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Abstract 

 

Spatial Variability in Washover Deposits: 

Hurricane Ike and the Texas Coast 

 

Daniel Stephen Aylward, MSGeoSci 

The University of Texas at Austin, 2017 

 

Supervisor:  David Mohrig 

Co-Supervisor: Joel Johnson 

  

Washover sand deposits are common depositional features caused by large storms 

that affect coastal areas. Hurricane Ike was a powerful storm that hit the gulf coast in 

September of 2008, the track of the eye crossing Bolivar Peninsula in Texas. The attempt 

was made to exhaustively identify and map washover deposits caused by Hurricane Ike 

along the Texas coast to the southwest of landfall. Several transitions in the nature of the 

deposits are identified. The plan view distribution, the volume change, and the relationship 

with the antecedent topography all present changes that generally mirrors the alongshore 

decay of Hurricane Ike’s energy, represented by the storm surge and waves. These are put 

in context using the ratio, called here r, that is the maximum surge height in any given 

location at the beach divided by the height of the beach berm at the same location. In places 

where the storm surge was not high enough to overtop the beach berm, waves are assumed 

to have eroded the beach to the point that it allowed overwash to occur, and quantifying 

this contribution is a fertile avenue for future research. 
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CHAPTER 1  
Introduction 

 The world’s coasts are the focal points for climate change induced sea level rise. A 

rising ocean will affect the coast itself, the liminal ecosystem, and the people who live in 

coastal areas. The current rate of sea level rise is about 3.2 mm/yr and the 20th century 

experienced a rise of roughly 20cm (IPCC 2013: 1139). This acceleration above the late 

Holocene background rate began between 100 and 150 years ago (Lambeck et al. 2004). 

Common human responses to a retreating shoreline include constructing sea walls or 

berms, emplacing rip rapp, or rejuvenating beaches with dredged sand. However, research 

suggests that these measures are only marginally successful and while they can work to 

redistribute erosion, they cannot prevent it (Young 2016)(Fig 1.2). This is a serious public 

policy issue due to the costs involved in beach protection and storm damage repair. In order 

to evaluate the efficacy of beach engineering projects and make predictions about the future 

health of the coast it is critical to understand the processes of sedimentation at work in 

these areas. 

Science’s greatest strength is that it allows one to make predictions about the future. 

Hurricanes were largely a mystery to the Weather Bureau in 1900 when one hit Galveston 

and killed at least 6,000 people (Larson 2000). Rigorous science performed in the last 

century has generally demystified the causes and effects of hurricanes but perhaps an even 

more important development for public safety was satellite imagery and radar. We now 

have days advanced notice of large storms approaching the coast. With some notable 

exceptions this has reduced the danger hurricanes pose to people and property.  
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Accumulated data on hurricanes shows that they follow tracks that fit a broad 

pattern (Fig 1.1) and the Gulf coast of Texas can expect on average two hurricanes and two 

tropical storms in a ten year span (Paine pers. comm). This predictability coupled with 

improved understanding of a hurricane’s effect on the geomorphology and sand budget of 

the coast will allow for reliable predictions of coastline migration, habitat change, and 

threats to infrastructure among other things, for the coming decades.  

The difficult political situation surrounding sea level rise as it relates to climate 

change makes the need for the fullest possible understanding all the more urgent. The 

consequences of a rising sea will be felt, and will be felt in Texas. It was determined that 

if the ocean cuts through Sargent Beach, the fastest retreating beach in Texas, and reaches 

the Intracoastal Water Way that the amount of shipping lost to the economy would be worth 

twenty five million dollars a day (Davis and Fitzgerald 2004: 377). Many homes and other 

buildings that were destroyed by Hurricane Ike in 2008 have been replaced, often with even 

bigger, more expensive ones. These structures have even less of a natural defense in terms 

Figure 1.1 Map of historic hurricane tracks 
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of a healthy beach and dune system. We encountered a berm construction effort on Follets 

Island that used a sandy clay material as a core which was then covered in sand. This is not 

a natural situation for a beach and I harbor grave doubts about its efficacy in its intended 

purpose as well as the desirability of its intended purpose. It is critical that policy decisions 

be guided by good science in order to avoid consequential and costly mistakes. 

The Gulf of Mexico is lined by 116 barrier islands that reach a total length of 2398 

km, and represent 5.4% of all barrier islands in the world (Stutz and Pilkey 2011:208). 

About 480 km of that total is in Texas, including Padre Island, the largest barrier island in 

the world, and Galveston Island, a densely populated area that has been destroyed or nearly 

destroyed by hurricanes three times (1900, 1983, 2008). The presence of infrastructure has 

motivated geologic research on the coast for decades (McGowen et al. 1977).  

 

  

Washover fans are depositional features that result from a beach berm being 

overtopped, sediment laden water flowing over or through the berm and depositing its 

sediment load behind it. They are called fans because they often present a fan like shape: a 

narrow throat and a diffused body, which is a result of the lateral spread of the flow (Fig 

1.3).  

Figure 1.2 An idealized plan view of a beach on which groins have been constructed to prevent erosion. The groins 
trap sand but the waves are refracted around them and erode sand from the other side. 
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.  

Figure 1.3 An aerial photo of a classic washover fan created by Hurricane Ike on Matagorda Peninsula. Taken in 
2009. 

