
Copyright

by

Benjamin Michael Goldsberry

2014



The Thesis Committee for Benjamin Michael Goldsberry

Certifies that this is the approved version of the following thesis:

Modeling Three-dimensional Acoustic Propagation in

Underwater Waveguides using the Longitudinally

Invariant Finite Element Method

APPROVED BY

SUPERVISING COMMITTEE:

Mark F. Hamilton, Supervisor

Marcia J. Isakson, Co-Supervisor



Modeling Three-dimensional Acoustic Propagation in

Underwater Waveguides using the Longitudinally

Invariant Finite Element Method

by

Benjamin Michael Goldsberry, B.A.

THESIS

Presented to the Faculty of the Graduate School of

The University of Texas at Austin

in Partial Fulfillment

of the Requirements

for the Degree of

MASTER OF SCIENCE IN ENGINEERING

THE UNIVERSITY OF TEXAS AT AUSTIN

August 2014



In loving memory of Evelyn Botts Wester (1916-2013)



Acknowledgments

I wish to thank the people who helped and gave me support as I com-

pleted this work. First of all, I would like to thank my family for their constant

support, encouragement, and love. I would also like to thank Nathalia Basso

for her inspiration, guidance, and being a wonderful best friend. Much appre-

ciation to my friends, the Four Pack (Anthony Bonomo, Stephanie “Trinity”

Konarski, and Justin “The Everyman” Gorhum). Many thanks to Dr. Mark

Sussman at Florida State University and Dr. Je↵rey Housman at NASA Ames

Research Center for being excellent mentors that put me on the path towards

studying acoustics. Finally, I would like to thank Dr. Marcia Isakson for advis-

ing me throughout my time studying, Dr. Mark Hamilton for his extraordinary

lectures on acoustics, Texas Advanced Computing Center (TACC) for their

computational resources, and the O�ce of Naval Research, Ocean Acoustics

for their financial support.

v



Modeling Three-dimensional Acoustic Propagation in

Underwater Waveguides using the Longitudinally

Invariant Finite Element Method

Benjamin Michael Goldsberry, M.S.E

The University of Texas at Austin, 2014

Supervisors: Mark F. Hamilton
Marcia J. Isakson

Three-dimensional acoustic propagation in shallow water waveguides is

studied using the longitudinally invariant finite element method. This tech-

nique is appropriate for environments with lateral variations that occur in

only one dimension. In this method, a transform is applied to the three-

dimensional Helmholtz equation to remove the range-independent dimension.

The finite element method is employed to solve the transformed Helmholtz

equation for each out-of-plane wavenumber. Finally, the inverse transform is

used to transform the pressure field back to three-dimensional spatial coor-

dinates. Due to the oscillatory nature of the inverse transform, two integra-

tion techniques are developed. The first is a Riemann sum combined with

a wavenumber sampling method that e�ciently captures the essential com-

ponents of the integrand. The other is a modified adaptive Clenshaw-Curtis

quadrature. Three-dimensional transmission loss is computed for a Pekeris
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waveguide, underwater wedge, and Gaussian canyon. For each waveguide, the

two integration schemes are compared in terms of accuracy and e�ciency.
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Chapter 1

Introduction

Acoustic propagation in shallow water environments presents a wealth

of physics not found in the deep sea. In shallow water environments, sound

interacts with both the sea surface and the ocean bottom. Because of this, the

sediment composition, layer structure, and bathymetry all play an important

factor in acoustic propagation. These e↵ects have a drastic impact on the

transmission loss in the sonar equation, which influences the e↵ective range of

a sonar or underwater communications system. For this reason, the impact of

the sediment properties and bathymetry on the transmission loss of a shallow

water waveguide must be investigated.

An area of great study is the e↵ect of the bathymetry in a three-

dimensional region of the ocean on the transmission loss of a sonar [1]. These

types of environments are known as range-dependent waveguides. They ex-

hibit acoustic phenomena not seen in range-independent waveguides, where

the bottom bathymetry does not change. The most prevalent phenomenon due

range-dependent bathymetry is horizontal refraction. When sound propagates

from deep water to shallow water, the repeated specular reflections between

the air-water interface and the sloping ocean bottom will cause the acoustic
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energy to refract down towards deeper water. Weston in [2] mathematically

showed the existence of horizontal refraction in underwater waveguides using

ray acoustics and proved that the e↵ect is only due to the sloping bathymetry

of a range-dependent waveguide. Though horizontal refraction was understood

in the 1960’s and 1970’s, it was not experimentally observed in the ocean un-

til 1988, when Doolittle and Tolstoy obtained experimental measurements of

horizontal refraction along the East Australian Continental Slope [3]. Be-

cause ocean experiments are costly and di�cult to perform, this e↵ect must

be investigated with mathematical models. However, it is di�cult to provide

analytical solutions to the acoustic pressure field for range-dependent envi-

ronments. Therefore, numerical methods are used. A profusion of literature

exists in deriving and implementing normal modes, rays, virtual source, and

parabolic equation methods to range-dependent environments, which are dis-

cussed in the next chapter. However, each of these models have assumptions

to the governing physics, including a slowly-varying bathymetry [1].

This work employs the finite element method to model three-dimensional

range-dependent ocean waveguides. Unlike the previously mentioned models,

the finite element method solves the governing equations exactly; there are no

assumptions to the physics. In addition, sediment layers and sound speed pro-

files can be easily and accurately incorporated. However, three-dimensional

finite element methods are computationally demanding. If the bathymetry of

a waveguide does not vary along one Cartesian spatial coordinate, mathemati-

cal techniques can be applied to reduce the dimensionality of the problem and
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make the numerical computations tractable. Therefore, a longitudinally in-

variant finite element model is proposed, where a Fourier transform is applied

to the invariant direction. Then, three-dimensional acoustic pressure fields can

be solved by computing multiple two-dimensional finite element models for dif-

ferent out-of-plane wavenumbers and applying the inverse Fourier transform.

However, due to the oscillatory nature of the inverse transform integrand, an

e�cient integration scheme needs to be developed.

This thesis attempts to answer the following questions:

1. How accurate is the longitudinally invariant finite element method

in computing the transmission loss in a three-dimensional range-

dependent waveguide?

2. What is an e�cient integration scheme that uses the least

number of finite element evaluations and calculates the inverse

transform accurately?

The first question is addressed by investigating three di↵erent under-

water environments. To ensure that the longitudinally invariant finite element

model is derived and implemented correctly, a range-independent environment

is first investigated. Then the introduction of range-dependence in the finite

element model is assessed by computing the transmission loss in a simple

underwater acoustic wedge environment. Finally, an underwater Gaussian

canyon environment is investigated as a proof of concept.
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To address the second question, two integration schemes are developed.

The first is a discretization of the integral into a Riemann sum, but the abscissa

are allowed to have variable spacing to e�ciently compute the integral. The

second scheme is a modified adaptive Clenshaw-Curtis quadrature. For each

waveguide, both integration schemes are compared and contrasted in terms

of accuracy in computing a three-dimensional acoustic pressure field, and the

number of finite element evaluations.
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Chapter 2

Literature Review

Over the past several decades, many analytical and numerical solutions

have been developed to approximate the wave equation in range-dependent

shallow water waveguides. In addition, there have been numerous tank and

ocean experiments verifying three-dimensional e↵ects created by range-dependent

bathymetry, the most notable being horizontal refraction. Early work dealt

with finding solutions to the wave equation in an underwater wedge with a

constant slope that is infinite in extent parallel to the wedge apex, with the

air-water interface and bottom interface approximated as a pressure-release

boundary condition and a rigid boundary condition, respectively. Currently,

most modern models have the ability to model an arbitrary bathymetry pro-

file, as long as the profile lies within the approximations of the given numerical

model. The aim of this chapter is to examine previous work on deriving an-

alytical and numerical solutions to range-dependent environments. The first

section discusses relevant analytical and numerical models. The last section

discusses the relevant experiments performed.
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2.1 Existing analytical and numerical solutions to range-
dependent environments

In 1959 and 1960, D.E. Weston wrote two papers concerning acoustic

propagation in a shallow-water waveguide where the bottom boundary height

varies with horizontal range [2, 4]. In the second paper, Weston focuses on the

e↵ect of sound propagation in a three-dimensional medium in which the bot-

tom boundary is allowed to slowly vary with horizontal range. A consequence

of sound propagation in a three-dimensional medium with a sloping bottom

is the existence of the phenomenon known as “horizontal refraction.” This

phenomenon occurs when repeated bottom and surface specular reflections of

a sound wave traversing a path oblique to the slope apex produces a curva-

ture of the horizontal path of the wave. Weston’s paper shows the existence

of horizontal refraction by considering simple ray propagation up a perfectly

reflecting inclined wedge with a constant sound speed profile in the water col-

umn. When a ray is launched at a horizontal angle oblique to the wedge apex,

repeated specular reflections from the sloped surface causes the ray to refract

back towards deeper water, creating a hyperbolic path shape in the horizontal

plane.

In 1964, Allan D. Pierce in [5] generalized normal mode theory of sound

propagation in a perfectly stratified medium to an “almost-stratified medium,”

which is a medium whose properties and boundaries are allowed to gradually

vary with horizontal distances. A solution to the theory is obtained by making

an adiabatic assumption, meaning modes propagate independently and do not
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transfer energy to another mode. This theory is also referred to as uncoupled

normal modes. In a medium where the horizontal changes are small, this as-

sumption is valid, and, as the slope of the bottom approaches zero (meaning

the bottom is perfectly flat), the solution is exact. When applied to an un-

derwater wedge environment with a constant slope, the results show that the

modes travel a hyperbolic path along the wedge, which is consistent with We-

ston’s results in [2]. Pierce also notes that, for a given frequency, if a receiver

lies on the parabolic path the acoustic energy arrives at the receiver at two

distinct times. The first arrival is the direct arrival from the source to receiver,

while the second arrival is the horizontally refracted sound due to the wedge.

In addition, the solution shows that there exists shadow regions, where there

are no horizontal ray paths connecting source and receiver. It is also important

to note that, in general, di↵erent frequencies arriving at di↵erent times do not

travel on the same horizontal path.

In [6], Graves et al. apply Pierce’s adiabatic uncoupled modes to an

underwater wedge environment which is invariant parallel to the apex. A

Fourier transform is applied to the invariant coordinate to obtain an exact

solution to the uncoupled mode equations. The accuracy of the adiabatic

assumption is addressed through comparison with the exact solution of an

underwater wedge with a small, constant slope and constant sound speed.

