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The coupling between subsurface flow and reservoir geomechanics plays a critical role in

obtaining accurate results for models involving reservoir deformation, surface subsidence,

well stability, sand production, waste deposition, hydraulic fracturing, CO2 sequestration,

and hydrocarbon recovery. From a pure computational point of view, such a coupling can

be quite a challenging and complicated task. This stems from the fact that the constitutive

equations governing geomechanical deformations are different in nature from those govern-

ing porous media flow. The geomechanical effects account for the influence of deformations

in the porous media caused due to the pore pressure and can be very important especially

in the case of stress-sensitive and fractured reservoirs. Considering that fractures are very

much prevalent in the porous media and they have strong influence on the flow profiles, it

is important to study coupled geomechanics and flow problems in fractured reservoirs. In

this work, we pursue three main objectives: first, to rigorously design and analyze iterative

and explicit coupling algorithms for coupling flow and geomechanics in both poro-elasitc

and fractured poro-elastic reservoirs. The analysis of iterative coupling schemes relies on

studying the equations satisfied by the difference of iterates and using a Banach contrac-

tion argument to derive geometric convergence (Banach fixed-point contraction) results.

The analysis of explicit coupling schemes result in analogous stability estimates. In this

work, conformal Galerkin is used for mechanics, and a mixed formulation, including the

vii



Multipoint Flux Mixed Finite Element method as a special case, is used for the flow model.

For fractured poro-elastic media, our iteratively coupled schemes are adaptations, due to

the presence of fractures, of the classical fixed stress-splitting scheme, in which fractures

are treated as possibly non-planar interfaces. The second main objective in this work is to

exploit the different time scales of the mechanics and flow problems. Due to its physical

nature, the geomechanics problem can cope with a coarser time step compared to the flow

problem. This makes the multirate coupling scheme, the one in which the flow problem

takes several (finer) time steps within the same coarse mechanics time step, a natural can-

didate in this setting. Inspired by that, we rigorously formulate and analyze convergence

properties of both multirate iterative and explicit coupling schemes in both poro-elastic

and fractured poro-elastic reservoirs. In addition, our theoretically derived Banach con-

traction estimates are validated against numerical simulations. The third objective in this

work is to optimize the solution strategy of the nonlinear flow model in coupled flow and

mechanics schemes. The global inexact Newton method, combined with the line search

backtracking algorithm along with heuristic forcing functions, can be efficiently employed

to reduce the number of flow linear iterations, and hence, the overall CPU run time. We

first validate these computational savings for challenging two-phase benchmark problems

including the full SPE10 model. Motivated by the obtained results, we incorporate this

strategy as a nonlinear solver framework to solve the nonlinear flow problem in multirate

iteratively coupled schemes. This leads to a scheme that reduces both the number of flow

and mechanics linear iterations efficiently. All our numerical implementations in this work

are built on top of our in-house reservoir simulator (IPARS).
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Chapter 1

Introduction

1.1 Motivation

Recently, the accurate modeling of flow-structure interactions has gained more attention

and importance for both environmental and petroleum engineering applications. A clear

understanding of the fluid flow and the solid-phase mechanical response is needed for the

accurate modeling of multiscale and multiphysics phenomena such as reservoir deformation,

surface subsidence, well stability, sand production, waste deposition, pore collapse, fault

activation, hydraulic fracturing, CO2 sequestration, and hydrocarbon recovery [45], [63].

Of particular interest is the coupling between subsurface flow and reservoir geomechanics.

Traditionally, the main purpose of simulating reservoirs was to obtain accurate results for

reservoir flow, simplifying the influence of porous media deformations by a constant rock

compressibility factor. In fact, such an influence affects pore pressure which, in turn, affects

the accuracy of reservoir flow models [63]. By oversimplifying the rock compressibility

coefficient with a constant rock compressibility term, the solid phase stress and strain can

never be accounted for. This poses several concerns on the accuracy of flow models in

stress-sensitive and naturally fractured reservoirs [63]. Therefore, it is only through the

accurate coupling between subsurface flow and reservoir geomechanics that accurate and

trusted results can be deduced from flow models in such types of reservoirs.

1.1.1 Examples of Subsidence Events

Due to oil extraction, especially in stress-sensitive reservoirs, rock compaction may occur

inducing a subsidence event. Such subsidence events might not only affect the surrounding

environment adversely, but also can result in a dramatic impact on reservoir production [85].

Below are two examples of oil fields which experienced subsidence events in the past, due
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to oil extraction activities:

• Valhall Field: The Valhall field was discovered in 1975, and its development started in

1981. It started producing oil and gas in October, 1982. It is located about 180 miles

offshore in the central graben of the North Sea, at a depth of 7875 ft. It consists of

two oil-bearing formations: the Tor and Hod. The Tor is a soft chalk formation with

a very high porosity (around 50%) and very high oil saturation (more than 90%). In

mid 1986, surface subsidence was observed by satellite surveys, and infrared-wave-

height measurements. After investigation, it was found that the pressure depletion of

the high-porosity chalk caused plastic deformation and compaction of the reservoir

which translated into the observed subsidence of surface facilities. In addition, a

significant part of hydrocarbon recovery was driven by the rock compaction (lithic-

drive process) [76].

• Wilmington Field: The Willmington field is located in California, near the southern

edge of the Los Angeles sedimentary basin. It was producing from seven zones located

at various depths (ranging from 2000 to 6000 ft), with a porosity range of 33%

to 37% and a permeability range of 500 to 2000 md in the different zones. The

upper zone reservoir sands are loose and unconsolidated. As a result, these sands

compacted rapidly as oil was produced, resulting in decreasing its porosity by at

least 3%. Consequently, the reservoir surface has subsided as much as 29 ft at its

center. According to the City Civic Center, this subsidence caused millions of dollars

of damage, and put the Long Beach Naval Shipyard at the threat of inundation [5].

1.2 Overview of Flow & Geomechanics Coupling Approaches

Three different coupling approaches are usually employed in modeling fluid flow coupled

with reservoir geomechanics. They are known as the fully implicit, the explicit or loose

coupling, and the iterative coupling methods. The fully implicit approach solves reservoir

multiphase flow and mechanics equations simultaneously. It is an unconditionally stable

approach [53], and considered to be the most accurate one. Typically, Newton-Raphson
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method is used to linearize the coupled system [53], and the obtained solution is self-

consistent. However, the main drawback of this approach is its huge computational cost

compared to the other two types of coupling. In addition, it poses several numerical

and computational challenges to the underlying linear solver. On the other hand, the

loosely coupled approach is less accurate, but has the attractive advantage of having lower

computational cost. It requires estimates of when to update the mechanical response of

the system, and at best, it provides only an approximate solution to the problem. The

iterative coupling approach lies in between the two extremes, and solves the two coupled

subsystems iteratively by exchanging the values of the shared state variables in an iterative

manner. The procedure is iterated at each time step until the solution is obtained with an

acceptable tolerance [26,53,60,63,87].

1.3 Literature Review

The coupled flow and geomechanics problem has been intensively investigated in the past.

The seed of this work can be tracked down to the work of Terzaghi [84] and Biot [15, 16].

Terzaghi was the first to propose an explanation of the soil consolidation process, in which

he assumed that grains forming the soil are bound together by some molecular forces

resulting in the formation of the porous material with elastic properties. Based on such

concepts, he analyzed the settlement of a column of soil under a constant load and prevented

from lateral expansions. It is the success of Terzaghi’s theory in predicting the settlement

of different types of soils that lead to the creation of the the science of soil mechanics [16].

More details about Terzaghi’s theory of consolidation can be found in [84]. Biot then

extended Terzaghi’s one dimensional work to the three-dimensional case, and presented a

more rigorous generalized theory of consolidation [16]. In subsequent work, Biot continued

to develop the theory of elasticity and consolidation for isotropic and anisotropic porous

media, including the theory of deformation of a porous viscoelastic anisotropic solid [14,

17, 18]. A treatment of thermoelasticity and the mechanics of deformation and acoustic

propagation in porous media can be found in [19, 20]. Several studies and interpretations

baed on Biot’s consolidation theory can be found in [41,74]. To name just few, Geertsma [41]

utilized Biot theory to present a united treatment of rock mechanics problems in the field
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of petroleum production engineering. Rice and Cleary [74] presented applications of the

Biot linearized quasi static elasticity theory of fluid-saturated porous media. Few years

later, Coussy [28] presented the general theory of thermoporoelastoplasiticy for saturated

materials. The work of Settari and Mourits [78] proposed robust iterative and explicit

coupling schemes for coupling flow with geomechanics along with fracture propagation. A

comprehensive treatment of the theory of mechanics of porous continua and poromechanics

can be found in [29,30] by Coussy. Other nonlinear extensions of the theory of poroelasticity

can be found in [25,26,35,37,79,83].

Recently, the work of Mikelić and Wheeler [64] established geometric convergence (con-

traction with respect to appropriately chosen metrics) for different flow and geomechanics

iterative coupling schemes. In addition, stability convergence analysis of similar schemes

was extensively explored in the work of Kim, Tchelepi, and Juanes [51, 52]. In their work,

von Neumann type of analysis was carried out to study stability of linear flow and geome-

chanics coupling problems, while energy methods were used to analyze nonlinear coupling

problems. Moreover, techniques from matrix algebra and spectral analysis were used to

derive a priori error estimates for different coupling schemes, including drained, undrained,

fixed-stress, and fixed-strain splits. In the drained and undrained split methods, the pres-

sure field and the fluid mass content are frozen during the geomechanics sub-step respec-

tively [51]. In the fixed-stress split method, which is the method we heavily investigate in

this research, the volumetric mean total stress is kept constant during the flow sub-step.

This implies that the volumetric total stress is evaluated explicitly when solving for the flow

problem [52,64]. On the other hand, the rate of the total strain is fixed during the solution

of the flow problem in the fixed-strain split method [52]. Using von Neumann analysis

and energy-based methods, the undrained split method was shown to be unconditionally

stable for “backward Euler” and “midpoint rule” time discretization. On the contrary, the

drained split method with the midpoint rule time discretization is unconditionally unstable.

For “backward Euler” time discretization, the drained split is conditionally stable, and its

stability is independent of the time step size [51]. The von Nuemann analysis also revealed

that the fixed-stress split is an unconditionally stable scheme while the fixed-strain split is

only a conditionally stable and oscillatory scheme [52]. It was also shown in [51, 52] that
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the drained split method with a fixed number of iterative coupling iterations is not conver-

gent, while the undrained split method is convergent for a compressible system (finite Biot

modulus), and non-convergent for an incompressible system (infinite Biot modulus) with

a fixed number of iterative coupling iterations [51]. It was also found that the fixed-strain

split is not always convergent for a fixed number of iterative coupling iterations [52]. On the

other hand, the fixed-stress split is convergent with a better accuracy than the undrained

split method for a fixed number of iterative coupling iterations [52].

The existence, uniqueness, and regularity of the Biot system without fractures were inves-

tigated by a number of authors (Showalter [81], Phillips & Wheeler [70], and Girault et

al. [44]). The interaction between fractures and the surrounding poro-elastic medium was

traditionally modeled in a number of different ways. One approach, applicable to narrow

fractures, treats the width of the fracture as a small parameter ε which tends to zero [39].

The work of Morales and Showalter [67, 68] followed this approach, in which they con-

sidered only the flow problem without coupling it with geomechanics. In their work, the

fracture was modeled as a flat basis with a vertical height of the order of ε and the pressure

was assumed to be continuous at the interfaces. Another approach treats the fracture as a

thin domain in the framework of domain decomposition. Following this approach, extensive

work was carried out by Jaffré, Roberts et al. [4,62] on Darcy flow models for thin fractures.

It should be noted that the approach we will follow in this research models the fracture

as a thin domain, which corresponds to a lower dimensional geometrical object. Follow-

ing this approach, fractures can be considered as non-planar surfaces in three-dimensional

simulations. Recently, the modeling of fracture propagation received huge attention, and is

considered an active area of research. One approach to model the propagation of fractures

employs a phase-field energy minimization method to track the movements and expansions

of fractures [65,66,91].

The numerical analysis of the coupled flow and geomechanics problem in a fractured poro-

elastic medium was heavily investigated by Girault et al. [45] in which a fully implicit

approach is considered for coupling flow with mechanics. The work of Ganis et al. [39]

considered the numerical approximation of a fracture model in a poro-elastic medium.

In their work, the fracture is represented as a curve or a surface with its width being
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incorporated into the fracture’s flow equation. The Multipoint Flux Mixed Finite Element

(MFMFE) method is used for flow discretization in the reservoir, and the Mimetic Finite

Difference method is used for flow discretization in the fracture. It should be noted here

that the Mimetic Finite Difference method is implemented in Python, and the MFMFE

discretization scheme is implemented in IPARS. The two frameworks are coupled together

through a C++ socket interface, written solely by the author of this dissertation [2]. In

addition, it was primarily through this socket interface that the Python mimetic code was

coupled to the IPARS compiled framework in the dissertation work of [3]. Moreover, this

interface was used to couple the two frameworks to model multiphase flow with nonplanar

fractures in [2]. More recently, the work of [22] used Stokes equation to model the flow in

the fracture, and showed the stability of the proposed numerical scheme based on Nitsche

method for Stokes-Biot model.

From such a quick survey, it is clear that the accurate modeling of reservoir flow cou-

pled with geomechanics has received much recent attention for both environmental and

petroleum engineering applications. However, the development and analysis of theoret-

ically convergent iterative coupling algorithms in both poro-elastic and fractured poro-

elastic reservoirs have received quite less attention. The main objective of this research

is to bridge this gap by devising and analyzing different iterative and explicit coupling

schemes for coupled flow and geomechanics problems in poro-elastic as well as fractured

reservoirs.

1.4 Research Objectives

In this research, we pursue the following broad objectives:

1. To develop single rate and multirate iterative and explicit coupling schemes for solving

coupled geomechanics and flow problems in poro-elastic and fractured poroelastic

media. For poro-elastic meida, we will be considering two flow-mechanics splitting

schemes: the fixed-stress split and the undrained split iterative coupling schemes [64].

For fractured poro-elastic media, our iterative scheme is an adaptation, due to the

presence of the fractures, of the classical fixed stress-splitting scheme [43]. This is
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due to the fact that the fixed-stress split scheme is the first iterative coupling scheme

used to model fracture propagation in poroelastic media [65].

2. To rigorously analyze the convergence properties of the devised single rate and mul-

rirate coupling schemes. We will carry out a thorough mathematical analysis of the

convergence properties of different variations of the “fixed stress split” iterative cou-

pling algorithm for poro-elastic and fractured poro-elastic media. In addition, we will

study convergence properties of the the undrained split coupling scheme for poro-

elastic media. Most of our theoretically derived results are original, and are natural

extensions of the work carried out in the literature.

3. To numerically investigate the efficiency of multirate iterative and explicit coupling

schemes as natural candidate schemes for solving coupled flow and geomechanics

problems as the geomechanics problem can cope with a coarser time step compared

to the flow problem. Multirate schemes allow for taking larger time steps for the

geomechanics problem and finer time steps for the flow problem.

4. To investigate the efficiency of the global inexact Newton method, combined with

a line-search backtracking globalization technique, as a nonlinear solver framework

for solving fully implicit nonlinear flow problems. When incorporated in solving

the nonlinear flow problen in multirate iteratively coupled schemes, the number of

flow and mechanics linear iterations are reduced efficiently, resulting in an efficient,

convergent, and robust scheme.

7



Chapter 2

Iterative Coupling Schemes for Poroelastic Media

2.1 Introduction

In this chapter, we study single rate and multirate iterative coupling schemes for coupling

flow with linear elasticity, based on two different coupling algorithms: the fixed-stress split

coupling algorithm, and the undrained split coupling algorithm. Our work is inspired by

the previous work of Mikelić and Wheeler [64] (see also [42]) and extends their results to

cover the case of fully discrete multirate iterative coupling schemes. Convergence properties

of multirate explicit coupling schemes have been heavily investigated in [80,92] for the non-

stationary Stokes-Darcy model. In contrast, we consider multirate iteratively coupled flow

and geomechanics problems in this work. Figures 2.1a and 2.1b illustrate the differences

between single rate versus multirate iterative coupling schemes. Figure 2.1a represents a

typical single rate scheme, in which the flow and mechanics problems share the exact same

time step, and the coupling iteration continues until convergence. In contrast, Figure 2.1b

demonstrates a typical multirate scheme, in which the flow problem takes multiple finer

local time steps within one coarser mechanics time step for each iterative coupling itera-

tion. The process is iterated until convergence. In this work, we propose different multirate

iterative schemes and their analyses and deduce the contracting character of each scheme.

Convergence follows immediately by applying Banach’s fixed point theorem. The presence

of two different time steps for different equations in such a system of PDEs introduces

several complications. We define an appropriate expression of the volumetric mean stress

for the multirate scheme and use the flow and mechanics estimates to derive a contraction

The theoretical work in this chapter is a collaborative work with Dr. Kundan Kumar, under the
supervision of Prof. Mary Wheeler. Numerical implementations in IPARS are done primarily by Tameem
Almani, with helpful discussions with Drs. Kundan Kumar and Gurpreet Singh. Dr. Ali Dogru reviewed
some of the obtained results. This research work has been published in [6, 7, 11,13].
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for the difference of two successive coupling iterates. In addition, we employ mathematical

induction along with a contraction argument to deduce strong convergence of the pressure

and flux unknowns for flow finer time steps within a coarser mechanics time step. Our

analysis also reveals the optimal values of the fixed stress split regularization term in the

mass conservation equation, and the undrained split regularization term in the mechanics

equation. Moreover, for the fixed-stress split method, we introduce a modified multirate

iterative coupling scheme that successively corrects the fluxes in even coupling iterations so

that the resulting scheme has the same convergence properties as of single rate scheme. To

the best of our knowledge, this is the first analysis of multirate schemes for Biot equations.

For completeness, we note here that these iterative methods can be also used as a pre-

conditioner for the fully implicit method. The work of Gai et al [36, 38] was the first to

interpret the fixed stress split iterative coupling scheme (the single rate scheme) as an effec-

tive physics-based preconditioning strategy applied to a Richardson fixed point iteration.

The same preconditioning operator can be applied to the fully implicit coupled system,

enhancing the underlying Krylov subspace iteration as well [23, 24, 36]. We do not pursue

this direction in this research as we consider the fully decoupled system. However, our

theoretical work lays down a solid background for the choices of the regularization terms

used in the fixed-stress split and undrained split methods. Moreover, the extensions of the

proposed methods to the preconditioning of the fully coupled system will be considered in

future work.

To summarize, our contributions in this chapter are as follows:

• We formulate two multirate iterative coupling schemes for the Biot system that can

be viewed as the extensions of the classical fixed-stress split coupling algorithm (see

[64]) to the multirate settings in which flow takes finer time steps compared to the

mechanics problem.

• We establish the contracting behavior of both schemes leading to geometric speed of

convergence with an explicit expression for the contracting factor.
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• We derive an optimized Banach contraction result for the single rate undrained split

iterative coupling scheme (compared to the result obtained in [64]), with a sharper

contraction coefficient.

• We formulate multirate undrained-split iterative coupling scheme for the Biot system,

and establish its contracting behavior with an explicit expression for the contracting

factor.

• In terms of numerical analysis, for multirate schemes, the novelty is in combining the

contraction property with an induction argument to show that the obtained solution

converges to the unique solution of the original weak formulations given in Definitions

2.3.2 (for multirate fixed-stress split scheme) and 2.4.2 (for multirate undrained-split

scheme).

• Moreover, the numerical examples show the sharpness of the theoretical estimates.

They also reveal the CPU time savings as a result of the reduction in the number

of mechanics linear iterations for the multirate scheme versus the single rate scheme,

without jeopardizing the accuracy of the results.

• We establish the effect of different Young’s modulus values on the contracting property

of the scheme, both theoretically and numerically.

• Finally, our proof outlines a general strategy that is likely to be useful for obtaining

similar estimates in other contexts.

2.1.1 Preliminaries

Let Ω be an open, connected, and bounded domain of IRd, where the dimension d = 2

or 3, with a Lipschitz continuous boundary ∂Ω. For the pressure unknown, we assume

that the boundary is decomposed into Dirichlet boundary ΓD, and Neumann boundary

ΓN , associated with Dirichlet and Neumann boundary conditions respectively, such that

ΓD ∪ ΓN = ∂Ω. In addition, Let D(Ω) be the space of all functions that are infinitely
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tflow(tf ), tmech(tm) = 0
(initial time =0)

k=0

n=0 (iterative
coupling index)

Fluid Flow: tflow = tflow + ∆t
Compute pore pressure:

pn+1,k+1

Mechanics (Biot Model):
tmech = tmech + ∆t
Compute displace-

ment, un+1,k+1

Update pore volume

Converged? k = k + 1
tf = tf − ∆t
tm = tm − ∆t
n = n + 1

No Yes

(a) Single Rate

tflow(tf ), tmech(tm) = 0
(initial time = 0)

k = 0

n = 0 (iterative
coupling index)

m = 1 (flow iteration index)

Fluid Flow: tflow =
tflow + ∆t Compute

pore pressure, pn+1,k+m

m = (Max
flow

iterations:
q)?

m = m + 1

Mechanics (Biot Model):
tmech = tmech + q∆t
Compute displace-

ment, un+1,k+q

Update pore volume

Converged? k = k + q
tf = tf − q∆t
tm = tm − q∆t
n = n + 1

No

Yes

No Yes

(b) Multirate

Figure 2.1: Flowchart for the iterative coupling algorithm using single rate and multirate
time stepping for coupled geomechanics and flow problems

differentiable and with compact support in Ω, and let D′(Ω) be its dual space, i.e. the

space of distributions in Ω. As usual, we denote by H1(Ω) the classical Sobolev space

H1(Ω) = {v ∈ L2(Ω) ; ∇ v ∈ L2(Ω)d},

equipped with the semi-norm and norm:

|v|H1(Ω)= ‖∇ v‖L2(Ω)d , ‖v‖H1(Ω)= (‖v‖2
L2(Ω)+|v|2H1(Ω))

1/2.
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More generally, for 1 ≤ p <∞, W 1,p(Ω) is the space

W 1,p(Ω) = {v ∈ Lp(Ω) ; ∇ v ∈ Lp(Ω)d},

normed by

|v|W 1,p(Ω)= ‖∇ v‖Lp(Ω)d , ‖v‖W 1,p(Ω)= (‖v‖pLp(Ω)+|v|
p
W 1,p(Ω))

1/p,

with the standard modification for the case when p =∞. We also define:

H1
0 (Ω) = {v ∈ H1(Ω) ; v|∂Ω= 0},

and for the divergence operator, we shall use the space

H(div; Ω)d = {v ∈ L2(Ω)d ; ∇ · v ∈ L2(Ω)},

equipped with the norm

‖v‖H(div;Ω)d= (‖v‖2
L2(Ω)d+‖∇ · v‖

2
L2(Ω))

1/2.

We recall the definition of the symmetric strain tensor: ε(v) = 1
2
(∇v+ (∇v)T ), for a vector

v in IRd. For completeness, we list below two useful inequalities that will be used in this

chapter:

• Poincaré’s inequality in H1
0 (Ω):

There exists a constant PΩ depending only on Ω such that

∀v ∈ H1
0 (Ω) , ‖v‖L2(Ω)≤ PΩ|v|H1(Ω). (2.1.1)

• Korn’s first inequality in H1
0 (Ω)d:

There exists a constant Cκ depending only on Ω such that

∀v ∈ H1
0 (Ω)d , |v|H1(Ω)d≤ Cκ‖ε(v)‖L2(Ω)d×d . (2.1.2)

2.2 Model Equations and Discretization

We assume a linear, elastic, homogeneous, and isotropic porous medium Ω ⊂ Rd, d = 2 or

3, in which the reservoir is saturated with a slightly compressible fluid.
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2.2.1 Assumptions

We have the following assumptions on the model and data:

1. For mechanical modeling, the reservoir is assumed to be homogeneous, isotropic and

saturated poro-elastic medium. The reference density of the fluid ρf > 0 is given and

positive.

2. The Lamé coefficients λ > 0 and G > 0, the dimensionless Biot coefficient α, and the

pore volume ϕ∗ are all positive.

3. The fluid is assumed to be slightly compressible and its density is a linear function

of pressure. The viscosity µf > 0 is assumed to be constant.

4. The absolute permeability tensor, K, is assumed to be symmetric, bounded, uni-

formly positive definite in space and constant in time.

2.2.2 Geomechanics Model

Using a quasi-static (i.e. ignoring the second order time derivative for the displacement)

Biot approach to obtain the displacements (see [16]), the “geomechanics” model is as fol-

lows:

σpor(u, p) = σ(u)− α p I, (2.2.3)

σ(u) = λ(∇ · u)I + 2Gε(u), (2.2.4)

− divσpor(u, p) = f in Ω, (2.2.5)

where σpor is the Cauchy stress tensor, I is the identity tensor, u is the solid’s displacement,

p is the fluid pressure, α > 0 is the dimensionless Biot coefficient, σ is the effective linear

elastic stress tensor, λ > 0 and G > 0 are the Lamé constants, f is a body force, which is

usually assumed to be a gravity loading term. The last equation represents the balance of

linear momentum in the solid.
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2.2.3 Single Phase Flow Model

Following a slightly different formulation compared to the one described in [45], we assume

a linearized slightly compressible single-phase flow model for the fluid in the reservoir. As

listed in the assumptions above, we also assume that K, the absolute permeability tensor,

is bounded, symmetric, and uniformly positive definite in space and constant in time (for

discrete time intervals). The fluid density, ρf is assumed to be a linear function of pressure:

ρf = ρf,r(1 + cf (p − pr)). The porosity, or the fluid content of the medium, denoted by

ϕ∗ is related to the “mechanical” displacement and “fluid” pressure by this relation: ϕ∗ =

ϕ0+α∇·u+ 1
M
p, where ϕ0 is the initial porosity, and M is the Biot constant. The fluid mass

balance in the reservoir, denoted by Ω, reads: ∂
∂t

(ρfϕ
∗)+∇·(ρfvD) = qs, where qs is a mass

source or sink term, and vD is the velocity of the fluid in Ω, vD = − 1
µf
K(∇ p− ρfg∇ η).

Substituting the definitions of vD, ρf , and ϕ∗ into the mass balance equation, we get:

∂

∂t

(
ρf,r(1 + cf (p− pr))(ϕ0 + α∇ · u+

1

M
p)
)

+∇ · (ρf,r(1 + cf (p− pr))vD) = qs.

which can be written as (after re-arranging terms):

ρf,r

( 1

M
(1 + cf (p− pr)) + cf (ϕ0 + α∇ · u+

1

M
p)
) ∂
∂t
p+ ρf,rα(1 + cf (p− pr))∇ ·

∂

∂t
u

+∇ · (ρf,r(1 + cf (p− pr))vD) = qs.

For the sake of linearization, we assume that the fluid compressibility cf is small, in the

order of 10−5 or 10−6, and the term cf (p− pr) is also small as well (of the same order). We

make the following approximations: 1
M

(1 + cf (p− pr)) ≈ 1
M

, cf (ϕ0 +α∇ ·u+ 1
M
p) ≈ cfϕ0,

ρf,r(1 + cf (p − pr))α ≈ ρf,rα, ρf,r(1 + cf (p − pr))vD ≈ ρf,rv
D, ρf,r(1 + cf (p − pr))g∇ η ≈

ρf,rg∇ η. With such approximations, the mass balance equation now reads:

ρf,r(
1

M
+ cfϕ0)

∂

∂t
p+ ρf,rα∇ ·

∂

∂t
u+ ρf,r∇ · vD = qs

which can be written as (after dividing by ρf,r, and submitting the expressiotn of vD):

∂

∂t

(
(

1

M
+ cfϕ0)p+ α∇ · u

)
−∇ ·

( 1

µf
K(∇ p− ρf,rg∇ η)

)
= q̃. (2.2.6)

where q̃ = qs
ρf,r

. This completes the derivation of the poro-elastic equations, modeling the

displacement u and pressure p in Ω.
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Therefore, our quasi-static Biot model, which is quite standard in literature [16,45], reads:

Find u and p satisfying the equations below for all time t ∈]0, T [:

−divσpor(u, p) = f in Ω,

σpor(u, p) = σ(u)− αp I in Ω,

σ(u) = λ(∇ · u)I + 2Gε(u) in Ω,

∂
∂t

(
( 1
M + cfϕ0)p+ α∇ · u

)
−∇ ·

(
1
µf
K(∇ p− ρf,rg∇ η)

)
= q̃ in Ω,

Boundary Conditions: u = 0 on ∂Ω, K(∇ p− ρf,rg∇ η) · n = 0 on ΓN , p = 0 on ΓD,

Initial Condition (t = 0) :
(

( 1
M + cfϕ0)p+ α∇ · u

)
(0) = ( 1

M + cfϕ0)p0 + α∇ · u0.

where: g is the gravitational constant, η is the distance in the vertical direction (assumed

to be constant in time), ρf,r > 0 is a constant reference density (relative to the reference

pressure pr), ϕ0 is the initial porosity, M is the Biot constant, q̃ = qs
ρf,r

where qs is a mass

source or sink term taking into account injection into or out of the reservoir. We remark

that the first three equations describe the mechanics whereas the fourth one is the flow

equation. Note that the above system is linear and coupled.

2.2.4 Mixed Variational Formulation

We will use a mixed formulation for the flow and conformal Galerkin formulation for the

mechanics equation. The mixed method defines flux as a separate unknown and rewrites

the flow equation as a system of first order equations. Such a formulation for the flow

is standard and is preferred because it is locally mass conservative and has an explicit

computation for the flux. Accordingly, for the fully discrete formulation (discrete in time

and space), we use a mixed finite element method for space discretization and a backward-

Euler time discretization. Let Th denote a regular family of conforming triangular elements

of the domain of interest, Ω. Using the lowest order Raviart-Thomas (RT) spaces , we have

the following discrete spaces (V h for discrete displacements, Qh for discrete pressures, and
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Zh for discrete velocities (fluxes)):

V h = {vh ∈ H1(Ω)
d

; ∀T ∈ Th,vh|T ∈ P1
d,vh|∂Ω = 0} (2.2.7)

Qh = {ph ∈ L2(Ω) ; ∀T ∈ Th, ph|T ∈ P0} (2.2.8)

Zh = {qh ∈ H(div; Ω) ;∀T ∈ Th, qh|T ∈ P1
d, qh · n = 0 on ΓN} (2.2.9)

The space of displacements, V h, is equipped with the norm:

‖v‖Vh= (
d∑
i=1

‖vi‖2
H1(Ω))

1/2.

We also assume that the finer time step is given by: ∆tk = tk−tk−1. In this work, we assume

uniform fine flow time steps, so for simplicity, we will drop the subscript k, and denote the

fine time step by ∆t. If we denote the total number of timesteps by N, then the total sim-

ulation time is given by T = ∆t N, and ti = i∆t, 0 6 i 6 N denote the discrete time points.

For the fully discrete scheme, we have chosen the Raviart-Thomas spaces for the mixed

finite element discretization. However, the proof extends to other choices for the mixed

spaces and we will state the results for Multipoint Flux Mixed Finite Element (MFMFE)

spaces [87, 90] in Remark 2.3.6.

Remark 2.2.1. Notation: Throughout this chapter, there will be two indices, one for the

time step and the other for the coupling between the flow and mechanics. To avoid any

confusion, let us emphasise the following notations, n denotes the coupling iteration index,

k is the coarser time step iteration index (for indexing mechanics coarse time steps), m is

the finer (local) time step iteration index (for indexing flow fine time steps), ∆t stands for

the time step, and q is the “fixed” number of local flow time steps per coarse mechanics

time step. A schematic showing the relations between k,m, q, and ∆t can be found in figure

2.1b.

16



2.3 Fixed Stress Split Iterative Coupling

2.3.1 Standard Fixed Stress Split Algorithm

In the fixed stress split iterative coupling algorithm, we first solve the flow problem followed

by the geomechanics problem. Even though we use the splitting strategy at the discrete

level, it is probably easier to see this in the continuous strong form. Recalling that n

denotes the coupling iteration index between the flow and mechanics problems, the steps

are as follows:

Step (a): Given un, we solve for pn+1, zn+1

( 1
M

+ cfϕ0 + α2

λ
) ∂
∂t
pn+1 + 1

µf
∇ · zn+1 = α2

λ
∂
∂t
pn − α∇ · ∂

∂t
un + q̃

zn+1 = −K(∇ pn+1 − ρf,rg∇ η)

Once the flow is computed, we update the displacement solution.

Step (b): Given pn+1, zn+1, we solve for un+1 satisfying

− divσpor(un+1, pn+1) = f

σpor(un+1, pn+1) = σ(un+1)− α pn+1

σ(un+1) = λ(∇ · un+1)I + 2Gε(un+1)

with the initial condition, independent of n,(
(

1

M
+ cfϕ0)pn+1 + α∇ · un+1

)
(0) = (

1

M
+ cfϕ0)p0 + α∇ · u0. (2.3.10)

Note that the flow equation has a regularization term α2/λ∂tp
n+1 added to the left hand

side and a similar term added to the right hand side for consistence while the mechanics

equation remains unchanged. In the case of convergence, this term vanishes retrieving the

original equation. Indeed, this has been analyzed in literature and we simply state the

results to elucidate our approach. Following result is obtained in Mikelić and Wheeler [64],

and adapted to our model equations.

Theorem 2.3.1. [Mikelić & Wheeler [64]] Let Ωt := Ω× (0, t), σv := σv,0 + λ∇ · u− αp,

σv|t=0= σv,0 (the initial volumetric mean total stress), σnv := σv,0 + λ∇ · un − αpn, and δ
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denoting the difference of two successive iterates, the fixed stress split scheme as given in

Section 2.3.1 is a contraction given by∥∥∥∂tδσn+1
v

∥∥∥2

Ωt
+ λMα2

µf (Mα2+λ(1+Mcfϕ0))

∥∥∥K−1/2δ∇pn+1(t)
∥∥∥2

Ω
+ 4Gλ‖ε(∂tδun+1)‖2

Ωt

+λ2‖∇ · δun+1,k‖2
Ωt ≤

(
Mα2

λ+Mλcfϕ0+Mα2

)2∥∥∥∂tδσnv∥∥∥2

Ωt
.

The proof of the above results can be adapted to the fully discrete case in which a mixed

formulation is used for space discretization (see section 2.3.2.2 and Theorem 2.3.2). More-

over, in the Theorem 2.3.1, the contraction is obtained on the volumetric mean stress,

σv, involving both pressure (flow) and displacement (mechanics) unknowns. A relatively

straightforward argument shows that the converged quantities solve the original coupled

equations in a weak form.

Our ultimate goal in this chapter is to derive similar estimates for the case of the multirate

iterative coupling scheme. Two different multirate iterative coupling algorithms will be

discussed and analyzed. Even though our approach is similar to the one in [64], the fact

that we solve for multiple flow finer time steps within one coarser mechanics time step leads

to several complications. The adaptation of the fixed stress algorithm requires defining an

appropriate mean stress quantity and the analysis introduces two adjustable parameters.

Careful algebraic manipulations are required to show the contraction. Even after the con-

traction is achieved, the presence of the two different time scales in the coupled problem

requires non-trivial arguments involving the mathematical induction to show convergence

to the weak formulation (2.3.33) – (2.3.36).

We start by analyzing the single rate fixed-stress split iterative coupling scheme, adapted

to our fully discrete model.

2.3.2 Single Rate Formulation and Analysis

2.3.2.1 Fully Discrete Scheme for Single Rate

As discussed above, using the mixed finite element method in space and the backward Euler

finite difference method in time, the weak formulation of the single rate scheme reads as

follows.
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Definition 2.3.1. Find pkh ∈ Qh, and zkh ∈ Zh such that,

(flow equation)

∀θh ∈ Qh ,
1

∆t

(
(

1

M
+ cfϕ0)

(
pkh − pk−1

h

)
, θh

)
+

1

µf
(∇ · zkh, θh) =

− α

∆t

(
∇ ·
(
ukh − uk−1

h

)
, θh

)
+
(
q̃h, θh

)
, (2.3.11)

∀qh ∈ Zh ,
(
K−1zkh, qh

)
=
(
pkh,∇ · qh

)
+
(
ρf,rg∇ η, qh

)
, (2.3.12)

and (mechanics equation)

find ukh ∈ V h such that,

∀vh ∈ Vh , 2G(ε(ukh), ε(vh)) + λ(∇ · ukh,∇ · vh)− α(pkh,∇ · vh) = (f ,vh), (2.3.13)

with the initial condition for the first discrete time step,

p0
h = p0. (2.3.14)

2.3.2.2 Single Rate Iterative Scheme

Here, we provide a single rate formulation of the “fixed stress split” iterative coupling algo-

rithm and analyze its convergence properties in the next section. We begin by describing

the algorithm.
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Algorithm 1: Single Rate Iterative Coupling Algorithm

1 for k = 0, 1, 2, 3, .. do /* Time step iteration index */

2 for n = 1, 2, .. do /* coupling iteration index */

3 First Step: Flow equations

4 Given un,kh (assuming an initial value is given for the first iteration:

u0,k
h )

5 Solve for pn+1,k
h and zn+1,k

h satisfying:

(
1

M
+ cfϕ0 +

α2

λ
)
(pn+1,k

h − pk−1h

∆t

)
+

1

µf
∇ · zn+1,k

h =

α2

λ

(pn,kh − pk−1h

∆t

)
− α∇ ·

(un,kh − uk−1h

∆t

)
+ q̃h (2.3.15)

zn+1,k
h = −K(∇ pn+1,k

h − ρf,rg∇ η) (2.3.16)

Second Step: Mechanics equations
6 Given pn+1,k

h and, zn+1,k
h , solve for un+1,k

h satisfying:

− divσpor(un+1,k
h , pn+1,k

h ) = f (2.3.17)

σpor(un+1,k
h , pn+1,k

h ) = σ(un+1,k
h )− αpn+1,k

h I (2.3.18)

σ(un+1,k
h ) = λ(∇ · un+1,k

h )I + 2Gε(un+1,k
h ) (2.3.19)

The weak formulation for the flow and mechanics equations (2.3.15)-(2.3.19) (in the context

of fixed stress split coupling scheme) reads:

Step (a): Find pn+1,k
h ∈ Qh, z

n+1,k
h ∈ Zh such that:

∀θh ∈ Qh ,
(

(
1

M
+ cfϕ0 +

α2

λ
)(
pn+1,k
h − pk−1

h

∆t
), θh

)
+

1

µf
(∇ · zn+1,k

h , θh) =(
− α

λ
(− α(

pn+1,k
h − pk−1

h

∆t
) + λ∇ · (u

n,k
h − u

k−1
h

∆t
)), θh

)
+ (q̃h, θh) (2.3.20)

∀qh ∈ Zh , (K−1zn+1,k
h , qh) = (pn+1,k

h ,∇ · qh) + (∇(ρf,rgη), qh) (2.3.21)

Step (b) Given pn+1,k
h , zn+1,k

h , find un+1,k
h ∈ V h such that,

∀vh ∈ Vh , 2G(ε(un+1,k
h ), ε(vh))+λ(∇·un+1,k

h ,∇·vh)−α(pn+1,k
h ,∇·vh) = (f ,vh) , (2.3.22)

For a given time step t = tk, we define the difference between two coupling iterates as:

δξn+1,k = ξn+1,k − ξn,k,
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where ξ may stand for ph, zh, or uh. The volumetric mean total stress can be defined as

follows:

σn,kv = σk−1
v + λ∇ · un,kh − α(pn,kh − p

k−1
h ). (2.3.23)

In terms of coupling iteration differences, this can be written as:

δσn,kv = λ∇ · δun,kh − αδp
n,k
h (2.3.24)

Now, In terms of “coupling iteration” differences, the weak formulation reads:

∀θh ∈ Qh ,
( 1

∆t
(

1

M
+ cfϕ0 +

α2

λ
)δpn+1,k

h , θh

)
+

1

µf
(∇ · δzn+1,k

h , θh) =
(
− α

λ∆t
δσn,kv , θh

)
(2.3.25)

∀qh ∈ Zh , (K−1δzn+1,k
h , qh) = (δpn+1,k

h ,∇ · qh) (2.3.26)

∀vh ∈ Vh , 2G(ε(δun+1,k
h ), ε(vh)) + λ(∇ · δun+1,k

h ,∇ · vh)− α(δpn+1,k
h ,∇ · vh) = 0 (2.3.27)

2.3.2.3 Proof of Contraction

Let β = 1
Mα2 +

cf
α2ϕ0 + 1

λ
, which represents the coefficient in front of the first term on the

left hand side of (2.3.25).

• Step (1): Flow equations

Consider (2.3.25), and choose for θh = δpn+1,k
h ,( 1

∆t
α2βδpn+1,k

h , δpn+1,k
h

)
+

1

µf

(
∇ · δzn+1,k

h , δpn+1,k
h

)
= − α

λ∆t

(
δσn,kv , δpn+1,k

h

)
⇒

β

∆t

∥∥∥αδpn+1,k
h

∥∥∥2

+
1

µf

(
∇ · δzn+1,k

h , δpn+1,k
h

)
=

1

∆t

(
(−αεδpn+1,k

h ), (
1

ελ
)σn,kv

)
≤ 1

∆t

(ε2

2

∥∥∥αδpn+1,k
h

∥∥∥2

+
1

2ε2λ2

∥∥∥ ∂

∂t
δσn,kv

∥∥∥2)
Letting ε2 = β, we obtain

β
∥∥∥αδpn+1,k

h

∥∥∥2

+
2∆t

µf
(∇ · δzn+1,k

h , δpn+1,k
h ) ≤ 1

βλ2

∥∥∥δσn,kv ∥∥∥2

. (2.3.28)
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Now, consider the flux equation, (2.3.26), and choose for qh = δzn+1,k
h to get

(K−1δzn+1,k
h , δzn+1,k

h ) = (δpn+1,k
h ,∇ · δzn+1,k

h ) (2.3.29)

Substituting (2.3.29) into (2.3.28) and dividing by β, we obtain:∥∥∥αδpn+1,k
h

∥∥∥2

+
2∆t

βµf

∥∥∥K−1/2δzn+1,k
h

∥∥∥2

≤ 1

β2λ2

∥∥∥δσn,kv ∥∥∥2

(2.3.30)

• Step (2): Elasticity equation

Consider (2.3.27), choose vh = δun+1,k
h , and multiply by 2λ to obtain:

4Gλ‖ε(δun+1,k
h )‖2 + 2λ2‖∇ · δun+1,k

h ‖2 − 2λα(δpn+1,k
h ,∇ · δun+1,k

h ) = 0. (2.3.31)

Adding (2.3.31) with (2.3.30) and substituting the value β, we obtain:{∥∥∥αδpn+1,k
h

∥∥∥2

− 2(αδpn+1,k
h , λ∇ · δun+1,k

h ) + ‖λ∇ · δun+1,k
h ‖2

}
+

2∆tλMα2

µf (Mα2 + λ(1 +Mcfϕ0))

∥∥∥K−1/2δzn+1,k
h

∥∥∥2

+ 4Gλ‖ε(δun+1,k
h )‖2

+ λ2‖∇ · δun+1,k
h ‖2 ≤

( Mα2

λ+Mλcfϕ0 +Mα2

)2∥∥∥δσn,kv ∥∥∥2

Thus we have:∥∥∥δσn+1,k
v

∥∥∥2

+
2∆tλMα2

µf (Mα2 + λ(1 +Mcfϕ0))

∥∥∥K−1/2δzn+1,k
h

∥∥∥2

+ 4Gλ‖ε(δun+1,k
h )‖2

+ λ2‖∇ · δun+1,k
h ‖2 ≤

( Mα2

λ+Mλcfϕ0 +Mα2

)2∥∥∥δσn,kv ∥∥∥2

(2.3.32)

It is clear that the contraction constant is strictly less than one as
(

Mα2

λ+Mλcfϕ0+Mα2

)2

<

1.

2.3.2.4 Convergence to The Discrete Form

From the above discussion, we obtain the following lemma.

Lemma 2.3.1. There exist limit functions pkh,u
k
h, z

k
h such that

pn,kh → pkh in L2(Ω), un,kh → ukh in H1(Ω)
d
, zn,kh → zkh in H(div,Ω)d

converge strongly in the norms of the above spaces.
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Proof. The contraction result in (2.3.32) implies that ‖δσn+1,k
v ‖Ω, ‖∇ · δun+1,k

h ‖Ω, and

‖K−1/2δzn+1,k
h ‖Ω converge geometrically to zero. This implies that σn+1,k

v , ∇ · un+1,k
h , and

zn+1,k
h are Cauchy sequences in L2(Ω). By the definition of σn,kv , i.e. (2.3.23) and (2.3.24),

and the fact that the addition of two Cauchy sequences is a Cauchy sequence, we obtain

that pn,kh also converge geometrically in L2(Ω), and hence is a Cauchy sequence in Hilbert

(complete) space and has a unique limit in L2(Ω).

Similarly, for the displacement, (2.3.32) implies that ε(δun+1,k
h ) converges geometrically

to 0 in L2(Ω), which implies that un+1,k
h converge geometrically in H1(Ω)

d
. Thus, un+1,k

h

is a Cauchy sequence in a complete Hilbert space, and hence has a unique limit in the

corresponding space.

For the divergence of the flux, we note that (2.3.25) amounts to the following equality in

L2(Ω) a.e.,

∇ · δzn+1,k
h =

µf
∆t

(
1

M
+ cfϕ0 +

α2

λ
)δpn+1,k

h − µfα

λ∆t
δσn,kv

The convergence of ∇ · zn+1,k
h in L2(Ω) follows from the convergence of pn+1,k

h and σn,kv

in L2(Ω). Therefore, we have both ∇ · zn+1,k
h and zn+1,k

h converging geometrically to 0

in L2(Ω), hence zn+1,k
h converges in H(div,Ω)d. The existence of the limiting function in

H(div,Ω)d follows from the completeness of the space.

It remains to pass to the limit in (2.3.20)–(2.3.22). This is straightforward since the equa-

tions are linear and all operators involved are continuous in the spaces invoked in the

statement of Lemma 2.3.1. Moreover the convergences are strong. Therefore, we easily

retrieve the discrete in time formulation.

The above discussions are summarized in the following main result:

Theorem 2.3.2. The iterative scheme is a contraction given by∥∥∥δσn+1,k
v

∥∥∥2

Ω
+ 2∆tλMα2

µf (Mα2+λ(1+Mcfϕ0))

∥∥∥K−1/2δzn+1,k
h

∥∥∥2

Ω
+ 4Gλ‖ε(δun+1,k

h )‖2
Ω + λ2‖∇ · δun+1,k

h ‖2
Ω

≤
(

Mα2

λ+Mλcfϕ0+Mα2

)2∥∥∥δσn,kv ∥∥∥2

Ω

Furthermore, the converged solution is a unique solution to the weak formulation (2.3.20)

- (2.3.22).
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2.3.3 Multirate Formulation and Analysis

2.3.3.1 Fully Discrete Scheme for Multirate

Using the mixed finite element method in space and the backward Euler finite difference

method in time, the weak formulation of a multirate scheme reads as follows.

Definition 2.3.2. For 1 ≤ m ≤ q, find pm+k
h ∈ Qh, and zm+k

h ∈ Zh such that,

(flow equation)

∀θh ∈ Qh ,
1

∆t

(
(

1

M
+ cfϕ0)

(
pm+k
h − pm−1+k

h

)
, θh

)
+

1

µf
(∇ · zm+k

h , θh) =

− α

q∆t

(
∇ ·
(
uk+q
h − ukh

)
, θh

)
+
(
q̃h, θh

)
, (2.3.33)

∀qh ∈ Zh ,
(
K−1zm+k

h , qh

)
=
(
pm+k
h ,∇ · qh

)
+
(
ρf,rg∇ η, qh

)
, (2.3.34)

and (mechanics equation)

find uk+q
h ∈ V h such that,

∀vh ∈ Vh , 2G(ε(uk+q
h ), ε(vh)) + λ(∇ · uk+q

h ,∇ · vh)− α(pk+q
h ,∇ · vh) = (f ,vh). (2.3.35)

with the initial condition for the first discrete time step,

p0
h = p0. (2.3.36)

Note that the pressure unknowns ph and flux unknowns zh are being solved at finer time

steps tk+m,m = 0, . . . , q whereas the mechanics variables uh are being solved at tiq, i ∈ N.

Therefore, for each mechanics time step of size q∆t, there are q flow solves justifying the

nomenclature of multirate. Moreover, the above system of PDEs is linear but coupled with

the coupling terms being computed at the coarse time steps. Instead of solving the problem

in a coupled manner, as discussed before, we will apply a splitting algorithm to decouple

the two equations and iterate between them until the solutions satisfying the above system

(2.3.33) – (2.3.36) are obtained. We recall that in practice, there are 4 major splitting

algorithms (drained, undrained, fixed strain and fixed stress) used for studying the Biot

system depending upon whether one solves the mechanics first or flow and the physical

variables which are being lagged. We will use the fixed stress splitting algorithm here

because of its well established stability and excellent convergence properties as shown in

Mikelić and Wheeler [64], and Mikelić et al. [63].

24



2.3.3.2 Original Multirate Iterative Scheme

Here, we provide the first multirate formulation of the “fixed stress split” iterative coupling

algorithm and analyze its convergence properties in the next section. Recall that n denotes

the coupling iteration index, k the coarser time step iteration index (for indexing mechanics

time steps), m the finer (local) time step iteration index (for indexing flow finer time steps),

∆t the unit time step, and q denote “fixed” number of local flow time steps within one

coarse mechanics time step. We begin by describing the algorithm.
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Algorithm 2: Multirate Iterative Coupling Algorithm

1 for k = 0, q, 2q, 3q, .. do /* mechanics time step iteration index */

2 for n = 1, 2, .. do /* coupling iteration index */

3 First Step: Flow equations

4 Given un,k+q
h (assuming an initial value is given for the first iteration:

u0,k+q
h )

5 for m = 1, 2, .., q do /* flow finer time steps iteration index

*/

6 Solve for pn+1,m+k
h and zn+1,m+k

h satisfying:

(
1

M
+ cfϕ0 + L)

(pn+1,m+k
h − pn+1,m−1+k

h

∆t

)
+

1

µf
∇ · zn+1,m+k

h =

L
(pn,m+k

h − pn,m−1+kh

∆t

)
− α∇ ·

(un,k+qh − un,kh
q∆t

)
+ q̃h (2.3.37)

zn+1,m+k
h = −K(∇ pn+1,m+k

h − ρf,rg∇ η) (2.3.38)

7 Second Step: Mechanics equations

8 Given pn+1,k+q
h and, zn+1,k+q

h , solve for un+1,k+q
h satisfying:

− divσpor(un+1,k+q
h , pn+1,k+q

h ) = f (2.3.39)

σpor(un+1,k+q
h , pn+1,k+q

h ) = σ(un+1,k+q
h )− αpn+1,k+q

h I (2.3.40)

σ(un+1,k+q
h ) = λ(∇ · un+1,k+q

h )I + 2Gε(un+1,k+q
h ) (2.3.41)

The weak formulation of equations (2.3.37) - (2.3.41) reads:

For k = iq, i ∈ N, n = 1, 2, ..

• Step (a) For 1 ≤ m ≤ q, find pn+1,m+k
h ∈ Qh, and zn+1,m+k

h ∈ Zh such that,

∀θh ∈ Qh ,
1

∆t

(
(

1

M
+ cfϕ0 + L)

(
pn+1,m+k
h − pn+1,m−1+k

h

)
, θh

)
+

1

µf
(∇ · zn+1,m+k

h , θh) =
1

∆t

(
L
(
pn,m+k
h − pn,m−1+k

h

)
− α

q
∇ ·
(
un,k+q
h − un,kh

)
, θh

)
+
(
q̃h, θh

)
,

(2.3.42)

∀qh ∈ Zh ,
(
K−1zn+1,m+k

h , qh

)
=
(
pn+1,m+k
h ,∇ · qh

)
+
(
ρf,rg∇ η, qh

)
, (2.3.43)
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with the initial condition, independent of n, for the first discrete time step,

pn+1,0
h = p0. (2.3.44)

• Step (b) Given pn+1,k+q
h and, zn+1,k+q

h , find un+1,k+q
h ∈ V h such that,

∀vh ∈ Vh , 2G(ε(un+1,k+q
h ), ε(vh)) + λ(∇ · un+1,k+q

h ,∇ · vh)

− α(pn+1,k+q
h ,∇ · vh) = (f ,vh). (2.3.45)

In the above scheme, L is the adjustable coefficient that will be chosen appropriately later

(this choice completely determines the scheme) and q is a user-defined number of finer flow

steps. Below we analyze the above weak formulation and deduce the contracting character

of the iterative scheme. The proof relies on studying the difference of two successive iterates

and uses Banach’s fixed point theorem. The final step is to show that the converged

quantities satisfy the weak formulation (2.3.33) – (2.3.36).

2.3.3.3 Proof of Contraction of the 1st Scheme

Recalling that for a given time step t = tk, the difference between two coupling iterates is

given by:

δξn+1,k = ξn+1,k − ξn,k,

where ξ may stand for ph, zh, and uh. In addition, for notational convenience, we define,

β =
1

M
+ cfϕ0 + L. (2.3.46)

• Step 1: Flow equations

For n ≥ 1, by taking the difference of two successive iterates of (2.3.42), which

corresponds to one local flow iteration and its corresponding local flow iteration in

the previous flow and geomechanics iterative coupling iteration, testing with θh =

δpn+1,m+k
h − δpn+1,m−1+k

h , we obtain

β
∥∥∥δpn+1,m+k

h − δpn+1,m−1+k
h

∥∥∥2

+
∆t

µf
(∇ · δzn+1,m+k

h , δpn+1,m+k
h − δpn+1,m−1+k

h ) =(
L(δpn,m+k

h − δpn,m−1+k
h )− α

q

(
∇ · δun,k+q

h −∇ · δun,kh
)
, δpn+1,m+k

h − δpn+1,m−1+k
h

)
.

(2.3.47)
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Similarly, for the flux equation (2.3.43), by taking the difference of two successive

iterates, followed by taking the difference at two consecutive finer time steps, t = tm+k,

and t = tm−1+k, and testing with qh = δzn+1,m+k
h , we obtain(

K−1
(
δzn+1,m+k

h − δzn+1,m−1+k
h

)
, δzn+1,m+k

h

)
=
(
δpn+1,m+k

h − δpn+1,m−1+k
h ,∇ · δzn+1,m+k

h

)
. (2.3.48)

We combine (2.3.47) with (2.3.48), apply Young’s inequality and use ∇· δun,kh = 0 to

obtain

β
∥∥∥δpn+1,m+k

h − δpn+1,m−1+k
h

∥∥∥2

+
∆t

µf

(
K−1

(
δzn+1,m+k

h − δzn+1,m−1+k
h

)
, δzn+1,m+k

h

)
≤

1

2ε

∥∥∥L(δpn,m+k
h − δpn,m−1+k

h )− α

q
∇ · δun,k+q

h

∥∥∥2

+
ε

2

∥∥∥δpn+1,m+k
h − δpn+1,m−1+k

h

∥∥∥2

.

The choice ε = β absorbs the pressure term on the right hand side. Together with a

simple expansion of the flux product, we derive

β

2

∥∥∥δpn+1,m+k
h − δpn+1,m−1+k

h

∥∥∥2

+
∆t

2µf

{∥∥∥K−1/2δzn+1,m+k
h

∥∥∥2

−
∥∥∥K−1/2δzn+1,m−1+k

h

∥∥∥2

+
∥∥∥K−1/2(δzn+1,m+k

h − δzn+1,m−1+k
h

)∥∥∥2}
≤ 1

2β

∥∥∥L(δpn,m+k
h − δpn,m−1+k

h )− α

q
∇ · δun,k+q

h

∥∥∥2

. (2.3.49)

The right hand side constitutes an expression for a quantity to be contracted on.

Introducing a new parameter χ, we define the volumetric mean stress for (1 ≤ m ≤ q)

as

χδσn,m+k
v = L(δpn,m+k

h − δpn,m−1+k
h )− α

q
∇ · δun,k+q

h . (2.3.50)

The value of χ will be chosen such that contraction can be achieved on the norm

of σn,m+k
v , summed over q flow finer time steps, within one coarser mechanics time

step. Multiplying (2.3.49) by 2
β
, summing up for 1 ≤ m ≤ q, substituting the new

definition of the volumetric mean stress (2.3.50), and noting that δzn+1,k
h = 0, we
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obtain

q∑
m=1

∥∥∥δpn+1,m+k
h − δpn+1,m−1+k

h

∥∥∥2

+
∆t

βµf

∥∥∥K−1/2δzn+1,k+q
h

∥∥∥2

+
∆t

βµf

q∑
m=1

∥∥∥K−1/2(δzn+1,m+k
h − δzn+1,m−1+k

h

)∥∥∥2

≤ 1

β2

q∑
m=1

∥∥∥χδσn,m+k
v

∥∥∥2

.

(2.3.51)

• Step 2: Elasticity equation

For n ≥ 1, we take the difference of successive iterates of the mechanics equation

(2.3.45), multiply by a newly introduced parameter, c0, and test with vh = δun+1,k+q
h

to get

2Gc0‖ε(δun+1,k+q
h )‖2 + λc0‖∇ · δun+1,k+q

h ‖2 − αc0(δpn+1,k+q
h ,∇ · δun+1,k+q

h ) = 0.
(2.3.52)

For the iterative scheme to be contractive, a quantity similar to the right hand side of

(2.3.51), for the next iterative coupling iteration, n+ 1, has to be formed. To achieve

that, we introduce a term involving a summation over all flow finer time steps in

(2.3.52) by noticing that

q∑
m=1

(
δpn+1,m+k

h − δpn+1,m−1+k
h

)
= δpn+1,k+q

h . (2.3.53)

Substituting (2.3.53) into (2.3.52) leads to

2Gc0‖ε(δun+1,k+q
h )‖2 + λc0‖∇ · δun+1,k+q

h ‖2

− αc0(

q∑
m=1

(
δpn+1,m+k

h − δpn+1,m−1+k
h

)
,∇ · δun+1,k+q

h ) = 0. (2.3.54)

• Step 3: Combining flow and elasticity equations

By combining (2.3.54) with (2.3.51), and rearranging terms, we form a square term,

in expanded form, summed over flow finer time steps within one coarser mechanics
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time step,

2Gc0‖ε(δun+1,k+q
h )‖2 +

q∑
m=1

{∥∥∥δpn+1,m+k
h − δpn+1,m−1+k

h

∥∥∥2

+
λc0

q

∥∥∥∇ · δun+1,k+q
h

∥∥∥2

− αc0

(
δpn+1,m+k

h − δpn+1,m−1+k
h ,∇ · δun+1,k+q

h

)}
+

∆t

βµf

∥∥∥K−1/2δzn+1,k+q
h

∥∥∥2

+
∆t

βµf

q∑
m=1

∥∥∥K−1/2(δzn+1,m+k
h − δzn+1,m−1+k

h

)∥∥∥2

≤ χ2

β2

q∑
m=1

∥∥∥δσn,m+k
v

∥∥∥2

. (2.3.55)

It remains to choose the values of our newly introduced parameters, χ, L, and c0,

such that the coefficients of the expanded square contributes only positive terms to

the left hand side of (2.3.55). Therefore, we expand the right hand side of (2.3.55) as∥∥∥δσn,m+k
v

∥∥∥2

=
L2

χ2

∥∥∥δpn,m+k
h − δpn,m−1+k

h

∥∥∥2

− 2αL

qχ2

(
δpn,m+k

h − δpn,m−1+k
h ,∇ · δun,k+q

h

)
+

α2

χ2q2

∥∥∥∇ · δun,k+q
h

∥∥∥2

. (2.3.56)

Now, we match the coefficients of the expansion in (2.3.56) to the coefficients of the

expanded square on the right hand side of (2.3.55). For the left hand side of (2.3.55)

to remain positive, the following inequalities should be satisfied

1 ≥ L2

χ2
,

2αL

qχ2
= αc0,

λc0

q
≥ α2

χ2q2
.

