimate 0.8030 1.1055 0.5007 0.3621 0.8029 1.1100 0.5035 0.3572

S.D 0.0658 0.2329 0.0958 0.0566 0.0659 0.2524 0.0964 0.0560

Bias 0.0030 0.0055 0.0007 -0.0023 0.0029 0.0100 0.0035 -0.0071

RMSE 0.0659 0.2330 0.0958 0.0567 0.0660 0.2526 0.0965 0.0565

Gumbel Copula
γ δ1 ρsp ATE γ δ1 ρsp ATE

True Values 0.8000 1.1000 0.5000 0.3643 0.8000 1.1000 0.5000 0.3643

Estimate 0.8022 1.1192 0.4963 0.3644 0.8025 1.1240 0.4986 0.3626

S.D 0.0668 0.2655 0.1057 0.0635 0.0665 0.2818 0.1086 0.0684

Bias 0.0022 0.0192 -0.0037 0.0001 0.0025 0.0240 -0.0014 -0.0017

RMSE 0.0669 0.2662 0.1057 0.0635 0.0665 0.2829 0.1086 0.0684

* The true DGP marginal distributions are the standard normal distribution.
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Table 1.8: Marginal Misspec�cation (n = 1, 000)
Parametric Estimation Semiparametric Estimation

Gaussian Copula
γ δ1 ρsp ATE γ δ1 ρsp ATE

True Values 0.8000 1.1000 0.5000 0.1066 0.8000 1.1000 0.5000 0.1066

Estimate 0.7941 1.0549 0.4496 0.2447 0.8641 1.3030 0.4778 0.1262

S.D 0.0911 0.4256 0.1156 0.0807 0.0778 0.2576 0.0721 0.0463

Bias -0.0059 -0.0451 -0.0504 0.1381 0.0641 0.2030 -0.0222 0.0195

RMSE 0.0913 0.4279 0.1261 0.1599 0.1008 0.3279 0.0755 0.0502

Frank Copula
γ δ1 ρsp ATE γ δ1 ρsp ATE

True Values 0.8000 1.1000 0.5000 0.1066 0.8000 1.1000 0.5000 0.1066

Estimate 0.8044 1.3066 0.3940 0.2919 0.8525 1.2802 0.4777 0.1291

S.D 0.0899 0.3876 0.0966 0.0684 0.0837 0.2577 0.0690 0.0500

Bias 0.0044 0.2066 -0.1060 0.1853 0.0525 0.1802 -0.0223 0.0225

RMSE 0.0901 0.4392 0.1434 0.1975 0.0988 0.3145 0.0725 0.0549

Clayton Copula
γ δ1 ρsp ATE γ δ1 ρsp ATE

True Values 0.8000 1.1000 0.5000 0.1066 0.8000 1.1000 0.5000 0.1066

Estimate 0.8065 1.1207 0.4240 0.2553 0.8547 1.2669 0.4851 0.1219

S.D 0.0906 0.3704 0.1047 0.0677 0.0801 0.2622 0.0706 0.0456

Bias 0.0065 0.0207 -0.0761 0.1487 0.0547 0.1669 -0.0150 0.0153

RMSE 0.0908 0.3710 0.1294 0.1634 0.0969 0.3108 0.0722 0.0481

Gumbel Copula
γ δ1 ρsp ATE γ δ1 ρsp ATE

True Values 0.8000 1.1000 0.5000 0.1066 0.8000 1.1000 0.5000 0.1066

Estimate 0.7849 1.0104 0.4606 0.2391 0.8618 1.2980 0.4791 0.1268

S.D 0.0893 0.3566 0.0950 0.0695 0.0781 0.2516 0.0684 0.0463

Bias -0.0151 -0.0896 -0.0393 0.1325 0.0618 0.1980 -0.0208 0.0201

RMSE 0.0906 0.3677 0.1028 0.1496 0.0996 0.3202 0.0715 0.0504

* The true DGP marginal distributions are the mixture of normals.
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Table 1.9: Copula and Marginals Misspeci�cation 1 (n = 1, 000)
Parametric Estimation Semiparametric Estimation

Frank Copula
γ δ1 ρsp ATE γ δ1 ρsp ATE

True Values 0.8000 1.1000 0.5000 0.1066 0.8000 1.1000 0.5000 0.1066

Estimate 0.8086 1.3159 0.3652 0.2975 0.8549 1.3936 0.4376 0.1371

S.D 0.0897 0.3636 0.0927 0.0650 0.0830 0.2548 0.0689 0.0506

Bias 0.0086 0.2159 -0.1347 0.1909 0.0549 0.2936 -0.0623 0.0305

RMSE 0.0901 0.4229 0.1636 0.2017 0.0995 0.3887 0.0929 0.0591

Clayton Copula
γ δ1 ρsp ATE γ δ1 ρsp ATE

True Values 0.8000 1.1000 0.5000 0.1066 0.8000 1.1000 0.5000 0.1066

Estimate 0.8193 1.5478 0.3661 0.3205 0.8613 1.4684 0.4886 0.1574

S.D 0.0906 0.4574 0.1217 0.0705 0.0812 0.2351 0.0710 0.0514

Bias 0.0193 0.4478 -0.1338 0.2139 0.0613 0.3684 -0.0113 0.0508

RMSE 0.0927 0.6401 0.1809 0.2252 0.1018 0.4370 0.0719 0.0722

Gumbel Copula
γ δ1 ρsp ATE γ δ1 ρsp ATE

True Values 0.8000 1.1000 0.5000 0.1066 0.8000 1.1000 0.5000 0.1066

Estimate 0.7930 1.0391 0.4210 0.2453 0.8620 1.2302 0.4574 0.1157

S.D 0.0911 0.4010 0.1070 0.0771 0.0790 0.2554 0.0709 0.0439

Bias -0.0070 -0.0609 -0.0789 0.1386 0.0620 0.1302 -0.0426 0.0090

RMSE 0.0914 0.4056 0.1330 0.1586 0.1004 0.2867 0.0827 0.0449

* The true DGP copula and marginal distributions are the Gaussian copula and
mixture of normals, respectively.
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Table 1.10: Copula and Marginals Misspeci�cation 2 (n = 1, 000)
Parametric Estimation Semiparametric Estimation

Gaussian Copula
γ δ1 ρsp ATE γ δ1 ρsp ATE

True Values 0.8000 1.1000 0.5000 0.1066 0.8000 1.1000 0.5000 0.1066

Estimate 0.7935 1.0825 0.4653 0.2465 0.8601 1.1832 0.5145 0.1196

S.D 0.0926 0.4333 0.1152 0.0803 0.0768 0.2641 0.0723 0.0450

Bias -0.0065 -0.0175 -0.0347 0.1399 0.0601 0.0832 0.0145 0.0130

RMSE 0.0929 0.4336 0.1203 0.1613 0.0976 0.2769 0.0738 0.0468

Clayton Copula
γ δ1 ρsp ATE γ δ1 ρsp ATE

True Values 0.8000 1.1000 0.5000 0.1066 0.8000 1.1000 0.5000 0.1066

Estimate 0.8188 1.5580 0.3941 0.3173 0.8583 1.3743 0.5200 0.1542

S.D 0.0919 0.4621 0.1194 0.0708 0.0794 0.2439 0.0718 0.0526

Bias 0.0188 0.4580 -0.1059 0.2106 0.0583 0.2743 0.0200 0.0476

RMSE 0.0938 0.6506 0.1595 0.2222 0.0985 0.3671 0.0746 0.0709

Gumbel Copula
γ δ1 ρsp ATE γ δ1 ρsp ATE

True Values 0.8000 1.1000 0.5000 0.1066 0.8000 1.1000 0.5000 0.1066

Estimate 0.7954 1.0843 0.4327 0.2496 0.8596 1.1105 0.4959 0.1082

S.D 0.0927 0.4252 0.1119 0.0796 0.0765 0.2578 0.0708 0.0413

Bias -0.0046 -0.0157 -0.0673 0.1429 0.0596 0.0105 -0.0041 0.0016

RMSE 0.0928 0.4255 0.1306 0.1636 0.0970 0.2580 0.0709 0.0413

* The true DGP copula and marginal distributions are the Frank copula and mixture
of normals, respectively.
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Table 1.11: Copula and Marginals Misspeci�cation 3 (n = 1, 000)
Parametric Estimation Semiparametric Estimation

Gaussian Copula
γ δ1 ρsp ATE γ δ1 ρsp ATE

True Values 0.8000 1.1000 0.5000 0.1066 0.8000 1.1000 0.5000 0.1066

Estimate 0.7928 0.9952 0.4102 0.2370 0.8618 1.2015 0.4441 0.1097

S.D 0.0929 0.4262 0.1233 0.0837 0.0764 0.2527 0.0737 0.0411

Bias -0.0072 -0.1048 -0.0898 0.1303 0.0618 0.1015 -0.0559 0.0030

RMSE 0.0932 0.4389 0.1525 0.1549 0.0983 0.2723 0.0925 0.0412

Frank Copula
γ δ1 ρsp ATE γ δ1 ρsp ATE

True Values 0.8000 1.1000 0.5000 0.1066 0.8000 1.1000 0.5000 0.1066

Estimate 0.8048 1.1667 0.3480 0.2754 0.8510 1.2695 0.4101 0.1152

S.D 0.0910 0.3362 0.0918 0.0649 0.0825 0.2578 0.0701 0.0453

Bias 0.0048 0.0667 -0.1520 0.1688 0.0510 0.1695 -0.0899 0.0086

RMSE 0.0911 0.3428 0.1776 0.1808 0.0970 0.3085 0.1140 0.0461

Gumbel Copula
γ δ1 ρsp ATE γ δ1 ρsp ATE

True Values 0.8000 1.1000 0.5000 0.1066 0.8000 1.1000 0.5000 0.1066

Estimate 0.8046 1.1937 0.3316 0.2680 0.8594 1.1883 0.4090 0.1054

S.D 0.1355 0.6663 0.1748 0.1220 0.0784 0.2373 0.0727 0.0412

Bias 0.0046 0.0937 -0.1684 0.1613 0.0594 0.0883 -0.0911 -0.0013

RMSE 0.1356 0.6728 0.2427 0.2022 0.0984 0.2532 0.1165 0.0412

* The true DGP copula and marginal distributions are the Clayton copula and
mixture of normals, respectively.
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Table 1.12: Copula and Marginals Misspeci�cation 4 (n = 1, 000)
Parametric Estimation Semiparametric Estimation

Gaussian Copula
γ δ1 ρsp ATE γ δ1 ρsp ATE

True Values 0.8000 1.1000 0.5000 0.1066 0.8000 1.1000 0.5000 0.1066

Estimate 0.7905 1.1059 0.4669 0.2520 0.8660 1.4046 0.4893 0.1428

S.D 0.0896 0.4412 0.1167 0.0815 0.0775 0.2644 0.0723 0.0508

Bias -0.0095 0.0059 -0.0330 0.1454 0.0660 0.3046 -0.0107 0.0362

RMSE 0.0901 0.4412 0.1213 0.1667 0.1018 0.4034 0.0730 0.0624

Frank Copula
γ δ1 ρsp ATE γ δ1 ρsp ATE

True Values 0.8000 1.1000 0.5000 0.1066 0.8000 1.1000 0.5000 0.1066

Estimate 0.8123 1.4374 0.3701 0.3149 0.8628 1.5142 0.4473 0.1582

S.D 0.0901 0.3917 0.0930 0.0651 0.0817 0.2377 0.0697 0.0545

Bias 0.0123 0.3374 -0.1299 0.2083 0.0628 0.4142 -0.0526 0.0515

RMSE 0.0910 0.5169 0.1597 0.2182 0.1030 0.4776 0.0874 0.0750

Clayton Copula
γ δ1 ρsp ATE γ δ1 ρsp ATE

True Values 0.8000 1.1000 0.5000 0.1066 0.8000 1.1000 0.5000 0.1066

Estimate 0.8228 1.8913 0.3197 0.3656 0.8645 1.6249 0.4851 0.1894

S.D 0.0927 0.5234 0.1336 0.0714 0.0808 0.2084 0.0742 0.0550

Bias 0.0228 0.7913 -0.1803 0.2589 0.0645 0.5249 -0.0149 0.0828

RMSE 0.0955 0.9488 0.2244 0.2686 0.1034 0.5648 0.0757 0.0994

* The true DGP copula and marginal distributions are the Gumbel copula and
mixture of normals, respectively.

1.6 Conclusions

In this paper, we propose semiparametric estimation and inference methods

for generalized bivariate probit models. Speci�cally, we develop the asymptotic the-

ory for the sieve ML estimators of semiparametric copula-based triangular systems

with binary endogenous variables. It is shown that the sieve ML estimators are con-

sistent and that their smooth functionals are
√
n-asymptotically normal under some

regularity conditions. This semiparametric estimation approach allows the �exibility
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of the models and thus provides robustness in estimation and inference.

We conduct a sensitivity analysis to examine how sensitive the estimation

results are to model speci�cations. From this analysis, we �nd that overall the semi-

parametric estimators perform well in terms of both bias and variance. When the

marginal distributions are misspeci�ed, the semiparametric estimates signi�cantly

outperform parametric estimates and the latter exhibit substantial bias. In particu-

lar, we �nd that the estimates of the parameters involving the misspeci�ed marginal

distributions, such as the ATE, are very misleading. When the model is correctly

speci�ed, we show that the performance of the semiparametric estimators are com-

parable to that of the parametric ones. When the copula is also misspeci�ed, the

distortion of the parametric estimates under marginal misspeci�cation becomes even

more severe, whereas the semiparametric estimates do not seem to be a�ected by

this misspeci�cation as long as the copula of the true DGP is within the stochastic

ordering class. A related interesting question is how the results would change when

the data are not generated from this class of copulas.

We also formally show that the exclusion restriction is not only su�cient but

also necessary for identi�cation. Without exclusion restriction, the model parameters

are not identi�ed or, under the normality assumption, are at best weakly identi�ed.

Some empirical studies ignore the exclusion restriction when estimating the model,

and our non-identi�cation result provides a caveat for practitioners.
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Chapter 2

Nonparametric Tests for Conditional Quantile

Independence with Duration Outcomes

2.1 Introduction

Since the seminal work of Koenker and Bassett (1978), quantile regression

(QR) models have received much attention from both theoretical and applied econo-

metrics. Due to many appealing properties of QR, conditional quantile models have

become a good alternative to conditional mean models and thus increasingly gained

attention. One of the desirable features of the QR is that it can provide informa-

tion on the distribution of the dependent variable conditional on covariates which

allows one to capture heterogeneous e�ects of the covariates on the dependent vari-

able across quantiles. In the context of the treatment e�ects literature, even if the

average treatment e�ect is the most common used measure of treatment, the infor-

mation on heterogeneity of treatment e�ects, if it exists, is likely to be missed as the

mean e�ectively integrates out the heterogeneous factors1. In addition, it is well-

known that the QR is less sensitive to outliers than the mean regression and places

1Buchinsky (1994) uses QR to describe changes in the returns to education and experience across
the distribution of wage and part of his results indicates that the returns to education and experience
exhibit heterogeneity across the quantiles. Bitler et al. (2006) examine the e�ects of policy reforms
on welfare including earnings, taking the heterogeneity of the e�ect across the distribution into
account. They �nd out that there is a substantial heterogeneity across the distribution from the
estimation of the quantile treatment e�ect and that the average treatment e�ect may result in a
misleading prediction.
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less assumptions on the distribution of unobserved error terms such as existence of

moments.

It is prevalent to specify a parametric conditional quantile model in empirical

analysis. Viewing a parametric speci�cation as an approximation of the true model, a

parametric speci�cation facilitates estimation and inference procedures and provides

a natural way to interpret the model. However, since economic theories seldom

imply parametric speci�cations, parametric models are vulnerable to misspeci�cation

which results in misleading implications of the models. To alleviate the sensitivity

of parametric models, one can consider a fully nonparametric QR.

Even if a nonparametric model is attractive for its �exibility, it typically

requires a larger sample than a parametric model to obtain estimators of reason-

able precision. Moreover, the rate of convergence is very slow when the number

of covariates is large due to the curse of dimensionality. There are many attempts

to circumvent the curse of dimensionality in the literature. The main idea of these

attempts is to impose structure on the model to improve the rate of convergence. Ex-

amples include additive separability of regression models and partially linear models

(e.g. Robinson (1988); Andrews and Whang (1990); Lee (2003); Horowitz and Lee

(2005)). It has been shown that these structures can improve rate of convergence

and consequently bypass the e�ciency issue of fully nonparametric models. However,

those models with additional structures are also not free from misspeci�cation.

This paper considers nonparametric tests for a null hypothesis that a subset

of the entire covariates is jointly signi�cant. Once the model is nonparametrically

estimated, rejection of the null hypothesis is not an indication of misspeci�cation
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but a suggestion that there are omitted variables. The results of these tests pro-

vide information on variable selection in QR and can mitigate problems caused by

large dimensionality of covariates. To formulate test statistics, I characterize the

null hypothesis as a conditional moment restriction and then employ the integrated

conditional moment (ICM) approach that was proposed by Bierens (Bierens (1982,

1990)). Bierens demonstrate in a series of papers that a conditional moment restric-

tion can be characterized by an in�nite number of unconditional moments with an

appropriately chosen weighting function. This result is used to perform a parametric

speci�cation testing2. Bierens and Ploberger (1997) establish the asymptotic theory

for the ICM test statistic and obtain upper bounds on the critical values that guar-

antee the actual size of test is bounded by the nominal size speci�ed by researchers.

The tests of this paper di�er from the original test of Bierens (Bierens (1982, 1990);

Bierens and Ploberger (1997)) in that this paper considers a nonparametric null

hypothesis, which involves in�nite-dimensional parameters.

One of the desirable features of the ICM approach is that it does not re-

quire to estimate alternative models and thus reduces some computational burden

in obtaining the test statistics. In nonparametric tests, if a test statistic contains

nonparametric objects and directly compares the null model with alternatives, it

is hard to achieve power against local alternatives at
√
n-rate (e.g. Hardle and

Mammen (1993); Hong and White (1995); Fan and Li (1996)). The ICM approach,

however, makes it possible to have non-trivial power against local alternatives at

2Similar questions are addressed in Stute (1997) and Koul and Stute (1999), but they use the
indicator function as the weighting function to transform conditional moment restrictions into
unconditional ones.
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the parametric rate even if the test statistic contains in�nite-dimensional parame-

ters. Subsequent studies that combine the ICM approach with nonparametric null

hypotheses include Chen and Fan (1999), Delgado and Manteiga (2001), Li et al.

(2003), and Huang et al. (2016) just to name a few.

Unlike the model speci�cation tests for conditional mean regression, the test

statistics of this paper contain an indicator function which is non-smooth and this

non-smoothness introduces di�culty in applying the approach used for testing con-

ditional mean models. I employ a stochastic equicontinuity argument to obtain a

stochastic expansion of the test statistics with the non-smooth function to derive the

asymptotic distribution of the test statistics. The stochastic equicontinuity has been

applied to both parametric and semi-/non-parametric models in, for example, An-

drews (1994a,b), Newey (1994), and Chen et al. (2003). Those papers use stochastic

equicontinuity to derive the asymptotic distribution of an estimator in the presence

of non-smooth functions and in�nite-dimensional parameters. It is hard to directly

show that some processes are stochastically equicontinuous and thus I make use of

empirical process theory to prove stochastic equicontinuity.

This paper also incorporates censoring for the dependent variable. In some

empirical applications such as a duration or survival analysis, the dependent variable

is not completely observed due to censoring. Consider, for example, the case where

one may be interested in estimating the e�ect of unemployment insurance bene�ts

on the unemployment duration and suppose that individuals' duration spells are

only observed when they were receiving the unemployment bene�t. In this case, the

duration spell is not completely observed and thus it is subject to censoring.
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The test statistics require one to estimate the conditional quantile function

under the null hypothesis. Even if a censoring variable is (conditionally) indepen-

dent of the outcome of interest, ignoring the censoring results in inconsistency of

estimators. Therefore, I estimate the conditional distribution function by using a

variant of the Kaplan-Meier (KM) estimator (Kaplan and Meier (1958)) then invert

the estimated distribution function to obtain the conditional quantile function. To

accommodate regressors, it is required that one use a conditional KM estimator (Be-

ran (1981); Dabrowska (1989, 1992); Gonzalez-Manteiga and Cadarso-Suarez (1994);

Wang and Wang (2009)). Speci�cally, I use the local conditional KM estimator pro-

posed by Kong and Xia (2017), which is a local polynomial regression version of

conditional KM estimator.

The test statistics in this paper are asymptotically smooth functionals of a

Gaussian process and their asymptotic distributions depend on the data generating

process. Therefore, it is di�cult to tabulate critical values for the test statistics. To

resolve this problem, I use a subsampling method to approximate the asymptotic

distributions of the test statistics. It is shown that, under a set of conditions, the

subsampling method yields critical values that guarantee the asymptotically correct

size of test.

A closely related paper, Volgushev et al. (2013) recently proposed a nonpara-

metric test for signi�cance of covariates in conditional quantile models and address

the same question as in this paper. The test proposed in this paper is similar to

theirs in terms of the form of the test statistic. The main di�erence from Volgushev

et al. (2013) is that this paper covers the case where the dependent variable is sub-
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ject to censoring. A minor di�erence between Volgushev et al. (2013) and this paper

is that I use di�erent weighting functions to construct test statistics. Speci�cally,

Volgushev et al. (2013) use the indicator function as a weighting function in the test

statistic, but I consider another class of weighting functions for the test statistic.

The class of functions is called generically comprehensively revealing (GCR, here-

after) class, which is a term coined by Stinchcombe and White (1998). Huang et al.

(2016) discuss the choice of weighting function between the indicator function and

the GCR class and point out that there are several advantages of the GCR class over

the indicator function for testing the conditional quantile independence.

Sant'Anna (2016) is another closely related paper in that he considers tests

for nonparametric models with duration outcomes. He proposes nonparametric spec-

i�cation tests in a treatment e�ect context. His tests also rely on the Bierens's ICM

approach, and he suggests using a bootstrap procedure to obtain the critical values.

The tests of Sant'Anna (2016) can also be used to test similar hypotheses, such as

homogeneity of the conditional average treatment e�ect, to the hypothesis considered

in this paper, but this paper focuses on QR models with duration outcomes.

The rest of this paper is organized as follows. I brie�y review related studies

in the literature in the following subsection. Section 2.2 formalizes the model and

construct the test statistics. Section 2.3 establishes the asymptotic theory of the

tests. A subsampling procedure is provided in Section 2.4. Section 2.5 concludes.
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2.1.1 Related Literature

There are a lot of studies on both parametric and nonparametric QR models

since Koenker and Bassett (1978) who pioneer the theory on QR using the �check

function� approach and establish the asymptotic distribution of the QR estimator.

Speci�cally, this paper proposes a speci�cation testing of nonparametric QR models,

therefore it is related to the studies on nonparametric QR models estimated by the

local polynomial quantile regression. Chaudhuri (1991) develops a nonparametric

estimation method for the conditional quantile function, which is similar to the local

polynomial regression, and derives a Bahadur's representation. Some re�nements of

the representation are examined in several studies such as Kong et al. (2010); Guerre

and Sabbah (2012); Lee et al. (2015); Qu and Yoon (2015). For censored QR models,

di�erent methods to estimate conditional quantile functions have been developed in

the literature (e.g. Buchinsky and Hahn (1998); Chernozhukov and Hong (2002);

Honore et al. (2002); Portnoy (2003); Wang and Wang (2009)). In contrast to the

standard QR models, the literature on nonparametric QR with (random) censoring

is relatively small and includes Beran (1981), Dabrowska (1989), Dabrowska (1992),

Kong et al. (2013), and Kong and Xia (2017).

In terms of testing the signi�cance of covariates, this paper is closely re-

lated to Fan and Li (1996) who consider a nonparametric speci�cation testing for

conditional mean regression models. They construct a test statistic only using the

restricted model estimated by the kernel method and derive the asymptotic distribu-

tion of the test statistic under the null. Their test statistic is based on an equivalent

conditional moment restriction and they show that the test is consistent and has
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power against local alternatives at a nonparametric rate slower than
√
n. Chen and

Fan (1999) propose a nonparametric test for more general hypotheses for conditional

mean models. Their test procedure makes use of the ICM approach and they derive

the asymptotic distribution of a stochastic process by using the central limit the-

orem for Hilbert-valued random arrays that could be serially correlated. Delgado

and Manteiga (2001) address the same question to the one of Fan and Li (1996)

and use the ICM approach with kernel methods. Chen and Fan (1999) and Delgado

and Manteiga (2001) share some common features with the test of this paper: (i)

the null hypothesis is nonparametrically or semiparametrically speci�ed and (ii) the

tests rely on the ICM approach. Whereas Chen and Fan (1999) and Delgado and

Manteiga (2001) consider conditional mean models, the test in this paper focuses on

conditional QR models. One can also refer to Lavergne and Vuong (2000); Lavergne

and Patilea (2008); Lavergne et al. (2015) for testing signi�cance in conditional mean

models.

There are also a myriad of studies on the speci�cation testings for QR mod-

els, but most of studies focus on testing parametric speci�cations. Koenker and

Bassett (1982) investigate three tests for linear QR models - the Wald, the likeli-

hood ratio (LR), and the Lagrange multiplier (LM) tests - with the focus on the

signi�cance of covariates. Zheng (1998) proposes a testing procedure for paramet-

ric speci�cations under the conditional quantile restriction, which is similar to the

approach of Fan and Li (1996). The test of Bierens and Ginther (2001) relies on

the ICM approach to testing parametric speci�cations of conditional quantile mod-

els. Horowitz and Spokoiny (2002) develop a test statistic and provide a resampling
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method for obtaining critical values for their test statistic, but their speci�cation

test is also applicable to parametric speci�cation testing. He and Zhu (2003) and

Whang (2006a) use a similar idea of the ICM approach, but the weighting function

they use is di�erent from the ones considered in the original work of Bierens3. Both

suggest using resampling methods to simulate the distributions of the test statistics.

Whang (2006b) develops a speci�cation test for the parametric conditional quantile

model and focuses on the case where the parameters in the model are estimated by

using the empirical likelihood method. As mentioned above, this paper is di�erent

from those in that the test statistic accommodates in�nite-dimensional parameters

as the null hypothesis is nonparametrically formulated and I also consider the issue

of censoring which these papers do not.

This paper is also related to variable selection in QR models. Belloni and

Chernozhukov (2011) investigate the issue on variable selection in high-dimensional

sparse models. They propose l1-penalized QR to deal with the high-dimensionality

with sparsity and establish asymptotic results on the penalized QR estimators.

The main di�erence from Belloni and Chernozhukov (2011) is that neither high-

dimensional data nor the sparsity assumption are considered in this paper.