Small discrepancies between the adiabatic assumption and the exact solution

were found in the intensity near the mode cut-o↵ depth and in higher order

modes. The authors note that the mode coupling terms should reduce the
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discrepancies between normal modes and the exact solution, and inclusion

of the coupling terms will allow normal modes to be applied to more rapid

environmental changes. In addition, for long range propagation, energy from

higher modes will be transferred to lower modes before the former arrives at its

cut-o↵ point. Since the adiabatic mode formulation does not allow for modes

to redistribute energy, the adiabatic solution will under-predict the intensity.

Solutions to coupled mode theory, where the mode coupling terms are

not neglected, were also sought so that environments with less gradual slope

variations can be considered. In [7], Rutherford and Hawker show that the

rigid bottom boundary condition used by Pierce in [5] is approximate, and

when surfaces are allowed to vary more rapidly, the physically realistic conser-

vation of particle velocity normal to the boundary must be used instead of the

conservation of particle velocity with respect to the vertical coordinate. Using

the approximate boundary condition of conservation of particle velocity in the

vertical coordinate leads to nonconservation of energy in coupled mode the-

ory. The authors re-derive coupled mode theory using the physical boundary

conditions of continuity of normal particle velocity, and terms which conserve

energy to first order in the slopes of the horizontal boundary are retained.

Ray theory methods were also developed to study refraction e↵ects

in underwater wedge environments. In 1973, ray theory was generalized to

model geometries with weak range dependence by Weinberg and Burridge

in [8]. Following in the same manner as Pierce, the eikonal and transport

equations, which are used to calculate the phase and amplitudes of acoustic
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rays, are generalized to propagation in an “almost-stratified medium.” In [9],

Harrison analyzes the overlap between ray theory and normal modes to study

shadow regions in an underwater wedge environment. At low frequencies, the

launch angles of the rays must be restricted to discrete values corresponding to

the angles given by the phase speeds of propagating modes. This restriction

causes the rays to trace out the path of the modes, creating shadow zones.

Harrison also notes that interference patterns found along the wedge is caused

by the interference resulting from the many possible horizontal paths of a single

mode. In [10], Westwood provides a broadband model of the three-dimensional

penetrable wedge by extending two-dimensional complex eigenray theory to

three dimensions. Broadband field computations are achieved by interpolating

the eigenray characteristics between frequencies.

Normal mode theory describing underwater wedge environments with a

penetrable fluid bottom was also developed. The Helmholtz equation becomes

non-separable when dealing with penetrable fluid bottoms with a variable bot-

tom profile. Even if the boundary surfaces are matched by a separable coor-

dinate system, the boundary conditions on a fluid-fluid interface ensure that

the Helmholtz equation is not separable. In [11], Evans treats the wedge as

a number of stepwise, range-independent Pekeris waveguides. Backscatter is

included by conserving energy between each range-independent step. In [12],

Arnold and Fensen investigate the transition region of both uncoupled normal

modes and rays, where initially trapped energy in a waveguide penetrates into

the bottom medium. The authors show that uncoupled normal modes and ray

9



theory provide a good approximation with weak range-dependence; however,

this cannot be applied to the more general problem of acoustic propagation in

any wedge environment with bottom penetration. For upslope propagation,

rays that start as initially totally internally reflected eventually penetrate into

the bottom. Similarly, trapped modes propagating upslope approach cut-o↵

and transition to a leaky mode. Lack of knowledge of the transition between

trapped and leaky modes has prevented existing ray and normal mode mod-

els to e↵ectively describe upslope propagation. The authors state that the

present theories do not provide any insight on whether the transition requires

intermodal coupling or whether a mode retains its separate identity in the

transition from a trapped mode to a leaky mode. The authors address this

problem by deriving an integral equation which describes the transition behav-

ior as a mode approaches cut-o↵. The transition function obtained is similar to

Pierce’s investigation of the disappearance of trapped modes as they approach

cut-o↵ in [13], where an analytical solution of a parabolic equation describing

upslope propagation of an initially trapped mode is derived.

In [14], Buckingham derives an analytical solution to a penetrable

wedge. The dispersion relation in a wedge environment suggests that a co-

ordinate transformation to an “e↵ective” wedge, with the apex displaced and

the bottom replaced with a pressure-release boundary condition, considerably

reduces the complexity of the penetrable wedge problem while still being exact.

This “e↵ective” wedge removes the range dependence of the modal functions,

making the Helmholtz equation separable, and provides an exact solution to

10



a wedge environment with a penetrable fluid bottom.

In [15], Arnold and Fensen seek a more suitable generalization of mode

theory of propagation in a wedge environment, called “intrinsic” modes, where

an intrinsic mode is not coupled to another intrinsic mode, and each intrinsic

mode contains the contribution of normal coupled local modes. The authors

show that the zeroth order approximation to the intrinsic modes is equivalent

to the adiabatic modes derived by Pierce in [5], with the addition of the tran-

sition function from trapped to leaky modes. The next order of approximation

of the intrinsic modes give the local coupled normal modes and coupling coef-

ficients. Using a perturbation method, Desaubies and Dysthe in [16] develop a

theory of intrinsic normal modes in a general range-dependent waveguide with

a penetrable fluid bottom.

The parabolic equation method (PE) has also been used to study wave

propagation in a medium with variable bathymetry. PE was first applied to

underwater acoustics in 1973 by Hardin and Tappert [17]. In 1977, Tappert

published lecture notes fully describing PE theory with application to under-

water acoustics [18]. The derivation of PE carries three major assumptions:

the receiver is in the far-field, the sound speed and bathymetry vary weakly

in range, and backscattering is negligible [19]. These assumptions allow the

Helmholtz equation, which is a second order elliptic equation, to be approx-

imated by a first order parabolic equation by removing the second deriva-

tive in range, such that numerical solutions can be calculated using marching

techniques in range. In [20], McDaniel investigates the consequences of ap-
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proximating the Helmholtz equation with a parabolic equation by comparing

the PE equation solution to a coupled mode solution. McDaniel finds that

the paraxial assumption (neglecting the second derivative in range to reduce

the order of the Helmholtz equation) introduces increasing phase errors for

wide propagation angles. However, for on-axis and low angle propagation, the

PE equation provides a reasonable solution. PE also contains a square root

pseudo-di↵erential operator, which must be expanded by polynomials or ra-

tional functions such that the phase errors are minimized over a wide range of

propagation angles. The square root operator is expanded by Tappert in [18]

and Claerbout in [21]; however, both of these expansions have increasing phase

error with increasing angle. A high angle expansion is developed by Greene in

[22], which minimizes phase errors over an angle interval of 0-40 degrees. In

[23], Halpern and Trefethen find that a Padé series expansion does not mini-

mize the errors for all angles of choice but provides the highest accuracy in the

main propagation direction. In [24], Bamberger et al. derive a new family of

higher order PE approximations based on the Padé series expansion. Collins

in [25] applies the high order wide angle PE in [24] to underwater propagation.

These high order equations can be solved by either finite-di↵erence or finite

element techniques.

Three-dimensional PE models have also been created. A wide angle PE

model adapted to study ocean bottoms with range dependence is the FOR3D,

created by Lee et al. in [26]. However, fully three-dimensional PE models are

ine�cient for long range computations. Therefore, hybrid models have been
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developed. Collins develops an adiabatic mode PE to e�ciently calculate long

range acoustic propagation in [27]. A far-field wave equation is derived, and

the pressure field is expressed in terms of uncoupled propagating modes. The

modal amplitudes are then solved using a two-dimensional PE model. In [28],

Abawi et al. derive a coupled mode PE model, which is a generalization of the

adiabatic PE created by Collins in [27]. This model is energy conserving, and

involves both mode and azimuthal coupling.

Application of PE to upslope and downslope propagation in an under-

water wedge have been used to display the accuracy of PE for underwater

acoustic propagation. In [29], Jensen and Kuperman use PE to study mode

cut-o↵ behavior as modes propagate upslope. The authors show that as the

mode approaches the cut-o↵ depth, the angles of the modes transition from be-

ing below the grazing critical angle of the sediment (corresponding to trapped

modes) to being above the grazing critical angle of the sediment, causing the

mode to penetrate into the bottom. This environment leads to the modal

energy radiating into the bottom as a well-defined beam.

In 1995, the Acoustical Society of America created the “ASA wedge

benchmark,” where several wedge problems were studied using a plethora of

models. Approximate analytical solutions were derived by Deane and Bucking-

ham [30], an adiabatic normal mode approach was used by Tindle and Zhang

[31], and a new theory incorporating image sources that can include fluid and

elastic wedge bottoms was derived by Deane and Buckingham in [32]. In [33],

Jensen et al. supply a coupled mode solution and two PE models, showing that
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the coupled mode solution is the most able to provide benchmark solutions.

PE models that describe broadband pulse propagation in a wedge environment

are derived by Sturm in [34].

2.2 Experiments

In 1960, an experiment was conducted where sound created by explosive

charges from Perth, Australia propagated to a hydrophone array at Bermuda.

The data recorded contained two arrivals of the acoustic energy. Using an

adiabatic mode model, which includes horizontal refraction, Heaney et al. in

[35] show that the double pulse arrival is due to the presence of horizontal

refraction. The authors claim that the initial arrival follows a propagation

path that lies just south of Africa, while the horizontally refracted path follows

a longer path to the south and comes close to the coast of Brazil.

Doolittle et al. in 1988 performed an acoustic transmission experiment

in the East Australian Continental Slope [3]. The experiment was conducted

with two ships, one with a towed source and the other with an array of hy-

drophones starting in water approximately 500 m deep with an initial separa-

tion of 34 km. The angle of arrival for the acoustic energy was calculated by

beamforming the signals received at the hydrophones. There were measured

angle of arrivals at approximately 88 degrees, nearly broadside to the array,

showing evidence of horizontal refraction.

Horizontal refraction was measured o↵ the east coast of Florida in 2007

by Heaney and Murray [36]. Continuous wave tones were generated by a towed
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source and recorded on a horizontal line array, with the separation ranging

from 10 to 80 km. Multiple horizontal arrivals, with angle of arrivals up to

30 degrees, were observed. When the source was beyond 20 km, the acoustic

energy from the refracted path dominated the energy from the direct path.

Horizontal focusing was also noted for source to receiver distances of 40 to 80

km. In [37], Ballard models this experiment using a hybrid adiabatic mode

model, where the modal amplitude equations are solved using PE.

In 2010, an undersea volcano 8 km southeast of Sarigan Island erupted,

emitting low-frequency acoustic energy with broadband spikes. The acoustic

energy emitted from this eruption was recorded on a pair of hydrophone arrays

2250 km from Sarigan Island by Heaney et al. in [38]. An adiabatic mode

PE model was used to model the eruption. The model predicted horizontal

refraction, scattering from Sarigan Island, and di↵raction, which agreed with

the recorded experimental observations.