The second inequality gives rise to c0 = 2L
qχ2 . The third inequality gives L ≥ α2

2λ
. Since

the contraction factor is monotone with respect to L, its minimum is achieved when

L = α2

2λ
. The first inequality gives χ2 ≥ L2. The minimum value of the contraction

factor is achieved when χ2 = L2. Therefore, with

L =
α2

2λ
, χ2 = L2, c0 =

2L

qχ2
,

we group the terms of the expanded square on the left hand side of (2.3.55) to form

the quantity of contraction for the next iterative coupling iteration, n+ 1, as

2Gc0‖ε(δun+1,k+q
h )‖2 +

q∑
m=1

∥∥∥δσn+1,m+k
v

∥∥∥2

+
∆t

βµf

∥∥∥K−1/2δzn+1,k+q
h

∥∥∥2

+
∆t

βµf

q∑
m=1

∥∥∥K−1/2(δzn+1,m+k
h − δzn+1,m−1+k

h

)∥∥∥2

≤
( L

1
M

+ cfϕ0 + L

)2
q∑

m=1

∥∥∥δσn,m+k
v

∥∥∥2

.

(2.3.57)
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Clearly, the contraction coefficient is strictly less than one:( L
1
M

+ cfϕ0 + L

)2

=
( Mα2

2λ+ 2Mλcfϕ0 + α2M

)2

< 1,

and independent of q. This is not the case for the multirate undrained split coupling

scheme, which we will consider later in this chapter. In the undrained split scheme,

q appears in the denominator of the contraction coefficient.

2.3.3.4 Convergence to Discrete Multirate Formulation (1st Scheme)

From the derivation above, we establish convergence of the sequences generated by the

multirate fixed stress split algorithm and show that the converged quantities satisfy

the weak formulation (2.3.33) – (2.3.36). The proof uses the mathematical induction

for the finer flow equations combined with the contraction estimates obtained above.

Lemma 2.3.2. For every coarser mechanics time step, t = tk, there exist a limit

function ukh such that

un,kh → ukh strongly in H1(Ω)
d
.

Proof. The contraction result in (2.3.57) implies that for a coarser time step t = tk,

‖ε(δun+1,k
h )‖ converges geometrically to zero. This implies that ε(un+1,k

h ) is a Cauchy

sequence converging geometrically to a unique limit in L2(Ω). It follows immediately

that un+1,k
h is a Cauchy sequence converging geometrically to a unique limit inH1(Ω)

d
,

being a Hilbert space.

Lemma 2.3.3. For every two consecutive coarser mechanics time steps, t = tk, and

t = tk+q, and for every 1 ≤ m ≤ q, there exist limit functions pm+k
h , zm+k

h such that

pn,m+k
h → pm+k

h in L2(Ω), zn,m+k
h → zm+k

h in H(div,Ω)d,

with strong convergence in the norms of the above spaces.

Proof. The contraction result in (2.3.57) implies that the quantities∑q
m=1

∥∥∥K−1/2(δzn+1,m+k
h −δzn+1,m−1+k

h )
∥∥∥2

, and
∑q

m=1

∥∥∥δσn+1,m+k
v

∥∥∥2

converge geomet-

rically to zero. It follows that for 1 ≤ m ≤ q,
∥∥∥K−1/2(δzn+1,m+k

h − δzn+1,m−1+k
h )

∥∥∥2

,
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and
∥∥∥δσn+1,m+k

v

∥∥∥2

converge geometrically to zero. Moreover, by (2.3.38), and Poincaré

inequality,
∥∥∥K1/2∇(δpn+1,m+k

h − δpn+1,m−1+k
h )

∥∥∥2

and
∥∥∥δpn+1,m+k

h − δpn+1,m−1+k
h

∥∥∥2

con-

verge geometrically to zero, respectively. This implies that for every 1 ≤ m ≤ q, the

finer time step differences (pn,m+k
h −pn,m−1+k

h ), (zn,m+k
h −zn,m−1+k

h ), and the volumetric

mean stress defined by σn,m+k
v are Cauchy sequences in L2(Ω).

We will show strong convergence of the pressure sequence by induction. The proof

of strong convergence of the flux sequence follows in the same way. Given an initial

pressure value for t = t0: pn,0h = p0, from the above discussion, (pn,1h − p0) is a Cauchy

sequence in L2(Ω), and, in turn, pn,1h is a Cauchy sequence in the complete space

L2(Ω), and thus has a unique limit. This completes the base case for induction. For

the inductive hypothesis, we assume that for any coarser mechanics time step t = tk,

and for any 1 ≤ m ≤ q, pn,k+m
h is a Cauchy sequence converging to a unique limit

in L2(Ω): pn,k+m
h → pk+m

h in L2(Ω) . We will show that pn,k+m+1
h is also a Cauchy

sequence converging to a unique limit in L2(Ω). However, this follows immediately,

as (pn,k+m+1
h − pn,k+m

h ) is a Cauchy sequences in L2(Ω), converging to a unique limit

in L2(Ω). This completes the inductive step. Therefore, we obtain that for all coarser

mechanics time steps t = tk, and for 1 ≤ m ≤ q, pn,m+k
h , zn,m+k

h are Cauchy sequences

converging geometrically to unique limits in L2(Ω).

For the divergence of the flux, we note that (2.3.42) amounts to the following equality

a.e. in L2(Ω):

∇ · δzn+1,m+k
h = −βµf

∆t
(δpn+1,m+k

h − δpn+1,m−1+k
h )− µfχ

∆t
δσn,m+k

v .

The convergence of ∇·zn,m+k
h in L2(Ω) follows from the convergence of the difference

(pn,m+k
h − pn,m+k

h ) and σn,m+k
v in L2(Ω), established above. Thus, we have both ∇ ·

zn,m+k
h and zn,m+k

h converging geometrically to unique limits in L2(Ω), and hence

zn+1,k
h converges to a unique limit in H(div,Ω)d.

It remains to pass to the limit in (2.3.33)–(2.3.35), which is straightforward as the

equations are linear and the operators involved are continuous in the spaces invoked

in the statements of Lemmas 2.3.2 and 2.3.3. In addition, the convergences are strong.
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Thus, we retrieve the fully discrete formulation.

The above discussions are summarized in the following main result:

Theorem 2.3.3. [Multirate (1)] For L = α2

2λ
, χ2 = L2, and c0 = 2L

qχ2 , the multirate

iterative scheme is a contraction given by

2Gc0‖ε(δun+1,k+q
h )‖2 +

∑q
m=1

∥∥∥δσn+1,m+k
v

∥∥∥2

+ ∆t
βµf

∥∥∥K−1/2δzn+1,k+q
h

∥∥∥2

+ ∆t
βµf

∑q
m=1

∥∥∥K−1/2(δzn+1,m+k
h − δzn+1,m−1+k

h

)∥∥∥2

≤
(

Mα2

2λ+2Mλcfϕ0+α2M

)2∑q
m=1

∥∥∥δσn,m+k
v

∥∥∥2

.

Furthermore, the sequences defined by this scheme converge to the unique solution of

the weak formulation (2.3.33)–(2.3.35).

Remark 2.3.1. The scheme presented in algorithm 2 can be modified such that the coarse

mechanics time step is kept fixed as ∆t, and the fine flow time step is considered as ∆t
q

,

for q ≥ 1. The proof of contraction follows in the same way except that the quantity of

contraction is redefined as:

χδσ̃n,m+k
v = qL(δpn,m+k

h − δpn,m−1+k
h )− α∇ · δun,k+q

h

where χ is a newly introduced parameter. In this case, we have the following contraction

result:

Theorem 2.3.4. For L = α2

2λ
, χ2 = q2L2, and c0 = 2Lq

χ2 , the multirate iterative scheme is

a contraction given by

2Gc0‖ε(δun+1,k+q
h )‖2 +

∑q
m=1

∥∥∥δσ̃n+1,m+k
v

∥∥∥2

+ ∆t
qβµf

∥∥∥K−1/2δzn+1,k+q
h

∥∥∥2

+ ∆t
qβµf

∑q
m=1

∥∥∥K−1/2(δzn+1,m+k
h − δzn+1,m−1+k

h

)∥∥∥2

≤
(

Mα2

2λ+2Mλcfϕ0+α2M

)2∑q
m=1

∥∥∥δσ̃n,m+k
v

∥∥∥2

.

Remark 2.3.2. We note that the contraction coefficient obtained in Theorem 2.3.4 exactly

matches the contraction coefficient of the single rate optimized fixed stress split iterative

method in the work of Mikelić and Wheeler [64]. In fact, in the theorem above, for q = 1,
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we get the same optimized single rate contraction result as the one obtained in [64] but for

a fully discrete formulation (mixed formulation for flow, and CG for mechanics). Also,

for the contraction results, we have assumed the compressibility term β to be positive. In

case of incompressibility limits (β approaching zero), the contraction coefficient tends to 1.

However, as the next remark shows we can still obtain contraction as long as the permeability

remains positive. When λ approaches infinity, there is no change in the porosity in the flow

equation and the contraction coefficient tends to zero.

Remark 2.3.3. We can sharpen the contraction coefficient obtained in 2.3.4 as follows.

By triangle’s inequality, the quantity of contraction can be written as∥∥δσn+1,m+k
v

∥∥ ≤ α

qχ
‖∇ · δun+1,k+q

h ‖+L
χ
‖δpn+1,m+k

h − δpn+1,m−1+k
h ‖.

The volumetric strain term can be bounded by Korn’s inequality. In addition, using Poincare

inequality, the pressure term can be estimated by the flux. This leads to

q∑
m=1

∥∥δσn+1,m+k
v

∥∥2 ≤ C(‖ε(δun+1,k+q
h )‖2 +

q∑
m=1

∥∥∥K−1/2
(
δzn+1,m+k

h − δzn+1,m−1+k
h

)∥∥∥2

)

≤ C

(
‖ε(δun+1,k+q

h )‖2 +

q∑
m=1

∥∥∥K−1/2
(
δzn+1,m+k

h − δzn+1,m−1+k
h

)∥∥∥2

+
∥∥∥K−1/2δzn+1,k+q

h

∥∥∥2
)
.

(2.3.58)

for a constant C > 0. Now, we define In+1,k+q
q as:

In+1,k+q
q = 2Gc0‖ε(δun+1,k+q

h )‖2 +
∆t

βµf

q∑
m=1

∥∥∥K−1/2(δzn+1,m+k
h − δzn+1,m−1+k

h

)∥∥∥2

+
∆t

βµf

∥∥∥K−1/2δzn+1,k+q
h

∥∥∥2

.

Inequality (2.3.58) can be written as, for a generic constant C > 0:

q∑
m=1

‖δσn+1,m+k
v ‖2≤ CIn+1,k+q

q . (2.3.59)

The improved contraction result, based on theorem 2.3.4, can be written as:( 1

C
+ 1
) q∑
m=1

∥∥δσn+1,m+k
v

∥∥2 ≤
( Mα2

2λ+ 2Mλcfϕ0 + α2M

)2
q∑

m=1

∥∥δσn,m+k
v

∥∥2
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which lead to the improved contraction constant,

q∑
m=1

∥∥δσn+1,m+k
v

∥∥2 ≤
( C

1 + C

)( Mα2

2λ+ 2Mλcfϕ0 + α2M

)2
q∑

m=1

∥∥δσn+1,m+k
v

∥∥2
. (2.3.60)

It is difficult to estimate C in practice. However, we expect its value to increase with larger

Lamé coefficients (for a fixed value of the Poisson’s ratio). The derivation above implies

that the contraction coefficient obtained earlier is multiplied by a factor strictly less than

one: C
C+1

< 1. We can conclude that the contraction estimate obtained in theorem 2.3.4 is

sharper for C � 1 (as the damping factor C
C+1

< 1 approaches one in this case), and looser

for smaller values of C. These computations highlight the impact of the extra positive terms

on the left hand side of the contraction result obtained in Theorem 2.3.4.

Remark 2.3.4. We can theoretically derive the value of the constant C given in the previous

remark. For simplicity, consider the single rate case q = 1. For L = α2

2λ
, χ = L, and by

Poincare’s and Korn’s inequalities, we write:∥∥δσn+1,k
v

∥∥ ≤ α

L
‖∇ · δun+1,k

h ‖L2(Ω)+‖δpn+1,k
h ‖L2(Ω)

≤ 2λ

α
|δun+1,k

h |H1(Ω)+‖δpn+1,k
h ‖L2(Ω)

≤ 2λCκ
α
‖ε(δun+1,k

h )‖L2(Ω) + PΩ‖∇δpn+1,k
h ‖L2(Ω)

≤ 2λCκ
α
‖ε(δun+1,k

h )‖L2(Ω) + PΩ‖K−1δzn+1,k
h ‖L2(Ω)

Thus, we have:∥∥δσn+1,k
v

∥∥2 ≤ 4λ2Cκ
2

α2
‖ε(δun+1,k

h )‖2
L2(Ω) + P2

Ω‖K−1δzn+1,k
h ‖2

L2(Ω)

+
4λCκPΩ

α
‖ε(δun+1,k

h )‖L2(Ω)‖K
−1δzn+1,k

h ‖L2(Ω)

≤
(4λ2Cκ

2

α2
+

2λCκPΩε

α

)
‖ε(δun+1,k

h )‖2
L2(Ω) +

(
P2

Ω +
2λCκPΩ

αε

)
‖K−1δzn+1,k

h ‖2
L2(Ω)

(2.3.61)

For ε > 0. Assuming that the permeability tensor K is uniformly bounded and uniformly

elliptic. There exits positive constants λmin, and λmax, such that

λmin‖ξ‖2≤ ξtK(x)ξ ≤ λmax‖ξ‖2. (2.3.62)
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We write:∥∥δσn+1,k
v

∥∥2 ≤
(4λ2Cκ

2

α2
+

2λCκPΩε

α

)
‖ε(δun+1,k

h )‖2
L2(Ω) +

1

λ2
min

(
P2

Ω +
2λCκPΩ

αε

)
‖δzn+1,k

h ‖2
L2(Ω)

(2.3.63)

Therefore, we have:∥∥δσn+1,k
v

∥∥2 ≤

Max

((4λ2Cκ
2

α2
+

2λCκPΩε

α

)
,

1

λ2
min

(
P2

Ω +
2λCκPΩ

αε

))(
‖ε(δun+1,k

h )‖2
L2(Ω) + ‖δzn+1,k

h ‖2
L2(Ω)

)
(2.3.64)

For the single rate case (recall: c0 = 4λ
α2 ), In+1,k

q takes the form:

In+1,k
q = 2Gc0‖ε(δun+1,k

h )‖2
L2(Ω) +

2∆t

βµf

∥∥∥K−1/2δzn+1,k
h

∥∥∥2

L2(Ω)

≥ 8Gλ

α2
‖ε(δun+1,k

h )‖2
L2(Ω) +

1

λmax

2∆t

βµf

∥∥∥δzn+1,k
h

∥∥∥2

L2(Ω)

≥Min
(8Gλ

α2
,

1

λmax

2∆t

βµf

)(
‖ε(δun+1,k

h )‖2
L2(Ω) +

∥∥∥δzn+1,k
h

∥∥∥2

L2(Ω)

)
(2.3.65)

Combining (2.3.64) and (2.3.65), we have:

∥∥δσn+1,k
v

∥∥2 ≤

(Max

((
4λ2Cκ2

α2 + 2λCκPΩε
α

)
, 1
λ2
min

(
P2

Ω + 2λCκPΩ

αε

))
Min

(
8Gλ
α2 ,

1
λmax

2∆t
βµf

) )
In+1,k
q

with the constant C given by:

C =

Max

((
4λ2Cκ2

α2 + 2λCκPΩε
α

)
, 1
λ2
min

(
P2

Ω + 2λCκPΩ

αε

))
Min

(
8Gλ
α2 ,

1
λmax

2∆t
βµf

) (2.3.66)

Clearly, C scales monotonically with the values of Lame’s parameters (or more specifically,

with the ratio of the Lame parameter λ to the shear modulus G). Therefore, for larger Lame

parameters, the value of the constant C increases, and in turn, the damping factor C
1+C

start approaching the value of one. This results in reducing the gap between the theoretical

value of the contraction coefficient
(

Mα2

2λ+2Mλcfϕ0+α2M

)2

, and the ratio of
‖δσn+1,k

v ‖2

‖δσn,kv ‖2 . This is

validated numerically for the Frio field model in figure 2.10.
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2.3.3.5 Modified Multirate Scheme

We introduce the modified multirate iterative coupling algorithm which results in Banach

contraction on the volumetric mean total stress as defined by Mikelić and Wheeler [64] for

the single rate fixed stress split iterative method. The algorithm involves a slight modifi-

cation in the iterative coupling algorithm, in which we employ “successive corrections” in

the flow problem (the corrections cancel out in the limit). We split the iterative coupling

iteration into an even and odd iterations: in odd coupling iterations, we solve exactly the

same mass balance equation solved in the single rate case, in contrast, for even coupling

iterations, we add flux correction terms to the left and right hand sides of the mass balance

equation. The idea is to correct for the flux, as we take finer time steps within one coarser

mechanics time step, so that the summation of the finer flow equations over one coarser

mechanics time step retrieves the weak formation of the single rate case, hence, deduce a

contraction result similar to the one obtained by Mikelić and Wheeler [64] but for a fully

discrete setting.

The modified multirate scheme gives a mechanism by which the multirate iterative coupling

scheme is reduced to a corresponding single rate scheme, with a coarse time step for both

flow and mechanics. Flux corrections terms correct the error introduced by not solving

mechanics at every flow fine time step. This reduces the scheme into a single rate scheme,

and as a result, all established theoretical results for the single rate case will be applicable

here as well. Another aspect is the fact that in the modified multirate scheme, the quantity

of contraction is independent of q (the number of flow fine time steps within one coarse

mechanics time step). This is due to the fact that the modified scheme contracts on the

same volumetric mean total stress as defined in the single rate case [64]. This is not the

case in the original multirate scheme, as volumetric strains are divided by q in the quantity

of contraction (2.3.50). This means that as the value of q increases, volumetric strain

contributions to the quantity of contraction gets reduced. This restriction is completely

eliminated in the modified multirate iterative coupling scheme.
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Algorithm 3: Modified Multirate Iterative Coupling Algorithm

1 for k = 0, q, 2q, 3q, .. do /* mechanics time step iteration index */

2 for n = 1, 2, .. do /* coupling iteration index */

3 First Step: Flow equations

4 Given un,k+qh (assuming an initial value is given for the first iteration: u0,k+q
h )

5 For the first local flow timestep iteration, solve for pn+1,1+k
h and zn+1,1+k

h satisfying:

(
1

M
+ cfϕ0 +

α2

λ
)
(pn+1,1+k

h − pn+1,k
h

∆t

)
+

1

µf
∇ · zn+1,1+k

h =

α2

λ

(pn,1+k
h − pn,kh

∆t

)
− α∇ ·

(un,k+q
h − un,kh

q∆t

)
+ q̃h (2.3.67)

zn+1,1+k
h = −K(∇ pn+1,1+k

h − ρf,rg∇ η) (2.3.68)

if mod(n,2) = 1 then /* coupling iteration index (n) is odd */

6 for m = 2, .., q do /* flow finer time steps iteration index */

7 Solve for pn+1,m+k
h and zn+1,m+k

h satisfying:

(
1

M
+ cfϕ0 +

α2

λ
)
(pn+1,m+k

h − pn+1,m−1+k
h

∆t

)
+

1

µf
∇ · zn+1,m+k

h =

α2

λ

(pn,m+k
h − pn,m−1+k

h

∆t

)
− α∇ ·

(un,k+q
h − un,kh

q∆t

)
+ q̃h (2.3.69)

zn+1,m+k
h = −K(∇ pn+1,m+k

h − ρf,rg∇ η) (2.3.70)

8 else /* coupling iteration index (n) is even */

9 for m = 2, .., q do /* flow finer time steps iteration index */

10 Solve for pn+1,m+k
h and zn+1,m+k

h satisfying:

(
1

M
+ cfϕ0 +

α2

λ
)
(pn+1,m+k

h − pn+1,m−1+k
h

∆t

)
+

1

µf
∇ · zn+1,m+k

h

−
1

µf
∇ · zn+1,m−1+k

h =
α2

λ

(pn,m+k
h − pn,m−1+k

h

∆t

)
(2.3.71)

− α∇ ·
(un,k+q

h − un,kh
q∆t

)
+ q̃h −

1

µf
∇ · zn,m−1+k

h

zn+1,m+k
h = −K(∇ pn+1,m+k

h − ρf,rg∇ η) (2.3.72)

11 Second Step: Mechanics equations

12 Given pn+1,k+q
h and, zn+1,k+q

h , solve for un+1,k+q
h satisfying:

− divσpor(un+1,k+q
h , pn+1,k+q

h ) = f (2.3.73)
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Remark 2.3.5. As indicated earlier, in contrast to the original multirate iterative coupling

algorithm (Algorithm 2), in (Algorithm 3), we split the iterative coupling iterations into

even and odd iterations. For the first finer flow time step, we solve exactly the same set

of equations for both cases, as shown in line 5. For subsequent finer flow iterations, in the

case of an even coupling iteration, we subtract flux correction terms, 1
µf
∇·zn+1,m−1+k

h , and

1
µf
∇·zn,m−1+k

h , from the left and right hand sides of the mass balance equation respectively,

as shown in line 10. Upon convergence, zn+1,m−1+k
h = zn,m−1+k

h and both terms cancel

each other. In the case of an odd coupling iteration, we solve the same set of equations

as in the single rate case, as shown in Line 7. With the newly introduced flux correction

terms, a summation over finer time steps result in reducing the weak formulation of the

multirate scheme to that of the single rate scheme. This allows us to obtain exactly the

same contraction coefficient as the one obtained in the single rate case, Theorem 2.3.2.

In addition, the modified scheme contracts on the volumetric mean total stress as defined

in [64] for the single rate scheme.

2.3.3.6 Proof of Contraction of the 2nd Scheme

• Step (1): Reduction to single rate weak formulation

Extending the work of [64] to the fully discrete formulation, we define the volumetric

mean stress, constituting the quantity to be contracted on, for n ≥ 1, as:

σn,m+k
v = σn,kv + λ∇ · un,kh − α(pn,m+k

h − pn,kh ) for 1 ≤ m ≤ q − 1, (2.3.74)

σn,k+q
v = σn,kv + λ∇ · un,k+q

h − α(pn,k+q
h − pn,kh ) for m = q. (2.3.75)

In terms of the difference between two coupling iterates, we have

δσn+1,m+k
v = −αδpn+1,m+k

h for 1 ≤ m ≤ q − 1, (2.3.76)

δσn+1,k+q
v = λ∇ · δun+1,k+q

h − αδpn+1,k+q
h for m = q. (2.3.77)

In order to obtain the single rate weak formulation, we sum up local flow iterations

across one coarser mechanics time step. As we solve different mass balance equations

in even versus odd coupling iterations, we need to consider each case seperately:
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– Coupling iteration index, n, is odd:

(
1

M
+ cfϕ0 +

α2

λ
)

1

∆t

q∑
m=1

(
pn+1,m+k
h − pn+1,m−1+k

h

)
+

1

µf
∇ ·

q∑
m=1

zn+1,m+k
h =

α2

λ∆t

q∑
m=1

(
pn,m+k
h − pn,m−1+k

h

)
− α

q∆t
∇ ·

q∑
m=1

(
un,k+q
h − un,kh

)
+ qq̃h

(2.3.78)
q∑

m=1

zn+1,m+k
h = −K∇

( q∑
m=1

pn+1,m+k
h

)
+

1

µf
Kqρf,rg∇ η (2.3.79)

– Coupling iteration index, n, is even:

Equation (2.3.79) remains unchanged. For (2.3.71), we have:

(
1

M
+ cfϕ0 +

α2

λ
)

1

∆t

q∑
m=1

(
pn+1,m+k
h − pn+1,m−1+k

h

)
+

1

µf
∇ ·

q∑
m=1

zn+1,m+k
h

− 1

µf
∇ ·

q−1∑
w=1

zn+1,w+k
h =

α2

λ∆t

q∑
m=1

(
pn,m+k
h − pn,m−1+k

h

)
− α

q∆t
∇ ·

q∑
m=1

(
un,k+q
h − un,kh

)
+ qq̃h −

1

µf
∇ ·

q−1∑
w=1

zn,w+k
h (2.3.80)

Assuming, without loss of generality, that “n+ 1” represents an even coupling itera-

tion, and “n” represents an odd coupling iteration, subtracting (2.3.78) from (2.3.80)

to form the difference between two consecutive coupling iterates, and taking advan-

tage of (2.3.53), we derive

(
1

M
+ cfϕ0 +

α2

λ
)

1

∆t
δpn+1,k+q

h +
1

µf
∇ · δzn+1,q+k

h = − α

λ∆t
δσn,k+q

v . (2.3.81)

where δσn,k+q
v = λ∇ · δun,k+q

h − αδpn,k+q
h by (2.3.77). Equation (2.3.81) involves only

coarser time step variables. Considering the modified multriate iterative coupling

scheme as a single rate scheme, in which both the flow and mechanics problems

share the coarser time step, the weak formulation in terms of the differences between
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coupling iterates reads

∀θh ∈ Qh ,
( 1

∆t
(

1

M
+ cfϕ0 +

α2

λ
)δpn+1,k+q

h , θh

)
+

1

µf
(∇ · δzn+1,k+q

h , θh)

=
(
− α

λ∆t
δσn,k+q

v , θh

)
, (2.3.82)

∀qh ∈ Zh , (K−1δzn+1,k+q
h , qh) = (δpn+1,k+q

h ,∇ · qh), (2.3.83)

∀vh ∈ Vh , 2G(ε(δun+1,k+q
h ), ε(vh)) + λ(∇ · δun+1,k+q

h ,∇ · vh)

− α(δpn+1,k+q
h ,∇ · vh) = 0. (2.3.84)

• Step (2): Flow equations

Recall β = 1
Mα2 +

cf
α2ϕ0 + 1

λ
; testing (2.3.82) with θh = δpn+1,k+q

h and applying Young’s

inequality, we obtain

β

∆t

∥∥∥αδpn+1,k+q
h

∥∥∥2

+
1

µf

(
∇ · δzn+1,k+q

h ,δpn+1,k+q
h

)
=

1

∆t

(
− αεδpn+1,k+q

h ,
1

ελ
σn,k+q
v

)
≤ 1

∆t

(ε2

2

∥∥∥αδpn+1,k+q
h

∥∥∥2

+
1

2ε2λ2

∥∥∥δσn,k+q
v

∥∥∥2)
.

The choice ε2 = β absorbs the pressure term on the right hand side by its correspond-

ing term on the left hand side, leading to

β
∥∥∥αδpn+1,k+q

h

∥∥∥2

+
2∆t

µf
(∇ · δzn+1,k+q

h , δpn+1,k+q
h ) ≤ 1

βλ2

∥∥∥δσn,k+q
v

∥∥∥2

. (2.3.85)

Testing (2.3.83) with qh = δzn+1,k
h , we obtain

(K−1δzn+1,k
h , δzn+1,k

h ) = (δpn+1,k
h ,∇ · δzn+1,k

h ). (2.3.86)

Combining (2.3.86) with (2.3.85) leads to a sum of two positive squared norms on

the right hand side of (2.3.85), in which the right hand side constitutes the quantity

to be contracted on,

β
∥∥∥αδpn+1,k+q

h

∥∥∥2

+
2∆t

µf

∥∥∥K−1/2δzn+1,k+q
h

∥∥∥2

≤ 1

βλ2

∥∥∥δσn,k+q
v

∥∥∥2

. (2.3.87)

• Step (3): Elasticity equation

Testing (2.3.84) with vh = δun+1,k
h , we obtain

2G‖ε(δun+1,k+q
h )‖2 + λ‖∇ · δun+1,k+q

h ‖2 − α(δpn+1,k+q
h ,∇ · δun+1,k+q

h ) = 0. (2.3.88)
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Combining (2.3.87) with (2.3.88), we infer{∥∥∥αδpn+1,k+q
h

∥∥∥2

− 2(αδpn+1,k+q
h , λ∇ · δun+1,k+q

h ) + λ2‖∇ · δun+1,k+q
h ‖2

}
+ 4Gλ‖ε(δun+1,k+q

h )‖2 +
2∆tλMα2

µf (Mα2 + λ(1 +Mcfϕ0))

∥∥∥K−1/2δzn+1,k+q
h

∥∥∥2

+ λ2‖∇ · δun+1,k+q
h ‖2 ≤

( Mα2

λ+Mλcfϕ0 +Mα2

)2∥∥∥δσn,k+q
v

∥∥∥2

. (2.3.89)

The first three terms form a square of the volumetric mean stress defined in (2.3.77),

establishing the quantity of contraction for the next iterative coupling iteration, n+1,

on the right hand side of (2.3.89), as∥∥∥δσn+1,k+q
v

∥∥∥2

+
2∆tλMα2

µf (Mα2 + λ(1 +Mcfϕ0))

∥∥∥K−1/2δzn+1,k+q
h

∥∥∥2

+ 4Gλ‖ε(δun+1,k+q
h )‖2

+ λ2‖∇ · δun+1,k+q
h ‖2 ≤

( Mα2

λ+Mλcfϕ0 +Mα2

)2∥∥∥δσn,k+q
v

∥∥∥2

, (2.3.90)

with a contraction coefficient strictly less than one:
(

Mα2

λ+Mλcfϕ0+Mα2

)2

< 1.

2.3.3.7 Convergence to The Discrete Form (2nd Scheme)

In the next lemma, we establish convergence of the sequences generated by the modified

multirate iterative coupling scheme for coarser mechanics time steps.

Lemma 2.3.4. For k = 0, q, 2q, .., there exist limit functions pkh,u
k
h, z

k
h such that

pn,kh → pkh in L2(Ω), un,kh → ukh in H1(Ω)
d
, zn,kh → zkh in H(div,Ω)d,

with strong convergence in the norms of the above spaces.

Proof. The contraction result in (2.3.90) implies that for coarse mechanics time steps,

‖δσn+1,k
v ‖Ω, ‖∇ · δun+1,k

h ‖Ω, and ‖K−1/2δzn+1,k
h ‖Ω converge geometrically to zero. This im-

plies that σn+1,k
v , ∇ · un+1,k

h , and zn+1,k
h are Cauchy sequences converging to unique limits

in L2(Ω). By (2.3.77), we conclude that pn,kh is a Cauchy sequence converging geometrically

to a unique limit in L2(Ω), being a Hilbert space.
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For the displacements, (2.3.90) implies that ε(δun+1,k
h ) converges geometrically to 0 in

L2(Ω). It follows immediately that un+1,k
h converges geometrically to a unique limit in the

Hilbert space H1(Ω)
d
.

For the divergence of the flux, we note that (2.3.82) amounts to the following equality a.e.

in L2(Ω):

∇ · δzn+1,k
h =

µf
∆t

(
1

M
+ cfϕ0 +

α2

λ
)δpn+1,k

h − µfα

λ∆t
δσn,kv .

The convergence of ∇ · zn+1,k
h in L2(Ω) follows from the convergences of pn+1,k

h and σn,kv in

L2(Ω). Therefore, we have both ∇ · zn+1,k
h and zn+1,k

h converging geometrically in L2(Ω),

hence zn+1,k
h converges in H(div,Ω)d. The existence of the limiting function in H(div,Ω)d

follows from the completeness of the space.

It remains to pass to the limit in the weak formulation of (2.3.67)–(2.3.73). This is straight-

forward in view of the linearity of equations and strong convergences obtained.

Theorem 2.3.5. For coarser mechanics time steps, k = 0, q, 2q, .., the modified multirate

iterative scheme is a contraction given by∥∥∥δσn+1,k
v

∥∥∥2

Ω
+ 2∆tλMα2

µf (Mα2+λ(1+Mcfϕ0))

∥∥∥K−1/2δzn+1,k
h

∥∥∥2

Ω
+ 4Gλ‖ε(δun+1,k

h )‖2
Ω + λ2‖∇ · δun+1,k

h ‖2
Ω

≤
(

Mα2

λ+Mλcfϕ0+Mα2

)2∥∥∥δσn,kv ∥∥∥2

Ω
.

Furthermore, the sequences defined by this scheme converge to the unique solution of the

weak formulation of (2.3.67)–(2.3.73).

Remark 2.3.6. All our obtained results remain valid when the multipoint flux mixed finite

element method (MFMFE) [88,90] is used for flow discretization. For clarification, consider

the modified multirate scheme. Using the MFMFE method for flow discretization, (2.3.90)

translate to∥∥∥δσn+1,k+q
v

∥∥∥2

+
2∆tλMα2

µf (Mα2 + λ(1 +Mcfϕ0))

(
K−1δzn+1,k+q

h , δzn+1,k+q
h

)
Q

+ 4Gλ‖ε(δun+1,k+q
h )‖2

+ λ2‖∇ · δun+1,k+q
h ‖2 ≤

( Mα2

λ+Mλcfϕ0 +Mα2

)2∥∥∥δσn,k+q
v

∥∥∥2

. (2.3.91)

where (K−1., .)Q is the quadrature rule defined in [90] for the MFMFE corresponding spaces.

It was shown by Wheeler and Yotov in [90], and then extended to distorted quadrilaterals
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and hexahedra in [88], that for any zh ∈ Zh, (K
−1zh, zh) ≥ C‖zh‖2, for a constant C > 0.

This immediately leads to a similar contraction result. The same argument holds for

previously derived results in the first multirate scheme described earlier. Similarly, our

results can be extended to other multi point flux approximation control volume method,

MFPA, when used for flow discretization [54,55]. The coercivity of the bilinear form of the

fluxes has been established in [55] for quadrilaterls, and in [54] for triangular elements using

the broken Raviart-Thomas, and the lowest order Brezzi-Doulas-Marini spaces respectively.

2.4 Undrained Split Iterative Coupling

In this section, we consider one of the iterative schemes often used in practice: undrained

splitting and propose a multirate iterative scheme, as illustrated by Figure 2.2b. We recall

that this scheme considers a finer time step for the flow model and a coarser time step for

mechanics (q flow steps for each mechanics step) and then performs an iteration between

the mechanics and finer flow steps. In contrast, in the single rate scheme, as illustrated

by Figure 2.2a, the flow and mechanics problems share the exact same time step, and the

coupling iteration continues until convergence. Both schemes are iterative in the sense

that for each coarse mechanics time step, we solve for q flow finer time steps followed by

a mechanics step and we further repeat the process. Details about convergence criteria

can be found in [63] (also discussed in details in the numerical results section). The con-

verged solutions solve the coupled time-discrete system consisting of q flow solves and one

mechanics solve. The flow finer solve uses the mechanics at the coarse step and hence, the

coupled system is fully implicit. Since the cost of mechanics is often much more than the

cost of flow, fewer mechanics solves lead to considerable computational savings. This work

is motivated by the recent work of Mikelić and Wheeler [63,64] where they have considered

different iterative schemes for flow and mechanics couplings and established contractive

results in suitable norms, (see also [53] for studying the von Neumann stability of iterative

algorithms, [80] for multirate schemes for Darcy-Stokes, and [72,73] for the relationship of

these iterative methods to the linearization procedures).

We start by analyzing the fully discrete single-rate undrained-split coupling algorithm, in
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tflow(tf ), tmech(tm) = 0
(initial time =0)

k=0

n=0 (iterative
coupling index)

Mechanics (Biot Model):
tmech = tmech + ∆t
Compute displace-

ment, un+1,k+1

Update pore volume

Fluid Flow: tflow = tflow + ∆t
Compute pore pressure:

pn+1,k+1

Converged? k = k + 1
tf = tf − ∆t
tm = tm − ∆t
n = n + 1

No Yes

(a) Single Rate

tflow(tf ), tmech(tm) = 0
(initial time = 0)

k = 0

n = 0 (iterative
coupling index)

Mechanics (Biot Model):
tmech = tmech + q∆t
Compute displace-

ment, un+1,k+q

Update pore volume

m = 1 (flow iteration index)

Fluid Flow: tflow =
tflow + ∆t Compute

pore pressure, pn+1,k+m

m = (Max
flow

iterations:
q)?

m = m + 1

Converged? k = k + q
tf = tf − q∆t
tm = tm − q∆t
n = n + 1

No

Yes

No Yes

(b) Multirate

Figure 2.2: Flowchart for the undrained split single rate and multirate iterative coupling
algorithms. In the single rate scheme, both the flow and mechanics problems share the
exact same time step ∆t. In the multirate scheme, the flow finer time step is ∆t, and the
mechanics coarser time step is q∆t.

which both flow and mechanics share the exact same time step. This can be viewed as an

extension of the work of Mikelić & Wheeler [64], in which conformal Galerkin is used for flow

discretization (versus mixed form for the flow in this work), and the contraction coefficient

obtained here is optimized. In addition, understanding the strategy of the single-rate proof
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serves as a good introduction before tackling the more complicated multirate case.

2.4.1 Single Rate Formulation and Analysis

2.4.1.1 Fully Discrete Scheme for Single Rate

Using the mixed finite element method in space and the backward Euler finite difference

method in time, the weak formulation of the single rate scheme reads as follows.

Definition 2.4.1. (mechanics equation)

Find uk+1
h ∈ V h such that,

∀vh ∈ Vh , 2G(ε(uk+1
h ), ε(vh)) + λ(∇ · uk+1

h ,∇ · vh)− α(pk+1
h ,∇ · vh) = (f ,vh). (2.4.92)

and (flow equation) find pk+1
h ∈ Qh, and zk+1

h ∈ Zh such that,

∀θh ∈ Qh ,
1

∆t

(
(

1

M
+ cfϕ0)

(
pk+1
h − pkh

)
, θh

)
+

1

µf
(∇ · zk+1

h , θh) =

− α

q∆t

(
∇ ·
(
uk+1
h − ukh

)
, θh

)
+
(
q̃h, θh

)
, (2.4.93)

∀qh ∈ Zh ,
(
K−1zk+1

h , qh

)
=
(
pk+1
h ,∇ · qh

)
+
(
ρf,rg∇ η, qh

)
, (2.4.94)

with the initial conditions for the first discrete time step,

p0
h = p0, u0

h = u0. (2.4.95)

2.4.1.2 Single Rate Iterative Scheme

The scheme starts by solving the mechanics problem followed by the flow problem, and iter-

ates between the two until convergence is achieved. The iteration assumes a constant fluid

mass during the deformation of the structure (and can be interpreted as a regularization

of mechanics equation). We start by presenting the scheme.
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Algorithm 4: Undrained Split Single Rate Algorithm

1 for k = 0, 1, 2, 3, .. do /* mechanics time step iteration index */

2 for n = 1, 2, .. do /* coupling iteration index */

3 First Step: Mechanics equations

4 Given pn,k+1
h , solve for un+1,k+1

h satisfying (assuming an initial value is

given for the first iteration: p0,k+1
h ):

−2G∇ · (ε(un+1,k+1
h ))− (λ+ L)∇ · ((∇ · un+1,k+1

h )I) =

− α∇ · (pn,k+1
h I)− L∇ · ((∇ · un,k+1

h )I) + f (2.4.96)

Second Step: Flow equations
5 Given un+1,k+1

h , solve for pn+1,k+1
h and zn+1,k+1

h satisfying:

β
(pn+1,k+1

h − pkh
∆t

)
+

1

µf
∇ · zn+1,k+1

h = −α∇ ·
(un+1,k+1

h − ukh
∆t

)
+ q̃h (2.4.97)

zn+1,k+1
h = −K(∇ pn+1,k+1

h − ρf,rg∇ η) (2.4.98)

In the above, we have used β = ( 1
M

+ cfϕ0) for the notational convenience. L is a regular-

ization parameter and the corresponding term vanishes in the case of convergence.

The convergence proof is based on studying the difference of two successive iterates and

deriving the contraction of appropriate quantities in suitable norms. We recall the defini-

tion:

δξn,k = ξn+1,k − ξn,k, where ξ = p,u, or z.

Considering the difference between two consecutive iterative coupling iterations, the weak

formulation of equations corresponding to (2.4.96), (2.4.97), and (2.4.98) can be written as

follows.

Mechanics step: Given δpn,k+1
h from the previous coupling iteration, find δun+1,k+1

h ∈ V h

such that,

∀vh ∈ Vh , 2G(ε(δun+1,k+1
h ), ε(vh)) + (λ+ L)(∇ · δun+1,k+1

h ,∇ · vh) =

α(δpn,k+1
h ,∇ · vh) + L(∇ · δun,k+1

h ,∇ · vh) , (2.4.99)
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Flow step: Given δun+1,k+1
h , find δpn+1,k+1

h ∈ Qh, δz
n+1,k+1
h ∈ Zh such that:

∀θh ∈ Qh ,
β

∆t

(
δpn+1,k+1

h , θh

)
+

1

µf
(∇ · δzn+1,k+1

h , θh) = − α

∆t

(
∇ · δun+1,k+1

h , θh

)
(2.4.100)

∀qh ∈ Zh , (K−1δzn+1,k+1
h , qh) = (δpn+1,k+1

h ,∇ · qh) (2.4.101)

2.4.1.3 Proof of Contraction

The quantity to be contracted on is a composite one consisting of both pressure pn,k and

volumetric strain terms ∇ · un,k. For a particular coupling iteration, n ≥ 1, and for time

step tk, we define the quantity to be contracted on as:

m̃n,k =
L

γ
∇ · un,k +

α

γ
pn,k,

where γ is an adjustable coefficient that will be selected carefully such that the scheme

achieves contraction on m̃. The presence of γ does not alter the contractivity, however, it

simplifies the algebra and provides a systematic technique for obtaining similar results for

other problems.

• Step (1): Elasticity equation

First, we analyze the mechanics equation. Testing (2.4.99) with vh = δun+1,k+1
h , we

get:

2G‖ε(δun+1,k+1
h )‖2 + (λ+ L)‖∇ · δun+1,k+1

h ‖2

= (αδpn,k+1
h + L∇ · δun,k+1

h ,∇ · δun+1,k+1
h )

=
(
γδm̃n,k+1,∇ · δun+1,k+1

h

)
≤ ε

2

∥∥∇ · δun+1,k+1
∥∥2

+
1

2ε
γ2
∥∥δm̃n,k+1

∥∥2

by Young’s inequality. For ε = λ+ L, we obtain,

4G

λ+ L
‖ε(δun+1,k+1

h )‖2 + ‖∇ · δun+1,k+1
h ‖2 ≤ γ2

(λ+ L)2

∥∥δm̃n,k+1
∥∥2
. (2.4.102)

• Step (2): Flow equations

Testing (2.4.100), with θh = δpn+1,k+1
h , and multiplying by ∆t, we get: (recall β =
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1
M

+ cfϕ0)

β
∥∥∥δpn+1,k+1

h

∥∥∥2

+
∆t

µf
(∇ · δzn+1,k+1

h , δpn+1,k+1
h ) = −α

(
∇ · δun+1,k+1

h , δpn+1,k+1
h

)
(2.4.103)

Testing (2.4.101) with qh = δzn+1,k+1
h , we get and taking the difference between them,

we get

‖K−1/2δzn+1,k+1
h ‖2 =

(
δpn+1,k+1

h ,∇ · δzn+1,k+1
h

)
. (2.4.104)

Substituting (2.4.104) into (2.4.103), we have

β
∥∥∥δpn+1,k+1

h

∥∥∥2

+
∆t

µf
‖K−1/2δzn+1,k+1

h ‖2 + α
(
∇ · δun+1,k+1

h , δpn+1,k+1
h

)
= 0.

(2.4.105)

• Step (3): Combining Mechanics and Flow

Multiplying (2.4.105) by another free parameter c2 and adding (2.4.102), we obtain

4G

λ+ L
‖ε(δun+1,k+1

h )‖2

+

{
c2β
∥∥∥δpn+1,k+1

h

∥∥∥2

+ c2α
(
∇ · δun+1,k+1

h , δpn+1,k+1
h

)
+ ‖∇ · δun+1,k+1

h ‖2

}
+
c2∆t

µf

∥∥∥K−1/2δzn+1,k+1
h

∥∥∥2

≤ γ2

(λ+ L)2

∥∥δm̃n,k+1
∥∥2
.

(2.4.106)

• Step (4): Identifying the parameters

Below we provide the procedure for determining the three adjustable parameters

(c2, γ, and L) yielding a contraction. These parameters should be chosen such that

the terms on the left hand side of (2.4.106) remain positive, and the scheme achieves

contraction on m̃. Clearly,∥∥δm̃n+1,k+1
∥∥2

=
L2

γ2

∥∥∇ · δun+1,k+1
∥∥2

+
α2

γ2

∥∥δpn+1,k+1
∥∥2

+
2αL

γ2

(
δpn+1,k+1,∇ · δun+1,k+1

)
.
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Matching coefficients by comparing with the terms in the curly brackets in (2.4.106)

provides us with the following conditions:

L2

γ2
= 1,

α2

γ2
= c2β,

2αL

γ2
= c2α.

This gives, L = γ = α2

2β
, c2 = 2

L
. Substituting in (2.4.106) leads to a contraction

factor of the form
(

L
λ+L

)2

, which is strictly less than one.

Our main result summarises the above contraction result.

Theorem 2.4.1. With L =
α2

2β
and c2 = 4β

α2 , the undrained single rate iterative

scheme defined by (2.4.96) - (2.4.98) is a contraction given by

4G

λ+ L
‖ε(δun+1,k+1

h )‖2 +
c2∆t

µf

∥∥∥K−1/2δzn+1,k+1
h

∥∥∥2

+
∥∥δm̃n+1,k+1

∥∥2

≤
( L

λ+ L

)2 ∥∥δm̃n,k+1
∥∥2
.

(2.4.107)

Furthermore, the sequences defined by this scheme converge to the unique solution of

the weak formulation (2.4.92)–(2.4.94).

Remark 2.4.1. The above contraction result implies that the composite quantity m̃n+1,k+1,

symmetric strain ε(un+1,k+1
h ), and flux zn+1,k+1

h converge at a geometric rate. Relatively

straightforward arguments that include standard mixed method for controlling pressure by

flux, Korn’s inequality to control the H1 norm by the L2 norm of the symmetric strain

tensor, imply the unique convergence of pn+1,k+1
h ,un+1,k+1

h in L2 and H1 norms respectively.

Remark 2.4.2. The above remark 2.4.1 can also be used to strengthen the contraction

coefficient in theorem 2.4.1. Using triangle’s inequality,∥∥δm̃n,k
∥∥ ≤ L

γ
‖∇ · δun,kh ‖+

α

γ
‖δpn,kh ‖

and using standard mixed method to estimate the pressure by the flux and the Korn inequal-

ity, we obtain ∥∥δm̃n,k
∥∥ ≤ C

(∥∥∥ε(δun,kh )
∥∥∥+

∥∥∥δzn,kh ∥∥∥). (2.4.108)
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Now consider the result in the theorem 2.4.1 and denote the first two terms on the left by

In+1,k+1, that is,

In+1,k+1 =
4G

λ+ L
‖ε(δun+1,k+1

h )‖2 +
c2∆t

µf

∥∥∥K−1/2δzn+1,k+1
h

∥∥∥2

.

The above inequality (2.4.108) can be rewritten as using a generic C,∥∥δm̃n+1,k+1
∥∥2 ≤ CIn+1,k+1. (2.4.109)

The inequality (2.4.107) takes the form( 1

C
+ 1
)∥∥δm̃n+1,k+1

∥∥2 ≤
( L

λ+ L

)2 ∥∥δm̃n,k+1
∥∥2

yielding an improved contraction constant,∥∥δm̃n+1,k+1
∥∥2 ≤

( C

C + 1

)( L

λ+ L

)2 ∥∥δm̃n,k+1
∥∥2
. (2.4.110)

In practice, it is difficult to estimate C, however, the above computations show the relative

contributions of the extra positive terms in (2.4.107) affect the contraction result observed

in practice. Moreover, we can theoretically derive an explicit expression of C in a similar

way as shown in remark 2.3.4. The details are spared.

Remark 2.4.3. The single rate undrained split iterative coupling scheme has been rigor-

ously analyzed by Mikelić and Wheeler [64]. In their analysis, a contraction on the fluid

mass per bulk volume, defined by: m = m0 + ρ0α∇ · u + ρ0

M
(p− p0), has been obtained for

a continuous in time and space formulation. The value of the introduced free parameter L

has been chosen a priori to be L = Mα2. Following their approach, and adapting to our

fully discrete formulation (mixed form for flow, and conformal Galerkin for mechanics),

we have the following result:

Theorem 2.4.2. [Mikelić & Wheeler [64]] Let L be a predetermined coefficient: L = Mα2,

ϕ∗h
n,k := ϕ0 + α∇ · un,kh + 1

M
(pn,kh − p0), and δ denoting the difference of two successive

iterates, the undrained split scheme as given in algorithm (4) is a contraction given by

4Gα2

λ+Mα2‖ε(δun+1,k
h )‖2 + 2∆t

Mµf

∥∥∥K−1/2δzn+1,k
h

∥∥∥2

+
2cfϕ0

M
‖δpn+1,k

h ‖2 +
∥∥δϕ∗hn+1,k+1

∥∥2 ≤
(

Mα2

λ+Mα2

)2 ∥∥δϕ∗hn,k+1
∥∥2
.

Furthermore, the sequences defined by this scheme converge to the unique solution of the

weak formulation (2.4.92)–(2.4.94).
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We note that our proof is optimized in the sense that it reveals the optimal value of the pa-

rameter L =
α2

2β
, which leads to a sharper contraction estimates:

(
L

λ+L

)2

=
(

α2M
2λ+2λMcfϕ0+α2M

)2

.

2.4.2 Multirate Formulation and Analysis

2.4.2.1 Fully Discrete Scheme for Multirate

The weak formulation of a multirate scheme reads as follows.

Definition 2.4.2. (mechanics equation)

Find uk+q
h ∈ V h such that,

∀vh ∈ Vh , 2G(ε(uk+q
h ), ε(vh)) + λ(∇ · uk+q

h ,∇ · vh)− α(pk+q
h ,∇ · vh) = (f ,vh).

(2.4.111)

and (flow equation) For 1 ≤ m ≤ q, find pm+k
h ∈ Qh, and zm+k

h ∈ Zh such that,

∀θh ∈ Qh ,
1

∆t

(
(

1

M
+ cfϕ0)

(
pm+k
h − pm−1+k

h

)
, θh

)
+

1

µf
(∇ · zm+k

h , θh) =

− α

q∆t

(
∇ ·
(
uk+q
h − ukh

)
, θh

)
+
(
q̃h, θh

)
, (2.4.112)

∀qh ∈ Zh ,
(
K−1zm+k

h , qh

)
=
(
pm+k
h ,∇ · qh

)
+
(
ρf,rg∇ η, qh

)
, (2.4.113)

with the initial conditions for the first discrete time step,

p0
h = p0, u0

h = u0. (2.4.114)

2.4.2.2 Multirate Iterative Scheme

The scheme starts by solving the mechanics problem followed by a sequence of flow prob-

lems, and iterates between the two until convergence is achieved. The iteration assumes a

constant fluid mass during the deformation of the structure (and can be interpreted as a

regularization of mechanics equation). We start by presenting the scheme.
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Algorithm 5: Undrained Split Multirate Algorithm

1 e
2 for k = 0, q, 2q, 3q, .. do /* mechanics time step iteration index */

3 for n = 1, 2, .. do /* coupling iteration index */

4 First Step: Mechanics equations

5 Given pn,k+q
h , solve for un+1,k+q

h satisfying (assuming an initial value is

given for the first iteration: p0,k+q
h ):

−2G∇ · (ε(un+1,k+q
h ))− (λ+ L)∇ · ((∇ · un+1,k+q

h )I) =

− α∇ · (pn,k+qh I)− L∇ · ((∇ · un,k+qh )I) + f (2.4.115)

Second Step: Flow equations
6 Given un+1,k+q

h

7 for m = 1, 2, .., q do /* flow finer time steps iteration index

*/

8 Solve for pn+1,m+k
h and zn+1,m+k

h satisfying:

β
(pn+1,m+k

h − pn+1,m−1+k
h

∆t

)
+

1

µf
∇ · zn+1,m+k

h =

− α∇ ·
(un+1,k+q

h − ukh
q∆t

)
+ q̃h (2.4.116)

zn+1,m+k
h = −K(∇ pn+1,m+k

h − ρf,rg∇ η) (2.4.117)

In the above, we have used β = ( 1
M

+ cfϕ0) for the notational convenience. L is a regular-

ization parameter and the corresponding term vanishes in the case of convergence.

Following a similar approach to that of the single rate case, the convergence proof is based on

studying the difference of two successive iterates and deriving the contraction of appropriate

quantities in suitable norms. We recall that δξn,k = ξn+1,k − ξn,k, where ξ = p,u, or z. It

is interesting that the contracting quantity is a composite one consisting of both pressure

pn+1,k+m and volumetric strain terms ∇ · un+1,k+q. For a particular coupling iteration,

n ≥ 1, and between two coarse mechanics time steps tk and tk+q, we define the quantity to

be contracted on as:

m̃n+1,k+m
q =

L

γq
∇ · un+1,k+q +

α

γ
(pn+1,k+m − pn+1,k+m−1), for 1 ≤ m ≤ q,
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where γ is an adjustable coefficient that will be selected carefully such that Banach con-

traction holds on m̃q. As in the single-rate case, the contractivity of the scheme is not

altered by the presence of γ, as it only simplifies the algebra, and scales the the quantity

of contraction is a way such that the contraction coefficient is most optimized.

Considering the difference between one local flow iteration and its corresponding local flow

iteration in the previous coupling iteration, and the difference between two consecutive me-

chanics coupling iterations, the weak formulation of equations corresponding to (2.4.115),

(2.4.116), and (2.4.117) can be written as follows.

Mechanics step: Given δpn,k+q
h from the previous coupling iteration, find δun+1,k+q

h ∈ V h

such that,

∀vh ∈ Vh , 2G(ε(δun+1,k+q
h ), ε(vh)) + (λ+ L)(∇ · δun+1,k+q

h ,∇ · vh) =

α(δpn,k+q
h ,∇ · vh) + L(∇ · δun,k+q

h ,∇ · vh) , (2.4.118)

Flow step: Given δun+1,k+q
h , for 1 ≤ m ≤ q, find δpn+1,m+k

h ∈ Qh, δz
n+1,m+k
h ∈ Zh such

that:

∀θh ∈ Qh , β
(δpn+1,m+k

h − δpn+1,m−1+k
h

∆t
, θh

)
+

1

µf
(∇ · δzn+1,m+k

h , θh) =

− α

q∆t

(
∇ · δun+1,k+q

h , θh

)
(2.4.119)

∀qh ∈ Zh , (K−1δzn+1,m+k
h , qh) = (δpn+1,m+k

h ,∇ · qh) (2.4.120)

2.4.2.3 Proof of Contraction

• Step (1): Elasticity equation

First, we analyze the mechanics equation. Testing (2.4.118) with vh = δun+1,k+q
h , we
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get:

2G‖ε(δun+1,k+q
h )‖2 + (λ+ L)‖∇ · δun+1,k+q

h ‖2

= (αδpn,k+q
h + L∇ · δun,k+q

h ,∇ · δun+1,k+q
h )

=
( q∑
m=1

(
α(δpn,m+k

h − δpn,m−1+k
h ) +

L

q
∇ · δun,k+q

h

)
,∇ · δun+1,k+q

h

)
≤ ε

2

∥∥∇ · δun+1,k+q
∥∥2

+
1

2ε
γ2

q∑
m=1

∥∥δm̃n,k+m
q

∥∥2

by noting that

q∑
m=1

(
δpn,m+k

h − δpn,m−1+k
h

)
= δpn,k+q

h and using Young’s inequality.

For ε = λ+ L, we obtain after some simplifications,

4G

λ+ L
‖ε(δun+1,k+q

h )‖2 + ‖∇ · δun+1,k+q
h ‖2 ≤ γ2

(λ+ L)2

q∑
m=1

∥∥δm̃n,k+m
q

∥∥2
. (2.4.121)

• Step (2): Flow equations

Testing (2.4.119), with θh = δpn+1,m+k
h − δpn+1,m−1+k

h , and multiplying by ∆t, we get:

(recall β = 1
M

+ cfϕ0)

β
∥∥∥δpn+1,m+k

h − δpn+1,m−1+k
h

∥∥∥2

+
∆t

µf
(∇ · δzn+1,m+k

h , δpn+1,m+k
h − δpn+1,m−1+k

h ) =

− α

q

(
∇ · δun+1,k+q

h , δpn+1,m+k
h − δpn+1,m−1+k

h

)
(2.4.122)

Now, consider (2.4.120) for two consecutive local flow finer time steps, t = tm+k, and

t = tm−1+k, and test with qh = δzn+1,m+k
h and taking the difference between them,

we get(
K−1

(
δzn+1,m+k

h − δzn+1,m−1+k
h

)
,δzn+1,m+k

h

)
=
(
δpn+1,m+k

h − δpn+1,m−1+k
h ,∇ · δzn+1,m+k

h

)
. (2.4.123)

Substituting (2.4.123) into (2.4.122), we have

β
∥∥∥δpn+1,m+k

h − δpn+1,m−1+k
h

∥∥∥2

+
∆t

µf

(
K−1

(
δzn+1,m+k

h − δzn+1,m−1+k
h

)
, δzn+1,m+k

h

)
=

− α

q

(
∇ · δun+1,k+q

h , δpn+1,m+k
h − δpn+1,m−1+k

h

)
.
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By Young’s inequality, with further simplifications,

β
∥∥∥δpn+1,m+k

h − δpn+1,m−1+k
h

∥∥∥2

+
α

q

(
∇ · δun+1,k+q

h , δpn+1,m+k
h − δpn+1,m−1+k

h

)
∆t

2µf

(∥∥∥K−1/2δzn+1,m+k
h

∥∥∥2

−
∥∥∥K−1/2δzn+1,m−1+k

h

∥∥∥2

+
∥∥∥K−1/2(δzn+1,m+k

h − δzn+1,m−1+k
h

)∥∥∥2)
= 0.

Summing for q local flow time steps and after some simplifications (telescopic can-

cellations together with the fact that δzn+1,k
h = 0), we get

β

q∑
m=1

(∥∥∥δpn+1,m+k
h − δpn+1,m−1+k

h

∥∥∥2

+
α

q

(
∇ · δun+1,k+q

h , δpn+1,m+k
h − δpn+1,m−1+k

h

))
∆t

2µf

∥∥∥K−1/2δzn+1,k+q
h

∥∥∥2

+
∆t

2µf

q∑
m=1

∥∥∥K−1/2
(
δzn+1,m+k

h − δzn+1,m−1+k
h

)∥∥∥2

= 0.

(2.4.124)

• Step (3): Combining Mechanics and Flow

Multiplying (2.4.124) by another free parameter c2 and adding (2.4.124), we obtain

4G

λ+ L
‖ε(δun+1,k+q

h )‖2 +

q∑
m=1

{
c2β
∥∥∥δpn+1,m+k

h − δpn+1,m−1+k
h

∥∥∥2

+
c2α

q

(
∇ · δun+1,k+q

h , δpn+1,m+k
h − δpn+1,m−1+k

h

)
+ ‖∇ · δun+1,k+q

h ‖2
}

+
c2∆t

2µf

∥∥∥K−1/2δzn+1,k+q
h

∥∥∥2

+
c2∆t

2µf

q∑
m=1

∥∥∥K−1/2
(
δzn+1,m+k

h − δzn+1,m−1+k
h

)∥∥∥2

≤ γ2

(λ+ L)2

q∑
m=1

∥∥δm̃n,k+m
q

∥∥2
. (2.4.125)

• Step (4): Identifying the parameters

Note that we have three free parameters: c2, γ, and L. Below we provide the pro-

cedure for determining these parameters yielding a contraction. These parameters

should be chosen such that the terms on the left hand side of (2.4.125) remain posi-

tive, and the scheme achieves contraction on m. Clearly,∥∥δm̃n+1,k+m
q

∥∥2
=

L2

q2γ2

∥∥∇ · δun+1,k+q
∥∥2

+
α2

γ2

∥∥(pn+1,k+m − pn+1,k+m−1)
∥∥2

+
2αL

γ2q

(
(pn+1,k+m − pn+1,k+m−1),∇ · δun+1,k+q

)
.
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Matching coefficients by comparing with the terms in the curly brackets in (2.4.125)

provides us L2

q2γ2 = 1, α2

γ2 ≤ c2β, and 2αL
γ2q

= c2α
q

. This gives, L = qγ, L ≥ α2

2β
and

since the contraction factor is monotone with respect to L, its minimum is achieved

when we choose,

L =
α2

2β
implying γ =

α2

2qβ
and c2 =

4q2β

α2
.

Using above in (2.4.125) we note that the contraction factor is L2

q2(λ+L)2 and is smaller

when q is larger. Also, when q = 1, the above contraction rate reduces to that of the

single rate case [64] (when the time steps for the mechanics and flow are the same).

Our main result summarizes the above contraction result.