This spreading is also critical in the overwash process because as the flow spreads 

it decelerates and decelerating flows tend to deposit their sediment load. As beaches are 

generally in equilibrium with the energy regime of their body of water, it takes storm 

conditions or an exceptionally high tide for overwash to occur. Figure 1.4 shows a 

schematic of how this might happen. The aim of the present work is to supplement the 

understanding of the geology of the coast by describing the alongshore distribution of 

washover fans that were deposited by Hurricane Ike in 2008. For clarity, washover refers 

to the sand and the deposits while overwash refers to the water and the process.  

 



5 
 

 

Figure 1.4 A beach crest being overtopped where S = surge, R = runup and d= dune crest (Donnelly et al. 2006: p. 
968) 

The conditions necessary for overwash occur when the combined storm surge height (S) 

and runup height (R) are greater than the height of the berm (dc). 

 Donnelly et al. (2006) establish the classification scheme used presently, 

summarized in Figure 1.5. 

  

Figure 1.5. The classification scheme presented by Donnelly et al. (2006). Fans are discrete deposits, terraces are 
amalgamated fans, and sheetwash is a laterally indistinct, continuous deposit.  

The most important factor in this scheme is not size or shape, but how discrete the deposit 

is. Fans are the result of flow through or over a discrete location in the beach crest, while 

terraces are formed when fans are close enough to become amalgamated. Sheetwash 
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requires complete inundation of the beach, denudation of the dunes, and any structure 

internal to the deposit to be less than obvious. Donnelly ties the style of deposit to the 

regime of overwash that occurred: runup overwash creates fans and terraces and inundation 

overwash creates sheetwash. 

Donnelly et al. succinctly explain the importance of overwash thusly: 

“Overwash is a natural process, and new washover areas sustain unique 

ecosystems, such as salt marshes that support various species of salt-resistant plants 

(e.g. halophytes) (Godfrey and Godfrey 1974) and the habitat necessary for piping 

plover (Charadrius meloduso), an endangered species along the Atlantic and Gulf 

coasts of the United States. On a pristine coast, overwash and windblown sand are 

the mechanisms by which the barrier islands migrate, and possibly how the barrier 

islands respond to sea level rise (e.g., Byrnes and Gingerich, 1987; Dolan and 

Godfrey 1973; Schwartz, 1975).” (Donnelly et al. 2006:p. 966). 

The importance of overwash to the coast makes the conclusion reached by Rogers et al. 

(2015), that the presence of infrastructure severely limits the deposition of washover sand, 

all that more alarming. To make the right decisions for the coast we need as comprehensive 

an understanding of overwash as we can create.  
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Hurricane Ike originated as a low pressure cell off the west coast of Africa on 28 

August 2008, reached its maximum intensity as a Category 4 storm over the Atlantic and 

made landfall at Galveston as a Category 2 storm on 13 September (Berg 2009: 1-3). 

Despite its relatively low category Ike was an incredibly powerful storm, in part because it 

created the largest forerunner surge ever recorded (Kennedy et al. 2001). Large parts of the 

coastal counties and parishes were inundated with meters of water (Fig.1.7), and much of 

that water had entrained sand, which it left behind. These sand deposits are important 

evidence. If we identify spatial trends we can compare them to data from Hurricane Ike, 

and use that to determine what conditions (beach and storm) are required to create 

washover deposits. The primary data sets used are aerial photos and lidar collected before 

and after Hurricane Ike, the coverage of which determined the study area. Only the portion 

of Texas coast southwest of Ike’s landfall was examined because of data availability, time 

Figure 1.6 Satellite imagery showing the extent of Hurricane Ike, September 12 2008 
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constraints, and the assumption that the variability in washover deposits should be to some 

extent symmetrical (Fig 1.8). 

 

 

Figure 1.7 Harris County Flood Control District inundation map. The present work is only concerned with the part of 
the coast to the left of Hurricane Ike’s track because data availability changes at the Texas Louisiana Border. The area 
of Texas to the right of the track, which received the full brunt of the storm, presents very little variability in deposits. 
Where there are deposits they are dominated by sheetwash. I speculate that trends similar to those discussed in this 
work could be found along the Louisiana coast if the data were available. 
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Figure 1.8 The study area reaches from Galveston, where the eye of the hurricane passed, to Matagorda Island, where 
the farthest washover fans were found. 

  

250 km 
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CHAPTER 2  
Methods 

 
 Aerial images of the Texas Coast were obtained from the Texas Natural Resources 

Information System website (https://tnris.org). The images were collected by a partnership 

of the Texas Orthoimagery Program (TOP) and the USDA National Agriculture Imagery 

Program (NAIP) and have a 0.5 meter ground sample distance. They collected two sets of 

three-band data: natural color and color infrared.  As it happens, the TOP program 

photographed all the coastal counties in 2008 before Hurricane Ike and again in January 

2009, four months after Hurricane Ike (StratMap 2009). I closely compared the natural 

color sets of images from before and after the hurricane and mapped the deposits (according 

to Donnelly’s classification scheme shown in Figure 1.4. All the mapping and digitizing 

was done in ArcMap 10.3. For consistency I defined the seaward extent of each deposit as 

the beach-berm crest, which I digitized using a DEM made from an airborne lidar survey 

data collected per a FEMA contract in 2006 (Fig. 2.1). This lidar survey was also obtained 

via the TNRIS website (https://tnris.org). The beach berm crest is defined as the most 

seaward location where slope reverses aspect. 