Several tank experiments have been conducted to verify three-dimensional

mode propagation in underwater wedge environments. The adiabatic approximation

was validated by Eby et al. in [39] for propagation with wedge slopes of around

1 degree in a small tank experiment. Ingenito and Wolf in [40] validate the

adiabatic approximation for downslope propagation in the ocean for slopes

of 0.3-0.9 degrees. Experiments conducted by Tindle, Hobaek, and Muir de-

scribed in [41] show that it is possible to generate uncoupled modes in a wedge

using a curved array source that follows an arc of a circle centered on the

wedge apex. However, if the line source is vertical, the generated modes are
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coupled and the sound field exhibits structure due to mode interference. In

addition, the phenomena of mode capture, which is the gradual appearance

of a trapped mode down-range when the water depth at the source cannot

support the mode, is theoretically predicted and experimentally verified by

Tindle and Deane in [42]. This phenomenon is a product of the fact that the

total number of modes in a wedge waveguide is the discrete sum of trapped

modes in addition to the integral of continuous modes. However, as the water

depth increases down-slope, the number of discrete modes that can propagate

increase, and the energy associated with a continuous mode is transferred into

a trapped mode when the water depth is adequate to support that mode. The

PE model by Jensen and Tindle in [43] accurately describe the results of this

experiment.
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Chapter 3

Finite Element Method

The finite element method (FEM) is a numerical technique for provid-

ing approximate solutions to boundary-value problems. The solution of the

governing partial di↵erential equation (PDE) is sought using variational meth-

ods, in which the PDE is represented in a weak form. The weak form is an

integral statement of a PDE in which di↵erentiation of a dependent variable

is transferred to a weight function such that all natural boundary conditions

are included in the integral statement [44]. Numerical solutions to the integral

statement are found by subdividing the domain of the PDE into simple subdo-

mains, or finite elements. The dependent variables are then approximated by

an expansion into a basis set in each subdomain. The coe�cients of the basis

set functions can then be solved for numerically. As the size of each element

decreases to zero, the approximate solution converges to the unique solution

of the governing PDE which satisfies the given boundary conditions [45]. This

method has been adapted to many problems in engineering and physics, and

a full derivation of this method can be found in [44–46]. FEM has been suc-

cessfully applied to many interior and exterior acoustics problems, including

underwater scattering problems in [47]. FEM is used to study transmission

loss and reverberation from a rough seabed in a shallow water waveguide in

17



[48]. Two-dimensional FEM is used to study acoustic propagation near the

southern and western Australian continental shelf in [49]. However, little work

has been done in applying FEM to long range 3-D shallow-water acoustic prop-

agation. This is due to the fact that many elements are needed to accurately

model a long range waveguide. However, if the geometry of the domain only

has lateral variations in one spatial coordinate, a transform can be applied

to remove the range-independent dimension. A 2-D FEM algorithm can then

be used to solve the transformed Helmholtz equation for each out-of-plane

wavenumber. The inverse transform is then applied to the 2-D computations

to produce an acoustic pressure field in 3-D spatial coordinates.

In the first section of this chapter, the problem geometries, along with

the corresponding PDEs governing the acoustic pressure field are described. In

the second section, the cosine transform is applied to the governing equations.

In the third section, the weak form is derived. In the fourth section, the

weak form is discretized and approximated such that solutions can be found

numerically. In the fifth section, perfectly matched layers are discussed.

3.1 Problem Statement

Three geometries will be considered in this work. The first is a flat,

range-independent ocean bottom environment (also known as a Pekeris waveguide).

A physical depiction and the finite element computational domain of the

Pekeris waveguide is shown in Fig. 3.1. Since the computational domain must

be finite, perfectly matched layers (PML) are used to truncate the domain.
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Table 3.1: Water and sediment properties for each geometry

Geometry ⇢
1

(kg/m3) c
1

(m/s) ⇢
2

(kg/m3) c
2

(m/s) a (dB/�) z
s

(m)
Flat 1000 1500 1500 1700 0.5 25
Wedge 1000 1500 1500 1700 0.5 100
Canyon 1000 1500 1500 1700 0.1 30

These layers are discussed further in Sec. 3.5. The water column depth is 100

m, and the source depth is 25 m. The second geometry considered is the “ASA

Wedge,” a simple underwater wedge environment [33]. The three-dimensional

geometry is shown in Fig. 3.2a and the vertical cut-plane where the source is

located is shown in Fig. 3.2b. The wedge angle is 2.86°, and the water depth

is 200 m at the source location. The source is located 4000 m away from the

wedge apex. The third geometry is a Gaussian-shaped underwater canyon,

modeled after [1] and shown in Fig. 3.3a, with a vertical cut plane shown in

Fig. 3.3b. The ocean bottom depth, z(x), is described by

z (x) = �200� 500 exp
⇥
�(x� 5)2/4

⇤
, (3.1)

where x is the cross-range coordinate in kilometers.

For all three geometries, a Cartesian coordinate system is used and

defined such that the source is located at (0, 0, z
s

). In addition, the bottom

profile is invariant, or range independent, along the one spatial Cartesian co-

ordinate. This invariant coordinate will be chosen as the y coordinate; z will

be the depth coordinate and x will be the horizontal coordinate.

Table 3.1 show the water and sediment parameters for each geometry,

where ⇢
1,2

and c
1,2

are the water and sediment density and sound speed, re-
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spectively, a is the attenuation in the sediment, and z
s

is the source depth.

In all three models, the sediment parameters are chosen to be similar to that

of sand. Because the acoustic wavelengths under consideration are large com-

pared to the sediment grain size and it is assumed that the sandy sediments

exhibit low shear coupling, the sediment can be adequately modeled as a con-

tinuous fluid. Chapter 8 of [50] discusses the accuracy of modeling sediments

as a fluid.

For a time-harmonic point source located in the water domain, the

acoustic pressure field in the water and sediment is governed by the follow-

ing pair of three-dimensional Helmholtz equations, boundary conditions, and

interface conditions between the water column and the sediment:

⇢
1

r ·
✓

1

⇢
1

rp
1

(x)

◆
+ k2

1

p
1

(x) = �Q(!)�(x� x
s

), x 2 ⌦
1

(3.2)

⇢
2

r ·
✓

1

⇢
2

rp
2

(x)

◆
+ k2

2

p
2

(x) = 0, x 2 ⌦
2

(3.3)

p
1

(x) = 0, x 2 @⌦
1

(3.4)

p
1

(x) = p
2

(x), x 2 @⌦
2

(3.5)

1

⇢
1

@p
1

(x)

@n
=

1

⇢
2

@p
2

(x)

@n
, x 2 @⌦

2

(3.6)

where x is the Cartesian coordinate (x, y, z), r =
⇥

@

@x

@

@y

@

@z

⇤
T

, p
1

and p
2

are

the acoustic pressures in the water and sediment, respectively, x
s

is the source

location, ⌦
1

and ⌦
2

denote the water and sediment domains, respectively,

@⌦
1

is the air-water interface, and @⌦
2

is the fluid-sediment interface. The

wavenumbers k
1

and k
2

are defined as !/c
1

(x) and !/c
2

(x), where c
1

(x) and

c
2

(x) are the phase sound speed profiles for the water and sediment domain,
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(a)

(b)

Figure 3.1: (a) Physical depiction of Pekeris waveguide. (b) Computational
domain of Pekeris waveguide.
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(a)

(b)

Figure 3.2: (a) 3-D ASA wedge geometry. The bisecting plane denotes the
source plane and is shown in (b).

22



(a)

(b)

Figure 3.3: (a) 3-D Gaussian canyon geometry. (b) the vertical source plane.
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and ! is the angular frequency, 2⇡f , where f is the frequency. Equation (3.5)

ensures the continuity of pressure across the interface, and Eq. (3.6) ensures

the continuity of normal particle velocity. The source strength Q(!) is defined

as the source amplitude of a particular frequency component. This quantity

is determined by requiring that the acoustic pressure produced by a point

source at the computed frequency is 1 µPa at a distance of 1 m in a free space

environment [51]. In underwater acoustics, the sound field is usually described

in terms of transmission loss, defined as

TL = �20 log
10

����
p

p
ref

���� , (3.7)

where p
ref

is the pressure produced at a distance of 1 m by a point source at

the computed frequency in a free space environment [19]. Due to the way the

source strength is defined, p
ref

= 1µPa for all transmission loss calculations.

It is important to address the fact that, in addition to the stated equa-

tions, governing equations and boundary conditions must also be derived for

each perfectly matched layer subdomain. However, the governing equations

within the perfectly matched layers are identical to the derivation presented

for the water and the sediment domain (except for the existence of a complex

Cartesian coordinate system, which will be described in Sec. 3.5). For this rea-

son, only the governing equations and weak forms corresponding to the water,

sediment, and the boundary separating these two domains will be described

in this work. For each scenario under consideration, the density is constant

in each fluid domain, allowing the density functions to cancel in Eqs. (3.2)
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and (3.3). However, density can be kept in the finite element derivation in

scenarios where density is non-constant.

It is typical in computational underwater acoustics to model the sedi-

ment as an infinite half-space. In addition, the waveguide is infinite in extent.

The acoustic waves traveling towards infinity therefore should not reflect at

the infinite boundaries. To ensure the well-posedness of the solution, an extra

condition must be enforced:

lim
|r|!1

r

✓
@p

1,2

@r
� ik

1,2

p
1,2

◆
= 0, (3.8)

where r = |x � x
s

|. This is called the Sommerfeld radiation condition, and

ensures that no reflected waves arise from the boundaries at infinity [45].

3.2 Cosine Transform

If the source is located at the y = 0 plane, the geometry is invariant

in the y coordinate, and the sound speed is only a function of (x, z), then

the acoustic pressure must be an even function about the y = 0 plane. To

remove the range-independent coordinate, a Fourier transform is applied over

the y coordinate (�1  y  1). However, since the acoustic pressure is an

even function about the y = 0 plane, the imaginary term of the Fourier kernel

cancels, and integration only needs to be performed over the positive real line.

Therefore, the Fourier integral is identical to a cosine transform, resulting in
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the transform pair

P (x, k
y

, z) =

1Z

0

p(x, y, z) cos(k
y

y) dy, (3.9)

p(x, y, z) =
2

⇡

1Z

0

P (x, k
y

, z) cos(k
y

y) dk
y

. (3.10)

Applying Eq. (3.9) to the pair of Helmholtz equations, Eqns. (3.2) and (3.3),

give

r2P
1

(x, k
y

, z) +
�
k2

1

� k2

y

�
P
1

(x, k
y

, z) = �1

2
Q(!)�(x� x

s

), (3.11)

r2P
2

(x, k
y

, z) +
�
k2

2

� k2

y

�
P
2

(x, k
y

, z) = 0, (3.12)

where the Laplacian, r2 =
⇥

@

2

@x

2
@

2

@z

2

⇤
, is now a 2-D operator. Note that the

source term in Eq. (3.11) is divided by half; this is due to the fact that the

cosine transform of a Dirac delta is equal to 1/2. Eqns. (3.11) and (3.12) are

then recast into a weak formulation.