2.2 Model and Test Statistics

Let T be the dependent variable of interest and X be a vector of covariates

of dimension dx ≥ 2. In cases where the outcome variable is censored by a variable

3They consider the indicator function as an alternative to the weighting function of the form in
Bierens and Ginther (2001) and Bierens and Ploberger (1997).
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denoted by C, researchers usually observe W ≡ (Y,D,X
′
) ∈ R2+dx , where

Yi = min(Ti, Ci), Di = 1(Ti ≤ Ci).

Let τ ∈ (0, 1) be given and FT |X(t|x) be the conditional distribution function of T

given X = x. Then τ -th conditional quantile function of T given X = x is de�ned

as

QT |X(τ |x) ≡ inf{q ∈ R : FT |X(q|x) ≥ τ}. (2.2.1)

Suppose that X can be divided into two parts X1 and X2, where X1 ∈ Rd1 ,

X2 ∈ Rd2 , and d1 + d2 = dx and that it is believed that the variable X2 is not

signi�cant for the τ -th conditional quantile of Y , conditional on X1 (i.e. the τ -th

conditional quantile of Y given X only depends on X1, but X2). Since economic

theories do not suggest a parametric form for FT |X (equivalently QT |X) in most

cases, one may need to nonparametrically estimate QT |X unless there is a strong

belief in a speci�c form of QT |X . However, it is well-known that nonparametric

estimators su�er from the curse of dimensionality, so it would be desirable to omit

such insigni�cant variables from regression to allow e�ciency gains for estimators.

Considering the duality between conditional quantile processes and the con-

ditional distributions, the notion of insigni�cance of covariates in QR is equivalent

to the notion called conditional quantile independence. Before formalizing the null

hypothesis, recall the formal de�nition of conditional quantile independence.

De�nition 2.2.1. Let Y , X, and Z be random variables. For a given τ ∈ (0, 1) the
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variable Z is said to be conditionally τ-quantile independent of Y on X if

QY |X,Z(τ |X,Z) = QY |X(τ |X).

The concept of conditional τ -quantile independence is also related to impor-

tant questions in economics and some illustrative examples are given below:

Example 2.2.1 (The e�ect of unemployment insurance bene�t on unemployment

duration). Many studies have examined factors a�ecting individual unemployment

duration spell (e.g. Heckman and Singer (1984); Han and Hausman (1990); Katz

and Meyer (1990); Meyer (1990)), and unemployment insurance has been consid-

ered as one of the determinants of unemployment duration. Let UI be the level

of unemployment insurance bene�ts and X be other covariates. Letting T denote

the unemployment duration spell, one can formulate the null hypothesis for testing

the e�ect of UI on the quantile of T as QT |X,UI(τ |X,UI) = QT |X(τ |X) for some

τ ∈ (0, 1). Meyer (1990) analyzes the e�ect of unemployment insurance bene�t on

unemployment duration, but he focuses on estimating the e�ect of UI on the hazard

rather than quantile of the unemployment duration.

Example 2.2.2 (Intergenerational association in timing of the �rst marriage). Berring-

ton and Diamond (2000) investigate the e�ect of individual characteristics on timing

of the �rst partnership formation. The individual characteristics can be divided into

two groups: the �rst group includes current social characteristics and the other group

consists of variables of family background. They show that education is a key fac-

tor that a�ects the timing, but one may be interested in examining intergenerational
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association in timing of formation of cohabitation at some quantile. Let Xs be the

vector of the social characteristics of an individual and T f be the timing of formation

of his parents' partnership. De�ne T (τ |Xs, T f ) be the τ -th conditional quantile func-

tion of timing of the �rst partnership formation of the next generation. Then one

can test the absence of intergenerational association at τ -th quantile by considering

T (τ |Xs, T f ) = T (τ |Xs).

Suppose that a researcher is interested in estimating QT |X(τ |x). Since the

dependent variable T is subject to censoring and thus incomplete, the conditional

quantile function may not be identi�ed without additional structure. In this paper,

I assume that T and C are conditionally independent given X in order to identify

QT |X . Let Λ(t|X) be the cumulative hazard function, then it can be written as

Λ(t|X) ≡
∫ t

0

dFT |X(s|X)

1− FT |X(s|X)
= − ln(1− FT |X(t|X)). (2.2.2)

Equation (2.2.2) indicates that if Λ(t|X) is identi�ed, then FT |X(t|X) is identi�ed

and vice versa. Let FC|X(·|X = x) be the conditional distribution of C given X = x.

The following lemma shows that conditional independence of T and C given X is

su�cient for identi�cation of FT |X and FC|X . All mathematical proofs are presented

in Appendix.

Lemma 2.2.1. Suppose that T ⊥ C|X. Then, the conditional distribution functions

FT |X and FC|X are identi�ed for almost all X ∈ X.

It is clear that X2 being conditionally τ -quantile independent of Y on X1 is

equivalent to the fact the conditional τ -th quantile of Y given X depends only on
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X1. Thus, the null hypothesis is conditional τ -quantile independence of X2 on X1

and can be written as

QT |X(τ |X) = QT |X1
(τ |X1) a.s. (2.2.3)

It is natural to measure the distance between QTX(τ |X) and QTX1(τ |X1) to test the

null hypothesis in (2.2.3). If both QY |X(τ |X) and QY |X1
(τ |X1) are estimated, then

one can compare these two estimators by measuring the distance between them. In

the case where models contain in�nite-dimensional parameters, however, comparing

a null model with an alternative model generally fails to achieve power against alter-

natives at the parametric rate n−1/2. Many nonparametric tests that compare null

models with alternative models su�er such a loss of power (e.g. Hardle and Mam-

men (1993); Hong and White (1995); Su and White (2008)) and some nonparametric

tests involving nonparametric objects may fail to detect local alternatives at the rate

n−1/2 even if they require one to only estimate null models (e.g. Fan and Li (1996);

Zheng (1998)4). This is because the nonparametric estimators have slower rates of

convergence and thus a direct comparison involving some in�nite-dimensional pa-

rameter would be costly. In this paper, I adopt Bierens's approach to speci�cation

testings (Bierens (1990); Bierens and Ploberger (1997)) which is known as the ICM

test. The main idea of the ICM approach is to transform a conditional moment

restriction into an in�nite number of unconditional moment restrictions indexed by

4Zheng (1998) considers speci�cation tests for parametric conditional quantile models and the
models are parametrically estimated. However, his test statistic needs to be nonparametrically
estimated and he uses the kernel method to construct the test statistic. Consequently, the test
detects local alternatives at a slower rate than n−1/2.
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some nuisance parameter.

To utilize the ICM approach, the null hypothesis in (2.2.3) needs to be re-

formulated as a conditional moment restriction. By de�nition of the conditional

quantile function, Pr(Y ≤ QY |X(τ |X)|X) = τ, ∀τ ∈ T and thus it is true that

Pr(Y ≤ QY |X1
(τ |X1)|X) = τ, ∀τ ∈ T under the null hypothesis. This observation

turns out to be true under certain condition and one can formulate an equivalent null

hypothesis to (2.2.3) with these additional conditions. The following lemma demon-

strates that (2.2.3) can be rewritten in a di�erent from that is equivalent under a

uniqueness assumption.

Lemma 2.2.2. Suppose that FT |X is identi�ed. Let τ ∈ (0, 1) be given. Suppose

that the τ -th conditional quantile function QT |X(τ |X) is unique almost surely in X

and that Pr(D = 1|X = x) ∈ (0, 1] uniformly in x ∈ X. Then equation (2.2.3) holds

if and only if the moment condition

E[Di{1(Yi ≤ QT |X1
(τ |X1i))− τ}|Xi] = 0 (2.2.4)

holds almost surely.

The conditional moment characterization of the null hypothesis in (2.2.4)

leads one to adopt Bierens's ICM approach. It is well-known that a conditional mo-

ment restriction is equivalent to in�nitely many unconditional moment restrictions.

However, Bierens (Bierens (1982, 1990)) develops a tractable way to handle the in-

�nitely many unconditional moments by appropriately choosing an index set I and

a weighting function ψ(·, ·) on X× I as follows. Speci�cally, the conditional moment
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restriction in (2.2.4) is equivalent to the following unconditional moments

E[Di{1(Yi ≤ QT |X1
(τ |X1i))− τ}ψ(Xi, t)] = 0 (2.2.5)

for all t ∈ I. Therefore, one can consider testing (2.2.5) to see if the conditional

moment restriction in (2.2.4) holds. To construct test statistics, de�ne a stochastic

process

Jn(t; τ) ≡ 1√
n

∑
i

Di{1(Yi ≤ QT |X1
(τ |X1i))− τ}ψ(Xi, t) (2.2.6)

which is a sample analogue of (2.2.5). Since the moment restrictions in (2.2.5) are

indexed by t and they need to hold for all t ∈ I, either the Kolmogorov-Smirnov

(KS) or the Cramer-von-Mises (CM) type tests can be used:

KSn ≡ sup
t∈I
|Jn(t; τ)|, (2.2.7)

CMn ≡
∫
I

Jn(t; τ)2dµ(t), (2.2.8)

where µ(·) is a (probability) measure on I. Note that these test statistics are con-

tinuous functionals of the stochastic process Jn(·; τ).

Since the conditional quantile function QT |X1
in (2.2.6) is unknown, it needs

to be estimated. To do so, I estimate the conditional distribution function FT |X1

and then invert it to obtain the conditional quantile function. Since T is not com-

pletely observed in the data, I propose estimating the conditional distribution by

using a local KM estimator. The local KM estimators are proposed in, for exam-

ple, Dabrowska (1989); Gonzalez-Manteiga and Cadarso-Suarez (1994); Wang and

Wang (2009). Speci�cally, Gonzalez-Manteiga and Cadarso-Suarez (1994) propose
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an estimator of FT |X ,

F̂T |X(y|X = x) = 1−Πn
j=1{1−

Bnj(x)∑n
k=1 1(Yk ≥ Yj)Bnk(x)

}bj(y),

where bj(y) = 1(Yj ≤ y,Dj = 1) and {Bnk(x) : k = 1, 2, ..., n} is a sequence of

nonnegative weights adding up to 1. While several types of weights are considered

in the literature, most of them usually focus on the situation where the dimension

of X is small. I use the local polynomial regression type weight in Kong and Xia

(2017) that allows to incorporate multi-dimensionality of the covariates.

Under the conditional independence between T and C given X, lemma 2.2.1

shows that the conditional distribution of T given X, FT |X is identi�ed and thus one

can estimate the distribution function. It, however, is only required to estimate the

conditional quantile function of T given X1 to construct test statistics. Assuming

further that C is independent of X, one can show that T ⊥ C|X1, and thus the τ -th

conditional quantile function given X1 is estimated by

Q̂T |X1
(τ |X1) ≡ inf{y ∈ R : F̂1n(y|X1) ≥ τ},

where F̂1n(y|X1 = x1) is a local KM estimator of FT |X1
. Finally, a feasible version

of Jn(t; τ) is given by

Ĵn(t; τ) ≡ 1√
n

∑
i

Di{1(Yi ≤ Q̂T |X1
(τ |X1i))− τ}ψ(Xi, t) (2.2.9)
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and feasible test statistics are de�ned as

K̂Sn ≡ sup
t∈I
|Ĵn(t; τ)|, (2.2.10)

ˆCMn ≡
∫
I

Ĵn(t; τ)dµ(t). (2.2.11)

Before proceeding, I introduce notation that will be used throughout the rest

of this paper. Let (Ω,A,P) be a probability space. For x ∈ Rd,||x||E means the

Euclidean norm of x in Rd. Let l2(W) be the space of functions that are square-

integrable on a set W. Similarly, de�ne l∞(W) as the space of functions that are uni-

formly bounded on a setW. For a generic function g on a setW, ||g||2 ≡ (
∫
W
g2dP )1/2

and ||g||∞ ≡ supw∈W |g(w)| are the L2- and sup− norm, respectively. The expec-

tation of g is denoted by Eg ≡
∫
g(w)dFW (w), where FW (·) is the distribution

function of W . For a sequence of random maps Xn : Ω→ R and a random variable

X, Xn ⇒ X (Xn
d→ X, resp.) indicates that Xn converges weakly (in distribution,

resp.) to X in the sense of De�nition 1.3.3 in van der Vaart and Wellner (1996).

2.3 Asymptotic theory

In this section, I develop the asymptotic theory for test statistics K̂Sn and

ˆCMn. Since the test statistics are continuous functionals of the process Ĵn(·; τ), I

�rst establish the weak convergence of Ĵn(·; τ). Then the asymptotic distribution of

the test statistics can be obtained by the continuous mapping theorem.
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2.3.1 Assumptions

Let p0(X) ≡ Pr(D = 1|X) and Ui ≡ Ti − QT |X(τ |Xi). For a real number

p, denote the largest integer smaller than p by bpc. Let Cp(X) be the space of bpc-

times continuously di�erentiable real-valued functions on X. Denote the di�erential

operator by D and let Dω ≡ ∂[ω]

∂x
ω1
1 ...∂x

ωd
d

. De�ne the Hölder norm for h ∈ Cp(X) as

following :

||h||Λp ≡ sup
[ω]≤bpc,x∈X

|Dωh(x)|+ sup
[ω]=bpc

sup
x,y∈X,x 6=y

|Dωh(x)−Dωh(y)|
||x− y||p−bpcE

<∞,

where p − bpc ∈ (0, 1] is the Hölder exponent. Then the class of functions Λp(X) ≡

{h ∈ Cp(X) : ||h||Λp <∞} is called a Hölder class. A Hölder ball with radius R > 0 is

de�ned by ΛpR(X) ≡ {h ∈ Λp(X) : ||h||Λp ≤ R} for some R ∈ (0,∞). Let G be a class

of functions and || · || be a norm on G. Let Gδ(g0) ≡ {g :∈ G : ||g − g0|| < δ, g0 ∈ G}.

A function m on G is called pathwise di�erentiable at g ∈ Gδ(g0) in the direction

[ḡ − g] if {g + t(ḡ − g) : t ∈ [0, 1]} ⊂ G and the limit

lim
t→0

m(g + t(ḡ − g))−m(g)

t

exists. I consider the following assumptions.

Assumption 2.3.1. (i) The data {Wi ≡ (Yi, Di, X
′
i)
′}ni=1 are i.i.d; (ii) (T,X

′
) ⊥ C;

(iii) X and X1 are compact and convex subsets of Rdx and Rd1, respectively; (iv)

p0(x) ∈ (0, 1] for all x ∈ X.

Assumption 2.3.2. There exists R > 0 such that QT |X(τ |X = ·) ∈ Λp1

R (X1), where

p1 >
d1
2 .
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Assumption 2.3.3. The conditional distribution function FU |X admits its density

function fU |X(t|X = x) satisfying the following condition: (i) fU |X(t|X = ·) ∈

Λp2(X) for some p2 > 0, uniformly in t in a neighborhood of t = 0; (ii) fU |X(0|X)

is bounded away from zero uniformly in X ∈ X; (iii) The �rst-order derivative with

respect to t is bounded and continuous, uniformly on a neighborhood of t = 0 and

uniformly in X ∈ X.

Assumption 2.3.4. The marginal distribution functions of X and X1 have their

own density functions fX and fX1 with the following properties: (i) fX , fX1 ∈ Λp3(X)

for some p3 > 0; (ii) fX(·) and fX1(·) are positive on X and X1, respectively.

Assumption 2.3.5. (i) KF (·) is a symmetric probability density function on Rd1

with �nite second moments and bounded �rst order derivative; (ii) the bandwidth

associated with KF , hFn, satis�es the following conditions: hFn → 0, logn
√
nh

d1
Fn

→ 0,

and nh
d1+ 4

3
(p2+1)

Fn → 0.

Assumption 2.3.6. The class Ψ ≡ {ψ(Xi, t) : t ∈ I} satis�es the following con-

ditions: (i) The weighting function ψ(·, ·) : X × I → R is uniformly bounded and

I is a compact subset of Rdx ; (ii) ψ(Xi, t) = w(X
′
it) for some w(·) real analytic

and non-polynomial and there exists a function GΨ(·) such that for any t1, t2 ∈ X,

|ψ(X, t1)− ψ(X, t2)| ≤ GΨ(X)||t1 − t2||E with E[GΨ(Xi)
2] <∞.

The condition (ii) in Assumption 2.3.1is satis�ed when C is completely ran-

dom, and guarantees the identi�cation of conditional quantile functions of T given

X5. This restriction is considered in, for example, Bang and Tsiatis (2000) and Hon-

5The identi�cation of FT |X is based on lemma 2.2.1. To be speci�c, for any bounded and
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ore et al. (2002). It also implies that T ⊥ C|X1 and thus one can use a local KM

estimator of FT |X1
to estimate the conditional quantile function QT |X1

. Condition

(iii) is a support condition and the last condition (condition (iv)) implies that not

all observations are censored. This condition is crucial for the equivalence between

(2.2.3) and (2.2.4).

Assumptions 2.3.2 and 2.3.3 impose smoothness of the conditional quantile

functions and the conditional density functions, respectively. Note that Assumption

2.3.3 implies that FT |X1
(·|x1) and FT |X(·|x) are Lipschitz continuous in y for all x1 ∈

X1 and x ∈ X, respectively. Moreover, since FT |X1
(·|x1) is pathwise di�erentiable

for all x1 ∈ X1 under Assumption 2.3.3, one can show that for any q ∈ ΛpR(X1) and

δn ↓ 0,

sup |FT |X1
(q̃|x1)− FT |X1

(q|x1)− (q̃ − q)fT |X1
(q|x1)| = O(||q̃ − q||2∞), (2.3.1)

where the supremum is taken over x1 ∈ X1 and q̃ ∈ ΛpR(X1) such that ||q̃−q||∞ ≤ δn.

Assumption 2.3.4 considers the smoothness of the marginal density functions of X1

and X and guarantees that the sparsity function- 1/fX(·) - is well-de�ned on X and

imposes smoothness of the marginal density functions of X and X1. Assumption

2.3.5 restricts the kernel function used to estimate the local KM estimator and

speci�es the rate of the bandwidth hFn.

Assumption 2.3.6 restricts the class of weighting functions used to construct

continuous functions g and h, one can show that E[g(T )h(C)|X] = E[E[g(T )h(C)|X,T ]|X] =
E[g(T )E[h(C)|X,T ]|X] = E[h(C)]E[g(T )|X] = E[h(C)|X]E[g(T )|X]. Therefore, one obtains that
T ⊥ C|X, and identi�cation is achieved by lemma 2.2.1.
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the unconditional moments in (2.2.5). Bierens (1990) takes ψ(x, t) = exp(it
′
x),

where i2 = −1, and Bierens and Ploberger (1997) use ψ(x, t) = exp(x
′
t). Stinch-

combe and White (1998) show that more classes of functions can be considered and

they call such functions GCR functions. Assumption 2.3.6 comes from Corollary

3.9 in Stinchcombe and White (1998) and one can choose the logistic distribution

function, the normal distribution or density function, or the exponential function for

w(·). Note that, since w(·) is assumed to be analytical and the support of X and the

index set I are assumed to be compact, the �rst- and the second- order derivatives

of ψ(x, t) with respect to x are uniformly bounded on X× I.

As an alternative class of weighting functions, one may choose ΨI ≡ {1(Xi ≤

t) : t ∈ I} as in Volgushev et al. (2013). Even if the indicator function is not GCR,

the class of functions ΨI has been used to construct test statistics (e.g. Delgado and

Manteiga (2001); Escanciano and Goh (2014); Volgushev et al. (2013)). However,

there are several advantages of using the class of weighting functions in Assumption

2.3.6 over using ΨI (see, for example, (Huang et al., 2016, pp.1444-1445)) as the

conditional distribution function of X2 on X1 needs to be smooth enough when

using ΨI . Lastly, it is worth noting that one can replace the condition that w(·)

is analytical with one that w(·) is smooth enough in terms of that w(·) is just

�nitely-many continuously di�erentiable without any cost, but being analytical will

be imposed throughout this paper. Lastly, I take the distribution function of X and

the support of X for the measure µ(·) in (2.2.8) and (2.2.11) and the index set I,

respectively.
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2.3.2 Weak convergence

I �rst establish the weak convergence of the infeasible process Jn(·; τ). The

next theorem establishes that the empirical process Jn(·) converges weakly to a

Gaussian limit under Assumptions 2.3.1 and 2.3.6:

Theorem 2.3.7. Suppose that Assumptions 2.3.1 and 2.3.6 hold. Then

Jn(·; τ)⇒ G(·) in l∞(I),

where G(·) is a Gaussian process with zero mean and covariance kernel

Σp(t1, t2) ≡ E[τ(1− τ)p0(Xi)ψ(Xi, t1)ψ(Xi, t2)].

As mentioned before, the conditional quantile function needs to be estimated

and estimation of the function introduces sampling error that must be dealt with. To

investigate the asymptotic behavior of the feasible process Ĵn(t; τ), let ψ̄(X1i, t) ≡

E[ψ(Xi, t)|X1i] and consider a decomposition of Ĵn(t; τ) as follows:

Ĵn(t; τ) =
1√
n

∑
i

Di{1(Yi ≤ Q̂T |X1
(τ |X1i))− τ}ψ(Xi, t)

= Jn(t; τ) +
1√
n

∑
i

Di{1(Yi ≤ q̂1i)− 1(Yi ≤ q1i)}ψ(Xi, t)

= Jn(t; τ) + νpn(t, q̂1; τ)− νpn(t; q1; τ) + Ĵsn(t; τ), (2.3.2)
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where

νpn(t, q; τ) ≡ 1√
n

∑
i

Di{1(Yi ≤ qi)− FT |X1
(qi|X1i)}ψ̄(X1i, t),

Ĵsn(t; τ) ≡ 1√
n

∑
i

Di{FT |X1
(q̂1i|X1i)− FT |X1

(q1i|X1i)}ψ̄(X1i, t).

Let

ξ(Yj , Dj , y, x) ≡ [
1(Yj ≤ y) ·Dj

(1− FT |X1
(Yj |x))(1− FC|X1

(Yj |x))

−
∫ min(Yj ,y)

0

fT |X1
(s|x)ds

(1− FT |X1
(s|x))2(1− FC|X1

(s|x))
],

then it can be shown that E[ξ(Yj , Dj , y, x)] = 0 and V ar(ξ(Yj , Dj , y, x)) < ∞ for

any y and x (cf. Gonzalez-Manteiga and Cadarso-Suarez (1994)). To establish

the weak convergence of Ĵn(·; τ), I employ a stochastic equicontinuity argument

and the theory of U-processes. To be more speci�c, a stochastic argument can be

utilized in this way: if one can show that the process νpn(·, ·; τ) is stochastically

equicontinuous, it can be shown that νpn(t, q̂1; τ) − νpn(t; q1; τ) = op(1) uniformly in

t ∈ I by stochastic equicontinuity since the estimated conditional quantile function

converges to QT |X1
(τ |X1 = x1) uniformly in x1 under several conditions. More-

over, the �smoothed� term Ĵsn(·; τ) can be handled as follows: one can approximate

FT |X1
(q̂1i|X1i) up to the second-order approximation with respect to q̂1i. Since it

is possible to make the second-order term op(n
−1/2) under some conditions on the

bandwidth, the process is asymptotically equivalent to the �rst-order approximation

of FT |X1
(q̂1i|X1i) − FT |X1

(q1i|X1i). Then I use the theory of U-processes to deal

with this �rst-order term which contains q̂1i− q1i. The next theorem shows that the
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feasible process Ĵn(·; τ) converges weakly to a Gaussian process in l∞(I):

Theorem 2.3.8. Suppose that Assumptions 2.3.1-2.3.6 hold. De�ne

ψ̃(X1i, t) ≡ E[p0(Xi)ψ̄(X1i, t)|X1i],

m(Wi, t) ≡ ψ(Xi, t)Di{1(Yi ≤ QT |X1
(τ |X1i))− τ} − (1− τ)ψ̃(X1i, t)ξ(Yi, Di, q1i, X1i).

Then,

Ĵn(·; τ)⇒ Ĝ(·) in l∞(I),

where Ĝ(·) is a Gaussian process with zero mean and covariance kernel

Σ̂(t1, t2) = E[m(Wi, t1)m(Wi, t2)].

Finally, one can derive the asymptotic distributions of the test statistics un-

der the null hypothesis by using theorem 2.3.8 and the continuous mapping theorem.

The asymptotic distributions under the null are given in the following corollary.

Corollary 2.3.9. Suppose that the conditions in theorem 2.3.8 are satis�ed. Then

K̂Sn
d→ sup

t∈I
|Ĝ(t)|,

ˆCMn
d→
∫

Ĝ(t)2dµ(t).

2.3.3 Power Properties

Now I examine the power properties and show that the tests have non-trivial

power against local alternatives at the parametric rate. To investigate the power
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properties, consider local alternatives as following:

QT |X(τ |X) = QT |X1
(τ |X1) +

1√
n
Q̃(τ |X) (2.3.3)

for some bounded function Q̃(τ |X).

Assumption 2.3.10. The conditional quantile function QT |X under the local alter-

native in (2.3.3) belongs to ΛpA
R̃

(X) for some R̃ > 0 and pA >
dx
2 , for all n.

The following theorem demonstrates that the tests can detect local alterna-

tives at
√
n-rate.

Theorem 2.3.11. Suppose that Assumptions 2.3.1 and 2.3.3 through 2.3.10 hold.

Under the local alternative in (2.3.3),

Ĵn(·; τ)⇒ Ĝ(·)−Ra(·) in l∞(I),

where Ra(t) ≡ E[p0(Xi)ψ(Xi, t)f(QT |X1
(τ |X1i)|Xi)Q̃(τ |Xi)].

Corollary 2.3.12. Suppose that the conditions in theorem 2.3.11 are satis�ed. Then,

under the local alternative in (2.3.3),

K̂Sn
d→ sup

t∈I
|Ĝ(t)−Ra(t)|,

ˆCMn
d→
∫
I

|Ĝ(t)−Ra(t)|2dµ(t).

2.4 Subsampling Approximation

Since the asymptotic distribution of the process Ĵn(·) depends on the data

generating processes of X1i and Xi, it is hard to calculate critical values for the
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test statistics K̂Sn and ˆCMn
6 and this di�culty has drawn attention to methods

of obtaining asymptotically valid critical values. Bierens and Ginther (2001) and

Bierens and Ploberger (1997) propose a method to obtain critical values. Their

approach is to use upper bounds on the critical values. but these bounds do not

deliver asymptotically correct size. Another way to obtain critical values is to use

a variant of resampling methods, and some bootstrap methods have been developed

in several studies (e.g. Delgado and Manteiga (2001); Volgushev et al. (2013)).