Theorem 2.4.3. With L =
α2

2β
and c2 = 4q2β

α2 , the undrained multirate iterative

scheme defined by (2.4.115) - (2.4.117) is a contraction given by

c2∆t

2µf

∥∥∥K−1/2δzn+1,k+q
h

∥∥∥2

+
c2∆t

2µf

q∑
m=1

∥∥∥K−1/2
(
δzn+1,m+k

h − δzn+1,m−1+k
h

)∥∥∥2

+

q∑
m=1

∥∥δm̃n+1,k+m
q

∥∥2
+

4G

λ+ L
‖ε(δun+1,k+q

h )‖2 ≤ L2

q2(λ+ L)2

q∑
m=1

∥∥δm̃n,k+m
q

∥∥2
.

(2.4.126)

Furthermore, the sequences defined by this scheme converge to the unique solution of

the weak formulation (2.4.111)–(2.4.113).

Remark 2.4.4. The scheme presented in algorithm 5 can be modified such that the coarse

mechanics time step is kept fixed as ∆t, and the fine flow time step is considered as ∆t
q

,

for q ≥ 1. The proof of contraction follows in the same way except that the parameter c is

chosen to be c =
√

4qβ
α2 . The same result, presented in theorem 2.4.3, hold in this case.

2.4.2.4 Convergence to The Discrete Form

From the result obtained above, we establish convergence of the sequences generated by

the multirate undrained split algorithm and show that the converged quantities satisfy the

57



weak formulation (2.4.111) – (2.4.114). The proof uses the mathematical induction for the

finer flow equations combined with the contraction estimates obtained above.

Lemma 2.4.1. For every coarser mechanics time step, t = tk, there exist a limit function

ukh such that

un,kh → ukh strongly in H1(Ω)
d
.

Proof. The contraction result in theorem 2.4.3 implies that for a coarser time step t = tk,

‖ε(δun+1,k
h )‖ converges geometrically to zero. Using Korn’s inequality, this implies that

∂xi(u
n+1,k
h ), i = 1, 2, 3 is a Cauchy sequence converging geometrically to a unique limit in

L2(Ω)d. It follows immediately that un+1,k
h is a Cauchy sequence converging geometrically

to a unique limit in H1(Ω)
d
, being a Hilbert space.

Lemma 2.4.2. For every two consecutive coarser mechanics time steps, t = tk, and t =

tk+q, and for every 1 ≤ m ≤ q, there exist limit functions pm+k
h , zm+k

h such that

pn,m+k
h → pm+k

h in L2(Ω), zn,m+k
h → zm+k

h in H(div,Ω)d,

with strong convergence in the norms of the above spaces.

Proof. The contraction result in theorem 2.4.3 implies that the quantities

q∑
m=1

∥∥∥K−1/2(δzn+1,m+k
h − δzn+1,m−1+k

h )
∥∥∥2

and

q∑
m=1

∥∥∥δm̃n+1,m+k
q

∥∥∥2

converge geometrically to zero. It follows that for 1 ≤ m ≤ q,
∥∥∥K−1/2(δzn+1,m+k

h −

δzn+1,m−1+k
h )

∥∥∥2

, and
∥∥∥δm̃n+1,m+k

q

∥∥∥2

converge geometrically to zero. Moreover, by (2.4.117),

and Poincaré inequality,
∥∥∥K1/2∇(δpn+1,m+k

h −δpn+1,m−1+k
h )

∥∥∥2

and
∥∥∥δpn+1,m+k

h −δpn+1,m−1+k
h

∥∥∥2

converge geometrically to zero, respectively. This implies that for every 1 ≤ m ≤ q, the

finer time step differences (pn,m+k
h −pn,m−1+k

h ), (zn,m+k
h −zn,m−1+k

h ), and the quantity defined

by m̃n,m+k
q are Cauchy sequences in L2(Ω).

We will show strong convergence of the pressure sequence by induction. The proof of strong

convergence of the flux sequence follows in the same way. Given an initial pressure value
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for t = t0: pn,0h = p0, from the above discussion, (pn,1h − p0) is a Cauchy sequence in L2(Ω),

and, in turn, pn,1h is a Cauchy sequence in the complete space L2(Ω), and has a unique

limit. This completes the base case for induction. For the inductive hypothesis, we assume

that for any coarser mechanics time step t = tk, and for any 1 ≤ m ≤ q, pn,k+m
h is a Cauchy

sequence converging to a unique limit in L2(Ω): pn,k+m
h → pk+m

h in L2(Ω) . We will show

that pn,k+m+1
h is also a Cauchy sequence converging to a unique limit in L2(Ω). However,

this follows immediately, as (pn,k+m+1
h −pn,k+m

h ) is a Cauchy sequences in L2(Ω), converging

to a unique limit in L2(Ω). This completes the inductive step. Therefore, we obtain that

for all coarser mechanics time steps t = tk, and for 1 ≤ m ≤ q, pn,m+k
h , zn,m+k

h are Cauchy

sequences converging geometrically to unique limits in L2(Ω).

For the divergence of the flux, we note that (2.4.119) amounts to the following equality a.e.

in L2(Ω):

∇ · δzn+1,m+k
h = −βµf

∆t
(δpn+1,m+k

h − δpn+1,m−1+k
h )− α

q∆t
∇ · δun+1,k+q

h .

The convergence of ∇ · zn+1,m+k
h in L2(Ω) follows from the convergence of the differ-

ence (pn+1,m+k
h − pn+1,m+k

h ) and m̃n+1,m+k
q in L2(Ω), established above (the convergence

of (pn+1,m+k
h − pn+1,m+k

h ) and m̃n+1,m+k
q implies the convergence of ∇ · un+1,k+q

h by defini-

tion). Thus, we have both ∇·zn,m+k
h and zn,m+k

h converging geometrically to unique limits

in L2(Ω), and hence zn+1,k
h converges to a unique limit in H(div,Ω)d.

It remains to pass to the limit in (2.4.111)–(2.4.113). This is straightforward since the

equations are linear and all operators involved are continuous in the spaces invoked in the

statements of Lemmas 2.4.1 and 2.4.2. Moreover the convergences are strong. Therefore,

we easily retrieve the fully discrete multirate formulation.

Remark 2.4.5. As in the single rate case discussed in remark 2.4.2, in the multirate case

too the contraction in theorem 2.4.3 can be improved. The above proof already provides the

arguments required. Note that using triangle’s inequality,

‖δm̃n+1,k+m
q ‖≤ L

γq
‖∇ · δun+1,k+q

h ‖+α
γ
‖δpn+1,k+m

h − δpn+1,k+m−1
h ‖,
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and using standard mixed method to estimate the pressure by the flux and the Korn inequal-

ity, we obtain

q∑
m=1

∥∥δm̃n+1,k+m
q

∥∥2 ≤ C(‖ε(δun+1,k+q
h )‖2 +

q∑
m=1

∥∥∥K−1/2
(
δzn+1,m+k

h − δzn+1,m−1+k
h

)∥∥∥2

)

≤ C

(
‖ε(δun+1,k+q

h )‖2 +

q∑
m=1

∥∥∥K−1/2
(
δzn+1,m+k

h − δzn+1,m−1+k
h

)∥∥∥2

+
∥∥∥K−1/2δzn+1,k+q

h

∥∥∥2
)
. (2.4.127)

Now consider the result in the theorem 2.4.3 and denote In+1,k+q
q

In+1,k+q
q =

4G

λ+ L
‖ε(δun+1,k+q

h )‖2 +
c2∆t

2µf

q∑
m=1

∥∥∥K−1/2
(
δzn+1,m+k

h − δzn+1,m−1+k
h

)∥∥∥2

+
c2∆t

2µf

∥∥∥K−1/2δzn+1,k+q
h

∥∥∥2

.

The above inequality (2.4.127) can be rewritten as using a generic C,

q∑
m=1

‖δm̃n+1,k+m
q ‖2≤ CIn+1,k+q

q . (2.4.128)

The inequality (2.4.126) takes the form

(
1

C
+ 1)

q∑
m=1

∥∥δm̃n+1,k+m
q

∥∥2 ≤
( L

q(λ+ L)

)2
q∑

m=1

∥∥δm̃n,k+m
q

∥∥2

yielding an improved contraction constant,

q∑
m=1

∥∥δm̃n+1,k+1
q

∥∥2 ≤
( C

C + 1

)( L

q(λ+ L)

)2
q∑

m=1

∥∥δm̃n,k+1
q

∥∥2
. (2.4.129)

In practice, it is difficult to estimate C, however, the above computations show the relative

contributions of the extra positive terms in (2.4.126) affect the contraction result observed

in practice.

2.4.3 Conclusions and Discussion

In this section, we have considered single rate and multirate iterative coupling schemes

for the sequential coupling of flow with mechanics based on the undrained split iterative
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coupling algorithm. For both schemes, we have proved Banach fixed-point contraction, and

convergence to the weak solution of the corresponding fully discrete scheme follows imme-

diately. The multirate is a natural extension of the single rate scheme, and contracts on a

composite quantity consisting of pressure and volumetric strain terms. Contraction proofs

are optimal in the sense that contraction quantities are scaled such that more terms on

the left hand side are absorbed. Compared to previously obtained results [64], our derived

contraction coefficients are shaper. To the best of our knowledge, this is the first time a

contraction result has been rigorously obtained for the multirate undrained split iterative

coupling scheme. However, It should be noted that our analysis in this chapter limits to one

coarser time step and we have not considered and investigated the propagation of error due

to spatial and temporal discretizations. These error estimates providing the convergence

rate can be studied and analyzed, for example, in the spirit of [45] (a priori error estimates

for the fixed-stress split scheme have been derived in Chapter 3. The same technique

can be used to derive a priori error estimates for the undrained-split scheme). Further,

the nonlinear extensions of these schemes, their mathematical analyses and computational

performance are interesting questions that will be addressed in future work. Moreover,

the performance of these algorithms should be investigated numerically, and appropriate

convergence stopping criteria for should be devised accordingly.
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2.5 Numerical Results

The first multirate iterative coupling algorithm (Algorithm 2) is implemented in the in-

house reservoir simulator (The Integrated Parallel Accurate Reservoir Simulator - IPARS

[57, 58]). As discussed above, the flow problem is solved using mixed method and the

mechanics by conformal Galerkin (see [82,86] for more details on mechanics discretization).

In the mixed method for the flow, the flux unknowns are locally eliminated and a pressure

stencil is obtained. The flux is then computed by post-processing.

We consider three numerical experiments in this section as follows:

• The Mandel’s problem: which is a standard benchmark problem with an analytical

solution and is used to validate the accuracy of our proposed scheme. It also highlights

the expected trade-off between multirate-savings and maintaining an acceptable level

of accuracy of the obtained numerical solution.

• Single phase flow MFMFE model coupled with mechanics (linear elasticity): in which

we will be evaluating the efficiency of of the multirate scheme (Algorithm 2) against a

realistic field-scale problem, that includes a challenging reservoir geometry (the Frio

model). Details about the MFMFE scheme can be found in Appendix A.

• Two phase flow MFMFE (IMPES) model coupled with mechanics (linear elasticity):

for which we will be running a simple quarter wellbore model (used to study the

sharpness of our derived theoretical contraction estimates against numerical observed

values), and the Frio field model.

We note that except for the parallel SPE10 model considered in Chapter 8 and the Mandel’s

problem, all simulations considered in this dissertation were run serially on an “x86 64 In-

tel(R) Core(TM) i5-4590 CPU @ 3.30GHz” Linux workstation with 4 CPUs. The Mandel’s

problem was run serially on Bevo3, and the parallel SPE10 model, considered in Chapter

8, was run in parallel on 16 processors on Bevo3. Bevo3 is a 15 node compute cluster, with

a 2 x hex core 2.93 GHz Intel Xeon X5670 processors and a total of 180 cores.
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2.5.0.1 Convergence Stopping Critera

In spite of the fact that the solution of the fully implicit scheme is considered as the

reference solution for iteratively coupled flow and geomechanics problems, this solution is

not accessible in practice. Instead, a convergence stopping criteria should be devised in

order to determine whether the iterative scheme has converged or not. Even though we

implement multirate iterative coupling schemes, we still use the same convergence criteria

as the one used in the single rate scheme. This is justified as follows: the multirate iterative

coupling scheme can be viewed as a single rate scheme at the coarser mechanics time step

level, considering the sequence of q flow solves as one coarser flow time step solve, with

the last obtained pressure value being passed to the mechanics problem. We define two

porosity expressions as follows:

δϕn,k+q
flow =

( 1

M
+
α2

λ

)
δpn,k+q

h (2.5.130)

δϕn,k+q
mech = α∇ · δun,k+q

h +
1

M
δpn,k+q

h (2.5.131)

The expression (2.5.131) is the standard definition of the fluid content of the medium

[45]. The definition of δϕn,k+q
flow can be justified as follows: upon convergence, due to the

contracting property of the scheme, (2.3.24) leads to

δσn,k+q
v = λ∇ · δun,k+q

h − αδpn,k+q
h = 0.

Therefore, we have

λ∇ · δun,k+q
h = αδpn,k+q

h ⇒ ∇ · δun,k+q
h =

α

λ
δpn,k+q

h .

This leads to:

δϕn,k+q
mech = α∇ · δun,k+q

h +
1

M
δpn,k+q

h = (
1

M
+
α2

λ
)δpn,k+q

h = δϕn,k+q
flow

justifying the definition (2.5.130) above. Thus, upon convergence, we have δϕn,k+q
mech =

δϕn,k+q
flow , or equivalently, α∇·δun,k+q

h − α2

λ
δpn,k+q

h = 0. Accordingly, the convergence stopping

criterion is defined as follows:
∥∥∥ϕn,k+q

mech −ϕ
n,k+q
flow

ϕn,k+q
mech

∥∥∥
L∞

=
∥∥∥α∇·un,k+q

h −α
2

λ
pn,k+q
h

ϕn,k+q
mech

∥∥∥
L∞

< TOL. We note

that specifying the coupling iteration convergence criterion, especially in the multirate case,

is still a subject of research. This is a critical subject as a “harsh” convergence stopping

criteria might ruin the efficiency of the multirate scheme.
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Figure 2.3: Mandel’s problem original and computational domains

2.5.1 Validating the Accuracy of the Scheme - Mandel’s Problem

The well-known Mandel’s benchmark problem consists of a 2D saturated poroelastic slab of

a rectangular shape with width 2a ft and height 2b ft. The sample is loaded by a constant

compressive force, of intensity 2F psi.ft, applied on the rigid impervious top and bottom

plates (y = ±b). The slab can drain laterally, with stress-free lateral edges x = ±a. The

force is applied instantaneously at time t = 0, and gravity is neglected in this setting [86].

The original configuration of the problem is shown in figure 2.3a. The problem highlights

the necessity of incorporating a poroelastic model into existing reservoir simulators, as it

captures the unexpected Mandel-Cryer effect, and is a standard problem for verifying the

accuracy of poroelasticity algorithms [70].

The model considered here is the linearized quasi-static Biot model [63,86]. The initial and

boundary conditions are given as:

p|t=0= 0, u|t=0= 0, σ(u)|t=0=

(
0 0
0 0

)
in (−a, a)× (−b, b)

p = 0, σ(u)e1 = σ11 = 0, on x = ±a

zy = 0, σ12 = 0,

∫ a

−a
σ22 dx = −2F, uy = unknown constant, on y = ±b
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Following a similar approach as in [63] and noting that uy = uy(y, t), and ux = ux(x, t),

the impervious rigid plate condition (on y = ±b), is replaced by:

zy = 0, σ12 = 0, uy = Uy(±b, t) on y = ±b

where Uy(±b, t) is the value obtained from the closed form solution of the Mandel’s prob-

lem [63]. It should be noted that the problem is symmetric about the x and y axes. There-

fore, only the upper-right quadrant ((0, a)× (0, b)) is going to be considered for numerical

simulation, as shown in figure 2.3b. This restriction should not affect the initial conditions

of the problem. However, the updated boundary conditions of the computational domain

are given as follows:

p = 0, σ(u)e1 = σ11 = 0, on x = a

zx = 0, ux = 0, σ12 = 0, on x = 0

zy = 0, σ12 = 0, uy = Uy(b, t) on y = b

zy = 0, uy = 0, σ12 = 0, on y = 0

The original analytical solution of the problem, as given by Mandel [61], specifies a closed

form solution of the pore-pressure only, for the isotropic case. Later, Abousleiman et

al. [1] generalized the problem to include material transverse isotropy, with compressible

solid constituents and pore fluid, and they presented detailed analytical solutions for pore

pressure, displacements, and stresses [1]. We refer the reader to [36, 70] for the exact ex-

pressions of the parameters involved in this problem, including the Skempton pore pressure

coefficient B, the fluid diffusivity coefficient c, the undrained Poisson ration νu, and the

analytical solutions including pore pressures p, displacements (ux, uy), and stresses. For

our numerical tests in this paper, the input parameters are shown in Table 2.1. In addition,

for the convergence stopping criterion, we set TOL = 5.E-7.

2.5.1.1 Results

Figures 2.5a, 2.5b, 2.5c, and 2.5d show numerical versus analytical results for the pressure

variable at times t = 640, 1280, 5120, 10240, and 20480 seconds, for q = 1, 2, 4,, and 8
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Total Simulation time: 50,000 seconds
Finer (Unit) time step (∆t): 80 seconds

Dimension in x (a): 328.084 ft
Dimension in y (b): 32.8084 ft
Number of grids: 1600 grids (40 × 40)

Grid spacing in x (∆x): 8.202 ft
Grid spacing in y (∆y): 0.8202 ft

Permeabilities: (kxx, kyy) 100, 100 md
Initial porosity, (ϕ0) 0.2
Fluid viscosity, (µ) 1.0 cp

Fluid compressibility (cf ) 2.089E-6 (1/psi)

Fluid density, (ρf,r): 62.4 lbm/ft
3

Young’s Modulus (E) 8.6152507E+5 psi
Possion Ratio, (ν) 0.2

Undrained Possion Ratio, (νu) 0.44
Biot’s constant, (α) 1.0
Biot Modulus, (M) 2.3931227E+6 psi

Skempton coefficient, (B) 0.8333

Diffusivity coefficient, (c) 5.0052 ft2/s

Introduced Fixed Stress Parameter (L) α2

2λ

Table 2.1: Input Parameters for the Mandel’s Problem

respectively. Results are most accurate for the single rate case q = 1, and accuracy degrades

slightly as the value of q increases, which is expected. A similar behaviour, although at

a much smaller scale, for x-displacements as shown in figures 2.6a, 2.6b, 2.6c, and 2.6d,

for q = 1, 2, 4, and 8 respectively. CPU run times for the whole simulation run (50, 000

seconds) are shown in figure 2.4a. For q = 2, we save 20.86 % in CPU runtime. For q = 4,

and 8, we save 42.51 % and 60.09 % in CPU runtime respectively. Runtime savings can

be attributed to the huge reductions in the total number of mechanics linear iterations for

multirate cases. For q = 2, 4, and 8, the total number of mechanics linear iterations for the

whole simulation run went down by 38.15 %, 65.25 %, and 82.43 % respectively. Tables

2.2 and 2.3 show the accuracy of the obtained solution against the analytical solution at

two time steps during the simulation run (t = 640, and 20480) seconds respectively. We

see that for both time steps, the accuracy of pressures degrades only slightly. Similarly, for

displacements, the accuracy is only slightly affected. The numerical tests demonstrate that

the multirate scheme maintains the accuracy of the solution whereas providing significant

computational advantages.
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(a) CPU Run Time vs Simulation Days (b) Total Number of Mechanics Linear Iterations
vs Simulation Days

Figure 2.4: Mandel’s Problem Multirate Savings

q = 1 q = 2 q = 4 q = 8

‖ph − p(t)‖2
`2

1.0863e-03 1.6490e-03 3.3955e-03 7.9480e-03

‖uxh − ux(t)‖2
`2

9.1711e-12 3.4294e-11 3.4218e-10 1.6005e-09

Reduction in CPU runtime - 16.35% 27.90% 45.78%

Reduction in mech. linear iterations - 42.41% 67.61% 83.46%

Table 2.2: Accuracy versus efficiency for different values of q (the number of flow finer time
steps within one coarser mechanics time step) at time t = 640 seconds. Discrete `2 norms
are computed over the top boundary of the domain (y = b), as x-displacements depend
only on x-coordiantes. CPU time savings and reductions in the number of mechanics linear
iterations are computed against the single rate case (q = 1).
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(a) Analytical vs Numerical Results (q = 1) (b) Analytical vs Numerical Results (q = 2)

(c) Analytical vs Numerical Results (q = 4) (d) Analytical vs Numerical Results (q = 8)

Figure 2.5: Accuracy of our Multirate Scheme on Mandel’s Problem Pressure Solution
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(a) Analytical vs Numerical Results (q = 1) (b) Analytical vs Numerical Results (q = 2)

(c) Analytical vs Numerical Results (q = 4) (d) Analytical vs Numerical Results (q = 8)

Figure 2.6: Accuracy of our Multirate Scheme on Mandel’s Problem Displacement Solution
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q = 1 q = 2 q = 4 q = 8

‖ph − p(t)‖2
`2

5.9838e-05 6.1103e-05 2.3748e-04 9.2265e-04

‖uxh − ux(t)‖2
`2

3.1261e-11 5.1934e-13 1.6641e-11 1.4160e-10

Reduction in CPU runtime - 26.27% 48.57% 65.51%

Reduction in mech. linear iterations - 42.71% 69.50% 85.20%

Table 2.3: Accuracy versus efficiency for different values of q (the number of flow finer time
steps within one coarser mechanics time step) at time t = 20480 seconds.

2.5.2 Single-phase Flow Coupled Problems

2.5.2.1 Numerical Model

The multirate iterative coupling algorithm has been implemented in the single-phase and

two-phase flow models coupled with linear elasticity in IPARS. For the single-phase model,

the existing implicit MFMFE formulation (details about its formulation can be found in

[82]) has been modified to match the analyzed theoretical model. For a slightly compressible

single phase flow model, we have:

Mass Conservation:

∂(ϕ∗ρf )

∂t
+∇ · z = qs in Ω× [0, T ] (2.5.132)

Darcy Law:

z = −K ρf
µf

(∇ p− ρfg∇ η) in Ω× [0, T ] (2.5.133)

Constitutive Equations:

ϕ∗ = ϕ0 + α∇ · u+
1

M
(p− pr) (2.5.134)

ρf = ρf,re
(cf (p−pr)) (2.5.135)

Boundary and Initial Conditions:

p = pD on ΓD × [0, T ] (2.5.136)

z · n = zN on ΓN × [0, T ] (2.5.137)

p = p0 at t = 0 in Ω (2.5.138)
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where n is the outward unit normal vector on ∂Ω,ΓD ∪ ΓN = ∂Ω, ϕ∗ is the reservoir

porosity (in coupled poromechanics models [86]), ρf is the fluid density, µf is the fluid

viscosity, cf is the fluid compressibility, g is the gravitational constant, η is the distance

in the vertical direction (assumed to be constant in time), ρf,r > 0 is a constant reference

density (relative to the reference pressure pr), ϕ0 is the initial porosity, qs is a mass source

or sink term taking into account injection into or out of the reservoir.

We note that in IPARS, the single-phase MFMFE flow model is nonlinear. In contrast,

our theoretical model is a simplified, and linearized single-phase flow model. Therefore, in

order to better match our theoretical formulation, we carry out the following modifications.

Consider the accumulation term in (2.5.132), and expand it as:

∂(ϕ∗ρf )

∂t
= ϕ∗

∂ρf
∂t

+ ρf
∂ϕ∗

∂t

= ϕ∗
∂ρf
∂t

+ αρf
∂(∇ · u)

∂t
+
ρf
M

∂p

∂t
(2.5.139)

Together by (2.5.134) and the product rule. The mass balance equation (2.5.132) can then

be written as:

ϕ∗
∂ρf
∂t

+ αρf
∂(∇ · u)

∂t
+
ρf
M

∂p

∂t
+∇ · z = qs (2.5.140)

Recall that “n” denotes the coupling iteration index, and “k” denotes ”coarser mechanics”

time step iteration index. At this stage, we introduce the fixed-stress regularization term

to the right and left hand sides of (2.5.140) as follows:

(ϕ∗)n+1
∂ρn+1

f

∂t
+
(ρn+1

f

M
+
α2

2λ

)∂pn+1

∂t
+∇ · zn+1

= −αρn+1
f

∂(∇ · un)

∂t
+
α2

2λ

∂pn

∂t
+ qn+1

s (2.5.141)

Equations (2.5.133), and (2.5.141) give the single-phase flow model in the context of the

fixed-stress split coupling algorithm that we will be testing against our theoretical model.

2.5.2.2 Fully Discrete Formulation

A fully discrete formulation of the flow equations, based on the multipoint flux mixed

finite element (MFMFE) space discretization, and backward Euler temporal discretization
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is described in this section. A brief review of the finite element spaces and quadrature rules

used in the MFMFE scheme can be found in Appendix A.

Single-phase MFMFE Coupled Model

For simplicity, we assume zero Dirichlet and no-flow boundary conditions. For a time

step t = tk+1, and for an iterative coupling iteration “n + 1” between two consecutive

time steps (tk and tk+1), the fully discrete formulation reads: Find pn+1,k+1
h ∈ Qh, and

zn+1,k+1
h ∈ Zh such that,

Flux Equation:

∀qh ∈ Zh ,

(
µf

ρn+1,k+1
f

K−1zn+1,k+1
h , qh

)
Q,E

−
(
pn+1,k+1
h ,∇ · qh

)
E

=

(
ρn+1,k+1
f g∇ η, qh

)
E

(2.5.142)

Mass Balance Equation:

∀θh ∈ Qh ,

(
(ϕ∗)n+1,k+1

(ρn+1,k+1
f − ρkf

∆t

)
, θh

)
E

+

((ρn+1,k+1
f

M
+
α2

2λ

)(pn+1,k+1
h − pkh

∆t

)
, θh

)
E

+

(
∇ · zn+1,k+1

h , θh

)
E

= −
(
αρn+1,k+1

f

(∇ · un,k+1
h −∇ · ukh
q∆t

)
, θh

)
E(

α2

2λ

(pn,k+1
h − pkh

∆t

)
, θh

)
E

+
(
qn+1,k+1
s , θh

)
E

(2.5.143)

We note that the above formulation is nonlinear. Its linearization is given in the next

paragraph.

Linearization

For the linearized formulation, we introduce a third index “l” for Newton iterations. For

simplicity, we “Newton” iteration lag the porosity and density coefficients in the first two

terms of the mass balance equation. The linearized formulation in terms of the unknowns

δph, and δzh is as follows:
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Flux Equation:(
µf

ρl,n+1,k+1
f

K−1δzl,n+1,k+1
h , qh

)
Q,E

−
(
δpl,n+1,k+1

h ,∇ · qh
)
E

=

−
(

µf

ρl,n+1,k+1
f

K−1zl,n+1,k+1
h , qh

)
Q,E

−
(
δpl,n+1,k+1

h ,∇ · qh
)
E

+

(
ρn+1,k+1
f g∇ η, qh

)
E

(2.5.144)

Mass Balance Equation:(
(ϕ∗)l,n+1,k+1cfρ

l,n+1,k+1
f δpl,n+1,k+1

h , θh

)
E

+

((ρl,n+1,k+1
f

M
+
α2

2λ

)
δpl,n+1,k+1

h , θh

)
E

+

(
∆t∇ · δzl,n+1,k+1

h , θh

)
E

= −
(

(ϕ∗)l,n+1,k+1(ρl,n+1,k+1
f − ρkf ), θh

)
E

−
((ρl,n+1,k+1

f

M
+
α2

2λ

)
(pl,n+1,k+1
h − pkh), θh

)
E

−
(

∆t∇ · zl,n+1,k+1
h , θh

)
E

−
(
α
ρl,n+1,k+1
f

q
(∇ · un,k+1

h −∇ · ukh), θh
)
E

+

(
α2

2λ
(pn,k+1
h − pkh), θh

)
E

+
(

∆tql,n+1,k+1
s , θh

)
E

(2.5.145)

This simplifies to((
(ϕ∗)l,n+1,k+1cfρ

l,n+1,k+1
f +

ρl,n+1,k+1
f

M
+
α2

2λ

)
δpl,n+1,k+1

h , θh

)
E

+

(
∆t∇ · δzl,n+1,k+1

h , θh

)
E

= −
(

(ϕ∗)l,n+1,k+1(ρl,n+1,k+1
f − ρkf ), θh

)
E

−
(
ρl,n+1,k+1
f

M
(pl,n+1,k+1
h − pkh), θh

)
E

−
(

∆t∇ · zl,n+1,k+1
h , θh

)
E

−
((αρl,n+1,k+1

f

q

)
(∇ · un,k+1

h −∇ · ukh), θh
)
E

−
(
α2

2λ
(pl,n+1,k+1
h − pn,k+1

h ), θh

)
E

+
(

∆tql,n+1,k+1
s , θh

)
E

(2.5.146)

2.5.2.3 Frio Field Model Results

This test problem consists of a realistic field-scale reservoir model, located near Dayton,

Texas, at South Liberty oil field on the Gulf Coast. The field contains several geometrically

challenging thin curved faults, and is curved in the depth direction [48]. In this work, we
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try to consider the challenging geometry of the field along with its permeability distribu-

tion. Gravity effects are included in the model, and other input parameters are shown in

Table 2.4. In addition, for the convergence stopping criterion, we set TOL = 1.E-10.

2.5.2.4 Results

Pressure profiles and displacement vector fields for the single rate scheme, and multirate

schemes (q = 4 and 8) after 480 simulation days are shown in figures 2.7a and 2.7b respec-

tively. For all three cases (q = 1, 4, and 8), results are almost identical. Accumulated CPU

runtimes for the three cases are shown in figure 2.8a. Multirate schemes (q = 4 and 8)

result in 20.43%, and 34.91% reductions in CPU run times respectively. Reductions in CPU

run times come as a direct consequence of the huge reductions in the accumulative number

of mechanics linear iterations for the whole simulation run. For q = 4, the total number of

mechanics linear iterations is reduced by 58.88%, and for q = 8, mechanics linear iterations

are reduced by 79.44%. The overhead introduced by the multirate coupling scheme over

the the single rate scheme is illustrated in figures 2.8c and 2.8d. As shown in figure 2.8c,

multirate schemes (q = 4), and (q = 8) result in 92.26%, and 93.40% increase in the total

number of flow linear iterations for the whole simulation run. This overhead is attributed

to the observed increase in the number of flow-mechanics coupling iterations for multirate

schemes over the single rate scheme, as shown in figure 2.8d. It should be noted that, with

respect to running times, the decrease in the number of mechanics linear iterations outper-

form the overhead introduced by the increase in the total number of flow linear iterations.

It is this particular feature that allows the multirate scheme to outperform the single rate

scheme with respect to CPU running times.

74



Wells: 3 production wells, 6 injection well
Injection well (1): Pressure specified, 4000.0 psi
Injection well (2): Pressure specified, 3300.0 psi
Injection well (3): Pressure specified, 4000.0 psi
Injection well (4): Pressure specified, 4400.0 psi
Injection well (5): Pressure specified, 3700.0 psi
Injection well (6): Pressure specified, 4400.0 psi

Production well (1): Pressure specified, 2000.0 psi
Production well (2): Pressure specified, 2000.0 psi
Production well (3): Pressure specified, 2000.0 psi

Total Simulation time: 480.0 days
Finer (Unit) time step: 1.0 days

Number of grids: 1428 grids (34 × 14 × 3)
Permeabilities: kxx, kyy, kzz highly varying, range: (5.27E-10, 3.10E+3) md

Initial porosity, ϕ0 0.2
Fluid viscosity, µf 2.0 cp
Initial pressure, p0 400.0 psi

Fluid compressibility cf : 1.E-4 (1/psi)
Rock compressibility: 1.E-6 (1/psi)

Rock density: 165.44 lbm/ft
3

Initial fluid density, ρf : 56.0 lbm/ft
3

Young’s Modulus (E) 1.2E6 psi
Possion Ratio, ν 0.35

Biot’s constant, α 0.9
Biot Modulus, M 1.0E8 psi

λ = Eν
(1+ν)(1−2ν) 1.037E6 psi

L (introduced fixed stress parameter) α2

2λ (1/psi)
Flow Boundary Conditions: no flow boundary condition on all 6 boundaries

Mechanics B.C.:
“X+” boundary (EBCXX1()) σxx = σ · nx = 10, 000psi, (overburden pressure)

“X-” - boundary (EBCXXN1()) u = 0, zero displacement
“Y+” - boundary (EBCYY1()) u = 0, zero displacement
“Y-” - boundary (EBCYYN1()) σyy = σ · ny = 2000psi
“Z+” - boundary (EBCZZ1()) u = 0, zero displacement
“Z-” - boundary (EBCZZN1()) σzz = σ · nz = 1000psi

Table 2.4: Input Parameters for the Frio Field Model
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(a) Pressure Profiles after 480.0 simulation days (psi)

(b) Displacement Field after 480.0 simulation days (ft)

Figure 2.7: Frio Field Model Pressure and Displacement Fields at the End of the Simulation
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Figure 2.8: Frio Field Model Simulation Results: CPU time savings of two multirate
schemes (q = 4 and 8) over the single rate scheme (q = 1) are shown in the top left
plot. The top right plot illustrates the huge reduction in the number of mechanics linear
iterations for the corresponding multirate schemes over the single rate scheme. The bottom
left plot illustrates the increase in the number of flow linear iterations for the multirate
schemes. This is a direct consequence of the increase in the number of flow-mechanics
coupling iterations observed for multirate schemes over the single rate scheme as shown in
the bottom right plot.
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Theoretical Vs. Numerical Contraction Coefficients

In this section, we compare theoretical contraction estimates against numerically com-

puted values. Based on the parameters given in Table 2.4, the theoretical contraction

estimate, as given in Theorem 2.3.4, is computed as:
(

Mα2

2λ+2Mλcfϕ0+Mα2

)2

= 0.0003665.

By computing the ratio of the quantity of contraction between two consecutive iterative

coupling iterations, numerical contraction estimates can be obtained. Numerically, this is

computed as follows (for χ2 = L2, χ2 = α4

4λ2 , and L = α2

2λ
):

q∑
m=1

‖δσn,m+k
v ‖2

Ω=

q∑
m=1

‖L
χ

(δpn,m+k
h − δpn,m−1+k

h )− α

χq
∇ · δun,k+q

h ‖2

=

q∑
m=1

∫
Ω

(
(δpn,m+k

h − δpn,m−1+k
h )− α

qχ
∇ · δun,k+q

h

)2

=
α2

q2χ2

q∑
m=1

∫
Ω

(
∇ · δun,k+q

h

)2

− 2α

qχ

q∑
m=1

∫
Ω

(
∇ · δun,k+q

h

)(
δpn,m+k

h − δpn,m−1+k
h

)
+

q∑
m=1

∫
Ω

(
δpn,m+k

h − δpn,m−1+k
h

)2

=
4λ2

qα2

∑
i,j,k

(
∇ · δun,k+q

h

)2

|i,j,kV (i, j, k)

− 4λ

qα

q∑
m=1

∑
i,j,k

(
∇ · δun,k+q

h

)
|i,j,k

(
δpn,m+k

h − δpn,m−1+k
h

)
|i,j,kV (i, j, k)

+

q∑
m=1

∑
i,j,k

(
δpn,m+k

h − δpn,m−1+k
h

)2

|i,j,kV (i, j, k)

where V (i, j, k) is the bulk volume of the (i, j, k) grid block. Following this approach,

the ratio of

(∥∥∥∥∥δσn+1,k
v

∥∥∥∥∥
2

/∥∥∥∥∥δσn,kv
∥∥∥∥∥

2

)
for the single rate scheme (q = 1) is shown in figure 2.9.

The maximum value, across all iterative coupling iterations, for each time step is plotted.

Results illustrate that the theoretical estimate acts as an upper bound for numerically

computed estimates. In addition, numerical contraction estimates are larger for earlier

time steps. This is expected as the coupled problem has not reached the steady-state yet.
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Figure 2.9: Numerical Contraction Estimates per Time Step. The maximum contraction
estimate across flow-mechanics coupling iterations is considered for each time step

Effect of Lame Parameters on Contraction Coefficients

Next, we validate the theoretical results obtained in remark 2.3.3. We consider the anal-

ysis of the single rate case for simplicity, as the analysis of the multirate case follows in a

similar way. The improved contraction estimate for the single rate case, as given in remark

2.3.3 for q = 1, is given by
∥∥δσn+1,k

v

∥∥2 ≤
(

C
C+1

)(
Mα2

2λ+2Mλcfϕ0+Mα2

)2 ∥∥δσn,kv ∥∥2
for a constant

C > 0, which is difficult to compute in practice. However, we anticipate that it scales mono-

tonically with the values of Lamé’s first parameter λ, and Young’s modulus E. Therefore,

theoretically, we expect the value of the damping factor
(

C
C+1

)
to approach one, as the
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value of Young’s modulus increases, which means that our derived contraction estimate is

sharper for larger Young’s modulus values. This behavior is validated numerically for the

frio field model in figure 2.10.
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Figure 2.10: Numerical contraction estimates for different values of Young’s modulus (E,
psi) for the single rate scheme for the first 12 simulation days. As the value of Young’s
modulus increases, the gap between theoretically predicted contraction estimates and nu-
merically observed values shrinks, validating our theoretical derivations shown in remarks
2.3.3 and 2.3.4.

80



2.5.3 Two-phase Flow Coupled Problems

2.5.3.1 Two-phase IMPES Numerical Model

The multirate iterative coupling algorithm has been implemented in the two-phase IMPES

(implicit pressure explicit saturation) flow model coupled with linear elasticity in IPARS.

For completeness, we describe the formulation of the IMPES model, as implemented in

IPARS. More details can be found in [86]. For a slightly compressible two phase flow

model, we have:

Mass Conservation:

∂(ρjSjϕ
∗)

∂t
+∇ · (ρjzj) = qj in Ω× [0, T ] (2.5.147)

Darcy Law:

zj = −K krj
µj

(∇ pj − ρjg∇ η) in Ω× [0, T ] (2.5.148)

Constitutive Equations:

ϕ∗ = ϕ0 + α∇ · u+
1

M
(p− pr) (2.5.149)

ρj = ρj,re
(cj(pj−p0)) (2.5.150)

po = pw + pcow(Sw) (2.5.151)

So + Sw = 1 (2.5.152)

Boundary and Initial Conditions:

pw = pD on ΓD × [0, T ] (2.5.153)

Sw = SD on ΓD × [0, T ] (2.5.154)

zj · n = 0 on ΓN × [0, T ] (2.5.155)

pw = p0
w at t = 0 in Ω (2.5.156)

Sw = S0
w at t = 0 in Ω (2.5.157)

where the subscript index (j) refers to the oil or water phases (j = w for water phase,

and j = o for oil phase), n is the outward unit normal vector on ∂Ω,ΓD ∪ ΓN = ∂Ω, ϕ∗
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is the reservoir porosity (in coupled poromechanics models [86]), ρj, µj, krj and cj are

the density, viscosity, relative permeability, and compressibility of phase (j) respectively.

Moreover, pcow is the capillary pressure, which is a function of water saturation (Sw), g

is the gravitational constant, η is the distance in the vertical direction (assumed to be

constant in time), ρj,r > 0 is reference density (relative to the reference pressure pj) for

phase (j), ϕ0 is the initial porosity, qj is a mass source or sink term taking into account

injection into or out of the reservoir. In this model, the water phase saturation Sw, and

the water pressure pw are chosen as the primary unknowns for the two-phase flow model.

Dividing equation (2.5.147) by the reference density of each phase, and summing up the

mass balance equations for both the water and oil phases, we obtain:

∂ϕ∗(ρ̄wSw + ρ̄oSo)

∂t
+∇ · (ρ̄wzw + ρ̄ozo) = q̄w + q̄o (2.5.158)

where ρ̄w = ρw
ρw,r

, ρ̄o = ρo
ρo,r

, q̄w = qw
ρw,r

, and q̄o = qo
ρo,r

. Now, define the total velocity zt as:

zt = ρ̄wzw + ρ̄ozo. (2.5.159)

Substituting Darcy’s law (2.5.148) into (2.5.159), and adding and subtracting the term

(Kρ̄o
kro
µo
ρwg∇) to the right hand side, we have:

zt = −K ρ̄wkrw
µw

(∇ pw − ρwg∇ η)−K ρ̄okro
µo

(∇ pw +∇ pcow − ρog∇ η)

= −K(
ρ̄wkrw
µw

+
ρ̄okro
µo

)(∇ pw − ρwg∇ η)−K ρ̄okro
µo

(∇ pcow − (ρo − ρw)g∇ η) (2.5.160)

Define the normalized total mobility λt and the normalized oil mobility λo as:

λt =
ρ̄wkrw
µw

+
ρ̄okro
µo

, λo =
ρ̄okro
µo

Then, (2.5.160) can be written as:

zt = −Kλt(∇ pw − ρwg∇ η)−Kλo(∇ pcow − (ρo − ρw)g∇ η) (2.5.161)

2.5.3.2 Fully Discrete MFMFE Coupled Model

For a time step t = tk+1, and for an iterative coupling iteration “n + 1” between two

consecutive time steps (tk and tk+1), the fully discrete formulation reads (remember that
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our primary unknowns are water pressure, and saturation):

Find pn+1,k+1
w ∈ Qh, and zn+1,k+1

w ∈ Zh such that (for simplicity, we will drop the subscript

(h) for discrete quantities),

Flux Equation:

∀qh ∈ Zh ,

(
K−1

λn+1,k+1
t

zn+1,k+1
t , qh

)
Q,E

−
(
pn+1,k+1
w ,∇ · qh

)
E

−((λo
λt

)n+1,k+1

pn+1,k+1
cow ,∇ · qh

)
E

=

(
ρn+1,k+1
w g∇ η, qh

)
E

+

((λo
λt

)n+1,k+1

(ρn+1,k+1
o − ρn+1,k+1

w )g∇ η, qh
)
E

− 〈pn+1,k+1
w , qh · n〉E − 〈

(λo
λt

)n+1,k+1

pn+1,k+1
cow , qh · n〉E (2.5.162)

Mass Balance Equation:

∀θh ∈ Qh ,((
ϕ∗ρ̄wSw + ϕ∗ρ̄o(1− Sw)

)n+1,k+1

−
(
ϕ∗ρ̄wSw + ϕ∗ρ̄o(1− Sw)

)k
∆t

, θh

)
E

+

(
∇ · zn+1,k+1

t , θh

)
E

=
(
q̄n+1,k+1
w + q̄n+1,k+1

o , θh

)
E

(2.5.163)

We note that the above formulation is nonlinear. Its linearization is given in the next

paragraph.

Linearization

For the linearized formulation, we introduce a third index “l” for Newton iterations. For

simplicity, we “Newton” iteration lag mobility coefficients. The linearized formulation in

terms of the unknowns δpw, and δzt is as follows:
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Flux Equation:(
K−1

λl,n+1,k+1
t

δzl,n+1,k+1
t , qh

)
Q,E

−
(
δpl,n+1,k+1

w ,∇ · qh
)
E

=((λo
λt

)l,n+1,k+1

pl,n+1,k+1
cow ,∇ · qh

)
E

−
(

K−1

λl,n+1,k+1
t

zl,n+1,k+1
t , qh

)
Q,E

+

(
pl,n+1,k+1
w ,∇ · qh

)
E

+

(
ρl,n+1,k+1
w g∇ η, qh

)
E

+

((λo
λt

)l,n+1,k+1

(ρl,n+1,k+1
o − ρl,n+1,k+1

w )g∇ η, qh
)
E

− 〈pl,n+1,k+1
w , qh · n〉E − 〈

(λo
λt

)l,n+1,k+1

pl,n+1,k+1
cow , qh · n〉E (2.5.164)

Mass Balance Equation:

For the mass balance equation, we note that the fixed stress assumption implies that the

volumetric mean total stress is kept constant during the flow solve within the iterative

coupling iteration. Assuming that the prefix “δ” is used to indicate the difference between

two consecutive Newton iterations, the fixed stress assumption implies that:

σl+1,n+1,k+1
v − σl,n+1,k+1

v = δσl+1,n+1,k+1
v = λ∇ · δul+1,n+1,k+1 − αδpl+1,n+1,k+1 = 0

This implies that ∇ · δul+1,n+1,k+1 = α
λ
δpl+1,n+1,k+1, where δul+1,n+1,k+1 = (ul+1,n+1,k+1 −

ul,n+1,k+1), and δpl+1,n+1,k+1 = (pl+1,n+1,k+1 − pl+1,n+1,k+1). So, we have: (δϕ∗)l+1,n+1,k+1 =

α∇ · δul+1,n+1,k+1 + 1
M
δpl+1,n+1,k+1. Rearranging terms, we can write:

(ϕ∗)l+1,n+1,k+1 = (ϕ∗)l,n+1,k+1 + (δϕ∗)l+1,n+1,k+1

= (ϕ∗)l,n+1,k+1 + α∇ · δul+1,n+1,k+1 +
1

M
δpl+1,n+1,k+1

= (ϕ∗)l,n+1,k+1 +
(α2

λ
+

1

M

)
δpl+1,n+1,k+1

= (ϕ∗)l,n+1,k+1 +
(α2

λ
+

1

M

)
(pl+1,n+1,k+1 − pl,n+1,k+1)

So, we can approximate the derivative of ϕ∗ by pressure as ∂ϕ∗l+1,n+1,k+1

∂pl+1,n+1,k+1
=
(
α2

λ
+ 1

M

)
.

The last expression will be used in the derivation below. It should be noted that this is

a different way of looking at the fixed-stress split iterative coupling method [86]. By the
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product rule, the derivative of the first term in (2.5.163) w.r.t. pressure can be written as:

Sl,n+1,k+1
w

∂
(
ρ̄l+1,n+1,k+1
w (ϕ∗)l+1,n+1,k+1

)
∂pl+1,n+1,k+1

= Sl,n+1,k+1
w

[
∂ρ̄l+1,n+1,k+1

w

∂pl+1,n+1,k+1
ϕ∗l,n+1,k+1 +

∂ϕ∗l+1,n+1,k+1

∂pl+1,n+1,k+1
ρ̄l,n+1,k+1
w

]

= Sl,n+1,k+1
w

[
cwρ̄

l,n+1,k+1
w (ϕ∗)l,n+1,k+1 + ρ̄l,n+1,k+1

w

(α2

λ
+

1

M

)]

= Sl,n+1,k+1
w ρ̄l,n+1,k+1

w

[
cw(ϕ∗)l,n+1,k+1 +

(α2

λ
+

1

M

)]
A similar derivation for the derivative of the oil term can be obtained:

(1− Sw)l,n+1,k+1
∂
(
ρ̄l+1,n+1,k+1
o (ϕ∗)l+1,n+1,k+1

)
∂pl+1,n+1,k+1

(1− Sw)l,n+1,k+1ρ̄l,n+1,k+1
o

[
coϕ

∗l,n+1,k+1 +
(α2

λ
+

1

M

)]
The linearized mass balance equation reads:(

Sl,n+1,k+1
w ρ̄l,n+1,k+1

w

(
cw(ϕ∗)l,n+1,k+1 +

α2

λ
+

1

M

)
δpl,n+1,k+1, θh

)
E

+((
1− Sw

)l,n+1,k+1

ρ̄l,n+1,k+1
o

(
co(ϕ

∗)l,n+1,k+1 +
α2

λ
+

1

M

)
δpl,n+1,k+1, θh

)
E

+

(
∆t∇ · zl,n+1,k+1

t , θh

)
E

=

(
(ϕ∗)kρ̄kwS

k
w + (ϕ∗)kρ̄ko(1− Sw)k, θh

)
E

−

(
(ϕ∗)l,n+1,k+1ρ̄l,n+1,k+1

w Sl,n+1,k+1
w + (ϕ∗)l,n+1,k+1ρ̄l,n+1,k+1

o (1− Sw)l,n+1,k+1, θh

)
E

−
(

∆t∇ · zl,n+1,k+1
t , θh

)
E

+
(
q̄l,n+1,k+1
w + q̄l,n+1,k+1

o , θh

)
E

(2.5.165)

Once the value of pl+1,n+1,k+1 is obtained, water phase saturation (Sl,n+1,k+1
w ) is updated

explicitly by (2.5.147) as follows:

Sl+1,n+1,k+1
w =

1

ρl+1,n+1,k+1
w (ϕ∗)l+1,n+1,k+1[
(ϕ∗)kρ̄kwS

k
w −∆t∇ · (ρl+1,n+1,k+1

w zl+1,n+1,k+1
w ) + ∆tql+1,n+1,k+1

w

]
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Total Simulation time: 1.024 days
Finer (Unit) time step: 0.0001 days

Number of grids: 4200 grids (7 × 20 × 30)
Permeabilities: kxx, kyy, kzz 5, 20, 20 md

Capillary Pressure: 0
Initial porosity, ϕ0 0.2
Water viscosity, µw 1.0 cp

Oil viscosity, µo 2.0 cp

Initial oil concentration, co 0.0 lbm/ft
3 (running as a single phase)

Initial pressure, p0 500.0 psi
Water compressibility cfw : 1.E-6 (1/psi)

Oil compressibility cfo : 1.E-4 (1/psi)
Rock compressibility: 1.E-6 (1/psi)

Rock density: 165.43 lbm/ft
3

Initial water density, ρw: 62.34 lbm/ft
3

Initial oil density, ρo 56.0 lbm/ft
3

Young’s Modulus (E) 1.1E7 psi
Possion Ratio, ν 0.4

Biot’s constant, α 0.75
Biot Modulus, M 0.5E14 psi

L (introduced fixed stress parameter) α2

2λ (1/psi)

Table 2.5: Input Parameters for the Quarter Wellbore Model

2.5.3.3 Quarter Wellbore Model Results

In this test case, we consider a quarter 3D wellbore model. The model domain is a 25.0

ft × 25.0 ft × 25.0 ft cube with a quarter of a cylindrical wellbore centered along one of

its edges. The mesh contains 4200 grid elements, with 30 elements in the radial direction,

20 elements in the hoop direction, and 7 elements in the vertical direction. Finer grids

are used near the wellbore, and they coarsen as they distance apart from the wellbore. A

constant wellbore pressure of 300 psi is enforced on the wellbore surface. No flow boundary

conditions are enforced on the rest of the boundary faces. For the mechanics model, we

apply a zero displacement boundary condition on top of the cube. For the remaining

boundaries, we apply zero normal and zero shear traction boundary conditions. Gravity is

neglected in this model. In addition, although the code can handle two-phase flow, we run

it as a single phase model by assuming the initial oil concentaion to be zero throughout the

whole domain. Detailed specifications of the input parameters can be found in Table 2.5.

Moreover, detailed results for this test problem can be found in Almani, et al [6].
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Convergence Stopping Critera

Similar to the single-phase case, the stopping criteria are based on the difference of two

successive iterates of porosity, and are given by

δϕn,k+q
flow =

( 1

M
+
α2

λ

)
δpn,k+q

h (2.5.166)

δϕn,k+q
mech = α∇ · δun,k+q

h +
1

M
δpn,k+q

h (2.5.167)

where the pressure variable here is the primary pressure unknown (in this formulation,

water pressure). The expression (2.5.167) is the standard definition of the fluid content of

the medium [45]. Upon convergence, (2.3.77) leads to δσn,k+q
v = λ∇·δun,k+q

h −αδpn,k+q
h = 0.

Accordingly, we define two convergence stopping criteria as follows:
∥∥∥ϕn,k+q

mech −ϕ
n,k+q
flow

ϕn,k+q
mech

∥∥∥
L∞

=∥∥∥α∇·un,k+q
h −α

2

λ
pn,k+q
h

ϕn,k+q
mech

∥∥∥
L∞

< TOL1, and ‖Rn,k+q+1
flow ‖< TOL2, where the latter is the residual of

the flow volume conservation equation using the last computed pressure and displacement

values pn,k+q
h and un,k+q

h . For the quarter wellbore model, we set TOL1 = TOL2 = 0.0001.

Results and Discussion

Figure 2.11a shows the accumulated CPU run time for the single rate case (q = 1), and

for multirate cases: q = 2, 4, and 8. The case q = 2 results in 14.28% reduction in CPU run

time compared to the single rate. q = 4, and q = 8 result in 20.97% and 25.09% reductions

in CPU run times respectively. Figure 2.11b explains the reduction in CPU run time ob-

served in the multirate case. By just solving for two flow finer time steps within one coarser

mechanics time step (q = 2), the total number of mechanics linear iterations was reduced by

45.21% with reference to the single rate case. Multirate couplings (q = 4, and q = 8) result

in 70.46% and 84.36% reductions in the number of mechanics linear iterations respectively,

which in turn, reduce the CPU run time as well. For this problem, the total number of flow

iterations for both the single rate and multirate coupling algorithms are found to be the

same. In addition, all four cases perform the same number of flow/mechanics coupling iter-

ations for each coarse mechanics time step, reducing the number of accumulated mechanics

linear iterations for multirate schemes, without affecting the total number of flow linear

iterations. This results in multirate coupling schemes to outperform the single rate scheme.
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(a) CPU Run Time vs Simulation Days (b) Total Number of Mechanics Linear Iterations
vs Simulation Days

Figure 2.11: Quarter Wellbore Model

We also compare the value of our theoretically driven contraction coefficient against nu-

merically observed contraction coefficient values. Theorem 2.3.4 gives an expression of the

contraction coefficient
(

Mα2

2λ+2Mλcfϕ0+Mα2

)2

for the multirate algorithm considered in this

case (L = α2

2λ
), leading to linear convergence of the multirate scheme. For this test case, we

have
(

Mα2

2λ+2Mλcfϕ0+Mα2

)2

= 0.006747 . Table 2.6 lists the values of contraction coefficients

obtained numerically for q = 1, 2, 4, and 8. We consider the iterative coupling iteration

for the first coarse mechanics time step, which takes four coupling iterations to converge,

according to the stopping criteria described earlier. We compute the values of the volu-

metric mean stress defined in (2.3.50) for the last two coupling iterations. Ratios of those

computed values give estimates of contraction coefficients, obtained numerically, as shown

in Table 2.6. We notice that contraction coefficients computed numerically are smaller

than the predicted theoretical estimate. This is expected since the extra terms on the left

hand side of the contraction result listed in theorem 2.3.4 are not included when computing

numerical estimates (i.e. we have not included the effect of the damping factor derived in

remark 2.3.4). In addition, we notice that as the number of flow finer time steps solved

within one coarser mechanics time step increases, the values of the computed numerical

contraction coefficient estimates decrease.
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q = 1 q = 2 q = 4 q = 8

q∑
m=1

∥∥∥∥δσ3,m
v

∥∥∥∥2
/ q∑
m=1

∥∥∥∥δσ2,m
v

∥∥∥∥2
0.0009485 0.0007602 0.0004718 0.0001791

Table 2.6: Numerical Contraction Estimates: Contraction estimates observed numerically
are shown for different values of q (the number of flow finer time steps within one coarser
mechanics time step). These are obtained by taking the ratio of the norms of σv computed
at the last two iterative coupling iterations during the first coarse time step: ∆t, 2∆t ,4∆t,
and 8∆t for q = 1, 2, 4, and 8 respectively. The first coarse time step involves four iterative
coupling iterations for all the four cases.

2.5.3.4 Frio Field Model Results

Here, we consider the Frio field model, described earlier, but as a two-phase problem coupled

with geomechanics. The problem specifications are shown in Table 2.7. Moreover, gravity

effects are included in this model.

Convergence Stopping Criteria

For this test case, the convergence stopping criteria are given by:∥∥∥∥α∇ · un,k+q
h − α2

λ
pn,k+q
h

ϕn,k+q
mech

∥∥∥∥
L∞

< TOL1

∥∥∥∥ Rn,k+q+1
flow

m0water +m0oil

∥∥∥∥ < TOL2

The first convergence stopping criterion is exactly the same criterion used in the first

test case, the quarter wellbore model. The second criterion, involving the residual of the

flow volume conservation equation is slightly different. For this one, we scale the norm

of the residual by the initial mass of the oil and water, originally found in place. The

initial mass of the water, m0water , and initial mass of the oil, m0oil are defined as follows:

m0water =
∑

i,j,kNw(i, j, k)Vpor(i, j, k), m0oil =
∑

i,j,kNo(i, j, k)Vpor(i, j, k), whereNw(i, j, k),

No(i, j, k), and Vpor(i, j, k) are the concentration of water, concentration of oil, and the pore

volume of the (i, j, k) grid block respectively. We set TOL1 = TOL2 = 10−4.
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Wells: 3 production wells, 6 injection well
Injection well (1): Pressure specified, 4000.0 psi
Injection well (2): Pressure specified, 3300.0 psi
Injection well (3): Pressure specified, 4000.0 psi
Injection well (4): Pressure specified, 4400.0 psi
Injection well (5): Pressure specified, 3700.0 psi
Injection well (6): Pressure specified, 4400.0 psi

Production well (1): Pressure specified, 2000.0 psi
Production well (2): Pressure specified, 2000.0 psi
Production well (3): Pressure specified, 2000.0 psi

Total Simulation time: 128.0 days
Finer (Unit) time step: 0.05 days

Number of grids: 891 grids (33 × 9 × 1)
Absolute Permeabilities: kxx, kyy, kzz highly varying, range: (5.27E-10, 3.10E+3) md

Initial porosity, ϕ0 0.2
Water viscosity, µw 1.0 cp

Oil viscosity, µo 2.0 cp

Initial oil concentration, co 44.8 lbm/ft
3

Initial oil pressure, po 400.0 psi
Water compressibility cfw : 1.E-6 (1/psi)

Oil compressibility cfo : 1.E-4 (1/psi)
Rock compressibility: 1.E-6 (1/psi)

Rock density: 165.44 lbm/ft
3

Initial water density, ρw: 56.0 lbm/ft
3

Initial oil density, ρo 62.34 lbm/ft
3

Young’s Modulus (E) 1.2E6 psi
Possion Ratio, ν 0.35

Biot’s constant, α 1.0
Biot Modulus, M 1.E8 psi

λ = Eν
(1+ν)(1−2ν) 1.037E6 psi

L (introduced fixed stress parameter) α2

2λ (1/psi)
Flow Boundary Conditions: no flow boundary condition on all 6 boundaries

Mechanics B.C.:
“X+” boundary (EBCXX1()) σxx = σ · nx = 10, 000psi, (overburden pressure)

“X-” - boundary (EBCXXN1()) u = 0, zero displacement
“Y+” - boundary (EBCYY1()) u = 0, zero displacement
“Y-” - boundary (EBCYYN1()) σyy = σ · ny = 2000psi
“Z+” - boundary (EBCZZ1()) u = 0, zero displacement
“Z-” - boundary (EBCZZN1()) σzz = σ · nz = 1000psi

Table 2.7: Input Parameters for the Frio Field Model
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Results

Figures 2.13, 2.14, 2.15, and 2.16 show water pressure profile and mechanical displace-

ments in the x, y, and z directions respectively for the Frio field model after 128.0 simulation

days. We clearly see that the results for both single rate and multirate implementations

are identical.

Figure 2.12a shows the accumulated CPU run time for the single rate case (q = 1), and

for multirate cases: q = 2, 4, and 8. The multirate iterative coupling algorithm with

two flow finer time steps within one coarser mechanics time step (q = 2) results in 12.25%

reduction in CPU run time compared to the single rate case. Multirate couplings (q = 4 and

q = 8) result in 18.18% and 20.05% reductions in CPU run times respectively. Figure 2.12b

explains the reduction in CPU run time observed in the multirate case. By just solving for

two flow finer time steps within one coarse mechanics time step (q = 2), the total number

of mechanics linear iterations was reduced by 47.78% with reference to the single rate case.

Multirate couplings (q = 4 and q = 8) result in 73.07% and 85.75% reductions in the number

of mechanics linear iterations respectively, which in turn, reduce the CPU run time as well.

Figure 2.12c shows the total number of flow linear iterations in the four cases. We see a

slight increase in the total number of flow linear iterations for multirate iterative coupling

schemes. The case (q = 2) results in 1.25% increase in the total number of flow linear

iterations. Multirate couplings (q = 4) and (q = 8) result in 2.89% and 4.82% increase in

the total number of flow linear iterations respectively. From these results, we see that the

huge decrease in the number of accumulated mechanics linear iterations outperform the

overhead introduced by the increase in the number of accumulated flow linear iterations.

This is a key factor to the success of the iterative multirate coupling scheme in reducing

the overall CPU run time. Figure 2.12d shows the number of flow/mechanics coupling

iterations per coarse mechanics time step for the four cases.