3.3 Weak Form

The first step of the finite element method is to recast the governing

PDEs into a weak formulation. Following in the steps of [46], Eqns. (3.11) and

(3.12) are multiplied by a test function, v(x), and integrated over the domain

respective to each equation, yielding

Z

⌦1

�
r2P

1

�
v d⌦

1

+
�
k2

1

� k2

y

� Z

⌦1

P
1

v d⌦
1
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2
Q(!)

Z

⌦1

�(x� x
s

)v d⌦
1

, (3.13)
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P
2

v d⌦
2

= 0. (3.14)

Green’s first identity, an application of the divergence theorem, is then applied

to the first volume integrals in Eqns. (3.13) and (3.14)
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where n is the outward-facing normal to ⌦
1

in Eq. (3.15) and ⌦
2

in Eq. (3.16).

Eqns. (3.15) and (3.16) are then added together. By multiplying Eq. (3.15)

by 1/⇢
1

and Eq. (3.16) by 1/⇢
2

the continuity of normal particle velocity,

Eq. (3.6), will cause the two surface integrals over @⌦
2

to be equal to each

other, which cancel when the two equations are added together. The sum of

the two equations become
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where the sifting property was applied to the Dirac operator. In addition to

Eq. (3.17), the continuity of pressure, Eq. (3.5) must be directly enforced by

setting P
1

= P
2

on @⌦
2

, and P
1

= 0 on @⌦
1

. Because only fluid domains

are being considered (no elastic sediments) and the domains do not overlap,

the subscripts for P in Eq. (3.17) may be dropped, where now P = P
1

[

P
2

represents the entire acoustic pressure for both domains. Dropping the

subscripts and solving for the total acoustic pressure automatically ensures

the continuity of pressure across the interface.

It is important to note that Eq. (3.17) is exact; no approximations were

made to the governing equations. In order for the weak form to guarantee a

unique and bounded solution, the product Pv and rP · rv must be square

integrable [46]. Mathematically, this means that P and v must exist in a

Hilbert space, H1. Also note that the surface integrals at the infinite bound-

aries are not included in the weak formulation. To ensure the well-posedness of

the weak formulation, a weighted Hilbert space must be chosen that incorpo-

rates the Sommerfeld radiation condition in the space definition. When these

weighted Hilbert spaces are used, the surface integrals at the infinite limits

vanish and there are no reflected waves from the infinite bounds. More detail

on weighted Hilbert spaces and well-posedness for unbounded domains can be

found in chapters 2.2, 2.3 and 2.4 of [45]. Note that v has not been determined

yet; any function that exists in H1 is allowed and will depend on the chosen

variational method used to solve the weak expression. Two desirable conse-

quences of the weak formulation are that the dependent variable only needs to
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be continuous to first order derivatives, and the natural boundary conditions

are automatically included.

3.4 Discretization

Solutions to Eq. (3.17) must be found numerically. This is done by

discretizing the domain and boundaries into subdomains, called elements. In

each element, P and v are approximated by known interpolation functions.

Therefore, the solution P is obtained by finding the unknown weights for each

interpolation function. Many di↵erent variational methods exist, each di↵ering

by the interpolation function chosen. An extensive overview of variational

methods is given in [44]. In this work, the Galerkin finite element method is

used. In the Galerkin finite element method, the interpolation functions are

chosen to be piecewise functions where, within a given element, P and v are

interpolated using a Lagrange polynomial, and outside of the given element,

the function is zero. This is a numerically e�cient method because the matrix

equation to find the unknown weights of the interpolation polynomial will be

sparse and diagonally dominant.

Mathematically, the acoustic pressure is approximated by a finite series

of basis functions

P '
MX

i=1

P
i

N
i

(x), (3.18)

where P
i

are the unknown pressures at the nodes of an element, and N
i

(x)

are chosen to be Lagrange polynomials of second order. The interpolation

function, N
m

, is chosen such that the function is unity at node i, and zero at
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the other nodes. In the Galerkin finite element method, the test function v is

chosen to be of the same basis function set as P

v =
MX

j=1

N
j

(x). (3.19)

Substituting Eqns. (3.18) and (3.19) into (3.17), the local matrix is obtained

A
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�
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y

�
M

loc

, (3.20)

where the wavenumber is k
1

if the element is located in the fluid domain and

k
2

if the element is located in the sediment domain, and
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where ⌦
e

is the element domain. The local forcing matrix is

f
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= �Q(!)
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1

N
j

(x
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1

Z

@⌦1,e

rN
j

(rN
i

· n) dS. (3.23)

The global matrix is obtained by summing each local matrix for all elements

that contain the node under consideration. After assembly, one obtains the

following equations

AP = F (3.24)

P
i

= 0, x
i

2 @⌦
1

. (3.25)

The solution to the unknown pressures at the nodes of each element is then

obtained by

P = A�1F. (3.26)
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For wave propagation problems, the element size must be small enough to

ensure global accuracy. At least six elements per wavelength are needed for

accurate wave propagation; in this work, eight to ten elements per wavelength

are used. The commercial FEM software COMSOL Multiphysics version 4.3

a/b is used for meshing and solving [52].

3.5 Perfectly Matched Layers

In order to accurately model infinite domains using FEM, the compu-

tational domain must be properly truncated and the Sommerfeld radiation

condition must be enforced. This is often done using absorbing boundary con-

ditions. One such absorbing boundary condition, and the one used in this

work is the perfectly matched layer (PML). PMLs were originally formulated

by Bérenger in [53], and have sucessfully been used in problems dealing with

acoustic scattering [47].

As done by Zampolli et al. in [47], PMLs are layers an acoustic wave-

length thick placed where infinite regions must be computed; for all three

geometries under consideration, PMLs are placed to the left and right of both

the water and sediment domains corresponding to (�1  x  1), and below

the sediment, simulating an infinite half-space. In each PML, the spatial co-

ordinates are transformed to complex coordinates. This transformation makes

the PML dissipative in the direction of the transformed coordinate. For 2-D
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Cartesian coordinates, this transformation is [52]

x0 = sgn(x� x
0

)|x� x
0

|�ref

D
(1� i) , (3.27)

z0 = sgn(z � z
0

)|z � z
0

|�ref

H
(1� i) , (3.28)

where x0 and z0 are the transformed coordinates, x
0

and z
0

are the coordinates

of the inner PML boundary, D and H are the PML thickness and height,

respectively, and �
ref

is the reference wavenumber, which is based on the sound

speed for each domain. The conservation of pressure and normal particle

velocity are enforced on the PML-computational domain interface.
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Chapter 4

Inverse Cosine Transform

In order to calculate the total acoustic pressure field, the inverse cosine

integral, Eq. (3.10), must be evaluated numerically. For a particular spatial

point (x, y, z), FEM must be computed for a su�cient number of independent

values of the out-of-plane wavenumber k
y

to accurately resolve the integral.

In order to compute the integral numerically, two aspects must be addressed.

The first is the treatment of the infinite upper limit in the integral. The second

is the selection of an e�cient integral scheme. FEM computations can take on

the order of minutes to solve for a single k
y

value; thus, a large amount of k
y

points can potentially be computationally unfeasible. Therefore, an e�cient

integral scheme must be sought that can compute the inverse cosine integral

accurately to within a given tolerance and use the least amount of k
y

points

possible. In order to address these two concerns, the properties of the integrand

are first investigated. Then, two integration schemes are introduced. The first

discretizes the integral into a Riemann sum. However, instead of a constant

discretization in k
y

space, a variable discretization is used based on a gamma

cumulative distribution function. The second integration scheme is a modified

Clenshaw-Curtis quadrature that utilizes an adaptive algorithm such that the

amount of k
y

values needed is minimized.
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In the first section, the properties of the integrand is investigated. In

the second section, the variable k
y

integration scheme is introduced. In the

third section, the modified adaptive Clenshaw-Curtis quadrature is described.

4.1 Integrand Properties

To assess the qualities of the integrand, it is helpful to investigate the

solution to a point source in free space at 100 Hz. This is equivalent to finding

the Green’s function to the transformed Helmholtz equation, Eq. 3.11. A three-

dimensional solution can then be found by substituting the Green’s function

into the inverse cosine transform, Eq. (3.10). First, consider a source plane

solution (y = 0). The cosine kernel is equal to one, and Eq. (3.10) becomes the

integral of the Green’s function over all positive k
y

. For a source located at the

origin, the Green’s function, G(k
y

, r), of the transformed Helmholtz equation,

Eq. (3.11), is [54]

G(k
y

, r) =

(
� i

8

H
(2)

0

(r
p
k2 � k2

y

), k
y

 k
1

4⇡

K
0

(r
p

k2

y

� k2), k
y

> k,
(4.1)

where r =
p
x2 + z2, and H

(2)

0

and K
0

are the zeroth-order Hankel and modi-

fied Bessel functions of the second kind, respectively. Note that when k
y

> k,

the form of the governing PDEs change; Eq. (3.11) is no longer the Helmholtz

equation. As a result, the solution to this form of the PDE is the modified

Bessel function of the second kind, which is closely related to the Hankel func-

tion with a complex argument. For k
y

< k, the Green’s function describes

a propagating wave in the medium. Figure 4.1a shows solutions describing
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Figure 4.1: (a) Real part of the Green’s function for k
y

< k, representing
propagating wave solutions. (b) Real part of the Green’s function for k

y

> k,
representing evanescent wave solutions.

35



0 0.5 1 1.5

−0.05

0

0.05

0.1

0.15

0.2

0.25

k
y
/k

R
e

[G
(k

y,r
)]

 

 
r = 1 m
r = 100 m
r = 1000 m

Figure 4.2: Real part of the Green’s function for several range values.

propagating waves for di↵erent values of k
y

< k. However, when k
y

> k, the

solution to Eq. (3.11) represents an evanescent wave, and no energy is propa-

gated from the source, as shown in Fig. 4.1b. When the receiver is close to the

source, the integrand exhibits high magnitude values, with low oscillations for

low k
y

and higher oscillations when k
y

! k. For ranges farther away from the

source, the integrand exhibits smaller magnitudes than that near the source,

but the oscillations are higher. For all receiver ranges, the oscillations increase

as k
y

! k. This is shown in Fig. 4.2. In addition, Eq. (4.1) has a singularity at
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k
y

= k. It’s important to note that the Green’s function describing the total

acoustic pressure field for a waveguide with a penetrable bottom will have at

least two singularities, one for the transition between propagation and evanes-

cence for the compressional wave in the water, and another at the transition

from propagation to evanescence for the compressional wave in the sediment.