I employ a subsampling method to approximate the asymptotic distribu-

tions of the test statistics. Subsampling is widely used to overcome di�culty in

obtaining critical values of statistics. In QR models, subsampling is considered in

Chernozhukov and Fernández-Val (2005), Escanciano and Velasco (2010) and Whang

(2006a) as a way to mimic asymptotic distributions of statistics. One of the main

reasons for using a subsampling instead of the bootstrap is that subsampling is much

more e�ective than bootstrap in terms of its applicability. Speci�cally, Politis and

Romano (1994) show that under mild conditions7 subsampling can be used to ap-

proximate the asymptotic distribution of any statistic. Another reason is that the

bootstrap may be problematic if a statistic is non-smooth and in that case the boot-

strap needs to be carefully applied8. Lastly, the subsampling method proposed in

6 Bierens and Ploberger (1997) and Chen and Fan (1999) derive the asymptotic distribution
of the Cramer-von-Mises type statistic in parametric and nonparametric speci�cation testings,
respectively, and they show that the test statistic is asymptotically equivalent to an in�nite sum of
weighted χ2(1) random variables.

7These conditions include the weak convergence of statistic and the conditions on the size of
subsamples.

8The process Ĵn(·; τ) contains an indicator function, and the bootstrap may be challenging due
to the non-smoothness of the indicator function.
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this paper does not require one to estimate the in�uence function of Ĵn(t; τ) and

hence it is easy to implement. One can refer to Sant'Anna (2016) for the validity of

the multiplier bootstrap in a similar situation9 .

The subsampling procedure employed in this paper is the same as the one

in Whang (2006a). To describe the subsampling procedure, de�ne the distribution

functions of K̂Sn and ˆCMn as following:

FKSn (z) ≡ Pr(K̂Sn ≤ z); FCMn (z) ≡ Pr( ˆCMn ≤ z).

Let {Wi,Wi+1, ...,Wi+b−1} be a subsample from the original sample {Wj : j =

1, 2, ..., n} of size b, where i = 1, 2, ..., n − b + 1. Let Ĵn,b,i(t, τ) be the process

Ĵn(t, τ) that is computed by only using the subsample {Wi,Wi+1, ...,Wi+b−1} for

i = 1, 2, ..., n − b + 1. Then K̂Sn,b,i and ˆCMn,b,i are de�ned by the same way of

(2.2.11) but with Ĵn,b,i(t, τ). To approximate the distributions FKSn (·) and FCMn (·),

consider the following objects:

F̂KSn,b (z) ≡ 1

n− b+ 1

n−b+1∑
i

1(K̂Sn,b,i ≤ z); F̂CMn,b (z) ≡ 1

n− b+ 1

n−b+1∑
i

1( ˆCMn,b,i ≤ z).

Let cKSn (α) and cCMn (α) be the (1−α)-th quantiles of FKSn (·) and FCMn (·) under the

null hypothesis. In the same way, let ĉKSn,b (α) and ĉCMn,b (α) be the (1−α)-th quantiles

of F̂KSn,b (·) and F̂CMn,b (·), respectively. The following theorem demonstrates that the

subsampling provides asymptotically valid size of test under the null hypothesis.

9For the tests in the standard QR, one can refer to Volgushev et al. (2013) for bootstrap validity.
They suggest using the bootstrap to approximate the asymptotic distribution of their test statistic.
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Lastly, de�ne

FKS(z) ≡ Pr(sup
t∈I
|Ĝ(t)| ≤ z); FCM (z) ≡ Pr(

∫
I

|Ĝ(t)|2dµ(t) ≤ z);

and let cKS∞ (α) and cCM∞ be the α-th quantiles of FKS and FCM , respectively.

Theorem 2.4.1. Suppose that b/n→ 0 and b→∞ as n→∞.

(i) If conditions in theorem 2.3.8 are satis�ed, then under the null hypothesis,

cKSn,b (α)
p→ cKS∞ (α); cCMn,b (α)

p→ cCM∞ (α),

and

Pr(K̂Sn > cKSn,b (α))→ α,

Pr( ˆCMn > cCMn,b (α))→ α.

(ii) If conditions in theorem 2.3.11 hold, then under the local alternative in

(2.3.3), then

Pr(K̂Sn > cKSn,b (α))→ Pr(sup
t∈I
|Ĝ(t)−Ra(t)| > cKS∞ (α)),

Pr( ˆCMn > cCM∞ (α))→ Pr(

∫
I

|Ĝ(t)−Ra(t)|2dµ(t) > cCM∞ (α)).

Remark 2.4.2. It is possible to calculate the test statistics over all
(
n
b

)
subsamples

to obtain F̂KSn,b (·) and F̂CMn,b (·), as shown in Chernozhukov and Fernández-Val (2005),

but this approach is computationally much more burdensome than the procedure given

above.

89



2.5 Conclusion

In this paper, I propose nonparametric tests for conditional quantile indepen-

dence for a class of models with duration outcomes. Duration outcomes are usually

subject to censoring, therefore I use a local KM estimator to estimate the conditional

quantile function. Since conditional quantile independence can be formalized as a

conditional moment restriction, I adopt Bierens's ICM approach to construct test

statistics. I show that the test statistics are continuous functionals of a Gaussian

process under suitable conditions and that the tests have non-trivial power against

local alternatives at the parametric rate even if the tests are nonparametric. Since

the asymptotic distributions of test statistics depend on the data generating pro-

cess, I provide a subsampling method to obtain the critical values and establish the

validity of the subsampling method.

There are several areas for further work. First, one can consider tests that are

uniform in the quantile index τ . The tests proposed in this paper are pointwise in the

sense that they focus on conditional quantile independence at a speci�c τ ∈ (0, 1).

One of advantages of uniform test is that they can partly answer the question related

to arbitrariness of choice of a speci�c quantile. Uniformity in quantile index is an

important issue and many studies have considered uniform inference in QR (Koenker

and Bassett (1982), Koenker and Machado (1999), Koenker and Xiao (2002), Su and

White (2012), and so on). In a similar spirit to Manski (1988), one may wonder why

a variable is not signi�cant at a speci�c quantile but at others. In addition, the e�ects

of covariates tend to be continuous in the quantile index and similar within a range

of quantile levels (e.g. (Koenker and Hallock, 2001, p.150)) in many situations.
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Therefore, uniform tests would be more preferable to pointwise tests in the sense

that they can handle arbitrariness of choice of τ and possess more empirical content.

Moreover, the uniform tests are closely related to tests for conditional independence.

If one is interested in the uniform test of conditional quantile independence over

the quantile τ ∈ [0, 1], this test becomes a test for conditional independence and

several studies have proposed tests for conditional independence (e.g. Su and White

(2008); Song (2009); Huang et al. (2016)). While pointwise conditional quantile

independence and conditional independence are rather extreme hypotheses, uniform

quantile independence can be regarded as an intermediate notion connecting those

two extreme cases10.

Secondly, it is also expected that the tests in this paper can be extended to

the case where one is interested in conducting semiparametric or other nonparametric

speci�cation tests (e.g. tests for additive separability and partially linear structure).

Related to this extension, another potential direction would be to consider testing

with di�erent estimation strategies for the conditional quantile function. Recently,

Belloni et al. (2016) propose a series-based estimation method for the conditional

quantile processes and establish the asymptotic theory, and Chao et al. (2016) also

study quantile processes with series estimation and provide conditions under which

the series estimator of a conditional quantile process converges weakly to a Gaussian

process. Series estimation methods are convenient for imposing some structure, such

as additive separability and partial linearity, on the model. Based on the results in

10The author is currently developing uniform tests.
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those recent studies, one could develop some test procedures with series estimation11.

Lastly, one can consider speci�cation testing for conditional quantile func-

tions with endogenous censoring. This paper assumes that censoring is independent

of the covariates and the latent dependent variable, but this assumption is not likely

to be satis�ed in many empirical examples and several studies consider models with

endogenous censoring (e.g. Khan and Tamer (2009), Khan et al. (2011), and Fan

and Liu (2013)). Therefore, it would be worth extending the tests to the case of

endogenous censoring.

11For speci�cation tests based on series estimation, one can refer to, for example, Hong and White
(1995), Donald (1997), and Li et al. (2003).

92



Chapter 3

Identi�cation and Con�dence Regions for Treatment

E�ect and its Distribution under Stochastic Dominance

3.1 Introduction

Program evaluation has been widely studied in the econometrics and statis-

tics literature. An evaluation problem requires measuring the di�erence in the out-

comes of possible states, and this leads us to formulate a counterfactual model to

evaluate the e�ect of a program or a policy. Since one is only able to observe the

outcome of the realized state, it is impossible to �nd the treatment e�ect without

additional assumptions, which is the main obstacle to �nding the treatment e�ect.

In other words, the central question for program evaluation is, how can one identify

the counterfactual outcomes?

This paper is aimed to investigate the identi�cation of treatment e�ect (TE)

and its distribution when the treatment is endogenous. To analyze these problems,

I construct a counterfactual model containing a binary treatment and two potential

outcome variables with unknown functional forms. I do not assume any structure

of the outcome functions and the selection rule. Hence, the model considered in

this paper is based on the treatment e�ects approach1 which is commonly used in

1To clarify the notion of the treatment e�ects approach, see Heckman and Vytlacil (2007). In
short, I use the term as a contrasted notion of the structural equations approach.
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the statistics literature. To resolve the problem caused by endogeneity of selection, I

adopt Manski's approach (Manski (1990)) which replaces unknown components with

identi�able components in the worst case.

The main identi�cation objects are the marginal distribution and quantile

functions of the potential outcomes, and the distribution of the TE. Once the quantile

functions of the potential outcomes are identi�ed, one can also identify the quantile

treatment e�ect (QTE) which is an important object in both theoretical and applied

econometrics. Most of studies following the treatment e�ects approach have focused

on average treatment e�ect (ATE) rather than QTE or some distributional features

of the TE. The QTE, however, is more informative than the ATE. Speci�cally, the

QTE provides much more information on the heterogeneity in the TE than does the

ATE. This is because the heterogeneous factors are integrated out when calculating

the ATE. Bitler et al. (2006)2 found that the ATE missed the heterogeneous e�ects of

the policy reforms and that the heterogeneous factors result in the di�erence between

the ATE and the QTE. In this regard, the QTE is more informative than the ATE

since the former takes the heterogeneous e�ects into consideration.

Identi�cation and estimation of QTE have been considered by a number of

studies. Firpo (2007) investigates identi�cation and estimation of QTE under the

unconfoundedness condition and establishes that his estimators achieve the semi-

parametric e�ciency bound. Donald and Hsu (2014) consider estimation of distri-

bution functions of the potential outcomes under the unconfoundedness condition

2They investigated the e�ect of policy reforms on the welfare and compared the ATE with the
QTE. The estimation results of the QTE across the distributions of earnings, transfer payments,
and total measurable income indicate that the e�ect of welfare reforms is heterogeneous.
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and propose inverse probability weighting estimators. They also provide the asymp-

totic theory for the quantile functions as well as the distribution functions of the

potential outcomes. The main di�erence from those papers is that I do not impose

the unconfoundedness condition nor the full exogeneity of the treatment.

For the distribution of the TE, I follow the approach introduced by Fan and

Park (2010). The distribution of the TE is required to examine whether the treat-

ment is e�ectively being implemented. In particular, the distribution of the TE is

called for the case where the bene�t from the treatment is non-transferrable (Heck-

man and Vytlacil (2007)). Since Fan and Park (2010) assume that the treatment is

exogenously assigned, their approach does not address the selection issue. I show

that one can still get a bound on the distribution of the TE even when the treatment

is endogenous.

In many cases, the bounds on the objects presented above may not be infor-

mative when the bounds on the counterfactual components are too broad. To deal

with this problem, many studies have utilized some distributional assumptions to

get tighter bounds on the parameters of interest (Manski (1997); Manski and Pep-

per (2000); Blundell et al. (2007)). In this paper, I consider stochastic dominance

relations between counterfactual outcome variables to tighten the bounds.

Stochastic dominance can be used not only for studies on conventional in-

equality measurement but also for constructing an economic model. Heckman et al.

(1997) take the �rst and second order stochastic dominance to impose a dependence
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structure between two counterfactual outcomes3. A more relevant example can be

found in Blundell et al. (2007). Blundell et al. (2007) investigate changes in the

distribution of wage while imposing �rst-order stochastic dominance and a median

restriction. These assumptions were motivated by the standard labor supply model

describing positive selection4, and it is shown that the restrictions can tighten the

bounds on the distribution of wages. I provide a general result which is directly

related to Blundell et al. (2007) and also explore other versions of stochastic domi-

nance.

This paper is expected to contribute to the literature in two ways. First,

it suggests two versions of stochastic dominance which are consistent with some

economic theories, and presents the identi�cation results under these assumptions.

Second, this paper also identi�es the distribution of the TE in the case where the

treatment is not randomly assigned.

The rest of this paper consists of �ve sections. I brie�y review previous

studies in Section 3.2 and give the identi�cation results in Section 3.3. Section

3.4 provides consistent estimators of the bounds derived in the previous section and

Section 3.5 gives an empirical example on the return to college. Section 3.6 concludes

and discusses potential extensions of this paper.

3The dependence structure is made from the rational choice model. The rational choice model
assumes that an agent participates in a program if the expected utility from participation is greater
than or equal to one from non-participation. Since the utility functions are assumed to be concave,
without loss of generality, this can be represented by second-order stochastic dominance.

4Positive selection in their paper means that wages of people employed are more likely to be
higher than wages of the unemployed.
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3.2 Previous Studies

There are a myriad of studies examining the identi�cation of the TE under

nonparametric models. The main identi�cation objects and the underlying economic

models vary across studies, but one can divide the literature into two groups as

Heckman and Vytlacil (2007) argue. The studies in the �rst group assume economic

models which explain the data generating process, and this is why they are called the

structural equations approach. In contrast, the other group employs a counterfactual

model without constructing an underlying economic model, and this approach is

referred to as the treatment e�ects approach.

Most of the studies following the structural approach use a triangular system

of equations as an underlying economic model and impose some variants of mono-

tonicity on the model. They also assume that there exist instrumental variables

which a�ect the outcome variables only through the endogenous variables5. Among

the studies adopting the structural approach, Chernozhukov and Hansen (2005) and

Jun et al. (2011) consider the identi�cation of the QTE under a triangular system

of equations. They identify the quantiles of the outcome equations and obtain the

QTE from the identi�ed equations 6.

Chernozhukov and Hansen (2005) show point-identi�cation results of the

5There are some studies which do not introduce instrumental variables to the model. For exam-
ple, Chesher (2005) considers a triangular system of equations and imposes (local) exclusion and/or
exogeneity condition for the regressors instead of using an instrumental variable.

6Imbens and Newey (2009) also consider identi�cation of the (quantiles of) outcome function in
a triangular system by using a control function approach. Their approach, however, does not work
for binary (or discrete) treatment because the endogenous variable is assumed to be continuously
distributed.
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quantiles of the outcome function by imposing strict monotonicity of the outcome

functions in their error term and rank similarity (or rank invariance). They assume

that the endogenous treatment is binary or discrete7 and instrumental variables play

a crucial role in getting rank similarity. Jun et al. (2011) provide partial identi�cation

results of the quantiles of the outcome function. They relax some restrictions imposed

by Chernozhukov and Hansen (2005) such as rank similarity and strict monotonicity.

The identi�cation strategy of Jun et al. (2011) relies on the Dynkin system and the

dependence structure between error terms.

For the ATE, Vytlacil and Yildiz (2007) consider a situation in which the

outcome function is weakly separable and the endogenous variable is binary. They

propose a Wald type estimator to �nd a speci�c value of the covariate X which

compensates for the TE, holding the propensity score constant, by varying the in-

strumental variable. A similar model is examined by Jun et al. (2012). As in Jun

et al. (2011), their identi�cation strategy for the ATE is to use the Dynkin system.

On the other hand, studies following the treatment e�ects approach do not

specify an underlying model and their identi�cation strategies are mainly based on

Manski (1990). Manski (1990) studied bounds on the ATE and the main idea is

to bound the counterfactual components by using prior information such as logical

bounds and/or other assumptions.

Manski (1997) and Manski and Pepper (2000) consider the identi�cation of

the ATE under several monotonicity assumptions. Manski (1997) introduces the

7They also consider the case where the treatment is a continuous random variable, but their
main result is the identi�cation with a discrete treatment.
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monotone treatment response (MTR) assumption, which means that the outcome is

monotone in the treatments for all individuals8. In Manski and Pepper (2000), the

model is equipped with other monotonicity assumptions, e.g. the monotone instru-

mental variables (MIV) assumption and the monotone treatment selection (MTS)

assumption9. These studies demonstrate that distributional assumptions may im-

prove bounds on the parameters of interest in terms of informativeness.

For identi�cation and estimation of the QTE with a potential outcome model,

Abadie et al. (2002) provide identi�cation and estimation of the QTE when a binary

treatment is endogenously determined. They adapt the local average treatment e�ect

framework (Imbens and Angrist (1994)) and achieve point-identi�cation of the QTE.

For the distribution of the TE, Fan and Park (2010) provide an identi�cation

result for this object without introducing structural equations. They exploit copula

theory to identify the distribution of the TE when the marginal distribution functions

of potential outcomes are directly identi�ed from the data. One of drawbacks of their

results is that they only consider the case where the treatment is randomly assigned,

which is very rare in the practice.

3.3 Identi�cation

LetD be a binary variable that indicates whether a person gets the treatment

or not, i.e. D = 1 if the person gets the treatment and D = 0 if the person does

8The MTR means that for given two treatments t1 and t2, t2 ≥ t1 implies that Yt2 ≥ Yt1 . The
set of treatments is assumed to be ordered.

9The MTS means that for given two treatments t1 and t2, t2 ≥ t1 implies that E[Yj |D = t2] ≥
E[Yj |D = t1] for all j ∈ T, where T is an ordered set of treatments.
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not get the treatment. Let Yd denote the potential outcome when D = d, where

d ∈ {0, 1}. It is only possible to observe (Y,D), where Y = DY1 + (1−D)Y0. This

paper focuses on identi�cation of τ -th quantiles of Y1 and Y0 for some τ ∈ (0, 1),

and the distribution function of the TE (Y1 − Y0). For given y1, y0 ∈ R, de�ne the

following functions:

LB1(y1) ≡ Pr(Y ≤ y1|D = 1) Pr(D = 1),

UB1(y1) ≡ Pr(Y ≤ y1|D = 1) Pr(D = 1) + Pr(D = 0),

LB0(y0) ≡ Pr(Y ≤ y0|D = 0) Pr(D = 0),

UB0(y0) ≡ Pr(Y ≤ y0|D = 0) Pr(D = 0) + Pr(D = 1).

Under this counterfactual model, it can be shown that the marginal distribution

functions of Y1and Y0 are partially identi�ed.

Lemma 3.3.1. Let F1(·) and F0(·) be the distribution functions of Y1 and Y0, re-

spectively. Then,

F1(y1) ∈ [LB1(y1), UB1(y1)], (3.3.1)

F0(y0) ∈ [LB0(y0), UB0(y0)]. (3.3.2)

Since the marginal distribution functions are only partially identi�ed, it is

natural that the quantiles of the potential outcomes are also partially identi�ed.

For a subset A ⊆ R, denote the space of cadlag functions that map from A to

R by D(A). For a non-decreasing function G ∈ D(R), de�ne the left-continuous

inverse G←(r) ≡ inf{y : G(y) ≥ r}. For a given τ ∈ (0, 1), de�ne Q1(τ) ≡ F←1 (τ)
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and Q0(τ) ≡ F←0 (τ) (i.e. Q1(τ) and Q0(τ) are the τ -th quantile of Y1 and Y0,

respectively). Then the τ -th QTE is de�ned as follows.

De�nition 3.3.1. Let τ ∈ (0, 1) be given. The τ -th QTE is de�ned as

QTE(τ) ≡ Q1(τ)−Q0(τ).

As mentioned above, another object of interest in this paper is the distri-

bution of the treatment e�ect. To formally de�ne the distribution of the treatment

e�ect, I provide the de�nition of the treatment e�ect as follows.

De�nition 3.3.2. The treatment e�ect ∆ is the di�erence between Y1 and Y0. That

is,

∆ ≡ Y1 − Y0.

Consider the equation (3.3.1) and suppose that one is interested in τ -th

quantile of Y1, Q1(τ). To identify this quantity, I �rst focus on the lower bound

LB1(·). Since all the components of LB1(·) are identi�ed from the data, one can

�nd the value

QU1 (τ) ≡ LB←1 (τ).

Similarly, one can �nd the value

QL1 (τ) ≡ UB←1 (τ).
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In a similar fashion, de�ne

QU0 (τ) ≡ LB←0 (τ),

QL0 (τ) ≡ UB←0 (τ).

Then, one can have the following results which were introduced by Manski

(1994).

Lemma 3.3.2. Let τ ∈ (0, 1) be �xed. If the marginal distributions of Y1 and Y0 are

partially identi�ed as in Lemma 3.3.1, then

Q1(τ) ∈ [QL1 (τ), QU1 (τ)], (3.3.3)

Q0(τ) ∈ [QL0 (τ), QU0 (τ)], (3.3.4)

QTE(τ) ∈ [QL1 (τ)−QU0 (τ), QU1 (τ)−QL0 (τ)]. (3.3.5)

Lemma 3.3.2 shows how one can (partially) recover the quantile of the poten-

tial outcomes from (partially) identi�ed marginal distribution functions. The results

in Lemma 3.3.2 are closely related to the identi�cation results in Stoye (2010). He

considers identi�cation of some classes of functionals of the distribution functions

of the potential outcomes. In particular, one of these classes, which is called the

class of D1-parameters, includes the quantiles of the potential outcomes as a special

case. In contrast to that Stoye (2010) provides identi�cation results under a general

potential outcome framework, I extend some part of his results to the cases where

stochastic dominance assumptions are imposed.
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3.3.1 Identi�cation under Stochastic Dominance

As mentioned in the previous sections, prior information on a model helps

to obtain much �ner identi�cation results. In this regard, I introduce stochastic

dominance assumptions. Before starting with the identi�cation analysis, I �rst give

the de�nition of �rst-order stochastic dominance.

Suppose that there are two random variables X and Y which have marginal

distribution functions FX(·) and FY (·), respectively. X �rst-order stochastically

dominates Y if for all t ∈ R, FX(t) ≤ FY (t). Note that if X �rst-order stochastically

dominates Y , then one can show that E[X] ≥ E[Y ], but not vice versa.

The following assumption states that the potential outcome conditional on

D = 1 �rst-order stochastically dominates the potential outcome conditional on

D = 0.

Assumption 3.3.3. For all j ∈ {0, 1}, Yj |D = 1 �rst-order stochastically dominates

Yj |D = 0.

Assumption 3.3.3 means that for given j ∈ {0, 1} and for all y ∈ R, Fj(y|D =

1) ≤ Fj(y|D = 0), where Fj(·|D = 1) and Fj(·|D = 0) are the distribution functions

of Yj |D = 1 and Yj |D = 0, respectively. Blundell et al. (2007) applied a version of

this assumption as well as a median restriction to their study. Since Assumption 3.3.3

implies that E[Yj |D = 1] ≥ E[Yj |D = 0], this assumption is a su�cient condition

for the MTS assumption. Note that, however, this stochastic dominance condition

does not imply that Yj |D = 1 ≥ Yj |D = 0 a.s. nor that Yj |D = 1 < Yj |D = 0 a.s.,
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for all j ∈ {0, 1}. Thus, this stochastic dominance assumption is more general than

the MTR assumption but stronger than the MTS assumption10.

Example 3.3.1. Suppose that the outcome variable is wage and that the treatment is

to earn a college degree. It is likely that the more capable people are, the more likely

it is for them to complete college education. As a result, one may anticipate that

people with college degrees are more likely to have higher learning ability than those

who did not complete college education. Many studies in labor economics literature

consider learning ability as an important factor a�ecting wage and thus one can

suppose that people with college degrees have higher wages than those without. This

can be formalized by �rst-order stochastic dominance as in Blundell et al. (2007).

The following theorem gives the identi�cation results under Assumption

3.3.3.

Theorem 3.3.4. Suppose that Assumption 3.3.3 holds. For given y ∈ R, de�ne

LBFSD1
1 (y) ≡ Pr(Y1 ≤ y|D = 1),

UBFSD1
1 (y) ≡ Pr(Y1 ≤ y|D = 1) Pr(D = 1) + Pr(D = 0),

LBFSD1
0 (y) ≡ Pr(Y0 ≤ y|D = 0) Pr(D = 0),

UBFSD1
0 (y) ≡ Pr(Y0 ≤ y|D = 0).

10Jun et al. (2011) consider a triangular model with endogenous variables, which has the forms
y = g(x, u) and x = h(z, v), where z is an instrumental variable and both g and h are non-
decreasing in u and v, respectively. They assume that the quantile of u conditional on v increases
in v (Assumption D). One can observe that Assumption 3.3.3 is similar to Assumption D in Jun
et al. (2011) because for given j ∈ {0, 1}, Qj(τ |D = 1) ≥ Qj(τ |D = 0) under Assumption 3.3.3,
where Qj(τ |D = k) is the τ -th quantile of Yj conditional on D = k.
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Then,

F1(y) ∈ [LBFSD1
1 (y), UBFSD1

1 (y)], (3.3.6)

F0(y) ∈ [LBFSD1
0 (y), UBFSD1

0 (y)]. (3.3.7)

Remark 3.3.5. Comparing the bounds under stochastic dominance with the bounds

given in 3.3.1, one can see that some bounds are identical to the ones in 3.3.1 (i.e.

UBFSD1
1 (y) = UB1(y) and LBFSD1

0 (y) = LB0(y) for given y ∈ R). Since As-

sumption 3.3.3 designates only one direction of the monotonicity of the distribution

functions, it is impossible to improve the lower bound on F0(y) and the upper bound

on F1(y). Nevertheless, the bounds on the marginal distribution functions provided

in Theorem 3.3.4 are sharper than the ones in Lemma 3.3.1.

The following stochastic dominance assumption may be regarded as an as-

sumption corresponding to the MTR.

Assumption 3.3.6. For all j ∈ {0, 1}, Y1|D = j �rst-order stochastically dominates

Y0|D = j.

Note that Assumption 3.3.6 implies that E[Y1] ≥ E[Y0], but does not imply

that Y1 ≥ Y0 almost surely. That is, Assumption 3.3.6 only determines the order

between two distribution functions.

Example 3.3.2. Imposing Assumption 3.3.6 on Example 3.3.1 implies that people

who have college degrees are likely to be paid higher wages than when they do not.

In other words, the return to college education is likely to be positive. However, it is
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not necessarily true that a person with a high school degree is paid higher wage than

when she had a college degree.

Under Assumption 3.3.6, one can obtain the following theorem.