 

Figure 2.1 An example of digitized deposits and beach crest. The background is a DEM based on the FEMA 2006 lidar 
survey. The beach crest line and the deposit polygons were hand digitized using before and after aerial photos and a 
difference map made from lidar. 
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Using the beach crest polyline and a custom toolbox, I created points along the crest 

at 3m intervals and used the “extract values to points” tool to extract crest height data from 

the 2006 FEMA DEM along the roughly 250km of coast (south of landfall) that 

experienced overwash. This produced an alongshore topographic profile of the beach crest 

and provided the values for calculating the surge/berm ratio and for investigating whether 

local low topography exerted control on whether or not the crest was breached. I also 

created profiles that were limited to the segments of beach berm that were overtopped in 

order to collect data specifically associated with each deposit. 

As overwash occurs the part of the beach berm that is eroded is called the throat of 

the fan. I created a ten meter buffer (both sides) along the beach crest at the base of the 

digitized washover polygons and used the zonal statistics tool in order to isolate the change 

at overwash throats. Plots and statistical work were done in Excel and Matlab, depending 

on the format of the data.  

The height of Ike’s storm surge was initially interpolated between maximum values 

measured by pressure sensors deployed by the USGS before the storm (East et al. 2008), 

but the interpolation suffered from computational artifacts and a limited spatial extent. Dr. 

Clinton Dawson of The Institute for Computational Engineering and Sciences (ICES), has 

hindcast modelled Ike’s waves (SWAN) and storm surge (ADCIRC) and provided me with 

time series data based on a specified grid. The ADCIRC data and the interpolated pressure 

data were consistent; they showed a high surge near Galveston that gradually decreased to 

the southwest. We used all of the model data to create the maximum, storm-surge height 

raster. We used the same “extract values to points” tool to obtain the height of this surge at 

the same locations for which we extracted the pre-storm berm height. With these values 

we create a ratio:  𝑟𝑟(𝑥𝑥,𝑦𝑦) = 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 ℎ𝑠𝑠𝑒𝑒𝑠𝑠ℎ𝑡𝑡(𝑥𝑥,𝑦𝑦)

𝑏𝑏𝑠𝑠𝑠𝑠𝑏𝑏 ℎ𝑠𝑠𝑒𝑒𝑠𝑠ℎ𝑡𝑡(𝑥𝑥,𝑦𝑦)
.  
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For questions requiring the distance from the hurricane I downloaded a shapefile of 

Ike’s track and clipped it to just the area where the storm made landfall. I used then 

ArcMap’s Near tool to measure distances from the eye of the hurricane.  

 I created a difference map using the 2006 FEMA DEM and a DEM made from an 

airborne lidar survey data taken in 2009 through a United States Army Corps of Engineers 

(USACE) contract. The USACE data was subtracted from the FEMA data. The values in 

this (1m X 1m) raster represent the elevation change that I interpret as sediment erosion 

and deposition that occurred during the hurricane. I used the Zonal Statistics as Table tool 

to calculate the area, maximum deposition, maximum erosion, range, mean, standard 

deviation, and sum associated with each mapped washover feature. Volume data is not 

available southwest of Matagorda Peninsula because the post-storm 2009 lidar data does 

not extend that far. 

 Tides and bathymetry were not included in my analysis because the Texas Gulf 

Coast is a microtidal environment and the shallow-water bathymetry is essentially constant 

in the alongshore direction. 
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Figure 2.2 The difference map and polygons overlain on an aerial photo. The polygons were used as zones for the 
zonal statistics. For consistency I use green to represent fans, purple to represent terraces and brown to represent 
sheetwash. The blue areas to the left and right of the polygons in this figure were mapped as sheetwash but I excluded 
the sheetwash polygon in order to show what deposition looks like in the difference map. The black polygons are a 
buffer I created to capture the change at the beach berm. When overwash erodes through the berm the feature it 
creates is called the throat. The statistics from the areas of the difference map defined by these zones is included as 
Transition 7 in Chapter 4. 
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CHAPTER 3  
Results 

Mapped Deposits 

Through visual inspection I identified and mapped 548 washover fans, 249 

washover terraces, and 7,408,337.57m2 of sheetwash. In the attempt to be exhaustive I 

encountered the limitations of such a discretized classification system, but I believe it is 

still appropriate as long as we recognize some judgement calls have been made. The 

disparate spatial scales of the coast (100’s of kilometers) and washover deposits (10’s of 

meters) makes visually summarizing the results difficult, as shown in Figure 3.1. By 

grouping each depositional style we can see the simplest expression of the gradient of Ike’s 

ability to top the beach crest and deposit sand landward of the berm (Fig. 3.2). 

 

Figure 3.1 Every mapped washover deposit. Identification was done by visual inspection of Texas Orthoimagery Program 
aerial photos taken in 2008 and 2009. 



15 
 

 

 

Figure 3.2 Mapped deposits grouped by depositional style according to Donnelly et al. 2006, shown in Figure 1.5. The 
presence of fan clusters, terrace clusters and sheetwash in the same places reflects the disparate spatial scales of the 
coast and the deposits.  

 Logically, the spatial trend one would expect with increasing distance from Ike’s 

track is net erosion sheetwash abundant terraces fewer terraces with fans  

abundant fans  fewer fans  no visible storm deposits. Figure 3.2 shows that the deposits 

do generally follow this trend but, as with many natural systems, it is not a simple linear 

transition and therefore begs closer examination. 

Surge/Berm Relationship: r  

 The first steps in examining the storm and beach relationship requires directly 

comparing the height of the pre-storm berm and the height of the storm surge. If we 

understand overwash to be any water that overtops the beach crest, then finding where the 

storm surge was higher than that crest is the first step in examining the spatial distribution 
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of washover deposits.  Figure 3.3 shows the surge height and pre-storm surface elevation 

rasters while Figure 3.4 shows the values extracted from both along the dune crest.  