Elastic sediments can also have more than one singularity or pole, all on the

real k
y

axis. Zhou et al. discuss the Green’s function and the existence of sin-

gularities for anisotropic media in [55]. However, attenuation in the sediment

displaces these singularities o↵ of the real axis.

Next, consider 3-D solutions where y is not zero. The cosine kernel

is now included in the integrand and exhibits highly oscillatory behavior as

y ! 1. Therefore, the integrand is a product of two highly oscillatory func-

tions. From this analysis, the two concerns stated in the introduction of this

chapter can now be addressed. Since the FEM solution decays to zero once

the solution to Eq. (3.11) becomes evanescent, the integrand’s contribution to

the integral becomes negligble past a certain wavenumber, which will be des-

ignated as the wavenumber cut-o↵ k
c

, and the infinite limit can be truncated

to k
c

. In addition, a constant discretization in k
y

will be ine�cient for this

integral. Since the integrand is relatively smooth for k
y

! 0 and gradually

increases in oscillation as k
y

! k, a high amount of k
y

values are needed where

the oscillations in the integrand are the strongest. Therefore, an integration

scheme which has a variable spacing in k
y

will be the most advantageous.
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4.2 Variable ky Integration

A numerically simple way to evaluate Eq. (3.9) is to discretize the

integral into a Riemann sum:

p(x, y, z) =
2

⇡

kcX

ky=0

P (x, k
y

, z) cos(k
y

y)�k
y

(k
y

), (4.2)

where k
c

is the cut-o↵ wavenumber beyond which the integrand is negligible,

and �k
y

(k
y

) is a function describing the spacing between adjacent k
y

points.

k
c

is chosen to be in the evanescent region; for this work a value of 1.5k is

chosen. The only parameter yet to be determined is the function describing

the discretization, �k
y

. As discussed in Sec. 4.1, a variable k
y

spacing is

desirable, where spacing between abscissa for k
y

! 0 is relatively large, and

as k
y

! k the spacing between adjacent abscissas decreases. A function which

gives the position of the abscissas with the desired variable spacing is a gamma

cumulative distribution function (CDF). The gamma CDF is defined as

k
y

(⇠) =
k

ba�(a)

⇠Z

0

ta�1 exp(�t/b) dt+ C, (4.3)

where ⇠ is a discretized variable that is evenly spaced between 0 and 1, a is the

shape parameter, b is the scale parameter, C is a constant denoting the o↵set,

and t is a variable of integration. The o↵set must be included such that there

is a large amount of abscissas surrounding k. In the evanescent region, �k
y

is

chosen to be constant since the integrand is not oscillatory. In this work, the

values a = 0.8 and b = 0.25 are found to give a satisfactory spacing. Figure

4.3 shows a comparison of the location of the abscissas based on Eq. (4.3) and
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a constant k
y

spacing for 300 wavenumber values. Figure 4.4 compares the

analytical solution of a point source in free space in the source plane (y = 0)

with the solution of Eq. (4.2) using a constant k
y

spacing and the k
y

spacing

based on the gamma CDF. Note that the variable k
y

spacing gives a more

accurate result than the constant spacing.

Figure 4.3: Variable k
y

spacing based on the gamma CDF function versus a
constant k

y

spacing for 300 wavenumber values.
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Figure 4.4: Comparison of the analytical solution to a point source in free
space to the solution of Eq. (4.2) for a variable and constant k

y

spacing. Note
that the variable k

y

spacing is more accurate than the constant spacing.

4.3 Modified Adaptive Clenshaw-Curtis Quadrature

The second integral scheme to be compared is a modified adaptive

Clenshaw-Curtis quadrature. Many quadrature schemes exist to solve highly

oscillatory integrands; a review of the di↵erent schemes is given in [56]. It is

shown in [57] that using an adaptive integration scheme is e↵ective for badly

behaved and irregularly oscillatory integrands. It is advantageous to use an

adaptive scheme in this case such that most of the abscissas are focused around

regions of greatest irregularity. In addition, accuracy can be improved by using
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a modest quadrature order over a series of subintervals, rather than integrat-

ing the entire limits with a high-order quadrature [58]. Therefore, an adaptive

algorithm will be used to solve the inverse cosine integral, where k
y

space will

be discretized into subintervals, and subintervals that do not converge will be

subsequently bisected until the given accuracy is obtained. When perform-

ing interval subdivision, it is important to retain as many prior abscissas as

possible, as this will reduce the total number of FEM evaluations necessary

to compute the integral. Therefore, Gaussian quadrature schemes are not

practical for interval subdivision problems since nearly all of the abscissas are

lost with each interval subdivision [57]. However, certain types of quadrature

schemes, such as Romberg’s method and Clenshaw-Curtis retain abscissas with

each interval subdivision, with little to no abscissas being lost [57].

When integrating unknown functions or discrete data, it is important

to know the error of the numerical integration scheme. One way is to increase

the order of the integration scheme after obtaining the value of the integral

and compare the two results. If the integration limits are subdivided, then an

error estimation can be done by repeating the integration with an increased

number of subintervals until the values of the integral on each subinterval

converge to within an acceptable tolerance. For the present work, none of

these methods for determining the error are ideal because extra FEM eval-

uations are needed, which is computationally demanding. A mathematically

rigorous way is to compute the error of a quadrature scheme a priori by in-

vestigating the residual between the approximating polynomial and the actual
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function being integrated. For example, when using Gaussian quadrature of

order N , the integration error is proportional to the 2N order derivative of the

integrand. However, computing high order derivatives on numerical functions

can be computationally demanding, again making most Gaussian quadrature

schemes impractical for the present problem.

Unlike Gaussian quadratures, Clenshaw-Curtis quadrature provides an

easy and conservative way to calculate the integration error. References [59–61]

show that the error of Clenshaw-Curtis quadrature is bounded by the weights

of the truncated Chebyshev series that approximate the integrand. Reference

[62] shows that this error analysis is still accurate for product integration, such

as the computation of Fourier integrals. This e↵ective error estimation makes

this integration scheme e�cient for an adaptive algorithm. Depending on the

Clenshaw-Curtis order used, several abscissas can be retained upon subinterval

division, reducing the amount of new abscissas needed. The properties of the

Chebyshev polynomials also give the potential for integral recurrence relations

to compute high order quadrature; however, there are practical limitations that

will be discussed below. Therefore, an adaptive Clenshaw-Curtis quadrature

modified to integrate the product of the FEM solution and the cosine transform

kernel is chosen and will be compared with the variable k
y

spacing.

Clenshaw-Curtis quadrature was first derived by Charles Clenshaw and

Alan Curtis in [59]. A function which is continuous and bounded within the

limits of integration can be represented by an infinte series of Chebyshev poly-

nomials, T
m

(t), where m denotes the order of the Chebyshev polynomial.
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Chebyshev polynomials are only defined on the interval �1  t  1. By

a transformation of variables, any function f(x) on the interval a  x  b can

be rewritten as

f(x) = F (t) =
1

2
A

0

+
1X

m=1

A
m

T
m

(t), �1  t  1 (4.4)

where

t =
2x� (b+ a)

b+ a
, a  x  b (4.5)

and

T
m

(t) = cos[m cos�1(t)]. (4.6)

Chebyshev polynomials have the following orthogonal property [63]:

1Z

�1

T
n

(t)T
m

(t)p
1� t2

dt =

8
><

>:

0, n 6= m

⇡, n = m = 0

⇡/2, n = m 6= 0.

(4.7)

From the orthogonal property above, the coe�cients A
m

are computed using

the integral [64]:

A
m

=
2

⇡

1Z

�1

F (t)T
m

(t)p
1� t2

dt m = 0, 1, 2, ... (4.8)

Clenshaw and Curtis show in [59] that the Chebyshev series in Eq. (4.4) can

be truncated to accurately represent any polynomial of degree N . Therefore,

a function that is a polynomial of degree N , fN(x), can be written as

fN(x) = FN(t) =
1

2
a
0

+
N�1X

m=1

a
m

T
m

(t) +
1

2
a
N

T
N

(t) =
NX

m=0

00
a
m

T
m

(t), (4.9)
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where the primes in the sum denotes that the first and last terms are to be

halved. To find the weights of the truncated series, a
m

, t is chosen to be the

discrete points

t
k

= cos(⇡k/N) k = 0, 1, 2, ...N. (4.10)

The Chebyshev polynomial, Eq. (4.6), becomes T
m

(t
k

) = cos(mk⇡/N). T
m

(t
k

)

is substituted into Eq. (4.9), and becomes

NX

k=0

00
FN(t

k

) =
NX

n=0

00
a
m

NX

k=0

00
cos(mk⇡/N). (4.11)

To determine the coe�cients a
m

, both sides of equation Eq. (4.11) are multi-

plied by cos(nk⇡/N) and summed over n, resulting in

NX

n=0

00
NX

k=0

00
FN(t

k

) cos(nk⇡/N) =
NX

m=0

00
a
m

NX

n=0

00
NX

k=0

00
cos(mk⇡/N) cos(nk⇡/N).

(4.12)

With the orthogonal property [59]:

NX

m=0

00
NX

n=0

00
cos(

mk⇡

N
) cos(

nk⇡

N
) =

8
><

>:

0, m 6= n

N, m = n = 0 or N

N/2, m = n 6= 0 or N,

(4.13)

the values of a
m

are given as

a
m

=
2

N

NX

k=0

00
FN(t

k

) cos(
mk⇡

N
), (4.14)

FN(t
k

) = F [cos(
⇡k

N
)]. (4.15)

The integral of fN(x), denoted as I
N

, is then integral of the Chebyshev

44



representation of fN(x), Eq. (4.9):

I
N

=

bZ

a

fN(x) dx =
b� a

2

1Z

�1

FN(t) dt =
NX

m=0

00
a
m

1Z

�1

T
m

(t) dt, (4.16)

1Z

�1

T
m

(t) dt =
(�1)m + 1

1�m2

. (4.17)

An important recurrence relation that will be used in the subsequent sections

is

T
0

(t) = 1 (4.18)

T
1

(t) = t (4.19)

T
m+1

(t) = 2tT
m

(t)� T
m�1

(t) (4.20)

Before proceeding with applying Clenshaw-Curtis quadrature to the inverse

cosine transform, it is important to discuss the error associated with truncating

the Chebyshev series.

4.3.1 Error analysis

If the function being integrated by Clenshaw-Curtis quadrature is not

a polynomial of degree N , Eq. (4.16) will be approximate, and error will be

introduced. Numerous error studies exist for Clenshaw-Curtis quadrature.