2.5.4 Conclusions

We identify three factors that determine the efficiency of multirate schemes:

1. The relative computational cost of the flow solve versus the mechanics solve: if the
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Figure 2.12: Frio Field Model
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Figure 2.13: Pressure Profiles after 128.0 simulation days (psi)
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Figure 2.14: Displacement in (x) direction after 128.0 simulation days (ft)
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Figure 2.15: Displacement in (y) direction after 128.0 simulation days (ft)
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Figure 2.16: Displacement in (z) direction after 128.0 simulation days (ft)
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computational cost of solving the coupled problem is dominated by the mechanics

solve, then reducing the number of mechanics solve will substantially reduce the

overall running time compared to single rate schemes. The multirate schemes are

expected to be more useful in this case.

2. Longer simulation periods lead to larger time savings. During early time steps in

the simulation, relatively larger numbers of coupling iterations are observed. As the

model reaches mechanics equilibrium, the number of iterative coupling iterations per

coarse mechanics time step gets reduced. This suggests a dynamic iterative coupling

scheme, in which a single rate scheme is employed during early time steps in the

simulation, and as the problem approaches mechanics equilibrium, multirate scheme

should be employed with adaptive q.

3. Tolerance values used in the convergence stopping criteria affect the efficiency of

multirate coupling schemes as well. Loose tolerance values reduce the number of

iterative coupling iterations per coarse mechanics time step, which in turn reduces

the overall running time. It is a tradeoff between the desired level of accuracy versus

computational efficiency and is problem dependent.

Although the theory provided in this work is for single phase flow model, we anticipate

that the multirate iterative coupling schemes will be of more importance for nonlinear flow

problems coupled with geomechanics, as nonlinearities in the flow problem impose restric-

tions on the flow time step size. The multirate iterative coupling scheme would be a natural

candidate for such nonlinear flow problems coupled with geomechanics.

The work considered in this chapter has been published in [6, 7, 11, 13].
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Chapter 3

Error Analysis of Single Rate Iterative Coupling

Schemes for Poroelastic Media

The work in this chapter addresses the error analysis for iteratively coupled flow and

mechanics problems. More specifically, we derive a priori error estimates for quantifying the

error between the solution obtained at any iterate (in iteratively coupled problems) and the

true solution. Our approach is based on studying the equations satisfied by the difference

of iterates and utilizing a Banach contraction argument to show that the corresponding

scheme is a fixed point iteration. Obtained contraction results are then used to derive

theoretical convergence error estimates for the single rate iterative coupling scheme.

3.1 Brief Literature Review on Error Estimates for Coupled Flow-
Mechanics Problems

We first note that the rigorous mathematical analysis of the iterative and explicit coupling

schemes, proposed in literature, has received relatively less attention compared to the pro-

posed linear and nonlinear extensions. To the best of our knowledge, the first asymptotic

error estimates for spatially discrete Galerkin approximations of the Biot’s model were

presented by [69]. Few years later, [40] considered finite difference methods for the Biot’s

model on staggered grids, derived stability estimates, and analyzed convergence for the

discretized system. In a sequence of two papers, [70, 71] studied the continuous in time

and fully-discrete Biot’s model in which mixed formulation is used for flow and continuous

The theoretical work in this chapter is a collaborative work with Dr. Kundan Kumar, under the
supervision of Prof. Mary Wheeler. This work has been presented at the ECMOR XV conference [10],
and submitted as an ICES Report [12]. The ECMOR conference paper contains numerical simulations
performed in IPARS. The numerical implementation is done primarily by Tameem Almani with helpful
discussions with Drs. Kundan Kumar and Gurpreet Singh.
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Galerkin is used for mechanics. A priori error estimates are derived in both cases respec-

tively. [34], on the other hand, derived a posteriori error estimates for the quasi-static Biot

model, resulting in reliable error bounds with all constants involved in the estimates are

being specified. Such error estimators can be used to perform adaptive simulations. Re-

cently, [89] derived a priori error estimates for the quasi-static Biot model in which flow is

discretized by the multipoint flux mixed finite element method, and elasticity uses contin-

uous piecewise linear Galerkin finite elements. [75] considered finite element discretizations

of the Biot’s model based on MINI and stabilized P1-P1 elements, and derived error es-

timates of the fully discrete system accordingly. The work of [59] considers a formulation

of the Biot’s system in four unknowns including pore pressure, fluid flux, stress tensor,

and solid displacement, using a combination of two-mixed formulations for the flow and

mechanics, and derived a priori error estimates of the fully coupled system accordingly. We

note here that all previously derived error estimates consider simultaneous coupling of flow

and mechanics.

In this work, we consider iterative coupling schemes instead, and drive error estimates

for the fixed-stress split iterative coupling scheme for the quasi-static Biot model. The

approach we follow in deriving our a priori error estimates utilizes previously established

results in a clever way, under the assumption that the solution obtained by the iterative

coupling scheme converges to the solution obtained by the simultaneously coupled scheme.

Under such assumption, the problem is simplified into estimating the error between the

solution obtained by the iterative coupling scheme, and the one obtained by the simultane-

ously coupled scheme. In fact, we show that the former converges to the later geometrically

by a Banach contraction argument. To the best of our knowledge, this is the first rigor-

ous derivation of a priori error estimates for the fixed-stress coupling scheme for the Biot

system.
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3.2 Model Equations and Discretization

We assume a linear, elastic, heterogeneous, and isotropic poro-elastic medium in which

the reservoir is saturated with a slightly compressible fluid. We follow exactly the same

quasi-static Biot model [16, 45] described in section 2.2 in Chapter 2. Moreover, the same

assumptions listed in 2.2.1 apply here. Furthermore, we will follow the same mixed varia-

tional formulation described in section 2.2.4 in Chapter 2.

3.3 Error Analysis for the Fixed-Stress Split Scheme

For a given time step t = tk, and a given iterative coupling iteration n ≥ 0, we need to

estimate ‖ξn,kh − ξ(tk)‖, where ξ may stand for ph, zh, and uh. By the triangle inequality,

we can write:

‖ξn,kh − ξ(tk)‖ ≤ ‖ξ
n,k
h − ξ

k
h‖+ ‖ξkh − ξ(tk)‖

where ξkh is the solution obtained by solving the coupled flow and mechanics equations

simultaneously. Error estimates for the second term on the right hand side have been

derived in the work of [70,71]. It only remains to estimate the first term ‖ξn,kh − ξkh‖. This

can be done in two steps: first we derive a Banach contraction argument on the difference

between the solution obtained at a particular iterative coupling iteration ξn,kh , and the

solution obtained by solving the coupled system simultaneously (fully implicit scheme, ξkh).

Then, we derive stability estimates for the fully implicit scheme, and combine the two to

bound the term ‖ξn,k − ξkh‖. The two steps are detailed below.

3.3.1 Step 1: Banach Contraction Estimate on the Difference between Itera-
tive and Implicit Solutions

We first derive a Banach contraction estimate on the difference: ‖ξn,k − ξkh‖. We note that

the weak formulation of the fully discrete single-rate fixed-stress split iterative coupling

scheme is given in equations (2.3.20) - (2.3.22). In contrast, the weak formulation of the

fully discrete implicit scheme reads:
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Find pkh ∈ Qh, z
k
h ∈ Zh, and ukh ∈ V h such that,

∀θh ∈ Qh ,
1

∆t

(
(

1

M
+ cfϕ0)

(
pkh − pk−1

h

)
, θh

)
+

1

µf

(
∇ · zkh, θh

)
= − α

∆t

(
∇ ·
(
ukh − uk−1

h

)
, θh

)
+
(
q̃h, θh

)
, (3.3.1)

∀qh ∈ Zh ,
(
K−1zkh, qh

)
=
(
pkh,∇ · qh

)
+
(
ρf,rg∇ η, qh

)
, (3.3.2)

∀vh ∈ Vh , 2G(ε(ukh), ε(vh)) + λ(∇ · ukh,∇ · vh)− α(pkh,∇ · vh) = (fkh,vh). (3.3.3)

Subtracting equations (3.3.3), (3.3.2), and (3.3.1), from (2.3.22), (2.3.21), and (2.3.20)

respectively, and noting that fn+1,k
h = fkh, we get:

∀θh ∈ Qh ,
1

∆t

(
(

1

M
+ cfϕ0)

(
pn+1,k
h − pkh

)
, θh

)
+

1

µf

(
∇ · (zn+1,k

h − zkh), θh
)

= − α

∆t

(
∇ ·
(
un,kh − u

k
h

)
, θh

)
− L

∆t

(
pn+1,k
h − pn,kh , θh

)
,

(3.3.4)

∀qh ∈ Zh ,
(
K−1(zn+1,k

h − zkh), qh
)

=
(
pn+1,k
h − pkh,∇ · qh

)
, (3.3.5)

∀vh ∈ Vh , 2G(ε(un+1,k
h − ukh), ε(vh)) + λ(∇ · (un+1,k

h − ukh),∇ · vh)− α(pn+1,k
h − pkh,∇ · vh).

(3.3.6)

Define en+1
p = pn+1,k

h − pkh, en+1
u = un+1,k

h − ukh, and en+1
z = zn+1,k

h − zkh. Equations (3.3.4),

(3.3.5), and (3.3.6) can be written as:

∀θh ∈ Qh ,
1

∆t
(

1

M
+ cfϕ0 + L)

(
en+1
p , θh

)
+

1

µf

(
∇ · en+1

z , θh

)
=

1

∆t

(
− α∇ · enu + Lenp , θh

)
,

(3.3.7)

∀qh ∈ Zh ,
(
K−1en+1

z , qh

)
=
(
en+1
p ,∇ · qh

)
, (3.3.8)

∀vh ∈ Vh , 2G(ε(en+1
u ), ε(vh)) + λ(∇ · en+1

u ,∇ · vh)− α(en+1
p ,∇ · vh) = 0. (3.3.9)

Let β = 1
M

+ cfϕ0 + L. Testing (3.3.7) with θh = en+1
p , and (3.3.8) with qh = en+1

z , we

obtain:

β
∥∥∥en+1

p

∥∥∥2

Ω
+

∆t

µf
(∇ · en+1

z , en+1
p )Ω =

(
− α∇ · enu + Lenp , e

n+1
p

)
Ω
. (3.3.10)(

K−1en+1
z , en+1

z

)
Ω

=
(
en+1
p ,∇ · en+1

z

)
Ω
. (3.3.11)
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Substituting (3.3.11) into (3.3.10), defining enσ as χenσ = Lenp − α∇ · enu, where χ is an

adjustable parameter, and applying Young’s inequality, we obtain:

β
∥∥∥en+1

p

∥∥∥2

Ω
+

∆t

µf

∥∥∥K−1/2en+1
z

∥∥∥
Ω
≤ 1

2ε

∥∥∥enσ∥∥∥2

Ω
+
ε

2

∥∥∥en+1
p

∥∥∥2

Ω
.

The choice ε = β gives (after multiplying by 2
β
):∥∥∥en+1

p

∥∥∥2

Ω
+

2∆t

βµf

∥∥∥K−1/2en+1
z

∥∥∥2

Ω
≤ 1

β2

∥∥∥χenσ∥∥∥2

Ω
. (3.3.12)

Multiplying the elasticity equation (3.3.9) by a free parameter c0, and testing with vh =

en+1
u , we get:

2Gc0‖ε(en+1
u )‖2

Ω + λc0‖∇ · en+1
u ‖2

Ω − αc0(en+1
p ,∇ · en+1

u )Ω = 0. (3.3.13)

Combining flow (3.3.12) with elasticity (3.3.13), we obtain:

2Gc0‖ε(en+1
u )‖2

Ω +
{∥∥∥en+1

p

∥∥∥2

Ω
− αc0(en+1

p ,∇ · en+1
u )Ω + λc0‖∇ · en+1

u ‖2
Ω

}
+

2∆t

βµf

∥∥∥K−1/2en+1
z

∥∥∥2

Ω
≤ χ2

β2

∥∥∥enσ∥∥∥2

Ω
. (3.3.14)

Expanding the right hand side to match terms on the left hand side (to form a complete

square): ∥∥∥enσ∥∥∥2

=
L2

χ2

∥∥∥enp∥∥∥2

Ω
− 2αL

χ2

(
enp ,∇ · enu

)
Ω

+
α2

χ2

∥∥∥∇ · δenu∥∥∥2

Ω
.

The following inequalities should be satisfied: 1 > L2

χ2 , 2αL
χ2 = αc0, and λc0 = α2

χ2 . The

second and third equalities lead to the following parameter assignments: c0 = 2L
χ2 , and

L = α2

2λ
. The first inequality leads to the condition: χ > α2

2λ
. Now, (3.3.14) can be written

as:

2Gc0‖ε(en+1
u )‖2

Ω +
2∆t

βµf

∥∥∥K−1/2en+1
z

∥∥∥2

Ω
+
(

1− L2

χ2

)∥∥∥en+1
p

∥∥∥2

Ω
+
∥∥∥en+1

σ

∥∥∥2

Ω
≤
(χ
β

)2∥∥∥enσ∥∥∥2

Ω
.

(3.3.15)

For contraction to hold, we require χ
β
< 1. Together with the previous condition χ > α2

2λ
,

the value of χ should be chosen such that

α2

2λ
< χ <

1

M
+ cfϕ0 +

α2

2λ
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This imposes the following condition on our given parameters (which corresponds to the

condition on the constrained specific storage coefficient in the work of [70,71]:

1

M
+ cfϕ0 ≥ γ0 > 0. for some positive constant γ0. (3.3.16)

In general, for n ≥ 0, we can write:∥∥∥en+1
σ

∥∥∥2

Ω
≤
(χ
β

)2∥∥∥enσ∥∥∥2

Ω

≤
(χ
β

)2(n+1)∥∥∥e0
σ

∥∥∥2

Ω
.

≤
(χ
β

)2(n+1)∥∥∥Le0
p − α∇ · e0

u

∥∥∥2

Ω
. (3.3.17)

Combining (3.3.15) with (3.3.17), together with Young’s inequality, we can write:(
1− L2

χ2

)∥∥∥en+1
p

∥∥∥2

Ω
≤
(χ
β

)2(n+1)∥∥∥Le0
p − α∇ · e0

u

∥∥∥2

Ω

≤
(χ
β

)2(n+1)(
L2
∥∥∥e0

p

∥∥∥2

Ω
+ α2

∥∥∥∇ · e0
u

∥∥∥2

Ω
− 2Lα(e0

p,∇ · e0
u)
)

≤
(χ
β

)2(n+1)(
L2
∥∥∥e0

p

∥∥∥2

Ω
+ α2

∥∥∥∇ · e0
u

∥∥∥2

Ω
+ 2Lα(

1

2ε

∥∥∥e0
p

∥∥∥2

Ω
+
ε

2

∥∥∥∇ · e0
u

∥∥∥2

Ω
)
)

≤
(χ
β

)2(n+1)(
(L2 +

Lα

ε
)
∥∥∥e0

p

∥∥∥2

Ω
+ (α2 + Lαε)

∥∥∥∇ · e0
u

∥∥∥2

Ω

)
for ε > 0.

(3.3.18)

Similarly, we can write:

2Gc0‖ε(en+1
u )‖2

Ω ≤
(χ
β

)2(n+1)(
(L2 +

Lα

ε
)
∥∥∥e0

p

∥∥∥2

Ω
+ (α2 + Lαε)

∥∥∥∇ · e0
u

∥∥∥2

Ω

)
. (3.3.19)

2∆t

βµf

∥∥∥K−1/2en+1
z

∥∥∥2

Ω
≤
(χ
β

)2(n+1)(
(L2 +

Lα

ε
)
∥∥∥e0

p

∥∥∥2

Ω
+ (α2 + Lαε)

∥∥∥∇ · e0
u

∥∥∥2

Ω

)
. (3.3.20)

Combining (3.3.18), (3.3.19), and (3.3.20), we have:∥∥∥en+1
p

∥∥∥2

Ω
+ ‖ε(en+1

u )‖2
Ω +

∥∥∥K−1/2en+1
z

∥∥∥2

Ω
≤(χ

β

)2(n+1)

C1

(
(L2 +

Lα

ε
)
∥∥∥e0

p

∥∥∥2

Ω
+ (α2 + Lαε)

∥∥∥∇ · e0
u

∥∥∥2

Ω

)
. (3.3.21)

where C1 =

[
χ2

χ2−L2 + 1
2Gc0

+
βµf
2∆t

]
. Noting that: e0

p = p0,k
h − pkh = pk−1

h − pkh, and e0
u =
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u0,k
h − ukh = uk−1

h − ukh, (3.3.21) can be written as:∥∥∥pn+1,k
h − pkh

∥∥∥2

Ω
+ ‖ε(un+1,k

h − ukh)‖
2
Ω +

∥∥∥K−1/2zn+1,k
h − zkh

∥∥∥2

Ω
≤(χ

β

)2(n+1)

C1

(
L2 +

Lα

ε

)∥∥∥pkh − pk−1
h

∥∥∥2

Ω
+
(χ
β

)2(n+1)

C1(α2 + Lαε)
∥∥∥∇ · ukh − uk−1

h

∥∥∥2

Ω

(3.3.22)

Let η̃1 = C1(L2 + Lα
ε

), and η̃2 = C1(α2 + Lαε) for ε > 0, (3.3.22) reduces to:∥∥∥pn+1,k
h − pkh

∥∥∥2

Ω
+ ‖ε(un+1,k

h − ukh)‖
2
Ω +

∥∥∥K−1/2(zn+1,k
h − zkh)

∥∥∥2

Ω

≤
(χ
β

)2(n+1)
(
η̃1

∥∥∥pkh − pk−1
h

∥∥∥2

Ω
+ η̃2

∥∥∥∇ · ukh − uk−1
h

∥∥∥2

Ω

)
(3.3.23)

3.3.2 Step 2: Stability Estimate for Implicitly Coupled Scheme

The second step involves deriving a stability estimate on ‖ξkh − ξk−1
h ‖. We recall that

the weak formulation of the implicit scheme is given by equations (3.3.1) - (3.3.3). The

derivation of the stability estimate for the implicit scheme is carried out in three steps: by

first considering the flow equations, followed by the mechanics equation and then combining

the two to derive the final estimate. For simplicity, we define c̃f = 1
M

+ cfϕ0.

3.3.2.1 Flow Equations

Testing (3.3.1) with θh = pkh − pk−1
h , and multiplying the whole equation by ∆t, we obtain

c̃f

∥∥∥pkh − pk−1
h

∥∥∥2

+
∆t

µf

(
∇ · zkh, pkh − pk−1

h

)
= α

(
∇ · (ukh − uk−1

h ), pkh − pk−1
h

)
+
(
q̃h, p

k
h − pk−1

h

)
(3.3.24)

Next, we consider the flux equation (3.3.2). Taking the difference of two consecutive time

steps t = tk and t = tk−1 and testing with qh = zkh, we obtain:(
K−1(zkh − zk−1

h ), zkh

)
=
(
pkh − pk−1

h ,∇ · zkh
)

(3.3.25)
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Substituting (3.3.25) into (3.3.24), with some algebraic manipulations of the resulting term

(using the identity: a(a− b) = 1
2
(a2 − b2 + (a− b)2)), we derive

c̃f

∥∥∥pkh − pk−1
h

∥∥∥2

+
∆t

2µf

(∥∥∥K−1/2zkh

∥∥∥2

−
∥∥∥K−1/2zk−1

h

∥∥∥2

+
∥∥∥K−1/2(zkh − zk−1

h )
∥∥∥2)

= −α
(
∇ · (ukh − uk−1

h ), pkh − pk−1
h

)
+
(
q̃h, p

k
h − pk−1

h

)
(3.3.26)

3.3.2.2 Elasticity Equation

Considering (3.3.3) for the difference of two consecutive time steps, t = tk and t = tk−1,

and testing with vh = ukh − uk−1
h , we obtain

2G
∥∥∥ε(ukh − uk−1

h )
∥∥∥2

+ λ
∥∥∥∇ · (ukh − uk−1

h )
∥∥∥2

− α
(
pkh − pk−1

h ,∇ · (ukh − uk−1
h )

)
=
(
fkh − fk−1

h ,ukh − uk−1
h

)
(3.3.27)

3.3.2.3 Combining Flow and Elasticity Equations

Combining (3.3.26) with (3.3.27) yields

c̃f

∥∥∥pkh − pk−1
h

∥∥∥2

+
∆t

2µf

(∥∥∥K−1/2zkh

∥∥∥2

−
∥∥∥K−1/2zk−1

h

∥∥∥2

+
∥∥∥K−1/2(zkh − zk−1

h )
∥∥∥2)

+2G
∥∥∥ε(ukh − uk−1

h )
∥∥∥2

+ λ
∥∥∥∇ · (ukh − uk−1

h )
∥∥∥2

=
(
q̃h, p

k
h − pk−1

h

)
︸ ︷︷ ︸

R1

+
(
fkh − fk−1

h ,ukh − uk−1
h

)
︸ ︷︷ ︸

R2

(3.3.28)

To bound the terms (R1 and R2), we will use Poincaré’s (2.1.1) and Korn’s inequalities

(2.1.2). By Poincaré, Korn, and Young inequalities, we bound R1 and R2 as:

|R1| ≤
1

2ε1

∥∥∥q̃h∥∥∥2

+
ε1
2

∥∥∥pkh − pk−1
h

∥∥∥2

|R2| ≤
1

2ε2

∥∥∥fkh − fk−1
h

∥∥∥2

+
ε2
2

∥∥∥ukh − uk−1
h

∥∥∥2

≤ 1

2ε2

∥∥∥fkh − fk−1
h

∥∥∥2

+
ε2P

2
ΩC

2
κ

2
‖ε(ukh − uk−1

h )‖2.
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for ε1, and ε2 > 0. Choosing ε1 = c̃f , and ε2 = 2G
P2

ΩC
2
κ
, and summing for 1 ≤ k ≤ N , where

N denotes the total number of time steps (note telescopic cancellations), we derive

c̃f
2

N∑
k=1

∥∥∥pkh − pk−1
h

∥∥∥2

+
∆t

2µf

(∥∥∥K−1/2zNh

∥∥∥2

+
N∑
k=1

∥∥∥K−1/2(zkh − zk−1
h )

∥∥∥2)
+G

N∑
k=1

∥∥∥ε(ukh − uk−1
h )

∥∥∥2

+ λ
N∑
k=1

∥∥∥∇ · (ukh − uk−1
h )

∥∥∥2

≤ ∆t

2µf

∥∥∥K−1/2z0
h

∥∥∥2

+
1

2c̃f

N∑
k=1

∥∥∥q̃h∥∥∥2

+
P2

ΩC
2
κ

4G

N∑
k=1

∥∥∥fkh − fk−1
h

∥∥∥2

. (3.3.29)

Therefore, we can write:

N∑
k=1

∥∥∥pkh − pk−1
h

∥∥∥2

≤ ∆t

µf c̃f

∥∥∥K−1/2z0
h

∥∥∥2

+
1

c̃2
f

N∑
k=1

∥∥∥q̃h∥∥∥2

+
P2

ΩC
2
κ

2Gc̃f

N∑
k=1

∥∥∥fkh − fk−1
h

∥∥∥2

,

(3.3.30)

N∑
k=1

∥∥∥∇ · (ukh − uk−1
h )

∥∥∥2

≤ ∆t

2µfλ

∥∥∥K−1/2z0
h

∥∥∥2

+
1

2c̃fλ

N∑
k=1

∥∥∥q̃h∥∥∥2

+
P2

ΩC
2
κ

4Gλ

N∑
k=1

∥∥∥fkh − fk−1
h

∥∥∥2

.

(3.3.31)

Combining (3.3.30) with (3.3.31), we have:

N∑
k=1

∥∥∥pkh − pk−1
h

∥∥∥2

+
N∑
k=1

∥∥∥∇ · (ukh − uk−1
h )

∥∥∥2

≤ ∆tη̃3

∥∥∥K−1/2z0
h

∥∥∥2

+ η̃4

N∑
k=1

∥∥∥q̃h∥∥∥2

+ η̃5

N∑
k=1

∥∥∥fkh − fk−1
h

∥∥∥2

(3.3.32)

where η̃3 = 1
µf
C2, η̃4 = 1

c̃f
C2, η̃5 =

P2
ΩC

2
κ

2G
C2, and C2 =

(
1
c̃f

+ 1
2λ

)
. Combining (3.3.23) with

(3.3.32), for a generic constant C3 > 0 (which will be revealed by the end of the derivation
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but we suppress its value now for the sake of simplicity), we can derive:∥∥∥pn+1,k
h − pkh

∥∥∥2

Ω
+ ‖ε(un+1,k

h − ukh)‖
2
Ω +

∥∥∥K−1/2(zn+1,k
h − zkh)

∥∥∥2

Ω

≤
(χ
β

)2(n+1)
(
η̃1

∥∥∥pkh − pk−1
h

∥∥∥2

Ω
+ η̃2

∥∥∥∇ · ukh − uk−1
h

∥∥∥2

Ω

)
≤
(χ
β

)2(n+1)

C3

[∥∥∥pkh − pk−1
h

∥∥∥2

Ω
+
∥∥∥∇ · ukh − uk−1

h

∥∥∥2

Ω

]
≤
(χ
β

)2(n+1)

C3

[ N∑
k=1

∥∥∥pkh − pk−1
h

∥∥∥2

Ω
+

N∑
k=1

∥∥∥∇ · ukh − uk−1
h

∥∥∥2

Ω

]
≤
(χ
β

)2(n+1)

C3

[
∆tη̃3

∥∥∥K−1/2z0
h

∥∥∥2

+ η̃4

N∑
k=1

∥∥∥q̃h∥∥∥2

+ η̃5

N∑
k=1

∥∥∥fkh − fk−1
h

∥∥∥2]
≤
(χ
β

)2(n+1)

C3

[
∆t
∥∥∥K−1/2z0

h

∥∥∥2

+
N∑
k=1

∥∥∥q̃h∥∥∥2

+
N∑
k=1

∥∥∥fkh − fk−1
h

∥∥∥2]
Therefore, we can write:∥∥∥pn+1,k

h − pkh
∥∥∥
L2(Ω)

+ ‖ε(un+1,k
h − ukh)‖L2(Ω) +

∥∥∥K−1/2(zn+1,k
h − zkh)

∥∥∥
L2(Ω)

≤ C3

(χ
β

)(n+1)[
∆t
∥∥∥K−1/2z0

h

∥∥∥2

L2(Ω)
+

N∑
k=1

∥∥∥q̃h∥∥∥2

L2(Ω)
+

N∑
k=1

∥∥∥fkh − fk−1
h

∥∥∥2

L2(Ω)

]1/2

(3.3.33)

Now, we assume that the permeability tensor K is uniformly bounded and uniformly

elliptic. There exits positive constants λmin, and λmax, such that

λmin‖ξ‖2≤ ξtK(x)ξ ≤ λmax‖ξ‖2. (3.3.34)

We can write

‖K−1/2(zn+1,k
h − zkh)‖L2(Ω)≥

1

λ
1/2
max

‖zn+1,k
h − zkh‖L2(Ω).

In addition, by Poincaré’s inequality (2.1.1) and Korn’s first inequality (2.1.2), we have:

‖ε(un+1,k
h − ukh)‖L2(Ω)≥

1

PΩCκ
‖un+1,k

h − ukh‖H1(Ω).

Therefore, (3.3.35) can be written as:∥∥∥pn+1,k
h − pkh

∥∥∥
L2(Ω)

+
∥∥∥un+1,k

h − ukh
∥∥∥
H1(Ω)

+
∥∥∥zn+1,k

h − zkh
∥∥∥
L2(Ω)

≤ C3

(χ
β

)(n+1)[
∆t
∥∥∥K−1/2z0

h

∥∥∥2

L2(Ω)
+

N∑
k=1

∥∥∥q̃h∥∥∥2

L2(Ω)
+

N∑
k=1

∥∥∥fkh − fk−1
h

∥∥∥2

L2(Ω)

]1/2

(3.3.35)
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We conclude that for every coupling iteration n ≥ 0,∥∥∥pn+1,k
h − p(tk)

∥∥∥
`∞(L2)

+
∥∥∥un+1,k

h − u(tk)
∥∥∥
`∞(H1)

+
∥∥∥zn+1,k

h − z(tk)
∥∥∥
`∞(L2)

≤
∥∥∥pn+1,k

h − pkh
∥∥∥
`∞(L2)

+
∥∥∥un+1,k

h − ukh
∥∥∥
`∞(H1)

+
∥∥∥zn+1,k

h − zkh
∥∥∥
`∞(L2)

+
∥∥∥pkh − p(tk)∥∥∥

`∞(L2)
+
∥∥∥ukh − u(tk)

∥∥∥
`∞(H1)

+
∥∥∥zkh − z(tk)

∥∥∥
`∞(L2)

≤ C3

(χ
β

)(n+1)[
∆t
∥∥∥K−1/2z0

h

∥∥∥2

L2(Ω)
+

N∑
k=1

∥∥∥q̃h∥∥∥2

L2(Ω)
+

N∑
k=1

∥∥∥fkh − fk−1
h

∥∥∥2

L2(Ω)

]1/2

+
∥∥∥pkh − p(tk)∥∥∥

`∞(L2)
+
∥∥∥ukh − u(tk)

∥∥∥
`∞(H1)

+
∥∥∥zkh − z(tk)

∥∥∥
`2(L2)

3.3.3 Error Estimate Result

By Phillips and Wheeler (2007) [70, 71], we have:∥∥∥pkh − p(tk)∥∥∥2

`∞(L2)
+
∥∥∥ukh − u(tk)

∥∥∥2

`∞(H1)
+
∥∥∥zkh − z(tk)

∥∥∥2

`2(L2)
≤ C(h2r1+2 + h2r2) +O(∆t2)

for a positive constant C > 0 and mesh size h. We note that r1 denotes the degree of the

polynomials used in the mixed space (Qh,Zh), and r2 denotes the degree of the polynomials

used in the displacement space V h. In our case, r1 = 0, and r2 = 1. Therefore, our final

estimate takes the form:∥∥∥pn+1,k
h − p(tk)

∥∥∥
`∞(L2)

+
∥∥∥un+1,k

h − u(tk)
∥∥∥
`∞(H1)

+
∥∥∥zn+1,k

h − z(tk)
∥∥∥
`∞(L2)

≤ C3

(χ
β

)(n+1)[
∆t
∥∥∥K−1/2z0

h

∥∥∥2

L2(Ω)
+

N∑
k=1

∥∥∥q̃h∥∥∥2

L2(Ω)
+

N∑
k=1

∥∥∥fkh − fk−1
h

∥∥∥2

L2(Ω)

]1/2

+ 3
(

2Ch2 +O(∆t2)
)1/2

where C3 = 3
(

1 + PΩCκ + λ
1/2
max

)(
Max(η̃1, η̃2) ×Max(η̃3, η̃4, η̃5)

)2

. The above discussions

are summarized in the following theorem:

Theorem 3.3.1. For a particular time step tk, and a particular flow-mechanics coupling

iteration n ≥ 1, and assuming the lowest order Raviart-Thomas spaces for flow, and contin-

uous piecewise linear approximations for mechanics, and assuming equations (3.3.16) and

(3.3.34), and sufficient regularity in the true solution, the following finite element error
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estimate, to the leading order in time, for the single rate fixed-stress split iterative coupling

scheme holds:∥∥∥pn,kh − p(tk)∥∥∥
`∞(L2)

+
∥∥∥un,kh − u(tk)

∥∥∥
`∞(H1)

+
∥∥∥zn,kh − z(tk)

∥∥∥
`∞(L2)

≤ C1

(
χ
β

)n[
∆t
∥∥∥K−1/2z0

h

∥∥∥2

L2(Ω)
+
∑N

k=1

∥∥∥q̃h∥∥∥2

L2(Ω)
+
∑N

k=1

∥∥∥fkh − fk−1
h

∥∥∥2

L2(Ω)

]1/2

+
(
C2h

2 +O(∆t2)
)1/2

where C1 = 3
(

1 + PΩCκ + λ
1/2
max

)(
Max(η̃1, η̃2)×Max(η̃3, η̃4, η̃5)

)2

,

and C2 = C2(T,K,M, cf , ϕ0,PΩ, Cκ, p
k
h, p

k
h,t, z

k
h,u

k
h,t).

3.4 Error Analysis for the Undrained Split Scheme

In a similar way, we can derive a priori error estimates for the single rate undrained-split

iterative coupling scheme, presented in section 2.4 in Chapter 2. In this case, only the

first step of the proof (shown in section 3.3.1) needs to be changed. Deriving a Banach

contraction estimate on the difference ‖ξn,k − ξkh‖ follows similar ideas presented in section

2.4. The second step of the proof present presented in section 3.3.2 remains unchanged, as

both the fixed stress split and the undrained split iterative coupling approaches converge

to the solution obtained by the simultaneously coupled scheme. Due to space restrictions

(in this dissertation), the details are spared.

Deriving a priori error estimates for the multirate coupling schemes is more complicated.

We have initial results in that direction under certain assumptions (which require more

validation). This will be considered for future work.

Finally, it should be noted that the work involved in this chapter has been presented and

published in [10].
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Chapter 4

Explicit Coupling Schemes for Poroelastic Media

In this chapter, we consider single rate and multirate explicit schemes for the quasi-static

Biot system modeling coupled flow and geomechanics in a poroelastic medium. These

schemes are the most widely used in practice that follows a sequential procedure in which

the flow and mechanics problems are fully decoupled. In a typical explicit coupling scheme,

the flow problem is solved first with time-lagging the displacement term followed by the

mechanics solve. The decoupling of the two equations makes it easy to implement and the

time marching without any iterations leads to a lower computational cost. The drawback

is that this scheme is only conditionally stable. For the single rate scheme, the rigorous

stability properties have been investigated in the work of Mikelić and Wheeler [64]. How-

ever, in the case when the multiple flow time steps are taken for one mechanics time step,

it is unclear how these stability properties change. In this chapter, we focus our attention

on the explicit coupling approach, establish its stability theoretically for both fully discrete

single rate and multirate schemes, and investigate its computational time savings numer-

ically. More specifically, we will provide fully discrete schemes for both the single rate

and multirate approaches that use Backward Euler time discretization, mixed spaces for

flow, and conformal Galerkin for mechanics. We perform a rigorous stability analysis and

derive the conditions on reservoir parameters and the number of finer flow solves to ensure

stability for both schemes. Furthermore, we investigate the computational time savings for

explicit coupling schemes against iterative coupling schemes. To the best of our knowledge,

this is the first analysis of the multirate explicit coupling scheme for Biot equations.

The theoretical work in this chapter is a collaborative work with Dr. Kundan Kumar, under the
supervision of Prof. Mary Wheeler. It has been published as an ICES Report [9], and submitted to the
“Computers & Mathematics with Applications” journal. The numerical implementation in IPARS is done
primarily by Tameem Almani with helpful discussions with Drs. Kundan Kumar and Gurpreet Singh.
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For illustration purposes, figures 4.1a and 4.1b illustrate the differences between single rate

versus multirate explicit coupling schemes. Figure 4.1a represents a typical single rate

scheme, in which the flow and mechanics problems share the exact same time step. In

contrast, Figure 4.1b demonstrates a typical multirate scheme, in which the flow problem

takes multiple finer local time steps within one coarser mechanics time step.

tflow, tmech = 0
(initial time = 0)

k = 0

Fluid Flow: tflow = tflow + ∆t

Compute pore pressure, pk+1

Mechanics (Biot Model):
tmech = tmech + ∆t

Compute displacement, uk+1

Update pore volume

k = k + 1

(a) Single Rate

tflow, tmech = 0
(initial time = 0)

k = 0

m = 1 (flow iteration index)

Fluid Flow: tflow = tflow + ∆t

Compute pore pressure, pk+m

m = (Max
flow

iterations:
q)?

m = m + 1

Mechanics (Biot Model):
tmech = tmech + q∆t

Compute displacement, uk+q

Update pore volume

k = k + q

No

Yes

(b) Multirate

Figure 4.1: Flowchart for the explicit single rate and multirate time steppings for coupled
geomechanics and flow problems

4.1 Model Equations and Discretization

We follow the same model equations and discretization techniques as described in Chapter

2. For this chapter to be self-contained, we briefly discuss the model and its discretizations.

111



We assume a linear, elastic, homogeneous, and isotropic poro-elastic medium Ω ⊂ Rd, d =

2 or 3, in which the reservoir is saturated with a slightly compressible fluid.

4.1.1 Assumptions

The fluid is assumed to be slightly compressible and its density is a linear function of pres-

sure, with a constant viscosity µf > 0. The reference density of the fluid ρf > 0, the Lamé

coefficients λ > 0 and G > 0, the dimensionless Biot coefficient α, and the pore volume

ϕ∗ are all positive. The absolute permeability tensor, K, is assumed to be symmetric,

bounded, uniformly positive definite in space and constant in time.

A quasi-static Biot model [16,45] will be employed in this work. The model reads: Find u

and p satisfying the equations below for all time t ∈]0, T [:

Flow Equation:

∂
∂t

(
( 1
M

+ cfϕ0)p+ α∇ · u
)
−∇ ·

(
1
µf
K(∇ p− ρf,rg∇ η)

)
= q̃ in Ω

Mechanics Equations:

−divσpor(u, p) = f in Ω,

σpor(u, p) = σ(u)− α p I in Ω,

σ(u) = λ(∇ · u)I + 2Gε(u) in Ω

Boundary Conditions:

u = 0 , K(∇ p− ρf,rg∇ η) · n = 0 on ∂Ω

Initial Condition (t = 0) :(
( 1
M

+ cfϕ0)p+ α∇ · u
)

(0) = ( 1
M

+ cfϕ0)p0 + α∇ · u0.

where: g is the gravitational constant, η is the distance in the vertical direction (assumed

to be constant in time), ρf,r > 0 is a constant reference density (relative to the reference

pressure pr), ϕ0 is the initial porosity, M is the Biot constant, q̃ = qs
ρf,r

where qs is a mass

source or sink term taking into account injection into or out of the reservoir. We remark

that the above system is linear and coupled through the Biot coefficient terms.
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4.1.2 Mixed Variational Formulation

A mixed finite element formulation for flow and a conformal Galerkin formulation for

mechanics will be used. The mixed formulation is a locally mass conservative scheme, and

allows for explicit flux computation. The flux is defined as a separate unknown and the

flow equation is rewritten as a system of first order equations. Accordingly, for the fully

discrete formulation (discrete in time and space), we use a mixed finite element method

for space discretization and a backward-Euler time discretization. Let Th denote a regular

family of conforming triangular elements of the domain of interest, Ω. Using the lowest

order Raviart-Thomas (RT) spaces , we have the following discrete spaces (V h for discrete

displacements, Qh for discrete pressures, and Zh for discrete velocities (fluxes)):

V h = {vh ∈ H1(Ω)
d

; ∀T ∈ Th,vh|T ∈ P1
d,vh|∂Ω = 0} (4.1.1)

Qh = {ph ∈ L2(Ω) ; ∀T ∈ Th, ph|T ∈ P0} (4.1.2)

Zh = {qh ∈ H(div; Ω)d ;∀T ∈ Th, qh|T ∈ P1
d, qh · n = 0 on ∂Ω} (4.1.3)

The space of displacements, V h, is equipped with the norm:

‖v‖Vh= (
d∑
i=1

‖vi‖2
Ω)1/2.

We also assume that the finer time step is given by: ∆t = tk − tk−1. If we denote the

total number of timesteps by N, then the total simulation time is given by T = ∆t N, and

ti = i∆t, 0 6 i 6 N denote the discrete time points.

For the fully discrete scheme, we have chosen the Raviart-Thomas spaces for the mixed

finite element discretization. However, the proof extends to other choices for the mixed

spaces, and we will state the results for Multipoint Flux Mixed Finite Element (MFMFE)

spaces [90] in Remark 4.3.2.

Remark 4.1.1. Notation: We adopt the following notations, k denotes the coarser time

step iteration index (for indexing mechanics coarse time steps), m is the finer (local) time

step iteration index (for indexing flow fine time steps), ∆t stands for the unit (finer) time

step, and q is the “fixed” number of local flow time steps per coarse mechanics time step.
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4.2 Single Rate Explicit Coupling Formulation and Analysis

4.2.1 Fully Discrete Scheme for Single Rate

As discussed above, using the mixed finite element method in space and the backward Euler

finite difference method in time, the weak formulation of the single rate scheme reads as

follows.

Definition 4.2.1. (flow equation) Find pk+1
h ∈ Qh, and zk+1

h ∈ Zh such that,

∀θh ∈ Qh, (
1

M
+ cfϕ0)

(pk+1
h − pkh

∆t
, θh

)
+

1

µf

(
∇ · zk+1

h , θh

)
+ α

(
∇ · u

k
h − uk−1

h

∆t
, θh

)
=
(
q̃h, θh

)
(4.2.4)

∀qh ∈ Zh,
(
K−1zk+1

h , qh

)
=
(
pk+1
h ,∇ · qh

)
+
(
∇(ρf,rgη), qh

)
(4.2.5)

Definition 4.2.2. (mechanics equation) Find uk+1
h ∈ V h such that,

∀vh ∈ Vh, 2G(ε(uk+1
h ), ε(vh)) + λ(∇ · uk+1

h ,∇ · vh)− α(pk+1
h ,∇ · vh) =

(
fk+1
h ,vh

)
(4.2.6)

4.2.2 Single Rate Explicit Coupling Algorithm

We start by analyzing the single-rate explicit coupling algorithm, in which both flow and

mechanics share the same time step. To the best of our knowledge, this is the first rigorous

mathematical analysis of the fully discrete single-rate explicitly coupled Biot system. In

addition, the analysis reveals a more general stability condition compared to the one ob-

tained in [77] by elementary means. The algorithm is given as follows: Note that we begin

with k = 1 and we require both u1
h and u0

h for obtaining p2
h. In the first step, we use a fully

implicit method to solve for p1
h,u

1
h. Alternatively, to keep the problem decoupled, we can

use iterative techniques such as fixed stress splitting or undrained splitting [64].

4.2.2.1 Assumptions

For notational convenience, we define

β = (
1

M
+ cfϕ0).
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Algorithm 6: Single Rate Explicit Coupling Algorithm

1 Given initial conditions u0
h and p0

h, solve fully implicitly for p1
h,u

1
h satisfying

Biot model
2 for k = 1, 2, . . . do /* time step index */

3 First Step: Flow equations

4 Given ukh and uk−1
h :

5 Solve for pk+1
h and zk+1

h satisfying definition 4.2.1
6 Second Step: Mechanics equations

7 Given pk+1
h and, zk+1

h :

8 Solve for uk+1
h satisfying definition 4.2.2

For stability to hold, we assume the following:

(A1) β > α2

λ
.

4.2.2.2 Result

Our results make explicit the dependence of the stability on the difference of the above

quantities. we have the following stability result.

Theorem 4.2.1. [Single rate] Under the Assumption A1 above, the following stability result

holds for the single rate explicit coupling scheme for time steps t0 ≤ tk ≤ tJ :

∆t

λµf

(∥∥∥K−1/2zJ+1
h

∥∥∥2

+
J∑
k=1

∥∥∥K−1/2(zk+1
h − zkh)

∥∥∥2)
+

2G

λ

J∑
k=1

∥∥∥ε(uk+1
h − ukh)

∥∥∥2

+
∥∥∥∇ · (uJ+1

h − uJh)
∥∥∥2

≤ C∆t+
∆t2

2λ(β − α2

λ
)

J∑
k=1

∥∥∥q̃h∥∥∥2

+
P2

ΩC
2
κ

2Gλ

J∑
k=1

∥∥∥fk+1
h − fkh

∥∥∥2

4.2.3 Stability Analysis

The proof of the above theorem is carried out in three steps by considering the flow equation,

the mechanics equation and then combining the two together. Recall that β = 1
M

+ cfϕ0.
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Proof. • Step 1: Flow equations

Testing (4.2.4) with θh = pk+1
h − pkh, we obtain

β
1

∆t

∥∥∥pk+1
h − pkh

∥∥∥2

+
1

µf

(
∇ · zk+1

h , pk+1
h − pkh

)
+

α

∆t

(
∇ · (ukh − uk−1

h ), pk+1
h − pkh

)
=
(
q̃h, p

k+1
h − pkh

)
(4.2.7)

Next, we consider the flux equation (4.2.5). Taking the difference of two consecutive

time steps t = tk+1 and t = tk and testing with qh = zk+1
h , we obtain:(

K−1(zk+1
h − zkh), zk+1

h

)
=
(
pk+1
h − pkh,∇ · zk+1

h

)
(4.2.8)

Substituting (4.2.8) into (4.2.7), after some algebraic manipulations of the resulting

term (using: a(a− b) = 1
2
(a2 − b2 + (a− b)2)), we derive

β

∆t

∥∥∥pk+1
h − pkh

∥∥∥2

+
1

2µf

(∥∥∥K−1/2zk+1
h

∥∥∥2

−
∥∥∥K−1/2zkh

∥∥∥2

+
∥∥∥K−1/2(zk+1

h − zkh)
∥∥∥2)

+
α

∆t

(
∇ · ukh − uk−1

h , pk+1
h − pkh

)
=
(
q̃h, p

k+1
h − pkh

)
(4.2.9)

• Step 2: Elasticity equation

Considering (4.2.6) for the difference of two consecutive time steps, t = tk+1 and

t = tk, and testing with vh =
uk+1
h −ukh

∆t
, we obtain

2G

∆t

∥∥∥ε(uk+1
h − ukh)

∥∥∥2

+
λ

∆t

∥∥∥∇ · (uk+1
h − ukh)

∥∥∥2

− α

∆t

(
pk+1
h − pkh,∇ · (uk+1

h − ukh)
)

=
1

∆t

(
fk+1
h − fkh,uk+1

h − ukh
)

(4.2.10)
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• Step 3: Combining flow and elasticity equations

Combining (4.2.9) with (4.2.10) yields

β

∆t

∥∥∥pk+1
h − pkh

∥∥∥2

+
1

2µf

(∥∥∥K−1/2zk+1
h

∥∥∥2

−
∥∥∥K−1/2zkh

∥∥∥2

+
∥∥∥K−1/2(zk+1

h − zkh)
∥∥∥2)

+
2G

∆t

∥∥∥ε(uk+1
h − ukh)

∥∥∥2

+
λ

∆t

∥∥∥∇ · (uk+1
h − ukh)

∥∥∥2

= − α

∆t

(
∇ · (ukh − uk−1

h ), pk+1
h − pkh

)
︸ ︷︷ ︸

R1

+
α

∆t

(
pk+1
h − pkh,∇ · (uk+1

h − ukh)
)

︸ ︷︷ ︸
R2

+
(
q̃h, p

k+1
h − pkh

)
︸ ︷︷ ︸

R3

+
1

∆t

(
fk+1
h − fkh,uk+1

h − ukh
)

︸ ︷︷ ︸
R4

(4.2.11)

Denoting by R1, R2, R3, and R4 the terms on the right hand side, together with

Poincaré’s, Korn’s, and Young’s inequalities, we estimate

|R1| ≤
α

∆t

1

2ε1

∥∥∥∇ · (ukh − uk−1
h )

∥∥∥2

+
α

∆t

ε1
2

∥∥∥pk+1
h − pkh

∥∥∥2

|R2| ≤
α

2∆tε2

∥∥∥∇ · (uk+1
h − ukh)

∥∥∥2

+
αε2
2∆t

∥∥∥pk+1
h − pkh

∥∥∥2

|R3| ≤
1

2ε3

∥∥∥q̃h∥∥∥2

+
ε3
2

∥∥∥pk+1
h − pkh

∥∥∥2

|R4| ≤
1

2∆tε4

∥∥∥fk+1
h − fkh

∥∥∥2

+
ε4

2∆t

∥∥∥uk+1
h − ukh

∥∥∥2

≤ 1

2∆tε4

∥∥∥fk+1
h − fkh

∥∥∥2

+
ε4P

2
ΩC

2
κ

2∆t
‖ε(uk+1

h − ukh)‖2.

for ε1, ε2, ε3, and ε4 > 0. Choosing ε1 = ε2 = α
λ
, ε3 = 2

∆t
(β − α2

λ
), ε4 = 2G

P2
ΩC

2
κ

and

multiplying (4.2.11) by 2∆t
λ

, we derive

∆t

λµf

(∥∥∥K−1/2zk+1
h

∥∥∥2

−
∥∥∥K−1/2zkh

∥∥∥2

+
∥∥∥K−1/2(zk+1

h − zkh)
∥∥∥2)

+
2G

λ

∥∥∥ε(uk+1
h − ukh)

∥∥∥2

+
∥∥∥∇ · (uk+1

h − ukh)
∥∥∥2

≤
∥∥∥∇ · (ukh − uk−1

h )
∥∥∥2

+
∆t2

2βλ− 2α2

∥∥∥q̃h∥∥∥2

+
P2

ΩC
2
κ

2Gλ

∥∥∥fk+1
h − fkh

∥∥∥2

(4.2.12)
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Summing up (4.2.12) for 1 ≤ k ≤ J , for J time steps, with telescopic cancellations,

we get:

∆t

λµf

(∥∥∥K−1/2zJ+1
h

∥∥∥2

+
J∑
k=1

∥∥∥K−1/2(zk+1
h − zkh)

∥∥∥2)
+

2G

λ

J∑
k=1

∥∥∥ε(uk+1
h − ukh)

∥∥∥2

+
∥∥∥∇ · (uJ+1

h − uJh)
∥∥∥2

≤
∥∥∥∇ · (u1

h − u0
h)
∥∥∥2

+
∆t

λµf

∥∥∥K−1/2z1
h

∥∥∥2

+
∆t2

2λ(β − α2

λ
)

J∑
k=1

∥∥∥q̃h∥∥∥2

+
P2

ΩC
2
κ

2Gλ

J∑
k=1

∥∥∥fk+1
h − fkh

∥∥∥2

, (4.2.13)

Recall that u1
h, z

1
h have been computed using the fully implicit time discretization. Us-

ing standard a priori estimates for the coupled Biot model (refer to equations (3.3.29)

and (3.3.31)), we conclude that ‖∇ · u1
h −∇ · u0

h‖
2 ≤ C∆t and

∥∥∥K−1/2z1
h

∥∥∥2

≤ C.

This completes the derivation.

Remark 4.2.1. The above proof also provides a way to devise an explicitly coupled algo-

rithm that is unconditionally stable. For the single rate algorithm, we replace (4.2.4) by

the following equation:

(flow equation) Find pk+1
h ∈ Qh and zk+1

h ∈ Zh such that,

∀θh ∈ Qh, (
1

M
+ cfϕ0 +

α2

λ
)
(pk+1

h − pkh
∆t

, θh

)
+

1

µf

(
∇ · zk+1

h , θh

)
+ α

(
∇ · u

k
h − uk−1

h

∆t
, θh

)
=
(
q̃h, θh

)
. (4.2.14)

Note that the stabilisation term α2

λ∆t
(pk+1
h −pkh) has been added above in contrast to (4.2.4).

The stability result is then obtained with the assumption (A1) relaxed. The consistence

error is expected to be of order O(∆t) which is also expected for the scheme. This follows

by a very similar procedure as in [46] (the section of time-consistency error).

To see the unconditional stability of the new scheme, consider the analog of (4.2.11) and
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proceed as in the previous case,

β + α2

λ

∆t

∥∥∥pk+1
h − pkh

∥∥∥2

+
1

2µf

(∥∥∥K−1/2zk+1
h

∥∥∥2

−
∥∥∥K−1/2zkh

∥∥∥2

+
∥∥∥K−1/2(zk+1

h − zkh)
∥∥∥2)

+
2G

∆t

∥∥∥ε(uk+1
h − ukh)

∥∥∥2

+
λ

∆t

∥∥∥∇ · (uk+1
h − ukh)

∥∥∥2

= − α

∆t

(
∇ · (ukh − uk−1

h ), pk+1
h − pkh

)
︸ ︷︷ ︸

R1

+
α

∆t

(
pk+1
h − pkh,∇ · (uk+1

h − ukh)
)

︸ ︷︷ ︸
R2

+
(
q̃h, p

k+1
h − pkh

)
︸ ︷︷ ︸

R3

+
1

∆t

(
fk+1
h − fkh,uk+1

h − ukh
)

︸ ︷︷ ︸
R4

.

(4.2.15)

Denoting by R1, R2, R3, and R4 the terms on the right hand side, together with Poincaré’s,

Korn’s, and Young’s inequalities, we estimate

|R1| ≤
α

∆t

1

2ε1

∥∥∥∇ · (ukh − uk−1
h )

∥∥∥2

+
α

∆t

ε1
2

∥∥∥pk+1
h − pkh

∥∥∥2

|R2| ≤
α

2∆tε2

∥∥∥∇ · (uk+1
h − ukh)

∥∥∥2

+
αε2
2∆t

∥∥∥pk+1
h − pkh

∥∥∥2

|R3| ≤
1

2ε3

∥∥∥q̃h∥∥∥2

+
ε3
2

∥∥∥pk+1
h − pkh

∥∥∥2

|R4| ≤
1

2∆tε4

∥∥∥fk+1
h − fkh

∥∥∥2

+
ε4

2∆t

∥∥∥uk+1
h − ukh

∥∥∥2

≤ 1

2∆tε4

∥∥∥fk+1
h − fkh

∥∥∥2

+
ε4P

2
ΩC

2
κ

2∆t
‖ε(uk+1

h − ukh)‖2.

for ε1, ε2, and ε4 > 0. Choosing ε1 = α
λ
, ε2 = α

λ
, ε3 = 2β

∆t
, and ε4 = 2G

P2
ΩC

2
κ

and multiplying

(4.2.15) by 2∆t
λ

, we derive

∆t

λµf

(∥∥∥K−1/2zk+1
h

∥∥∥2

−
∥∥∥K−1/2zkh

∥∥∥2

+
∥∥∥K−1/2(zk+1

h − zkh)
∥∥∥2)

+
2G

λ

∥∥∥ε(uk+1
h − ukh)

∥∥∥2

+
∥∥∥∇ · (uk+1

h − ukh)
∥∥∥2

≤
∥∥∥∇ · (ukh − uk−1

h )
∥∥∥2

+
∆t2

2βλ

∥∥∥q̃h∥∥∥2

+
P2

ΩC
2
κ

2Gλ

∥∥∥fk+1
h − fkh

∥∥∥2

(4.2.16)

and rest of the steps proceeds as follows.

4.3 Multirate Explicit Coupling Formulation and Analysis

Recall that in the multirate explicit coupling approach, the flow problem is solved q times

(with a finer time step) within a coarser mechanics time step.
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4.3.1 Fully Discrete Scheme for Multirate

The weak formulation of the multirate scheme reads as follows.

Definition 4.3.1. (flow equation) For 1 ≤ m ≤ q, find pm+k
h ∈ Qh, and zm+k

h ∈ Zh such

that,

∀θh ∈ Qh ,
1

∆t

(
(

1

M
+ cfϕ0)

(
pm+k
h − pm−1+k

h

)
, θh

)
+

1

µf
(∇ · zm+k

h , θh) =

− α

q∆t

(
∇ ·
(
ukh − u

k−q
h

)
, θh

)
+
(
q̃h, θh

)
, (4.3.17)

∀qh ∈ Zh ,
(
K−1zm+k

h , qh

)
=
(
pm+k
h ,∇ · qh

)
+
(
ρf,rg∇ η, qh

)
, (4.3.18)

Definition 4.3.2. (mechanics equation) Find uk+q
h ∈ V h such that,

∀vh ∈ Vh , 2G(ε(uk+q
h ), ε(vh)) + λ(∇ · uk+q

h ,∇ · vh)− α(pk+q
h ,∇ · vh) = (fk+q

h ,vh).
(4.3.19)

4.3.2 Multirate Explicit Coupling Algorithm

Algorithm 7: Multirate Explicit Coupling Algorithm

1 Given initial conditions u0
h and p0

h, solve implicitly for
umh , p

m
h , z

m
h ,m = 1, 2, . . . , q satisfying fully coupled multirate Biot model

2 for k = q, 2q, 3q, .. do /* mechanics time step iteration index */

3 First Step: Flow equations
4 Given ukh
5 for m = 1, 2, .., q do /* flow finer time steps iteration index */

6 Solve for pm+k
h and zm+k

h satisfying definition 4.3.1

7 Second Step: Mechanics equations

8 Given pk+q
h and, zk+q

h

9 Solve for uk+q
h satisfying definition 4.3.2

4.3.2.1 Assumptions

The stability assumption in the multirate case takes the form:

(Aq) β > 1
2
(1
q

+ q)α
2

λ
for q ≥ 1,
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where q is the number of flow finer time steps within one coarse mechanics time step.

As in the single rate case, we need to prepare the initial data for starting the time stepping.

Accordingly, in the first step of the multirate algorithm (Algorithm 7), for k = 0, and

m = 1, 2, . . . , q, the initial conditions are computed by solving the coupled Biot system

with fully implicit time discretization (with a time step of size ∆t for the “q” coupled

solves). Alternatively, decoupled iterative schemes [8, 11] such as fixed stress iterative

single rate scheme can be used to compute umh , p
m
h , z

m
h ,m = 1, 2, . . . , q. Note that if q = 1,

the multirate condition (Aq) is identical to the single rate condition (A1). Our main result

is the following stability estimate.

Theorem 4.3.1. [Multirate] Under the assumption (Aq), the following stability result holds

for the multirate explicit coupling scheme for mechanics time steps t0 ≤ tk ≤ tJ , k = q, 2q, ..:

2G

λ

J∑
k=q

∥∥∥ε(uk+q
h − ukh)

∥∥∥2

+
∆t

λµf

(∥∥∥K−1/2zJ+q
h

∥∥∥2

+
J∑
k=q

q∑
m=1

∥∥∥K−1/2(zm+k
h − zm−1+k

h )
∥∥∥2)

+
∥∥∥∇ · (uJ+q

h − uJh)
∥∥∥2

≤ C∆t+
q∆t2

2λ
(
β − 1

2
(1
q

+ q)α
2

λ

) J∑
k=q

∥∥∥q̃h∥∥∥2

+
P2

ΩC
2
κ

2λG

J∑
k=q

∥∥∥fk+q
h − fkh

∥∥∥2

.

(4.3.20)

4.3.3 Stability Analysis

The proof for the stability analysis follows the same ideas as in the single rate proof, however

the use of multiple time steps requires additional estimates. We follow the same principle

of estimating the flow equation followed by mechanics equation and then combining the

two together to obtain the stability estimates.

Proof. • Step 1: Flow equations

Testing (4.3.17) with θh = pm+k
h − pm−1+k

h , we get

β

∆t

∥∥∥pm+k
h − pm−1+k

h

∥∥∥2

+
1

µf

(
∇ · zm+k

h , pm+k
h − pm−1+k

h

)
+

α

q∆t

(
∇ · (ukh − u

k−q
h ), pm+k

h − pm−1+k
h

)
=
(
q̃h, p

m+k
h − pm−1+k

h

)
(4.3.21)
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In the flux equation (4.3.18), considering the difference for two consecutive finer time

steps t = tm+k and t = tm−1+k, and testing with qh = zm+k
h , we obtain(

K−1(zm+k
h − zm−1+k

h ), zm+k
h

)
=
(
pm+k
h − pm−1+k

h ,∇ · zm+k
h

)
. (4.3.22)

Substituting (4.3.22) into (4.3.21), we derive

β
∥∥∥pm+k

h − pm−1+k
h

∥∥∥2

+
∆t

µf

(
K−1(zm+k

h − zm−1+k
h ), zm+k

h

)
= −α

q

(
∇ · (ukh − u

k−q
h ), pm+k

h − pm−1+k
h

)
+ ∆t

(
q̃h, p

m+k
h − pm−1+k

h

)
Summing across flow finer time steps 1 ≤ m ≤ q, we get (use a(a− b) = 1

2
(a2 − b2 +

(a− b)2) and the telescopic cancellations)

β

q∑
m=1

∥∥∥pm+k
h − pm−1+k

h

∥∥∥2

+
∆t

2µf

(∥∥∥K−1/2zk+q
h

∥∥∥2

−
∥∥∥K−1/2zkh

∥∥∥2

+

q∑
m=1

∥∥∥K−1/2(zm+k
h − zm−1+k

h )
∥∥∥2)

= −α
q

(
∇ · (ukh − u

k−q
h ),

q∑
m=1

(pm+k
h − pm−1+k

h )
)

+ ∆t
(
q̃h,

q∑
m=1

(pm+k
h − pm−1+k

h )
)

(4.3.23)

• Step 2: Elasticity equation

Considering (4.3.19) for the difference of two consecutive mechanics time steps, t = tk

and t = tk+q, and testing with vh = uk+q
h − ukh, we obtain

2G
∥∥∥ε(uk+q

h − ukh)
∥∥∥2

+ λ
∥∥∥∇ · (uk+q

h − ukh)
∥∥∥2

− α(pk+q
h − pkh,∇ · (u

k+q
h − ukh)) =(

fk+q
h − fkh,u

k+q
h − ukh

)
.