Theorem 3.3.7. Suppose that Assumption 3.3.6 holds. For given y ∈ R, de�ne

LBFSD2
1 (y) = Pr(Y1 ≤ y|D = 1) Pr(D = 1),

UBFSD2
1 (y) = Pr(Y1 ≤ y|D = 1) Pr(D = 1) + Pr(Y0 ≤ y|D = 0) Pr(D = 0),

LBFSD2
0 (y) = Pr(Y0 ≤ y|D = 0) Pr(D = 0) + Pr(Y1 ≤ y|D = 1) Pr(D = 1),

UBFSD2
0 (y) = Pr(Y0 ≤ y|D = 0) Pr(D = 0) + Pr(D = 1).

Then,

F1(y) ∈ [LBFSD2
1 (y), UBFSD2

1 (y)], (3.3.8)

F0(y) ∈ [LBFSD2
0 (y), UBFSD2

0 (y)]. (3.3.9)

As Assumption 3.3.3 is not enough to narrow UB1(y) and LB0(y), one can

see that the lower bound and upper bound on F1(y) and F0(y) in Theorem 3.3.7

remain the same as those in Lemma 3.3.1. If both Assumptions 3.3.3 and 3.3.6

hold, it can be shown that one can tighten the bounds on the marginal distribution

functions and the result is established in the following corollary.

Corollary 3.3.8. Suppose that Assumptions 3.3.3 and 3.3.6 hold. For given y ∈ R,

F1(y) ∈ [LBFSD1
1 (y), UBFSD2

1 (y)],

F0(y) ∈ [LBFSD2
0 (y), UBFSD1

0 (y)].
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Remark 3.3.9. The identi�ed sets for marginal distribution functions of Y1 and Y0

in Corollary 3.3.8 are connected, and the intersection of these sets is the boundary

of each set (i.e. UBFSD2
1 (y) = LBFSD2

0 (y)).

3.3.2 The Distribution of the Treatment E�ect

In this section, I present the identi�cation result for the distribution of the

TE Y1− Y0. The main strategy is based on the identi�cation strategy from Fan and

Park (2010), which uses the notion of a copula with marginal distribution functions.

A copula is a joint distribution function function of two uniform random

variables. Sklar's Theorem (Theorem 2.3.3 in Nelsen (1999)) shows that if there

are two random variables X and Y with marginal distribution functions FX(x) and

FY (y), respectively, then the joint distribution function of X and Y , de�ned as

FXY (x, y), is characterized by a copula11. Sklar's Theorem also shows that if C is

a copula, and if FX(·) and FY (·) are the marginal distribution functions for X and

Y , respectively, then one can de�ne a function FXY (x, y) = C(FX(x), FY (y)) as a

joint distribution of two random variables X and Y whose the marginal distribution

functions are FX(·) and FY (·), respectively.

To derive the bound on the distribution function of the TE ∆, let F∆(·) be

the distribution function of ∆. Theorem 2 in Williamson and Downs (1990) can be

11It can be proven that there exists a copula C such that FXY (x, y) = C(FX(x), FY (y)).
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used to show that if the marginal distribution functions are given by F1 and F0, then

sup
u+v=x

{max[F1(u)− F0(−v), 0]} ≤ F∆(x),

inf
u+v=x

{min[F1(u)− F0(−v), 0]}+ 1 ≥ F∆(x).

These bounds on the distribution function F∆(·) are based on the Fréchet-

Hoe�ding lower and upper bounds on FY1,Y0(·, ·), where FY1,Y0(·, ·) is the joint dis-

tribution function of Y1 and Y0. The next theorem establishes the bound on the

distribution of the TE F∆(·) when the marginal distributions are partially identi-

�ed.

Theorem 3.3.10. Suppose that, for all y ∈ R, the identi�ed sets of F1(y) and F0(y)

are given by [L̃B1(y), ŨB1(y)] and [L̃B0(y), ŨB0(y)], respectively. For given δ ∈ R,

de�ne

LB∆(δ) = sup
y
{max[L̃B1(y)− ŨB0(y − δ), 0]}, (3.3.10)

UB∆(δ) = inf
y
{min[ŨB1(y)− L̃B0(y − δ), 0]}+ 1. (3.3.11)

Then,

F∆(δ) ∈ [LB∆(δ), UB∆(δ)].

Remark 3.3.11. Fan and Park (2010) consider randomized experiments so that

the marginal distribution functions are directly point-identi�ed from data. Since this

paper does not rule out situations where the treatment is endogenous and the structure

of the model is inadequate to fully identify the marginal distributions, the identi�ed

set of F∆(δ) in Theorem 3.3.10 is broader than the one provided by Fan and Park
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(2010).

3.4 Estimation and Con�dence Regions for Identi�ed Sets

In this section, I provide consistent estimators of the bounds on marginal

distribution functions and the distribution function of the TE, which are presented

in Lemma 3.3.1 and Theorem 3.3.10, respectively. For a given identi�ed set ΘI(θ0)

of a parameter θ0, I also construct a con�dence region for that identi�ed set. Let

Fjk(y) and p∗ denote Pr(Yji ≤ y|Di = k) and Pr(D = 1), respectively. Then one

can estimate p∗ by its sample analogue p̂n ≡ 1
n

∑n
i Di. The asymptotic theory in

this section mostly focuses on the identi�cation regions without stochastic dominance

assumptions. I impose some assumptions on the data generating process to establish

the asymptotic theory.

Assumption 3.4.1. {Wi ≡ (Y1i, Y0i, Di)
′

: i = 1, 2, ..., n} is a random sample.

Assumption 3.4.2. There exists a small ε0 > 0 such that p∗ ∈ [ε0, 1− ε0].

Assumption 3.4.1 means that the observed data {(Yi, Di)
′

: i = 1, 2, ..., n}

are i.i.d. Assumption 3.4.2 implies that there exists a number λ0 ∈ (0,∞) such

that
1
n

∑
iDi

1− 1
n

∑
iDi
→ λ0 as n → ∞12. Under Assumptions 3.4.1 and 3.4.2, one can

consistently estimate the bounds in 3.3.1 with the following objects:

12Instead of Assumption 3.4.2, Fan and Park (2010) consider this condition.
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L̂B1n(y) ≡ 1

n

n∑
i

Di1(Yi ≤ y), (3.4.1)

ÛB1n(y) ≡ 1

n

n∑
i

{Di1(Yi ≤ y) + 1−Di}, (3.4.2)

L̂B0n(y) ≡ 1

n

n∑
i

(1−Di)1(Yi ≤ y), (3.4.3)

ÛB0n(y) ≡ 1

n

n∑
i

{(1−Di)1(Yi ≤ y) +Di}. (3.4.4)

Consequently, the identi�cation regions of Q1(τ) and Q0(τ) can be estimated

by taking left-continuous inverse of the quantities in equations (3.4.1)-(3.4.4). Since

all of the summands are binary variables which have �nite second moments and

p̂n
p→ p∗, one can show that these are consistent estimators of the true parame-

ters by applying the law of large numbers. Furthermore, these estimators are
√
n-

asymptotically normal for given y ∈ R and will be used to construct con�dence

regions for the identi�ed sets of the marginal distributions and the quantiles of the

potential outcomes. The con�dence regions considered in this paper are con�dence

regions for identi�ed sets that are pointwise consistent in level, and the term is used

by Romano and Shaikh (2010). To de�ne the con�dence regions, let ΘI(θ0) be an

identi�cation region of a parameter θ0 and α ∈ (0, 1) be given. A con�dence region

for ΘI(θ0) that is pointwise consistent in level α, denoted by Cn(α; θ0), is a random

set such that

lim inf
n→∞

Pr(ΘI(θ0) ⊆ Cn(α; θ0)) ≥ α.

It is worth noting that such con�dence regions are conservative in a sense
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that their coverage probability is greater than or equal to a given level α even asymp-

totically. I �rst construct con�dence regions for the marginal distribution functions

F1(y) and F0(y) and then consider those for the quantiles of the potential outcomes.

I only provide results for the general case (i.e. the identi�cation regions of F1(y)

and F0(y) are given in Lemma 3.3.1), but the results can be modi�ed to construct

con�dence regions of identi�cation regions under stochastic dominance assumptions

in this paper.

Before proceeding, I introduce notation that will be used to establish con�-

dence regions. Suppose that there is a consistent estimator of θ0, θ̂n. I denote the

variance of θ̂n by σ2(θ̂n). Let Φ(·) and φ(·) be the distribution and density functions

of the standard normal random variable, respectively. I denote τ -th quantile of the

standard normal random variable by zτ (i.e. Φ(zτ ) = τ).

It is straightforward to see that, under Assumption 3.4.1,

σ2
F (
√
nL̂B1n(y)) = p∗ · F11(y) · (1− p∗F11(y)),

σ2
F (
√
nÛB1n(y)) = p∗ · (1− F11(y)) · {1− p∗ · (1− F11(y))},

σ2
F (
√
nL̂B0n(y)) = (1− p∗)F00(y) · (1− (1− p∗) · F00(y)),

σ2
F (
√
nÛB0n(y)) = (1− p∗)(1− F00(y)){1− (1− p∗) · (1− F00(y))}.

The following theorem provides con�dence regions for ΘI(F1(y)) and ΘI(F0(y)) in

the general case.

Theorem 3.4.3. Let y ∈ R and α ∈ (0, 1) be given. Suppose that the identi�-

cation regions of F1(y) and F0(y) are given by ΘI(F1(y)) = [LB1(y), UB1(y)] and
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ΘI(F0(y)) = [LB0(y), UB0(y)], respectively. De�ne

Cn(α;F1(y)) ≡ [L̂B1n(y)− CLF1n(α; y), ÛB1n(y) + CUF1n(α; y)], (3.4.5)

Cn(α;F0(y)) ≡ [L̂B0n(y)− CLF0n(α; y), ÛB0n(y) + CUF0n(α; y)], (3.4.6)

where

CLF1n(α; y) ≡ zα+1
2
· σF (

√
nL̂B1n(y))√
n

,

CUF1n(α; y) ≡ zα+1
2
· σF (

√
nÛB1n(y))√
n

,

CLF0n(α; y) ≡ zα+1
2
· σF (

√
nL̂B0n(y))√
n

,

CUF0n(α; y) ≡ zα+1
2
· σF (

√
nÛB0n(y))√
n

.

If Assumptions 3.4.1 and 3.4.2 are satis�ed, then

lim inf
n→∞

Pr(ΘI(F1(y)) ⊆ Cn(α;F1(y))) ≥ α

and

lim inf
n→∞

Pr(ΘI(F0(y)) ⊆ Cn(α;F0(y))) ≥ α.

Now I consider con�dence regions for the identi�ed sets of quantiles of poten-

tial outcomes. Recall that the quantiles of the potential outcomes can be identi�ed

by considering the left-continuous inverse of the lower and upper bounds on their

marginal distribution functions. I use the functional-delta method (Theorem 3.9.4

in van der Vaart and Wellner (1996)) to construct con�dence regions for ΘI(Q1(τ))

and ΘI(Q0(τ)). I impose additional assumptions on the distribution functions F11
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and F00 to construct con�dence regions for these quantiles.

Assumption 3.4.4. (i) The conditional distributions functions F11(y) and F00(y)

admit their density functions, denoted by f11(y) and f00(y), respectively; (ii) The

density functions f11(y) and f00(y) are bounded and continuously di�erentiable, and

their �rst-order derivatives f
′
11 and f

′
00 are uniformly bounded; (iii) There exists

a small η0 > 0 such that, for given τ ∈ [η0, 1 − η0], f11(QU1 (τ)), f11(QL1 (τ)),

f00(QU0 (τ)), and f00(QL0 (τ)) are bounded away from zero.

Assumption 3.4.4 imposes smoothness of the conditional distribution func-

tions F11(y) and F00(y). This assumption allows us to use the functional-delta

method to establish the asymptotic normality of the bounds on quantiles of the po-

tential outcomes. Let τ ∈ [η0, 1−η0] be given. The next theorem provides con�dence

regions for ΘI(Q1(τ)) and ΘI(Q0(τ)) that are pointwise consistent in level α.

Theorem 3.4.5. Suppose that Assumptions 3.4.1-3.4.4 are satis�ed and let τ ∈

[η0, 1− η0] be given. For given α ∈ (0, 1), de�ne

Cn(α;Q1(τ)) ≡ [QL1n(τ)− CLq1n(α; τ), QU1n(τ) + CUq1n(α; τ)], (3.4.7)

Cn(α;Q0(τ)) ≡ [QL0n(τ)− CLq0n(α; τ), QU0n(τ) + CUq0n(α; τ)], (3.4.8)
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where

CLq1n(α; τ) ≡ zα+1
2
· σF (

√
nÛB1n(QL1 (τ)))

√
np∗f11(QL1 (τ))

,

CUq1n(α; τ) ≡ zα+1
2
· σF (

√
nL̂B1n(QU1 (τ)))

√
np∗f11(QU1 (τ))

,

CLq0n(α; τ) ≡ zα+1
2
· σF (

√
nÛB0n(QL0 (τ)))

√
n(1− p∗)f00(QL0 (τ))

,

CUq0n(α; τ) ≡ zα+1
2
· σF (

√
nL̂B0n(QU0 (τ)))

√
n(1− p∗)f00(QU0 (τ))

.

Then

lim inf
n→∞

Pr(ΘI(Q1(τ)) ⊆ Cn(α;Q1(τ))) ≥ α

and

lim inf
n→∞

Pr(ΘI(Q0(τ)) ⊆ Cn(α;Q0(τ))) ≥ α.

Now I consider constructing con�dence regions for the identi�cation region

of F∆(δ) for given δ ∈ R. For each δ ∈ R, de�ne the following objects:

ysup(δ) = arg sup
y
{LB1(y)− UB0(y − δ)},

ŷsupn (δ) = arg sup
y
{L̂B1n(y)− ÛB0n(y − δ)},

yinf (δ) = arg inf
y
{UB1(y)− LB0(y − δ)},

ŷinfn (δ) = arg inf
y
{ÛB1n(y)− L̂B0n(y − δ)}.

Then ŷsupn (δ) and ŷinfn (δ) are natural estimators of ysup(δ) and yinf (δ), respectively.

I impose the following assumptions to construct a con�dence region for ΘI(F∆(δ)).

Assumption 3.4.6. For all δ ∈ R, ysup(δ) and yinf (δ) are unique and interior
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points.

Assumption 3.4.7. The supports of Y1 and Y0 are compact subsets in R.

Assumption 3.4.6 guarantees consistency of ŷsupn (δ) and ŷinfn (δ). Assumption

3.4.7 implies that the support of the observed outcome variable Y is also a compact

subset in R. To characterize a con�dence region for ΘI(F∆(δ)), de�ne

mL
i (y; δ) ≡ Di1(Yi ≤ y)− {(1−Di)1(Yi ≤ y − δ) +Di},

mU
i (y; δ) ≡ {Di1(Yi ≤ y) + (1−Di)} − (1−Di)1(Yi ≤ y − δ).

The next theorem provides a con�dence region for ΘI(F∆(δ)) that is point-

wise consistent in level.

Theorem 3.4.8. Let α ∈ (0, 1) and δ ∈ R be given. Suppose that the marginal

distributions of Y1 and Y0 are identi�ed as Lemma 3.3.1 and that Assumptions 3.4.1,

3.4.2, 3.4.4, 3.4.6, and 3.4.7 are satis�ed. Let

L̂B∆n(δ) ≡ sup
y
{max[L̂B1n(y)− ÛB0n(y − δ), 0]},

ÛB∆n(δ) ≡ inf
y
{min[ÛB1n(y)− L̂B0n(y − δ), 0]}+ 1.

De�ne

Cn(α;F∆(δ)) ≡ [L̂B∆n(δ)− cα+1
2

(δ), ÛB∆n(δ) + c̃α+1
2

(δ)],

where for given τ ∈ (0, 1), cτ (δ) and c̃τ (δ) are τ -th quantiles of the random variables

C(δ) ≡ max[N(0, V ar(mL
i (ysup(δ); δ)), 0] and C̃(δ) ≡ min[N(0, V ar(mU

i (yinf (δ); δ)), 0]+

1, respectively.
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If

p∗f
′
11(ysup(δ))− (1− p∗)f ′00(ysup(δ)− δ) < 0

and

(1− p∗)f ′00(yinf (δ))− p∗f ′11(yinf (δ)− δ) > 0

hold, then

lim inf
n→∞

Pr(ΘI(F∆(δ)) ⊆ Cn(α;F∆(δ))) ≥ α,

where ΘI(F∆(δ)) = [supy{max[LB1(y)−UB0(y−δ), 0]}, infy{min[UB1(y)−LB0(y−

δ), 0]}+ 1].

The con�dence regions provided in this section are not feasible as they contain

unknown quantities. However, it is relatively straightforward to construct feasible

con�dence regions for the identi�ed sets of the marginal distributions and quantile

functions of the potential outcomes. One can replace the unknown quantities with

their sample analogues or nonparametric estimators to construct feasible con�dence

regions for these identi�ed sets. In contrast, the con�dence region for the identi�ed

set of F∆(δ) involves critical values that are from some non-standard distributions.

One may think of resampling methods to simulate these distributions to obtain

critical values, but the validity of such a resampling method needs to be proven.

Fan and Park (2010) provide a bootstrap scheme to obtain the critical values cτ (δ)

and c̃τ (δ). Related to resampling methods for a general class of partially identi�ed

models, Bugni (2010) introduces a bootstrap procedure that can be used for inference

for some class of partially identi�ed models. I leave this issue for future work.
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3.5 Application to the Return to College

Labor economists have often tried to examine the return to schooling. Ed-

ucation level of an individual is a choice variable13, and this fact results in the en-

dogeneity of educational attainment. Speci�cally, completion of a college education

entirely depends on individual's decision making process. In this regard, I analyze

an empirical problem of measuring the return to college by de�ning the treatment

as earning a bachelor's degree.

I take the ability of an individual as a source of endogeneity of the education

level. Hendricks and Leukhina (2014) recognize that the rate of completing college

education is quite low in spite of a big di�erence in earnings between college graduates

and high school graduates, and they infer this gap comes from the di�erence in the

ability. Since in general it is believed that people's ability is positively correlated

with wage and education level, which coincides with what Example 3.3.1 illustrates,

one may apply Assumption 3.3.3 to this empirical question.

Both theoretical and empirical studies on the return to schooling have sug-

gested that more-educated people are in better labor status in terms of wage than

less-educated people14, and such observations can be rationalized by viewing educa-

tion as human capital. This implies that for any given education level, the potential

wage that would have been paid for college graduates is likely to be higher than the

potential wage that would have been paid for non-college graduates. Therefore, it

13The presence of a compulsory school attendance law may make it di�cult to classify the edu-
cational level as a choice variable. Nevertheless, when it comes to post-high school education, it is
harmless to de�ne the education level as a choice variable.

14See Card (1999) for more details.
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seems perfectly plausible to impose Assumption 3.3.6 on the model.

3.5.1 Data

I extract variables from Integrated Public Use Microdata Series (IPUMS)15

to estimate bounds. Considering the �nancial crisis during 2007-2008, which may

have caused a drastic change in economic conditions in the U.S., I use the data from

200516. I restrict the sample to white males in the age group of 23 to 40 years old.

Moreover, the sample in this study only contains heads of households who are U.S.

citizens, and I drop individuals who are not in the labor force or are self-employed.

As a result, I am able to obtain a sample of 93,742 observations.

Table 3.1 summarizes the descriptive statistics of some variables. AGE is

the variable indicating the age of each individual, and EDUC is the educational

attainment. EDUCD contains more speci�c information on the educational attain-

ment. In particular, it distinguishes people who have bachelor's degree or higher

from others while EDUC merely shows how many years of education. The variable,

EDUCD, is a dummy variable indicating whether an individual is treated or not. IN-

CWAGE is the annual income from wage, measured in dollars, and WEEKWAGE

is the weekly income from wage. IPUMS does not provide data on weekly income

and thus I obtain WEEKWAGE by dividing INCWAGE by the number of weeks

worked. The dependent variable is the log transformation of the weekly earnings,

15Ruggles et al. (2010).
16Another reason I use the dataset is that the information on the number of weeks worked

(WKSWORK1) is available only up to 2007. Taking positive correlation between the education
level and working hours into consideration (see, for example, Card (1999)), this variable is required
to generate the weekly earning.
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denoted by log(WEEKWAGE). The probability of earning a college degree is about

39% and the mean of weekly earning is approximately 1,681 dollars.

The average log of weekly earnings of the treated and the untreated are

about 7.022 and 6.567, respectively. A t-test con�rms that the di�erence in the

mean between two groups is statistically signi�cant at the 1% level.

3.5.2 Estimation Results

I �rst estimate the bounds on the QTE of the college degree on the log of

(weekly) wage for given τ ∈ (0, 1), and the results are presented in Table 3.2. I

implicitly assume that the supports of Y1 and Y0 are the same, and use the realized

values of these variables to calculate the empirical distribution functions.

The �rst panel shows the lower and upper bounds on the QTE for given

τ ∈ (0, 1) without any distributional assumptions. The second panel reveals the

estimation results of the bounds under Assumption 3.3.3, and the last two columns

provide the results under Assumption 3.3.6. I do not report the estimated bounds

when Assumptions 3.3.3 and 3.3.6 are imposed together, but one can �nd these

bounds from Figure 3.317. If any distributional restrictions are not imposed, the

bounds on the QTE are barely informative. In particular, the bounds yield a broader

interval for the QTE when τ is small.

On the other hand, it is shown that imposing the restrictions improves the

bounds so that the identi�ed sets become more informative. The upper bound on

17As mentioned earlier, the lower bound coincides with the lower bound under Assumption 3.3.6
and the upper bound is identical to the one under Assumption 3.3.3.
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the QTE under Assumption 3.3.3 decreases and thus one obtains a narrower bound

on the QTE than the one without prior information. Panel 3 shows that the lower

bounds on the QTE can be tightened if Assumption 3.3.6 is imposed. The lower

bounds for all τ are identical to 0 and this is because Assumption 3.3.6 implies that

Y1 �rst-order stochastically dominates Y0, which also implies that the τ -th quantile

of Y1 is always greater than or equal to the one of Y0. Note that the lower bound

under Assumption 3.3.3 and the upper bound under Assumption 3.3.6 do not have

contributions in terms of tightening the bounds in the general case. However, Figure

3.3 shows that combining these two assumptions gives a much narrower interval for

the QTE.

Figures 3.4 through 3.6 illustrate the estimation results of the bounds on

distribution of the TE under the assumptions. Without the assumptions, the upper

bound and the lower bound on the distribution function of the TE are constant

functions which have the values of 1 and 0, respectively. Figure 3.4 compares these

bounds to the ones derived under Assumption 3.3.3. The upper bound under As-

sumption 3.3.3 is identical to the upper bound in the general case, but the lower

bound under Assumption 3.3.3 is more informative than the one in the general case.

Similarly, one can see that Assumption 3.3.6 improves the upper bound of the dis-

tribution of the TE and this is veri�ed by Figure 3.5. As the case of the QTE, one

can obtain a much greater identifying power when combining two assumptions as

Figure 3.6 illustrates.

From the bounds on the distribution of the TE, the quantiles of the TE
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are also partially identi�ed and Table 3.3 shows the results18. Since the bounds on

the distribution for the general case do not give any information, it is impossible

to obtain any instructive bounds on the quantile of the TE. In contrast to the

general case, Panel 2 and Panel 3 in Table 3.3 demonstrate how the stochastic

dominance assumptions help these bounds be tightened. As the previous results for

other bounds, combining the two assumptions yields much narrower bounds on the

quantiles of the TE19 and thus the identi�ed sets become very informative.

Table 3.1: Descriptive Statistics
Mean S.D Min Max

AGE 32.836 4.968 23 40
EDUC 7.924 2.059 0 11

WKSWORK 49.619 7.123 1 52
INCWAGE 52177.04 44952.22 4 629000

WEEKWAGE 1092.747 1681.379 0.077 209666.7
log (INCWAGE) 10.623 0.726 1.386 13.352
log(WEEKWAGE) 6.743 0.670 -2.565 12.253

Treatment 0.387 0.487 0 1

18I restrict the support of the TE to [−5, 5].
19The lower bound and the upper bound are equal to the lower bound under Assumption 3.3.6

and the upper bound under Assumption 3.3.3, respectively.
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Table 3.2: Estimation Results of the Bounds on the QTEs

τ
Panel 1: General Panel 2: Assumption 3.3.3 Panel 3: Assumption 3.3.6
Lower Upper Lower Upper Lower Upper

0.1 -8.657 9.210 -8.657 0.388 0.000 9.210
0.2 -8.923 9.616 -8.923 0.376 0.000 9.616
0.3 -9.159 10.012 -9.159 0.368 0.000 10.012
0.4 -9.339 7.025 -9.339 0.386 0.000 7.025
0.5 -9.616 6.119 -9.616 0.441 0.000 6.119
0.6 -10.222 5.856 -10.222 0.452 0.000 5.856
0.7 -5.644 5.633 -5.644 0.445 0.000 5.633
0.8 -5.254 5.426 -5.254 0.490 0.000 5.426
0.9 -4.878 5.202 -4.878 0.539 0.000 5.202

Figure 3.1: Bounds on the QTE under Assumption 3.3.3
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Figure 3.2: Bounds on the QTE under Assumption 3.3.6

Figure 3.3: Bounds on the QTE under Assumptions 3.3.3 and 3.3.6
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Figure 3.4: Bounds on the Distribution of the TE under Assumption 3.3.3

Figure 3.5: Bounds on the Distribution of the TE under Assumption 3.3.6
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Figure 3.6: Bounds on the Distribution of the TE under Assumptions 3.3.3 and 3.3.6

Table 3.3: Bounds on Quantiles of the TE

τ
Panel 1: General Panel 2: Assumption 3.3.3 Panel 3: Assumption 3.3.6
Lower Upper Lower Upper Lower Upper

0.1

−∞ ∞ −∞

0.6 -2

∞

0.2 0.7 -1.4
0.3 0.8 -1.1
0.4 1 -0.9
0.5 1.1 -0.6
0.6 1.3 -0.5
0.7 1.6 -0.3
0.8 1.9 -0.2
0.9 2.5 -0.1

3.6 Conclusions

In this paper, I partially identify the QTEs and the distribution of the TE

when the treatment is endogenous. To tighten the bounds, I consider several versions

of stochastic dominance which seem reasonable in many situations. I adopt the

approach of Fan and Park (2010) to identify the distribution of the TE Y1 − Y0.
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It is shown that without additional assumptions, these bounds on the distribution

function of the TE are broader than the ones given by Fan and Park (2010), and

that stochastic dominance assumptions help to tighten the bounds. I apply the

stochastic dominance assumptions for examining the return to college example, and

the empirical evidence con�rms that the distributional assumptions increase the

identifying power.