Originally, Clenshaw and Curtis in [59] show that when Eq. (4.4) is a rapidly

decaying series, the magnitude of the neglected higher order terms is bounded

by the highest calculated weight, a
N

. Therefore, Clenshaw and Curtis suggest

using the largest of |a
N

|, 2|a
N�2

|, and 2|a
N�4

| as a conservative error estimate.
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O’Hara et al. in [61] discuss and compare di↵erent error estimates using the

Chebyshev coe�cients. Following in the same manner, the goal of this section

is to derive a practical and conservative error estimate using the calculated

Chebyshev coe�cients.

The error associated with the Clenshaw-Curtis quadrature can be de-

rived for a class of integrals with the given form

bZ

a

f(x)k(x) dx. (4.21)

Note that this generalized integral can be applied to the present problem by

substituting a and b as the limits of a given subinterval in k
y

space, f(x) as the

FEM solution P (k
y

), and k(x) as the cosine kernel cos(k
y

y). The function f(x)

is then approximated with the truncated series, Eq. (4.9), after the change of

variables given in Eq. (4.5). The truncated Chebyshev coe�cients are related

to the infinite series coe�cients by the following [59, 60]:

a
m

=
2

N

NX

s=0

00
cos(

ms⇡

N
)

1X

i=0

0
A

i

cos(
is⇡

N
)

= A
m

+
1X

p=1

(A
2pN�m

+ A
2pN+m

) .

(4.22)

The integration error is found by subtracting the exact integral from the ap-

proximate

E = I � I
N

=
1Z

�1

 
N�1X

m=0

0
(A

m

� a
m

)T
m

(t) +

✓
A

N

� 1

2
a
N

◆
T
N

(t) +
1X

m=N+1

A
m

T
m

(t)

!
k(t) dt

(4.23)
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Substitution of Eq. (4.22) into Eq. (4.23), with the assumption that the coef-

ficients A
m

are negligible after 3N , gives the following expression for the error

[62]:

E = (�
N+1

� �
N�1

)A
N+1

+ (�
N+2

� �
N�2

)A
N+2

+ ...+ (�
2N

� �
0

)A
2N

+ (�
2N+1

� �
1

)A
2N+1

+ ...+ (�
3N

� �
N

)A
3N

, (4.24)

where

�
n

=

1Z

�1

T
n

(t)k(t) dt. (4.25)

Application of the triangle inequality to Eq. (4.24) produces

E  |�
N+1

� �
N�1

||A
N+1

|+ |�
N+2

� �
N�2

||A
N+2

|+ ...+ |�
2N

� �
0

||A
2N

|

+ |�
2N+1

� �
1

||A
2N+1

|+ ...+ |�
3N

� �
N

||A
3N

|. (4.26)

Note that �
n

can be calculated analytically since both functions are known.

Since the goal is to provide a conservative error estimate, each absolute value

containing the � terms in the above equation can be replaced by the maximum

value of the � terms, resulting in

E 
3NX

m=N+1

↵|A
m

|, (4.27)

where

↵ = max (|�
N+1

� �
N�1

|, |�
N+2

� �
N�2

|, ...) (4.28)

However, |A
m

| is unknown and must be approximated. Assume that |A
m

|

approaches zero geometrically [62]:

|A
N+i

|  c
N

ri
N

, 1  i  2N (4.29)
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where c
N

and r
N

are not yet determined constants satisfying c
N

� 0, r
N

describes the rate of decrease, or roll-o↵, of the series of coe�cients A
m

, and

lies in the range 0  r
N

 1. Substituting Eq. (4.29) into Eq. (4.27) gives

E 
2NX

i=1

↵c
N

ri
N

. (4.30)

A good error estimate relies on finding adequate values for c
N

and r
N

. Sloan

et al. in [62] discuss finding these constants in great detail. In general, r
N

is

straightforward to calculate if the ratio A
m+1

/A
m

is fairly constant. However,

usually this is not the case. If the roll-o↵ is entirely inconsistent, r
N

should be

assigned the conservative but safe value r
N

= 1 (meaning that the Chebyshev

coe�cients are not decreasing at all). An e↵ective method to calculate r
N

is

outlined in [62]. It can be assumed that approximate values are available for

A
i

for i  N , and are given as A
i

⇡ a
i

for 0  i  N�1 and A
N

⇡ 1

2

a
N

. If the

maximum order of the Chebyshev polynomial used is greater than 7 (in this

work Chebyshev polynomials of order 16 are used), then r
N

is based on the last

seven calculated weights of the truncated Chebyshev series, a
m

. The values are

separated into two subsets, {1

2

a
N

, a
N�2

, a
N�4

, a
N�6

} and {a
N�1

, a
N�3

, a
N�5

}.

The purpose of this division is to properly handle the cases in which the

function being approximated is even or odd (if f(x) is even or odd, every other

coe�cient vanishes). The subset with the largest element magnitude is chosen

to calculate r
N

. If the elements in the subset increase systematically, then a

value of r
N

is chosen to be the largest ratio of successive terms. If the elements

do not increase systematically, then r
N

is chosen to be 1. Mathematically, this
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is described as the following [62]:

z
1

= max{1
2
a
N

, a
N�2

, a
N�4

, a
N�6

},

z
2

= max{a
N�1

, a
N�3

, a
N�5

}
(4.31)

If z
1

� z
2

:

if |a
N�6

| > |a
N�4

| > |a
N�2

| > |1
2
a
N

|, (4.32)

then r2
N

= max

⇢ |1
2

a
N

|
|a

N�2

| ,
|a

N�2

|
|a

N�4

| ,
|a

N�4

|
|a

N�6

|

�
, (4.33)

otherwise r
N

= 1 (4.34)

If z
2

> z
1

if |a
N�5

| > |a
N�3

| > |a
N�1

|, (4.35)

then r2
N

= max

⇢
|a

N�1

|
|a

N�3

| ,
|a

N�3

|
|a

N�5

|

�
, (4.36)

otherwise r
N

= 1 (4.37)

Once the roll-o↵ parameter, r
N

, is calculated the constant c
N

can be deter-

mined, assuming that Eq. (4.29) also holds for i = 0,�1,�2, ..., by the formula

c
N

= max{|1
2
a
N

|, |a
N�1

|r
N

, |a
N�2

|r2
N

, ..., |a
N�6

|r6
N

}. (4.38)

Sloan et al. in [62] show that this error estimate works for a wide class of

integrands. However, there are two ways this error estimate can potentially

underestimate the true error. First, an inappropriate value of r
N

could be

chosen if the Chebyshev coe�cients exhibit a misleading pattern of rapid de-

cline. Second, an inappropriate value of c
N

could be chosen if N is small.
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However, the only time [62] reports an underestimate of the error is for using

the quadrature for a low value of N . Sloan et al. recommend using N > 6 for

this error estimate to be reliable; the present work uses N = 16.

Now that Clenshaw-Curtis and a conservative error estimate have been

derived, this quadrature scheme will now be applied to solve the inverse cosine

integral, Eq. (3.10).

4.3.2 Modified Adaptive Clenshaw-Curtis Quadrature Applied to
the Inverse Cosine Transform

We wish to compute Eq. (3.10) at a receiver point (x
r

, y
r

, z
r

) using an

adaptive Clenshaw-Curtis quadrature. First, the infinite limit is truncated

by k
c

, where the contribution of the integrand is negligible (which coincides

with P being an evanescent wave solution to Eq. (3.11)). The integral is then

divided into M subintervals

kcZ

0

(•) =
b1Z

0

(•) +
b2Z

b1

(•) + ...

kcZ

bn

(•) . (4.39)

On each subinterval, Eq. (4.5) is used to change the variable of integration

from k
y

to t, which changes the limits of each integral to -1 to 1. P (t) is then

approximated as a truncated series of Chebyshev polynomials

P (t) =
NX

m=0

00
a
m

T
m

(t), (4.40)
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where the weights are defined in Eq. (4.14). The inverse cosine transform on

a subinterval [a, b] becomes

IN =
2A

⇡

NX

m=0

00
a
m

1Z

�1

T
m

(t) cos([At+B]y
r

) dt, (4.41)

A =
(b

n+1

� b
n

)

2
, B =

(b
n+1

+ b
n

)

2
. (4.42)

After the implementation of trigonometric identities, Eq. (4.41) is rewritten

as

IN =
2A

⇡

NX

m=0

00
a
m

2

4cos(y
r

B)

1Z

�1

T
m

(t) cos(Ay
r

t) dt� sin(y
r

B)

1Z

�1

T
m

(t) sin(Ay
r

t) dt

3

5 .

(4.43)

After computing the weights a
m

, error analysis from Sec. 4.3.1 is performed

by computing the constants r
N

and c
N

. If the error is below a given tolerance,

then the integral is accepted and Eq. (4.43) is computed. However, if the

error is above a certain tolerance, then the subinterval is bisected. A tolerance

of 10�10 was found to provide a transmission loss error of less than 0.5 dB.

Since P was computed on the endpoints and the midpoint of a subinterval,

these data can be reused when the subinverval is divided. However, all other

abscissas must be discarded since the smaller subintervals will require new

abscissas. In the present work, bisecting each subinterval is su�cient but can

be improved upon; for example, considerable savings can occur by subdividing

intervals based on the abscissas, such that no abscissas need to be discarded.
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4.3.3 Considerations

One advantage of the Clenshaw-Curtis quadrature is that the error only

depends on the weights of the Chebyshev polynomials, a
m

. In other words,

the error is related to how well a N th order Chebyshev series can approximate

the FEM solution, not the product of the FEM solution and the cosine kernel.

As discussed in Sec. 4.1, the cosine kernel becomes infinitely oscillatory as

y
r

! 1. This will require an impractical number of abscissa for large ranges

using the variable k
y

method. However, in the Clenshaw-Curtis quadrature,

the cosine kernel is distributed among the analytical integrals in Eq. (4.43).

Since both T
m

(t) and cos(Ay
r

t) are known analytic functions, the integrals

can be solved exactly. Therefore, Clenshaw-Curtis quadrature is attractive for

large y
r

values.

It is beneficial to discuss the analytical integrals in Eq. (4.43), since

there is some subtlety in their evaluation. Below are integral solutions for
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some of the integrals

1Z

�1

T
0

(t) cos(Ay
r

t) dt =
2 sin(Ay

r

)

Ay
r

, (4.44)

1Z

�1

T
1

(t) sin(Ay
r

t) dt =
2 sin(Ay

r

)� 2Ay
r

cos(Ay
r

)

(Ay
r

)2
, (4.45)

1Z

�1

T
2

(t) cos(Ay
r

t) dt =
2
⇥
(Ay

r

)2 � 4
⇤
sin(Ay

r

) + 8Ay
r

cos(Ay
r

)

(Ay
r

)3
, (4.46)

1Z

�1

T
3

(t) sin(Ay
r

t) dt =
6
⇥
3 (Ay

r

)2 � 8
⇤
sin(Ay

r

)� 2Ay
r

⇥
(Ay

r

)2 � 24
⇤
cos(Ay

r

)

(Ay
r

)4
.