(4.3.24)
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• Step 3: Combining flow and elasticity equations

Combining (4.3.23) with (4.3.24) gives

β

q∑
m =1

∥∥∥pm+k
h − pm−1+k

h

∥∥∥2

+ 2G
∥∥∥ε(uk+q

h − ukh)
∥∥∥2

+ λ
∥∥∥∇ · (uk+q

h − ukh)
∥∥∥2

+
∆t

2µf

(∥∥∥K−1/2zk+q
h

∥∥∥2

−
∥∥∥K−1/2zkh

∥∥∥2

+

q∑
m=1

∥∥∥K−1/2(zm+k
h − zm−1+k

h )
∥∥∥2)

= −α
q

(
∇ · (ukh − u

k−q
h ),

q∑
m=1

(pm+k
h − pm−1+k

h )
)

︸ ︷︷ ︸
R1

+ ∆t
(
q̃h,

q∑
m=1

(pm+k
h − pm−1+k

h )
)

︸ ︷︷ ︸
R2

+α(pk+q
h − pkh,∇ · (u

k+q
h − ukh))︸ ︷︷ ︸

R3

+
(
fk+q
h − fkh,u

k+q
h − ukh

)
︸ ︷︷ ︸

R4

.

(4.3.25)

Denoting by R1 and R2 the first two terms on the right hand side, Youngs’s and

triangle’s inequalities give

|R1| ≤
α

q

(ε1
2

q∑
m=1

∥∥∥pm+k
h − pm−1+k

h

∥∥∥2

+
q

2ε1

∥∥∥∇ · (ukh − uk−qh )
∥∥∥2)

,

|R2| ≤ ∆t
(ε2

2

q∑
m=1

∥∥∥pm+k
h − pm−1+k

h

∥∥∥2

+
q

2ε2

∥∥∥q̃h∥∥∥2)

Using the fact that pk+q
h − pkh =

q∑
m=1

(
pm+k
h − pm−1+k

h

)
together with Young’s and

triangle’s inequalities, the third term on the right hand side of (4.3.25), denoted by

R3, can be written as

|R3| ≤
αε3
2

q∑
m=1

∥∥pm+k
h − pm−1+k

h

∥∥2
+
qα

2ε3

∥∥∥∇ · (uk+q
h − ukh)

∥∥∥2

(4.3.26)

By Poincaré’s, Korn’s, and Young’s inequalities, the last term on the right hand side

of (4.3.25), denoted by R4, can be written as

|R4| ≤
1

2ε4

∥∥∥fk+q
h − fkh

∥∥∥2

+
ε4
2

∥∥∥uk+q
h − ukh

∥∥∥2

≤ 1

2ε4

∥∥∥fk+q
h − fkh

∥∥∥2

+
ε4P

2
ΩC

2
κ

2

∥∥∥ε(uk+q
h − ukh)

∥∥∥2

.
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Choosing ε1 = α
λ
, ε2 = 2

∆t

(
β − 1

2
(1
q

+ q)α
2

λ

)
, ε3 = qα

λ
, ε4 = 2G

P2
ΩC

2
κ
, and multiplying by

2
λ

we derive

∆t

λµf

(∥∥∥K−1/2zk+q
h

∥∥∥2

−
∥∥∥K−1/2zkh

∥∥∥2

+

q∑
m=1

∥∥∥K−1/2(zm+k
h − zm−1+k

h )
∥∥∥2)

+
2G

λ

∥∥∥ε(uk+q
h − ukh)

∥∥∥2

+
∥∥∥∇ · (uk+q

h − ukh)
∥∥∥2

≤
∥∥∥∇ · (ukh − uk−qh )

∥∥∥2

+
q∆t2

2λ
(
β − 1

2
(1
q

+ q)α
2

λ

)∥∥∥q̃h∥∥∥2

+
P2

ΩC
2
κ

2λG

∥∥∥fk+q
h − fkh

∥∥∥2

. (4.3.27)

We need to impose the following condition: β− 1
2
(1
q

+ q)α
2

λ
> 0, which is nothing but

the Assumption Aq. Summing up equation (4.3.27) for q ≤ k ≤ J (k is a multiple of

q, that is, k = q, 2q, ..), we write

2G

λ

J∑
k=q

∥∥∥ε(uk+q
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∥∥∥2

+
∆t

λµf

(∥∥∥K−1/2zJ+q
h

∥∥∥2

+
J∑
k=q

q∑
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∥∥∥K−1/2(zm+k
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h )
∥∥∥2)

+
∥∥∥∇ · (uJ+q

h − uJh)
∥∥∥2

≤ ∆t

λµf

∥∥∥K−1/2zqh

∥∥∥2

+
∥∥∥∇ · (uqh − u0

h)
∥∥∥2

+
q∆t2
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(
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2
(1
q

+ q)α
2

λ

) J∑
k=q

∥∥∥q̃h∥∥∥2

+
P2

ΩC
2
κ

2λG

J∑
k=q

∥∥∥fk+q
h − fkh

∥∥∥2

.

(4.3.28)

To estimate the first two terms on the right hand side, we need to obtain a priori

estimates for the fully implicit scheme for the multirate Biot. This a priori estimate is

obtained by a slight variation of the technique from the single rate scheme and yields∥∥∥∇·(uqh−u0
h)
∥∥∥2

≤ Cq∆t and
∥∥∥K−1/2zqh

∥∥∥ ≤ C. We spare the details of obtaining these

a priori estimates (with reference to (3.3.29), we immediately conclude by triangles

inequality that
∥∥∥∇ · (uqh − u0

h)
∥∥∥ ≤∑q

m=0

∥∥∥∇ · (um+1
h − umh )

∥∥∥ ≤ q(C∆t)1/2. Squaring

both sides gives the desired result for a generic constant C in which one “q” is absorbed

in the constant). Putting together, we conclude the result.

Remark 4.3.1. As in the single rate case in remark 4.2.1, the multirate case can also

be made unconditionally stable by adding a stabilisation term. In the definition 4.3.1, we
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modify the flow equation (2.3.33) by adding a stabilisation term γ α2

λ∆t
(pm+k
h − pm−1+k

h ),

where γ = 1
2
(1
q

+ q). The modified equation reads:

(flow equation) For 1 ≤ m ≤ q, find pm+k
h ∈ Qh, and zm+k

h ∈ Zh such that,

∀θh ∈ Qh ,
1

∆t

(
(

1

M
+ cfϕ0 +

γα2

λ
)
(
pm+k
h − pm−1+k

h

)
, θh

)
+

1

µf
(∇ · zm+k

h , θh) =

− α

q∆t

(
∇ ·
(
ukh − u

k−q
h

)
, θh

)
+
(
q̃h, θh

)
. (4.3.29)

The proof for the unconditional stability follows the same ideas as in the single rate case

and is skipped here.

Remark 4.3.2. For the numerical simulations we will be using the multipoint flux mixed

finite element method (MFMFE) [88,90] for the flow discretization. All our obtained results

remain valid for this discretization. Indeed, for such a scheme, the stability results (4.3.28)

translates to,

∆t

λµf

(
K−1zJ+q

h , zJ+q
h

)
Q

+
∆t

λµf

J∑
k=q

q∑
m=1

(
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h ), (zm+k

h − zm−1+k
h )

)
Q

+
2G

λ

J∑
k=q

∥∥∥ε(uk+q
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∥∥∥2

+
∥∥∥∇ · (uJ+q

h − uJh)
∥∥∥2

≤ ∆t

λµf

(
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q
h

)
Q

(4.3.30)

+
∥∥∥∇ · (uqh − u0

h)
∥∥∥2

+
q∆t2

2λ
(
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2
(1
q

+ q)α
2

λ

) J∑
k=q

∥∥∥q̃h∥∥∥2

+
P2

ΩC
2
κ

2λG

J∑
k=q

∥∥∥fk+q
h − fkh

∥∥∥2

,

where (K−1., .)Q is the quadrature rule defined in [90] for the MFMFE corresponding spaces.

It was shown by Wheeler and Yotov in [90], and then extended to distorted quadrilaterals

and hexahedra in [88], that for any zh ∈ Zh, C1‖zh‖2 ≤ (K−1zh, zh)Q ≤ C2‖zh‖2, for

a constant C1, C2 > 0. This immediately leads to a similar stability result. The same

argument holds for single rate case.

Remark 4.3.3. The well source/sink term (q̃h) can be assumed to be varying with discrete

fine/coarse time steps, and all obtained results remain valid.
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4.4 Numerical Results

4.4.1 Iterative vs. Explicit Coupling Schemes

In this section, we compare single rate and multirate explicit coupling schemes versus

iterative coupling schemes. Both schemes are implemented in the Integrated Parallel Ac-

curate Reservoir Simulator (IPARS) on top of a single-phase flow model coupled with a

linear poroelasticity model. The Multipoint Flux Mixed Finite Element Method (MFMFE)

is used for flow discretization and Conformal Galerkin is used for elasticity discretization.

Mikelić and Wheeler [64] have analyzed different iterative coupling schemes, and have shown

that the two often used techniques known as the fixed-stress split and the undrained-split

coupling algorithms are unconditionally stable. The numerical computations in [63] show

the relative performances of the two methods with fixed stress splitting performing better.

In the multirate case the unconditional stability of these two schemes have been studied

in Almani, et. al. [8, 11]. For our numerical tests, we consider the iterative fixed-stress

coupling algorithm when comparing the efficiency of the iterative coupling schemes versus

explicit coupling schemes. Details about the single-phase flow model implementation in

IPARS can be found in section 2.5.2.1. We note that in explicit coupling schemes, the

fixed-stress regularization terms are not added to the mass balance equation.

4.4.1.1 Brugge Fileld Model

We consider the Brugge field model [82] for comparing the accuracy and efficiency of it-

erative versus explicit coupling schemes. The model consists of a 9 × 48 × 139 general

hexahedral elements capturing the field geometry, with 30 bottom-hole pressure specified

wells, 10 of which are injectors at a pressure of 4600 psi, and 20 are producers at a pressure

of 1200 psi. Producers are located at a higher elevation compared to injectors. No flow

boundary condition is enforced across all external boundaries. For the mechanics model,

we apply a mixture of zero displacement and traction boundary conditions. we also include

the effects of gravity. Detailed specifications of the input parameters can be found in Ta-

ble 4.1. We note here that assumptions (A1) and (Aq) are both satisfied for the single rare

and multirate explicit coupling cases (q = 4 and 8), respectively.
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Total Simulation time: 64.0 days kxx Range: (0.002122, 350.1372) md
Finer (Unit) time step: 1.0 days kyy Range: (0.022143, 4135.124) md

Number of grids: 60048 grids (9×48×139) kzz Range: (0.022493, 4163.053) md
Possion Ratio, ν 0.35 Biot Modulus, M 1.E8 psi

Biot’s constant, α 0.9 λ = Eν
(1+ν)(1−2ν)

4.32E7 psi

Initial porosity, ϕ0 Range: (0.054244, 0.260265) Flow Boundary Conditions: zero flow B.C.
Fluid viscosity, µw 1.0 cp Mechanics B.C.:

Initial fluid pressure, p0 1000.0 psi “X+” boundary σxx = σ · nx = 10, 000psi
fluid compressibility cfw : 1.E-6 (1/psi) “X-” - boundary u = 0, zero displacement

Rock compressibility: 1.E-6 (1/psi) “Y+” - boundary u = 0, zero displacement

Rock density: 165.44 lbm/ft
3 “Y-” - boundary σyy = σ · ny = 2000psi

Initial fluid density, ρo 62.34 lbm/ft
3 “Z+” - boundary u = 0, zero displacement

Young’s Modulus (E) 5.0E7 psi “Z-” - boundary σzz = σ · nz = 1000psi

Table 4.1: Input Parameters for the Brugge Field Model

% of Reduction in: q = 1 q = 4 q = 8

CPU run time 62.24% 79.51% 79.75%

Number of flow linear iterations 51.50% 76.88% 77.85%

Number of mechanics linear iterations 54.50% 76.75% 77.72%

Table 4.2: Computational savings of explicit coupling schemes versus iterative coupling
schemes for different values of “q” (the number of flow fine time steps within one coarse
mechanics time step).

4.4.1.2 Results and Discussion

Figure 4.2a shows the accumulated CPU run time for the single rate case (q = 1), and for

multirate cases: q = 4 and 8, for both iterative and explicit coupling schemes. In general,

for a fixed q, explicit coupling schemes are more efficient, compared to their counterpart

iterative coupling schemes. This is expected as explicit schemes eliminate any coupling

iteration between the two problems. This results in a huge reduction in the total number of

flow and mechanics linear iterations for explicit coupling schemes, as shown in Figures 4.2c,

and 4.2b respectively. The results obtained show that explicit coupling schemes can reduce

the accumulative number of flow linear iterations for the whole simulation run by more than

50.0% compared to iterative coupling schemes. In addition, the accumulative number of

mechanics linear iterations is reduced as well when comparing an explicit coupling scheme

to an iterative scheme for a fixed value of q. As shown in figure 4.2b, the single rate

iterative coupling scheme results in the highest number of total mechanics linear iterations.
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(a) CPU Run Time vs Simulation Days
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Figure 4.2: Brugge Field Model Numerical Results
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(a) Pressure field at 64.0 days (Iterative Coupling) (psi)

(b) Displacement field at 64.0 days (Iterative Coupling) (ft)

Figure 4.3: Iterative Coupling Pressure and Displacement Fields
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(a) Pressure field at 64.0 days (Explicit Coupling) (psi)

(b) Displacement field at 64.0 days (Explicit Coupling) (ft)

Figure 4.4: Explicit Coupling Pressure and Displacement Fields
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In contrast, the multirate explicit coupling scheme (q = 8) results in the lowest number of

mechanics linear iterations for the whole simulation run. Computational savings of explicit

coupling schemes versus iterative coupling schemes are shown in Table 4.2.

Figures 4.3a and 4.3b show the pressure and displacement fields for the iterative coupling

scheme after 64.0 days of simulation of the Brugge field case. Figures 4.4a and 4.4b show the

corresponding fields for the explicit coupling scheme. The solutions for both the approaches

are fairly close with a slight difference between the iterative and explicit coupling being

more apparent for pressure fields. The differences in displacement fields for both schemes

are negligible.

4.4.2 Validating Theoretical Assumptions

In this section, we try to validate our theoretically induced assumptions for the single rate

and multirate explicit coupling schemes against the Frio field model (considered in Chapter

2 earlier). We recall that the Frio field model is an existing oil field located on the Gulf

Coast, near Dayton, Texas. It is a field-scale problem with a geometrically challenging

geological formation [48]. The field is curved in the depth direction, with several thin

curved faults [48]. In this work, we consider the challenging geometry of the field, and

its real permeability distribution. Gravity effects are included in this model. Other input

specifications are shown in Table 4.3.

4.4.2.1 Results and Discussion

We recall that for the single rate case, the stability assumption is ( 1
M

+ cfϕ0) > α2

λ
and in

the multirate case it reads ( 1
M

+ cfϕ0) > 1
2
(1
q

+ q) α2

λ
. We consider a particular choice for

q = 2 and for the parameters shown in Table 4.3, our assumption requires ( 1
M

+ cfϕ0) >

(1.06×10−5). For the numerical test cases, we consider two different compressibility values

corresponding to (1) satisfying the stability condition and (2) the stability assumption is

violated.

In the first case, we choose cf = 1.0×10−4 (1/psi) satisfying the stability assumption. The

pressure profile after 4010 simulation days is shown in figure 4.5a. Resulting pressures lie
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Wells: 3 production wells, 6 injection well
Injection well (1): Pressure specified, 14000.0 psi
Injection well (2): Pressure specified, 8300.0 psi
Injection well (3): Pressure specified, 8000.0 psi
Injection well (4): Pressure specified, 8400.0 psi
Injection well (5): Pressure specified, 8700.0 psi
Injection well (6): Pressure specified, 4400.0 psi

Production well (1): Pressure specified, 2000.0 psi
Production well (2): Pressure specified, 2000.0 psi
Production well (3): Pressure specified, 2000.0 psi

Total Simulation time: 4010.0 days
Finer flow (Unit) time step: 1.0 days
Coarse mechanics time step: 2.0 days (q = 2)

Number of grids: 891 grids (33 × 9 × 3)
Permeabilities: kxx, kyy, kzz highly varying, range: (5.27E-10, 3.10E+3) md

Initial porosity, ϕ0: 0.2
Fluid viscosity, µf : 1.0 cp
Initial pressure, p0: 400.0 psi

Fluid compressibilities:
Case (1), condition is satisfied, cf : 1.E-4 (1/psi)

Case (2), condition is not satisfied, cf : 1.E-13 (1/psi)
Case (3), condition is not satisfied, cf : 1.E-8 (1/psi)

Rock compressibility: 1.E-6 (1/psi)

Rock density: 165.44 lbm/ft
3

Initial fluid density, ρf : 62.34 lbm/ft
3

Young’s Modulus (E): 1.E5 psi
Possion Ratio, ν: 0.3

Biot’s constant, α: 0.7
Biot Modulus, M : 1.0E8 psi

λ = Eν
(1+ν)(1−2ν) : 57692.3 psi

Flow Boundary Conditions: no flow boundary condition on all 6 boundaries
Mechanics B.C.:

“X+” boundary (EBCXX1()): σxx = σ · nx = 10, 000psi, (overburden pressure)
“X-” - boundary (EBCXXN1()): u = 0, zero displacement
“Y+” - boundary (EBCYY1()): u = 0, zero displacement
“Y-” - boundary (EBCYYN1()): σyy = σ · ny = 2000psi
“Z+” - boundary (EBCZZ1()): u = 0, zero displacement
“Z-” - boundary (EBCZZN1()): σzz = σ · nz = 1000psi

Table 4.3: Input Parameters for the Frio Field Model
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(a) Pressure profile (psi) when the compressibility
of the fluid satisfies the derived stability condition
(cf = 1× 10−4(1/psi)). Results are physically
correct, and lie between the expected range
of values.

(b) Pressure profile (psi) when the compressibility of
the fluid does not satisfy the derived stability condition
(cf = 1 × 10−8(1/psi)). Results are not physically
correct, as pressure values drop below zero.

Figure 4.5: Pressure profiles of the multirate explicit coupling scheme (q = 2) for the Frio
field model.

in the expected range of values, based on wells’ injection and production rates specified in

table 4.3.

Next, we consider the case when we choose cf = 1.0× 10−13 (1/psi), that strongly violates

the stability condition. In this case, the coupling iteration did not converge, as a result of

producing extremely high pressure values (in magnitudes), and that, in turn, triggered the

pore-volume values of grid blocks to exceed their corresponding bulk-volume values, which

is physically meaningless. To further test the effect of compressibility, we increase the

compressibility and choose (cf = 1.0× 10−8 (1/psi), still violating the stability condition).

In this case, the pressure profile after 4010 simulation days is shown in figure 4.5b. It

is clear from the figure that the pressure profile is unphysical since pressure values drop

below zero. Given the values of the initial pressure, and wells’ injection and production

rates specified in table 4.3, this is a non-physical solution.
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4.5 Conclusions

In this chapter, we considered single rate and multirate explicit coupling schemes for cou-

pling flow with geomechanics in poro-elastic media. We derived stability criteria for both

multirate and single rate schemes and derived the assumptions on reservoir parameters for

the stability to hold. In addition, we perform the numerical experiments where we com-

pare the time savings in the explicit coupling schemes compared to the iterative fixed stress

schemes. The multirate iterative schemes have been proven to be geometrically convergent.

Our computational results show that, if the parameters satisfy the stability condition, the

explicit coupling schemes reduce CPU run time efficiently as compared to the iterative

coupling schemes.
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Chapter 5

Localized Banach Contraction Estimates for

Heterogeneous Poroelastic Media

In this chapter, we consider iterative coupling schemes for spatially and temporally het-

erogeneous poroelastic media. All our previously established Banach contraction estimates

are valid for temporally heterogenous poroelastic media (as the analysis was done for one

coarse mechanics time step only, and thus parameters can change across different coarse

mechanics time steps). However, we assumed spatially homogeneous flow and mechanics

parameters for the whole domain of consideration (or at least some degree of uniformity

should be imposed, see remark 5.4.2). Although this is a nice theoretical assumption, it is

not realistically true, especially for fluid parameters. This chapter tries to bridge this gap

by assuming (spatially and temporally) heterogeneous flow and mechanics parameters.

Due to space restrictions (in this dissertation), we will consider only single rate and multi-

rate fixed-stress split iterative coupling schemes for the quasi-static Biot model. However,

our proof outlines a general strategy that is very likely to be useful for obtaining similar

localized estimates for other iterative and explicit coupling schemes.

5.1 Model Equations and Discretization

We assume a linear, elastic, heterogeneous, and isotropic poro-elastic medium in which the

reservoir is saturated with a slightly compressible fluid. We follow exactly the same quasi-

static Biot model [16,45] described in section 2.2 in Chapter 2, except that the parameters

K, α,G,M, λ, cf , µf and ϕ0 can vary spatially (when discretized). Moreover, the same

assumptions listed in 2.2.1 apply here (except for the homogenous medium assumption).

Furthermore, we will follow the same mixed variational formulation described in section
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2.2.4 in Chapter 2.

For our spatial discretization, we assume the following:

• The spatial domain is denoted by Ω ⊂ Rd, d = 1, 2, or 3. Its external boundary is

denoted by ∂Ω, with an outward unit normal vector n.

• The spatial domain is discretized into NΩ conforming grid elements Ei such that:

Ω =
NΩ⋃
i=1

Ei.

• Each grid element Ei has its own, independent, set of flow and mechanics parameters:

Ki, αi, Gi,Mi, λi, cf i, µf i and ϕ0i. Moreover, we assume that the localized permeabil-

ities Ki include viscosities µf i (i.e. Ki = K i

µf i
).

• The outward normal vector for each grid element Ei is denoted by ni. In addition,

for two adjacent grid elements Ei and Ei−1 sharing a common boundary interface,

ni = −ni−1 across the common boundary.

5.2 Localized Single Rate Formulation and Analysis

5.2.1 Continuous in Space Global Weak Formulation

Step (a): Find pn+1,k ∈ H1(Ω), zn+1,k ∈ H(div; Ω)d ∩ {zn+1,k · n = 0 on ∂Ω} such that:

∀θ ∈ L2(Ω) ,

NΩ∑
i=1

(
(

1

Mi

+ cf iϕ0i + Li)(
pn+1,k − pk−1

∆t
), θ
)
Ei

+

NΩ∑
i=1

(∇ · zn+1,k, θ)Ei

=

NΩ∑
i=1

(
Li(

pn,k − pk−1

∆t
)− αi∇ · (

un,k − uk−1

∆t
), θ
)
Ei

+

NΩ∑
i=1

(q̃, θ)Ei

(5.2.1)

∀q ∈ H(div; Ω)d ∩ {q · n = 0 on ∂Ω} ,
NΩ∑
i=1

(K−1
i z

n+1,k, q)Ei =

NΩ∑
i=1

(pn+1,k,∇ · q)Ei −
NΩ∑
i=1

〈pn+1,k, q · n〉∂Ei +

NΩ∑
i=1

(∇(ρf,rgη), q)Ei

(5.2.2)
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Step (b): Given pn+1,k, zn+1,k, find un+1,k ∈ H1(Ω)
d ∩ {u = 0 on ∂Ω} such that,

∀v ∈ H1(Ω)
d ∩ {v = 0 on ∂Ω} ,

NΩ∑
i=1

2(Giε(u
n+1,k), ε(v))Ei +

NΩ∑
i=1

(λi∇ · un+1,k,∇ · v)Ei

−
NΩ∑
i=1

(αip
n+1,k,∇ · v)Ei −

NΩ∑
i=1

〈σ(un+1,k)n,v〉∂Ei +

NΩ∑
i=1

〈αipn+1,k I
=
n,v〉∂Ei =

NΩ∑
i=1

(f ,v)Ei

(5.2.3)

We note that at the continuum level, the Cauchy stress tensor, given by σpor(u, p) =

σ(u) − αp I
=

, is continuous at grid boundaries. Thus, the boundary terms in equation

(5.2.3) can be grouped as:

−
NΩ∑
i=1

〈σ(un+1,k)n,v〉∂Ei +

NΩ∑
i=1

〈αipn+1,k I
=
n,v〉∂Ei = −

NΩ∑
i=1

〈σpor(un+1,k)n,v〉∂Ei = 0

due to the continuity of σpor at grid boundaries and the fact that the normal vector has

a different sign in each two adjacent grid elements sharing a common boundary. For the

outer boundary, we require that v = 0 on ∂Ω.

The boundary term in the flux equation (5.2.2) also vanishes due to similar reasons. The

pressure unknown is assumed to be continuous at the continuum level (otherwize ∇p is not

defined). In addition, q · n is continuous across element boundaries, as q ∈ H(div; Ω)d.

This results in cancelling all inner boundary terms in equation (5.2.2). For outer boundary

terms, we restricted the test space such that q · n = 0 on ∂Ω. Therefore, we have:

NΩ∑
i=1

〈pn+1,k, q · n〉∂Ei = 0.

The weak formulation now reads:
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Step (a): Find pn+1,k ∈ H1(Ω), zn+1,k ∈ H(div; Ω)d ∩ {zn+1,k · n = 0 on ∂Ω} such that:

∀θ ∈ L2(Ω) ,

NΩ∑
i=1

(
(

1

Mi

+ cf iϕ0i + Li)(
pn+1,k − pk−1

∆t
), θ
)
Ei

+

NΩ∑
i=1

(∇ · zn+1,k, θ)Ei

=

NΩ∑
i=1

(
Li(

pn,k − pk−1

∆t
)− αi∇ · (

un,k − uk−1

∆t
), θ
)
Ei

+

NΩ∑
i=1

(q̃, θ)Ei

(5.2.4)

∀q ∈ H(div; Ω)d ∩ {q · n = 0 on ∂Ω} ,
NΩ∑
i=1

(K−1
i z

n+1,k, q)Ei =

NΩ∑
i=1

(pn+1,k,∇ · q)Ei +

NΩ∑
i=1

(∇(ρf,rgη), q)Ei (5.2.5)

Step (b): Given pn+1,k, zn+1,k, find un+1,k ∈ H1(Ω)
d ∩ {u = 0 on ∂Ω} such that,

∀v ∈ H1(Ω)
d ∩ {v = 0 on ∂Ω} ,

NΩ∑
i=1

2(Giε(u
n+1,k), ε(v))Ei +

NΩ∑
i=1

(λi∇ · un+1,k,∇ · v)Ei −
NΩ∑
i=1

(αip
n+1,k,∇ · v)Ei =

NΩ∑
i=1

(f ,v)Ei

(5.2.6)

5.2.2 Fully Discrete Weak formulation

Now, we mimic the spatially continuous weak formulation ((5.2.4), (5.2.5), and (5.2.6)) to

obtain the fully discrete formulation (discrete in time and space). We recall that a mixed

formulation will be used for flow, and continuous Galerkin will be used for mechanics. A

Backward-Euler scheme will be used for temporal discretization. Using the lowest order

RT (Raviart and Thomas, 1977) spaces, we have the following discrete spaces:

Displacement V h = {vh ∈ H1(Ω)
d

; ∀E ∈ Th,vh|E ∈ P1
d,vh|∂Ω = 0}

Pressue Qh = {ph ∈ L2(Ω) ; ∀E ∈ Th, ph|E ∈ P0}

Flux Zh = {qh ∈ H(div; Ω)d ;∀E ∈ Th, qh|E ∈ P1
d, qh · n = 0 on ∂Ω}

Moreover, we assume no flow boundary conditions for the outer boundary, and zero dis-

placement boundary conditions for mechanics.

The fully-discrete weak formulation now reads:
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Step (a): Find pn+1,k
h ∈ Qh, z

n+1,k
h ∈ Zh such that:

∀θh ∈ Qh ,

NΩ∑
i=1

(
(

1

Mi

+ cf iϕ0i + Li)(
pn+1,k
h − pk−1

h

∆t
), θh

)
Ei

+

NΩ∑
i=1

(∇ · zn+1,k
h , θh)Ei

=

NΩ∑
i=1

(
Li(

pn,kh − p
k−1
h

∆t
)− αi∇ · (

un,kh − u
k−1
h

∆t
), θh

)
Ei

+

NΩ∑
i=1

(q̃, θh)Ei

(5.2.7)

∀qh ∈ Zh ,

NΩ∑
i=1

(K−1
i z

n+1,k
h , qh)Ei =

NΩ∑
i=1

(pn+1,k
h ,∇ · qh)Ei +

NΩ∑
i=1

(∇(ρf,rgη), qh)Ei (5.2.8)

Step (b): Given pn+1,k
h , zn+1,k

h , find un+1,k
h ∈ V h such that,

∀vh ∈ V h ,

NΩ∑
i=1

2(Giε(uh
n+1,k), ε(vh))Ei +

NΩ∑
i=1

(λi∇ · un+1,k
h ,∇ · vh)Ei

−
NΩ∑
i=1

(αip
n+1,k
h ,∇ · vh)Ei =

NΩ∑
i=1

(f ,vh)Ei (5.2.9)

In terms of differences between coupling iterations, equations (5.2.7), (5.2.8), and (5.2.9)

read:

∀θh ∈ Qh ,
1

∆t

NΩ∑
i=1

(
(

1

Mi

+ cf iϕ0i + Li)δp
n+1,k
h , θh

)
Ei

+

NΩ∑
i=1

(∇ · δzn+1,k
h , θh)Ei

=
1

∆t

NΩ∑
i=1

(
Liδp

n,k
h − αi∇ · δu

n,k
h , θh

)
Ei

(5.2.10)

∀qh ∈ Zh ,

NΩ∑
i=1

(K−1
i δzn+1,k

h , qh)Ei =

NΩ∑
i=1

(δpn+1,k
h ,∇ · qh)Ei (5.2.11)

∀vh ∈ V h ,

NΩ∑
i=1

2(Giε(δuh
n+1,k), ε(vh))Ei +

NΩ∑
i=1

(λi∇ · δun+1,k
h ,∇ · vh)Ei

−
NΩ∑
i=1

(αiδp
n+1,k
h ,∇ · vh)Ei = 0 (5.2.12)
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5.2.3 Proof of Contraction

For each grid element Ei, let βi = 1
Mi

+ cfiϕ0i + Li, testing (5.2.10) with θh = δpn+1,k
h , and

multiplying by ∆t, we obtain:

NΩ∑
i=1

∥∥∥β1/2
i δpn+1,k

h

∥∥∥2

Ei
+ ∆t

NΩ∑
i=1

(∇ · δzn+1,k
h , δpn+1,k

h )Ei =

NΩ∑
i=1

(
Liδp

n,k
h − αi∇ · δu

n,k
h , δpn+1,k

h

)
Ei
.

(5.2.13)

Testing (5.2.11) with qh = δzn+1,k
h , we obtain:

NΩ∑
i=1

(
Ki
−1δzn+1,k

h , δzn+1,k
h

)
Ei

=

NΩ∑
i=1

(
δpn+1,k

h ,∇ · δzn+1,k
h

)
Ei
. (5.2.14)

Substituting (5.2.14) into (5.2.13), together with Young’s inequality, we obtain:

NΩ∑
i=1

∥∥∥β1/2
i δpn+1,k

h

∥∥∥2

Ei
+ ∆t

NΩ∑
i=1

(
Ki
−1δzn+1,k

h , δzn+1,k
h

)
Ei

≤
NΩ∑
i=1

1

2εi

∥∥∥Liδpn,kh − αi∇ · δun,kh ∥∥∥2

Ei
+

NΩ∑
i=1

εi
2

∥∥∥δpn+1,k
h

∥∥∥2

Ei
.

Introducing a new parameter χi for each grid element Ei, we define a local quantity of

contraction for each Ei as: χiδσ
n,k
v = Liδp

n,k
h − αi∇ · δu

n,k
h . The choice εi = βi for each Ei

gives:

NΩ∑
i=1

βi
2

∥∥∥δpn+1,k
h

∥∥∥2

Ei
+ ∆t

NΩ∑
i=1

∥∥∥Ki
−1/2δzn+1,k

h

∥∥∥2

Ei
≤

NΩ∑
i=1

1

2βi

∥∥∥χiδσn,kv ∥∥∥2

Ei
. (5.2.15)

Now, test the elasticity equation (5.2.12) with vh = δun+1,k
h to get:

NΩ∑
i=1

2Gi‖ε(δun+1,k
h )‖2

Ei
+

NΩ∑
i=1

λi‖∇ · δun+1,k
h ‖2

Ei
−

NΩ∑
i=1

αi(δp
n+1,k
h ,∇ · δun+1,k

h )Ei = 0.

(5.2.16)

Combining flow (5.2.15) with elasticity (5.2.16), we obtain:

NΩ∑
i=1

2Gi‖ε(δun+1,k
h )‖2

Ei
+ ∆t

NΩ∑
i=1

∥∥∥Ki
−1/2δzn+1,k

h

∥∥∥2

Ei

+

NΩ∑
i=1

{βi
2

∥∥∥δpn+1,k
h

∥∥∥2

Ei
− αi(δpn+1,k

h ,∇ · δun+1,k
h )Ei + λi‖∇ · δun+1,k

h ‖2
Ei

}
≤

NΩ∑
i=1

χ2
i

2βi

∥∥∥δσn,kv ∥∥∥2

Ei
.

(5.2.17)
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Now, for each grid element Ei, expand the RHS to match terms on the left hand side and

form a square:∥∥∥δσn,kv ∥∥∥2

Ei
=
L2
i

χi2

∥∥∥δpn,kh ∥∥∥2

Ei
− 2αiLi

χ2
i

(
δpn,kh ,∇ · δun,kh

)
Ei

+
α2
i

χ2
i

∥∥∥∇ · δun,kh ∥∥∥2

Ei
.

For each Ei, the following inequalities should be satisfied: βi
2
≥ L2

i

χi2
, 2αiLi

χ2
i

= αi, and

λi ≥ α2
i

χ2
i
. The first and second inequalities give: χ2

i = 2Li, and 1
Mi

+ cf iϕ0i ≥ 0, which is

trivially satisfied. The third inequality gives: Li =
α2
i

2λi
. With: Li =

α2
i

2λi
and χ2

i = 2Li, we

have:

NΩ∑
i=1

2Gi‖ε(δun+1,k
h )‖2

Ei
+

NΩ∑
i=1

1

2

( 1

Mi

+ cf iϕ0i

)∥∥∥δpn+1,k
h

∥∥∥2

Ei
+ ∆t

NΩ∑
i=1

∥∥∥Ki
−1/2δzn+1,k

h

∥∥∥2

Ei

+

NΩ∑
i=1

∥∥∥δσn+1,k
v

∥∥∥2

Ei
≤

NΩ∑
i=1

( Li
1
Mi

+ cf iϕ0i + Li

)∥∥∥δσn,kv ∥∥∥2

Ei
.

(5.2.18)

We finally have, for each Ei ∈ Ω, 1 ≤ i ≤ NΩ:

2

NΩ∑
i=1

Gi‖ε(δun+1,k
h )‖2

Ei
+

1

2

NΩ∑
i=1

( 1

Mi

+ cf iϕ0i

)∥∥∥δpn+1,k
h

∥∥∥2

Ei
+ ∆t

NΩ∑
i=1

∥∥∥Ki
−1/2δzn+1,k

h

∥∥∥2

Ei

+

NΩ∑
i=1

∥∥∥δσn+1,k
v

∥∥∥2

Ei
≤ max

1≤i≤NΩ

( Li
1
Mi

+ cf iϕ0i + Li

) NΩ∑
i=1

∥∥∥δσn,kv ∥∥∥2

Ei
.

(5.2.19)

Theorem 5.2.1. [Localized Single Rate Banach Contraction Estimate] The localized mul-

tirate iterative scheme is a contraction given by

2
∑NΩ

i=1Gi‖ε(δun+1,k
h )‖2

Ei
+ 1

2

∑NΩ

i=1

(
1
Mi

+ cf iϕ0i

)∥∥∥δpn+1,k
h

∥∥∥2

Ei
+ ∆t

∑NΩ

i=1

∥∥∥Ki
−1/2δzn+1,k

h

∥∥∥2

Ei

+
∑NΩ

i=1

∥∥∥δσn+1,k
v

∥∥∥2

Ei
≤ max

1≤i≤NΩ

(
Li

1
Mi

+cf iϕ0i+Li

)∑NΩ

i=1

∥∥∥δσn,kv ∥∥∥2

Ei
.

5.3 Localized Multirate Formulation and Analysis

In a similar way, we can derive a localized Banach contraction estimate for the multirate

case. We start by writing the localized spatially continuous multirate weak formulation.

We note that the localized permeability tensor Ki includes the viscosity µi.
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5.3.1 Continuous in Space Global Weak Formulation

• Step (a): For 1 ≤ m ≤ q, find pn+1,m+k ∈ H1(Ω), and zn+1,m+k ∈ H(div; Ω)d ∩

{zn+1,k · n = 0 on ∂Ω} such that,

∀θ ∈ L2(Ω) ,
1

∆t

NΩ∑
i=1

(
(

1

Mi

+ cf iϕ0i + Li)
(
pn+1,m+k − pn+1,m−1+k

)
, θ
)
Ei

+

NΩ∑
i=1

(∇ · zn+1,m+k, θ)Ei =

1

∆t

NΩ∑
i=1

(
Li

(
pn,m+k − pn,m−1+k

)
− αi

q
∇ ·
(
un,k+q − un,k

)
, θ
)
Ei

+

NΩ∑
i=1

(
q̃, θ
)
Ei
,

(5.3.20)

∀q ∈ H(div; Ω)d ∩ {q · n = 0 on ∂Ω} ,
NΩ∑
i=1

(
Ki
−1zn+1,m+k, q

)
Ei

=

NΩ∑
i=1

(
pn+1,m+k,∇ · q

)
Ei

−
NΩ∑
i=1

〈pn+1,m+k, q · n〉∂Ei +

NΩ∑
i=1

(
ρf,rg∇ η, q

)
Ei
,

(5.3.21)

• Step (b): Given pn+1,k+q and, zn+1,k+q, find un+1,k+q ∈ H1(Ω)
d∩{u = 0 on ∂Ω} such

that,

∀v ∈ H1(Ω)
d ∩ {v = 0 on ∂Ω} ,

2

NΩ∑
i=1

(Giε(u
n+1,k+q), ε(v))Ei +

NΩ∑
i=1

(λi∇ · un+1,k+q,∇ · v)Ei −
NΩ∑
i=1

(αip
n+1,k+q,∇ · v)Ei

−
NΩ∑
i=1

〈σ(un+1,k+q)n,v〉∂Ei +

NΩ∑
i=1

〈αipn+1,k+q I
=
n,v〉∂Ei =

NΩ∑
i=1

(f ,v)Ei . (5.3.22)

In a similar way, as detailed in the single rate case, all boundary terms vanish. The

continuous-in-space weak formulation then reads:

• Step (a): For 1 ≤ m ≤ q, find pn+1,m+k ∈ H1(Ω), and zn+1,m+k ∈ H(div; Ω)d ∩
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{zn+1,k · n = 0 on ∂Ω} such that,

∀θ ∈ L2(Ω) ,
1

∆t

NΩ∑
i=1

(
(

1

Mi

+ cf iϕ0i + Li)
(
pn+1,m+k − pn+1,m−1+k

)
, θ
)
Ei

+

NΩ∑
i=1

(∇ · zn+1,m+k, θ)Ei =

1

∆t

NΩ∑
i=1

(
Li

(
pn,m+k − pn,m−1+k

)
− αi

q
∇ ·
(
un,k+q − un,k

)
, θ
)
Ei

+

NΩ∑
i=1

(
q̃, θ
)
Ei
,

(5.3.23)

∀q ∈ H(div; Ω)d ∩ {q · n = 0 on ∂Ω} ,
NΩ∑
i=1

(
Ki
−1zn+1,m+k, q

)
Ei

=

NΩ∑
i=1

(
pn+1,m+k,∇ · q

)
Ei

+

NΩ∑
i=1

(
ρf,rg∇ η, q

)
Ei
, (5.3.24)

• Step (b): Given pn+1,k+q and, zn+1,k+q, find un+1,k+q ∈ H1(Ω)
d∩{u = 0 on ∂Ω} such

that,

∀v ∈ H1(Ω)
d ∩ {v = 0 on ∂Ω} ,

2

NΩ∑
i=1

(Giε(u
n+1,k+q), ε(v))Ei +

NΩ∑
i=1

(λi∇ · un+1,k+q,∇ · v)Ei −
NΩ∑
i=1

(αip
n+1,k+q,∇ · v)Ei

=

NΩ∑
i=1

(f ,v)Ei . (5.3.25)

5.3.2 Fully Discrete Weak formulation

We mimic the spatially continuous weak formulation ((5.3.23), (5.3.24), and (5.3.25)) and

obtain the fully discrete formulation (discrete in time and space) as follows:
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• Step (a): For 1 ≤ m ≤ q, find pn+1,m+k
h ∈ Qh, and zn+1,m+k

h ∈ Zh such that,

∀θh ∈ Qh ,
1

∆t

NΩ∑
i=1

(
(

1

Mi

+ cf iϕ0i + Li)
(
pn+1,m+k
h − pn+1,m−1+k

h

)
, θh

)
Ei

+

NΩ∑
i=1

(∇ · zn+1,m+k
h , θh)Ei =

1

∆t

NΩ∑
i=1

(
Li

(
pn,m+k
h − pn,m−1+k

h

)
− αi

q
∇ ·
(
un,k+q
h − un,kh

)
, θh

)
Ei

+

NΩ∑
i=1

(
q̃h, θh

)
Ei
,

(5.3.26)

∀qh ∈ Zh ,

NΩ∑
i=1

(
Ki
−1zn+1,m+k

h , qh

)
Ei

=

NΩ∑
i=1

(
pn+1,m+k
h ,∇ · qh

)
Ei

+

NΩ∑
i=1

(
ρf,rg∇ η, qh

)
Ei
,

(5.3.27)

• Step (b): Given pn+1,k+q
h and, zn+1,k+q

h , find un+1,k+q
h ∈ V h such that,

∀vh ∈ V h , 2

NΩ∑
i=1

(Giε(u
n+1,k+q
h ), ε(vh))Ei +

NΩ∑
i=1

(λi∇ · un+1,k+q
h ,∇ · vh)Ei

−
NΩ∑
i=1

(αip
n+1,k+q
h ,∇ · vh)Ei =

NΩ∑
i=1

(fh,vh)Ei . (5.3.28)

5.3.3 Proof of Contraction

Recall that for a given time step t = tk, we define the difference between two coupling

iterates as:

δξn+1,k = ξn+1,k − ξn,k,

where ξ may stand for ph, zh, or uh.

• Step 1: Flow equations

For each grid element Ei, let βi = 1
Mi

+cf iϕ0i+Li. . For n ≥ 1, by taking the difference

of two successive iterates of (5.3.26), which corresponds to one local flow iteration and

its corresponding local flow iteration in the previous flow and geomechanics iterative
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coupling iteration, testing with θh = δpn+1,m+k
h − δpn+1,m−1+k

h , we obtain

NΩ∑
i=1

βi

∥∥∥δpn+1,m+k
h − δpn+1,m−1+k

h

∥∥∥2

Ei

+ ∆t

NΩ∑
i=1

(∇ · δzn+1,m+k
h , δpn+1,m+k

h − δpn+1,m−1+k
h )Ei =

NΩ∑
i=1

(
Li(δp

n,m+k
h − δpn,m−1+k

h )− αi
q
∇ · δun,k+q

h , δpn+1,m+k
h − δpn+1,m−1+k

h

)
Ei
.

(5.3.29)

Similarly, for the flux equation (5.3.27), by taking the difference of two successive

iterates, followed by taking the difference at two consecutive finer time steps, t = tm+k,

and t = tm−1+k, and testing with qh = δzn+1,m+k
h , we obtain

NΩ∑
i=1

(
Ki
−1
(
δzn+1,m+k

h − δzn+1,m−1+k
h

)
, δzn+1,m+k

h

)
Ei

=

NΩ∑
i=1

(
δpn+1,m+k

h − δpn+1,m−1+k
h ,∇ · δzn+1,m+k

h

)
Ei
. (5.3.30)

We combine (5.3.29) with (5.3.30), apply Young’s inequality (for each grid Ei) to

obtain

NΩ∑
i=1

βi

∥∥∥δpn+1,m+k
h − δpn+1,m−1+k

h

∥∥∥2

Ei

+ ∆t

NΩ∑
i=1

(
Ki
−1
(
δzn+1,m+k

h − δzn+1,m−1+k
h

)
, δzn+1,m+k

h

)
Ei

≤
NΩ∑
i=1

1

2εi

∥∥∥Li(δpn,m+k
h − δpn,m−1+k

h )− αi
q
∇ · δun,k+q

h

∥∥∥2

Ei

+

NΩ∑
i=1

εi
2

∥∥∥δpn+1,m+k
h − δpn+1,m−1+k

h

∥∥∥2

Ei
.
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For each Ei, the choice εi = βi absorbs the pressure term on the right hand side.

Together with a simple expansion of the flux product, we derive

NΩ∑
i=1

βi
2

∥∥∥δpn+1,m+k
h − δpn+1,m−1+k

h

∥∥∥2

Ei

+
∆t

2

NΩ∑
i=1

{∥∥∥Ki
−1/2δzn+1,m+k

h

∥∥∥2

Ei
−
∥∥∥Ki

−1/2δzn+1,m−1+k
h

∥∥∥2

Ei

+
∥∥∥Ki

−1/2(δzn+1,m+k
h − δzn+1,m−1+k

h

)∥∥∥2

Ei

}
≤

NΩ∑
i=1

1

2βi

∥∥∥Li(δpn,m+k
h − δpn,m−1+k

h )− αi
q
∇ · δun,k+q

h

∥∥∥2

Ei
. (5.3.31)

The right hand side constitutes an expression for a quantity to be contracted on.

Introducing a new parameter χi for each Ei, we define the localized volumetric mean

stress for (1 ≤ m ≤ q) as

χiδσ
n,m+k
v = Li(δp

n,m+k
h − δpn,m−1+k

h )− αi
q
∇ · δun,k+q

h . (5.3.32)

The value of χi for each Ei will be chosen such that contraction can be achieved on

the spatial summation of the localized norms of σn,m+k
v , summed over q flow finer time

steps, within one coarser mechanics time step. Summing up (5.3.31) for 1 ≤ m ≤ q,

substituting the new definition of the localized volumetric mean stress (5.3.32), and

noting that δzn+1,k
h = 0, we obtain

q∑
m=1

NΩ∑
i=1

βi
2

∥∥∥δpn+1,m+k
h − δpn+1,m−1+k

h

∥∥∥2

Ei
+

∆t

2

NΩ∑
i=1

∥∥∥Ki
−1/2δzn+1,k+q

h

∥∥∥2

Ei

+
∆t

2

q∑
m=1

NΩ∑
i=1

∥∥∥Ki
−1/2(δzn+1,m+k

h − δzn+1,m−1+k
h

)∥∥∥2

Ei
≤

q∑
m=1

NΩ∑
i=1

1

2βi

∥∥∥χiδσn,m+k
v

∥∥∥2

Ei
.

(5.3.33)

• Step 2: Elasticity equation

For n ≥ 1, we take the difference of successive iterates of the mechanics equation

146



(5.3.28), and test with vh = δun+1,k+q
h to get

2

NΩ∑
i=1

Gi‖ε(δun+1,k+q
h )‖2

Ei
+

NΩ∑
i=1

λi‖∇ · δun+1,k+q
h ‖2

Ei

−
NΩ∑
i=1

αi(δp
n+1,k+q
h ,∇ · δun+1,k+q

h )Ei = 0. (5.3.34)

For the iterative scheme to be contractive, a quantity similar to the right hand side of

(5.3.33), for the next iterative coupling iteration, n+ 1, has to be formed. To achieve

that, we introduce a term involving a summation over all flow finer time steps in

(5.3.34) by noticing that

q∑
m=1

(
δpn+1,m+k

h − δpn+1,m−1+k
h

)
= δpn+1,k+q

h . (5.3.35)

Substituting (5.3.35) into (5.3.34) leads to

2

NΩ∑
i=1

Gi‖ε(δun+1,k+q
h )‖2

Ei
+

NΩ∑
i=1

λi‖∇ · δun+1,k+q
h ‖2

Ei

−
NΩ∑
i=1

αi(

q∑
m=1

(
δpn+1,m+k

h − δpn+1,m−1+k
h

)
,∇ · δun+1,k+q

h )Ei = 0. (5.3.36)

• Step 3: Combining flow and elasticity equations

By combining (5.3.36) with (5.3.33), and rearranging terms, we form a square term,

in expanded form, summed over flow finer time steps within one coarser mechanics

time step for each grid element Ei,

2

NΩ∑
i=1

Gi‖ε(δun+1,k+q
h )‖2

Ei
+

q∑
m=1

NΩ∑
i=1

{βi
2

∥∥∥δpn+1,m+k
h − δpn+1,m−1+k

h

∥∥∥2

Ei

+
λi
q

∥∥∥∇ · δun+1,k+q
h

∥∥∥2

Ei
− αi

(
δpn+1,m+k

h − δpn+1,m−1+k
h ,∇ · δun+1,k+q

h

)
Ei

}
+

∆t

2

NΩ∑
i=1

∥∥∥Ki
−1/2δzn+1,k+q

h

∥∥∥2

Ei
+

∆t

2

q∑
m=1

NΩ∑
i=1

∥∥∥Ki
−1/2(δzn+1,m+k

h − δzn+1,m−1+k
h

)∥∥∥2

Ei

≤
q∑

m=1

NΩ∑
i=1

χ2
i

2βi

∥∥∥δσn,m+k
v

∥∥∥2

Ei
. (5.3.37)
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It remains to choose the values of our newly introduced parameters, χi and Li, such

that the coefficients of the expanded square contributes only positive terms to the

left hand side of (5.3.37). Therefore, we expand the right hand side of (5.3.37) for

each Ei as∥∥∥δσn,m+k
v

∥∥∥2

Ei
=
L2
i

χi2

∥∥∥δpn,m+k
h − δpn,m−1+k

h

∥∥∥2

Ei

− 2αiLi
qχ2

i

(
δpn,m+k

h − δpn,m−1+k
h ,∇ · δun,k+q

h

)
Ei

+
α2
i

χ2
i q

2

∥∥∥∇ · δun,k+q
h

∥∥∥2

Ei
. (5.3.38)

Now, we match the coefficients of the expansion in (5.3.38) to the coefficients of the

expanded square on the right hand side of (5.3.37), hence, deduce the values of χi

and Li for each grid element Ei, respectively. For the left hand side of (5.3.37) to

remain positive, the following inequalities should be satisfied

βi
2
≥ L2

i

χi2
,

2αiLi
qχ2

i

= αi,
λi
q
≥ α2

i

χ2
i q

2
.

The second and third inequalities give rise to the following condition

Li ≥
α2
i

2λi
for each Ei.

The first inequality gives rise to q ≤ βi
Li

. For Li =
α2
i

2λi
, χ2

i =
α2
i

qλi
, we derive the following

condition on the number of flow finer time steps within one coarse mechanics time

step

q ≤ 2λi
αi2

( 1

Mi

+ cf iϕ0i

)
+ 1 for each Ei, (5.3.39)

which is not restrictive as typically in practice the values of λi are quite large. Now,

we group the terms of the expanded square on the left hand side of (5.3.37) to form

the quantity of contraction for the next iterative coupling iteration, n+ 1, as

2

NΩ∑
i=1

Gi‖ε(δun+1,k+q
h )‖2

Ei
+

q∑
m=1

NΩ∑
i=1

(βi
2
− L2

i

χ2
i

)∥∥∥δpn+1,m+k
h − δpn+1,m−1+k

h

∥∥∥2

Ei

+

q∑
m=1

NΩ∑
i=1

∥∥∥δσn+1,m+k
v

∥∥∥2

Ei
+

∆t

2

NΩ∑
i=1

∥∥∥Ki
−1/2δzn+1,k+q

h

∥∥∥2

Ei

+
∆t

2

q∑
m=1

NΩ∑
i=1

∥∥∥Ki
−1/2(δzn+1,m+k

h − δzn+1,m−1+k
h

)∥∥∥2

Ei
≤

q∑
m=1

NΩ∑
i=1

χ2
i

2βi

∥∥∥δσn,m+k
v

∥∥∥2

Ei
.
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Substituting χ2
i = 2Li

q
, βi = 1

Mi
+ cf iϕ0i + Li for each Ei, with further algebraic

simplifications, we obtain

2

NΩ∑
i=1

Gi‖ε(δun+1,k+q
h )‖2

Ei

+
1

2

q∑
m=1

NΩ∑
i=1

( 1

Mi

+ cf iϕ0i + (1− q)Li
)∥∥∥δpn+1,m+k

h − δpn+1,m−1+k
h

∥∥∥2

Ei

+
∆t

2

NΩ∑
i=1

∥∥∥K−1/2
i δzn+1,k+q

h

∥∥∥2

Ei
+

∆t

2

q∑
m=1

NΩ∑
i=1

∥∥∥K−1/2
i (δzn+1,m+k

h − δzn+1,m−1+k
h )

∥∥∥2

Ei

+

q∑
m=1

NΩ∑
i=1

∥∥∥δσn+1,m+k
v

∥∥∥2

Ei
≤ max

1≤i≤NΩ

( Li
q( 1

Mi
+ cf iϕ0i + Li)

) q∑
m=1

NΩ∑
i=1

∥∥∥δσn,m+k
v

∥∥∥2

Ei
.

(5.3.40)

The contraction coefficient: max
1≤i≤NΩ

(
Li

q( 1
Mi

+cf iϕ0i+Li)

)
< 1 for q ≥ 1. This is trivially

satisfied (at least we take one flow time step followed by one mechanics time step).

Theorem 5.3.1. [Localized Multirate Contraction Estimate] For q ≤ 1 + min
1≤i≤NΩ

2λi
αi2

(
1
Mi

+

cf iϕ0i

)
, Li =

α2
i

2λi
and χ2

i = 2Li
q

, the localized multirate iterative scheme is a contraction

given by

2
∑NΩ

i=1 Gi‖ε(δun+1,k+q
h )‖2

Ei

+1
2

∑q
m=1

∑NΩ

i=1

(
1
Mi

+ cf iϕ0i + (1− q)Li
)∥∥∥δpn+1,m+k

h − δpn+1,m−1+k
h

∥∥∥2

Ei

+∆t
2

∑NΩ

i=1

∥∥∥Ki
−1/2δzn+1,k+q

h

∥∥∥2

Ei

+∆t
2

∑q
m=1

∑NΩ

i=1

∥∥∥Ki
−1/2(δzn+1,m+k

h − δzn+1,m−1+k
h )

∥∥∥2

Ei
+
∑q

m=1

∑NΩ

i=1

∥∥∥δσn+1,m+k
v

∥∥∥2

Ei

≤ max
1≤i≤NΩ

(
Li

q( 1
Mi

+cf iϕ0i+Li)

)∑q
m=1

∑NΩ

i=1

∥∥∥δσn,m+k
v

∥∥∥2

Ei
.

5.4 Multirate Banach Contraction Estimates for Homogeneous
vs Heterogeneous (Localized) Poroelastic Media

Table 5.1 compares the Banach contraction result obtained in Theorem 2.3.4 against the

one obtained above.
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Original Contraction Es-

timates for Poroelastic

Media

Localized Contraction Estimates for

Heterogeneous Poroelastic Media

Conditions on Param-

eters:

A degree of spatial unifor-

mity should be imposed as de-

scribed in remark 5.4.2

Parameters can be heterogeneous.

Contraction Coeffi-

cient:

(
L

1
M +cfϕ0+L

)2
max

1≤i≤NΩ

(
Li

q( 1
Mi

+cf i
ϕ0i+Li)

)
for Li =

α2
i

2λi
for all

Ei ∈ Ω

Condition on q: none q ≤ 1 + min
1≤i≤NΩ

2λi

αi
2

(
1
Mi

+ cf iϕ0i

)
.

When do Contraction

Coefficients Match?

For L = α2

2λ ,(
Mα2

2(λ+Mλcfϕ0)+Mα2

)2 For q = upper limit, and Li =
α2

i

2λi

for all Ei ∈ Ω, contraction estimate

= max
1≤i≤NΩ

(
Miαi

2

2(λi+Miλicf i
ϕ0i)+Miα2

i

)2
. Exact

Match.

Table 5.1: Banach Contraction Estimates for Homogeneous vs Heterogeneous (Localized)
Poro-elastic Media

Remark 5.4.1. Our localized Banach estimates work provides another strong justifica-

tion for introducing the modified multirate iterative coupling scheme presented in section

(2.3.3.5). Following a similar approach to the proof presented above, the localized modified

multirate iterative coupling scheme will not impose any upper bound on the number of flow

finer time steps taken within one coarse mechanics time steps. This follows immediately

as the quantity of contraction in the modified scheme is independent of q. The details are

spared.

Remark 5.4.2. For our earlier obtained results, the word “homogeneous” is not as restric-

tive as it sounds. In fact, some degree of uniformity in the flow and mechanics parameters

should be imposed in this case. However, parameter values can change smoothly across

the spatial domain. The fixed stress stabilization term in this case should take the form

L = α2
max

2λmin
, and this value will be added to the main diagonal of the linear system in a

homogeneous manner. In fact, this leads to slower convergence rate, as the contraction

coefficient increases monotinially with L. The power of the localized contraction result is

that it allows us to add localized fixed-stress regularization terms which can vary across grid

cells, yet the scheme is still contractive.
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Chapter 6

Iterative Coupling Schemes for Fractured Poroelastic

Media

6.1 Introduction

In this chapter, we consider single rate and multirate iterative coupling schemes for coupling

flow with linear elasticity in fractured poro-elastic media. Our proposed multirate itera-

tive coupling schemes are extensions of the fixed-stress split iterative coupling algorithm,

described in [43], in the presence of fractures. Two different multirate iterative coupling

schemes will be proposed, along with rigorous derivations of their convergence properties.

The single rate and multirate iterative coupling schemes for fractured poro-elastic media

are shown in figures 6.1a and 6.1b respectively. It should be noted that in our mathematical

analysis, we make the assumption that the flow in the reservoir and the fracture are solved

monolithically.

6.1.1 Notation

We will follow a similar notation to the one presented in [45]. Let Ω be an open, connected,

and bounded domain of IRd, d = 2 or 3. The boundary of the domain, ∂Ω, is assumed

to be Lipschitz continuous. We denote by Γ the part of the boundary ∂Ω with a positive

measure. In addition, the boundary of Γ is assumed to be Lipschitz continuous for d = 3.

We recall from Chapter 2 that D(Ω) denotes the space of infinitely differentiable functions

with compact support in Ω. Moreover, we recall that D′(Ω) is the dual space of D(Ω)

which constitutes the space of distributions in Ω. As usual, H1(Ω) denotes the classical

Sobolev space

H1(Ω) = {v ∈ L2(Ω) ; ∇ v ∈ L2(Ω)d},
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tflow(tf ), tmech(tm) = 0
(initial time =0)

k=0

n=0 (iterative
coupling index)

Fluid Flow in both
Reservoir and Fracture:
tflow = tflow + ∆t

Compute pore
pressure: pn+1,k+1

Mechanics (Biot Model):
tmech = tmech + ∆t
Compute displace-

ment, un+1,k+1

Update pore volume

Converged? k = k + 1
tf = tf − ∆t
tm = tm − ∆t
n = n + 1

No Yes

(a) Single Rate

tflow(tf ), tmech(tm) = 0
(initial time = 0)

k = 0

n = 0 (iterative
coupling index)

m = 1 (flow iteration index)

Fluid Flow in both
Reservoir and Fracture:
tflow = tflow + ∆t
Compute pore pres-

sure, pn+1,k+m

m = (Max
flow

iterations:
q)?

m = m + 1

Mechanics (Biot Model):
tmech = tmech + q∆t
Compute displace-

ment, un+1,k+q

Update pore volume

Converged? k = k + q
tf = tf − q∆t
tm = tm − q∆t
n = n + 1

No

Yes

No Yes

(b) Multirate

Figure 6.1: Flowchart for the iterative flow and mechanics coupling algorithm using single
rate and multirate time stepping in fractured poro-elastic media. We assume that the flow
in the reservoir and the fracture are solved monolithically.

equipped with the semi-norm and norm:

|v|H1(Ω)= ‖∇ v‖L2(Ω)d , ‖v‖H1(Ω)= (‖v‖2
L2(Ω)+|v|2H1(Ω))

1/2.