 

Figure 3.3 The maximum height of the storm surge, as calculated by the ADCIRC model and a DEM made from lidar 
data. The ADCIRC data was provided by Dr. Clinton Dawson and the Institute for Computational Engineering and 
Science.  

 

Figure 3.4 Elevation of the pre-storm beach berm measured every three meters from Galveston to Matagorda Island 
(black) and the maximum height of the Ike storm surge (blue). The values were obtained from the rasters shown in Figure 
3.3. The spike and plateau on the right side of the plot are infrustructure, including Galveston’s sea wall. 
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Figure 3.5 The locations of the washover deposits shown in Figure. 3.2 are superimposed on the plots of surge and pre-storm berm height from Fig. 3.4.  The terms depositional and 
erosional used here refer only to mapped features, not the coast as a whole. “No Accumulation” is distinct from “Erosional Regime” in that “No Accumulation” indicates the lack of 
identifiable or measureable deposits, whereas “Erosional Regime” indicates that mapped features can, but do not necessarily show a net loss of sand (Fig 3.9). “Spatially Continuous” 
means that deposits are either sheetwash, which is laterally extensive, or the fans and terraces are spaced closely together.  
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 Figure 3.5 allows for easy comparison of the surge/berm relationship with the gross 

locations of washover features. Figure 3.6 shows the ratio of the height of the storm surge 

to the height of the pre-storm beach berm, r, calculated at three meters spacing along the 

berm.  

 

Figure 3.6.r values represent the maximum height of the storm surge divided by the height of the pre-storm beach crest 
at locations every three meters along the beach berm. The values generally reflect a gradual decline in the surge height 
except in places with some local variabiility in berm height. 
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Volumetrics 

 

Figure 3.3.7 The difference map with digitized washover deposits overlain on an aerial photo. The difference map was 
created by subtracting 2009 Army Corps of Engineers lidar survey data from a 2006 FEMA lidar survey data.  Statistics 
were calculated using each polygon as a zone. 

The sum of all elevation difference values provided by the Zonal Statistics tool represents 

the net sand change for each mapped washover feature (Fig 3.8, 3.9). The data show that the 

washover features are more likely to be net erosional within 60km of where Ike made landfall (Fig 

3.9). 60km represents the first point where the surge height becomes equal to the pre-storm berm 

height (r=1).  
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Figure 3.8. Volume change for each mapped overwash feature using a lidar difference map and polygons as zones (Fig 
3.7). These volumes represent the net addition or removal of sediment from the mapped washover feature. The inset 
rectangle centered on a zero value for Net Sand Change defines the data range presented in Figure 3.9. 

 
Figure 3.9. Volume change for mapped overwash features using the lidar difference map and polygons as zones. Data 
shown here are from within the inset shown in Figure 3.8. Data points below the solid horizontal line are net erosional 
overwash features. Data points above the line are net deposition washover features. 
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Figure 3.10. Mean change in surface elevation associated with each washover feature. This mean change was 
calculated by taking net-sand change (Fig 3.8) and dividing by surface area of each polygon. Normalizing the data in 
this way allows us to directly compare all classes of washover deposits. 

 
Figure 3.11 Mean deposit thickness (Fig 3.10) plotted as a function of  r (Fig. 3.6). The r value for each feature represents 
the average for all values measured along the beach berm at the throat position using pre-storm lidar data.  

 Figure 3.11 shows the mean thickness associated with each mapped feature as a 

function of r. In general, deposits with negative thicknesses, the one dimensional indicator 

of erosion, require an r value of 0.8 or greater. There was a large concentration of deposits 

around an r value of 0.5 and a very few coastline locations with r <0.4. This could lead one 

to believe that deposits do not occur unless the r value is around 0.4 or greater, but the 

values in Fig. 3.11 are average values, and Figure 3.12 shows that r values were rarely as  



 22 

low as 0.3. This should be considered a boundary condition set by the topography of the 

beach and not interpreted as a necessary condition for overwash. 

 

Figure 3.12 All r values less than one plotted as a function of distance from the storm’s landfall in semi-log space. Ike’s 
storm surge and the Texas coast’s topography only reached a ratio as low as 0.3 in a few locations. This needs to be 
considered when interpreting figure 3.11. 

 Figure 3.13 shows the mean elevation change (volume/area) isolated at the throat 

of each mapped washover feature. The positive values were surprising because I expected 

the overwash process to have eroded the berm at these locations. Close inspection of the 

post-storm lidar DEM indeed shows sand accumulation in front of and on top of the beach 

berm (Fig. 3.15). Figure 3.14 shows the elevation change at the throat plotted against r, 

and shows most of the locations that gained mass were associated with smaller r values.  
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Figure 3.13 The mean elevation change at the berm, calculated by dividing the sum by the surface area, as extracted by 
the zonal statistics tool. The zones were created by buffering the baselines (the beach crest) of each deposit by 10m on 
both sides. 

 
Figure 3.14 Mean thicknesses of elevation change at the beach berm location for each overwash feature plotted as a 
function r. Each measurement is taken from a 20m swath centered on the pre-storm beach berm and extending for the 
length of the throat for each overwash feature .  

Antecedent Topography  
 When a storm hits a coast it does not encounter a blank slate; the state of the beach 

reflects the recent history of geomorphologic processes. One would expect to find 
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washover deposits preferentially located behind portions of the berm that had been 

lowered, removed, or simply present as low topography. However, as shown in Figure 3.5, 

there was a segment of coast that was fully inundated regardless of local pre-storm berm 

height. This leads to the hypothesis that dependence on low topography should be 

negatively correlated with storm energy. Figure 3.16 shows the minimum and mean pre-

storm berm heights for washover fans plotted with distance from the storm. Terraces and 

sheetwash were excluded because they are not discrete deposits and cannot be associated 

with a specific berm breach location. 