There are several extensions one could consider. First, one can consider

the structural approach instead of the treatment e�ects approach. Admittedly, the

treatment e�ects approach has advantages over the structural approach in terms of

robustness and/or credibility of the results. However, the approach is not capable of

answering some important questions related to program evaluation. Heckman and

Vytlacil (2007) describe three classes of questions in an economic policy evaluation,

which entail evaluating and forecasting the impacts of a policy. The treatment ef-

fects approach is su�cient for (P1) evaluating the e�ects of a policy, but inadequate

for (P2) forecasting the impact in a di�erent environment or (P3) predicting the

anticipated e�ects of a policy never performed in some environments20. The struc-

tural approach, however, can handle all three classes, thus enabling us to answer

much broader classes of questions. In this sense, it is well worth considering other

distributional assumptions and/or economic models such as a triangular system.

Second, it is worth considering di�erent types of con�dence intervals (or re-

gions) for di�erent objects. For example, one may be interested in inference for

quantile processes, QTE process, or the distribution of the TE over the support of

20For details, see Heckman and Vytlacil (2007).
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the TE. This requires the development of uniform asymptotic theory. Considering

such an issue, one may develop an asymptotic theory for uniform inference for par-

tially identi�ed models. In addition, the con�dence regions given in this paper are

for the identi�ed sets, not for the parameters of interest. Imbens and Manski (2004)

and Stoye (2009) investigate how to construct asymptotically valid con�dence inter-

vals for partially identi�ed parameters instead for the identi�ed set and illustrate

their approaches with the example on means with missing data. Since one may be

interested in inference for parameters of interest themselves rather than for identi�ed

sets, it would be fruitful to provide asymptotically valid con�dence intervals for the

parameters considered in this paper.

Third, one can consider identi�cation and estimation of the joint distribution

of the potential outcomes under stochastic dominance assumptions. Related to this

issue, Fan et al. (2014) provide identi�cation and con�dence sets for functionals of the

joint distribution of the potential outcomes. The joint distribution can incorporate

many other parameters that are important and relevant to the program evaluation,

and thus it would be worth investigating this issue.

Lastly, this paper does not incorporate covariates. In many empirical situ-

ations, however, covariates are important to control for some heterogeneity. In the

presence of covariates, one can adapt methods used in the literature on (conditional)

moment inequality models (see, for example, Chernozhukov et al. (2007); Andrews

and Soares (2010); Andrews and Shi (2013)) or the approach developed by Cher-

nozhukov et al. (2013) to perform inference for parameters of interest. I leave these

potential extensions for future work.
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Appendix A

Chapter 1 Appendix

A.1 Proof of Lemma 1.2.1

The proof of Lemma 1.2.1 is a slight modi�cation of the proof of Theorem 2.14

of (Joe, 1997, p. 44). Suppose C2|1 ≺S C̃2|1. Let (U1, U2) ∼ C, (Ũ1, Ũ2) ∼ C̃, with

Uj
d
= Ũj , j = 1, 2. By Theorem 2.9 of (Joe, 1997, p. 40), (U1, U2)

d
= (Ũ1, ψ(U1, U2))

with ψ(u1, u2) = C̃−1
2|1 (C2|1(u2|u1)|u1). Since C2|1 ≺S C̃2|1, ψ is increasing in u1 and

u2. We consider two cases:

• Case 1: Suppose that u1 and u2 are such that ψ(u1, u2) ≤ u2. Then

C̃(u1, u2) = Pr[Ũ1 ≤ u1, Ũ2 ≤ u2)]

= Pr[Ũ1 < u1, Ũ2 < u2)]

= Pr[U1 < u1, ψ(U1, U2) < u2)]

≥ Pr[U1 < u1, ψ(u1, U2) < u2]

> Pr[U1 < u1, U2 < u2)] = C(u1, u2)

where the strict inequality holds since U2 < u2 implies ψ(u1, U2) ≤ ψ(u1, u2) ≤

u2 (but not vice versa since ψ(u1, U2) ≤ u2 and ψ(u1, u2) ≤ u2 does not

necessarily imply U2 < u2 and Pr[ψ(u1, u2) < ψ(u1, U2)] = Pr[u2 < U2] 6=
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0), and the second last inequality holds since, given U1 < u1, ψ(U1, U2) ≤

ψ(u1, U2) < u2.

• Case 2: Suppose that u1 and u2 are such that ψ(u1, u2) > u2. Then

u2 − C(u1, u2) = Pr[U1 > u1, U2 < u2)]

> Pr[U1 > u1, ψ(u1, U2) ≤ u2)]

≥ Pr[U1 > u1, ψ(U1, U2) ≤ u2)]

= Pr[Ũ1 > u1, Ũ2 < u2] = u2 − C̃(u1, u2)

where the strict inequality holds since U2 > u2 implies ψ(u1, U2) ≥ ψ(u1, u2) >

u2 or ψ(u1, U2) ≤ u2 implies U2 ≤ u2 (but not vice versa).

Therefore in both cases, C(u1, u2) < C̃(u1, u2) for any u1 and u2.

A.2 Proof of Theorem 1.2.11

Continued from the main text, we prove that there exist (t0, t1, δ1, ρ) and

(t∗0, t
∗
1, δ
∗
1 , ρ
∗) such that the equation (1.2.14) holds. To show this, we choose further

speci�cations. We assume a normal copula.1 We choose ρ = 0, ρ∗ = 1, q0 = t0 = 1/3,

and q1 = t1 = 2/3. Since (U1, U2) are jointly uniform, note that when ρ = 0, the

probability of the quadrant in [0, 1]2 speci�ed by each of (1.2.6), (1.2.8), (1.2.10), and

(1.2.12) equals the volume of the quadrant. When ρ∗ = 1, all the probability mass

lies on the 45 degree line in [0, 1]2 and no where else, so the probability of a quadrant

1This choice is not critical except that we can have ρ reach to 1.
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speci�ed by each of (1.2.7), (1.2.9), (1.2.11), and (1.2.13) equals the length of the 45

line which intersects with that quadrant. Suppose that the following observational

equivalence holds:

Pr[u1 ≤ t0, u2 ≥ q0; ρ] = Pr[u1 ≤ t∗0, u2 ≥ q0; ρ∗] = 2/9,

Pr[u1 ≤ t0, u2 ≤ q0; ρ] = Pr[u1 ≤ t†0, u2 ≤ q0; ρ∗] = 1/9,

Pr[u1 ≤ t1, u2 ≥ q1; ρ] = Pr[u1 ≤ t∗1, u2 ≥ q1; ρ∗] = 2/9,

Pr[u1 ≤ t1, u2 ≤ q1; ρ] = Pr[u1 ≤ t†1, u2 ≤ q1; ρ∗] = 4/9.

One can easily show that these equations yield that t∗0 = 5/9, t†0 = 1/9, t∗1 = 8/9, and

t†1 = 4/9. Consider the equation (1.2.14), which can be rewritten as t†1 = t∗1 + t†0− t∗0

or t†1 − t∗1 = t†0 − t∗0. Then, note that we have t
†
1 − t∗1 = t†0 − t∗0 = −4/9, which is, in

fact, the value of δ∗1 . In sum, the values of parameters that give the observationally

equivalent �tted probabilities are

(t0, t1, q0, q1, δ1, ρ) =

(
1

3
,
2

3
,
1

3
,
2

3
, 0, 0

)
, (A.2.1)

(t∗0, t
∗
1, q0, q1, δ

∗
1 , ρ
∗) =

(
5

9
,
8

9
,
1

3
,
2

3
,−4

9
, 1

)
. (A.2.2)

This argument can be made slightly more general, and thus the counterex-

ample more realistic, by relaxing Fε̃ ∼ Unif(0, 1) and ρ∗ = 1. We show that a

similar argument goes through with Fε̃ being a general distribution function with

a symmetric density function, and −1 ≤ ρ∗ ≤ 1 as long as the copula density is

symmetric around u2 = u1 (i.e., the 45 degree line) and u2 = 1 − u1. Let F ≡ Fε̃

be a general distribution whose density function is symmetric. Then there exists a
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solution s†0 = s†0(t0, q0, ρ, ρ
∗) such that

C(F (F−1(t0) + 0), q0; ρ) = Pr[u1 ≤ t0, u2 ≤ q0; ρ]

= Pr[u1 ≤ s†0, u2 ≤ q0; ρ∗]

= C(s†0, q0; ρ∗).

Then, by letting δ∗1 = F−1(s†0)− F−1(t∗0), we have s†0 = F (F−1(t∗0) + δ∗1) and there-

fore (t0, q0, δ1, ρ) and (t∗0, q0, δ
∗
1 , ρ
∗) result in p11,x = C(F (F−1(t0) + 0), q0; ρ) =

C(F (F−1(t∗0) + δ∗1), q0; ρ∗). Suppose that δ1 = 0. Then there exists a solution

s†1 = s†1(t1, q1, ρ, ρ
∗) such that

C(F (F−1(t1) + 0), q1; ρ) = Pr[u1 ≤ t1, u2 ≤ q1; ρ]

= Pr[u1 ≤ s†1, u2 ≤ q1; ρ∗]

= C(s†1, q1; ρ∗).

Then, if we can show that

F−1(s†1) = F−1(t∗1) + δ∗1 ,

then s†1 = F (F−1(t∗1) + δ∗1) and therefore (t1, q1, δ1, ρ) and (t∗1, q1, δ
∗
1 , ρ
∗) result in

p̃11,1 = C(F (F−1(t1) + 0), q1; ρ) = C(F (F−1(t∗1) + δ∗1), q1; ρ). Note F−1(s†1) =

F−1(t∗1) + δ∗1 can be rewritten as F−1(s†1) = F−1(t∗1) + F−1(s†0)− F−1(t∗0) or

F−1(s†1)− F−1(t∗1) = F−1(s†0)− F−1(t∗0). (A.2.3)

But note that since the density of F is symmetric, any two values s and s̃ in (0, 1)
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that are symmetric around u1 = 1/2 will satisfy

F−1(s) = −F−1(s̃).

Therefore, since in our example s†0 and t
∗
1 are symmetric around u1 = 1/2, and so are

s†1 and t
∗
0, we have the desired result (A.2.3), and the counterexample (A.2.1)�(A.2.2)

remains valid. Note that the symmetry of the density function of F plays a key role

here; the uniform distribution trivially satis�es the condition as does the normal

distribution.

The above counter-example to identi�cation involves a parameter on the

boundary of the parameter space (ρ∗ = 1), while the identi�cation results in the

paper assume that the parameter space is open and thus that ρ ∈ (−1, 1). We

now show that the key idea of the argument remains the same with −1 < ρ∗ < 1.

Suppose that the copula density is symmetric around u2 = u1 and u2 = 1−u1. The

normal copula satis�es this condition for any ρ ∈ (−1, 1). Because of this condition,

the symmetry of s†0 and t∗1 (and of s†1 and t∗0) around u1 = 1/2 does not break at a

di�erent value of ρ∗, even though the values of s†0, t
∗
1, s
†
1, and t

∗
0 themselves change.

Therefore, (A.2.3) continues to hold with ρ∗ 6= 1.

A.3 Proof of Theorem 1.4.7

The following proposition is a modi�cation of Theorem 3.1 in Chen (2007)

and it establishes the consistency of sieve M-estimator 2.

2See also Remark 3.3 in Chen (2007).
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Proposition A.3.1. Let θ̂n be the sieve extremum estimator de�ned in Equation

(1.4.2). Suppose that the following conditions hold :

(i) Q0(θ) is uniquely maximized at θ0 in Θ and Q0(θ0) > −∞;

(ii) Θ is compact under dc(·, ·), and Q0(θ) is upper semicontinuous on Θ

under dc(·, ·);

(iii) The sieve spaces, Θn, is compact under dc(·, ·) ;

(iv) Θk ⊆ Θk+1 ⊆ Θ for all k ≥ 1, and there exists a sequence πkθ0 ∈ Θk

such that dc(θ0, πkθ0)→ 0 as k →∞ ;

(v) For all k ≥ 1, p limn→∞ supθ∈Θ |Qn(θ)−Q0(θ)| = 0.

Then, dc(θ̂n, θ0) = op(1).

We show that the conditions in Theorem 1.4.7 imply those in this proposition

to prove consistency of the sieve estimator. We �rst need to verify that (i) the true

parameter θ0 is the unique maximizer of Q0(·) over Θ and that (ii) the sample

log-likelihood function Qn(·) uniformly converges to Q0(·) over the sieve space in

probability to establish the consistency of the sieve ML estimator. The following

lemma shows that if the model with unknown marginal distributions are identi�ed

and additional conditions are satis�ed, then the true parameter θ0 is the unique

maximizer of Q0(·) over Θ.

Lemma A.3.1. Suppose that Assumptions 1.2.1-1.2.6, 1.2.9, 1.4.1 and 1.4.2 are

satis�ed. Then the condition (i) in Proposition A.3.1 is satis�ed.
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Proof. By Theorem 1.2.10, the model is identi�ed. Under Assumption 1.4.2, we can

see that for any θ ∈ Θ, |Q0(θ)| ≤ E|l(θ,Wi)| ≤
∑

y,d∈{0,1} E| log(pyd,XZ(θ))| < ∞,

and thus the function Q0(θ) is well-de�ned on Θ and Q0(θ) > −∞ for all θ ∈ Θ;

hence Q0(θ0) > −∞. Since the model is identi�ed, it implies that for θ 6= θ0, there

exists a set E ⊂ Supp(X,Z) such that
∫
E dPXZ > 0 and for some y, d ∈ {0, 1},

pyd,xz(θ)
pyd,xz(θ0) 6= 1 on E, where PXZ is the distribution function of (X,Z). Thus, we have

Q0(θ)−Q0(θ0) =

∫ ∑
y,d∈{0,1}

pyd,xz(θ0) log(
pyd,xz(θ)

pyd,xz(θ0)
)dPXZ

< log(

∫
E

∑
y,d∈{0,1}

pyd,xz(θ)dPXZ) ≤ 0,

where the strict inequality holds by the fact that pyd,xz(θ) 6= pyd,xz(θ0) on E and

Jensen's inequality. Hence, θ0 is the unique maximizer of Q0(·).

For any ω > 0, let N(ω,Θn, dc) be the covering numbers without bracketing

of Θn w.r.t the pseudo-metric dc. We now establish the uniform convergence of Qn(·)

to Q0 over the sieve space.

Lemma A.3.2. Suppose that Assumptions 1.2.1-1.2.6, 1.2.9 are satis�ed. If As-

sumptions 1.4.1 through 1.4.6 hold, then

sup
θ∈Θn

|Qn(θ)−Q0(θ)| p→ 0

for all n ≥ 1.

Proof. We verify Condition 3.5M in Chen (2007). Let B stand for a generic constant

and it can be di�erent in each place. By Assumptions 1.4.2 and 1.4.3, the �rst
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condition in Condition 3.5M is satis�ed. Let n ≥ 1 be a natural number and θ, θ̃ ∈

Θn. De�ne R1(θ) = Fε(X
′
β + δ1), R0(θ) = Fε(X

′
β), and S(θ) = Fν(X

′
α + Z

′
γ).

Similarly, we de�ne R1(θ̃) = F̃ε(X
′
β̃ + δ̃1), R0(θ̃) = F̃ε(X

′
β̃), and S(θ̃) = F̃ν(X

′
α̃+

Z
′
γ̃). For the simplicity of the notations, we denote Rj(θ) = Rj , Rj(θ̃) = R̃j ,

S(θ) = S, and S(θ̃) = S̃ for all j = 0, 1. Observe that

|p11,XZ(θ)− p11,XZ(θ̃)| = |C(R1, S; ρ)− C(R̃1, S̃; ρ̃)|

≤ |C(R1, S; ρ)− C(R̃1, S̃; ρ)|+ |C(R̃1, S̃; ρ)− C(R̃1, S̃; ρ̃)|

≤ |R1 − R̃1|+ |S − S̃|+ |Cρ(R̃1, S̃; ρ̂)||ρ− ρ̃|

≤ |R1 − R̃1|+ |S − S̃|+B|ρ− ρ̃|

where Cρ(·, ·; ·) is the partial derivative of C(·, ·; ·) with respect to ρ and ρ̂ is between

ρ and ρ̃ and B < ∞. Note that the last inequality holds due to a generic property

of copulas (see, e.g. Theorem 2.2.4 in Nelsen (1999)) and the mean value theorem.

We also have

|R1 − R̃1| = |Fε(X
′
β + δ1)− F̃ε(X

′
β̃ + δ̃1)|

≤ |Fε(X
′
β + δ1)− Fε(X

′
β̃ + δ̃1)|+ |Fε(X

′
β̃ + δ̃1)− F̃ε(X

′
β̃ + δ̃1)|

≤ |fε(X
′
β̂ + δ̂1)| · |X ′(β − β̃) + (δ1 − δ̃1)|+

∫ G(X
′
β̃+δ̃1)

0
|hε(t)− h̃ε(t)|dt

≤ sup
x∈R
|hε(G(x))g(x)| × ||(X ′ , 1)

′ ||E · ||ψ − ψ̃||E + ||hε − h̃ε||∞

≤ B × ||(X ′ , 1)
′ ||E × ||(β

′
, δ1)

′ − (β̃
′
, δ̃1)

′ ||E + ||hε − h̃ε||∞, (A.3.1)
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for some constant B <∞. Similarly, we can show that

|R0 − R̃0| ≤ B × ||X||E × ||β − β̃||E + ||hε − h̃ε||∞ (A.3.2)

and

|S − S̃| ≤ B × ||(X ′ , Z ′)′ ||E × ||(α
′
, γ
′
)
′ − (α̃

′
, γ̃
′
)
′ ||E + ||hν − h̃ν ||∞. (A.3.3)

Note that, for any comparable subvectors ψs and ψ̃s of ψ and ψ̃, respectively,

we have ||ψs − ψ̃s||E ≤ ||ψ − ψ̃||E and that, for any subvector Ws of W , we have

||WS ||E ≤ ||W ||E a.s. Thus we have

|p11,XZ(θ)− p11,XZ(θ̃)| ≤ B||(X ′ , 1)
′ ||E · ||ψ − ψ̃||E + ||hε − h̃ε||∞

≤ B||(X ′ , 1)
′ ||Edc(θ, θ̃)

Consequently,

|p10,XZ(θ)− p10,XZ(θ̃)| ≤ |R0 − R̃0|+ |C(R0, S; ρ)− C(R̃0, S̃; ρ̃)|

≤ 2|R0 − R̃0|+ |S − S̃|+B|ρ− ρ̃|

≤ B{||X||E ||β − β̃||E + ||(X ′ , Z ′)′ ||E ||(α
′
, γ
′
)
′ − (α̃

′
, γ̃
′
)
′ ||E

+ ||hε − h̃ε||∞ + ||hν − h̃ν ||∞ + |ρ− ρ̃|}

≤ B · ||(X ′ , Z ′ , 1)
′ ||Edc(θ, θ̃),
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|p01,XZ(θ)− p01,XZ(θ̃)| ≤ 2|S − S̃|+ |R1 − R̃1|+B|ρ− ρ̃|

≤ B||(X ′ , Z ′ , 1)
′ ||Edc(θ, θ̃),

and

|p00,XZ(θ)− p00,XZ(θ̃)|

≤|p11,XZ(θ)− p11,XZ(θ̃)|+ |p10,XZ(θ)− p10,XZ(θ̃)|+ |p01,XZ(θ)− p01,XZ(θ̃)|

≤B||(X ′ , Z ′ , 1)
′ ||Edc(θ, θ̃).

In all, we have

|l(θ,Wi)− l(θ̃,Wi)| ≤
∑

y,d=0,1

1yd(Yi, Di) · | log pyd(Xi, Zi; θ)− log pyd(Xi, Zi; θ̃)|

≤ 1

p(Xi, Zi)

∑
y,d=0,1

1yd(Yi, Di)|pyd(Xi, Zi; θ)− pyd(Xi, Zi; θ̃)|

≤ B

p(Xi, Zi)
||(X ′i , Z

′
i , 1)

′ ||Edc(θ, θ̃)

≡ U(Wi)dc(θ, θ̃), (A.3.4)

where E[U(Wi)
2] <∞ by Assumptions 1.4.2 and 1.4.3. This results in

sup
θ,θ̃∈Θn,dc(θ,θ̃)≤ε0

|l(θ,Wi)− l(θ̃,Wi)| ≤ U(Wi)ε0 (A.3.5)

and thus the second condition in Condition 3.5M is satis�ed with s = 1.
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For the last condition in Condition 3.5M, note that for any ω > 0, we have

N(ω,Θn, dc) ≤ N(
ω

2
,Ψ, || · ||E) ·N(

ω

4
,Hεn, || · ||∞) ·N(

ω

4
,Hνn, || · ||∞).

By Lemma 2.5 in van de Geer (2000), we have logN(ω4 ,Hεn, ||·||∞) ≤ kn log(1+ 32R
ω )

under Assumption 1.4.5-(i); and hence

logN(ω,Θn, dc) ≤ const.× kn × log(1 +
32R

ω
)

= o(n)

if kn/n → 0. Since the condition kn/n = o(1) is imposed by Assumption 1.4.5-(i),

the last condition in Condition 3.5M is also satis�ed. In all, we have the uniform

convergence of Qn to Q0 over Θn.

To �nish proving Theorem 1.4.7, we verify the conditions in Proposition

A.3.1. By Lemmas A.3.1 and A.3.2, the conditions (i) and (v) in Proposition A.3.1

are satis�ed. Using Equation (A.3.4) and Jensen's inequality, we can see that, for

any θ, θ̃ ∈ Θ,

|Q0(θ)−Q0(θ̃)| ≤ E|l(θ,Wi)− l(θ̃,Wi)|

≤ E[U(Wi)]dc(θ, θ̃)

= B · dc(θ, θ̃)

for some B <∞. Thus, Q0(·) is continuous with respect to dc. As mentioned before,

the parameter space Θ is compact under dc and thus the conditions (ii) and (iii) are

satis�ed with the speci�ed parameter space and the norm. Since the condition (iv)
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is directly imposed, we have d(θ̂n, θ0) = op(1) by Proposition A.3.1.

A.4 Proof of Theorem 1.4.9

We derive the convergence rate of the sieve M-estimator w.r.t. the norm

|| · ||2 by checking the conditions in Theorem 3.2 in Chen (2007). Since {Wi}ni=1 is

assumed to be i.i.d by Assumption 1.4.3, Condition 3.6 in Chen (2007) is satis�ed.

For Condition 3.7 in Chen (2007), we note that for a small ε1 > 0 and for any θ ∈ Θn

such that ||θ − θ0|| ≤ ε1, we have

V ar(l(θ,Wi)− l(θ0,Wi))

≤E[l(θ,Wi)− l(θ0,Wi)]
2

≤E[
1

p(Xi, Zi)2

∑
y,d=0,1

1yd(Yi, Di)|pyd(Xi, Zi; θ)− pyd(Xi, Zi; θ0)|2]

≤E[
1

p(Xi, Zi)2

∑
y,d∈{0,1}

|pyd(Xi, Zi; θ)− pyd(Xi, Zi; θ0)|2].

By the same logic in Equation (A.3.4), we have

V ar(l(θ,Wi)− l(θ0,Wi)) ≤ E[U(Wi)
2]dc(θ, θ0)2.

Note that

dc(θ, θ0)2 = (||ψ − ψ0||E + ||hε − hε0||∞ + ||hν − hν0||∞)2

≤ 4(||ψ − ψ0||2E + ||hε − hε0||2∞ + ||hν − hν0||2∞).
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By Lemma 2 in Chen and Shen (1998), we have

||hj − hj0||2∞ ≤ ||hj − hj0||
4p

2p+1

2 (A.4.1)

for all j ∈ {ε, ν}. Since 4p
2p+1 > 1 under Assumption 1.4.4, we can show that

sup
{θ∈Θn:||θ−θ0||2≤ε1}

V ar(l(θ,Wi)− l(θ0,Wi)) ≤ B1ε
2
1

with ε1 ≤ 1 and some constant B1, and thus Condition 3.7 in Chen (2007) is satis�ed.

We recall Equation (A.3.4) to verify Condition 3.8 in Chen (2007). Let ε2 > 0

be given and consider

|l(θ,Wi)− l(θ0,Wi)|

≤U(Wi){||ψ − ψ0||E + ||hε − hε0||∞ + ||hν − hν0||∞}

≤U(Wi){||ψ − ψ0||E + ||hε − hε0||
2p

2p+1

2 + ||hν − hν0||
2p

2p+1

2 }

≤U(Wi){||ψ − ψ0||
2p+1

2p

E + ||hε − hε0||2 + ||hν − hν0||2}
2p

2p+1

≤U(Wi){||ψ − ψ0||E × (sup
ψ∈Ψ
||ψ||+ ||ψ0||)

1
2p + ||hε − hε0||2 + ||hν − hν0||2}

2p
2p+1

≤Ũ(Wi){||ψ − ψ0||E + ||hε − hε0||2 + ||hν − hν0||2}
2p

2p+1 , (A.4.2)

where Ũ(Wi) = max{1, (supψ∈Ψ ||ψ||+||ψ0||)
1
2p }×U(Wi). Since the parameter space

for ψ, Ψ, is compact under Assumption 1.4.1, E[Ũ(Wi)
2] <∞. Thus, we have

sup
{θ∈Θn:||θ−θ0||≤ε2}

|l(θ,Wi)− l(θ0,Wi)| ≤ ε
2p

2p+1

2 Ũ(Wi)

with E[Ũi(Wi)
2] <∞ and this implies that, under Assumption 1.4.4, Condition 3.8

in Chen (2007) is satis�ed with s = 2p
2p+1 ∈ (0, 2) and γ = 2.
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Let Ln ≡ {l(θ0,Wi) − l(θ,Wi) : θ ∈ Θn, ||θ − θ0||2 ≤ ε2}. We now need to

calculate κn which is de�ned as

κn ≡ inf{κ ∈ (0, 1) :
1√
nκ2

∫ κ

bκ2

√
H[](ω,Ln, || · ||L2)dω ≤ const.},

where, for f ∈ Ln, ||f(θ,Wi)||2L2 ≡ E[f(θ,Wi)
2] is the L2-norm on Ln andH[](ω,Ln, ||·

||L2) is the L2-metric entropy with bracketing of the class Ln (see van der Vaart and

Wellner (1996) or van de Geer (2000) for the de�nition of L2-metric entropy with

bracketing). Let B0 = E[U(Wi)
2], where U(Wi) is the same to the one in Equa-

tion (A.3.4). By Theorem 2.7.11 in van der Vaart and Wellner (1996) and Equation

(A.3.4), we can show that

N[](ω,Ln, || · ||L2) ≤ N(
ω

2B0
,Θn, dc)

≤ N(
ω

4B0
,Ψ, || · ||E) ·N(

ω

8B0
,Hεn, || · ||∞) ·N(

ω

8B0
,Hνn, || · ||∞),

and this leads to

H[](ω,Ln, || · ||L2) = log(N[](ω,Ln, || · ||L2))

≤ log(N(
ω

4B0
,Ψ, || · ||E)) + log(N(

ω

8B0
,Hεn, || · ||∞))

+ log(N(
ω

8B0
,Hεn, || · ||∞))

≤ const.× kn × log(1 +
64B0R

ω
).
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In all, κn solves

1√
nκ2

n

∫ κn

bκ2
n

√
H[](ω,Ln, || · ||L2)dω ≤ const.√

nκ2
n

∫ κn

bκ2
n

√
kn · log(1 +

64B0R

ω
)dω

≤ const.√
nκ2

n

√
kn

∫ κn

bκ2
n

√
1

ω
dω

≤ const.× 1√
nκ2

n

√
knκn ≤ const.

and thus κn ∝
√

kn
n .