152



In addition, we recall from Chapter 2 that for 1 ≤ p <∞, W 1,p(Ω) is the space

W 1,p(Ω) = {v ∈ Lp(Ω) ; ∇ v ∈ Lp(Ω)d},

normed by

|v|W 1,p(Ω)= ‖∇ v‖Lp(Ω) , ‖v‖W 1,p(Ω)= (‖v‖pLp(Ω)+|v|
p
W 1,p(Ω))

1/p,

Moreover, we denote by H1/2(Γ) the space of traces of functions of H1(Ω) on Γ (or generally

Lipschitz curve in Ω). We note that H1/2(Γ) ⊂ L2(Γ). The dual space of H1/2(Γ) is denoted

by H−1/2(Γ), and is equipped with the norm [43]

|v|H1/2(Γ)= (

∫
Γ

∫
Γ

|v(x)− v(y)|2

|x− y|d
dx dy)1/2 , ‖v‖H1/2(Γ)= (‖v‖2

L2(Γ)+|v|2H1/2(Γ))
1/2. (6.1.1)

We also define

H1
0 (Ω) = {v ∈ H1(Ω) ; v|∂Ω= 0},

and more generally

H1
0,Γ(Ω) = {v ∈ H1(Ω) ; v|Γ= 0}.

Moreover, we recall from Chapter 2 that for a vector v in IRd, the strain tensor ε(v) is

defined as:

ε(v) =
1

2
(∇v + (∇v)T ).

In the analysis we carry out in this chapter, we shall use Korn’s, Poincaré’s, and traces

inequalities, listed as follows:

• Korn’s first inequality in H1
0,Γ(Ω)d: there exists a constant Cκ which depends on Ω

and Γ such that

∀v ∈ H1
0,Γ(Ω)d , |v|H1(Ω)d≤ Cκ‖ε(v)‖L2(Ω)d×d . (6.1.2)

• Poincaré’s inequality in H1
0,Γ(Ω) reads: there exists a constant PΓ which depends on

Γ and Ω such that

∀v ∈ H1
0,Γ(Ω) , ‖v‖L2(Ω)≤ PΓ|v|H1(Ω). (6.1.3)
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• Trace inequality in H1(Ω): there exists a constant Cτ which depends on Γ and Ω

such that

∀ε > 0 , ∀v ∈ H1(Ω) , ‖v‖L2(Γ)≤ ε‖∇ v‖L2(Ω)+(
Cτ
ε

+ ε)‖v‖L2(Ω). (6.1.4)

This follows directly from the Young’s inequality and the interpolation inequality

[21,43]:

∀v ∈ H1(Ω) , ‖v‖L2(Γ)≤ C‖v‖1/2

L2(Ω)‖v‖
1/2

H1(Ω).

Furthermore, we recall that the H(div; Ω) space is defined as follows:

H(div; Ω) = {v ∈ L2(Ω)d ; ∇ · v ∈ L2(Ω)},

and equipped with the norm

‖v‖H(div;Ω)= (‖v‖2
L2(Ω)+‖∇ · v‖2

L2(Ω))
1/2.

6.1.2 Reservoir and Fracture Domains

In this work, the reservoir is represented by Ω, a bounded domain of IRd, d = 2 or 3, with

a Lipschitz continuous boundary ∂Ω, and outward normal n. The fracture is modeled as

an interface C which is a closed subset of Ω. For d = 2, C represents a simple piecewise

smooth curve. For d = 3, it represents a simple piecewise smooth surface with piecewise

smooth Lipschitz boundary ∂C. The reservoir matrix is thus denoted by Ω\C.

For discretization purposes (will be described in details later), we introduce an auxiliary

partition of Ω into two non-overlapping subdomains Ω+ and Ω−. The interface between the

two subdomains is assumed to be Lipschitz and denoted by Γ. The fracture C is contained

within Γ: C ⊂ Γ. We will distinguish the two sides (or faces) of the fracture, C, by the

superscripts + and − (following a similar notation as the one presented in [43]). We will

use the superscript ? to denote either + or −. Let Ω? denote the part of Ω adjacent to

C? and let n? denote the unit normal vector to C exterior to Ω?, ? = +,−. The fracture

is represented by two coincident sides/surfaces, so we have n− = −n+. Moreover, we let

Γ? = ∂Ω?\Γ. Figure 6.2 summarizes the above discussion.
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Figure 6.2: Reservoir and fracture domains (image courtesy of [45])

6.2 Model Equations and Discretization

6.2.1 Fractured Poroelastic Model

We recall that we assume a linear, elastic, homogeneous, and isotropic porous medium

Ω ⊂ R3, in which the reservoir is saturated with a slightly compressible fluid. Fractures

are treated as possibly non-planar interfaces denoted by C. As described earlier in Chapter

2 (section 2.2.2), using a quasi-static (i.e. ignoring the second order time derivative of the

displacement) Biot approach to obtain the displacements (see [16]), the “geomechanics”

model is as follows:

σpor(u, p) = σ(u)− α p I, (6.2.5)

σ(u) = λ(∇ · u)I + 2Gε(u), (6.2.6)

− divσpor(u, p) = f in Ω \ C, (6.2.7)

where σpor is the Cauchy stress tensor, I is the identity tensor, u is the solid’s displacement,

p is the fluid pressure in the reservoir, α > 0 is the dimensionless Biot coefficient, σ is the

effective linear elastic stress tensor, λ > 0 and G > 0 are the Lamé constants, f is a body

force, which is usually assumed to be a gravity loading term.

In addition, as described in section 2.2.3 of Chapter 2, we assume a linearized slightly

compressible single-phase flow model for the fluid (in both the reservoir and the fracture).
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The fluid density, ρf , is a linear function of pressure: ρf = ρf,r(1 + cf (p − pr)). The

porosity, denoted by ϕ∗, is given by: ϕ∗ = ϕ0 + α∇ · u + 1
M
p, where ϕ0 is the initial

porosity, and M is the Biot modulus. The fluid mass balance in the reservoir Ω \ C reads:

∂
∂t

(ρfϕ
∗) +∇ · (ρfvD) = qs, where qs is a mass source or sink term, and vD is the velocity

of the fluid in Ω \ C, vD = − 1
µf
K(∇ p − ρfg∇ η). Substituting the definitions of vD, ρf ,

and ϕ∗ into the mass balance equation, and following the same approach as in section 2.2.3

of Chapter 2, we derive:

∂

∂t

(
(

1

M
+ cfϕ0)p+ α∇ · u

)
−∇ ·

( 1

µf
K(∇ p− ρf,rg∇ η)

)
= q̃. (6.2.8)

where q̃ = qs
ρf,r

. This completes the derivation of the poro-elastic equations, modeling the

displacement u and pressure p in Ω \ C.

The fluid in the fracture is also assumed to be slightly compressible. Following a similar

model as in [45], the conservation of mass in the fracture can be written as:

∂(ρfw)

∂t
−∇ · (ρf

KC

12µf
(∇ pf − ρrg∇ η)) = qW − qL.

For a slightly compressible fluid in the fracture, we can write: ρf = ρf,r(1 + cf (pf − pc,r)),

where pf is the pressure in the fracture, pc,r is the reference pressure in the fracture, and

cf is the compressibility of the fluid. Assuming that cf is in the order of 10−5 or 10−6, we

can approximate ρf as: ρf ≈ ρf,r. Now, we write the mass balance equation in the fracture

as follows:

ρf,r
∂w

∂t
+ w

∂ρf
∂t
−∇ · (ρf,r

KC

12µf
(∇ pf − ρf,rg∇ η)) = qW − qL.

Dividing by ρf,r (defining q̃W = qW
ρf,r

, and q̃L = qL
ρf,r

), and substituting
∂ρf
∂t

= ρf,rcf
∂pf
∂t

, we

obtain:

∂w

∂t
+ cfw

∂pf
∂t
−∇ · ( KC

12µf
(∇ pf − ρf,rg∇ η)) = q̃W − q̃L.
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The second term in the equation above is not linear. To linearize it, we redefine the

compressibility of the fluid in the fracture as: cfc = cfw, and assume it to be constant.

Thus, the mass conservation equation in the fracture C reads:

cf
∂pf
∂t

+
∂

∂t
w −∇ · ( KC

12µf
(∇ pf − ρf,rg∇ η)) = q̃W − q̃L. (6.2.9)

The term ∂
∂t
w accounts for the change in width of the fracture due to mechanical deforma-

tion. The term q̃W represents the injection term and q̃L represents the leakage term which

connects the fracture flow model to the reservoir flow model. We will assume that KC is a

positive definite permeability tensor in our analysis.

For any function g defined in Ω\C with a trace, let g? denote the trace of g on C?, ? = +,−.

The jump of g on C in the direction of n+ is defined by [g]C = g+ − g−. The width of the

fracture, w, is the jump of u · n− on C, therefore, we have w = −[u]C · n+. Following this

approach, we note that the leakoff term q̃L is the only unknown in equation (6.2.9) (recall

that pf is the trace of p on C, i.e. pf = p|C on C).

For the interface and boundary conditions, we will follow the same approach as in [43,45].

Let τ ?j , 1 ≤ j ≤ d − 1, be a set of orthonormal tangent vectors on C?, ? = +,−. The

conservation of mass and the balance of the normal traction vector gives the interface

conditions on each face (or side) of C:

(σpor(u, p))?n? = −pfn? , ? = +,−. (6.2.10)

The continuity of pf on C gives

[σpor(u, p)]Cn
? = 0.

We simply derive:

σpor(u, p)n? · n? = −pf , σpor(u, p)n? · τ ?j = 0, 1 ≤ j ≤ d− 1. (6.2.11)

The jump in reservoir flux is equal to the leakage term, so, the conservation of mass equation

at the interface gives:
1

µf
[K(∇ p− ρf,rg∇ η)]C · n+ = q̃L. (6.2.12)
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We assume that the displacement, u, and the normal component of the flux, K(∇ p −

ρf,rg∇ η) · n, vanish on ∂Ω . We also assume that w is bounded in C and vanishes on

∂C. Finally, since the time derivative in (6.2.8) acts on ( 1
M

+ cfϕ0)p + α∇ · u, the initial

condition is prescribed by (see [81]):(
(

1

M
+ cfϕ0)p+ α∇ · u

)
(0) = (

1

M
+ cfϕ0)p0 + α∇ · u0, (6.2.13)

where u0 a given initial displacement and p0 is a given initial pressure. We note that u0

and p0 are not independent, as u0 is computed by solving the elasticity equation given p0

and (pf |t=0= p0|C) [43, 45].

The continuos in time formulation now reads: Find u, p, and q̃L satisfying the equa-

tions below for all time t ∈]0, T [:

−divσpor(u, p) = f in Ω \ C,
σpor(u, p) = σ(u)− α p I in Ω \ C,

∂
∂t

(
( 1
M

+ cfϕ0)p+ α∇ · u
)
−∇ ·

(
1
µf
K(∇ p− ρf,rg∇ η)

)
= q̃ in Ω \ C,

cf
∂pf
∂t

+ ∂
∂t
w −∇ · ( KC

12µf
(∇ pf − ρf,rg∇ η)) = q̃W − q̃L in C,

(σpor(u, p))?n? = −p|Cn? , ? = +,− on C,
1
µf

[K(∇ p− ρf,rg∇ η)]C · n+ = q̃L on C,

where w = −[u]C · n+,

Boundary Conditions: u = 0 , K(∇ p− ρf,rg∇ η) · n = 0 on ∂Ω,

Initial Condition (t = 0) :
(

( 1
M

+ cfϕ0)p+ α∇ · u
)

(0) =

( 1
M

+ cfϕ0)p0 + α∇ · u0.

where: K is the absolute permeability tensor, g is the gravitation constant, µf > 0 is the

constant fluid viscosity, η is the distance in the vertical direction (assumed to be constant

in time), ρf,r > 0 a constant reference density (relative to the reference pressure pr), ϕ0

is the initial porosity, M is the Biot modulus, q̃ = q
ρf,r

where q is a mass source or sink

term taking into account injection into or out of the reservoir, ∂
∂t
w represents the change

in fracture width due to mechanical deformation, q̃W represents the injection term and q̃L
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represents the leakage term which connects it to the reservoir flow model, and n+ is the

normal vector out of the fracture surface.

6.2.2 Assumptions

The assumptions on the model and data are summarized as follows:

1. The reservoir is assumed to be homogeneous, isotropic and saturated poro-elastic

medium. The reference density of the fluid (in the reservoir and fracture, ρf,r) and

viscosity, µf , are given and positive. Moreover, µf > 0 is assumed to be constant.

2. The dimensionless Biot coefficient α, the Lamé coefficients λ > 0 and G > 0, and the

pore volume ϕ∗ are all positive.

3. The absolute permeability tensors (K and Kc) are assumed to be bounded, sym-

metric, uniformly positive definite in space and constant in time (for discrete time

intervals).

4. The fluids are assumed to be slightly compressible (their densities are linear functions

of the corresponding pressure).

5. For the single rate iterative coupling algorithm and the modified multirate iterative

coupling algorithm, the Lamé coefficients λ,G and the compressibilities of the fluid

satisfy

4GC∗ >
λ

α2cfc

(
1

M
+ cfϕ0

)
, (6.2.14)

where C∗ is a product of optimal constants in Korn’s, Poincare, and trace inequalities

(defined in (6.4.55)).

For the first multirate algorithm considered in this chapter, we assume:

α2

λ
>

1

2GC∗
& cf c >

1

M
+ cfϕ0
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As explained in [43, 45], assumptions involving the constant C∗ are not very restrictive

provided that its value does not become very small. The shear modulus G and the bulk

modulus λ are almost of the same order. Similarly, the compressibilities (cf and cfc) and

the reciprocal of the Biot modulus 1/M can be assumed to be of the same order. As stated

in [43,45], the shape of the fracture plays a role in the convergence of the iterative scheme

since the constant C∗ depends on the constant of the trace inequality. We note that the

existence and uniqueness of the solution to the continuous formulation is given in [43].

6.2.3 Mixed Variational Formulation

In this section, we formulate and study a space-time discretization of the fractured poro-

elastic system described above. Temporal discretization follows the usual backward-Euler

scheme. A mixed finite element formulation is used to descretize flow equations in the

reservoir and the fracture, while continuous Galerkin is used to descretize the elasticity

equation. As described in Chapter 2, the mixed form defines the flux as a separate un-

known and rewrites the flow equation as a system of first order equations. For the mixed

formulation involved, we assume the lowest order RT (Raviart and Thomas, 1977) spaces.

Let Th denote a regular family of conforming triangulation of the domain of interest Ω. We

assume that Th triangulates both Ω+ and Ω−.

We define the space of discrete displacements V h, the space of discrete pressures in the

reservoir Qh, the space of discrete pressures in the fracture Qch , the space of discrete

velocities (fluxes) in the reservoir Zh, and the space of discrete velocities (fluxes) in the

fracture ZCh as follows:

V h = {vh ∈ H1(Ω+ ∪ Ω−)
d

; ∀T ∈ Th,vh|T∈ Pd1 , [vh]Γ\C = 0,v?h|Γ?= 0, ? = +,−}

Qh = {ph ∈ L2(Ω) ; ∀T ∈ Th, ph|T∈ P0}

Qch = {pfh ∈ H1/2(C) ; ∀T ∈ Th, pfh |T∈ P1}

Zh = {qh ∈ H(div; Ω+ ∪ Ω−)
d

; ∀T ∈ Th, qh|T∈ Pd1 ,

[qh] · n+ = 0 on Γ \ C, qh · n = 0 on ∂Ω}

ZCh = {µf h ∈ ZC ; ∀T ∈ Th,µf h|T∈ Pd1}
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where ZC represents the space of continuous velocities in the fracture, and is defined as

follows:

ZC = {µf ∈ L2(C)d−1 ; ∇ · µf ∈ H−1/2(C)}, (6.2.15)

normed by:

‖µf‖ZC
= (‖µf‖2

L2(C)+‖∇ · µf‖2
H−1/2(C))

1/2. (6.2.16)

In addition, the Space Qch is equipped with the norm:

|v|H1/2(C)= (

∫
C

∫
C

|v(x)− v(y)|2

|x− y|d
dx dy)1/2 , ‖v‖H1/2(C)= (‖v‖2

L2(C)+|v|2H1/2(C))
1/2. (6.2.17)

The space of displacements V h is equipped with the norm:

‖vh‖Vh= (
d∑
i=1

‖vhi‖2
Ω+∪Ω−)1/2 =

( d∑
i=1

(
‖vh+

i ‖2
H1(Ω+)+‖vh−i ‖2

H1(Ω−)

))1/2

.

Moreover, the space of reservoir matrix velocity is normed by:

‖qh‖Zh= (‖qh‖2
H(div;Ω+∪Ω−))

1/2 =
(
‖q+

h ‖
2
H(div;Ω+)+‖q−h ‖

2
H(div;Ω−)

)1/2

.

The space Qh is normed by the usual L2 norm.

We can also assume that the discrete leakage term is in H−1/2(C). However, it will be

eliminated completely by substituting (6.2.12) into the fracture flow equation.

Following the same approach described in the earlier chapters, we assume that a local time

step is given by: ∆t = tk− tk−1. If we denote the total number of time steps by N, then the

total simulation time is given by T = ∆t N, and ti = i∆t, 0 6 i 6 N denote the discrete

time points.

In the following section, we describe an extension of the fixed-stress split iterative coupling

algorithm to the fractured poro-elastic media.
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6.3 Fixed Stress Split Algorithm For Fractured Poroelastic Me-
dia

We will follow the fixed stress split formulation introduced in [43]. Although we use the

splitting scheme at the discrete level, it is easier to see its details at the continuum level

(we note here that the superscript n denotes the iterative coupling iteration index). In

this iterative coupling algorithm, we first solve the flow problem in the reservoir and the

fracture in a monolithic manner:

Step (a) [Flow] Given un, we solve for pn+1, zn+1, pn+1
f , ζn+1

( 1
M

+ cfϕ0 + α2

λ
) ∂
∂t
pn+1 + 1

µf
∇ · zn+1 = α2

λ
∂
∂t
pn − α∇ · ∂

∂t
un + q̃ in Ω \ C,

zn+1 = −K(∇ pn+1 − ρf,rg∇ η),

(γc + cfc)
∂
∂t
pn+1
f + ∂

∂t
wn + 1

12µf
∇ · ζn+1 = γc

∂
∂t
pnf + q̃W + [z]n+1

C · n+ in C,

ζn+1 = −KC(∇ pn+1
f − ρf,rg∇ η) in C

Once the flow is computed, we update the displacement solution.

Step (b) [Mechanics] Given pn+1, zn+1, pn+1
f , ζn+1, we solve for un+1 satisfying

−divσpor(un+1, pn+1) = f in Ω \ C,

σpor(un+1, pn+1) = σ(un+1)− α pn+1 I in Ω \ C,

(σpor(un+1, pn+1))?n? = −pn+1
f |Cn? , ? = +,− on C.

γc is an adjustable coefficient which is going to be revealed by the proof of the contraction.

In what follows, we still denote the scalar products in space by parentheses. If the domain of

integration is not indicated, then it is understood that the integrals are taken over Ω+∪Ω−.

Let the solution at time tk−1 be known. That is, the values of uk−1, pk−1, pf
k−1, zk−1, and

ζk−1 are computed and known from the last time step (the superscript k here denotes the

time step index). We also assume appropriate initial values of our unknowns: u0, p0, pf
0,

z0, and ζ0. Moreover, we will follow the same notation as the one used in Chapter 2, listed

below for completeness.

Remark 6.3.1. Notation: We briefly recall the notation introduced earlier: n denotes the

flow/mechanics coupling iteration index and k denotes the time step index. For multirate
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iterative coupling schemes, k denotes the coarser time step index (for indexing mechanics

coarse time steps), and m denotes the finer (local) time step index (for indexing flow fine

time steps). Moreover, ∆t stands for the fine time step size, and q is the “fixed” number

of finer flow time steps per coarse mechanics time step.

6.4 Single Rate Formulation and Analysis

6.4.1 Fully Discrete Scheme for Single Rate

As for the pure Biot system (without including fractures), using the mixed finite element

method in space (for flow), continuous Galerkin (CG) for mechanics, and the backward

Euler finite difference method in time, the weak formulation of the single rate scheme reads

as follows.

Definition 6.4.1. Find pkh ∈ Qh, pf
k
h ∈ Qch, zkh ∈ Zh, and ζkh ∈ ZCh such that,

(flow equation)

∀θh ∈ Qh ,
1

∆t

(
(

1

M
+ cfϕ0)

(
pkh − pk−1

h

)
, θh

)
+

1

µf
(∇ · zkh, θh) =

− α

∆t

(
∇ ·
(
ukh − uk−1

h

)
, θh

)
+
(
q̃h, θh

)
, (6.4.18)

∀qh ∈ Zh ,
(
K−1zkh, qh

)
=
(
pkh,∇ · qh

)
−
(
pf

k
h, [qh]C · n

+
)
C

+
(
ρf,rg∇ η, qh

)
, (6.4.19)

∀θch ∈ Qch ,
cfc
∆t

(
pf

k
h − pf

k−1
h , θch

)
C

+
1

12µf

(
∇ · δζkh, θch

)
C
− 1

µf

([
zkh

]
C
· n+, θch

)
C

=
1

∆t

(
[ukh]C · n+ − [uk−1

h ]C · n+, θch

)
C

+ ( ˜qWh, θch)C , (6.4.20)

∀µf h ∈ ZCh , (K−1
C ζ

k
h,µf h)C = (pf

k
h,∇ · (µf h))C + (∇(ρf,rgη),µf h)C , (6.4.21)

and (mechanics equation)

find ukh ∈ V h such that,

∀vh ∈ Vh , 2G(ε(ukh), ε(vh)) + λ(∇ · ukh,∇ · vh)− α(pkh,∇ · vh)

+(pf
k
h, [vh]C · n

+)C = (f ,vh) , (6.4.22)
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with the initial condition for the first discrete time step,(
(

1

M
+ cfϕ0)p0

h + α∇ · u0
h

)
(0) = (

1

M
+ cfϕ0)p0 + α∇ · u0. (6.4.23)

6.4.2 Single Rate Iterative Scheme

In what follows, we consider the fully discrete scheme of the fixed stress split iterative

coupling algorithm presented above. The proof of contraction for the single rate case is

a direct generalization of the proof presented in the work of Girualt et al. [43] at the

continuum level (continuous in time and space formulation). It should be noted that this

proof can be optimized by assuming the coefficients of the fixed-stress split regularization

terms (in equations (6.4.24) and (6.4.26)) to be free-parameters, determined by the proof of

contraction. The quantity of contraction in this case will change accordingly. This approach

is going to be followed in the multirate case. We start by presenting the fully-discrete single

rate iterative coupling algorithm.
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Algorithm 8: Single Rate Iterative Coupling Algorithm for Fractured Poroleas-
tic Media

1 for k = 0, 1, 2, 3, .. do /* Time step iteration index */

2 for n = 1, 2, .. do /* coupling iteration index */

3 First Step: Flow equations

4 Given un,kh (assuming an initial value is given for the first iteration:

u0,k
h )

5 Solve for pn+1,k
h , zn+1,k

h , pf
n+1,k
h , and ζn+1,k

h satisfying:

(
1

M
+ cfϕ0 +

α2

λ
)
pn+1,k
h − pk−1h

∆t
+

1

µf
∇ · zn+1,k

h =

α2

λ

pn,kh − pk−1h

∆t
− α∇ ·

un,kh − uk−1h

∆t
+ q̃h in Ω \ C, (6.4.24)

zn+1,k
h = −K(∇ pn+1,k

h − ρf,rg∇ η), (6.4.25)

(γc + cfc)
pf
n+1,k
h − pf k−1h

∆t
+
wn,kh − wk−1h

∆t
+

1

12µf
∇ · ζn+1,k

h =

γc
pf
n,k
h − pf k−1h

∆t
+ q̃Wh

− q̃Ln+1,k
h in C (6.4.26)

ζn+1,k
h = KC(∇ pfn+1,k

h − ρf,rg∇ η), (6.4.27)

1

µf
[K(∇ pn+1,k

h − ρf,rg∇ η)]C · n+ = q̃L
n+1,k
h on C (6.4.28)

wn,kh = −[un,kh ]C · n+, (6.4.29)

Second Step: Mechanics equations
6 Given pn+1,k

h , zn+1,k
h , pf

n+1,k
h , and ζn+1,k

h , solve for un+1,k
h satisfying:

− divσpor(un+1,k
h , pn+1,k

h ) = f in Ω \ C (6.4.30)

σpor(un+1,k
h , pn+1,k

h ) = σ(un+1,k
h )− αpn+1,k

h I in Ω \ C (6.4.31)

(σpor(un+1,k
h , pn+1,k

h ))?n? = −pfn+1,k
h n? , ? = +,− on C

(6.4.32)7
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The weak formulation of the above equations reads:

Step (a): Find un+1,k
h ∈ V h, p

n+1,k
h ∈ Qh, pf

n+1,k
h ∈ Qch , zn+1,k

h ∈ Zh, and ζn+1,k
h ∈ ZCh

such that:

∀θh ∈ Qh ,
(

(
1

M
+ cfϕ0 +

α2

λ
)(
pn+1,k
h − pk−1

h

∆t
), θh

)
+

1

µf
(∇ · zn+1,k

h , θh) =(
− α

λ
(− α(

pn+1,k
h − pk−1

h

∆t
) + λ∇ · (u

n+1,k
h − uk−1

h

∆t
)), θh

)
+ (q̃h, θh) (6.4.33)

∀θch ∈ Qch ,
(

(cfc + γc)
pf

n+1,k
h − pf k−1

h

∆t
, θch

)
+

1

12µf
(∇ · (ζn+1,k

h ), θch)C

− 1

µf
([zn+1,k

h ]C · n+, θch)C =
(
γc
pf

n,k
h − pf

k−1
h

∆t
, θch

)
+(

[un,kh ]C · n+ − [uk−1
h ]C · n+

∆t
, θch)C + ( ˜qWh, θch)C (6.4.34)

∀qh ∈ Zh , (K−1zn+1,k
h , qh) = (pn+1,k

h ,∇ · qh)− (pf
n+1,k
h , [qh]C · n+)C + (∇(ρf,rgη), qh)

(6.4.35)

∀µf h ∈ ZCh , (K−1
C ζ

n+1,k
h ,µf h)C = (pf

n+1,k
h ,∇ · (µf h))C + (∇(ρf,rgη),µf h)C. (6.4.36)

Step (b): Given pn+1,k
h , zn+1,k

h , pf
n+1,k
h , ζn+1,k

h , find un+1,k
h ∈ V h,

∀vh ∈ Vh , 2G(ε(un+1,k
h ), ε(vh)) + λ(∇ · un+1,k

h ,∇ · vh)− α(pn+1,k
h ,∇ · vh)

+(pf
n+1,k
h , [vh]C · n+)C = (f ,vh) , (6.4.37)

To begin the iteration (at the beginning of time step tk), for n = 1, we assign the initial

condition (compare to (6.2.13)):(
(

1

M
+ cfϕ0)p1,k

h + α∇ · u1,k
h

)
(tk−1) = (

1

M
+ cfϕ0)pk−1 + α∇ · uk−1.

where the terms α2

λ

pn+1,k
h −pk−1

h

∆t
and α2

λ

pn,kh −p
k−1
h

∆t
on the right and left hand sides of (6.4.33)

are the usual fixed-stress split regularization terms. In a similar way, we have introduced

fixed-stress split regularization terms for the fracture equation. The term γc
pf
n+1,k
h −pf k−1

h

∆t

is added to the left hand side of (6.4.34), and a corresponding term γc
pf
n,k
h −pf

k−1
h

∆t
is added
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to the right hand side of the same equation for consistency. The carried out mathemati-

cal analysis will result in an appropriate estimate for γc, which depends on the trace and

Korn’s inequalities’ constants (following a similar approach to the one presented in Girualt

et al. [43], but for the fully discrete case) . We note that the presence of the newly intro-

duced terms does not affect obtained solution upon convergence. However, their presence

is necessary to show that the scheme is contractive.

For the single rate fully discrete formulation, we define the volumetric mean stress (or the

quantity to be contracted on) as follows:

σkv = σk−1
v + λ∇ · ukh − α(pkh − pk−1

h ). (6.4.38)

Incorporating the coupling-iteration index, we have:

σn,kv = σk−1
v + λ∇ · un,kh − α(pn,kh − p

k−1
h ). (6.4.39)

Recalling the notation used for the difference between two consecutive iterates:

δξn+1 = ξn+1 − ξn,

where ξ may stand for ph, pf h, zh, ζh, σv, or uh. We write the volumetric mean stress in

terms of coupling iteration differences as follows:

δσn,kv = λ∇ · δun,kh − αδp
n,k
h (6.4.40)

In addition, we define a corresponding quantity for the flow in the fracture as follows:

χσn,kf = γcpf
n,k
h − w

k
n, (6.4.41)

where χ and γc are unknown coefficients, to be determined by the proof of contraction. In

terms of coupling iteration differences, (6.4.41) can be written as:

χδσn,kf = γcδpf
n,k
h − δw

k
n, (6.4.42)

Equation (6.4.40) can also be written as −α
λ
δσn,kv = α2

λ
δpn,kh −α∇ · δu

n,k
h which will appear

on the right hand side of the mass balance equation for the flow in the matrix. In terms of
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coupling iteration differences, equations (6.4.33), (6.4.34), (6.4.35), (6.4.36), and (6.4.37)

can be written as follows:

∀θh ∈ Qh ,
( 1

∆t
(

1

M
+ cfϕ0 +

α2

λ
)δpn+1,k

h , θh

)
+

1

µf
(∇ · δzn+1,k

h , θh) =
(
− α

λ∆t
δσn,kv , θh

)
(6.4.43)

∀θch ∈ Qch ,
( 1

∆t
(cfc + γc)δpf

n+1,k
h , θch

)
+

1

12µf
(∇ · (δζn+1,k

h ), θch)C

− 1

µf
([δzn+1,k

h ]C · n+, θch)C =
( γc

∆t
δpf

n,k
h , θch

)
+ (

1

∆t
[δun,kh ]C · n+, θch)C (6.4.44)

∀qh ∈ Zh , (K−1δzn+1,k
h , qh) = (δpn+1,k

h ,∇ · qh)− (δpf
n+1,k
h , [qh]C · n+)C (6.4.45)

∀µf h ∈ ZCh , (K−1
C δζn+1,k

h ,µf h)C = (δpf
n+1,k
h ,∇ · (µf h))C (6.4.46)

∀vh ∈ Vh , 2G(ε(δun+1,k
h ), ε(vh)) + λ(∇ · δun+1,k

h ,∇ · vh)− α(δpn+1,k
h ,∇ · vh)

+(δpf
n+1,k
h , [vh]C · n+)C = 0 (6.4.47)

6.4.3 Proof of Contraction

We first group our constants as follows:

β =
1

Mα2
+
cf
α2
ϕ0 +

1

λ
, βc = cf + γc. (6.4.48)

Note that β and βc are the coefficients of the pressure terms in (6.4.43) and (6.4.44) re-

spectively.

• Step (1): Flow equations

Consider (6.4.43), and test it with θh = δpn+1,k
h to obtain( 1

∆t
α2βδpn+1,k

h , δpn+1,k
h

)
+

1

µf

(
∇ · δzn+1,k

h , δpn+1,k
h

)
= − α

λ∆t

(
δσn,kv , δpn+1,k

h

)
.

By Young’s inequality, we have

β

∆t

∥∥∥αδpn+1,k
h

∥∥∥2

+
1

µf

(
∇ · δzn+1,k

h , δpn+1,k
h

)
=

1

∆t

(
(−αεδpn+1,k

h ), (
1

ελ
)σn,kv

)
≤ 1

∆t

(ε2
2

∥∥∥αδpn+1,k
h

∥∥∥2

+
1

2ε2λ2

∥∥∥ ∂

∂t
δσn,kv

∥∥∥2)
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Letting ε2 = β, we obtain

β
∥∥∥αδpn+1,k

h

∥∥∥2

+
2∆t

µf
(∇ · δzn+1,k

h , δpn+1,k
h ) ≤ 1

βλ2

∥∥∥δσn,kv ∥∥∥2

. (6.4.49)

Now, consider the equation of flux in the reservoir (6.4.45), and test it with qh =

δzn+1,k
h to obtain

(K−1δzn+1,k
h , δzn+1,k

h ) = (δpn+1,k
h ,∇ · δzn+1,k

h )− (δpf
n+1,k
h , [δzn+1,k

h ]C · n+)C. (6.4.50)

For the pressure in the fracture, consider (6.4.44) and test it with θch to be θch =

δpf
n+1,k
h to obtain( 1

∆t
(cfc + γc)δpf

n+1,k
h , δpf

n+1,k
h

)
C

+
1

12µf
(∇ · (δζn+1,k

h ), δpf
n+1,k
h )C

− 1

µf
([δzn+1,k

h ]C · n+, δpf
n+1,k
h )C =

( γc
∆t
δpf

n,k
h , δpf

n+1,k
h

)
C

+ (
1

∆t
[δun,kh ]C · n+, δpf

n+1,k
h )C

=
1

∆t

(1

ε
(γcδpf

n,k
h + [δun,kh ]C · n+), εδpf

n+1,k
h

)
≤ 1

∆t

( 1

2ε2

∥∥∥γcδpfn,kh + δ[un,kh ]C · n+
∥∥∥2

C
+
ε2

2

∥∥∥δpfn+1,k
h

∥∥∥2

C

)
(6.4.51)

by Young’s inequality. Choosing ε2 = (cfc + γc) and multiplying the whole equation

by 2∆t, we derive:

(cfc + γc)
∥∥∥δpfn+1,k

h

∥∥∥2

C
+

∆t

6µf
(∇ · (K−1

C δζn+1,k
h ), δpf

n+1,k
h )C

− 2∆t

µf
([δzn+1,k

h ]C · n+, δpf
n+1,k
h )C ≤

1

(cfc + γc)

∥∥∥γcδpfn,kh + δ[un,kh ]C · n+
∥∥∥2

C
.

For flux in the fracture, consider (6.4.46) and test it with µf = δζn+1,k
h to obtain

(K−1
C δζn+1,k

h , δζn+1,k
h )C = (δpf

n+1,k
h ,∇ · (δζn+1,k

h ))C (6.4.52)

Combining (6.4.49), (6.4.50), (6.4.51), and (6.4.52), we derive:∥∥∥αδpn+1,k
h

∥∥∥2

+
2∆t

βµf
‖K−1/2δzn+1,k

h ‖2 +
2βc
β
‖δpfn+1,k

h ‖2
C +

∆t

6µfβ
‖K−1/2

C δζn+1,k
h ‖2

C

≤ 1

β2λ2

∥∥∥δσn,kv ∥∥∥2

+
2

β
(γcδpf

n,k
h + [δun,kh ]C · n+, δpf

n+1,k
h )C (6.4.53)
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• Step 2: Elasticity equation

Testing (6.4.47) with vh = δun+1,k
h , we derive:

2G‖ε(δun+1,k
h )‖2 + λ‖∇ · δun+1,k

h ‖2 − α(δpn+1,k
h ,∇ · δun+1,k

h )

+(δpf
n+1,k
h , [δun+1,k

h ]C · n+)C = 0. (6.4.54)

The term ‖ε(δun+1,k
h )‖2 can be related to the width of the fracture, w, as follows (following

exactly the same approach described in [43]). Let C?
T , P?Γ, and C?

κ denote respectively the

constants of the trace, Poincaré, and Korn inequality in Ω?, ? = +,−:

‖uh|?Ω‖L2(C)≤ C?
T‖uh‖H1(Ω?) , ‖uh‖L2(Ω?)≤ P?Γ|uh|H1(Ω?) , |uh|H1(Ω?)≤ C?

κ‖ε(uh)‖L2(Ω?).

Let CT = max(C+
T , C

−
T ), Cκ = max(C+

κ , C
−
κ ), and PΓ = max(P+

Γ ,P
−
Γ ). By combining these

three inequalities we derive for any vh in Vh

‖[vh]C‖2
L2(C) ≤ ‖vh|Ω+‖2

L2(C)+|2(vh|Ω+ ,vh|Ω−)C|+‖vh|Ω−‖
2
L2(C)

≤ ‖vh|Ω+‖2
L2(C)+2× 1

2

(
‖vh|Ω+‖2

L2(C)+‖vh|Ω−‖2
L2(C)

)
+ ‖vh|Ω−‖2

L2(C)

≤ 2‖vh|Ω+‖2
L2(C)+2‖vh|Ω−‖2

L2(C)

≤ 2C2
T‖vh‖2

H1(Ω+∪Ω−)

≤ 2C2
T (P2

Γ + 1)|vh|2H1(Ω+∪Ω−)

≤ 2C2
T (P2

Γ + 1)C2
κ‖ε(vh)‖L2(Ω+∪Ω−)= 2C2

T (P2
Γ + 1)C2

κ‖ε(vh)‖L2(Ω\C).

Hence

‖ε(uh)‖2
L2(Ω\C)≥ C?‖[uh]C‖2

L2(C)≥ C?‖[uh]C · n+‖2
L2(C),

where C? = (2C2
T (P2

Γ + 1)C2
κ)−1. So, we have:

C?‖wh‖2
L2(C)= C?‖[uh]C · n+‖2

L2(C)≤ ‖ε(uh)‖2
L2(Ω\C) (6.4.55)

Applying (6.4.55) to (6.4.54) and multiplying by 2λ, we obtain:

4GλC∗‖δwn+1,k
h ‖2 + 2λ2‖∇ · δun+1,k

h ‖2 − 2λα(δpn+1,k
h ,∇ · δun+1,k

h )

+2λ(δpf
n+1,k
h , δwn+1,k

h · n+)C = 0, (6.4.56)
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Combining (6.4.53) and (6.4.56) and re-arranging terms, we derive:{∥∥∥αδpn+1,k
h

∥∥∥2

− 2λα(δpn+1,k
h ,∇ · δun+1,k

h ) + λ2‖∇ · δun+1,k
h ‖2

}
+λ2‖∇ · δun+1,k

h ‖2 +
2∆t

βµf
‖K−1/2δzn+1,k

h ‖2 +
∆t

6µfβ
‖K−1/2

C δζn+1,k
h ‖2

C

+

{
2βc
β
‖δpfn+1,k

h ‖2
C + 4GλC∗‖δwn+1,k

h ‖2
C − 2λ(δpf

n+1,k
h , δwn+1,k

h )C

}
≤ 1

β2λ2

∥∥∥δσn,kv ∥∥∥2

+
2

β
(γcδpf

n,k
h − δw

n,k
h , δpf

n+1,k
h )C (6.4.57)

Using Young’s inequality for the second term on the right hand side of (6.4.57),

2

β

(
γcδpf

n,k
h − δw

n,k
h , δpf

n+1,k
h

)
≤ 2

β

( 1

2βc

∥∥∥γcδpfn,kh − δwn,kh ∥∥∥2

C
+
βc
2

∥∥∥δpfn+1,k
h

∥∥∥2

C

)
=

1

ββc

∥∥∥γcδpfn,kh − δwn,kh ∥∥∥2

C
+
βc
β

∥∥∥δpfn+1,k
h

∥∥∥2

C
(6.4.58)

Substituting (6.4.58) into (6.4.57), we obtain:{∥∥∥αδpn+1,k
h

∥∥∥2

− 2λ(αδpn+1,k
h ,∇ · δun+1,k

h ) + λ2‖∇ · δun+1,k
h ‖2

}
+λ2‖∇ · δun+1,k

h ‖2 +
2∆t

βµf
‖K−1/2δzn+1,k

h ‖2 +
∆t

6µfβ
‖K−1/2

C δζn+1,k
h ‖2

C

+

{
βc
β
‖δpfn+1,k

h ‖2
C + 4GλC∗‖δwn+1,k

h ‖2
C − 2λ(δpf

n+1,k
h , δwn+1,k

h )C

}
≤ 1

β2λ2

∥∥∥δσn,kv ∥∥∥2

+
1

ββc

∥∥∥γcδpfn,kh − δwn,kh ∥∥∥2

C
(6.4.59)

The first three terms on the left hand side is an expanded square, which forms the quantity

of contraction in the reservoir matrix. To form a quantity of contraction on the last three

terms on the left hand side, we will match their coefficients with the coefficients of the

expanded square of (6.4.41). Expanding (6.4.41) yields∥∥∥χσn+1,k
f

∥∥∥2

=
γ2
c

χ2
‖2
Cδpf

n+1,k
h ‖2 + ‖δwn+1,k

h ‖2
C − 2

γc
χ2

(δpf
n+1,k
h , δwn+1,k

h )C,

=
βc
β
‖δpfn+1,k

h ‖2
C + 4GλC∗‖δwn+1,k

h ‖2
C − 2λ(δpf

n+1,k
h , δwn+1,k

h )C

Choosing,

βc
β

=
γ2
c

χ2
,

γc
χ2

= λ, 4λGC∗ =

(
4λGC∗ − 1

χ2

)
+

1

χ2
.
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With β and βc defined in (6.4.48), we compute

γc =
cf c

λβ − 1
, χ =

{
cf c

λ2β − λ

}1/2

. (6.4.60)

Note that λβ > 1 and hence, γc is a positive quantity. Substituting the above into (6.4.59),

we obtain:

‖δσn+1,k
v ‖2 + λ2‖∇ · δun+1,k

h ‖2 + 2∆t
βµf
‖K−1/2δzn+1,k

h ‖2 + ∆t
6µfβ
‖K−1/2

C δζn+1,k
h ‖2

C

+‖δσn+1,k
f ‖2

C + (4GλC∗ − 1
χ2 )‖δwn+1,k

h ‖2
C ≤

1
β2λ2

∥∥∥δσn,kv ∥∥∥2

+ χ2

βcβ
‖δσn,kf ‖

2
C.

(6.4.61)

For contraction to hold, we require,

4GλC∗ ≥ 1

χ2
,

1

β2λ2
< 1,

χ2

βcβ
< 1,

By (6.4.60), the first inequality implies

4GC∗ ≥ λ

cfc

(
1

Mα2
+
cf
α2
ϕ0

)
(6.4.62)

which is satisfied by the assumption (6.2.14). In fact, (6.2.14) is a sharper assumption

(strict inequality versus inequality), since it is needed to prove strong convergence of the

term involving wn,kh . The second inequality is trivially satisfied by (6.4.48). For the last

inequality, a simple calculation reveals

γc < λβ(cfc + γc)⇒ (1− λβ)γc < λβcfc

which is also satisfied using the value of γc derived in (6.4.60).

6.4.4 Convergence to the Continuous Form

From the discussion above, we obtain the following lemma.

Lemma 6.4.1. There exist limit functions pkh,u
k
h, z

k
h, ζ

k
h, pf

k
h, w

k
h such that

pn,kh → pkh, , in L2(Ω+ ∪ Ω−), un,kh → ukh, in H1(Ω+ ∪ Ω−)
d

zn,kh → zkh, in Zh, ζn,kh → ζkh, in ZCh

pf
n,k
h → pf

k
h in L2(C), wn,kh → wkh in L2(C)

converge strongly in the norms of the above spaces.
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Proof. The result (6.4.61) implies that σn,kv , ∇ · un,kh and σf
n,k
h are Cauchy sequences (the

first two in L2(Ω\C) and the third in and L2(C)), with geometric convergence. The sharper

hypothesis (6.2.14) with strict inequality implies that wn,kh is also a Cauchy sequence in

L2(C) with geometric convergence. Moreover, the same result implies that zn,kh and ζn,kh

are Cauchy sequences with geometric convergence in L2(Ω \ C) and L2(C) respectively.

From the definitions of σn,kv and σf
n,k
h : (6.4.39) and (6.4.41), and the fact that the addition

of two Cauchy sequences is still a Cauchy sequence, we conclude that pn+1,k
h and pf

n+1,k
h

are Cauchy sequences with geometric convergence in L2(Ω\C) and L2(C), both are Hilbert

(complete) spaces, therefore pn+1,k
h and pf

n+1,k
h have unique limits in L2(Ω \ C) and L2(C)

respectively.

To obtain convergence of the displacement, we use Young’s inequality in (6.4.54):

2G‖ε(δun+1,k
h )‖2 + λ‖∇ · δun+1,k

h ‖2 ≤ α2

2λ

∥∥∥δpn+1,k
h

∥∥∥2

+
λ

2

∥∥∥∇ · δun+1,k
h

∥∥∥2

+
1

4GC∗

∥∥∥δpfn+1,k
h

∥∥∥2

C
+GC∗

∥∥∥δwn+1,k
h

∥∥∥2

C

where C∗ is the constant in (6.4.55). Applying (6.4.55) to the left hand side above, we get:

G‖ε(δun+1,k
h )‖2 +GC∗‖δwn+1,k

h ‖2 + λ‖∇ · δun+1,k
h ‖2 ≤ α2

2λ

∥∥∥δpn+1,k
h

∥∥∥2

+
λ

2

∥∥∥∇ · δun+1,k
h

∥∥∥2

+
1

4GC∗

∥∥∥δpfn+1,k
h

∥∥∥2

C
+GC∗

∥∥∥δwn+1,k
h

∥∥∥2

C

⇒

G‖ε(δun+1,k
h )‖2 +

λ

2
‖∇ · δun+1,k

h ‖2 ≤ α2

2λ

∥∥∥δpn+1,k
h

∥∥∥2

+
1

4GC∗

∥∥∥δpfn+1,k
h

∥∥∥2

C

The right-hand side of the above equation converges geometrically to 0. We conclude that

ε(un+1,k
h ) also converges geometrically in L2(Ω\C) implying that un+1,k

h converges geomet-

rically in H1(Ω+ ∪ Ω−)
d
.

For estimating the divergence of the fluxes, we observe that (6.4.43) amounts to the fol-

lowing equality a.e. in L2(Ω \ C)

−∇ · δzn+1,k
h =

(µf
∆t

)
(

1

M
+ cfϕ0 +

α2

λ
)δpn+1,k

h +
(µfα
λ∆t

)
δσn,kv

The convergence of ∇·zn+1,k
h in L2(Ω\C) follows from the convergence of pn+1,k

h and σn,kv in

L2(Ω\C). Therefore, we have both ∇·zn+1,k
h and zn+1,k

h converging geometrically to unique
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limits in L2(Ω \ C), hence zn+1,k
h converges to a unique limit in Zh. With Green’s formula,

we have the convergence of [δzn+1,k
h ]C ·n+ in H−1/2(C). In a similar way, the convergence of

∇·ζn,kh follows from the previous convergences and the fact that (6.4.44) gives the following

equality a.e. in H−1/2(C):

∇ · (δζn+1,k
h ) = −

(12µf
∆t

)
(cfc + γc)δpf

n+1,k
h + 12[δzn+1,k

h ]C · n+

+
(12µfγc

∆t

)
δpf

n,k
h +

(12µf
∆t

)
[δun,kh ]C · n+

which can be written as,

∇ · (δζn+1,k
h ) = −

(12µf
∆t

)
(cfc + γc)δpf

n+1,k
h + 12[δzn+1,k

h ]C · n+ +
(12µfχ

∆t

)
δσn+1,k

f

All sequences on the right hand side converge in H−1/2(C). Therefore, we have the conver-

gence of ∇ · ζn,kh in H−1/2(C) as well. Together with the previous deduced result that ζn,kh

converges strongly to a unique limit in L2(C), we have the convergence of ζn,kh to a unique

limit in ZCh.

Therefore, all sequences considered converge strongly. The existence of the limiting func-

tions in the corresponding spaces follows immediately from the completeness of these

spaces.

It remains to pass to the limit in (6.4.33)–(6.4.37). This follows immediately since the

equations are linear and all operators involved are continuous in the spaces invoked in the

statement of Lemma 6.4.1. Moreover the convergences are strong. Therefore, we easily

retrieve the fully discrete formulation.

The above discussions are summarized in the following main result of this work.

Theorem 6.4.1. The iterative scheme is a contraction given by

‖δσn+1,k
v ‖Ω+∪Ω− + λ2‖∇ · δun+1,k

h ‖Ω+∪Ω− + 2∆t
βµf
‖K−1/2δzn+1,k

h ‖Ω+∪Ω−

+ ∆t
6µfβ
‖K−1/2

C δζn+1,k
h ‖C + ‖δσn+1,k

f ‖C + (4GλC∗ − 1
χ2 )‖δwn+1,k

h ‖C

≤ max

{
1/λ2

( 1
Mα2 +

cf

α2 ϕ0+ 1
λ)

2 ,
γc

(cfc+γc)λ( 1
Mα2 +

cf

α2 ϕ0+ 1
λ)

}(∥∥∥δσn,kv ∥∥∥
Ω+∪Ω−

+ ‖δσn,kf ‖C
)
.

Furthermore, the converged solution is a unique solution to the weak formulation (6.4.18)

- (6.4.22).
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6.5 Multirate Formulation and Analysis

In this section, we consider a multirate formulation of the fixed stress split iterative coupling

algorithm in fractured poro-elastic media, and rigorously analyze its convergence properties.

We recall from previous chapters that the multirate algorithm allows for multiple finer flow

time steps within one coarser mechanics time step. We will formulate a multirate iterative

coupling scheme and show that it is Banach contractive with respect to a correctly chosen

metric. We adopt exactly the same notation as the one used in Chapter 2.

6.5.1 Fully Discrete Scheme for Multirate

Using the mixed finite element method in space (for flow), continuous Galerkin for mechan-

ics, and the backward Euler finite difference method in time, the weak formulation of the

multirate scheme in fractured poro-elastic media reads as follows.

Definition 6.5.1. For k = iq, i ∈ N, and 1 ≤ m ≤ q, find pm+k
h ∈ Qh, pf

m+k
h ∈ Qch,

zm+k
h ∈ Zh, and ζm+k

h ∈ ZCh such that,

(flow equation)

∀θh ∈ Qh ,
1

∆t

(
(

1

M
+ cfϕ0)

(
pm+k
h − pm−1+k

h

)
, θh

)
+

1

µf
(∇ · zm+k

h , θh) =

− 1

∆t

(α
q
∇ ·
(
uk+q
h − ukh

)
, θh

)
+
(
q̃h, θh

)
, (6.5.63)

∀qh ∈ Zh ,
(
K−1zm+k

h , qh

)
=
(
pm+k
h ,∇ · qh

)
−
(
pf

m+k
h , [qh]C · n+

)
C

+
(
ρf,rg∇ η, qh

)
,

(6.5.64)

∀θch ∈ Qch ,
cfc
∆t

(
pf

m+k
h − pfm−1+k

h , θch

)
C

+
1

12µf

(
∇ · δζm+k

h , θch

)
C

− 1

µf

([
zm+k
h

]
C
· n+, θch

)
C

=
1

q∆t

(
[uk+q

h ]C · n+ − [ukh]C · n+, θch

)
C

+ ( ˜qWh, θch)C , (6.5.65)

∀µf h ∈ ZCh , (K−1
C ζ

m+k
h ,µf h)C = (pf

m+k
h ,∇ · (µf h))C + (∇(ρf,rgη),µf h)C , (6.5.66)
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and (mechanics equation)

find uk+q
h ∈ V h such that,

∀vh ∈ Vh , 2G(ε(uk+q
h ), ε(vh)) + λ(∇ · uk+q

h ,∇ · vh)− α(pk+q
h ,∇ · vh)

+(pf
k+q
h , [vh]C · n+)C = (f ,vh) , (6.5.67)

with the initial condition for the first discrete time step,(
(

1

M
+ cfϕ0)p0

h + α∇ · u0
h

)
(0) = (

1

M
+ cfϕ0)p0 + α∇ · u0. (6.5.68)

Note that the pressure unknowns ph, pf h and flux unknowns zh, ζh are solved at finer time

steps tk+m,m = 0, . . . , q whereas the mechanics variables uh are being solved at tiq, i ∈ N.

Therefore, for each mechanics time step of size q∆t, there are q flow solves justifying the

nomenclature of multirate (as described in Chapter 2). In addition, the above system of

PDEs is linear but coupled with the coupling terms being computed at the coarse mechanics

time steps. Instead of solving the system in a simultaneously coupled manner, a splitting

algorithm (in particular, the fixed stress split algorithm as described in the single rate case)

will be applied to decouple the two equations and iterate between them until the solutions

satisfying the above system (6.5.63) – (6.5.68) are obtained.

6.5.2 Multirate Iterative Coupling Scheme

We begin by describing the algorithm:
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Algorithm 9: Multirate Iterative Coupling Algorithm for Fractured Poroleastic
Media

1 for k = 0, q, 2q, 3q, .. do /* mechanics time step iteration index */

2 for n = 1, 2, .. do /* coupling iteration index */

3 First Step: Flow equations

4 Given un,k+q
h (assuming an initial value is given for the first iteration:

u0,k+q
h )

5 for m = 1, 2, .., q do /* flow finer time steps iteration index

*/

6 Solve for pn+1,m+k
h , zn+1,m+k

h , pf
n+1,m+k
h , and ζn+1,m+k

h satisfying:

(
1

M
+ cfϕ0 + L)

pn+1,m+k
h − pn+1,m−1+k

h

∆t
+

1

µf
∇ · zn+1,m+k

h =

L
pn,m+k
h − pm−1+kh

∆t
− α∇ ·

un,k+qh − un,kh
q∆t

+ q̃h in Ω \ C, (6.5.69)

zn+1,m+k
h = −K(∇ pn+1,m+k

h − ρf,rg∇ η), (6.5.70)

(γc + cfc)
pf
n+1,m+k
h − pfn+1,m−1+k

h

∆t
+
wn,k+qh − wn,kh

q∆t
+

1

12µf
∇ · ζn+1,m+k

h =

γc
pf
n,m+k
h − pfn,m−1+kh

∆t
+ q̃Wh

− q̃Ln+1,m+k
h in C

(6.5.71)

ζn+1,m+k
h = −KC(∇ pfn+1,m+k

h − ρf,rg∇ η), (6.5.72)

1

µf
[K(∇ pn+1,m+k

h − ρf,rg∇ η)]C · n+ = q̃L
n+1,m+k
h on C (6.5.73)

wn,k+qh = −[un,k+qh ]C · n+, (6.5.74)

7 Second Step: Mechanics equations

8 Given pn+1,k+q
h , zn+1,k+q

h , pf
n+1,k+q
h , and ζn+1,k+q

h , solve for un+1,k+q
h

satisfying:

− divσpor(un+1,k+q
h , pn+1,k+q

h ) = f in Ω \ C (6.5.75)

σpor(un+1,k+q
h , pn+1,k+q

h ) = σ(un+1,k+q
h )− αpn+1,k+q

h I in Ω \ C (6.5.76)

(σpor(un+1,k+q
h , pn+1,k+q

h ))?n? = −pfn+1,k+q
h n? , ? = +,− on C

(6.5.77)9
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In the algorithm above, L and γc are adjustable fixed-stress regularization parameters which

will be determined appropriately by the proof of contraction.

6.5.3 Proof of Contraction

Considering the difference between one finer flow iteration and its corresponding finer flow

iteration in the previous coupling iteration, equations (6.5.69), (6.5.70), (6.5.71), (6.5.72)

can be written as follows (substituting (6.5.73) and (6.5.74) into (6.5.69), (6.5.70), (6.5.71),

and (6.5.72)):

(
1

M
+ cfϕ0 + L)

(δpn+1,m+k
h − δpn+1,m−1+k

h

∆t

)
+

1

µf
∇ · δzn+1,m+k

h =

1

∆t

(
L(δpn,m+k

h − δpn,m−1+k
h )− α

q
∇ · (δun,k+q

h − δun,kh )
)

(6.5.78)

δzn+1,m+k
h = −K∇δpn+1,m+k

h (6.5.79)

(
γc + cfc

∆t
)
(
δpf

n+1,m+k
h − δpfn+1,m−1+k

h

)
+

1

12µf
∇ · δζn+1,m+k

h − 1

µf
[δzn+1,m+k

h ] · n+

= γc

(δpfn,m+k
h − δpfn,m−1+k

h

∆t

)
+

1

q∆t

(
[δun,k+q

h ]C · n+ − [δun,kh ]C · n+
)

(6.5.80)

δζn+1,m+k
h = −KC∇δpfn+1,m+k

h (6.5.81)

The weak formulation of the flow equations (6.5.78), (6.5.79), (6.5.80), and (6.5.81), and

the mechanics equation (considered for the difference between two consecutive iterative

coupling iterations, compare to (6.4.47) in the single rate case) reads:

∀θh ∈ Qh ,
1

∆t
(

1

M
+ cfϕ0 + L)

(
δpn+1,m+k

h − δpn+1,m−1+k
h , θh

)
+

1

µf
(∇ · δzn+1,m+k

h , θh) =
1

∆t

(
L
(
δpn,m+k

h − δpn,m−1+k
h

)
− α

q
∇ · un,k+q

h , θh

)
(6.5.82)

∀qh ∈ Zh ,
(
K−1δzn+1,m+k

h , qh

)
=
(
δpn+1,m+k

h ,∇ · qh
)
−
(
δpf

n+1,m+k
h , [qh]C · n+

)
C

(6.5.83)
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∀θch ∈ Qch ,
(γc + cfc)

∆t

(
δpf

n+1,m+k
h − δpfn+1,m−1+k

h , θch

)
C

+
1

12µf

(
∇ · δζn+1,m+k

h , θch

)
C

− 1

µf

([
δzn+1,m+k

h

]
C
· n+, θch

)
C

=
γc
∆t

(
δpf

n,m+k
h − δpfn,m−1+k

h , θch)C

+
1

q∆t

(
[un,k+q

h ]C · n+, θch

)
C

(6.5.84)

∀µf h ∈ ZCh ,
(
KC
−1δζn+1,m+k

h ,µf h)C =
(
δpf

n+1,m+k
h ,∇ · (µf h)

)
C

(6.5.85)

∀vh ∈ Vh , 2G(ε(δun+1,k+q
h ), ε(vh)) + λ(∇ · δun+1,k+q

h ,∇ · vh)− α(δpn+1,k+q
h ,∇ · vh)

+ (δpf
n+1,k+q
h , [vh]C · n+)C = 0 (6.5.86)

Let β = 1
M

+ cfcϕ0 + L, test (6.5.82) with θh = δpn+1,m+k
h − δpn+1,m−1+k

h , and multiply the

whole equation by ∆t to get:

β
∥∥∥δpn+1,m+k

h − δpn+1,m−1+k
h

∥∥∥2

+
∆t

µf
(∇ · δzn+1,m+k

h , δpn+1,m+k
h − δpn+1,m−1+k

h ) =(
L
(
δpn,m+k

h − δpn,m−1+k
h

)
− α

q
∇ · un,k+q

h , δpn+1,m+k
h − δpn+1,m−1+k

h

)
. (6.5.87)

Consider (6.5.83) for the difference between two consecutive time steps (tm+k and tm−1+k)

and test with qh = δzn+1,m+k
h to obtain:(

δpn+1,m+k
h − δpn+1,m−1+k

h ,∇ · δzn+1,m+k
h

)
=
(
K−1(δzn+1,m+k

h − δzn+1,m−1+k
h ), δzn+1,m+k

h

)
+
(
δpf

n+1,m+k
h − δpfn+1,m−1+k

h , [δzn+1,m+k
h ]C · n+

)
C
. (6.5.88)

Substitute (6.5.88) into (6.5.87) to derive:

β
∥∥∥δpn+1,m+k

h − δpn+1,m−1+k
h

∥∥∥2

+
∆t

µf

[(
K−1(δzn+1,m+k

h − δzn+1,m−1+k
h ), δzn+1,m+k

h

)
+
(
δpf

n+1,m+k
h − δpfn+1,m−1+k

h , [δzn+1,m+k
h ]C · n+

)
C

]
=
(
L
(
δpn,m+k

h − δpn,m−1+k
h

)
− α

q
∇ · un,k+q

h , δpn+1,m+k
h − δpn+1,m−1+k

h

)
.
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By Young’s inequality, we have:

β
∥∥∥δpn+1,m+k

h − δpn+1,m−1+k
h

∥∥∥2

+
∆t

µf

[(
K−1(δzn+1,m+k

h − δzn+1,m−1+k
h ), δzn+1,m+k

h

)
+
(
δpf

n+1,m+k
h − δpfn+1,m−1+k

h , [δzn+1,m+k
h ]C · n+

)
C

]
≤( 1

2ε

∥∥∥L(δpn,m+k
h − δpn,m−1+k

h

)
− α

q
∇ · un,k+q

h

∥∥∥2

+
ε

2

∥∥∥δpn+1,m+k
h − δpn+1,m−1+k

h

∥∥∥2)
.