 
 

 

Figure 3.15 A stretch of beach in Matagorda County before (above) and after Hurricane Ike, VEx5. The berm is taller 
after the hurricane, with pronounced gaps where deposits were formed (green polygons). The crest of the berm in the 
2006 image is white in places because of missing data, probably because of vegetation.  
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Figure 3.16 Minimum and mean pre-storm berm heights were obtained by creating points along the digitized baselines 
(the beach crest) of each washover fan and extracting height values. Minima and means were calculated for each deposit 
using Matlab. The vertical line represents the most distal location where r = 1. 

 Using the pre-storm DEM I extracted along-berm profiles in locations that I 

expected could show a controlling influence of high topography. Figures 3.18-3.20 show 

the profiles with locations of washover deposits indicated above, while Figure 3.17 shows 

where they come from. These profiles are representative of their areas.  
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Figure 3.17 The locations of the following topographic profiles.  
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Figure 3.18. The topographic profile of the beach berm on Matagorda Island, extracted from the 2006 FEMA DEM. Locations of deposits are plotted at y=5. 

 

Figure 3.19 Topographic profile, with deposits, for an area north of the Colorado river. Figure 3.20 Topographic profile for part of Matagorda Peninsula. Locations of 
Locations of deposits are plotted at y = 4     deposits are plotted at y = 4 
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CHAPTER 4  
Transitions 

 
 Hurricane Ike’s storm surge and declined with distance from the eye in continuous 

manner (Fig 4.1). The washover deposits that resulted from the storm’s interaction with 

the coast change in size and character in a more stepwise way (Fig 4.1). This chapter will 

more closely examine the conditions at each transition, beginning with those nearest to the 

hurricane’s eye. There are two additional transitions (the control of beach topography and 

volume change isolated at the beach berm) that cannot be pinned down to a certain location. 

These will be discussed later in the chapter. 

 

 

Figure 4.1 The topographic profile was extracted from the 2006 FEMA lidar data set, the storm surge height was 
extracted from the ADCIRC model results. The deposits types are named according to the classification scheme from 
Donnely et al. (2006). The map and plot are aligned in space. Transitions are numbered in the order they are 
discussed. 
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Figure 4.2 Locations of important transitions. Numbers match those in Figure 4.1. 

Transition 1: First Measureable Accumulation 

On Galveston Island, close to where the eye of the storm made landfall and where 

the storm surge and waves were highest, there were almost no measureable washover 

deposits. The few exceptions seem to have accumulated in the presence of infrastructure. 

The sediment-transporting conditions exerted by the four meter storm surge and 

superimposed waves inhibited deposition of measureable thicknesses within a three 

hundred meters of the shoreline by spreading the sediment over a significantly wider area. 

The closest location the hurricane’s eye where washover was deposited without noticeable 

control by infrastructure is at the southwestern end of Galveston Island (Figure 4.3). 
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Figure 4.3 The most proximal net accumulation of washover sand not influenced by infrastructure. On the left is an 
airborne lidar difference map made by subtracting the 2009 Corps of Engineers lidar data set from the 2009 FEMA 
lidar data set. The red stripe indicates erosion of the beach berm and the blue stripe landward is positive elevation 
change cause by sand deposition. 

 These first natural washover accumulations measured using lidar were located 45km away 

from where the eye made landfall, where the surge/berm ratio is in the 1.2-1.4 range. As mentioned 

above, this occurs at the southwestern tip of Galveston Island, just north of San Luis Pass. This 

occurrence of washover deposits is important because on the other side of San Luis Pass overwash 

once again produced erosion with no measureable affiliated deposits (Scours from Fig. 4.1). So, 

the first occurrence of washover deposits is not an irreversible change from net erosional to net 

construction features. 

Transition 2: Net depositional washover features 

The next lateral transition marks the location is where the overwash regime shifted from 

being net erosional to being net depositional (Figure 4.3). Transition 2 was set the point about 60km 

from Ike’s track where all mapped washover features become net depositional (Fig 3.9). A stretch 
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of fairly continuous washover deposits occurs over a spatial zone characterized by an r value of 

0.85 to 1.2 . 

 
Figure 4.4 Difference map and aerial photo capturing Transition 2. Overwash features to the northeast are 
predominantly erosional. Mothing to the southwest the swath of erosion systematically decreases while the 
sedimentation increases until all overwash features are net depositional. This is shown in the difference map by the 
thinning of the red stripe to the southwest. 

Transition 3: End of significant sheetwash deposits  

The next important transition marks the end of extensive sheetwash features. 

Sheetwash is interpreted to require complete inundation of the beach berm, so its cessation 

marks the point where surge height is sufficiently small that local berm topography exerts 

control on where washover features are located. For Ike this happened just north of the 

mouth of the Colorado River, 150km away from hurricane landfall at an r value of 0.6. 

Figure 4.1 shows small amounts of sheetwash southwest of this location, but these are at 

the exposed ends of barrier islands and need to be considered separately.  
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Transition 4: Laterally discontinuous washover deposits 

 The mouth of the Colorado River, which is about 150km from Ike’s track, marks a 

transition from nearly continuous washover deposits to spatially separated washover 

deposits.. Figure 4.5 shows not only the end of sheetwash but also the end of closely spaced 

terrace and fan deposits. Southwest of the Colorado River, deposits formed with more 

space in between them. While this transition seems abrupt and centered around the 

Colorado River, smaller scale reversals demonstrate that this transition is defined by a zone 

of narrow width rather than a point. 