(4.47)

There are several features to note about these solutions. First, the maximum

value that any of these integral solutions can take is 2, which occurs when

Ay
r

= 0 in Eq. (4.44). For conservative error estimates, ↵ in Eq. (4.28) can

be chosen to be 2. For Ay
r

! 1, the integral solutions decay quickly to zero,

with each higher order integral converging to zero at a faster rate. However,

some problems occur for Ay
r

 1. It can be shown using a series expansion of

the right hand side of the above equations for Ay
r

= 0 that the value of the

integral is finite. However, numerically implementing the right hand side can

cause instabilities for low values of Ay
r

.

Since higher order Chebyshev polynomials can be found using the recur-

rence relation, Eq. (4.18), likewise higher order integrals can be found using a

recurrence relation. Recurrence relations are derived for the product of Cheby-

shev polynomials and a cosine kernel in [65–68]. These recurrence relations
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are stable for forward recursion only if Ay
r

> 1. However, for small values of

Ay
r

, the recurrence relations become unstable, and Oliver’s algorithm in [69]

must be used. This involves having an initial and final value and constructing

the recurrence relation as a tridiagonal system of equations. In the present

work, it was decided to not use Oliver’s algorithm for Ay
r

< 1. Instead, the

integrals in Eq. (4.43) are evaluated numerically using Matlab’s built-in func-

tion, integral. The Matlab function integral approximates an integral using

global adaptive quadrature while taking advantage of Matlab’s vectorization

of functions to reduce computational time. More information on integral can

be found in Ref. [70]. For low values of Ay
r

, integral is able to compute the

integral exactly to within machine error, with little cost to speed. However,

for Ay
r

> 1, the recurrence relations are used.
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Chapter 5

Results

The accuracy of the longitudinally invariant finite element method

(LIFEM) to model underwater waveguides is now investigated. As discussed in

Sec. 3.1, LIFEM is computed for three geometries. For the Pekeris waveguide

and ASA wedge, there are known solutions for the transmission loss. The

wavenumber integration code, Ocean Acoustic and Seismic Exploration Syn-

thesis (OASES), provides accurate solutions for transmission loss in a Pekeris

waveguide [19, 71]. The axisymmetric parabolic equation code Range-dependent

Acoustic Model (RAM) is very e↵ective in computing the transmission loss for

range-dependent wedge environments with a low wedge angle, such as the ASA

wedge [43, 72]. Therefore, LIFEM will be compared with these two models to

determine the accuracy of LIFEM to predict transmission loss in underwater

waveguides. However, no vetted models yet exist at the time of this writing

that give an exact solution to the transmission loss for the underwater Gaus-

sian canyon; only computational models with inherent physical assumptions to

the governing equations exist [73, 74]. However, due to the mathematical for-

mulation of LIFEM, particularly the fact that no physical assumptions to the

governing equations are made, the solution is accurate for any general longitu-

dinally invariant environment as long as the size of each element is su�ciently
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small and enough out-of-plane wavenumbers are used to compute the inverse

transform. Therefore, the Gaussian canyon is shown to demonstrate the abil-

ity of LIFEM to model complex 3-D acoustic phenomena that is present in

this type of underwater environment.

In addition to the accuracy of LIFEM, the variable k
y

method and

the modified adaptive Clenshaw-Curtis quadrature (MACC) are compared in

terms of accuracy and number of k
y

values (or, equivalently, the number of 2-D

field evaluations) needed to compute the inverse cosine transform. The di↵er-

ence in the computed transmission loss between the two integration schemes

and the total number of FEM evaluations are compared for each waveguide.

5.1 Pekeris Waveguide

First, the range-independent Pekeris waveguide discussed in Sec. 3.1

is investigated for a frequency of 100 Hz. This study serves two purposes.

The first is to assess the accuracy of the computation of the transmission loss

using LIFEM, and the second is to analyze the strengths and weaknesses of

the two integration schemes. To address the first issue, LIFEM is compared

to the wavenumber integration code, OASES, using both integration schemes.

The transmission loss is first compared in the source plane (y = 0), where

the cosine kernel has no e↵ect on the inverse cosine transform, such that the

accuracy of LIFEM can be assessed. Figure 5.1a shows the comparison between

LIFEM and OASES at a depth of 24 m, and Fig. 5.1b shows the comparison

between LIFEM and OASES at a depth of 98 m. LIFEM, computed with
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Figure 5.1: Comparison of the variable k
y

method, modified adaptive
Clenshaw-Curtis quadrature (MACC), and the wavenumber integration code
OASES in the source plane (y = 0) at a depth of (a) 24 m, (b) 98 m.
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Figure 5.2: Comparison of the variable k
y

method, modified adaptive
Clenshaw-Curtis quadrature (MACC), and the wavenumber integration code
OASES along the invariant coordinate y at a depth of 89 m.

either integration scheme, agrees with OASES with excellent precision. It is

important to note the total number of k
y

abscissas needed for both integration

schemes to compute the source plane solution. The variable k
y

method was

computed with 3100 k
y

values, and upon completion of the adaptive algorithm

with the prescribed error tolerance of 10�10, MACC used 10365 k
y

values.

Therefore, for source plane solutions (y = 0), the variable k
y

method produced

accurate results using fewer k
y

evaluations than MACC.

Next, the accuracy of the two integration schemes in computing the

transmission loss along the invariant coordinate y, at x = 0 is investigated. The
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Figure 5.3: Modified adaptive Clenshaw-Curtis quadrature (MACC) compared
with the wavenumber integration code OASES along the invariant coordinate
y at a depth of 89 m.

abscissas used to compute the source plane solution were used without adding

any new abscissas to determine the e↵ect of the cosine kernel on the accuracy of

the two integration schemes. Figure 5.2 compares the two integration schemes

with OASES in the invariant direction at a depth of 89 m. Note that the

variable k
y

method produces accurate results until 1.5 km; past this range

the solution becomes oscillatory about the exact solution. Since the cosine

kernel increases in oscillation in k
y

space as y increases, there is an invariant

range value where the used abscissas for the variable k
y

method undersamples

the cosine kernel. When the cosine transform is undersampled, the computed
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transmission loss becomes oscillatory and inaccurate for large values of y. To

obtain more accurate solutions along y, more abscissas are needed to properly

sample the cosine kernel. In contrast, MACC matches the OASES solution

accurately for large values of y, as shown in Fig. 5.3. This is due to the fact

that the cosine kernel is transferred to an integral that is solved explicitly.

Therefore, the accuracy of MACC is retained for large values of y without the

need for additional abscissas.

5.2 ASA Wedge

The ASA wedge is now computed using LIFEM at a frequency of 25

Hz. First, the accuracy of LIFEM is considered by comparing the computed

transmission loss with an axisymmetric parabolic equation code, RAM [72].

Because RAM is an axi-symmetric model, only the source plane can be com-

pared with LIFEM. Figure 5.4 shows the comparison between LIFEM using

MACC and RAM (the variable k
y

method produced identical transmission loss

to MACC) in the source plane. This figure shows great agreement between

LIFEM and RAM. Figure 5.5 shows the source plane transmission loss using

the variable k
y

method. Since this environment is range-dependent, 3-D acous-

tic phenomena are present in this model. When a mode propagating upslope

reaches its cut-o↵ depth, the modal energy is transferred into the sediment as

a distinct beam of energy. Therefore, a shadow region exists near the wedge

apex. In addition, horizontal refraction e↵ects exists for modes propagating

at oblique incidence to the wedge apex. This e↵ect is shown in Fig. 5.6, which
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displays a “top down” view (xy plane) of the transmission loss at depths of

30 m and 100 m, respectively. Note that the energy refracts down towards

the deeper water, and there exists shadow zones where little acoustic energy

enters. This can be compared qualitatively with Fig. 7 of [32], although note

that the source is closer to the wedge apex.

Next, the two integration schemes are compared. Figure 5.7 shows the

transmission loss along the y coordinate at x = 0, for depths of 30 m and

150 m, respectively. Note that MACC computed a more accurate solution

for larger distances in y compared to the variable k
y

method, which was also

seen in the Pekeris waveguide solution. In Fig. 5.7b the di↵erence in the two

solutions exceed more than 0.2 dB for y > 3 km. In addition, MACC used 4370

FEM evaluations, while the variable k
y

used 6100 FEM evaluations. Therefore,

MACC outperformed the variable k
y

method in both accuracy and e�ciency.
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Figure 5.4: Longitudinally invariant finite element method (LIFEM) versus
the axi-symmetric parabolic equation code RAM in the source plane (y = 0)
at a depth of (a) 30 m, and (b) 100 m.
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Figure 5.5: Source plane transmission loss computed using the variable k
y

method.
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Figure 5.6: “Top down” view of the ASA wedge at a depth of (a) 30 m, and
(b) 100 m.
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Figure 5.7: Comparison of the variable k
y

and modified adaptive Clenshaw-
Curtis quadrature (MACC) for the ASA wedge along the invariant coordinate
y at x = 0, and at a depth of (a) 30 m, and (b) 150 m.
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5.3 Gaussian Canyon

The final geometry considered is the Gaussian canyon waveguide at a

frequency of 25 Hz. Figure 5.8 shows the transmission loss in the source plane

using the variable k
y

method. Physically, there exists a complex interference

pattern caused from the reflected field due to the concave ocean bottom, and

a zone of high transmission loss directly below the source. This zone is due to

the Lloyd’s mirror e↵ect, since the source is located exactly half an acoustic

wavelength from the air-water interface. Figure 5.9 shows a “top down” view

of the canyon (xy plane) using MACC at a depth of 10 m, 35 m, 100 m,

150 m, and 180 m, respectively. There are primarily two important physical

phenomena present. The first is the existence of horizontal refraction. As the

energy propagates upslope to the canyon, the energy refracts down towards

the deeper water. Close to the source, the modes steeply refract and interfere

with themselves, causing intermodal interference. This is seen in the first few

kilometers in the y direction. Also, due to the perfect symmetry of the canyon

about the x = 5000 axis, horizontal refraction exists on both sides. Therefore,

the second acoustic phenomenon is a strong energy focusing e↵ect present at

y ⇡ 12 km. After this region, the modal energy refracts again into a complex

constructive and destructive interference pattern.

The two integration schemes are now compared for the Gaussian canyon.