Lastly, since ||θ0 − πnθ0||2 ≤ ||θ0 − πnθ0||c = O(k−pn ) by Lorentz (1966), we

have

||θ̂n − θ0||2 = Op(max{
√
kn
n
, k−pn })

by Theorem 3.2 in Chen (2007). By choosing kn ∝ n
1

2p+1 , we have

||θ̂n − θ0||2 = Op(n
− p

2p+1 ).

A.5 Proof of Proposition 1.4.1

Note that since the sieve ML estimator θ̂n is consistent w.r.t the pseudo-

metric dc by Theorem 1.4.7, it is consistent with respect to the norm || · ||2 and

thus with respect to the Fisher norm by Equation (1.4.7). We also point out that

||θ̂n − θ0|| = Op(n
− p

2p+1 ) by Equation (1.4.7) and Theorem 1.4.9 under the given

set of Assumptions. We follow the proof of Theorem 1 in CFT06. Assumptions 1

and 2 in CFT06 are implied by Assumption 1.2.1-1.2.6, 1.2.9-1.4.2, and 1.4.10. The

�rst two parts in Assumption 1.4.11 correspond to Assumption 3 in CFT06 . Since

p > 1/2 by Assumption 1.4.4, ||θ̂n − θ0|| = op(n
−1/4) by Theorem 1.4.9 and this
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implies that ||θ̂n − θ0|| × ||πnv∗ − v∗|| = o(n−1/2) under Assumption 1.4.11 (iii). In

addition, since w > 1 + 1
2p , δ

w
n = o(n−1/2) by that ||θ̂n − θ0|| = Op(n

− p
2p+1 ). Hence,

Assumptions 3 and 4 in CFT06 are satis�ed.

De�ne r[θ, θ0,Wi] ≡ l(θ,Wi)− l(θ0, Zi)− ∂l(θ0,Wi)

∂θ′
[θ − θ0] and ξ0 = 2ξ1 + ξ2.

Let ζn be a positive sequence with ζn = o(n−1/2) and (δn)3−(2ξ1+ξ2) = ζno(n
−1/2).

Then we have

0 ≤ 1

n

n∑
i=1

l(θ̂n,Wi)− l(θ̂n ± ζnπnv∗,Wi)

≤ ∓ζn
1

n

n∑
i=1

∂l(θ0,Wi)

∂θ′
[πnv

∗]

+ µn(r[θ̂n, θ0,Wi]− r[θ̂n ± ζnπnv∗, θ0,Wi])

+ E[r[θ̂n, θ0,Wi]− r[θ̂n ± ζnπnv∗, θ0,Wi]]. (A.5.1)

We �rst note that, by Assumption 1.4.11 (iii),

E[
1

n

n∑
i=1

∂l(θ0,Wi)

∂θ′
[πnv

∗ − v∗]]2 ≤ 1

n
E[{∂l(θ0,Wi)

∂θ′
[πnv

∗ − v∗]}2]

=
1

n
||πnv∗ − v∗||2

= o(n−1), (A.5.2)

and hence 1
n

∑n
i=1

∂l(θ0,Wi)

∂θ′
[πnv

∗ − v∗] = op(n
−1/2).
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Observe that, by the mean value theorem,

E[r[θ, θ0,Wi]] = E[l(θ,Wi)− l(θ0,Wi)−
∂l(θ0,Wi)

∂θ′
[θ − θ0]]

= E[
1

2

∂2l(θ0,Wi)

∂θ∂θ′
[θ − θ0, θ − θ0]]

+
1

2
E[
∂2l(θ̃,Wi)

∂θ∂θ′
[θ − θ0, θ − θ0]− ∂2l(θ0,Wi)

∂θ∂θ′
[θ − θ0, θ − θ0]],

(A.5.3)

where θ, θ̃ ∈ Θn and θ̃ is between θ and θ0. In addition, for any v = (v
′
ψ, vε, vν)

′ ∈ V

and θ̃ ∈ Θn with ||θ̃ − θ0|| = O(δn), we have

E[
∂2l(θ̃,Wi)

∂θ∂θ′
[v, v]− ∂2l(θ0,Wi)

∂θ∂θ′
[v, v]] = v

′
ψE[

∂2l(θ̃,Wi)

∂ψ∂ψ′
− ∂2l(θ0,Wi)

∂ψ∂ψ′
]vψ

+
∑

j∈{ε,ν}

2v
′
θE[(

∂2l(θ̃,Wi)

∂ψ∂hj
[vj ]−

∂2l(θ0,Wi)

∂ψ∂hj
[vj ])]

+
∑

k,j∈{ε,ν}

E[
∂2l(θ̃,Wi)

∂hk∂hj
[vk, vj ]−

∂2l(θ0,Wi)

∂hk∂hj
[vk, vj ]],

and this term can be controlled under Assumption 1.4.13 in the same way of CFT06.

This leads us to that

E[r[θ̂n, θ0,Wi]− r[θ̂n ± ζnπnv∗, θ0,Wi]]

= −1

2
(||θ̂n − θ0||2 − ||θ̂n ± ζnπnv∗ − θ0||) + ζno(n

−1/2)

= ±ζn× < θ̂n − θ0, v
∗ > +ζno(n

−1/2) (A.5.4)

because we have < θ̂n − θ0, πnv
∗ − v∗ >= op(n

−1/2) and ||πnv∗||2 → ||v∗||2 <∞.
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We also point out that

µn(r[θ̂n, θ0,Wi]− r[θ̂n ± ζnπnv∗, θ0,Wi])

=µn(l(θ̂n,Wi)− l(θ̂n ± ζnπnv∗,Wi)−
∂l(θ0,Wi)

∂θ′
[∓ζnπnv∗])

=∓ ζn · µn(
∂l(θ̃,Wi)

∂θ′
[πnv

∗]− ∂l(θ0,Wi)

∂θ′
[πnv

∗]),

where θ̃ ∈ Θn is between θ̂n and θ̂n ± ζnπnv∗. By Assumption 1.4.14, we have

µn(r[θ̂n, θ0,Wi]− r[θ̂n ± ζnπnv∗, θ0,Wi]) = op(ζnn
−1/2). (A.5.5)

Combining Equations (A.5.1) through (A.5.5) with the fact that E[∂l(θ0,Wi)

∂θ′
[v∗]] =

0, we have

0 ≤ 1

n

n∑
i=1

l(θ̂n,Wi)− l(θ̂n ± ζnπnv∗,Wi)

= ∓ζn · µn(
∂l(θ0,Wi)

∂θ′
[v∗])± ζn < θ̂n − θ0, v

∗ > +ζn · op(n−1/2),

and this results in that

√
n < θ̂n − θ0, v

∗ > =
√
nµn(

∂l(θ0,Wi)

∂θ′
[v∗]) + op(1)

d→ N(0, ||v∗||2).

By Assumption 1.4.11, we have

√
n(T (θ̂n)− T (θ0)) =

√
n < θ̂n − θ0, v

∗ >
d→ N(0, ||v∗||2)

by the same way in CFT06.
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A.6 Proof of Theorem 1.4.16

Take any λ ∈ Rdψ−{0}. Assumption 1.4.11-(i) is satis�ed with w =∞ in the

case of T (θ) = λ
′
ψ and Assumption 1.4.15 implies Assumption 1.4.11-(ii). Hence,

by Proposition 1.4.1, we have

√
n(λ

′
ψ̂n − λ

′
ψ0)⇒ N(0, λ

′
I∗(ψ0)−1λ).

Since λ was arbitrary, we obtain the result by Cramer-Wold device.

A.7 Hölder ball

Suppose that h ∈ ΛpR([0, 1]), where p = m + ζ, m ≥ 0 is an integer and

ζ ∈ (0, 1] is the Hölder exponent. We want to show that h2 ∈ Λp
R̃

([0, 1]), where

R̃ = R22m+1 . We note that ||h||∞ ≤ R and thus supx |Dωh(x)| ≤ R for all ω ≤ m.

By Leibniz's formula, we have

|Dωh2(x)| = |Dω(h · h)|

= |
∑
ι≤ω

(
ω

ι

)
DιhDω−ιh|

≤ R2
∑
ι≤ω

(
ω

ι

)
= R22ω ≤ K22m <∞
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for all ω ≤ m. Observe that, by Leibniz's formula, for any x, y ∈ [0, 1] with x 6= y,

|Dmh2(x)−Dmh2(y)| = |
∑
ω≤m

(
m

ω

)
Dωh(x)Dm−ωh(x)−

∑
ω≤m

(
m

ω

)
Dωh(y)Dm−ωh(y)|

≤ |
∑
ω≤m

(
m

ω

)
Dωh(x)Dm−ωh(x)−

∑
ω≤m

(
m

ω

)
Dωh(y)Dm−ωh(x)|

+ |
∑
ω≤m

(
m

ω

)
Dωh(y)Dm−ωh(x)−

∑
ω≤m

(
m

ω

)
Dωh(y)Dm−ωh(y)|

≤ 2× { sup
ω≤m

sup
x
|Dωh(x)|} × |

∑
ω≤m

(
m

ω

)
{Dωh(x)−Dωh(y)}|

≤ 2R
∑
ω≤m

(
m

ω

)
|Dωh(x)−Dωh(y)|.

We also have that, for all ω < m,

|Dωh(x)−Dωh(y)|
|x− y|ζ

=
|Dωh(x)−Dωh(y)|

|x− y|
|x− y|1−ζ

= |Dω+1h(x̃)||x− y|1−ζ

≤ R,

where x̃ is between x and y. Note that ζ ∈ (0, 1] and thus |x − y|1−ζ ≤ 1 for all

x, y ∈ [0, 1]. Since h ∈ ΛpR([0, 1]), we have |D
mh(x)−Dmh(y)|
|x−y|ζ ≤ R. Hence,

|Dmh2(x)−Dmh2(y)|
|x− y|ζ

≤ 2R
∑
ω≤m

(
m

ω

)
|Dωh(x)−Dωh(y)|

|x− y|ζ

≤ 2R2
∑
ω≤m

(
m

ω

)
= R22m+1 <∞,

and this implies that h2 ∈ Λp
R̃

([0, 1]) with R̃ = R22m+1.
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Appendix B

Chapter 2 Appendix

Let (Ω,A,P) be a probability space. For x ∈ Rd,||x||E means the Euclidean

norm of x in Rd. Let l2(W) be the space of functions that are square-integrable

on a set W. Similarly, de�ne l∞(W) as the space of functions that are uniformly

bounded on a set W. For a generic function g on a set W, ||g||2 ≡ (
∫
W
g2dP )1/2 and

||g||∞ ≡ supw∈W |g(w)| are the L2- and sup− norm, respectively. The expectation

of g is denoted by Eg ≡
∫
g(w)dFW (w), where FW (·) is the distribution function of

W . For a sequence of random maps Xn : Ω→ R and a random variable X, Xn ⇒ X

(Xn
d→ X, resp.) indicates that Xn converges weakly (in distribution, resp.) to X

in the sense of De�nition 1.3.3 in van der Vaart and Wellner (1996). For any real

numbers a and b, let a∧ b ≡ min(a, b) and a∨ b ≡ max(a, b). For any real sequences

(an) and (bn), an . bn means that there is a constant C > 0 such that |an| ≤ C · |bn|

for all n ∈ N. For a set A, denote the interior of A by int(A).
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B.1 Proof of Lemma 2.2.1

Proof. De�ne

H1(t|X) ≡ Pr(Y ≤ t,D = 1|X),

H0(t|X) ≡ Pr(Y ≤ t,D = 0|X),

H̃(t|X) ≡ Pr(Y > t|X).

Then, one can show that

H1(t|X) = E[1(Y ≤ t,D = 1)|X]

= E[E[1(Y ≤ t,D = 1)|X,T ]|X]

= E[E[1(Y ≤ t)|X,T,D = 1] Pr(D = 1|X,T )|X]

= E[1(T ≤ t)(1− FC|X(T |X))|X]

=

∫ t

0
(1− FC|X(s|X))dFT |X(s|X), (B.1.1)

and hence dH1(t|X) = (1−G(t|X))dFT |X(t|X). Observing that the event {Y ≥ t}

is equivalent to the event {T ≥ t, C ≥ t}, one can show that

H̃(t|X) = E[1(Y > t)|X]

= E[1(T > t,C > t)|X]

= (1− FT |X(t|X))(1− FC|X(t|X))
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by the conditional independence of T and C given X. Therefore,

∫ t

0

dH1(s|X)

H̃(s|X)
=

∫ t

0

(1− FC|X(s|X))dFT |X(s|X)

(1− FT |X(s|X))(1− FC|X(s|X))

=

∫ t

0

dFT |X(s|X)

(1− FT |X(s|X))

= − ln(1− FT |X(t|X)). (B.1.2)

Since H1 and H̃ are identi�ed from data, Equation (B.1.2) implies that FT |X(t|X)

is identi�ed. For identi�cation of FC|X , one can show that H0(t|X) =
∫ t

0 (1 −

FT |X(s|X)dFC|X(s|X) by a similar way to (B.1.1), and thus dH0(t|X) = (1 −

FT |X(t|X))dFC|X(t|X). Therefore,

∫ t

0

dH0(s|X)

H̃(s|X)
= − ln(1− FC|X(t|X))

and this leads to identi�cation of FC|X by the same logic above.

B.2 Proof of Lemma 2.2.2

Proof. Suppose that QT |X(τ |Xi) = QT |X1
(τ |X1i) almost surely. Note that

E[Di{1(Yi ≤ QT |X1
(τ |X1i))− τ}|Xi]

=E[1(Yi ≤ QT |X1
(τ |X1i))− τ |Di = 1, Xi] Pr(Di = 1|Xi)

=E[1(Ti ≤ QT |X1
(τ |X1i))− τ |Xi] Pr(Di = 1|Xi)

=0 · p0(Xi) = 0
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under the null hypothesis. Conversely, suppose that the null hypothesis in (2.2.4)

holds. Then one can show that

0 = E[Di{1(Yi ≤ QT |X1
(τ |X1i))− τ}|Xi]

= E[1(Yi ≤ QT |X1
(τ |X1i))− τ |Di = 1, Xi] Pr(Di = 1|Xi)

= E[1(Ti ≤ QT |X1
(τ |X1i)−QT |X(τ |Xi) +QT |X(τ |Xi))− τ |Xi] Pr(Di = 1|Xi)

= {FT |X(QT |X1
(τ |X1i)−QT |X(τ |Xi) +QT |X(τ |Xi)|Xi)− τ}Pr(Di = 1|Xi).

Since p0(x) > 0 uniformly in x ∈ X, the above equation implies that

FT |X(QT |X1
(τ |X1i)−QT |X(τ |Xi) +QT |X(τ |Xi)|Xi) = τ.

Since the conditional quantile is assumed to be unique, QT |X1
(τ |X1i)−QT |X(τ |Xi)+

QT |X(τ |Xi) = QT |X(τ |Xi) and this leads to Equation (2.2.3).

B.3 Proof of Theorem 2.3.7

Proof. De�ne gi(t; τ) ≡ Di{1(Yi ≤ QT |X1
(τ |X1i)) − τ}ψ(Xi, t) and G ≡ {gi(t; τ) :

t ∈ I}. For any t1, t2 ∈ I, it can be shown that

|gi(t1)− gi(t2)| ≤ |Di{1(Yi ≤ QT |X1
(τ |X1i))− τ}| ·GΨ(Xi)||t1 − t2||E .

Since E[{1(Yi ≤ QT |X1
(τ |X1i)) − τ}DiGΨ(Xi)]

2 < ∞, it follows that G is a type

IV class de�ned in Andrews (1994b) and thus G satis�es Ossiander's L2 entropy

condition by Theorem 5 in Andrews (1994b). Applying Theorem 3.1 in Ossiander

(1987) yields that F is Donsker and thus Jn(·)⇒ G(·) in l∞(I).
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B.4 Proof of Theorem 2.3.8

To handle the term νpn(t, q̂1; τ)−νpn(t; q1; τ) in (2.3.2), I prove that νpn(·, ·; τ) is

stochastically equicontinuous. The following lemma is used to verify one of conditions

of Theorem 2.11.9 in van der Vaart and Wellner (1996).

Lemma B.4.1. Let (Θ, ρ) be a pseudo-metric space with Θ ≡ Ψ×F and ρ(θ1, θ2) ≡

||ψ1−ψ2||2 + ||q1−q2||F for some function space F equipped with a norm || · ||∞ (that

is, || · ||F = || · ||∞). If Assumption 2.3.6 is satis�ed and (F, || · ||F) is totally bounded,

then (Θ, ρ) is totally bounded.

Proof. For a pseudo-metric space (M, ρM), denote the open ball of radius κ > 0, cen-

tered atm ∈M, by Bκ(m). To show that the pseudo-metric space (Ψ, ||·||2) is totally

bounded, take any ε > 0. Let C ≡ E[GΨ(Xi)
2], where GΨ(·) is de�ned in Assump-

tion 2.3.6, and δ ≡ ε√
C
> 0. Since I is assumed to be compact in Rdx , it is compact

and thus totally bounded. That is, there exists a set {ti ∈ X : i = 1, 2, ..., N(δ)} such

that X ⊆ ∪N(δ)
i=1 Bδ(ti). It su�ces to show that Ψ ⊆ ∪N(δ)

i=1 Bε(ψ(X, ti)). Let h(X) be

an arbitrary element of Ψ (i.e. h(X) = ψ(X, t) for some t ∈ I). Since I is totally

bounded, there exists ti0 ∈ {ti ∈ X : i = 1, 2, ..., N(δ)} such that ||t − ti0 ||E < δ.

This implies that

||h(X)− ψ(X, ti0)||22 ≤ E[G(X)2]||t− ti0 ||2E ≤ Cδ2 = ε2

and thus that Ψ ⊆ ∪N(δ)
i=1 Bε(ψ(X, ti)). SinceN(δ) <∞ and ε was arbitrary, (Ψ, ||·||2)

is totally bounded. Since it is assumed that (F, ||·||F) is totally bounded, the product

of Ψ and F is totally bounded with respect to ρ.
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For the simplicity of notation, I abbreviate a generic (ψ̄, q) ∈ Ψ̄×Λp1

R (X1) to

θ ∈ Θ, where Θ ≡ Ψ̄× Λp1

R (X1).

Lemma B.4.2. Suppose that Assumptions 2.3.1, 2.3.2, 2.3.3, and 2.3.6 hold. Then,

νpn(·, ·; τ) is stochastically equicontinuous with respect to the semi-norm ρ(θ, θ̃) ≡

||ψ̄ − ˜̄ψ||2 + ||q − q̃||∞.

Proof. De�ne

Zni(ψ, q) ≡
1√
n
Diψ̄(X1i, t){1(Yi ≤ qi)− FT |X1

(qi|X1i)}

and let F ≡ {Zni(ψ̄, q) : (ψ̄, q) ∈ Ψ̄ × Λp1

R (X1)}. Noting that q is a function of

only X1, it is clear that EZni(ψ̄, q) = 0 for any (ψ̄, q) ∈ Θ. I verify the con-

ditions of Theorem 2.11.9 in van der Vaart and Wellner (1996). Let ||Zni||F ≡

sup(ψ̄,q)∈Ψ̄×Λ
p1
R (X1) |Zni(ψ̄, q)| and ρ((ψ̄, q), ( ˜̄ψ, q̃)) ≡ ||ψ̄ − ˜̄ψ||2 + ||q − q̃||∞. Since

Di{1(Yi ≤ qi)− FT |X1
(qi|X1i)}ψ̄(X1i, t) is uniformly bounded, one obtains that for

any η > 0,

E[||Zni||F1(||Zni||F > η)]

≤ C√
n

Pr(||Zni||F > η)

≤ C√
n

E||Di{1(Yi ≤ qi)− FT |X1
(qi|X1i)}ψ̄(X1i, t)||F

nη2

.
1

n
√
nη

= o(n). (B.4.1)

This implies that
∑

i E[||Zni||F1(||Zni||F > η)] = o(1) and thus that the �rst condi-

tion of the theorem is met.
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Take any (ψ̄, q) ∈ Ψ̄×Λp1

R (X1) and η > 0. Note that for any θ̃ = (ψ̃, q̃) such

that ρ(θ, θ̃) ≤ η,

E[Zni(ψ̄, q)− Zni(ψ̃, q̃)]2

.
1

n
E[Di{1(Yi ≤ qi)− FT |X1

(qi|X1i)}ψ̄(X1i, t)

−Di{1(Yi ≤ q̃i)− FT |X1
(q̃i|X1i)}ψ̄(X1i, t̃)]

2

.
1

n
E[p0(Xi){1(Ti ≤ qi)− 1(Ti ≤ q̃i)− (FT |X1

(qi|X1i)− FT |X1
(q̃i|X1i))}2]

+
1

n
E[ψ̄(X1i, t)− ψ̄(X1i, t̃)]

2

.
1

n
E[|1(Ti ≤ qi)− 1(Ti ≤ q̃i)|] +

1

n
E[(FT |X1

(qi|X1i)− FT |X1
(q̃i|X1i))

2] +
1

n
||ψ̄ − ˜̄ψ||22.

(B.4.2)

Using the argument of (Chen et al., 2003, p.1600), it can be shown that

sup
||q−q̃||≤η

1

n
E[|1(Ti ≤ qi)− 1(Ti ≤ q̃i)|]

≤ 1

n
E[1(Ti ≤ qi + η)− 1(Ti ≤ qi − η)]

≤ 1

n
E[FT |X1

(qi + η|X1i)− FT |X1
(qi − η|X1i)]

≤ 1

n
sup

t∈R,x1∈X1‘

|fT |X1
(t|x1)| · 2η .

1

n
η (B.4.3)

by Assumption 2.3.3. By the same way, it is straightforward to show that, under

Assumption 2.3.3,

sup
||q−q̃||≤η

1

n
E[(FT |X1

(qi|X1i)− FT |X1
(q̃i|X1i))

2] .
1

n
η2. (B.4.4)
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Under Assumption 2.3.6, one can show that

||ψ̄(X1i, t1)− ψ̄(X1i, t2)||22 = E[|ψ̄(X1i, t1)− ψ̄(X1i, t2)|]2

≤ E[E[|ψ(Xi, t1)− ψ(Xi, t2)||X1i]
2]

≤ E[E[GΨ(Xi) · ||t1 − t2||E |X1i]
2]

≤ ||t1 − t2||2EE[Ḡ2
Ψ(X1i)], (B.4.5)

where ḠΨ(X1i) ≡ E[GΨ(Xi)|X1i]. By Jensen's inequality, ḠΨ is square-integrable

as GΨ is square-integrable. In all, combining (B.4.2), (B.4.3) and (B.4.4)together

yields that

n · sup
ρ(θ,θ̃)≤αn

E[Zni(ψ, q)− Zni(ψ̃, q̃)]2 . αn + α2
n = o(1) (B.4.6)

for any positive sequence αn such that αn ↓ 0, and thus the second condition of the

theorem is also satis�ed.

Lastly, I calculate the bracketing L2-entropy of Θ = Ψ̄× Λp1

R (X1). Take any

ε > 0. SinceN(ε,Θ, ||·||2) ≤ N[](ε,Θ, ||·||2), it su�ces to calculate the L2−bracketing

number. By the de�nition of the bracketing number, one can show that

N[](ε,̄ × Λp1

R (X1), || · ||2) ≤ N[](
ε

2
, Ψ̄, || · ||2) ·N[](

ε

2
,Λp1

R (X1), || · ||2). (B.4.7)

Since the weighting function ψ̄(x, t) is Lipschitz in t as shown in (B.4.5), it follows

that N[](
ε
2 , Ψ̄, || · ||2) ≤ N( ε

4||ḠΨ||2
, I, || · ||E) by Theorem 2.7.11 in van der Vaart and

Wellner (1996). Since I is assumed to be compact in Rdx , the covering number is
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bounded by C · ε−dx for some constant C > 0. By Corollary 2.7.2 in van der Vaart

and Wellner (1996) with Assumption 2.3.2, the L2-bracketing number, one obtains

that

logN[](
ε

2
,Λp1

R (X1), || · ||2) . ε
− d1
p1 ,

and this implies that

logN[](ε,Θ, || · ||2) ≤ logN[](
ε

2
,Ψ, || · ||2) + logN[](

ε

2
,Λp1

R (X1), || · ||∞) . ε
− d1
p1 .

Therefore, for any positive sequence {αn} such that αn ↓ 0,

∫ αn

0

√
logN[](ε,Θ, || · ||2)dε . α

1− d1
2p1

n = o(1) (B.4.8)

by Assumption 2.3.2.

Note that a Hölder ball is compact under the sup-norm by the embed-

ding theorem (e.g. Theorems 1 and 2 in Freyberger and Masten (2015)), and thus

(Λp1

R (X1), || · ||∞) is totally bounded. Thus, (Θ, ρ) is a totally bounded pseudo-metric

space by lemma B.4.1 and equations (B.4.1), (B.4.6), and (B.4.8) together establish

that all conditions of Theorem 2.11.9 in van der Vaart and Wellner (1996) are satis-

�ed. In all, νpn(·, ·; τ) is asymptotically tight. Since E[n ·Zni(θ)2] <∞ for any θ ∈ Θ,

all �nite-dimensional marginals of νpn(·, ·; τ) converge in distribution to a multivari-

ate normal distribution by the multivariate central limit theorem. Since νpn(·, ·; τ) is

asymptotically tight and all of its �nite-dimensional marginals converge in distribu-

tion to a random vector, νpn(·, ·; τ) converges weakly to a tight limit in l∞(Θ) and

this leads to that νpn(·, ·; τ) is stochastically equicontinuous (e.g. (Andrews, 1994b,
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p.2251)).