(6.5.89)

Let ε = β to obtain:

β

2

∥∥∥δpn+1,m+k
h − δpn+1,m−1+k

h

∥∥∥2

+
∆t

µf

[(
K−1(δzn+1,m+k

h − δzn+1,m−1+k
h ), δzn+1,m+k

h

)
+
(
δpf

n+1,m+k
h − δpfn+1,m−1+k

h , [δzn+1,m+k
h ]C · n+

)
C

]
≤

1

2β

∥∥∥L(δpn,m+k
h − δpn,m−1+k

h

)
− α

q
∇ · un,k+q

h

∥∥∥2

.

Now, define the quantity of contraction for the flow in the reservoir matrix within one

coarse mechanics time step (between coarse time steps tk and tk+q) as follows:

χMδσ
n,m+k
v = L(δpn,m+k

h − δpn,m−1+k
h )− α

q
∇ · δun,k+q

h for 1 ≤ m ≤ q. (6.5.90)

Then, we have (multiplying the whole equation by 2, with further simplifications):

(6.5.91)

β
∥∥∥δpn+1,m+k

h − δpn+1,m−1+k
h

∥∥∥2

+
∆t

µf

(∥∥∥K−1/2δzn+1,m+k
h

∥∥∥2

−
∥∥∥K−1/2δzn+1,m−1+k

h

∥∥∥2

+
∥∥∥K−1/2(δzn+1,m+k

h − δzn+1,m−1+k
h )

∥∥∥2)
+

2∆t

µf

(
δpf

n+1,m+k
h − δpfn+1,m−1+k

h , [δzn+1,m+k
h ]C · n+

)
C
≤ 1

β

∥∥∥χMδσn,m+k
v

∥∥∥2

.

Now, we consider the flow in the fracture. Testing (6.5.84) with θh = δpf
n+1,m+k
h −

δpf
n+1,m−1+k
h , we obtain:

γc + cfc
∆t

∥∥∥δpfn+1,m+k
h − δpfn+1,m−1+k

h

∥∥∥2

C
+

1

12µf

(
∇ · δζn+1,m+k

h , δpf
n+1,m+k
h − δpfn+1,m−1+k

h

)
C

− 1

µf

([
δzn+1,m+k

h

]
C
· n+, δpf

n+1,m+k
h − δpfn+1,m−1+k

h

)
C

=
γc
∆t

(
δpf

n,m+k
h − δpfn,m−1+k

h , δpf
n+1,m+k
h − δpfn+1,m−1+k

h )C

+
1

q∆t

(
[un,k+q

h ]C · n+, δpf
n+1,m+k
h − δpfn+1,m−1+k

h

)
C
. (6.5.92)
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Next, consider (6.5.85) for the difference between two consecutive time steps (tm+k and

tm−1+k) and test with µf h = δζn+1,m+k
h to obtain:(

KC
−1(δζn+1,m+k

h − δζn+1,m−1+k
h ), δζn+1,m+k

h )C =
(
δpf

n+1,m+k
h − δpfn+1,m+k

h ,∇ · (δζn+1,m+k
h )

)
C

(6.5.93)

Substitute (6.5.93) into (6.5.92) and multiply by 2∆t to derive:

2(γc + cfc)
∥∥∥δpfn+1,m+k

h − δpfn+1,m−1+k
h

∥∥∥2

C

+
∆t

6µf

(
KC
−1(δζn+1,m+k

h − δζn+1,m−1+k
h ), δζn+1,m+k

h

)
C

− 2∆t

µf

([
δzn+1,m+k

h

]
C
· n+, δpf

n+1,m+k
h − δpfn+1,m−1+k

h

)
C

= 2
(
γc(δpf

n,m+k
h − δpfn,m−1+k

h ) +
1

q
[un,k+q

h ]C · n+, δpf
n+1,m+k
h − δpfn+1,m−1+k

h

)
C
. (6.5.94)

With further simplifications, we have:

(6.5.95)2(γc + cfc)
∥∥∥δpfn+1,m+k

h − δpfn+1,m−1+k
h

∥∥∥2

C
+

∆t

12µf

[∥∥∥KC
−1/2δζn+1,m+k

h

∥∥∥2

C

−
∥∥∥KC

−1/2δζn+1,m−1+k
h

∥∥∥2

C
+
∥∥∥KC

−1/2(δζn+1,m+k
h − δζn+1,m−1+k

h )
∥∥∥2

C

]
− 2∆t

µf

([
δzn+1,m+k

h

]
C
· n+, δpf

n+1,m+k
h − δpfn+1,m−1+k

h

)
C

= 2
(
γc(δpf

n,m+k
h − δpfn,m−1+k

h ) +
1

q
[un,k+q

h ]C · n+, δpf
n+1,m+k
h − δpfn+1,m−1+k

h

)
C
.

Now, add equation (6.5.91) to (6.5.95) and divide the result by β to obtain:

∥∥∥δpn+1,m+k
h − δpn+1,m−1+k

h

∥∥∥2

+
∆t

µfβ

[∥∥∥K−1/2δzn+1,m+k
h

∥∥∥2

−
∥∥∥K−1/2δzn+1,m−1+k

h

∥∥∥2

+
∥∥∥K−1/2(δzn+1,m+k

h − δzn+1,m−1+k
h )

∥∥∥2]
+

2

β
(γc + cfc)

∥∥∥δpfn+1,m+k
h − δpfn+1,m−1+k

h

∥∥∥2

C
+

∆t

12µfβ

[∥∥∥KC
−1/2δζn+1,m+k

h

∥∥∥2

C

−
∥∥∥KC

−1/2δζn+1,m−1+k
h

∥∥∥2

C
+
∥∥∥KC

−1/2(δζn+1,m+k
h − δζn+1,m−1+k

h )
∥∥∥2

C

]
≤ 1

β2

∥∥∥χMδσn,m+k
v

∥∥∥2

+
2

β

(
γc(δpf

n,m+k
h − δpfn,m−1+k

h ) +
1

q
[un,k+q

h ]C · n+, δpf
n+1,m+k
h − δpfn+1,m−1+k

h

)
C
.

(6.5.96)
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Let βc = γc + cfc and apply Young’s inequality to the last term on the right hand side to

derive:

(6.5.97)
∥∥∥δpn+1,m+k

h − δpn+1,m−1+k
h

∥∥∥2

+
∆t

µfβ

[∥∥∥K−1/2δzn+1,m+k
h

∥∥∥2

−
∥∥∥K−1/2δzn+1,m−1+k

h

∥∥∥2

+
∥∥∥K−1/2(δzn+1,m+k

h − δzn+1,m−1+k
h )

∥∥∥2]
+

2βc
β

∥∥∥δpfn+1,m+k
h − δpfn+1,m−1+k

h

∥∥∥2

C

+
∆t

12µfβ

[∥∥∥KC
−1/2δζn+1,m+k

h

∥∥∥2

C
−
∥∥∥KC

−1/2δζn+1,m−1+k
h

∥∥∥2

C
+
∥∥∥KC

−1/2(δζn+1,m+k
h −δζn+1,m−1+k

h )
∥∥∥2

C

]
≤ 1

β2

∥∥∥χMδσn,m+k
v

∥∥∥2

+
2

β

[ 1

2ε

∥∥∥γc(δpfn,m+k
h − δpfn,m−1+k

h )− 1

q
δwn,k+q

h

∥∥∥2

C

+
ε

2

∥∥∥δpfn+1,m+k
h − δpfn+1,m−1+k

h

∥∥∥2

C

]
The choice ε = βc gives:

(6.5.98)

∥∥∥δpn+1,m+k
h − δpn+1,m−1+k

h

∥∥∥2

+
∆t

µfβ

[∥∥∥K−1/2δzn+1,m+k
h

∥∥∥2

−
∥∥∥K−1/2δzn+1,m−1+k

h

∥∥∥2

+
∥∥∥K−1/2(δzn+1,m+k

h − δzn+1,m−1+k
h )

∥∥∥2]
+
βc
β

∥∥∥δpfn+1,m+k
h − δpfn+1,m−1+k

h

∥∥∥2

C
+

∆t

12µfβ

[∥∥∥KC
−1/2δζn+1,m+k

h

∥∥∥2

C
−∥∥∥KC

−1/2δζn+1,m−1+k
h

∥∥∥2

C
+
∥∥∥KC

−1/2(δζn+1,m+k
h − δζn+1,m−1+k

h )
∥∥∥2

C

]
≤ 1

β2

∥∥∥χMδσn,m+k
v

∥∥∥2

+
1

ββc

∥∥∥γc(δpfn,m+k
h − δpfn,m−1+k

h )− 1

q
δwn,k+q

h

∥∥∥2

C

Now, we sum up equation (6.5.98) for q flow finer time steps. Noting that
∥∥∥K−1/2δzn+1,k

h

∥∥∥2

=

0, and
∥∥∥K−1/2

C δζn+1,k
h

∥∥∥2

C
= 0 with further telescopic cancellations, we obtain:

q∑
m=1

∥∥∥δpn+1,m+k
h − δpn+1,m−1+k

h

∥∥∥2

+
∆t

µfβ

[∥∥∥K−1/2δzn+1,k+q
h

∥∥∥2

+

q∑
m=1

∥∥∥K−1/2(δzn+1,m+k
h − δzn+1,m−1+k

h )
∥∥∥2]

+
βc
β

q∑
m=1

∥∥∥δpfn+1,m+k
h − δpfn+1,m−1+k

h

∥∥∥2

C

+
∆t

12µfβ

[∥∥∥KC
−1/2δζn+1,m+k

h

∥∥∥2

C
+

q∑
m=1

∥∥∥KC
−1/2(δζn+1,m+k

h − δζn+1,m−1+k
h )

∥∥∥2

C

]
≤ 1

β2

q∑
m=1

∥∥∥χMδσn,m+k
v

∥∥∥2

+
1

ββc

q∑
m=1

∥∥∥γc(δpfn,m+k
h − δpfn,m−1+k

h )− 1

q
δwn,k+q

h

∥∥∥2

C
(6.5.99)
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Now, consider (6.5.86) for the elasticity equation and test with vh = δun+1,k+q
h to obtain:

2G
∥∥∥ε(δun+1,k+q

h )
∥∥∥2

+ λ
∥∥∥∇ · δun+1,k+q

h

∥∥∥2

− α(δpn+1,k+q
h ,∇ · δun+1,k+q

h )

+ (δpf
n+1,k+q
h , [δun+1,k+q

h ]C · n+)C = 0 (6.5.100)

Noting that

q∑
m=1

(
δpn+1,m+k

h − δpn+1,m−1+k
h

)
= δpn+1,k+q

h ,

q∑
m=1

(
δpf

n+1,m+k
h − δpfn+1,m−1+k

h

)
= δpf

n+1,k+q
h ,

equation (6.5.100) can be written as:

2G
∥∥∥ε(δun+1,k+q

h )
∥∥∥2

+ λ
∥∥∥∇ · δun+1,k+q

h

∥∥∥2

− α(

q∑
m=1

(
δpn+1,m+k

h − δpn+1,m−1+k
h

)
,∇ · δun+1,k+q

h )

+ (

q∑
m=1

(
δpf

n+1,m+k
h − δpfn+1,m−1+k

h

)
, [δun+1,k+q

h ]C · n+)C = 0 (6.5.101)

Now, bound the first term on the left hand side from below by (6.4.55) and multiply the

whole equation by a free parameter c0 (the specific value of c0 which will be determined in

subsequent derivations) to obtain:

2GC∗c0

∥∥∥δwn+1,k+q
h

∥∥∥2

+ λc0

∥∥∥∇ · δun+1,k+q
h

∥∥∥2

− αc0(

q∑
m=1

(
δpn+1,m+k

h − δpn+1,m−1+k
h

)
,∇ · δun+1,k+q

h )

− c0(

q∑
m=1

(
δpf

n+1,m+k
h − δpfn+1,m−1+k

h

)
, δwn+1,k+q

h )C ≤ 0. (6.5.102)
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Add (6.5.99) to (6.5.102) to get:

q∑
m=1

[∥∥∥δpn+1,m+k
h − δpn+1,m−1+k

h

∥∥∥2

− αc0(
(
δpn+1,m+k

h − δpn+1,m−1+k
h

)
,∇ · δun+1,k+q

h )

+
λc0

q

∥∥∥∇ · δun+1,k+q
h

∥∥∥2]
+

q∑
m=1

[βc
β

∥∥∥δpfn+1,m+k
h − δpfn+1,m−1+k

h

∥∥∥2

C
− c0(

(
δpf

n+1,m+k
h − δpfn+1,m−1+k

h

)
, δwn+1,k+q

h )C

+
2GC∗c0

q

∥∥∥δwn+1,k+q
h

∥∥∥2]
+

∆t

µfβ

[∥∥∥K−1/2δzn+1,k+q
h

∥∥∥2

+

q∑
m=1

∥∥∥K−1/2(δzn+1,m+k
h − δzn+1,m−1+k

h )
∥∥∥2]

+
∆t

12µfβ

[∥∥∥KC
−1/2δζn+1,m+k

h

∥∥∥2

C
+

q∑
m=1

∥∥∥KC
−1/2(δζn+1,m+k

h − δζn+1,m−1+k
h )

∥∥∥2

C

]
≤ 1

β2

q∑
m=1

∥∥∥χMδσn,m+k
v

∥∥∥2

+
1

ββc

q∑
m=1

∥∥∥γc(δpfn,m+k
h − δpfn,m−1+k

h )− 1

q
δwn,k+q

h

∥∥∥2

C
. (6.5.103)

Define the quantity of contraction for the flow in the fracture within one coarse mechanics

time step (between coarse time steps tk and tk+q) as follows:

χcδσ
n,m+k
f = γc(δpf

n,m+k
h − δpfn,m−1+k

h )− 1

q
δwn,k+q

h for 1 ≤ m ≤ q. (6.5.104)

We emphasize that the parameters χM , L, χc, γc, and c0 are to be determined such that

contraction is obtained on σn,m+k
v and σn,m+k

f defined above . This will be carried out in

a very systematic way shown below. We first write the quantity of contraction for the

reservoir matrix (6.5.90) as:

δσn,m+k
v =

L

χM
(δpn,m+k

h − δpn,m−1+k
h )− α

χMq
∇ · δun,k+q

h .

Next, expand the square of its L2 norm as∥∥∥δσn,m+k
v

∥∥∥2

=
L2

χ2
M

∥∥∥δpn,m+k
h − δpn,m−1+k

h

∥∥∥2

− 2αL

χ2
Mq

(δpn,m+k
h − δpn,m−1+k

h ,∇ · δun,k+q
h ) +

α2

χM 2q2

∥∥∥∇ · δun,k+q
h

∥∥∥2

. (6.5.105)

In order to determine the values of our additional unknown parameters, we need to match

the coefficients of the terms in the expansion above (6.5.105) to the coefficients of the first
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three terms in equation (6.5.103) as follows:

L2

χ2
M

≤ 1, αc0 =
2αL

χ2
Mq

,
α2

χ2
Mq

2
≤ λc0

q

The second equality gives: c0 = 2L
qχ2
M

. Substituting the value of c0 into the third inequality

gives: L ≥ 1
2
α2

λ
. The first inequality gives rise to (assuming positive values of all unde-

termined parameters): χM ≥ L. Therefore, we have the following combined condition on

L:

α2

2λ
≤ L ≤ χM . (6.5.106)

In a similar way, we write the expression for the quantity of contraction in the fracture

(6.5.104) as follows:

δσn,m+k
f =

γc
χc

(δpf
n,m+k
h − δpfn,m−1+k

h )− 1

qχc
δwn,k+q

h

Expanding the square of its L2 norm gives∥∥∥δσn,m+k
f

∥∥∥2

C
=
γ2
c

χ2
c

∥∥∥δpfn,m+k
h − δpfn,m−1+k

h

∥∥∥2

C
− 2γc
χ2
cq

(δpf
n,m+k
h − δpfn,m−1+k

h , δwn,k+q
h )C

+
1

q2χ2
c

∥∥∥δwn,k+q
h

∥∥∥2

C

(6.5.107)

Now, we match the coefficients of the terms in the expansion above (6.5.107) to the coeffi-

cients of the second three terms in equation (6.5.103) as follows:

γ2
c

χ2
c

≤ βc
β
,

2γc
χ2
cq

= c0,
1

q2χ2
c

≤ 2GC∗c0

q

The second equality gives rise to 2γc
qχ2
c

= 2L
qχ2
M

. Therefore, we need to maintain the following

relation:

L

χ2
M

=
γc
χ2
c

(6.5.108)

between our unknown parameters L, γc, χM , and χc. The third inequality results in the

condition:

γc ≥
1

4GC∗
. (6.5.109)
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The first inequality results in the condition:

γc
βc
≤ χ2

M

Lβ
. (6.5.110)

Now, for L = γc = χM = χc = α2

2λ
, conditions (6.5.106) and (6.5.108) are trivially satisfied.

Conditions (6.5.109) and (6.5.110) translate to

α2

λ
>

1

2GC∗
and cf c >

( 1

M
+ cfϕ0

)
. (6.5.111)

respectively. So, in summary, for c0 = 4λ
qα2 , and L = γc = χM = χc = α2

2λ
, and under

condition (6.5.111), the following equalities and inequalities are satisfied:

L2

χ2
M

= 1, αc0 =
2αL

χ2
Mq

,
α2

χ2
Mq

2
=
λc0

q
,

γ2
c

χ2
c

≤ βc
β
,

2γc
χ2
cq

= c0,
1

q2χ2
c

≤ 2GC∗c0

q
.

Substituting (6.5.105) and (6.5.107) into (6.5.103) together with the above equalities and

inequalities, equation (6.5.103) can be written as:(βc
β
− γc

2

χc2

) q∑
m=1

∥∥∥δpfn+1,m+k
h − δpfn+1,m−1+k

h

∥∥∥2

C
+
(2GC∗c0

q
− 1

q2χ2
c

) q∑
m=1

∥∥∥δwn+1,k+q
h

∥∥∥2

C

+

q∑
m=1

∥∥∥δσn+1,m+k
v

∥∥∥2

+

q∑
m=1

∥∥∥δσn+1,m+k
f

∥∥∥2

C

+
∆t

µfβ

[∥∥∥K−1/2δzn+1,k+q
h

∥∥∥2

+

q∑
m=1

∥∥∥K−1/2(δzn+1,m+k
h − δzn+1,m−1+k

h )
∥∥∥2]

+
∆t

12µfβ

[∥∥∥KC
−1/2δζn+1,m+k

h

∥∥∥2

C
+

q∑
m=1

∥∥∥KC
−1/2(δζn+1,m+k

h − δζn+1,m−1+k
h )

∥∥∥2

C

]
≤ χ2

M

β2

q∑
m=1

∥∥∥δσn,m+k
v

∥∥∥2

+
χ2
c

ββc

q∑
m=1

∥∥∥δσn,m+k
f

∥∥∥2

C
. (6.5.112)

Now, it remains to check that the contraction coefficients are strictly less than one. For
χ2
M

β2 , we have:

χ2
M

β2
=
( L

1
M

+ cfϕ0 + L

)2

< 1.

For χ2
c

ββc
, we have:

χ2
c

ββc
=

L2

cf cβ + L( 1
M

+ cfϕ0) + L2
< 1.
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The above discussions are summarized in the following contraction result:(βc
β
− 1
) q∑
m=1

∥∥∥δpfn+1,m+k
h − δpfn+1,m−1+k

h

∥∥∥2

C
+

4λ

α2q2

(
2GC∗ − λ

α2

) q∑
m=1

∥∥∥δwn+1,k+q
h

∥∥∥2

C

+
∆t

µfβ

[∥∥∥K−1/2δzn+1,k+q
h

∥∥∥2

+

q∑
m=1

∥∥∥K−1/2(δzn+1,m+k
h − δzn+1,m−1+k

h )
∥∥∥2]

+
∆t

12µfβ

[∥∥∥KC
−1/2δζn+1,m+k

h

∥∥∥2

C
+

q∑
m=1

∥∥∥KC
−1/2(δζn+1,m+k

h − δζn+1,m−1+k
h )

∥∥∥2

C

]
+

q∑
m=1

∥∥∥δσn+1,m+k
v

∥∥∥2

+

q∑
m=1

∥∥∥δσn+1,m+k
f

∥∥∥2

C

≤Max(
L2

β2
,
L2

ββc
)

q∑
m=1

(∥∥∥δσn,m+k
v +

∥∥∥2

+
∥∥∥δσn,m+k

f

∥∥∥2

C

)
. (6.5.113)

6.5.4 Convergence to Discrete Multirate Formulation

We will now establish convergence of the sequences generated by the multirate fixed stress

split coupling algorithm (in fractured poro-elastic meida) and show that the converged

quantities satisfy the weak formulation (6.5.63) – (6.5.68). Following a similar approach to

the one used in Chapter 2 for the Biot system, the proof uses a mathematical induction

argument for the finer flow equations combined with the contraction estimates obtained

above.

Lemma 6.5.1. For every coarser mechanics time step, t = tk, there exist limit functions

ukh, and wkh such that

un,kh → ukh in H1(Ω+ ∪ Ω−)
d
, wn,kh → wkh, in L2(C),

with strong convergence in the norms of the above spaces.

Proof. For a coarser time step t = tk, the contraction result in (6.5.113) with the condi-

tion (6.5.111) (with strict inequalities) implies that wn,kh is a Cauchy sequence converging

geometrically to a unique limit in L2(C), being a Hilbert space. For the convergence of the
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displacements, by applying (6.4.55) to half of the first term in (6.5.101) we get:

G
∥∥∥ε(δun,k+q

h )
∥∥∥2

+GC∗
∥∥∥δwn,k+q

h

∥∥∥2

+ λ
∥∥∥∇ · δun,k+q

h

∥∥∥2

≤ α

∣∣∣∣∣(
q∑

m=1

(
δpn,m+k

h − δpn,m−1+k
h

)
,∇ · δun,k+q

h

)∣∣∣∣∣
+

∣∣∣∣∣(
q∑

m=1

(
δpf

n,m+k
h − δpfn,m−1+k

h

)
, [δun,k+q

h ]C · n+
)
C

∣∣∣∣∣
≤ α

2ε1

q∑
m=1

‖δpn,m+k
h − δpn,m−1+k

h ‖2+
qαε1

2
‖∇ · δun,k+q

h ‖2

+
1

2ε2

q∑
m=1

‖δpfn,m+k
h − δpfn,m−1+k

h ‖2
C+

qε2
2
‖δwn,k+q

h ‖2
C

by the triangle inequality and Young’s inequality.

Now, we set: ε1 = λ
qα

, and ε2 = 2GC∗

q
to get:

G
∥∥∥ε(δun,k+q

h )
∥∥∥2

+
λ

2

∥∥∥∇ · δun,k+q
h

∥∥∥2

≤ qα2

2λ

q∑
m=1

‖δpn,m+k
h − δpn,m−1+k

h ‖2+
q

4GC∗

q∑
m=1

‖δpfn,m+k
h − δpfn,m−1+k

h ‖2
C (6.5.114)

The contraction result in (6.5.113) implies that
∑q

m=1‖δpf
n,m+k
h − δpfn,m−1+k

h ‖2
C converges

geometrically to zero. It remains to show that
∑q

m=1‖δp
n,m+k
h − δpn,m−1+k

h ‖2 converges ge-

ometrically to zero. By a similar argument, the contraction result in (6.5.113) implies that∑q
m=1

∥∥∥K−1/2(δzn+1,m+k
h − δzn+1,m−1+k

h )
∥∥∥2

converges geometrically to zero. This implies

that for every 1 ≤ m ≤ q, the finer time step differences (δzn+1,m+k
h −δzn+1,m−1+k

h ) converge

geometrically to zero. By (6.5.70), and Poincare inequality, it follows that (δpn+1,m+k
h −

δpn+1,m−1+k
h ) converges geometrically to zero. Therefore, the right hand side of (6.5.114)

converges geometrically to zero. We conclude that for a coarser time step t = tk, ‖ε(δun,kh )‖
converges geometrically to zero. This implies that ε(un,kh ) is a Cauchy sequence converg-

ing geometrically to a unique limit in L2(Ω+ ∪ Ω−). By Korn’s inequality, |uh|H1(Ω?)≤
C?
κ‖ε(uh)‖L2(Ω?), and Poincare inequality, ‖uh‖L2(Ω?)≤ PΓ? |uh|H1(Ω?) , for C?

κ > 0,PΓ? >

0, ? = +,−, and noting that ∀n ≥ 0,un,kh |∂Ω= 0, it follows immediately that un,kh is a

Cauchy sequence converging geometrically to a unique limit in H1(Ω+ ∪ Ω−)
d
, being a

Hilbert space.
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Lemma 6.5.2. For every two consecutive coarser mechanics time steps, t = tk, and t =

tk+q, and for every 1 ≤ m ≤ q, there exist limit functions pm+k
h , pf

m+k
h , zm+k

h , ζm+k
h such

that

pn,m+k
h → pm+k

h , , in L2(Ω+ ∪ Ω−), pf
n,m+k
h → pf

m+k
h in L2(C)

zn,m+k
h → zm+k

h , in Zh, ζn,m+k
h → ζm+k

h , in ZC

converge strongly in the norms of the above spaces.

Proof. The contraction result in (6.5.113) implies that the quantities∥∥∥δwn,k+q
h

∥∥∥2

C
,

q∑
m=1

∥∥∥δpfn,m+k
h − δpfn,m−1+k

h

∥∥∥2

,

q∑
m=1

∥∥∥K−1/2(δzn,m+k
h − δzn,m−1+k

h )
∥∥∥2

,

q∑
m=1

∥∥∥KC
−1/2(δζn,m+k

h − δζn,m−1+k
h )

∥∥∥2

C
,

q∑
m=1

∥∥∥δσn,m+k
f

∥∥∥2

C
, and

q∑
m=1

∥∥∥δσn,m+k
v

∥∥∥2

converge geometrically to zero. It follows that for 1 ≤ m ≤ q,
∥∥∥δpfn,m+k

h − δpfn,m−1+k
h

∥∥∥2

,∥∥∥K−1/2(δzn,m+k
h −δzn,m−1+k

h )
∥∥∥2

,
∥∥∥KC

−1/2(δζn,m+k
h −δζn,m−1+k

h )
∥∥∥2

C
,
∥∥∥δσn,m+k

v

∥∥∥2

, and
∥∥∥δσn,m+k

f

∥∥∥2

C

converge geometrically to zero, in their corresponding spaces. This implies that for every

1 ≤ m ≤ q, the finer time step differences (zn,m+k
h − zn,m−1+k

h ), and σn+1,m+k
v are Cauchy

sequences converging to unique limits in L2(Ω+∪Ω−). By (6.5.70), and Poincare inequality,

it follows that (δpn,m+k
h − δpn,m−1+k

h ) converges geometrically to zero in L2(Ω+∪Ω−), which

implies that for every 1 ≤ m ≤ q, (pn,m+k
h −pn,m−1+k

h ) is a Cauchy sequence converging to a

unique limit in L2(Ω+∪Ω−). Similarly, the finer time step difference (pf
n,m+k
h −pfn,m−1+k

h ),

(ζn,m+k
h −ζn,m−1+k

h ) and σn,m+k
f are Cauchy sequences converging to unique limits in L2(C).

We will show strong convergence of the pressure finer time step sequences pn,m+k
h , for

1 ≤ m ≤ q, by induction. The proof of strong convergences for the sequences correspond-

ing to the pressure in the fracture pf
n,m+k
h and the flux in the reservoir zn,m+k

h and in the

fracture ζn,m+k
h follow in the same way. Given an initial pressure value for t = t0: pn,0h = p0,

from the above discussion, (pn,1h −p0) is a Cauchy sequence in L2(Ω+∪Ω−), and, in turn, pn,1h

is a Cauchy sequence in the complete space L2(Ω+∪Ω−), and thus has a unique limit. This
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completes the base case for induction. For the inductive hypothesis, we assume that for any

coarser mechanics time step t = tk, and for any 1 ≤ m ≤ q, pn,m+k
h is a Cauchy sequence

converging to a unique limit in L2(Ω+∪Ω−): pn,m+k
h → pm+k

h in L2(Ω+∪Ω−). We will show

that pn,m+k+1
h is also a Cauchy sequence converging to a unique limit in L2(Ω+∪Ω−). How-

ever, this follows immediately, as (pn,m+k+1
h − pn,m+k

h ) is a Cauchy sequence converging to a

unique limit in L2(Ω+∪Ω−). This completes the inductive step. Therefore, we obtain that

for all coarser mechanics time steps t = tk, and for 1 ≤ m ≤ q, pn,m+k
h , zn,m+k

h are Cauchy

sequences converging geometrically to unique limits in L2(Ω+ ∪ Ω−), and pf
n,m+k
h , ζn,m+k

h

are Cauchy sequences converging geometrically to unique limits in L2(C).

For the divergence of the reservoir flux, we note that (6.5.78) amounts to the following

equality a.e. in L2(Ω+ ∪ Ω−):

∇ · δzn+1,m+k
h = −βµf

∆t
(δpn+1,m+k

h − δpn+1,m−1+k
h )− µfχM

∆t
δσn+1,m+k

v .

The convergence of ∇·zn,m+k
h in L2(Ω+∪Ω−) follows from the convergence of the difference

(pn,m+k
h − pn,m+k

h ) and σn,m+k
v in L2(Ω+ ∪ Ω−), established above. Thus, we have both

∇·zn,m+k
h and zn,m+k

h converging geometrically to unique limits in L2(Ω+∪Ω−), and hence

zn+1,k
h converges to a unique limit in Zh. With Green’s formula, we have the convergence

of [zn,kh ]C · n+ in H−1/2(C). In a similar manner, the convergence of ∇ · ζn,kh follows from

the previous convergences and the fact that (6.5.80) gives the following equality a.e. in

H−1/2(C):

∇·(δζn+1,m+k
h ) = −12µf (cfc + γc)

∆t
(δpf

n+1,m+k
h − δpfn+1,m−1+k

h ) + 12[δzn+1,m+k
h ]C · n+

+
(12µfγc

∆t

)
(δpf

n,m+k
h − δpfn,m−1+k

h ) +
(12µf
q∆t

)
[δun,k+q

h ]C · n+

which can be written as:

∇·(δζn+1,m+k
h ) = −12µf (cfc + γc)

∆t
(δpf

n+1,m+k
h − δpfn+1,m−1+k

h ) + 12[δzn+1,m+k
h ]C · n+

+
(12µfχc

∆t

)
δσn,m+k

f

All sequences on the right hand side converge in H−1/2(C). Therefore, we have the conver-

gence of ∇·ζn,kh in H−1/2(C) as well. Together with the previously obtained result that ζn,kh
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converges strongly in L2(C) to a unique limit, we have the convergence of ζn,kh to a unique

limit in ZC. Therefore, all considered sequences converge strongly. The existence of the

limiting functions in the corresponding spaces follows immediately by the completeness of

the corresponding spaces.

It remains to pass to the limit in (6.5.63)–(6.5.67). As described in Chapter 2 for the Biot

system, this is trivially satisfied as the equations are linear and all operators involved are

continuous in the spaces invoked in the statements of Lemmas 6.5.1 and 6.5.2. Further-

more, the convergences are strong and we easily retrieve the fully discrete formulation.

The above discussions are summarized in the following main result: We have the following

theorem:

Theorem 6.5.1. [Multirate] For L = γc = χM = χc = α2

2λ
, and under condition (6.5.111),

the proposed multirate iterative scheme is a contraction given by(
βc
β
− 1
)∑q

m=1

∥∥∥δpfn+1,m+k
h − δpfn+1,m−1+k

h

∥∥∥2

C
+ 4λ

α2q2

(
2GC∗ − λ

α2

)∑q
m=1

∥∥∥δwn+1,k+q
h

∥∥∥2

C

+ ∆t
βµf
‖K−1/2δzn+1,k+q

h ‖2
Ω+∪Ω− + ∆t

12µfβ
‖K−1/2

C δζn+1,k+q
h ‖2

C

+ ∆t
βµf

∑q
m=1 ‖K−1/2(δzn+1,m+k

h − δzn+1,m−1+k
h )‖2

Ω+∪Ω−

+ ∆t
12µfβ

∑q
m=1 ‖K

−1/2
C (δζn+1,m+k

h − δζn+1,m−1+k
h )‖2

C

+
∑q

m=1

(
‖δσn+1,m+k

v ‖2
Ω+∪Ω− + ‖δσn+1,m+k

f ‖2
C

)
≤Max

(
L2

β2 ,
L2

ββc

)∑q
m=1

(
‖δσn+1,m+k

v ‖2
Ω+∪Ω− + ‖δσn+1,m+k

f ‖2
C

)
Furthermore, the sequences defined by this scheme converge to the unique solution of the

weak formulation (6.5.63)–(6.5.67).

6.6 Modified Multirate Formulation and Analysis

In this section, we present a modified multirate iterative coupling algorithm, which results

in a Banach contraction estimate on the volumetric mean total stresses (or to be more
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accurate on the quantities of contractions) as defined by Girualt et al. [43], for the single

rate fixed stress split scheme. This algorithm involves a slight modification to the original

multirate iterative coupling scheme in which we employ “successive corrections” in the

flow problem which will cancel out in the limit. This is quite similar to the addition of

regularization terms in the fixed stress split scheme. In this case, the iterative coupling

iteration is split into even and odd iterations, in which flux corrections terms are added

in even coupling iterations. Those added flux correction terms result in eliminating the

excessive flux accumulation contributions which appear as a result of taking more than one

flow time step within one coarse mechanics time step and yield theoretical results identical

to those of the single rate case.

The rational behind introducing this scheme can be summarized as follows:

• The weak formulation of the modified scheme reduces to that of the single rate scheme.

As a result, all established theoretical results for the single rate scheme will be appli-

cable for the modified multirate scheme.

• A key advantage of this scheme is the fact that its quantity of contraction is indepen-

dent of q (the number of flow fine time steps within one coarse mechanics time steps).

This is not the case in the original multirate iterative coupling scheme, considered

earlier, as the volumetric strain term and also the term involving the jump in dis-

placement across the fracture are both divided by q in the quantities of contraction

(6.5.90) and (6.5.104), respectively. This means that as the value of q increases, the

mechanics contribution to the quantities of contraction gets reduced. For larger val-

ues of q, the scheme mostly contracts on differences in pressures in both the reservoir

matrix and the fracture. This restriction is completely eliminated in the modified

multirate iterative coupling scheme.

• Compared to the combined condition (6.5.111) imposed in the first multirate scheme,

the modified multirate scheme only imposes the condition (6.4.62).

We adopt exactly the same notation as the one used earlier.

6.6.1 Modified Multirate Iterative Coupling Scheme
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Algorithm 10: Modified Multirate Iterative Coupling Algorithm

1 for k = 0, q, 2q, 3q, .. do /* mechanics time step iteration index */

2 for n = 1, 2, .. do /* coupling iteration index */

3 First Step: Flow equations

4 Given un,k+qh (assuming an initial value is given for the first iteration: u0,k+q
h )

5 For the first local flow time step iteration, solve for pn+1,1+k
h , zn+1,1+k

h , pf
n+1,1+k
h ,

and ζn+1,1+k
h satisfying:

(
1

M
+ cfϕ0 +

α2

λ
)
(pn+1,1+k

h − pn+1,k
h

∆t

)
+

1

µf
∇ · zn+1,1+k

h =

α2

λ

(pn,1+k
h − pkh

∆t

)
− α∇ ·

(un,k+q
h − un,kh

q∆t

)
+ q̃h in Ω \ C,

(γc + cfc)
(pfn+1,1+k

h − pfn+1,k
h

∆t

)
+

(wn,k+q
h − wn,kh

q∆t

)
+

1

12µf
∇ · ζn+1,1+k

h =

γc
(pfn,1+k

h − pfn,kh
∆t

)
+ q̃Wh

− q̃Ln+1,1+k
h in C

if mod(n,2) = 1 then /* coupling iteration index (n) is odd */

6 for m = 2, .., q do /* flow finer time steps iteration index */

7 Solve for pn+1,m+k
h , zn+1,m+k

h , pf
n+1,m+k
h , and ζn+1,m+k

h satisfying:

(
1

M
+ cfϕ0 +

α2

λ
)
(pn+1,m+k

h − pn+1,m−1+k
h

∆t

)
+

1

µf
∇ · zn+1,m+k

h =

α2

λ

(pn,m+k
h − pm−1+k

h

∆t

)
− α∇ ·

(un,k+q
h − un,kh

q∆t

)
+ q̃h in Ω \ C,

(γc + cfc)
(pfn+1,m+k

h − pfn+1,m−1+k
h

∆t

)
+

(wn,k+q
h − wn,kh

q∆t

)
+

1

12µf
∇ · ζn+1,m+k

h = γc
(pfn,m+k

h − pfn,m−1+k
h

∆t

)
+ q̃Wh

− q̃Ln+1,m+k
h in C

8 else /* coupling iteration index (n) is even */

9 for m = 2, .., q do /* flow finer time steps iteration index */

10 Solve for pn+1,m+k
h , zn+1,m+k

h , pf
n+1,m+k
h , and ζn+1,m+k

h satisfying:

(
1

M
+ cfϕ0 +

α2

λ
)
(pn+1,m+k

h − pn+1,m−1+k
h

∆t

)
+

1

µf
∇ · zn+1,m+k

h −
1

µf
∇ · zn+1,m−1+k

h

=
α2

λ

(pn,m+k
h − pm−1+k

h

∆t

)
− α∇ ·

(un,k+q
h − un,kh

q∆t

)
+ q̃h −

1

µf
∇ · zn,m−1+k

h in Ω \ C,

(6.6.115)

(γc + cfc)
(pfn+1,m+k

h − pfn+1,m−1+k
h

∆t

)
+

(wn,k+q
h − wn,kh

q∆t

)
+

1

12µf
∇ · ζn+1,m+k

h −
1

12µf
∇ · ζn+1,m−1+k

h − q̃Ln+1,m−1+k
h = q̃Wh

− q̃Ln+1,m+k
h

+ γc
(pfn,m+k

h − pfn,m−1+k
h

∆t

)
−

1

12µf
∇ · ζn,m−1+k

h − q̃Ln,m−1+k
h on C (6.6.116)

11

12 Second Step: Mechanics equations

13 Given pn+1,k+q
h , zn+1,k+q

h , pf
n+1,k+q
h , and ζn+1,k+q

h , solve for un+1,k+q
h satisfying:

− divσpor(un+1,k+q
h , pn+1,k+q

h ) = f (6.6.117)
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6.6.2 Proof of Contraction

We define the volumetric mean total stress, representing the quantity of contraction in the

reservoir matrix, as:

σn,m+k
v = σn,kv + λ∇ · un,kh − α(pn,m+k

h − pn,kh ) for 1 ≤ m ≤ q − 1, (6.6.118)

σn,k+q
v = σn,kv + λ∇ · un,k+q

h − α(pn,k+q
h − ph) for m = q. (6.6.119)

In terms of the differences between two iterative coupling iterations, we can write:

δσn+1,m+k
v = σn+1,m+k

v − σn,m+k
v = −αδpn+1,m+k

h for 1 ≤ m ≤ q − 1, (6.6.120)

δσn+1,k+q
v = λ∇ · δun+1,k+q

h − αδpn+1,k+q
h for m = q. (6.6.121)

In a similar way, following (6.4.41), we define the quantity of contraction in the fracture as:

χδσn+1,m+k
f = χσn+1,m+k

f − χσn,m+k
f = γcδpf

n+1,m+k
h for 1 ≤ m ≤ q − 1, (6.6.122)

χδσn+1,k+q
f = γcδpf

n+1,k+q
h − δwn+1,k+q

h for m = q. (6.6.123)

In order to obtain the single rate weak formulation, we sum up local flow iterations in one

coarse mechanics time step. Since we solve different mass balance equations in even versus

odd coupling iterations, we consider each case separately:

• Coupling iteration index, n, is odd:

(
1

M
+ cfϕ0 +

α2

λ
)

1

∆t

q∑
m=1

(
pn+1,m+k
h − pn+1,m−1+k

h

)
+

1

µf
∇ ·

q∑
m=1

zn+1,m+k
h

= − α

λ∆t

(
− α

q∑
m=1

(
pn,m+k
h − pm−1+k

h

)
+
λ

q
∇ ·

q∑
m=1

(
un,k+q
h − un,kh

))
+ qq̃h

(6.6.124)

q∑
m=1

zn+1,m+k
h = −K∇

( q∑
m=1

pn+1,m+k
h

)
+Kqρf,rg∇ η (6.6.125)

(γc + cfc)

∆t

q∑
m=1

(
pf

n+1,m+k
h − pfn+1,m−1+k

h

)
+

1

12µf
∇ ·

q∑
m=1

ζn+1,m+k
h

− 1

µf

[ q∑
m=1

zn+1,m+k
h

]
C
· n+ =

γc
∆t

q∑
m=1

(
pf

n,m+k
h − pfn,m−1+k

h

)
+

1

∆t

(
[un,k+q

h ]C · n+ − [un,kh ]C · n+
)

+ qq̃Wh
(6.6.126)
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q∑
m=1

ζn+1,m+k
h = −KC∇

q∑
m=1

(
pf

n+1,m+k
h

)
+KCqρf,rg∇ η, (6.6.127)

wn,k+q
h = −[un,k+q

h ]C · n+. (6.6.128)

(6.6.128) remains unchanged. We do not sum up mechanics equations since we solve

them only once during every coupling iteration.

• Coupling iteration index, n, is even:

Equations (6.6.125) and (6.6.127) remain unchanged.

(
1

M
+ cfϕ0 +

α2

λ
)

1

∆t

q∑
m=1

(
pn+1,m+k
h − pn+1,m−1+k

h

)
+

1

µf
∇ ·

q∑
m=1

zn+1,m+k
h

− 1

µf
∇ ·

q−1∑
w=1

zn+1,w+k
h = − α

λ∆t

(
− α

q∑
m=1

(
pn,m+k
h − pm−1+k

h

)
+
λ

q
∇ ·

q∑
m=1

(
un,k+q
h − un,kh

))
+ qq̃h −

1

µf
∇ ·

q−1∑
w=1

zn,w+k
h in Ω \ C, (6.6.129)

(γc + cfc)

∆t

q∑
m=1

(
pf

n+1,m+k
h − pfn+1,m−1+k

h

)
+

1

12µf
∇ ·

q∑
m=1

ζn+1,m+k
h

− 1

µf

[ q∑
m=1

zn+1,m+k
h

]
C
· n+ − 1

12µf
∇ ·

q−1∑
m=1

ζn+1,m+k
h +

1

µf

[ q−1∑
m=1

zn+1,m+k
h

]
C
· n+

=
γc
∆t

q∑
m=1

(
pf

n,m+k
h − pfn,m−1+k

h

)
+ qq̃Wh

− 1

12µf
∇ ·

q−1∑
w=1

ζn+1,w+k
h

+
1

µf

[ q−1∑
w=1

zn+1,w+k
h

]
C
· n+ +

1

∆t

(
[un,k+q

h ]C · n+ − [un,kh ]C · n+
)

in C, (6.6.130)

Now, we take the difference between an even and odd coupling iterations. Assuming,

without loss of generality, that the coupling iteration index “n + 1” represents an even

coupling iteration, and “n” represents an odd coupling iteration, subtracting (6.6.124)

from (6.6.129) yields (with appropriate cancellations):

(
1

M
+ cfϕ0 +

α2

λ
)

1

∆t
δpn+1,k+q

h +
1

µf
∇ ·

q∑
m=1

δzn+1,m+k
h − 1

µf
∇ ·

q−1∑
w=1

δzn+1,w+k
h

= − α

λ∆t
δσn,k+q

v ,
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which can be written as

(
1

M
+ cfϕ0 +

α2

λ
)

1

∆t
δpn+1,k+q

h +
1

µf
∇ · δzn+1,q+k

h = − α

λ∆t
δσn,k+q

v . (6.6.131)

Similarly, subtracting (6.6.126) from (6.6.130) yields (with appropriate cancellations):

(γc + cfc)

∆t
δpf

n+1,q+k
h +

1

12µf
∇ ·

q∑
m=1

ζn+1,m+k
h − 1

µf

[ q∑
m=1

zn+1,m+k
h

]
C
· n+

− 1

12µf
∇ ·

q−1∑
w=1

ζn+1,w+k
h +

1

µf

[ q−1∑
w=1

zn+1,w+k
h

]
C
· n+ =

γc
∆t
δpf

n,q+k
h

+
1

∆t
[un,k+q

h ]C · n+ in C.

This gives

(γc + cfc)

∆t
δpf

n+1,q+k
h +

1

12µf
∇ · ζn+1,q+k

h − 1

µf

[
zn+1,q+k
h

]
C
· n+

=
γc
∆t
δpf

n,q+k
h +

1

∆t
[un,k+q

h ]C · n+ in C. (6.6.132)

We can also write for the last finer time step (within one multirate iterative coupling

iteration):

δzn+1,q+k
h = −K∇δpn+1,q+k

h (6.6.133)

δζn+1,q+k
h = −KC∇ δpfn+1,q+k

h (6.6.134)

Now, equations (6.6.131), (6.6.132), (6.6.133), and (6.6.134) involve only coarse time step

variables. Considering the modified multirate iterative coupling scheme as a single rate

scheme, in which both the flow and mechanics problems share the coarse time step, the

weak formulation of the differences between coupling iterates reads:

∀θh ∈ Qh ,
( 1

∆t
(

1

M
+ cfϕ0 +

α2

λ
)δpn+1,k+q

h , θh

)
+

1

µf
(∇ · δzn+1,k+q

h , θh) =(
− α

λ∆t
δσn,k+q

v , θh

)
(6.6.135)

∀θch ∈ Qch ,
( 1

∆t
(cfc + γc)δpf

n+1,k+q
h , θch

)
+

1

12µf
(∇ · (δζn+1,k+q

h ), θch)C

− 1

µf
([δzn+1,k+q

h ]C · n+, θch)C =
( γc

∆t
δpf

n,k+q
h , θch

)
+ (

1

∆t
[δun,k+q

h ]C · n+, θch)C (6.6.136)
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∀qh ∈ Zh , (K−1δzn+1,k+q
h , qh) = (δpn+1,k+q

h ,∇ · qh)− (δpf
n+1,k+q
h , [qh]C · n+)C (6.6.137)

∀µf h ∈ ZCh , (K−1
C δζn+1,k+q

h ,µf h)C = (δpf
n+1,k+q
h ,∇ · (µf h))C (6.6.138)

∀vh ∈ Vh , 2G(ε(δun+1,k+q
h ), ε(vh)) + λ(∇ · δun+1,k+q

h ,∇ · vh)

− α(δpn+1,k+q
h ,∇ · vh) + (δpf

n+1,k+q
h , [vh]C · n+)C = 0 (6.6.139)

Comparing (6.6.135), (6.6.136), (6.6.137), (6.6.138), and (6.6.139) to (6.4.43), (6.4.44),

(6.4.45), (6.4.46), and (6.4.47), we conclude that the proof follows exactly in the same way

as in the fully discrete single rate case considered earlier. Therefore, we have the following

theorem:

Theorem 6.6.1. The modified multirate iterative scheme is a contraction given by

‖δσn+1,k+q
v ‖Ω+∪Ω− + λ2‖∇ · δun+1,k+q

h ‖Ω+∪Ω− + 2∆t
βµf
‖K−1/2δzn+1,k+q

h ‖Ω+∪Ω−

+ ∆t
6µfβ
‖K−1/2

C δζn+1,k+q
h ‖C + ‖δσn+1,k+q

f ‖C + (4GλC∗ − 1
χ2 )‖δwn+1,k+q

h ‖C

≤ max

{
1/λ2

( 1
Mα2 +

cf

α2 ϕ0+ 1
λ)

2 ,
γc

(cfc+γc)λ( 1
Mα2 +

cf

α2 ϕ0+ 1
λ)

}(∥∥∥δσn,k+q
v

∥∥∥
Ω+∪Ω−

+ ‖δσn,k+q
f ‖C

)
.

Furthermore, the sequences defined by this scheme converge to the unique solution of the

weak formulation (6.4.18) - (6.4.22).

6.7 Conclusions and Discussion

In this chapter, we carried out a rigorous mathematical analysis of the single rate and

multirate fixed-stress split iterative coupling schemes in fractured poro-elastic media. The

analysis of the fully discrete single rate scheme follows a similar approach as the one pre-

sented in [43] for the continuous case. The analysis of the proposed multirate schemes is

more involved. In both cases, the iterative coupling scheme is shown to be contractive, with

a contraction coefficient strictly less than one. As a future work, the proposed multirate

iterative coupling schemes will be implemented numerically, and the derived mathematical

conditions will be validated as well.
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Chapter 7

Explicit Coupling Schemes for Fractured Poroelastic

Media

In this chapter, we consider explicit coupling schemes for coupling flow with geomechanics

in fractured poro-elastic media. In practice, quite commonly explicit coupling schemes are

more popular than iterative coupling scheme. However, they are only conditionally stable

under certain conditions on the parameters. We recall that an explicit coupling scheme is a

sequential procedure in which flow or mechanics is solved first followed by the other. In this

chapter, we consider solving the flow problem followed by the mechanics problem. There

is no coupling iteration between the two problems. This simply means that the algorithm

keeps marching in time, advancing time steps, and solving exactly one (or possibly many

with a fine time step) flow problems and one (with a possibly coarse time step) mechanics

problem in a sequential manner. In this chapter, we will analyze the stability of both single

rate and multirate explicit coupling schemes for fractured poro-elastic media. The stability

analysis reveals the corresponding stability conditions for each case. We recall that in the

single rate scheme (figure 7.1a), the flow and mechanics problems share the exact same

time step. In contrast, in the multirate shceme (figure 7.1b), the flow problem takes several

finer local time steps within one coarser mechanics time step. It should be noted that in

explicit coupling algorithms, the fixed-stress split scheme does not apply as there is no

coupling iteration between the two problems. In other words, the usual fixed-stress split

regularization terms can not be added in this case.

7.1 Model Equations and Discretization

We adopt the same model as the one presented in Chapter 6 (for the iterative coupling

case). For completeness, we briefly list the equations involved. The continuos in time for-
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tflow, tmech = 0
(initial time = 0)

k = 0

Fluid Flow in both Reservoir
and Fracture: tflow = tflow + ∆t

Compute pore pressure, pk+1

Mechanics (Biot Model):
tmech = tmech + ∆t

Compute displacement, uk+1

Update pore volume

k = k + 1

(a) Single Rate

tflow, tmech = 0
(initial time = 0)

k = 0

m = 1 (flow iteration index)

Fluid Flow in both Reservoir
and Fracture: tflow = tflow + ∆t

Compute pore pressure, pk+m

m = (Max
flow

iterations:
q)?

m = m + 1

Mechanics (Biot Model):
tmech = tmech + q∆t

Compute displacement, uk+q

Update pore volume

k = k + q

No

Yes

(b) Multirate

Figure 7.1: Flowchart for the explicit single rate and multirate time steppings for coupled
geomechanics and flow problems in fractured poro-elastic media

mulation reads: Find u, p, and q̃L satisfying the equations below for all time t ∈]0, T [:
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−divσpor(u, p) = f in Ω \ C,
σpor(u, p) = σ(u)− α p I in Ω \ C,

∂
∂t

(
( 1
M

+ cfϕ0)p+ α∇ · u
)
−∇ ·

(
1
µf
K(∇ p− ρf,rg∇ η)

)
= q̃ in Ω \ C,

cf
∂pf
∂t

+ ∂
∂t
w −∇ · ( KC

12µf
(∇ pf − ρf,rg∇ η)) = q̃W − q̃L in C,

(σpor(u, p))?n? = −p|Cn? , ? = +,− on C,
1
µf

[K(∇ p− ρf,rg∇ η)]C · n+ = q̃L on C,

where w = −[u]C · n+,

Boundary Conditions: u = 0 , K(∇ p− ρf,rg∇ η) · n = 0 on ∂Ω,

Initial Condition (t = 0) :
(

( 1
M

+ cfϕ0)p+ α∇ · u
)

(0) =

( 1
M

+ cfϕ0)p0 + α∇ · u0.

We use the same space and time discretizations as described in the previous chapter (Chap-

ter 6).

7.1.1 Assumptions

We briefly recall the assumptions from the previous chapter. The reservoir is assumed

to be homogeneous, isotropic and saturated poro-elastic medium. The fluid is assumed

to be slightly compressible. Its density is a linear function of pressure, with a constant

viscosity µf > 0. The reference density of the fluid ρf > 0, the Lamé coefficients λ > 0 and

G > 0, the dimensionless Biot coefficient α, and the pore volume ϕ∗ are all positive. The

absolute permeability tensors in the matrix and the fracture (K and Kc), are assumed to

be symmetric, bounded, uniformly positive definite in space and constant in time.

More assumptions (i.e. stability conditions) on the flow and mechanics parameters will be

derived mathematically for both the single rate and multirate schemes.

Remark 7.1.1. Notation: We recall the notation adopted in the previous chapters: k

denotes the coarser mechanics time step index, m denotes the finer flow time step index,

∆t stands for the unit (finer) time step, and q is the “fixed” number of fine flow time steps

per one coarse mechanics time step.
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7.2 Single Rate Explicit Coupling Formulation and Analysis

7.2.1 Fully Discrete Scheme for Single Rate

Using the mixed finite element method in space for flow, continuous Galerkin for mechanics,

and the backward Euler finite difference method in time, the weak formulation of the single

rate explicit coupling scheme in fractured poro-elastic media reads as follows.

Definition 7.2.1. (flow equation) Find pk+1
h ∈ Qh, pf

k+1
h ∈ Qch, zk+1

h ∈ Zh, and

ζk+1
h ∈ ZCh such that,

∀θh ∈ Qh ,
β

∆t

(
pk+1
h − pkh, θh

)
+

1

µf
(∇ · zk+1

h , θh) = − α

∆t

(
∇ · (ukh − uk−1

h ), θh

)
+ (q̃k+1

h , θh)

(7.2.1)

∀θch ∈ Qch ,
cfc
∆t

(
pf

k+1
h − pf kh, θch

)
C

+
1

12µf
(∇ · (ζk+1

h ), θch)C −
1

µf
([zk+1

h ]C · n+, θch)C

= − 1

∆t
(wkh − wk−1

h , θch)C + (q̃k+1
Wh

, θch)C

(7.2.2)

∀qh ∈ Zh , (K−1zk+1
h , qh) = (pk+1

h ,∇ · qh)− (pf
k+1
h , [qh]C · n+)C + (∇(ρf,rgη), qh) (7.2.3)

∀µf h ∈ ZCh , (K−1
C ζ

k+1
h ,µf h)C = (pf

k+1
h ,∇ · (µf h))C + (∇(ρf,rgη),µf h)C. (7.2.4)

Definition 7.2.2. (mechanics equation) Given pk+1
h , zk+1

h , pf
k+1
h , ζk+1

h , find uk+1
h ∈ V h

such that,

∀vh ∈ Vh , 2G(ε(uk+1
h ), ε(vh)) + λ(∇ · uk+1

h ,∇ · vh)− α(pk+1
h ,∇ · vh)

+ (pf
k+1
h , [vh]C · n+)C = (fk+1

h ,vh) (7.2.5)

7.2.2 Single Rate Explicit Coupling Algorithm

We start by analyzing the single-rate explicit coupling algorithm, in which both flow and

mechanics share the same time step. The algorithm is given as follows:
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Algorithm 11: Single Rate Explicit Coupling Algorithm

1 Given initial conditions u0
h, p0

h, pf
0
h = p0

h|C solve fully implicitly for

p1
h, pf

1
h, z

1
h, ζ

1
h, and u1

h satisfying the fractured Biot model
2 for k = 1, 2, . . . do /* time step index */

3 First Step: Flow equations

4 Given ukh and uk−1
h :

5 Solve for pk+1
h , pf

k+1
h , zk+1

h , and ζk+1
h satisfying definition 7.2.1

6 Second Step: Mechanics equations

7 Given pk+1
h , pf

k+1
h , zk+1

h , and ζk+1
h :

8 Solve for uk+1
h satisfying definition 7.2.2

Note that we begin with k = 1 and we require both u1
h and u0

h for obtaining p2
h, pf

2
h, z

2
h,

and ζ2
h. In the first step, we use a fully implicit method to solve for p1

h, pf
1
h, z

1
h, and ζ1

h,

and u1
h. Alternatively, to keep the problem decoupled, we can use iterative techniques such

as fixed stress splitting or undrained splitting [43,64].

7.2.2.1 Assumptions

For notational convenience, we define

β = (
1

M
+ cfϕ0).

For stability to hold, we assume the following:

(A1) β > α2

λ
& cf c >

1
GC∗

where C∗ is a product of optimal constants in Korn’s, Poincare’s, and trace inequalities,

defined in (6.4.55).

7.2.2.2 Result

Our results make explicit the dependence of the stability on the difference of the above

quantities. we have the following stability result.

Theorem 7.2.1. [Single rate] Under the Assumption A1 above, the following stability result
holds for the single rate explicit coupling scheme (in the fractured poro-elastic media) for
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time steps t0 ≤ tk ≤ tJ :

∆t

2µf

[∥∥∥K−1/2zJ+1
h

∥∥∥2
+

J∑
k=1

∥∥∥K−1/2(zk+1
h − zkh)

∥∥∥2]
+

∆t

24µf

[∥∥∥K−1/2
C ζJ+1

h

∥∥∥2

C

+

J∑
k=1

∥∥∥K−1/2
C (ζk+1

h − ζkh)
∥∥∥2

C

]
+
G

2

J∑
k=1

∥∥∥ε(uk+1
h − ukh)

∥∥∥2
+
GC∗

2

∥∥∥wJ+1
h − wJh

∥∥∥2

C

+
λ

2

∥∥∥∇ · (uJ+1
h − uJh)

∥∥∥2
≤ C∆t+

∆t2

4(β − α2

λ )

J∑
k=1

∥∥∥q̃k+1
h

∥∥∥2
+

∆t2

4(cfc − 1
GC∗ )

J∑
k=1

∥∥∥q̃k+1
Wh

∥∥∥2

C

+
P2

ΩC
2
κ

2G

J∑
k=1

∥∥∥fk+1
h − fkh

∥∥∥2

for a generic constant C > 0.

7.2.3 Stability Analysis

• Step 1: Flow equations

Consider (7.2.3) for two consecutive time steps: t = tk and t = tk+1, and test both

with qh = zk+1
h to get:

(K−1zk+1
h , zk+1

h ) = (pk+1
h ,∇ · zk+1

h )− (pf
k+1
h , [zk+1

h ]C · n+)C + (∇(ρf,rgη), zk+1
h ),
(7.2.6)

(K−1zkh, z
k+1
h ) = (pkh,∇ · zk+1

h )− (pf
k
h, [z

k+1
h ]C · n+)C + (∇(ρf,rgη), zk+1

h ).
(7.2.7)

Taking the difference of the above two equations and rearranging terms, we obtain:

(pk+1
h − pkh,∇ · zk+1

h ) = (K−1(zk+1
h − zkh), zk+1

h ) + (pf
k+1
h − pf kh, [z

k+1
h ]C · n+)C.

(7.2.8)

Consider (7.2.1) and test with θh = pk+1
h − pkh to obtain:

β

∆t

∥∥∥pk+1
h − pkh

∥∥∥2

+
α

∆t

(
∇ · (ukh − uk−1

h ), pk+1
h − pkh

)
+

1

µf
(∇ · zk+1

h , pk+1
h − pkh)

= (q̃k+1
h , pk+1

h − pkh). (7.2.9)

Substitute (7.2.8) into (7.2.9) to derive:

β

∆t

∥∥∥pk+1
h − pkh

∥∥∥2

+
α

∆t

(
∇ · (ukh − uk−1

h ), pk+1
h − pkh

)
+

1

µf

[
(K−1(zk+1

h − zkh), zk+1
h )

(pf
k+1
h − pf kh, [z

k+1
h ]C · n+)C

]
= (q̃k+1

h , pk+1
h − pkh).
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With further simplifications, we obtain:

β

∆t

∥∥∥pk+1
h − pkh

∥∥∥2

+
1

2µf

[∥∥∥K−1/2zk+1
h

∥∥∥2

−
∥∥∥K−1/2zkh

∥∥∥2

+
∥∥∥K−1/2(zk+1

h − zkh)
∥∥∥2]

+
1

µf
(pf

k+1
h −pf kh, [z

k+1
h ]C ·n+)C =− α

∆t

(
∇·(ukh−uk−1

h ), pk+1
h −pkh

)
+(q̃h, p

k+1
h −pkh).