MACC used 26712 FEM evaluations and the variable k
y

spacing used 20149

FEM evaluations. Figure 5.10 compares MACC with the variable k
y

method

in the source plane at depths of 35 m and 130 m, respectively. Note that the
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Figure 5.8: Source plane solution to the Gaussian canyon using the variable
k
y

method.

two methods compute identical transmission loss curves. Figure 5.11 compares

the two integration schemes along the canyon beginning at the source location

(x = 5000 m) at depths of 30 m and 35 m, respectively. In Fig. 5.11a, the

transmission loss computed with the variable k
y

method exhibits highly oscil-

latory nature in the first few kilometers. Because there is no a priori error

estimate in the variable k
y

method, it is hard to know where in k
y

space more

abscissas are needed. The only way to make the solution converge is to either

compute more abscissas at the midpoint between prior abscissas, which is com-

putationally ine�cient, or make an educated guess on where more abscissas

are needed. In contrast, the adaptive algorithm in MACC placed the abscissas
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in the necessary areas, causing the solution to convergence to a smooth trans-

mission loss curve. Figure 5.11b shows similar behavior until y ⇡ 3 km, then

the variable k
y

method produces a smooth transmission loss curve identical to

the MACC curve.

Due to the fact that the evanescent components of Eq. (3.2) decay for

ranges along x away from the source, the variable k
y

method should perform

well along the y direction away from the source x axis. Figure 5.12 shows the

solutions of the two integration schemes as a function of the invariant direction

y at a depth of 35 m, and at a distance of 1000 m away from the source in

the x plane (x = 6000 m) and 2000 meters away from the source in the x

plane (x = 7000 m), respectively. As predicted, these two figures show that

the variable k
y

method and MACC agree.
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Figure 5.9: “Top down” view of the Gaussian canyon at a depth of (a) 10 m,
(b) 35 m, (c) 100 m, (d) 150 m, and (e) 180 m.

69



5 5.5 6 6.5 7 7.5 8 8.5 9 9.5 10

10

20

30

40

50

60

70

80

90

x [km]

T
ra

n
sm

is
si

o
n
 L

o
ss

 [
d
B

]

 

 

MACC
Variable k

y

(a)

5 5.5 6 6.5 7 7.5 8 8.5 9 9.5 10

40

45

50

55

60

65

70

75

80

85

90

x [km]

T
ra

n
sm

is
si

o
n
 L

o
ss

 [
d
B

]

 

 

MACC
Variable k

y

(b)

Figure 5.10: Comparison of modified adaptive Clenshaw-Curtis quadrature
(MACC) and the variable k

y

method for the Gaussian canyon in the source
plane (y = 0), and at a depth of (a) 35 m, and (b) 130 m.
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Figure 5.11: Comparison of the variable k
y

and modified adaptive Clenshaw-
Curtis quadrature (MACC) for the Gaussian canyon along the y coordinate at
the source location (x = 5000 m), and at a depth of (a) 30 m, and (b) 35 m.
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Figure 5.12: Comparison of the variable k
y

and modified adaptive Clenshaw-
Curtis quadrature (MACC) for the Gaussian canyon along the y coordinate at
a depth of 35 m and (a) 1000 m from the source (x = 6000 m), and (b) 2000
m from the source (x = 7000 m).
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Chapter 6

Conclusion

This work employed the finite element method to model three-dimensional

range-dependent waveguides. In particular, a longitudinally invariant finite

element model was presented, in which a three-dimensional acoustic pressure

field can be computed with multiple two-dimensional finite element models for

di↵erent out-of-plane wavenumbers if the bathymetry does not vary along one

Cartesian spatial coordinate. Two questions were presented in the introduc-

tion, and are now answered in turn.

1. How accurate is the longitudinally invariant finite element method

in computing the transmission loss in a three-dimensional range-

dependent waveguide?

The longitudinally invariant finite element method was computed for

three di↵erent waveguides. The first waveguide was a flat, range-independent

Pekeris waveguide. OASES, a wavenumber integration code, provides exact

solutions to Pekeris waveguides up to machine precision [19, 71]. As shown in

Sec. 5.1, LIFEM agreed excellently with OASES for both source plane solutions

(y = 0) and along the invariant direction. The second waveguide considered

was the ASA wedge environment. RAM, an axi-symmetric parabolic equation
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code, provides accurate solutions for source plane acoustic propagation [43,

72]. Therefore, RAM was used as a comparison for LIFEM in the source

plane. As shown in Sec. 5.2, LIFEM is able to provide accurate solutions to

upslope wedge propagation. In addition, the three-dimensional e↵ects were

qualitatively compared to a virtual source image method, Fig. 7 of [32], and

both exhibit similar features. Finally, an underwater Gaussian canyon was

computed. Unlike currently existing models, LIFEM is able to calculate the

pressure field exactly. As a result, LIFEM can be used as a benchmark for

other propagation models that are approximate.

2. What is an e�cient integration scheme that uses the least

number of finite element evaluations and calculates the inverse

transform accurately?

Two integration schemes were developed in Chapter 4. The first dis-

cretizes the inverse cosine transform into a Riemann sum. However, abscissas

with constant spacing do not compute the integral accurately and e�ciently.

This is due to the fact that the integrand is irregularly oscillatory, with the

greatest variation near k
y

! k. For that reason, having a variable spacing,

in which the most abscissas are located at k
y

! k, is advantageous. It was

found that using a gamma cumulative distribution function, Eq. (4.3), gives

the placement of the abscissas with the desired spacing. Indeed, Fig. 4.4 shows

that for a point source in free space the variable spacing integration scheme
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provides a more accurate solution than the constant spacing scheme, using the

same amount of abscissas.

A modified adaptive Clenshaw-Curtis quadrature (MACC) was also de-

veloped to compute the inverse cosine transform. By approximating the FEM

solution in the inverse cosine integrand as a N th order Chebyshev polynomial,

the oscillatory cosine kernel is transferred to an integral that is solved ex-

plicitly. In addition, the Chebyshev polynomial coe�cients can be used as a

conservative error estimation. The adaptive algorithm places the Chebyshev

abscissa around the regions of greatest oscillation in the FEM solution.

In chapter 5, the two integration schemes were compared for each of

the three waveguides. For the Pekeris and Gaussian canyon waveguides, the

variable k
y

spacing integration scheme was able to produce accurate solutions

using fewer abscissa than MACC in the source plane (y = 0). In addition, the

variable k
y

spacing was able to provide accurate solutions along the invariant

direction for the Pekeris waveguide, ASA wedge, and Gaussian canyon away

from the source x axis (Fig. 5.12), while using less abscissa than MACC for the

ranges considered. However, Fig. 5.2 suggests that there will be an invariant

range value in which the product of the FEM solution and the cosine kernel

will be undersampled by the variable k
y

method. In contrast, MACC does not

su↵er from this problem. This is due to the fact that the precision of MACC

only depends on the accuracy of interpolating the FEM solution in k
y

space

with Chebyshev polynomials, not the product of the FEM solution and the

cosine kernel. Once the FEM solution has been accurately interpolated with
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Chebyshev polynomials, the integration scheme will be accurate for any value

of y. Therefore, for ranges considered in this work, the variable k
y

spacing

provides an accurate solution for a practical number of abscissa. However, for

ranges larger than those considered in this work, MACC should be considered.
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Appendix A

Modified Adaptive Clenshaw-Curtis
Quadrature Algorithm

A simple example of the modified adaptive Clenshaw-Curtis algorithm,

in particular the adaptive procedure and the Chebyshev interpolation of the

integrand, is presented. As presented in Sec. 4.3, Clenshaw-Curtis quadrature

is equivalent to interpolating the integrand with an N th order Chebyshev poly-

nomial, and integrating that representation. We will consider the integration

of the inverse cosine transform of a point source in free space at a distance of

100 m in the source plane (y = 0), such that the cosine kernel has no e↵ect

on the integrand. The integrand in k
y

space is shown in Fig. 4.2. Since the

integrand does not contribute to the integral past k
y

= 1.5k, k
c

is chosen to

be 1.5k. For the purpose of illustration, the initial number of subintervals is

chosen to be 2, and a 16th order Chebyshev polynomial is used to interpolate

the integrand. As a result, the first integral will be computed from 0 to k
c

/2.

Figure A.1c compares Chebyshev, Lagrange, and linear interpolation with the

exact integrand. For a set of data points [(x
0

, y
0

), . . . , (x
k

, y
k

)], Lagrange in-
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terpolation is defined as

L(x) =
kX

j=0

y
j

�
j

(x) (A.1)

�(x) =
Y

0mk

m 6=j

x� x
m

x
j

� x
m

. (A.2)

Figure A.1b shows the percent error of the interpolation over this interval.

Note that linear interpolation yields the largest error. Lagrange interpola-

tion produces the least error in the midpoint of the subinterval, but exhibits

Runge’s phenomena, which is numerical error that exists at the endpoints of a

subinterval when a polynomial of high degree is used to approximate a function

[75]. Chebyshev interpolation maintains a low error for the entire subinterval.

It was shown in Sec. 4.3.1 that the error of the integration (and the error

in interpolation) is bounded by the weights of the Chebyshev polynomials.

Figure A.1c shows the magnitude of of the Chebyshev coe�cients. Note that

the weights past |a
8

| begin to decay. This means that the Chebyshev series

is converging, and will provide an accurate integral solution. The number of

significant figures of precision is dependent on the error tolerance the user

supplies. The error for this case, after computing r
N

and c
N

, is 7.36 ⇥ 10�4.

Because this is greater than the prescribed tolerance 10�10, the integration is

not preformed and the subinterval will be bisected.

Next, the second subinterval, from k
c

/2 to k
c

, is computed. Figure

A.2a compares Chebyshev, Lagrange, and linear interpolation with the exact

function. Note that none of interpolation schemes accurately interpolate the
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integrand. The magnitude of the Chebyshev coe�cients is shown in Fig. A.2b.

Note that the the Chebyshev coe�cients are not decaying, so a 16th order

Chebyshev polynomial is not adequate to accurately interpolate the integrand

and provide an accurate integration result. Since this subinterval did not

converge, this interval will also be bisected. This algorithm is repeated until

all subintervals converge to the specified tolerance.

When the adaptive algorithm is complete, the greatest density of ab-

scissas are located near k
y

= k. Since the nature of the integrand changes after

k
y

= k to a smooth function, the number of abscissa required may be saved by

forcing the adaptive algorithm to execute only on the subinterval [0, k], and

integrating [k, k
c

] with an integration scheme of su�cient order.
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Figure A.1: (a) Comparison of Chebyshev, Lagrange, and linear interpolation
with the exact function for the interval 0 to k

c

/2. (b) Percent error for Cheby-
shev, Lagrange, and linear interpolation. (c) Magnitude of the Chebyshev
coe�cients.
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