 

Figure 4.5 The location of Transition 4, the mouth of the Colorado River. Deposits have more space in between them to 
the southwest of the river. 
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Transition 5: Last washover 

 The last transition among depositional regimes identified here is marked by the last 

mapped washover deposit. Beyond this point, it appears that the beach berm was not 

breached or overtopped by sediment charged water that could produce washover fans. The 

most distal fans I found were about 240km southwest of hurricane landfall at an r value 

around 0.35 to 0.45. This location is interesting because it does not possess any obvious 

attribute to connect it with the position of the last washover deposits: the surge did not drop 

off dramatically and the berm heights varied within a normal range.  

 

Figure 4.6 Aerial photo taken in 2009. The washover deposits farthest from Hurricane Ike's landfall. Arrows are 
included because the deposits are small. 
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There are two other styles of transitions for which it is harder to identify a single 

location, and were therefore excluded from Figure 4.1. These are the (1) control of 

antecedent topography and (2) the volume change isolated at the throat of the fan.  

Transition 6: Control by antecedent topography 

The control that the berm exerts on the locations of deposits is multifaceted. Where 

r > 1 the details of preexisting topography can be ignored because all of it is overwhelmed 

by the storm surge. Additionally we can assume that sheetwash and closely spaced 

washover deposits occur that the berm was being overtopped in spite of its topography. 

Figures 3.17-3.19 define a growing dependence on berm topography as distance from the 

storm increases and r values decrease. My interpretation of this relative topographic control 

is shown in Figure 4.7. 
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Figure 4.7 Interpreted zones of control on location of washover deposition exerted by the local topography of the 
beach berm. The zone of no control is defined as the extent of significant sheetwash deposits. The other zones were 
determined by comparing low segments of the berm with the locations of deposits (Figs 3.17-3.19) 

 As mentioned in Chapter 3, storm inlets and reactivated fans certainly represent low 

topography because the berm itself has been removed. Figure 4.8 shows several large 

deposits that formed in locations where the beach berm was absent due to previous storms. 

These are from Matagorda Peninsula, in the area labelled “Moderate Control” in Figure 

4.7.  
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Figure 4.8 Storm inlets and reactivated fans on Matagorda Peninsula 

Transition 7: Net volume change at the throat 
 Figure 3.12 shows the trend in volumetric change isolated at the throat of each 

deposit. It appears to be a gradual transition from net sand loss to net sand gain, with an 

approximately constant rate of change. Figure 4.9 shows the distances from Ike’s track at 

which throats change from being erosional to depositional. 
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Figure 4.9 A map view of the data presented in Figure 3.12. Statistics were extracted from the lidar difference map 
using the buffers shown in Figure 2.2 as zones.  
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Chapter 5 

 Discussion 

Surge/Berm Relationship: r 
  

Coasts are continuously adjusting to environmental forcings. Storms perturb the 

background rates of shoreline erosion, but when storm conditions pass the beach begins to 

repair itself. The beach we see on any given day is somewhere in this cycle. The most 

important processes that restore a beach are a ridge and runnel that works its way from the 

nearshore into the swash zone and aggrades the beachface and an aeolian ramp that 

accumulates where the beach berm has been scarped (Davis and Fitzgerald 2004: 378). 

These two processes do not affect washover deposits, so evidence of larger storms’ impact 

on the morphology of the beach complex is more lasting. The most important of those 

impacts (Figs. 3.8, 3.9) is delivering sand to the backshore area, landward of the beach 

berm, because there it is sequestered yet still available for future coastal processes that keep 

a beach healthy, particularly in a regime of sea level rise (Fisher et al. 1974). Therefore it 

is important to understand where washover happens, why it happens there, and what exerts 

control on it as a process. The spatially comprehensive approach reported herein allows us 

to quantify some of these controls by correlating spatial variability in washover with the 

spatial variability in storm and beach conditions. 

A first order control on the overwash process is the relationship of storm surge to 

the height of the beach berm, presented here as the ratio r. If r is greater than one then the 

surge overtops the berm regardless of other factors, but as the as r decreases along the coast 
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(Figs 3.4, 3.6) it is almost certain that sediment motion and transport by wave action is 

required for overwash to produce measureable changes in berm and back-berm topography. 

As shown in Chapter 4 (Figs. 4.1, 4.4) sheetwash, which is understood to require complete 

inundation of the beach (Donnelly et al. 2006: p. 968), was found to extend 150 km 

southwest along the Texas coast to locations r had a value of only 0.60. This provides a 

qualitative indication of importance of waves to washover formation. Farther southwest, 

as r generally decreases, the transitions in washover deposit size, style, and character trend 

in the direction of smaller, farther-spaced and more dependent on antecedent topography 

(Table 5.1). While observed trends are correlated with a decreasing r, it is probable that the 

values reported in Table 5.1 are specific to Hurricane Ike and would be different for 

hurricanes that approached the coast at a different angle (Penland and Suter 1984), had a 

different duration (Morton et al. 2003), or affected a coast with different lithology (Bush 

1991). Still, r relates two first-order factors in overwash, the height of the surge and height 

of the berm (Morton et al. 2003), and should therefore prove to be a useful quantity in 

comparing different hurricanes to each other through their washover deposits. Potentially, 

differences in the r values for the same transitions associated with different storms could 

provide a measure of the relative contribution of waves in reworking of the beach complex.  

 
 

 
 



40 
 

Table 5.1 Each transition in washover deposition identified in Chapter 4 with associated r values. 