Let q1i ≡ QT |X1
(τ |X1i) and q̂1i ≡ Q̂T |X1

(τ |X1i) and recall the smoothed

term

Ĵsn(t;G) =
1√
n

∑
i

Di{FT |X1
(q̂1i|X1i)− FT |X1

(q1i|X1i)}ψ̄(X1i, t)

=
1√
n

∑
i

DifT |X1
(q1i|X1i)(q̂1i − q1i)ψ̄(X1i, t) +Op(||q̂1 − q1||2∞).

By the construction of the conditional quantile function, the leading term can be

rewritten as

1√
n

∑
i

DifT |X1
(q1i|X1i)(q̂1i − q1i)ψ̄(X1i, t)

=
1√
n

∑
i

DifT |X1
(q1i|X1i){F̂−1

1n (τ |X1i)− F−1
1 (τ |X1i)}ψ̄(X1i, t).

Since the inverse map is Hadamard di�erentiable1, one can show that for F (·|·) such

that ||F − FT |X1
||∞ is small,

F−1(τ |x1)− F−1
T |X1

(τ |x1) =
FT |X1

(QT |X1
(τ |x1)|x1)− F (QT |X1

(τ |x1)|x1)

fT |X1
(QT |X1

(τ |x1)|x1)

+O(||F (·|·)− FT |X1
(·|·)||2∞)

by, for example, Van der Vaart (1998); Kong and Xia (2017). Since ||F̂1n−FT |X1
||∞ =

op(1) and ||F (·|·) − FT |X1
(·|·)||2∞ = O( logn

nh
d1
Fn

) = o(n−1/2) by Lemma 1 in Kong and

1One can refer to, for example, van der Vaart and Wellner (1996); Van der Vaart (1998); Kosorok
(2008) for the de�nition of Hadamard di�erentiability.
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Xia (2017), it can be shown that for large enough n,

1√
n

∑
i

DifT |X1
(q1i|X1i){F̂−1

1n (τ |X1i)− F−1
T |X1

(τ |X1i)}ψ̄(X1i, t)

=− 1√
n

∑
i

Diψ̄(X1i, t){F̂1n(q1i|X1i)− FT |X1
(q1i|X1i)}+

√
nOp(

log n

nhd1
Fn

), (B.4.9)

where the equality comes from Lemma 1 in Kong and Xia (2017). Note that under

the conditions on the bandwidth hFn, the remainder term is op(1). Therefore, one

needs to investigate the leading term in (B.4.9) and the following lemma establishes

that the leading term admits an asymptotic linear representation.

Lemma B.4.3. Suppose that Assumptions 2.3.1 and 2.3.3 through 2.3.6 hold. Then,

1√
n

∑
i

Diψ̄(X1i, t){F̂1n(q1i|X1i)− FT |X1
(q1i|X1i)}

=
1√
n

∑
i

(1− τ)ψ̃(X1i, t)ξ(Yi, Di, q1i, X1i) + op(1),

where

ξ(Yj , Dj , y, x) ≡ [
1(Yj ≤ y) ·Dj

(1− FT |X1
(Yj |x))(1−G(Yj |x))

−
∫ min(Yj ,y)

0

f1(s|x)ds

(1− FT |X1
(s|x))2(1−G(s|x))

],

ψ̃(X1i, t) ≡ E[ψ̄(X1i, t)p0(Xi)|X1i],

uniformly in t ∈ I.

Proof. Using the asymptotic representation given in Lemma 1 in Kong and Xia
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(2017), it is straightforward to see that

F̂1n(y|x)− FT |X1
(y|x) =

1

nhd1
Fn

(1− FT |X1
(y|x))

∑
j

B̃hFn(X1j ;x)ξ(Yj , Dj , y, x)

+O((
log n

nhd1
Fn

)3/4), (B.4.10)

where

B̃hFn(X1j ;x) = e
′
1Ω−1

1 µ(
X1j − x
hFn

)KF (
X1j − x
hFn

)/fX1(x).

Plugging (B.4.10) into (B.4.9) yields that uniformly y and x ∈ X1,

1√
n

∑
i

Diψ̄(X1i, t){F̂1n(y|x)− FT |X1
(y|x)}

=
(1− FT |X1

(y|x))

n
√
n

∑
i

∑
j

Diψ̄(X1i, t)
1

hd1
Fn

B̃hFn(X1j ;x)ξ(Yj , Dj , y, x)

+
√
nOp((

log n

nhd1
Fn

)3/4),

where the remainder term is op(1) under the conditions on the bandwidth hFn. To

analyze the leading term in the above equation, I utilize the theory of U-processes.

Let

p†Fn(Wi,Wj ; y, t) ≡ Diψ̄(X1i, t)
1

hd1
Fn

B̃hFn(X1j ;X1i)ξ(Yj , Dj , y,X1i).

To make the U-statistic kernel p†Fn(·, ·; t) symmetric, de�ne pFn(Wi,Wj ; y, t) ≡
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1
2{p
†
Fn(Wi,Wj ; y, t) + p†Fn(Wj ,Wi; y, t)}. Then one obtains that

1

n
√
n

∑
i

∑
j

Diψ̄(X1i, t)
1

hd1
Fn

B̃hFn(X1j ;X1i)ξ(Yj , Dj , y,X1i)

=
1

n
√
n

∑
i

∑
j 6=i

p†Fn(Wi,Wj ; y, t) +
1

n
√
n

∑
i

p†Fn(Wi,Wi; y, t)

=
√
n
n− 1

n

(
n

2

)−1∑
i

∑
j>i

pFn(Wi,Wj ; y, t) +
1

n
√
n

∑
i

p†Fn(Wi,Wi; y, t).

By a similar reasoning of (Kong et al., 2013, p.966), 1
n
√
n

∑
i p
†
Fn(Wi,Wi; y, t) =

op(1). On the other hand, the leading term can be analyzed by using the theory of U-

processes. To keep the simplicity of notations, let p†Fn(Wi,Wj ; t) ≡ p†Fn(Wi,Wj ; q1i, t)

and pFn(Wi,Wj ; t) ≡ pFn(Wi,Wj ; q1i, t).

Let Un(y, t) ≡
(
n
2

)−1∑
i

∑
j>i pFn(Wi,Wj ; y, t) and consequently denote Un(q1i, t)

by Un(t). I also de�ne the following objects:

rFn(Wi; y, t) ≡ E[pFn(Wi,Wj ; y, t)|Wi],

θFn(y, t) ≡ E[pFn(Wi,Wj ; y, t)],

p̃Fn(Wi,Wj ; y, t) ≡ pFn(Wi,Wj ; y, t)− rFn(Wi; y, t)− rFn(Wj ; y, t) + θFn(y, t),

and rFn(Wi; t), θFn(t), and p̃Fn(Wi,Wj ; t) are de�ned by the same way above. Then,

applying Hoe�ding's decomposition to Un(y, t) yields that

Un(y, t) = θFn(y, t) +
2

n

∑
i

rFn(Wi; y, t) +

(
n

2

)−1∑
i

∑
j>i

p̃Fn(Wi,Wj ; y, t)

≡ θFn(y, t) +
2

n

∑
i

rFn(Wi; y, t) +RFn(y, t)

First, I show that RFn(t) = op(1) where RFn(t) ≡ RFn(q1i, t). It is obvious that

161



ERFn(t) = 0 for any t ∈ I. To calculate the variance of RFn(t) for given t ∈ I, I

refer to Powell et al. (1989). Note that

V ar(RFn(t)) ≤
(
n

2

)−2∑
i

∑
j>i

Ep̃Fn(Wi,Wj ; t)
2 =

(
n

2

)−2

O(n2)Ep̃Fn(Wi,Wj ; t)
2.

Moreover, one can further show that

Ep̃Fn(Wi,Wj ; t)
2 = E[pFn(Wi,Wj ; t)− rFn(Wi, t)− rFn(Wj , t) + θFn(t)]2

. E[pFn(Wi,Wj ; t)− θFn(t)]2 + E[rFn(Wi; t)− θFn(t)]2

≤ 2E[pFn(Wi,Wj ; t)− θFn(t)]2

= 2V ar(pFn(Wi,Wj ; t)) ≤ 2EpFn(Wi,Wj ; t)
2

where the inequality on the third line holds by a property of U-statistic, given by

(Ser�ing, 1980, p.182). Thus,

V ar(
√
nRFn(t)) ≤ n ·

(
n

2

)−2

O(n2) · EpFn(Wi,Wj ; t)
2 = O(n−1)EpFn(Wi,Wj ; t)

2

and it will su�ce to show that EpFn(Wi,Wj ; t)
2 = o(n) to prove that RFn(t) =

op(n
−1/2) for given t ∈ I. Note that

EpFn(Wi,Wj ; t)
2 =

1

4
E[p†Fn(Wi,Wj ; t) + p†Fn(Wj ,Wi; t)]

2 ≤ Ep†Fn(Wi,Wj ; t)
2
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and that

Ep†Fn(Wi,Wj ; t)
2

=E[Diψ̄(X1i, t)
1

hd1
Fn

B̃hFn(X1j ;X1i)ξ(Yj , Dj , q1i, X1i)]
2

.
1

hd1
Fn

E[
1

hd1
Fn

{e′1Ω−1
1 µ(X1j −X1i;hFn)KF (

X1j −X1i

hFn
)

1

fX1(X1i)
ξ(Yj , Dj , q1i, X1i)}2]

≤ 1

hd1
Fn

E[
1

hd1
Fn

||e1||2||Ω−1
1 µ(X1j −X1i;hFn)||2K2

F (
X1j −X1i

hFn
){ 1

fX1(X1i)
ξ(Yj , Dj , q1i, X1i)}2]

.
1

hd1
Fn

E[
1

hd1
Fn

KF (
X1j −X1i

hFn
)ξ(Yj , Dj , q1i, X1i)

2]

=
1

hd1
Fn

E[
1

hd1
Fn

KF (
X1j −X1i

hFn
)E[ξ(Yj , Dj , q1i, X1i)

2|X1i, X1j ]]

≤O(h−d1
Fn )

since E[ξ(Yj , Dj , q1i, X1i)
2] < ∞. Hence, Ep†Fn(Wi,Wj ; t)

2 = o(n) as nhd1
Fn → ∞

and this implies that V ar(
√
nRFn(t)) = o(1).

To obtain the uniform convergence, I adopt the approach used in the proof

of Lemma 3 in Huang et al. (2016). Recall that the weighting function is of the form

of ψ(Xi, t) = w(X
′
it) where w(·) is analytical, and hence Ψ is Vapnik-�ervonenkis

(VC)-type. Let P ≡ {p(Wi,Wj ; t) : t ∈ I}, then P = Ψ(t)·{K(Wi,Wj)+K(Wj ,Wi)},

where K(Wi,Wj) ≡ 1

h
d1
Fn

DiB̃hFn(X1j ;X1i)ξ(Yj , Dj , q1i, X1i). Since K is a bounded

function, P is again VC-type with a square-integrable envelope by Lemma 2.6.18 in

van der Vaart and Wellner (1996). Note that, by the standard arguments in the

local polynomial regression, EK2(Wi,Wj) = O(h−d1
Fn ) under the conditions imposed
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in this lemma and thus one obtains

E sup
t∈I
|n(n− 1)

n
Rn(t)|2 . EK2(Wi,Wj) = O(h−d1

Fn )

by Proposition 4 in Delgado and Manteiga (2001). Thus, E supt∈I |
√
nRFn(t)|2 =

O((nhd1
Fn)−1) = o(1) and this leads to that supt∈I |

√
nRFn(t)| = op(1).

Now, I consider the projected term θFn(t) + 2
n

∑
i rFn(Wi; t). Recall that

rFn(Wi; t) = E[pFn(Wi,Wj ; t)|Wi],

then one can show that

2rFn(Wi; y, t) = E[p†Fn(Wj ,Wi; y, t)|Wi]

= E[Djψ̄(X1j , t)
1

hd1
Fn

B̃hFn(X1j ;X1i)ξ(Yi, Di, y,X1j)|Wi]

= E[E[Djψ̄(X1j , t)
1

hd1
Fn

B̃hFn(X1j ;X1i)ξ(Yi, Di, y,X1j)|Xj ,Wi]|Wi]

= E[p0(Xj)ψ̄(X1j , t)
1

hd1
Fn

B̃hFn(X1j ;X1i)ξ(Yi, Di, y,X1j)|Wi]

= E[ψ̃(X1j , t)
1

hd1
Fn

B̃hFn(X1j ;X1i)ξ(Yi, Di, y,X1j)|Wi],

where ψ̃(X1j , t) = E[p0(Xj)ψ̄(X1j , t)|X1j ]. Since ξ(Yi, Di, y,X1j) is continuously

di�erentiable with respect to X1j , applying change of variables and the standard

arguments of the local polynomial regression (e.g. (Fan and Gijbels, 1996, p.64))
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yields that

2rFn(Wi; y, t) = E[ψ̃(X1j , t)
1

hd1
Fn

B̃hFn(X1j ;X1i)ξ(Yi, Di, y,X1j)|Wi]

=

∫
ψ̃(x1, t)ξ(Yi, Di, y, x1)

1

hd1
Fn

e
′
1Ω−1

1 µ(
x1 −X1i

hFn
)KF (

x1 −X1i

hFn
)dx1

= ψ̃(X1i, t)ξ(Yi, Di, y,X1i) + op(n
−1/2), (B.4.11)

where op(n−1/2) holds uniformly in y and t. This also implies that θFn(t) = op(n
−1/2)

uniformly in t. In all, one can obtain

1√
n

∑
i

Diψ(Xi, t){F̂S1n(q1i|X1i)− F1(q1i|X1i)}

=
1√
n

∑
i

(1− τ)ψ̃(X1i, t)ξ(Yi, Di, q1i, X1i) + op(1)

as (1− FT |X1
(q1i|X1i)) = 1− τ , and this completes the proof.

Proof of theorem 2.3.8

Proof. Recall that

Ĵn(t; τ) = Jn(t; τ) + νpn(t, q̂1; τ)− νpn(t; q1; τ) + Ĵsn(t; τ).

By lemma B.4.2 and the fact that ||Q̂T |X1
(τ |·) − QT |X1

(τ |·)||∞ = op(1), one has

that νpn(t, q̂1; τ)− νpn(t; q1; τ) = op(1). On the other hand, (B.4.9) and lemma B.4.3

together imply that

Ĵsn(t; τ) = − 1√
n

∑
i

(1− τ)ψ̃(X1i, t)ξ(Yi, Di, q1i, X1i) + op(1).
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Therefore,

Ĵn(t; τ) =
1√
n

∑
i

[ψ(Xi, t)Di{1(Yi ≤ QT |X1
(τ |X1i))− τ}

− (1− τ)ψ̃(X1i, t)ξ(Yi, Di, q1i, X1i)] + op(1).

To �nalize the proof, one needs to show that the class of functions

M ≡ {ψ(Xi, t)Di{1(Yi ≤ QT |X1
(τ |X1i))−τ}−(1−τ)ψ̃(X1i, t)ξ(Yi, Di, q1i, X1i) : t ∈ I}

is Donsker. Let m(Wi, t) be a generic element of M. Since ξ is square-integrable

and the weighting function, one can easily show that under Assumption 2.3.6 and

for any t1, t2 ∈ I,

|m(Wi, t1)−m(Wi, t2)| ≤ B(Wi)||t1 − t2||E

for some square-integrable function B(·). Thus, the class of functions M is a type-IV

class and thus it satis�es Ossiander's L2-entropy condition. In all, M is Donsker by

Theorem 3.1 in Ossiander (1987), and thus the process Ĵn(·; τ) converges weakly to

a tight Gaussian process Ĝ(·) in l∞(I), where Ĝ(·) is a Gaussian process with zero

mean and covariance kernel Σ̂(t1, t2) = E[m(Wi, t1)m(Wi, t2)].

B.5 Proof of Corollary 2.3.9

Proof. Since the test statistics are continuous functionals of the process Ĵn(·; τ), it

can be proven by applying the continuous mapping theorem (e.g. Theorem 1.11.1 in

van der Vaart and Wellner (1996)).
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B.6 Proof of Theorem 2.3.11

To prove theorem 2.3.11, I �rst examine the asymptotic behavior of the

feasible process Jn(·; τ) under the local alternative speci�cation. Under the local

alternative (2.3.3), observe that the infeasible process can be written as following:

Jn(t; τ) =
1√
n

∑
i

ψ(Xi, t)Di{1(Yi ≤ QT |X1
(τ |X1i))− τ}

=
1√
n

∑
i

ψ(Xi, t)Di{1(Yi ≤ QT |X1
(τ |X1i))− 1(Yi ≤ QT |X(τ |Xi))

+ 1(Yi ≤ QT |X(τ |Xi))− τ}

=
1√
n

∑
i

ψ(Xi, t)Di{1(Yi ≤ QT |X(τ |Xi))− τ}

+ νAn (t;QT |X1
, τ)− νAn (t;QT |X , τ)

+
1√
n

∑
i

ψ(Xi, t)Di{F (QT |X1
(τ |X1i)|Xi)− F (QT |X(τ |X)|Xi)}

=
1√
n

∑
i

ψ(Xi, t)Di{1(Yi ≤ QT |X(τ |Xi))− τ}

− 1

n

∑
i

ψ(Xi, t)Dif(QT |X1
(τ |X1i)|Xi)Q̃(τ |Xi)

+ νAn (t;QT |X1
, τ)− νAn (t;QT |X , τ) + op(1), (B.6.1)

where νAn (t; q, τ) ≡ 1√
n

∑
i ψ(Xi, t)Di{1(Yi ≤ qi)− FT |X(qi|Xi)} is a stochastic pro-

cess indexed by t and q. If one can show that show that νAn (·; ·, τ) is stochastically

equicontinuous with respect to an appropriately chosen norm, then it implies that

νAn (t;QT |X1
, τ) − νAn (t;QT |X , τ) = op(1) uniformly in t ∈ I. One may think that

the Bracketing central limit theorem (Theorem 2.11.9 in van der Vaart and Wellner

(1996)) can be applied to prove the stochastic equicontinuity of the process νAn (·; ·, τ)

in a similar way of lemma B.4.2, but it is needed to �nd another way as the condi-
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tional quantile function under the local alternative depends on n. Therefore, I use

Theorem 2.11.23 in van der Vaart and Wellner (1996), which generalizes Theorem

2.11.9 in van der Vaart and Wellner (1996).

Lemma B.6.1. Suppose that Assumptions 2.3.1, 2.3.3, 2.3.6, and 2.3.10 hold. Then

under the local alternative given in (2.3.3),

Jn(·; τ)⇒ G(·)−Ra(·) in l∞(I),

where G(·) is the Gaussian process de�ned in theorem 2.3.7 and

Ra(t) ≡ E[p0(Xi)ψ(Xi, t)f(QT |X1
(τ |X1i)|Xi)Q̃(τ |Xi)].

Proof. De�ne Θ ≡ I × ΛpA
R̃

(X) and let θn ≡ (t, qn) ∈ Θn, where Θn = Θ for all n.

I �rst show that νAn (·; ·, τ) is stochastically equicontinuous with respect to the norm

ρ(θ1, θ2) ≡ ||t1 − t2||E + ||q1 − q2||∞ by verifying the conditions of Theorem 2.11.23

in van der Vaart and Wellner (1996). Note that the space Θ is totally bounded with

respect to the semi-norm ρ as before. Consider the class of functions

GAn ≡ {ψ(X, t)D{1(Y ≤ qn)− FT |X(qn|X)} : t ∈ T, qn ∈ ΛpA
R̃

(X) for all n},

which is indexed by t and qn. Since one can choose the sequence of envelope functions

for each n as a constant function, say Cg, one can show that ECg = O(1) and that

E[C2
g1(Cg > η/

√
n)] = o(1) for any η > 0. Thus the �rst two conditions of (2.11.21)

in van der Vaart and Wellner (1996) obviously hold. Consider the last condition

of (2.11.21) in van der Vaart and Wellner (1996). Take any εn ↓ 0, then for any
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gAi (θ1n), gAi (θ2n) ∈ GAn ,

sup
ρ(θ1n,θ2n)≤εn

E[gAi (θ1n)− gAi (θ2n)]2

. sup
ρ(θ1,θ2)≤εn

E[ψ(Xi, t1)− ψ(Xi, t2)]2 + sup
ρ(θ1,θ2)≤εn

E[1(Ti ≤ q1ni)− 1(Ti ≤ q2ni)]
2

+ sup
ρ(θ1,θ2)≤εn

||q1 − q2||2∞

=o(1)

by the same logic in the proof of lemma B.4.2. Thus, all conditions of (2.11.21) in

van der Vaart and Wellner (1996) are met. Lastly, it is required to calculate the

L2-bracketing number of GAn . Observe that GAn = Ψ · G̃An , where G̃An ≡ {D{1(Y ≤

qn) − FT |X(qn|X)} : qn ∈ ΛpA
R̃

(X)}. Since both spaces Ψ and G̃An are uniformly

bounded, Lemma A.1 in Escanciano et al. (2014) implies that

N[](Cgε,G
A
n , || · ||2) ≤ N[](C̃ε,Ψ, || · ||2) ·N[](C̃ε, G̃

A
n , || · ||2)

for some C̃ > 0. Let G̃A1n ≡ {D1(Y ≤ qn) : qn ∈ ΛpA
R̃

(X)} and G̃A2n ≡ {−DFT |X(qn|X) :

qn ∈ ΛpA
R̃

(X)}. Since G̃An = G̃A1n + G̃A2n, it is straightforward to see that

N[](C̃ε, G̃
A
n , || · ||2) ≤ N[](Cε, G̃

A
1n, || · ||2) ·N[](Cε, G̃

A
2n, || · ||2).

Since one can show that

E[Di{1(Yi ≤ q1n)− 1(Yi ≤ q2n)}]2 = E[p0(Xi) · |1(Ti ≤ q1n)− 1(Ti ≤ q2n)|2]

≤ E[1(|Ti − q1n| ≤ 2||q1n − q2n||∞)]

. ||q1n − q2n||∞,
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Theorems 2.7.11 and 2.7.1 in van der Vaart and Wellner (1996) together yield that

logN[](Cε, G̃
A
1n, || · ||2) ≤ logN(Ĉε,ΛpA

R̃
(X), || · ||) ≤ ε−

dx
pA .

On the other hand, the class of functions G̃A2n is also Lipschitz in the index qn under

Assumption 2.3.3. By the same way above, one obtains that

logN[](Cε, G̃
A
2n, || · ||2) ≤ logN(Ĉε,ΛpA

R̃
(X), || · ||) ≤ ε−

dx
pA .

Therefore, it follows that

logN[](Cgε,G
A
n , || · ||2) . ε

− dx
pA

and that for any αn ↓ 0,

∫ αn

0

√
logN[](Cgε,GAn , || · ||2)dε .

∫ αn

0
ε
− dx

2pA dε ≤ C · α
1− dx

2pA
n = o(1)

under Assumption 2.3.10. In all, νAn (·; ·, τ) is stochastically equicontinuous with

respect to the norm ρ. Since ||QT |X(τ |·) − QT |X1
(τ |·)||∞ = 1√

n
supx∈X |Q̃(τ |x)| =

o(1) and νAn (·; ·, τ) is stochastically equicontinuous, it follows that νAn (t;QT |X1
, τ)−

νAn (t;QT |X , τ) = op(1) uniformly in t ∈ I.

Next, one can show that the leading term 1√
n

∑
i ψ(Xi, t)Di{1(Yi ≤ QT |X(τ |Xi))−

τ} converges weakly to the Gaussian process G(·) de�ned in theorem 2.3.7 by ver-

ifying conditions of Theorem 2.11.23 in van der Vaart and Wellner (1996) and the

veri�cation can be accomplished by the same way above. Note that in this case the

only indexing variable is t and thus the condition on the bracketing number in that
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theorem is easily satis�ed. Lastly, note that

E
1

n

∑
i

ψ(Xi, t)Dif(QT |X1
(τ |X1i)|Xi)Q̃(τ |Xi)

=E[p0(Xi)ψ(Xi, t)f(QT |X1
(τ |X1i)|Xi)Q̃(τ |Xi)]

=Ra(t)

and that the class of functions {ψ(Xi, t)Dif(QT |X1
(τ |X1i)|Xi)Q̃(τ |Xi) : t ∈ I} is

Donsker, so it is Glivenko-Cantelli. In all,

sup
t∈I
| 1
n

∑
i

ψ(Xi, t)Dif(QT |X1
(τ |X1i)|Xi)Q̃(τ |Xi)−Ra(t)| = op(1).

Finally, applying the continuous mapping theorem yields that

Jn(·; τ)⇒ G(·)−Ra(·) in l∞(I)

and this completes the proof.

Proof of theorem 2.3.11

Proof. Recall that

Ĵn(t; τ) = Jn(t; τ) + νpn(t, q̂1; τ)− νpn(t; q1; τ) + Ĵsn(t; τ),

which is the same to (2.3.2). By lemma B.4.2, νpn(t, q̂1; τ) − νpn(t; q1; τ) = op(1)

uniformly in t. Likewise, the asymptotic behavior of the smoothed term Ĵsn(t; τ)

under the local alternative remains the same to the one under the null hypothesis.
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From the proof of lemma B.6.1, one obtains that

Ĵn(t; τ) =
1√
n

∑
i

[ψ(Xi, t)Di{1(Yi ≤ QT |X(τ |Xi))− τ} − ψ̃(X1i, t)ξ(Yi, Di, q1i, X1i)]

− 1

n

∑
i

ψ(Xi, t)Dif(QT |X1
(τ |X1i)|Xi)Q̃(τ |Xi) + op(1).

Since the leading term converges weakly to the Gaussian process Ĝ(·) in l∞(I) and

latter term converges in probability to Ra(t), uniformly in t, it follows that

Ĵn(·; τ)⇒ Ĝ(·)−Ra(t)

in l∞(I), and the theorem is established.

B.7 Proof of Theorem 2.4.1

Proof. I follow the proof of Theorem 2 in Whang (2006a). To prove (i), recall that

K̂Sn,b,i = sup
t∈I
|Ĵn,b,i(t; τ)|; ˆCMn,b,i =

∫
I

|Ĵn,b,i(t; τ)|2dµ(t).

De�ne

FKSb (z) ≡ Pr(K̂Sn,b,i ≤ z); FCMb (z) ≡ Pr( ˆCMn,b,i ≤ z).