Transition r (Ike) Distance 
from Ike’s 

track 
No Accumulation  Presence of deposits (Fig 
4.2) 

1.20-1.40 45km 

Potentially net erosional fans  Universally net 
depositional fans (Fig 4.3) 

0.85 -1.20 60km 

End of Sheetwash (Fig 4.4) 0.60 150km 

Laterally Continuous  Discontinuous (Fig 4.4)  0.51 155km 

Last Washover Deposits (Fig 4.5) 0.35- 0.45 240km 

Beginning of Moderate Topographic Control (Fig 
4.6) 

0.60 150km 

Beginning of Strong Topographic Control (Fig 
4.6) 

0.51 173km 

Beginning of the Transition to Net Depositional 
Throats (Fig 4.7) 

1.20 80km 

End of the Transition to Net Depositional Throats  
(Fig 4.7) 

0.50 174km 

 

Antecedent Topography 

 When faced with a length of beach with numerous discrete washover deposits separated by 

tens or hundreds of meters, one must ask “Why here and not there?” A logical explanation, which 

has been frequently asserted in the literature, is that washover processes exploit existing low 

elevation segments of the beach berm. A few different ways to approach this question are presented 

here. Figure 3.14 shows the pre-storm minimum and mean height for the segments berm that were 

breached, leading to washover deposition, for almost all washover fans. There appears to be an 

overall decrease in these elevations in the values with distance away from the hurricane. This could 

reflect an increased dependence on low spots in the beach berm but more data is required. 
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Figure 3.16 shows the height of the beach crest on Matagorda Island, which is the most 

distal 50km of beach with washover deposits from Hurricane Ike. This area was chosen because it 

is where the storm was weakest so control exerted by the berm should be the most obvious.  Here 

there appears to be a moderately strong correlation between stretches of beach with a low berm and 

the presence of washover deposits. The imperfection of this correlation is difficult to understand, 

but that is precisely why it holds potential for explaining exactly how overwash happens.  

 Figure 3.18 shows the berm profile of a kilometer of beach north of the Colorado River 

mouth. This segment of coastline appears to be the closest to Hurricane Ike’s track where the 

topography of the beach berm can be seen to have exerted some control on the distribution of 

washover deposits. The average r value at this location is 0.50. Only 3 km northeast there are linked 

washover terraces and fans that were not in any measureable wayaffected by the berm they 

overtopped, and the average r value there is 0.60. Figure 3.17 shows the relationship between the 

beach berm and the locations of deposits on Matagorda Peninsula. In this case it again seems like 

each deposits is located at a local low area in the berm, and the average r value there is 0.44. 

Additional evidence for the influence of the beach berm on the positioning of washover 

deposits comes from a location on Matagorda Island, at the very distal part of the study area. Figure 

18 shows the DEM of a stretch of beach along which the berm has been scarped by a previous 

storm and not yet healed. This stretch of beach is also the most distal location where washover 

deposits are located within meters to tens of meters from each other. The average r value along this 

part of the beach is 0.58. 
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Figure 5.2 Left: 2006 DEM. The beach berm appears to be scarped. Right :The same location after the storm.. This is 
the most distal group of closely spaced deposits. 

Reactivated Fans and Storm Inlets 

 The largest washover fans by surface area are places where the throats of the fans have 

remained open for some time. The gaps in the berm are large and the low topography acts to funnel 

water into the throat. Eolian processes that would rebuild the berm across these throats must be 

overwhelmed by input from even small storms as well as a perpetually moist surface that inhibits 

wind-blown sand transport; the low topography creates positive feedback and the throats are 

maintained. Twenty three of the largest twenty five washover fans appear to have been reactivated 

by Hurricane Ike. Some of these might properly be considered storm inlets because they connect 

to the back barrier lagoon, but others do not. The pull that inlets exert on overwash can be seen in 

the concentration of washover features deposited near them and the plan view shapes even appear 

to be reaching for the closest access to the lagoon (Fig. 4.8). This bears on the above question of 
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antecedent topography in a slightly different way because it relies on explicit destruction of the 

beach berm, not natural variability in its topography.  

 The highest concentration of storm inlets and reactivated fans, including those in Figure 

4.8, was on Matagorda Peninsula north of the Colorado River mouth. While this is speculative, I 

believe it is possible that storm inlets routed water into East Matagorda Bay and that this could 

have been a contributing factor in causing Transition 4 to occur in this vicinity.  

Integrating Waves 

 Using maps published by Hope et al. (2013), the results of the SWAN wave model run by 

Dr. Clinton Dawson, I distributed values for maximum wave height to all points along the storm 

modified coast. Integrating these data into my analysis is not straightforward because of the 

uncertainty in exactly what is occurring on the beach during a hurricane. Still, waves are a crucial 

part of understanding geomorphic change at the beach and they are not evenly distributed along the 

coast, so spatial variability in washover cannot be fully understood without them. Figure 5.7 shows 

profiles of beach elevation, surge height, and the waves as calculated by the SWAN model and 

extracted from the 10m isobath at the time of hurricane landfall.  



44 
 

 

 

 

 

Figure 5.2 Topographic profile from the FEMA 2009 lidar survey, maximum storm surge height from ADCIRC model results and significant wave height. Wave data was 
created by the SWAN model and provided by the Institute for Computational Engineering and Science. The wave data has a slightly different extent than the other data 
sets. 

  



45 
 

Also, given that the waves are superimposed on the storm surge it stands to reason that their erosive 

power is a function of both those factors and of the height of the berm. To combine these parameters 

I multiplied the maximum wave height by the quantity r. The position where the scaled wave height 

equals the berm height corresponds nearly perfectly with the end of significant sheetwash deposits 

(Fig 5.8). While these plots are intriguing there remains a significant amount of additional work to 

be done before we can interpret them with confidence. This is a promising and necessary direction 

for future research. 

 

Figure 5.3 Topographic profile from FEMA 2009 lidar survey, surge height from ADCIRC model results and wave data 
scaled by  r. Wave data was extracted from Hope et al. 2013. 
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Understanding Overwash 

 Because it is rarely feasible to directly observe a beach during a hurricane the details 

of the process of overwash are not known with great certainty. We know it requires water 

to overtop the beach berm or to erode a throat and flow through it, and we have some 

velocity measurements for that flow (2m/s Fisher et al. (1974), 2.4m/s Leatherman (1976)), 

but most of these measurements were done on just a few locations on Assateague Island, 

so they are not representative larger storms that probably would have destroyed the 

equipment used to take measurements. Donnelly et al. 2006 report that the following four 

step model provided by Fisher et al. 1974 is basically correct but the order of the steps can 

be reversed or repeated. 

1. Erosion in the throat 

2. Deposition of sand on the fan and in the bay 

3. As storm intensity decreases, overwash bore velocities decrease and sand is 

deposited on the throat and in the fan 

4. The washover is reworked by abating storm winds. 

While this model might be accurate, the finding that the area of the beach berm, 

through which the throats are eroded, transitions from being net erosional to net 

depositional with a fairly constant rate of change (Fig 3.11) demands additional attention. 

If the berm experienced net accretion in places with washover deposits can we be sure it 

was breached? This question could probably be answered by finding an erosional surface 

with ground penetrating radar, but local governments discourage activity that might 
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damage the vegetation on the berm. The results presented here have been mostly in 

reference to identified and digitized washover deposits, but the state of the beach as a whole 

clarifies the erosion/accretion trend because the entire beach is behaving in the same way. 

Notwithstanding deposits, the beach berm becomes net depositional gradually with 

distance from Ike’s track, so the transition from net negative to net positive washover 

throats simply fits into this larger trend. It is possible that the stages listed above occurred 

in that order but the deposition step shows a spatial trend that obscures the history of 

erosion for distal washover deposits.  

Washover sand is transported as the flow spreads and decelerates and we have 

indications that this can occur before the hurricane even makes landfall (Shaw et al. 2010). 

The deposits retain the morphology that reflects this landward transport activity, and this 

does not seem to change with distance along the coast. This means that even during a storm 

they are not reworked while they are subaqueous. This seems to indicate that storms have 

a coupled destructive/constructive or erosional/depositional phase, past which the water 

that inundates the beach acts to protect washover deposits.  There was no clear signal that 

abating storm winds affected washover deposits during Hurricane Ike, but observations at 

the beach certainly indicate significant aeolian reworking since the storm. Sand that Ike 

pushed onto the beach is now circulating in dune fields that serve as habitats and act to 

dissipate energy that could otherwise exert itself on infrastructure or people.  
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Chapter 6 

Conclusions 

The alongshore distribution of washover deposits caused by a hurricane is 

controlled by the strength and duration of the storm and the geometry of the beach. The 

most important input from the storm is the surge because it can simply destroy the berm 

and drown the beach. Where the surge is greatest measureable volumes of sand are not 

deposited behind the berm crest at all because the very large transport distances appear to 

produce a resulting deposit that is very thin. Moving along shore and down the decreasing 

storm energy gradient, this washover state gives way to sheetwash and other laterally 

continuous deposits, then to clusters of washover fans and terraces that are increasingly 

spaced farther apart, and eventually there is a point where the storm waters could not 

overtop the beach berm. These transitions are more stepwise than the gradual decrease in 

the surge height and are not unidirectional at small spatial scales (Fig 3.5). There are clear 

indications waves play a crucial role in damaging or lowering the beach berm during a 

storm but it is hard to quantify.  

Within 60km of Hurricane Ike’s track it was possible for the area mapped as a 

washover feature to have experienced a net loss of sand but beyond that point almost all 

mapped features experienced net aggradation. While sheetwash and terraces naturally 

contain more sand, after normalizing the volume change by the areal extent of each deposit 

it appears there is no significant difference between the three classes of washover presented 

here. The volume change isolated at the throats showed a gradual transition from net 

erosion to net deposition, which mirrors the pattern in volume change on the shoreface.  

Ike’s surge and waves were completely effective at destroying or topping the beach 

berm up to the point that the surge was 60% as high as the pre-storm berm. At that point 



49 
 

deposits preferentially formed where the berm was lower or previously damaged. Where r 

was 0.50 or lower, the berm exerted a much stronger control on where washover deposits 

formed.  

The identified inconsistencies in between the erosion/deposition ascribed to the 

surge and the state of the beach when Hurricane Ike passed are assumed to be the product 

of wave action. This is a promising avenue for future research. The deposition of a body 

of sheetwash on Matagorda Peninsula was shown to have occurred the day before landfall, 

during the period of maximum wave heights, though the amount of work required to make 

that determination is prohibitive for expanding the methods to numerous other washover 

deposits (Shaw et al. 2015).  With the timing of deposition known, we can begin to move 

towards a fuller understanding of the overwash process that might yield a deterministic 

relationship between surge, waves, and the beach.  

By improving our understanding of what controls overwash processes, we can 

improve our long term predictions of coastal change. Sea level rise and the huge 

populations in coastal areas makes this an issue of paramount importance for economic and 

security reasons.  
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