Since K̂Sn and ˆCMn are functionals of a Gaussian process with a nonsingular co-

variance kernel, it su�ces to show that for all z ∈ R,

F̂KSn,b (z)− FKSb (z)
p→ 0; F̂CMn,b (z)− FCMb (z)

p→ 0

as the proof of Theorem 2 in Whang (2006a). From now, I only consider the case of

the CM statistic since the case of the KS statistic can be proven by a similar way.
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Note that

EF̂CMn,b (z) = FCMb (z). (B.7.1)

Let Ii ≡ 1( ˆCMn,b,i ≤ z) for i = 1, 2, ..., n− b+ 1. Then one can show that

V ar(F̂CMn,b, (z)) = V ar(
1

n− b+ 1

n−b+1∑
i=1

Ii)

= (
1

n− b+ 1
)2E[{

n−b+1∑
i=1

(Ii − FCMb (z))}{
n−b+1∑
j=1

(Ij − FCMb (z))}]

= (
1

n− b+ 1
)2[

n−b+1∑
i

V ar(Ii) +
n−b+1∑

i

∑
j 6=i,|i−j|≤b

Cov(Ii, Ij)]

≤ O(
1

n
) + (

1

n− b+ 1
)2
n−b+1∑

i

∑
j 6=i,|i−j|≤b

√
V ar(Ii)

√
V ar(Ij)

= O(
1

n
) +O(

b

n− b+ 1
) = O(

1

n
) +O(

b

n
) = o(1). (B.7.2)

Combining (B.7.1) and (B.7.2) yields that F̂CMn,b (z)− FCMb (z)
p→ 0 for all z ∈ R.

To prove (ii), one can refer to the proof of Corollary 5 in Whang (2006a) and

the proof of (i) above.
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Appendix C

Chapter 3 Appendix

I introduce notation that will be used throughout this section. Let (Ω,A,P)

be a probability space . For a set S, l∞(S) is the space of uniformly bounded

functions de�ned on the set S. E denotes the expectation operator. For a sequence

of random map Xn : Ω → R and a random variable X, Xn ⇒ X (Xn
d→ X, resp.)

indicates that Xn converges weakly1 (in distribution, resp.) to X. For any real

sequences (an) and (bn), an . bn means that there is a constant C, not depending

on n, such that |an| ≤ C · |bn| for all n ∈ N.

C.1 Proof of Lemma 3.3.1

Proof. I only prove the identi�cation result of F1(y). It is straightforward to see that

F1(y) = Pr(Y1 ≤ y)

= Pr(Y1 ≤ y|D = 1) Pr(D = 1) + Pr(Y1 ≤ y|D = 0) Pr(D = 0)

= Pr(Y ≤ y|D = 1) Pr(D = 1) + Pr(Y1 ≤ y|D = 0) Pr(D = 0).

1See De�nition 1.3.3 in van der Vaart and Wellner (1996) for the precise de�nition of weak
convergence.
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Since Pr(Y1 ≤ y|D = 0) lies in the unit interval [0, 1], one obtains the identi�cation

region of F1(y).

C.2 Proof of Lemma 3.3.2

Proof. Since F1(y1) ∈ [LB1(y1), UB1(y1)], one can show that τ ≤ LB1(QU1 (τ)) ≤

F1(QU1 (τ)), which implies that Q1(τ) ≤ QU1 (τ). In addition to this, since F1(y) ≤

UB1(y), it is straightforward to see that τ ≤ F1(Q1(τ)) ≤ UB1(Q1(τ)). By the

minimality of QL1 (τ), one has QL1 (τ) ≤ Q1(τ). Thus, the τ -th quantile of Y1, Q1(τ),

lies between QL1 (τ) and QU1 (τ). Equation (3.3.4) can be proven by the same way. The

identi�cation result of the τ -th QTE given by equation (3.3.5) is a direct consequence

of equations (3.3.3) and (3.3.4).

C.3 Proof of Theorem 3.3.4

Proof. Recall that F1(y) = Pr(Y ≤ y|D = 1) Pr(D = 1)+Pr(Y1 ≤ y|D = 0) Pr(D =

0). Since Y1|D = 1 �rst-order stochastically dominates Y1|D = 0, it follows that

Pr(Y1 ≤ y|D = 0) = F1(y|D = 0) ≥ F1(y|D = 1) = Pr(Y1 ≤ y|D = 1). Thus,

Pr(Y1 ≤ y) ≥ LBFSD1
1 (y). Note that UBFSD1

1 (y) and LBFSD1
0 (y) are identical to

UB1(y) and LB0(y) in Lemma 3.3.1 and hence it holds. Since F0(y) = LBFSD1
0 (y)+

(1− Pr(D = 0)) Pr(Y0 ≤ y|D = 1) ≤ LBFSD1
0 (y) + (1− Pr(D = 0)) Pr(Y0 ≤ y|D =

0) = UBFSD1
0 (y), this results in equations (3.3.6) and (3.3.7).
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C.4 Proof of Theorem 3.3.7

Proof. Since Y1|D = j �rst-order stochastically dominates Y0|D = j for all j ∈ {0, 1},

it follows that, for all y ∈ R, Pr(Y1 ≤ y|D = 1) = F1(y|D = 1) ≤ F0(y|D = 1) =

Pr(Y0 ≤ y|D = 1) and Pr(Y1 ≤ y|D = 0) = F1(y|D = 0) ≤ F0(y|D = 0) = Pr(Y0 ≤

y|D = 0). Following similar steps in the proof of Theorem 3.3.4, one can obtain the

identi�ed sets of F1(y) and F0(y), given by equations (3.3.8) and (3.3.9).

C.5 Proof of Corollary 3.3.8

Proof. This is directly implied by Theorems 3.3.4 and 3.3.7. By stochastic domi-

nance, it can be shown that

UBFSD2
1 (y) = Pr(Y1 ≤ y|D = 1) Pr(D = 1) + Pr(Y0 ≤ y|D = 0) Pr(D = 0)

≤ Pr(Y1 ≤ y|D = 1) Pr(D = 1) + Pr(D = 0)

= UBFSD1
1 (y) = UB1(y)

and LBFSD1
1 (y) = Pr(Y1 ≤ y|D = 1) ≥ Pr(Y1 ≤ y|D = 1) Pr(D = 1) = LBFSD2

1 (y) =

LB1(y), and hence the bounds on F1(y) are narrower than the previous ones. Sim-

ilarly, it is straightforward to see that the bounds on F0(y) are narrower than the

previous results.

C.6 Proof of Theorem 3.3.10

Proof. From the Lemma 2.1 in Fan and Park (2010), it is shown that

sup
y
{max[F1(y)− F0(y − δ), 0]} ≤ F∆(δ) ≤ inf

y
{min[F1(y)− F0(y − δ), 0]}+ 1.
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Since the marginal distribution functions are partially identi�ed by the hypothesis

and the functions max[·, ·] and min[·, ·] are non-decreasing, one obtains

LB∆(δ) ≤ sup
y
{max[F1(y)− F0(y − δ), 0]}

and

UB∆(δ) ≥ inf
y
{min[F1(y)− F0(y − δ), 0]}+ 1,

and this ends the proof.

C.7 Proof of Theorem 3.4.3

Proof. Note that

Pr(ΘI(F1(y)) ⊆ Cn(α;F1(y)))

= Pr(LB1(y) ≥ L̂B1n(y)− zα+1
2
· σF (

√
nL̂B1n(y))√
n

and UB1(y) ≤ ÛB1n(y) + zα+1
2
· σF (

√
nÛB1n(y))√
n

)

= Pr(p∗F11(y) ≥ L̂B1n(y)− zα+1
2
· σF (

√
nL̂B1n(y))√
n

and UB1(y) ≤ ÛB1n(y) + zα+1
2
· σF (

√
nÛB1n(y))√
n

)

=1− Pr(p∗F11(y) < L̂B1n(y)− zα+1
2
· σF (

√
nL̂B1n(y))√
n

or UB1(y) > ÛB1n(y) + zα+1
2
· σF (

√
nÛB1n(y))√
n

)

≥1− Pr(p∗F11(y) < L̂B1n(y)− zα+1
2
· σF (

√
nL̂B1n(y))√
n

)

+ Pr(UB1(y) > ÛB1n(y) + zα+1
2
· σF (

√
nÛB1n(y))√
n

), (C.7.1)
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where the inequality in the last line comes from the Bonferroni's inequality. Applying

the standard arguments of the large sample theory results in

Pr(p∗F11(y) < L̂B1n(y)− zα+1
2
· σF (

√
nL̂B1n(y))√
n

)

= Pr(
1

n

n∑
i

{Di1(Yi ≤ y)− p∗F11(y)} > zα+1
2
· σF (

√
nL̂B1n(y))√
n

)

= Pr(
1

σF (
√
nL̂B1n(y))

· 1√
n

n∑
i

{Di1(Yi ≤ y)− p∗F11(y)} > zα+1
2

)

→1− α
2

. (C.7.2)

Similarly, it can be shown that

Pr(UB1(y) > ÛB1n(y) +
σF (
√
nÛB1n(y))√
n

)

= Pr(ÛB1n(y)− UB1(y) < −σF (
√
nÛB1n(y))√
n

)

= Pr(
1

σF (
√
nÛB1n(y))

√
n(ÛB1n(y)− UB1(y)) < −zα+1

2
)

→1− α
2

. (C.7.3)

Therefore, combining equations (C.7.1) through (C.7.3) gives that

lim inf
n→∞

Pr(ΘI(F1(y)) ⊆ Cn(α;F1(y))) ≥ α.
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C.8 Proof of Theorem 3.4.5

Proof. Since the inversion map is Hadamard di�erentiable (e.g. Lemma 3.9.20 in

van der Vaart and Wellner (1996)), one can show that

Q̂U1n(τ)−QU1 (τ) = L̂B
←
1n(τ)− LB←1 (τ)

=
1

p∗f11(QU1 (τ))
(L̂B1n(QU1 (τ))− LB1(QU1 (τ))) + op(n

−1/2)

and that

Q̂L1n(τ)−QL1 (τ) = ÛB
←
1n(τ)− UB←1 (τ)

=
1

p∗f11(QL1 (τ))
(ÛB1n(QL1 (τ))− UB1(QL1 (τ))) + op(n

−1/2).

Since the class of functions, {1(Y ≤ y) : y ∈ R}, is Donsker, Corollary 9.32 in

Kosorok (2008) leads to that for each j ∈ {0, 1},
√
n(L̂Bjn(·) − LBj(·)) ⇒ GLB

j (·)

and
√
n(ÛBjn(·) − UBj(·)) ⇒ GUB

j (·) for some Gaussian processes GLB
j (·) and

GUB
j (·) in l∞(R). Therefore,

√
n(L̂B1n(QU1 (τ))− LB1(QU1 (τ)))

d→ N(0, σ2
F (
√
nL̂B1n(QU1 (τ))))

and

√
n((ÛB1n(QL1 (τ))− UB1(QL1 (τ)))

d→ N(0, σ2
F (
√
nÛB1n(QL1 (τ)))).
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It follows that

Pr(ΘI(Q1(y)) ⊆ Cn(α;Q1(y)))

= Pr(QL1 (τ) ≥ QL1n(τ)− zα+1
2
· σF (

√
nL̂B1n(QU1 (τ)))

√
np∗f11(QL1 (τ))

and QU1 (τ) ≤ QU1n(τ) + zα+1
2
· σF (

√
nÛB1n(QL1 (τ)))

√
np∗f11(QL1 (τ))

)

=1− Pr(QL1 (τ) < QL1n(τ)− zα+1
2
· σF (

√
nL̂B1n(QU1 (τ)))

√
np∗f11(QL1 (τ))

or QU1n(τ) + zα+1
2
· σF (

√
nÛB1n(QL1 (τ)))

√
np∗f11(QL1 (τ))

< QU1 (τ))

≥1− {Pr(QL1 (τ) < QL1n(τ)− zα+1
2
· σF (

√
nL̂B1n(QU1 (τ)))

√
np∗f11(QL1 (τ))

)

+ Pr(QU1n(τ) + zα+1
2
· σF (

√
nÛB1n(QL1 (τ)))

√
np∗f11(QL1 (τ))

< QU1 (τ))}

→1− {1− Φ(zα+1
2

) + Φ(−zα+1
2

)} = α,

and thus this ends the proof of equation (3.4.7). It is straightforward to show that

Q̂U0n(τ)−QU0 (τ) = L̂B
←
0n(τ)− LB←0 (τ)

=
1

(1− p∗)f00(QU0 (τ))
{L̂B0n(QU0 (τ))− LB0(QU0 (τ))}+ op(n

−1/2)

and that

Q̂L0n(τ)−QL0 (τ) = ÛB
←
0n(τ)− UB←0 (τ)

=
1

(1− p∗)f00(QL0 (τ))
{ÛB0n(QL0 (τ))− UB0(QL0 (τ))}+ op(n

−1/2).

The remaining part of the proof is the same as before, so it is omitted.
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C.9 Proof of Theorem 3.4.8

The proof strategy is the same to the one for Proposition 3.1 in Fan and

Park (2010). To prove that the con�dence region for ΘI(F∆(δ)), given in Theorem

3.4.8, is pointwise consistent in level α, I �rst provide several lemmas.

Lemma C.9.1. Suppose that Assumptions 3.4.1 and 3.4.2 hold.. Then for given

δ ∈ R,

sup
y
{L̂B1n(y)− ÛB0n(y − δ)} p→ sup

y
{LB1(y)− UB0(y − δ)},

inf
y
{ÛB1n(y)− L̂B0n(y − δ)} p→ inf

y
{UB1(y)− LB0(y − δ)}.

Proof. It is enough to show that, for any δ ∈ R,

| sup
y
{L̂B1n(y)− ÛB0n(y − δ)} − sup

y
{LB1(y)− UB0(y − δ)}| p→ 0

and

| inf
y
{ÛB1n(y)− L̂B0n(y − δ)} − inf

y
{UB1(y)− LB0(y − δ)}| p→ 0.

Pick any δ ∈ R. Note that the supremum map is uniformly continuous; i.e.

| sup
t
x(t)− sup

t
y(t)| = | sup

t
{x(t)− y(t) + y(t)} − sup

t
y(t)|

≤ | sup
t
{x(t)− y(t)}+ sup

t
y(t)− sup

t
y(t)|

≤ sup
t
|x(t)− y(t)|.
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Therefore, one obtains that

| sup
y
{L̂B1n(y)− ÛB0n(y − δ)} − sup

y
{LB1(y)− UB0(y − δ)}|

≤ sup
y
|L̂B1n(y)− LB1(y)|+ sup

y
|ÛB0n(y − δ)− UB0(y − δ)|.

Now it su�ces to show that the classes of functions, {L̂B1n(y) : y ∈ R}, {L̂B0n(y) :

y ∈ R}, {ÛB1n(y) : y ∈ R}, and {ÛB0n(y) : y ∈ R}, are Glivenko-Cantelli. It is

well-known that the class of functions, {1(Y ≤ y) : y ∈ R}, is Donsker and thus

Glivenko-Cantelli. Applying Corollary 9.32 in Kosorok (2008) results in that the four

classes of functions are Donsker, and thus they are Glivenko-Cantelli. Therefore, for

any given δ ∈ R,

sup
y∈R
|L̂B1n(y)− LB1(y)| p→ 0,

sup
y∈R
|ÛB1n(y)− UB1n(y)| p→ 0,

sup
y∈R
|L̂B0n(y − δ)− LB0(y − δ)| p→ 0,

sup
y∈R
|ÛB0n(y − δ)− UB0(y − δ)| p→ 0.

The fact that inft x(t) = − supt−x(t) ends the proof.

Lemma C.9.2. Suppose that Assumptions 3.4.1, (3.4.2), and 3.4.6 are satis�ed.

Then, for any given δ ∈ R, ŷsupn (δ)
p→ ysup(δ) and ŷinfn (δ)

p→ yinf (δ).

Proof. Lemma C.9.1 and Assumption 3.4.6 together imply that the conditions of

Theorem 5.7 in Van der Vaart (1998) are satis�ed. Applying Theorem 5.7 in Van der

Vaart (1998) follows that both estimators are consistent.
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For given δ ∈ R, de�ne

ML
n (y; δ) ≡ L̂B1n(y)− ÛB0n(y − δ) =

1

n

∑
i

mL
i (y; δ),

MU
n (y; δ) ≡ ÛB1n(y)− L̂B0n(y − δ) =

1

n

∑
i

mU
i (y; δ),

ML(y; δ) ≡ LB1(y)− UB0(y − δ) = EmL
i (y; δ),

MU (y; δ) ≡ UB1(y)− LB0(y − δ) = EmU
i (y; δ).

Then it is clear that under Assumption 3.4.1 and for given y and δ, EML
n (y; δ) =

ML(y; δ) and EMU
n (y; δ) = MU (y; δ).

Lemma C.9.3. Let δ ∈ R be given. Suppose that Assumptions 3.4.1, 3.4.2, 3.4.4,

and 3.4.6 hold. Then

ŷsupn (δ)− ysup(δ) = Op(n
−1/3), (C.9.1)

ŷinfn (δ)− yinf (δ) = Op(n
−1/3). (C.9.2)

Proof. I verify the conditions for Theorem 3.2.5 in van der Vaart and Wellner (1996)

and only prove equation (C.9.1). Then one can show that for any y in a neighborhood

of ysup(δ),

E[mL
i (y; δ)−mL

i (ysup(δ); δ)]

={LB1(y)− UB0(y − δ)} − {LB1(ysup(δ)− UB0(ysup(δ)− δ)}

={p∗F11(y)− (1− p∗){F00(y − δ)} − {p∗F11(ysup(δ))− (1− p∗)F00(ysup(δ)− δ)}

=p∗(F11(y)− F11(ysup(δ)))− (1− p∗)(F00(y − δ)− F00(ysup(δ)− δ)).
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By applying Taylor's expansion around ysup(δ) and ysup(δ) − δ to each term, one

obtains that

E[mL
i (y; δ)−mL

i (ysup(δ); δ)]

={p∗f11(ysup(δ))(y − ysup(δ))− (1− p∗)f00(ysup(δ)− δ)(y − ysup(δ))}

+ {p∗f ′11(ỹ(δ))(y − ysup(δ))2 − (1− p∗)f ′00(˜̃y(δ)− δ)(y − ysup(δ))2}

say
=A1(y, δ) +A2(y, δ).

Observe that

A1(y, δ) = {p∗f11(ysup(δ))− (1− p∗)f00(ysup(δ)− δ)} · (y − ysup(δ)) = 0 (C.9.3)

by the �rst-order condition for ysup(δ). Since f
′
11 and f

′
00 are continuous, the second-

order condition in the theorem implies that

E[mL
i (y; δ)−mL

i (ysup(δ); δ)] ≤ C · (y − ysup(δ))2,

where C = p∗f
′
11(ỹ(δ)) + (1− p∗)f ′00(˜̃y(δ)− δ)) < 0.

Second, consider a class of functions, ML(δ) ≡ {ML
n (y; δ) −ML(y; δ) : y ∈

R}. It is required to show that for all n and for any small η > 0,

E∗ sup
|y−ysup(δ)|<η

√
n|(ML

n (y; δ)−ML(y; δ))−(ML
n (ysup(δ); δ)−ML(ysup(δ); δ)| . ψ(η),

(C.9.4)

where ψ(η) is a function such that ψ(η)/ηα is decreasing for some α < 2 and E∗

is an outer expectation. Take any small η > 0 and de�ne a class of functions

ML
η (δ) ≡ {mL

i (y; δ) − mL
i (ysup(δ); δ) : |y − ysup(δ)| < η}. From Lemma 19.38 in
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Van der Vaart (1998), it can be shown that the left-hand side of equation (C.9.4) is

bounded by J(1,ML
η (δ), L2) · (E∗M̄L

η (δ)2)1/2, where J(1,ML
η (δ), L2) is the uniform

entropy integral2 and M̄L
η (δ) is an envelope function of the class ML

η (δ). If one can

take M̄L
η (δ) ≡ {1(Yi ≤ ysup(δ) + η) − 1(Yi ≤ ysup(δ) − η)} + {1(Yi ≤ ysup(δ) +

η − δ) − 1(Yi ≤ ysup(δ) − η − δ)} 3, then (E∗M̄L
η (δ)2)1/2 < ∞, so it only requires

to calculate the uniform entropy integral of ML
η (δ). Since the class of functions,

{Di1(Yi ≤ y) : y ∈ R}, is a Vapnik-�ervonenkis (VC) class, applying Lemma 9.9 in

Kosorok (2008) leads to that the class ML
η (δ) is a VC class and thus has bounded

uniform entropy integral. Since (E∗M̄L
η (δ)2)1/2 . η1/2 under Assumptions 3.4.1 and

3.4.4, one can put ψ(η) ≡ η1/2. Then ψ(η)/ηα is decreasing in η for any α > 1/2.

Let rn = nβ , then it is easy to see that r2
nψ(r−1

n ) = n2β−β
2 .

√
n holds if

β = 1/3. By Theorem 3.2.5 in van der Vaart and Wellner (1996), one obtains that

ŷsupn (δ)− ysup(δ) = Op(n
−1/3).

By the similar way, one can prove ŷinfn (δ)− yinf (δ) = Op(n
−1/3).

Lemma C.9.4. Let δ ∈ R be given. Suppose that the conditions in Theorem 3.4.8

2See, for example, (Van der Vaart, 1998, p.274) for its de�nition.
3To see this, take any y such that |y − ysup(δ)| < η ≤ 1. Then one obtains that y ∈ (ysup(δ)−

η, ysup(δ)+η), and hence 1(Yi ≤ ysup(δ)−η) ≤ 1(Yi ≤ y) ≤ 1(Yi ≤ ysup(δ)+η). Since it is obvious
that 1(Yi ≤ ysup(δ)− η) ≤ 1(Yi ≤ ysup(δ)) ≤ 1(Yi ≤ ysup(δ) + η), one has that

|1(Yi ≤ y)− 1(Yi ≤ ysup(δ))| ≤ 1(Yi ≤ ysup(δ) + η)− 1(Yi ≤ ysup(δ)− η)

and that

|1(Yi ≤ y − δ)− 1(Yi ≤ ysup(δ)− δ)| ≤ 1(Yi ≤ ysup(δ) + η − δ)− 1(Yi ≤ ysup(δ)− η − δ).
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are satis�ed. Then

√
n(ML

n (ŷsupn (δ); δ)−ML(ysup(δ); δ)
d→ N(0, V ar(mL

i (ysup(δ); δ)), (C.9.5)

√
n(MU

n (ŷinfn (δ); δ)−MU (yinf (δ); δ)
d→ N(0, V ar(mU

i (yinf (δ); δ)). (C.9.6)

Proof. I only prove equation (C.9.5). Note that

√
n(ML

n (ŷsupn (δ); δ)−ML
n (ŷsupn (δ); δ) +ML

n (ŷsupn (δ); δ)−ML(ysup(δ); δ))

=
√
n(ML

n (ŷsupn (δ); δ)−ML
n (ysup(δ); δ)) +

√
n(ML

n (ysup(δ); δ)−ML(ysup(δ); δ)).

I �rst show that
√
n(ML

n (ŷsupn (δ); δ) −ML
n (ysup(δ); δ)) = op(1) and that the latter

term
√
n(ML

n (ysup(δ); δ) −ML(ysup(δ); δ)) determines the asymptotic distribution.

Recall that

√
n(ML

n (ŷsupn (δ); δ)−ML
n (ysup(δ); δ))

=
1√
n

∑
i

{mL
i (ŷsupn (δ); δ)−mL

i (ysup(δ); δ)}

=
1√
n

∑
i

[{mL
i (ŷsupn (δ); δ)−ML(ŷsupn (δ); δ)} − {mL

i (ysup(δ); δ)−ML(ysup(δ); δ)}]

− 1√
n

∑
i

{ML(ŷsupn (δ); δ)−ML(ysup(δ); δ)}

≡M̃n(ŷsupn (δ); δ)− M̃n(ysup(δ); δ)− 1√
n

∑
i

{ML(ŷsupn (δ); δ)−ML(ysup(δ); δ)},

where M̃n(y; δ) ≡ 1√
n

∑
i[{mL

i (y; δ)−ML(y; δ)} is an empirical process indexed by y.

I use a stochastic equicontinuity argument to prove that the term M̃n(ŷsupn (δ); δ)−

M̃n(ysup(δ); δ) is op(1). Since the class of functions, {mi(y; δ) : y ∈ Supp(Y )}, is

Donsker and (Supp(Y ), | · |) is a totally bounded metric space, M̃n(·; δ) is stochas-
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tically equicontinuous. Lemma C.9.2, together with the stochastic equicontinuity,

implies that M̃n(ŷsupn (δ); δ)− M̃n(ysup(δ); δ) = op(1).

Expanding the term 1√
n

∑
i{ML(ŷsupn (δ); δ)−ML(ysup(δ); δ)} around ysup(δ)

results in that

1√
n

∑
i

{ML(ŷsupn (δ); δ)−ML(ysup(δ); δ)}

=
√
n[{p∗F11(ŷsupn (δ))− (1− p∗){F00(ŷsupn (δ)− δ)}

− {p∗F11(ysup(δ))− (1− p∗)F00(ysup(δ)− δ)}]

={p∗f ′11(ỹsup(δ))− (1− p∗)f ′00(ỹsup(δ))}
√
n(ŷsupn (δ)− ysup(δ))2,

where ỹsup(δ) is a value between ysup(δ) and ŷsupn (δ). Note that the �rst-order

terms disappear by the �rst-order condition for ysup(δ) (i.e. equation (C.9.3)).

Lemma C.9.3 and Assumption 3.4.4 together imply that 1√
n

∑
i{ML(ŷsupn (δ); δ) −

ML(ysup(δ); δ)} = op(1).

It remains to show that

√
n(ML

n (ysup(δ); δ)−ML(ysup(δ); δ))
d→ N(0, V ar(mL

i (ysup(δ); δ)).

Recall that the class {mi(y; δ) : y ∈ Supp(Y )} is Donsker, and thus

√
n(ML

n (·; δ)−ML(·; δ))⇒ GML(·) in l∞(Supp(Y )),

whereGML(·) is a Gaussian process with mean zero and covariance kernel ΣML(y1, y2) ≡

187



Cov(mi(y1; δ),mi(y2; δ)). Therefore,

√
n(ML

n (ysup(δ); δ)−ML(ysup(δ); δ))
d→ N(0, V ar(mL

i (ysup(δ); δ)).

Similarly, one can establish that

√
n(MU

n (yinf (δ); δ)−MU (yinf (δ); δ))
d→ N(0, V ar(mU

i (yinf (δ); δ)),

and this ends the proof.

Proof of the theorem

Proof. Recall that max[·, ·] and min[·, ·] are continuous functions. By Lemma C.9.4

and the continuous mapping theorem, it can be shown that

√
n(L̂B∆n(δ)− LB∆(δ))

d→ max[N(0, V ar(mL
i (ysup(δ); δ)), 0]

and that

√
n(ÛB∆n(δ)− UB∆(δ))

d→ min[N(0, V ar(mU
i (yinf (δ); δ)), 0] + 1,

and this ends the proof.
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