(7.2.10)

Consider now the flow in the fracture equation (7.2.4) for the difference of two con-

secutive time steps t = tk, and t = tk+1, and test with µf h = ζk+1
h to obtain:

(K−1
C (ζk+1

h − ζkh), ζk+1
h )C = (pf

k+1
h − pf kh,∇ · ζ

k+1
h )C. (7.2.11)

Testing (7.2.2) with θch = pf
k+1
h − pf kh yields:

cfc
∆t

∥∥∥pf k+1
h − pf kh

∥∥∥2

C
+

1

12µf
(∇ · (ζk+1

h ), pf
k+1
h − pf kh)C −

1

µf
([zk+1

h ]C · n+, pf
k+1
h − pf kh)C

+
1

∆t
(wkh − wk−1

h , pf
k+1
h − pf kh)C = (q̃k+1

Wh
, pf

k+1
h − pf kh)C.

(7.2.12)

Now, substitute (7.2.11) into (7.2.12) to obtain:

cfc
∆t

∥∥∥pf k+1
h − pf kh

∥∥∥2

C
+

1

12µf
(K−1

C (ζk+1
h − ζkh), ζk+1

h )C −
1

µf
([zk+1

h ]C · n+, pf
k+1
h − pf kh)C

+
1

∆t
(wkh − wk−1

h , pf
k+1
h − pf kh)C = (q̃k+1

Wh
, pf

k+1
h − pf kh)C.

(7.2.13)

Next, add (7.2.10) to (7.2.13) to obtain with further simplifications:

β

∆t

∥∥∥pk+1
h − pkh

∥∥∥2

+
1

2µf

[∥∥∥K−1/2zk+1
h

∥∥∥2

−
∥∥∥K−1/2zkh

∥∥∥2

+
∥∥∥K−1/2(zk+1

h − zkh)
∥∥∥2]

+
cfc
∆t

∥∥∥pf k+1
h − pf kh

∥∥∥2

C
+

1

24µf

[∥∥∥K−1/2
C ζk+1

h

∥∥∥2

C
−
∥∥∥K−1/2

C ζkh

∥∥∥2

C
+
∥∥∥K−1/2

C (ζk+1
h − ζkh)

∥∥∥2

C

]
= − α

∆t

(
∇ · (ukh − uk−1

h ), pk+1
h − pkh

)
− 1

∆t
(wkh − wk−1

h , pf
k+1
h − pf kh)C

+ (q̃k+1
h , pk+1

h − pkh) + (q̃k+1
Wh

, pf
k+1
h − pf kh)C.

(7.2.14)
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• Step 2: Elasticity equation

Consider equation (7.2.5) for two consecutive time steps: t = tk and t = tk+1, take

the difference between the two, and test with vh =
uk+1
h −ukh

∆t
to obtain:

2G

∆t

∥∥∥ε(uk+1
h − ukh)

∥∥∥2

+
λ

∆t

∥∥∥∇ · (uk+1
h − ukh)

∥∥∥2

− α

∆t
(pk+1
h − pkh,∇ · (uk+1

h − ukh))

− 1

∆t
(pf

k+1
h − pf kh, w

k+1
h − wkh)C =

1

∆t

(
fk+1
h − fkh,uk+1

h − ukh
)
.

(7.2.15)

• Step 3: Combining flow and elasticity equations

Adding (7.2.14) to (7.2.15) and bounding the term G
∆t

∥∥∥ε(uk+1
h − ukh)

∥∥∥2

on the left

hand side of (7.2.15) from below by (6.4.55), we obtain

β

∆t

∥∥∥pk+1
h − pkh

∥∥∥2

+
1

2µf

[∥∥∥K−1/2zk+1
h

∥∥∥2

−
∥∥∥K−1/2zkh

∥∥∥2

+
∥∥∥K−1/2(zk+1

h − zkh)
∥∥∥2]

+
cfc
∆t

∥∥∥pf k+1
h − pf kh

∥∥∥2

C
+

1

24µf

[∥∥∥K−1/2
C ζk+1

h

∥∥∥2

C
−
∥∥∥K−1/2

C ζkh

∥∥∥2

C
+
∥∥∥K−1/2

C (ζk+1
h − ζkh)

∥∥∥2

C

]
+
G

∆t

∥∥∥ε(uk+1
h − ukh)

∥∥∥2

+
GC∗

∆t

∥∥∥wk+1
h − wkh

∥∥∥2

C
+

λ

∆t

∥∥∥∇ · (uk+1
h − ukh)

∥∥∥2

≤ − α

∆t

(
∇ · (ukh − uk−1

h ), pk+1
h − pkh

)
︸ ︷︷ ︸

R1

− 1

∆t
(wkh − wk−1

h , pf
k+1
h − pf kh)C︸ ︷︷ ︸

R6

+(q̃k+1
h , pk+1

h − pkh)︸ ︷︷ ︸
R3

+(q̃k+1
Wh

, pf
k+1
h − pf kh)C︸ ︷︷ ︸
R4

+
α

∆t
(pk+1
h − pkh,∇ · (uk+1

h − ukh))︸ ︷︷ ︸
R2

+
1

∆t
(pf

k+1
h − pf kh, w

k+1
h − wkh)C︸ ︷︷ ︸

R5

+
1

∆t

(
fk+1
h − fkh,uk+1

h − ukh
)

︸ ︷︷ ︸
R7

. (7.2.16)

Denoting by R1, R2, R3, R4, R5, R6 and R7 the terms on the right hand side, together
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with Poincaré’s, Korn’s, and Young’s inequalities, we estimate

|R1| ≤
α

∆t

( 1

2ε1

∥∥∥∇ · (ukh − uk−1
h )

∥∥∥2

+
ε1
2

∥∥∥pk+1
h − pkh

∥∥∥2)
,

|R2| ≤
α

∆t

( 1

2ε2

∥∥∥pk+1
h − pkh

∥∥∥2

+
ε2
2

∥∥∥∇ · (uk+1
h − ukh)

∥∥∥2)
,

|R3| ≤
1

2ε3

∥∥∥q̃k+1
h

∥∥∥2

+
ε3
2

∥∥∥pk+1
h − pkh

∥∥∥2

,

|R4| ≤
1

2ε4

∥∥∥q̃k+1
Wh

∥∥∥2

+
ε4
2

∥∥∥pf k+1
h − pf kh

∥∥∥2

C
,

|R5| ≤
1

∆t

( 1

2ε5

∥∥∥pf k+1
h − pf kh

∥∥∥2

C
+
ε5
2

∥∥∥wk+1
h − wkh

∥∥∥2

C

)
,

|R6| ≤
1

∆t

( 1

2ε6

∥∥∥wkh − wk−1
h

∥∥∥2

C
+
ε6
2

∥∥∥pf k+1
h − pf kh

∥∥∥2

C

)
,

|R7| ≤
1

2∆tε7

∥∥∥fk+1
h − fkh

∥∥∥2

+
ε7

2∆t

∥∥∥uk+1
h − ukh

∥∥∥2

≤ 1

2∆tε7

∥∥∥fk+1
h − fkh

∥∥∥2

+
ε7P

2
ΩC

2
κ

2∆t
‖ε(uk+1

h − ukh)‖2,

for ε1, ε2, ε3, ε4, ε5, ε6, and ε7 > 0. Choosing ε1 = α
λ
, ε2 = λ

α
, ε3 = 2

∆t

(
β − α2

λ

)
,

ε4 = 2
∆t

(
cf c−

1
GC∗

)
, ε5 = GC∗, ε6 = 1

GC∗
, ε7 = G

P2
ΩC

2
κ
, and multiplying (7.2.16) by ∆t,

we derive:

∆t

2µf

[∥∥∥K−1/2zk+1
h

∥∥∥2

−
∥∥∥K−1/2zkh

∥∥∥2

+
∥∥∥K−1/2(zk+1

h − zkh)
∥∥∥2]

+
∆t

24µf

[∥∥∥K−1/2
C ζk+1

h

∥∥∥2

C
−
∥∥∥K−1/2

C ζkh

∥∥∥2

C
+
∥∥∥K−1/2

C (ζk+1
h − ζkh)

∥∥∥2

C

]
+
G

2

∥∥∥ε(uk+1
h − ukh)

∥∥∥2

+
GC∗

2

∥∥∥wk+1
h − wkh

∥∥∥2

C
+
λ

2

∥∥∥∇ · (uk+1
h − ukh)

∥∥∥2

≤ λ

2

∥∥∥∇ · (ukh − uk−1
h )

∥∥∥2

+
GC∗

2

∥∥∥wkh − wk−1
h

∥∥∥2

C

+
∆t2

4
(
β − α2

λ

)∥∥∥q̃k+1
h

∥∥∥2

+
∆t2

4
(
cf c −

1
GC∗

)∥∥∥q̃k+1
Wh

∥∥∥2

C
+

P2
ΩC

2
κ

2G

∥∥∥fk+1
h − fkh

∥∥∥2

. (7.2.17)

Summing up (7.2.17) for 1 ≤ k ≤ J , for J time steps, with telescopic cancellations,
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we obtain:

∆t

2µf

[∥∥∥K−1/2zJ+1
h

∥∥∥2

+
J∑
k=1

∥∥∥K−1/2(zk+1
h − zkh)

∥∥∥2]
+

∆t

24µf

[∥∥∥K−1/2
C ζJ+1

h

∥∥∥2

C

+
J∑
k=1

∥∥∥K−1/2
C (ζk+1

h − ζkh)
∥∥∥2

C

]
+
G

2

J∑
k=1

∥∥∥ε(uk+1
h − ukh)

∥∥∥2

+
GC∗

2

∥∥∥wJ+1
h − wJh

∥∥∥2

C

+
λ

2

∥∥∥∇ · (uJ+1
h − uJh)

∥∥∥2

≤ ∆t

2µf

∥∥∥K−1/2z1
h

∥∥∥2

+
∆t

24µf

∥∥∥K−1/2
C ζ1

h

∥∥∥2

C

+
λ

2

∥∥∥∇ · (u1
h − u0

h)
∥∥∥2

+
GC∗

2

∥∥∥w1
h − w0

h

∥∥∥2

C
+

∆t2

4(β − α2

λ
)

J∑
k=1

∥∥∥q̃k+1
h

∥∥∥2

+
∆t2

4(cfc − 1
GC∗

)

J∑
k=1

∥∥∥q̃k+1
Wh

∥∥∥2

C
+

P2
ΩC

2
κ

2G

J∑
k=1

∥∥∥fk+1
h − fkh

∥∥∥2

. (7.2.18)

We recall that u1
h, z

1
h, and ζ1

h have been computed using the fully implicit time discretiza-

tion. Using standard a priori estimates for the fractured coupled Biot model (a very

similar approach to the one used in equations (3.3.29) and (3.3.31)), we conclude that

‖∇ · u1
h −∇ · u0

h‖
2 ≤ C∆t,

∥∥∥w1
h − w0

h

∥∥∥2

C
≤ C∆t,

∥∥∥K−1/2
C ζ1

h

∥∥∥2

C
< C, and

∥∥∥K−1/2z1
h

∥∥∥2

≤ C

for a generic constant C > 0. This completes the derivation.

Remark 7.2.1. The above proof also provides a way to devise an explicitly coupled algo-

rithm that is unconditionally stable. For the single rate algorithm, we replace (7.2.1) and

(7.2.2) by:

∀θh ∈ Qh ,
β + α2

λ

∆t

(
pk+1
h − pkh, θh

)
+

1

µf
(∇ · zk+1

h , θh) = − α

∆t

(
∇ · (ukh − uk−1

h ), θh

)
+ (q̃k+1

h , θh) (7.2.19)

∀θch ∈ Qch ,
cfc + 1

GC∗

∆t

(
pf

k+1
h − pf kh, θch

)
C

+
1

12µf
(∇ · (ζk+1

h ), θch)C −
1

µf
([zk+1

h ]C · n+, θch)C

= − 1

∆t
(wkh − wk−1

h , θch)C + (q̃k+1
Wh

, θch)C

(7.2.20)

Note that the stabilisation terms α2

λ∆t
(pk+1
h − pkh) and 1

GC∗∆t
(pf

k+1
h − pf kh) have been added

above in contrast to (7.2.1) and (7.2.2) respectively. The stability result is then obtained
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with the assumption (A1) relaxed. The proof for the unconditional stability follows exactly

the same ideas presented above and is skipped here. Similar to the derivation shown in [46],

the consistence error is expected to be of the order of O(∆t).

7.3 Multirate Explicit Coupling Formulation and Analysis

Recall that in the multirate explicit coupling approach, the flow problem is solved q times

(with a finer time step) within one coarse mechanics time step.

7.3.1 Fully Discrete Scheme for Multirate

Using the mixed finite element method in space for flow, continuous Galerkin for mechanics,

and the backward Euler finite difference method in time, the weak formulation of the

multirate explicit coupling scheme for fractured poro-elastic media reads as follows.

Definition 7.3.1. (flow equations) For 1 ≤ m ≤ q, find pm+k
h ∈ Qh, pf

m+k
h ∈ Qch,

zm+k
h ∈ Zh, and ζm+k

h ∈ ZCh such that,

∀θh ∈ Qh ,
1

∆t
(

1

M
+ cfϕ0)

(
pm+k
h − pm−1+k

h , θh

)
+

1

µf
(∇ · zm+k

h , θh)

= − α

q∆t

(
∇ · (ukh − u

k−q
h ), θh

)
+ (q̃m+k

h , θh) (7.3.21)

∀θch ∈ Qch ,
cfc
∆t

(
pf

m+k
h − pfm−1+k

h , θch

)
C

+
1

12µf
(∇ · (ζm+k

h ), θch)C

− 1

µf
([zm+k

h ]C · n+, θch)C +
1

q∆t
(wkh − w

k−q
h , θch)C = (q̃m+k

Wh
, θch)C (7.3.22)

∀qh ∈ Zh , (K−1zm+k
h , qh) = (pm+k

h ,∇·qh)−(pf
m+k
h , [qh]C ·n+)C+(∇(ρf,rgη), qh) (7.3.23)

∀µf h ∈ ZCh , (K−1
C ζ

m+k
h ,µf h)C = (pf

m+k
h ,∇ · (µf h))C + (∇(ρf,rgη),µf h)C. (7.3.24)

Definition 7.3.2. (mechanics equation) Given pk+q
h , zk+q

h , pf
k+q
h , ζk+q

h , find uk+q
h ∈ V h

such that,

∀vh ∈ Vh , 2G(ε(uk+q
h ), ε(vh)) + λ(∇ · uk+q

h ,∇ · vh)− α(pk+q
h ,∇ · vh)

+ (pf
k+q
h , [vh]C · n+)C = (fk+q,vh) (7.3.25)

208



7.3.2 Multirate Explicit Coupling Algorithm

The multirate explicit coupling algorithm for fractured poroelastic media is given below:

Algorithm 12: Multirate Explicit Coupling Algorithm

1 Given initial conditions u0
h, p0

h, and pf
0
h = p0

h|C, solve implicitly for
umh , p

m
h , z

m
h , pf

m
h , ζ

m
h ,m = 1, 2, . . . , q satisfying fully coupled fractured Biot

model
2 for k = q, 2q, 3q, .. do /* mechanics time step iteration index */

3 First Step: Flow equations
4 Given ukh
5 for m = 1, 2, .., q do /* flow finer time steps iteration index */

6 Solve for pm+k
h , zm+k

h , pf
m+k
h , and ζm+k

h satisfying definition 7.3.1

7 Second Step: Mechanics equations

8 Given pk+q
h , pf

k+q
h , ζk+q

h , and zk+q
h

9 Solve for uk+q
h satisfying definition 7.3.2

7.3.2.1 Assumptions

The stability assumption in the multirate case takes the form:

(Aq) β > 1
2
(1
q

+ q)α
2

λ
& cf c >

1
2
(1
q

+ q) 1
GC∗

for q ≥ 1,

where q is the number of flow finer time steps within one coarse mechanics time step.

As in the single rate case, we need to prepare the initial data for starting the time stepping.

Accordingly, in the first step of the multirate algorithm (Algorithm 12), for k = 0, and

m = 1, 2, . . . , q, the initial conditions are computed by solving the coupled fractured Biot

system with a fully implicit time discretization (with a time step of size ∆t for the “q”

coupled solves). Alternatively, decoupled iterative schemes [8, 11, 43] such as the fixed

stress split iterative (single rate) scheme can be used to compute umh , p
m
h , z

m
h , pf

m
h , ζ

m
h , for

m = 1, 2, . . . , q. Note that if q = 1, the multirate condition (Aq) is identical to the single

rate condition (A1).

Our main result is the following stability estimate.
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Theorem 7.3.1. [Multirate] Under the assumption (Aq), the following stability result holds

for the multirate explicit coupling scheme in fractured poro-elastic media for mechanics time

steps t0 ≤ tk ≤ tJ , k = q, 2q, ..:

∆t

2µf

[∥∥∥K−1/2zJ+q
h

∥∥∥2

+
J∑
k=q

q∑
m=1

∥∥∥K−1/2(zm+k
h − zm−1+k

h )
∥∥∥2]

+
∆t

24µf

[∥∥∥K−1/2
C ζJ+q

h

∥∥∥2

C
+

J∑
k=q

q∑
m=1

∥∥∥K−1/2
C (ζm+k

h − ζm−1+k
h )

∥∥∥2

C

]
+
G

2

J∑
k=q

∥∥∥ε(uk+q
h − ukh)

∥∥∥2

+
GC∗

2

∥∥∥wJ+q
h − wJh

∥∥∥2

C
+
λ

2

∥∥∥∇ · (uJ+q
h − uJh)

∥∥∥2

≤ C∆t+
∆t2

4
(
β − 1

2
(1
q

+ q)α
2

λ
)
) J∑

k=q

q∑
m=1

∥∥∥q̃m+k
h

∥∥∥2

+
∆t2

4(cfc − 1
2
(1
q

+ q) 1
GC∗

)

J∑
k=q

q∑
m=1

∥∥∥q̃m+k
Wh

∥∥∥2

C
+

P2
ΩC

2
κ

2G

J∑
k=q

∥∥∥fk+q
h − fkh

∥∥∥2

(7.3.26)

for a generic constant C > 0.

7.3.3 Stability Analysis

• Step 1: Flow equations

Consider (7.3.21) and test with θh = pm+k
h − pm−1+k

h to obtain:

β

∆t

∥∥∥pm+k
h − pm−1+k

h

∥∥∥2

+
α

q∆t

(
∇ · (ukh − u

k−q
h ), pm+k

h − pm−1+k
h

)
+

1

µf
(∇ · zm+k

h , pm+k
h − pm−1+k

h ) = (q̃m+k
h , pm+k

h − pm−1+k
h ). (7.3.27)

Now, consider (7.3.23) for the difference of two consecutive flow finer time steps

(t = tm+k and t = tm−1+k), and test with qh = zm+k
h to derive:

(pm+k
h − pm−1+k

h ,∇ · zm+k
h ) = (K−1(zm+k

h − zm−1+k
h ), zm+k

h )

+ (pf
m+k
h − pfm−1+k

h , [zm+k
h ]C · n+)C. (7.3.28)
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Substitute (7.3.28) into (7.3.27) to obtain:

β

∆t

∥∥∥pm+k
h − pm−1+k

h

∥∥∥2

+
1

µf

[
(K−1(zm+k

h − zm−1+k
h ), zm+k

h )

+ (pf
m+k
h − pfm−1+k

h , [zm+k
h ]C · n+)C

]
≤ − α

q∆t

(
∇ · (ukh − u

k−q
h ), pm+k

h − pm−1+k
h

)
+ (q̃m+k

h , pm+k
h − pm−1+k

h ). (7.3.29)

Consider (7.3.22) and test with θch = pf
m+k
h − pfm−1+k

h to obtain:

cfc
∆t

∥∥∥pfm+k
h − pfm−1+k

h

∥∥∥2

C
+

1

12µf
(∇ · (ζm+k

h ), pf
m+k
h − pfm−1+k

h )C

− 1

µf
([zm+k

h ]C · n+, pf
m+k
h − pfm−1+k

h )C +
1

q∆t
(wkh − w

k−q
h , pf

m+k
h − pfm−1+k

h )C

= (q̃m+k
Wh

, pf
m+k
h − pfm−1+k

h )C. (7.3.30)

Now, consider (7.3.24) for the difference of two consecutive flow finer time steps

(t = tm+k and t = tm−1+k), and test with µf h = ζm+k
h to get:

(K−1
C (ζm+k

h − ζm−1+k
h ), ζm+k

h )C = (pf
m+k
h − pfm−1+k

h ,∇ · (ζm+k
h ))C. (7.3.31)

Now, substitute (7.3.31) into (7.3.30) to get:

cfc
∆t

∥∥∥pfm+k
h − pfm−1+k

h

∥∥∥2

C
+

1

12µf
(K−1

C (ζm+k
h − ζm−1+k

h ), ζm+k
h )C

− 1

µf
([zm+k

h ]C · n+, pf
m+k
h − pfm−1+k

h )C +
1

q∆t
(wkh − w

k−q
h , pf

m+k
h − pfm−1+k

h )C

= (q̃m+k
Wh

, pf
m+k
h − pfm−1+k

h )C. (7.3.32)

Next, add (7.3.29) to (7.3.32) to obtain (note canceling terms from each equation):

β

∆t

∥∥∥pm+k
h − pm−1+k

h

∥∥∥2

+
1

µf
(K−1(zm+k

h − zm−1+k
h ), zm+k

h ) +
cfc
∆t

∥∥∥pfm+k
h − pfm−1+k

h

∥∥∥2

C

+
1

12µf
(K−1

C (ζm+k
h − ζm−1+k

h ), ζm+k
h )C +

1

q∆t
(wkh − w

k−q
h , pf

m+k
h − pfm−1+k

h )C

≤ − α

q∆t

(
∇ · (ukh − u

k−q
h ), pm+k

h − pm−1+k
h

)
+ (q̃m+k

h , pm+k
h − pm−1+k

h )

+ (q̃m+k
Wh

, pf
m+k
h − pfm−1+k

h )C. (7.3.33)
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Finally, multiply (7.3.33) by ∆t and sum across flow finer time steps (1 ≤ m ≤ q) to

get (use a(a− b) = 1
2
(a2 − b2 + (a− b)2) and the telescopic cancellations)

β

q∑
m=1

∥∥∥pm+k
h − pm−1+k

h

∥∥∥2

+
∆t

2µf

[∥∥∥K−1/2zk+q
h

∥∥∥2

−
∥∥∥K−1/2zkh

∥∥∥2

+

q∑
m=1

∥∥∥K−1/2(zm+k
h − zm−1+k

h )
∥∥∥2]

+ cfc

q∑
m=1

∥∥∥pfm+k
h − pfm−1+k

h

∥∥∥2

C

+
∆t

24µf

[∥∥∥K−1/2
C ζk+q

h

∥∥∥2

C
−
∥∥∥K−1/2

C ζkh

∥∥∥2

C
+

q∑
m=1

∥∥∥K−1/2
C (ζm+k

h − ζm−1+k
h )

∥∥∥2

C

]
≤ −1

q

(
wkh − w

k−q
h ,

q∑
m=1

(pf
m+k
h − pfm−1+k

h )
)
C

− α

q

(
∇ · (ukh − u

k−q
h ),

q∑
m=1

(pm+k
h − pm−1+k

h )
)

+ ∆t

q∑
m=1

(q̃m+k
h , pm+k

h − pm−1+k
h ) + ∆t

q∑
m=1

(q̃m+k
Wh

, pf
m+k
h − pfm−1+k

h )C. (7.3.34)

• Step 2: Elasticity equation

Consider equation (7.3.25) for the difference of two consecutive mechanics (coarse)

time steps: t = tk and t = tk+q (recall that k = 0, q, 2q, ..), and test with vh =

(uk+q
h − ukh) to obtain:

2G
∥∥∥ε(uk+q

h − ukh)
∥∥∥2

+ λ
∥∥∥∇ · (uk+q

h − ukh)
∥∥∥2

− α(pk+q
h − pkh,∇ · (u

k+q
h − ukh))

−(pf
k+q
h − pf kh, w

k+q
h − wkh)C =

(
fk+q
h − fkh,u

k+q
h − ukh

)
.

(7.3.35)

• Step 3: Combining flow and elasticity equations

Add (7.3.34) to (7.3.35), bound the term G
∥∥∥ε(uk+q

h − ukh)
∥∥∥2

on the left hand side of
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(7.3.35) from below by (6.4.55) to obtain:

β

q∑
m=1

∥∥∥pm+k
h − pm−1+k

h

∥∥∥2

+
∆t

2µf

[∥∥∥K−1/2zk+q
h

∥∥∥2

−
∥∥∥K−1/2zkh

∥∥∥2

+

q∑
m=1

∥∥∥K−1/2(zm+k
h − zm−1+k

h )
∥∥∥2]

+ cfc

q∑
m=1

∥∥∥pfm+k
h − pfm−1+k

h

∥∥∥2

C

+
∆t

24µf

[∥∥∥K−1/2
C ζk+q

h

∥∥∥2

C
−
∥∥∥K−1/2

C ζkh

∥∥∥2

C
+

q∑
m=1

∥∥∥K−1/2
C (ζm+k

h − ζm−1+k
h )

∥∥∥2

C

]
+G

∥∥∥ε(uk+q
h − ukh)

∥∥∥2

+GC∗
∥∥∥wk+q

h − wkh
∥∥∥2

+ λ
∥∥∥∇ · (uk+q

h − ukh)
∥∥∥2

≤ −1

q

(
wkh − w

k−q
h ,

q∑
m=1

(pf
m+k
h − pfm−1+k

h )
)
C︸ ︷︷ ︸

R6

−α
q

(
∇ · (ukh − u

k−q
h ),

q∑
m=1

(pm+k
h − pm−1+k

h )
)

︸ ︷︷ ︸
R1

+∆t

q∑
m=1

(q̃m+k
h , pm+k

h − pm−1+k
h )︸ ︷︷ ︸

R3

+∆t

q∑
m=1

(q̃m+k
Wh

, pf
m+k
h − pfm−1+k

h )C︸ ︷︷ ︸
R4

+α(pk+q
h − pkh,∇ · (u

k+q
h − ukh))︸ ︷︷ ︸

R2

+(pf
k+q
h − pf kh, w

k+q
h − wkh)C︸ ︷︷ ︸

R5

+
(
fk+q
h − fkh,u

k+q
h − ukh

)
︸ ︷︷ ︸

R7

. (7.3.36)

Denoting by R1, R2, R3, R4, R5, R6 and R7 the terms on the right hand side, together

with Poincaré’s, Korn’s, and Young’s inequalities, and noticing that,

(pk+q
h − pkh) =

q∑
m=1

(pm+k
h − pm−1+k

h ) (7.3.37)

(pf
k+q
h − pf kh) =

q∑
m=1

(pf
m+k
h − pfm−1+k

h ) (7.3.38)
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we estimate:

|R1| ≤
α

q

( q

2ε1

∥∥∥∇ · (ukh − uk−qh )
∥∥∥2

+
ε1
2

q∑
m=1

∥∥∥pm+k
h − pm−1+k

h

∥∥∥2)
,

|R2| = |α(

q∑
m=1

(pm+k
h − pm−1+k

h ),∇ · (uk+q
h − ukh))|

≤ α
( 1

2ε2

q∑
m=1

∥∥∥pm+k
h − pm−1+k

h

∥∥∥2

+
qε2
2

∥∥∥∇ · (uk+q
h − ukh)

∥∥∥2)
,

|R3| ≤ ∆t
( 1

2ε3

q∑
m=1

∥∥∥q̃m+k
h

∥∥∥2

+
ε3
2

q∑
m=1

∥∥∥pm+k
h − pm−1+k

h

∥∥∥2)
,

|R4| ≤ ∆t
( 1

2ε4

q∑
m=1

∥∥∥q̃m+k
Wh

∥∥∥2

C
+
ε4
2

q∑
m=1

∥∥∥pfm+k
h − pfm−1+k

h

∥∥∥2

C

)
,

|R5| = |(
q∑

m=1

(pf
m+k
h − pfm−1+k

h ), wk+q
h − wkh)C|

≤ 1

2ε5

q∑
m=1

∥∥∥pfm+k
h − pfm−1+k

h

∥∥∥2

C
+
qε5
2

∥∥∥wk+q
h − wkh

∥∥∥2

C
,

|R6| ≤
1

q

( q

2ε6

∥∥∥wkh − wk−qh

∥∥∥2

C
+
ε6
2

q∑
m=1

∥∥∥pfm+k
h − pfm−1+k

h

∥∥∥2

C

)
,

|R7| ≤
1

2ε7

∥∥∥fk+q
h − fkh

∥∥∥2

+
ε7
2

∥∥∥uk+q
h − ukh

∥∥∥2

≤ 1

2ε7

∥∥∥fk+q
h − fkh

∥∥∥2

+
ε7P

2
ΩC

2
κ

2
‖ε(uk+q

h − ukh)‖2,

for ε1, ε2, ε3, ε4, ε5, ε6, and ε7 > 0. Choosing ε1 = α
λ
, ε2 = λ

αq
, ε3 = 2

∆t

(
β− 1

2
(1
q

+ q)α
2

λ

)
,

214



ε4 = 2
∆t

(
cf c −

1
2
(1
q

+ q) 1
GC∗

)
, ε5 = GC∗

q
, ε6 = 1

GC∗
, ε7 = G

P2
ΩC

2
κ
, we have:

∆t

2µf

[∥∥∥K−1/2zk+q
h

∥∥∥2

−
∥∥∥K−1/2zkh

∥∥∥2

+

q∑
m=1

∥∥∥K−1/2(zm+k
h − zm−1+k

h )
∥∥∥2]

+
∆t

24µf

[∥∥∥K−1/2
C ζk+q

h

∥∥∥2

C
−
∥∥∥K−1/2

C ζkh

∥∥∥2

C
+

q∑
m=1

∥∥∥K−1/2
C (ζm+k

h − ζm−1+k
h )

∥∥∥2

C

]
+
G

2

∥∥∥ε(uk+q
h − ukh)

∥∥∥2

+
GC∗

2

∥∥∥wk+q
h − wkh

∥∥∥2

+
λ

2

∥∥∥∇ · (uk+q
h − ukh)

∥∥∥2

≤ GC∗

2

∥∥∥wkh − wk−qh

∥∥∥2

C
+
λ

2

∥∥∥∇ · (ukh − uk−qh )
∥∥∥2

+
∆t2

4
(
β − 1

2
(1
q

+ q)α
2

λ
)
) q∑
m=1

∥∥∥q̃m+k
h

∥∥∥2

+
∆t2

4(cfc − 1
2
(1
q

+ q) 1
GC∗

)

q∑
m=1

∥∥∥q̃m+k
Wh

∥∥∥2

C
+

P2
ΩC

2
κ

2G

∥∥∥fk+q
h − fkh

∥∥∥2

. (7.3.39)

We need to impose the following conditions: β− 1
2
(1
q

+q)α
2

λ
> 0 and cfc− 1

2
(1
q

+q) 1
GC∗

,

which are nothing but the conditions listed in Assumption Aq. Summing up equation

(7.3.40) for q ≤ k ≤ J (k is a multiple of q, that is, k = q, 2q, ..), we write:

∆t

2µf

[∥∥∥K−1/2zJ+q
h

∥∥∥2

+
J∑
k=q

q∑
m=1

∥∥∥K−1/2(zm+k
h − zm−1+k

h )
∥∥∥2]

+
∆t

24µf

[∥∥∥K−1/2
C ζJ+q

h

∥∥∥2

C
+

J∑
k=q

q∑
m=1

∥∥∥K−1/2
C (ζm+k

h − ζm−1+k
h )

∥∥∥2

C

]
+
G

2

J∑
k=q

∥∥∥ε(uk+q
h − ukh)

∥∥∥2

+
GC∗

2

∥∥∥wJ+q
h − wJh

∥∥∥2

C
+
λ

2

∥∥∥∇ · (uJ+q
h − uJh)

∥∥∥2

≤ ∆t

2µf
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We recall that uqh, z
q
h, and ζqh have been computed using the fully implicit time

discretization. In a similar way as shown in section 4.3.2, we conclude that
∥∥∥wqh −

w0
h

∥∥∥2

C
≤ Cq∆t,

∥∥∥∇ · (uqh − u0
h)
∥∥∥2

< Cq∆t,
∥∥∥K−1/2zqh

∥∥∥2

< C, and
∥∥∥K−1/2

C ζqh

∥∥∥2

C
< C,

for a generic constant C. This completes the derivation.
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Remark 7.3.1. As in the single rate case in remark 7.2.1, the multirate case can also

be made unconditionally stable by adding stabilisation terms. In the definition 7.3.1, we

modify the flow equations (in both the matrix and the fracture: (7.3.21) and (7.3.22)) by

adding stabilisation terms γα2

λ∆t
(pm+k
h − pm−1+k

h ), and γ
GC∗∆t

(pf
m+k
h − pfm−1+k

h ) respectively

(where γ = 1
2
(1
q

+ q)). The modified equations reads: For 1 ≤ m ≤ q, find pm+k
h ∈ Qh,

pf
m+k
h ∈ Qch , zm+k

h ∈ Zh, and ζm+k
h ∈ ZCh such that,

∀θh ∈ Qh ,
1

∆t
(

1

M
+ cfϕ0 +

γα2

λ
)
(
pm+k
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h , θh

)
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1
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(∇ · zm+k
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= − α

q∆t

(
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)
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h , θh) (7.3.41)

∀θch ∈ Qch ,
cfc + γ

GC∗

∆t

(
pf

m+k
h − pfm−1+k

h , θch

)
C

+
1

12µf
(∇ · (ζm+k

h ), θch)C

− 1

µf
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Wh
, θch)C (7.3.42)

The proof for the unconditional stability follows exactly the same ideas and is skipped here.

Remark 7.3.2. All our obtained results remain valid if the multipoint flux mixed finite

element method (MFMFE) [88,90] is used for flow discretization. Indeed, for such a scheme,

the stability results (7.3.40) translates to
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where (K−1., .)Q is the quadrature rule defined in [90] for the MFMFE corresponding

spaces (in the corresponding domain of integration for both “flow in matrix” variables,

and “flow in fracture” variables). It was shown by Wheeler and Yotov in [90], and then

extended to distorted quadrilaterals and hexahedra in [88], that for any zh ∈ Zh, C1‖zh‖2 ≤

(K−1zh, zh)Q ≤ C2‖zh‖2, for a constant C1, C2 > 0. This immediately leads to a similar

stability result. The same argument holds for single rate case and for the unconditionally

stable schemes.
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Chapter 8

The Global Inexact Newton Method as a Nonlinear

Solver Framework for Flow in Iteratively Coupled

Problems

8.1 Introduction

The motivation behind introducing the global inexact Newton method at this point is

the fact that it is one of the efficient candidate strategies to solve the nonlinear “multi-

phase” flow equations in iteratively coupled flow and geomechanics problems. It is also

applicable for multirate iterative coupling algorithms, described earlier. The global inexact

Newton method combined with the line search backtracking optimization technique can

be efficiently employed in this context to optimize the underlying nonlinear solver for the

different kinds of operators arising in such highly nonlinear iterative coupling settings.

Our ultimate objective in this chapter is to design an efficient iterative coupling algorithm

which will reduce both the number of flow and mechanics linear iterations for the coupled

problem. This will subsequently reduce the CPU run time for the coupled scheme, without

affecting the accuracy of the obtained solution. We have seen in previous chapters that

the multirate scheme reduces the number of mechanics linear iterations efficiently. The

global inexact Newton method with line-search backtracking helps reducing the number of

consumed flow linear iterations. Combined together, we obtain a scheme that fulfills our

ultimate objective.

This research work (including IPARSv2.1 and IPARSv3.1 associated implementations) is done primarily
by Tameem Almani, with helpful discussions, inputs, and suggestions by Drs. Kundan Kumar, Gergina
Pencheva, and Gurpreet Singh, under the supervision of Prof. Mary Wheeler.
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Computational gains as a result of incorporating the line-search backtracking strategy into

the inexact Newton method are twofold: first, it reduces the linear solver running time by

allowing for mild linear solver tolerance values, and second, it allows for larger time steps

while global convergence is maintained by continuously enforcing the sufficient decrease

condition at every nonlinear iteration. Both of these advantages play a critical role in

reducing the overall running time for iteratively coupled flow and geomechanics problems.

In the context of multirate iteratively coupled problems, in which the mechanics problem

takes coarse time time steps, allowing for larger time steps for the flow problem problem

as well combined with mild linear solver tolerances leads to huge savings in the number of

flow and mechanics linear iterations, and in turn, the CPU running time. Incorporating the

line-search backtracking strategy when solving the nonlinear flow problem in the context

of iteratively coupled flow and geomechanics problems is a novel approach which has not

been explored in the past.

8.2 The Global Inexact Newton Method and Linesearch Back-
tracking Algorithm

For the flow part, we are interested in solving the following nonlinear system of equations

F (u) = 0 where F : Rn → Rn

where F (u) represents the nonlinear residual or the right hand side resulting from dis-

cretizing single phase/multiphase flow equations, and the superscript “n” represents the

total number of unknowns. For the two-phase (water and oil) flow problem, the variable

u represents oil pressures and concentrations. By a simple Taylor expansion, the Inexact

Newton method reads:

J(u(k))s(k) = −F (u(k)) + r(k) (8.2.1)

The residual r(k), at the kth Newton iteration, represents the amount by which the solution

s(k)(= uk+1 − uk), given by the underlying linear solver (GMRES with Line SOR as a

preconditioner for SPE10 results - implemented in IPARS v2.1 - and GMRES with AMG

as a preconditioner (Hypre-BoomerAMG) for iteratively coupled problems - implemented
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in IPARS v3.1) fails to satisfy the exact Newton Method [31]:

J(u(k))s(k) = −F (u(k))

8.2.1 Algorithm

The global inexact Newton method algorithm with forcing terms and line search backtrack-

ing is as follows [56]: In the above algorithm, the linear solution is accepted when:

Algorithm 13: Global Inexact Newton with Line-search Backtracking and Forc-
ing Functions

1 Let u(0) be an initial guess and t ∈ (0, 1) be a constant (We use t = 10−4)
2 for k = 1, 2, .. until convergence do /* Nonlinear iteration loop */

3 Choose η(k) ∈ [0, 1), t ∈ (0, 1) here, t = 0.0001

4 Using an iterative linear solver method, find s(k) satisfying

J(u(k))s(k) = −F (u(k)) + r(k) with

∥∥r(k)
∥∥

‖F (u(k))‖
6 η(k)

5 Initialize the linesearch backtracking loop: sk,0 = sk, ηk,0 = ηk,
i = 0

6 while ‖F (u(k) + s(k))‖> (1− t(1− η(k)))‖F (u(k))‖ do /* line-search

backtracking loop */

7 Choose a contraction factor θi ∈ [0.1, 0.5] (We used θ0 = 0.5)
8 Reduce solution increment sk,i+1 = θisk,i

9 Update the forcing factor ηk,i+1 = 1− θi(1− ηk,i)
10 Increment the loop index i = i+ 1

11 Update solution u(k+1) = u(k) + s(k)

‖r(k)‖= ‖F (u(k)) + J(u(k))s(k)‖6 η(k)‖F (u(k))‖ (8.2.2)

where η(k) is referred to as the“forcing term” or “forcing function”. The sufficient decrease

condition requires that the actual reduction in the right hand side (or nonlinear residual)

to be greater than or equal to some fraction (the factor t above) of the predicted reduction

given by the local linear model:

‖F (u(k))‖−‖F (u(k+1))‖≥ t(‖F (u(k))‖−‖F (u(k)) + J(u(k))s(k)‖) (8.2.3)
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Combining (8.2.2) and (8.2.3), we reach at:

‖F (u(k) + s(k))‖≤ (1− t(1− η(k)))‖F (u(k))‖

which is the condition we check in the backtracking inner loop above [31]. By this al-

gorithm, the tolerance of the linear solver is dictated by the residual of the nonlinear

system of equations using forcing functions. This results in tightening the tolerance of the

linear solver in a progressive manner, which in turn, optimizes the computational efforts.

The way the forcing term η(k) is updated in the algorithm above can be justified as follows:

by induction, the base case is trivial, as ‖F (u(k)) + J(u(k))s(k,0)‖≤ η(k,0)‖F (u(k))‖. This

follows directly by step (2.2) in the algorithm above. Now, we write:

‖F (u(k)) + J(u(k))s(k,i+1)‖ = ‖F (u(k)) + J(u(k))θis(k,i)‖

= ‖F (u(k))− θiF (u(k)) + θiF (u(k)) + θiJ(u(k))s(k,i)‖

= ‖(1− θi)F (u(k)) + θi(F (u(k)) + J(u(k))s(k,i))‖

≤ (1− θi)‖F (u(k))‖+θi‖F (u(k)) + J(u(k))s(k,i)‖

≤ (1− θi)‖F (u(k))‖+θiη(i,k)‖F (u(k))‖

≤ [(1− θ(i)) + θ(i)η(i,k)]‖F (u(k))‖

≤
(

1− θi(1− η(k,i))
)
‖F (u(k))‖

≤ η(k,i+1)‖F (u(k))‖ (8.2.4)

which is the update given in line (9) in the algorithm above.

Remark 8.2.1. A quick derivation based on (8.2.4) leads to:

η(k,i+1) = 1−
i∏

j=1

θj(1− η(k,0))

As θi < 1.0 for all i ∈ N, the sequence of forcing terms, as we take more line-search

backtracking iterations, given by {η(k,i)}∞i=0, is a monotonically increasing sequence. This
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is in fact expected and can be justified as follows:

lim
i→∞
‖F (u(k)) + J(u(k))s(k,i+1)‖ = lim

i→∞
‖F (u(k)) +

( i∏
j=1

θj
)
J(u(k))s(k)‖

≤ ‖F (u(k))‖+‖J(u(k))s(k)‖
(

lim
i→∞

i∏
j=1

θj
)

≤ ‖F (u(k))‖ (8.2.5)

as the second term on the right hand side vanishes. Comparing (8.2.4) to (8.2.5), we con-

clude that as we take more line-search backtracking iterations, the inexact Newton condition

will be satisfied with looser forcing terms. If we take infinitely many line-search backtracking

iterations, the inexact Newton condition will be satisfied with a forcing term of the value 1.

It should be noted that the as we take more Newton iterations, the norm of the nonlinear

residual ‖F (u(k))‖ starts approaching zero. This leads to tightening the linear solver tol-

erance in a progressive manner as more Newton iterations are performed. Forcing terms

represents an upper bound of the ratio between the norm of the linear residual and the norm

of the nonlinear residual. As more line-search backtracking steps are performed, this ratio

increases, justifying the increasing behavior of the sequence {η(k,i)}∞i=0.

8.2.2 Choice of Forcing Terms

Several forcing terms (functions) have been widely used in the literature ( [31], [33], [32]).

Those are based on heuristic choices of η and suitable safeguards to provide an efficient

mechanism to avoid over-solving the linearized system of equations without affecting the

convergence of the method. It has been observed that the two choices listed in Table 8.1

work well in practice. The first choice reflects the agreement between F and its linear

model at the previous iteration. With this choice, the linear solver tolerance is larger when

the Newton step is not that close to the solution and smaller when the step is more likely to

lead to a good approximation. More discussion on this choice of η can be found in [31]. The

second choice in Table 8.1 reflects the size of decrease between the function evaluated at the

current iterate and the function at the previous iterate. Suitable choice of the parameters γ

and α and the reasoning behind it are provided in [31] and [33]. In our implementation, i.e.
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Choice 1:
ηk = min

{
ηmax,max

(
η̃k,
(
ηk−1

)2
)}

η̃k =

∣∣ ∥∥F (uk)
∥∥− ∥∥F (uk−1) + J(uk−1)sk−1

∥∥ ∣∣
‖F (uk−1)‖

We used ηmax = 0.9999

Choice 2:
ηk = max

{
η̃k, γ

(
ηk−1

)2
}

η̃k = γ

( ∥∥F (uk)
∥∥

‖F (uk−1)‖

)α

where α and γ are parameters to be chosen.
Typical values are (α = 2, γ = 0.9) and

(α = 1+
√

5
2

, γ = 1)

Table 8.1: Different Choices of Forcing Terms

in IPARS, ηmax = 0.9999, ηinitial = 0.5. It should be noted that the contraction factor θ is to

be obtained by solving a minimization problem of the function g(θ) = ‖F (u(k) + θs(k))‖2
.

An optimal value of θ is the one which minimizes g(θ). Different ways of choosing θ are

discussed in the next section.

8.3 Contraction Factor Minimization Models

We next discuss the selection of the contraction factor θ in line (7) in the Algorithm 13.

It is chosen such that θsk is a decent direction of f(u(k+1)) = 1
2
F (u(k+1))

T
F (u(k+1)) (i.e.

∇f(u(k))T (θsk) = F (u(k))TJ(u(k))(θsk) < 0 ) and satisfies the sufficient decrease condition

(also known as the Armijo condition):

f(u(k) + θsk) ≤ f(u(k)) + t∇f(u(k))T (θsk)

where t is a small fixed constant (in Algorithm 13, t = 0.0001). In practice, the contraction

factor θ can be determined in a number of different ways. The optimal way is to solve a

minimization problem for the function g(θ) = ‖F (u(k) + θs(k))‖2
. Since the additional com-

putational cost associated with finding the exact minimum of g(θ) (more nonlinear residuals

have to be calculated) might not always pay off, we also consider some simplifications. In

our work, the value of θ can be determined by one of the following:

• Choose any fixed value θ ∈ [0.1, 0.5] for a contraction factor, typically θ = 0.5

• Solve approximately the problem of minimizing g(θ)
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The second choice is realized by constructing an approximation of g(θ) using either a two or

three point parabolic model. More details can be found in [31, 49]. We have implemented

three different minimization algorithms for obtaining the optimal value of θ.

• “Algorithm (1)”:

This algorithm builds a second degree interpolating polynomial for interpolating g(θ)

by using the values of g and g’ at θ = 0 [49]. The main steps can be described as

follows:

Algorithm 14: Algorithm (1) - Optimal value of Contraction Factor θ

1 Try initial/current θ, call it θc
2 if θc is rejected then
3 obtain the values of g(0) and g′(0) as follows:

g(0) = ‖F (u(k))‖2

g′(0) = 2(J(u(k))T s(k))
T
F (u(k)) = 2F (u(k))TJ(u(k))s(k)

= 2F (u(k))T (−F (u(k)) + r(k)) = −2F (u(k))TF (u(k)) + 2F (u(k))T r(k)

if g′(0) ≥ 0 then
4 θ = 0.5

5 else
6 Minimize the quadratic polynomial: p(θ) = g(0) + g′(0)θ + cθ2 where,

c = g(θc)−g(0)−g′(0)θc
θc

2

7 θ = −g′(0)
2c
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• “Algorithm (2)”:

This algorithm also builds a three-point parabolic model but avoids the need to

compute g’(0) [49]. The main steps are as follows:

Algorithm 15: Algorithm (2) - Optimal value of Contraction Factor θ

1 Try θ = 0.5, then θ = 0.25.
2 if both values are rejected then
3 Let the last two rejected values of θ be θ1 and θ2. Perform a quadratic

interpolation of (0, g(0)), (θ1, g(θ1)), and (θ2, g(θ2)):
4 Set:

p(θ) = g(0) +
θ

θ2 − θ1

((θ − θ1)(g(θ2)− g(0))

θ2

+
(θ2 − θ)(g(θ1)− g(0))

θ1

)
p′′(θ) =

2

θ2θ1(θ2 − θ1)
(θ1(g(θ2)− g(0))− θ2(g(θ1)− g(0)))

if p′′(θ) > 0 then

5 set θ = − p′(0)
p′′(0)

6 else
7 Set θ = 0.5

• “Algorithm (3)”:

This algorithm is similar to the previous two as it builds a second degree interpolating

polynomial but using a basic Lagrange quadratic model [50]. The main steps are as

follows:

Algorithm 16: Algorithm (3) - Optimal value of Contraction Factor θ

1 Build a basic Lagrange quadratic polynomial model using the last three rejected
values of θ. (Initially, we choose θ0 = 1, θ1 = 0.5, and θ2 = 0.25).

2 if The second derivative is positive then
3 The model has a local minimum, and we set θ to be the minimizer of the

model.
4 else
5 Set θ = 0.5
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8.4 Implicit Two-phase Model Results

In this section, we illustrate the advantages of the global inexact Newton method with the

linesearch backtracking for two-phase fully implicit flow model (in IPARSv2.1). Based on

our obtained results and findings, we will extend this work to multirate iteratively coupled

problems in the next section. The efficiencies of three different nonlinear solver strategies

will be compared:

• Method 1: The global inexact Newton method with forcing function, globalized

by linesearch backtracking. It corresponds to the curves labeled “Forcing and Back-

tracking” in the results.

• Method 2: Inexact Newton method with forcing function but without linesearch

backtracking. In this method we avoid the cost of backtracking but might find a local

instead of global minimum of F (uk). In order to provide more “global” convergence

properties, we dampen the forcing function by a constant user-defined factor df ∈
(0, 1]. That is, in line (4) in Algorithm 13 we are finding sk such that:

J(uk)sk = −F (uk) + r(k) with

∥∥r(k))
∥∥

‖F (uk)‖
6 df × ηk

The corresponding curves are labeled “Forcing and No Backtracking”.

• Method 3: Traditional “Exact” Newton method: we emulate it by using forcing

with a fixed very small value of the forcing term ηk for all iterations. For both our

SPE10 tests and iteratively coupled problems, we use ηk = 1.E-6 for all nonlinear flow

iterations. This approach has the drawback of keeping the linear solver tolerance too

tight and and thus, oversolving the linear system.

8.4.1 SPE10 First Layer Results

This test case models a two phase flow (oil and water) and uses the highly heterogeneous

permeability field from the SPE10 benchmark problem [27]. The permeability varies over

15 orders of magnitude; the top 50 layers are fluvial and the bottom 35 layers are highly

channelized. The original 3D domain has size 170 × 1200 × 2200 ft at a depth of 12000
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ft, with a uniform discretization into 85 × 60 × 220 = 1.112 million elements. In this

case we used only the top layer, with 60 × 220 = 13, 200 elements. We used a constant

porosity of 0.3. Other data includes fluid viscocities µw = 0.3, µo = 3.0 cP and fluid

compressibilities cw = 3.1E-6, co = 4.2E-5 psi−1. The initial conditions are taken to be

oil pressure po(0) = 6000 psi and water saturation Sw = 0.201. There is a five-spot well

pattern for well configuration. All wells are vertical and fully perforated. Water is injected

in the center of the reservoir with BHP of 10000 psi and each of the four oil producers in

the corners operate at BHP of 4000 psi. All wells start operating at the beginning of the

simulation and the total simulation time is 2000 days.

The solver-related parameters we used are as follows:

• Nonlinear solver tolerance = 1.E-4 with maximum number of Newton iterations =

200

• Linear solver tolerance (initial for Methods 2 and 3 that use forcing function) = 1.E-6

with maximum number of linear iterations = 1000

• Forcing choice 1:

η̃k =

∣∣ ∥∥F (u(k))
∥∥− ∥∥F (u(k−1)) + J(u(k−1))sk−1

∥∥ ∣∣
‖F (u(k−1))‖

ηk = min
{
ηmax,max

(
η̃k,
(
ηk−1

)2
)}

• Constant contraction factor θ = 0.5: the simplest, sk is shrunk in half on each back-

tracking iteration

With respect to time step sizes, we consider two cases:

• Case (1): Gradual increase in time steps (in days): ∆t = 0.0005 for t ∈ [0, 0.001],

∆t = 0.001 for t ∈ [0.001, 0.01], ∆t = 0.01 for t ∈ [0.01, 0.1], ∆t = 0.1 for t ∈ [0.1, 1.0],

∆t = 0.5 for t ∈ [1.0, 5.0], and ∆t = 1.0 for t ∈ [5.0, 500].

• Case (2): Aggressive time stepping, i.e. taking ∆t as in the following sequence:

∆t = (1.0, 2.0, 4.0, 8.0, .., ) with a maximum value of 300 days.
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For Case (1), the CPU running times versus the number of simulation days are shown in

figure 8.1a. Figure 8.1b shows the accumulated number of nonlinear iterations versus the

number of simulated days for the SPE10 first layer model. The global inexact Newton

method (Method 1) requires more nonlinear iterations compared to the inexact Newton

method with forcing functions (Method 2), as well as the inexact Newton method without

the use of forcing function (Method 3). Figure 8.1c shows the accumulated number of

linear iterations versus the number of simulated days for the SPE10 first layer model. It

is clear from the graph that the global inexact Newton method (Method 1) requires fewer

linear iterations compared to the case of the inexact Newton method (not globalized by

line-search backtracking) when the forcing function is damped by a factor of 0.1 (Method

2, df = 0.1).

For Case (2), CPU runtimes vs. simulation time are shown in Figures 8.2a and 8.2b.

It can be seen that all cases except the global inexact Newton method (Method 1) and

the inexact Newton method with damped forcing (Method 2, df = 0.1 or 0.2) failed to

provide physical solution past 30 days (we got out-of-bounds saturations). After 60 days,

(Method 2, df = 0.2) also failed. From the two methods left, (Method 1) globalized by

linesearch backtracking provides 10% reduction in computational time when compared to

(Method 2, df = 0.1).

Inexact Newton method with heuristic damping of the forcing term is inadequate in assuring

global Newton convergence unless severe damping is performed. This provides a clear hint

that for iteratively coupled problems, this strategy (Method 2) should be avoided.

8.4.2 SPE10 Full Model Results

In this case, we run the full SPE10 model case described in the previous example, with

the same parameters, for the two-phase fully implicit problem combined with line search

backtracking in IPARS. The run was carried out in parallel (on Bevo3, on 16 processors).

The model size now is 1,122,000 grid elements - 3D (85 × 60 × 220), and total simulation

time is 1000 days. The same solver parameters were used as in the previous case.

We followed a graduate time stepping approach as follows (unit is days):
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(a) Running Time vs Simulation Days, gradual increase in time steps, with a maximum value
of 1.0 day. The global inexact Newton method (Method 1) and the inexact Newton method
(Method 2, df = 0.5) have similar running times. However, in (Method 1), we are confident
that the global solution is achieved, as the sufficient decrease condition is maintained in every
Newton iteration.

(b) Accumulated Number of Nonlinear Iterations vs
Simulation Days (500 simulation days)

(c) Accumulated Number of Linear Iterations vs Sim-
-ulation Days (500 simulation days)

Figure 8.1: SPE10 First Layer Results
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(a) Running time vs simulation days, aggressive time steps: ∆t = (1.0, 2.0, 4.0, 8.0, .., ) with
a maximum value of 300 days (for the first 60 days). Only the global inexact Newton method
(Method 1) and the inexact Newton method (Method 2, df = 0.1 and 0.2) made the run
beyond 30 simulation days.

(b) Running time vs simulation days, aggressive time steps: ∆t = (1.0, 2.0, 4.0, 8.0, .., ) with
a maximum value of 300 days (for 2000 days). Time step cutting (reduction by a factor of
0.5) is performed when convergence is not achieved. Only the global inexact Newton method
(Method 1) and the inexact Newton Method (Method 2, df = 0.1) were able to proceed.
(Method 1) results in 10% reduction in computational time.

Figure 8.2: SPE10 First Layer Results (serial run): Running Times vs Simulation Days
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• for t ∈ [0, 0.001],∆t = 0.00007 with a multiplier of 1.25, ∆t ∈ [0.00007, 0.001]

• for t ∈ [0.001, 0.1],∆t = 0.001 with a multiplier of 1.01, ∆t ∈ [0.001, 0.1]

• for t ∈ [0.1, 1.0],∆t = 0.01 with a multiplier of 1.01, ∆t ∈ [0.01, 0.1]

• for t ∈ [1.0, 5.0],∆t = 0.1 with a multiplier of 1.01, ∆t ∈ [0.1, 0.5]

• for t ∈ [5.0, 10.0],∆t = 0.5 with a multiplier of 1.01, ∆t ∈ [0.5, 1.0]

• for t ∈ [10.0, 1000.0],∆t = 1.0 with a multiplier of 1.01, ∆t ∈ [1.0, 5.0]

The CPU running times and numbers of nonlinear and linear iterations (all versus the

number of simulation days) are shown in figures 8.3a, 8.4a, and 8.4b respectively. It is clear

by figure 8.3a that for the full SPE10 model, running in parallel, the global inexact Newton

method, globalized by line search backtracking (Method 1), results in 58% of computational

time savings compared to the case when the forcing function is damped by a factor of 0.5

(Method 2, df = 0.5). In addition, (Method 1) results in 75% of computational time savings

compared to the case when the forcing function is damped by a factor of 0.1 (Method 2, df =

0.1). Moreover, we observe that even though the number of nonlinear iterations for (Method

1) increases (as shown in figure 8.4a), the number of linear iterations is substantially smaller

(as shown in figure 8.4b) and the overall result is a significant reduction in CPU runtime.

This phenomena (i.e. the increase in the number of nonlinear iterations for (Method 1)) is

due to incorporating the linesearch backtracking algorithm into the inexact Newton method

nonlinear solver.

We note that for the full SPE10 model, (Method 3) resulted in the longest running time.

The blue curve in figure 8.5 shows the CPU run time for (Method 3) for the full SPE10

model. The huge increase in CPU runtime is a consequence of oversolving the linear system.

The simulation was stopped simulating 100 days.

The global inexact Newton method (globalized by line search backtracking) will be used to

solve the nonlinear flow problem in the context of iteratively coupled flow and geomechanics

single rate and multirate problems.
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(a) Running time vs simulation days for the full SPE10 model (1000 simulation days). The global inexact
Newton method (Method 1) results in 58% of computational time savings compared to the case of the
inexact Newton method (Method 2, df = 0.5). In addition, (Method 1) results in 75% of computational
time savings compared to the case of (Method 2, df = 0.1).

Figure 8.3: Full SPE10 Model Runtime Results (parallel run on Bevo3 cluster, 16 proces-
sors).
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(a) Accumulated number of nonlinear iterations vs simulation days for the full SPE10 model
(1000 simulation days). The global inexact Newton method (Method 1) results in a larger
number of nonlinear iterations (increased by 32%) compared to the inexact Newton method
(Method 2, df = 0.5 and 0.1).

(b) Accumulated number of linear iterations vs simulation says for the full SPE10 model
(1000 simulation days). The global inexact Newton method (Method 1) results in 68%
reduction in the number of linear iterations compared to the case of the inexact Newton
method (Method 2, df = 0.5). In addition, it results in 82% “linear iterations” reduction
compared to the case of (Method 2, df = 0.1).

Figure 8.4: Full SPE10 Model Linear and Nonlinear Iterations Results (parallel run on
Bevo3 cluster, on 16 processors).
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Figure 8.5: Running times vs simulation days for 100 days of simulation, (full SPE10 model,
parallel run). The blue curve shows the run time for (Method 3). This result shows that
for large and challenging reservoir models, as in the case of the full SPE10 model, the
use of a small fixed linear solver tolerance value, as in (Method 3), can increase the run
time dramatically. In contrast, (Method 2) reduces the run time but does not ensure global
convergence. The global inexact Newton method, globalized by line search backtracking i.e.
(Method 1), reduces the CPU run time efficiently, while ensuring global convergence. For
multirate iteratively coupled problems, ensuring global convergence for the flow problem
is of high importance as the accuracy of the obtained solution directly affects the number
of flow-mechanics coupling iterations and hence the efficiency of the scheme. Therefore,
we will be comparing the efficiency of (Method 1) versus (Method 3) for coupled flow and
geomechanics problems in the next section.
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8.4.3 Comparison Between Contraction Factor Optimization Algorithms

Figure (8.6) shows a comparison of the three different algorithms used to obtain the op-

timal value of the contraction factor “θ” used in the line search backtracking algorithm

when applied to the SPE10 first layer model. From such preliminary results, “Algorithm

(2)” is the most computationally efficient algorithm among the three. However, the effi-

ciency of the minimization model implemented in “Algorithm (2)” is very comparable to

the heuristic case in which the solution vector is shrinked by half in every backtracking

iteration (contraction factor value of “θ = 0.5” across all backtracking iterations). There-

fore, for simplicity and ease of implementation, we will follow this approach when solving

the nonlinear flow problem in iteratively coupled problems. Form our obtained results, we

can draw the following conclusions:

• The line search backtracking globalization approach combined with forcing functions

(Method 1) helps taking aggressive time steps while ensuring convergence. This

results in 10% reduction of the overall CPU running time compared to the inexact

Newton method (Method 2, df = 0.1) for the SPE10 first layer example.

• The line search backtracking globalization approach combined with forcing functions

(Method 1) helps “loosening” the linear solver tolerance, while convergence is always

ensured by continuously checking the sufficient decrease condition. For the full SPE10

model running in parallel, This approach results in 58% of computational time savings

compared to the case when the forcing function is damped by a factor of 0.5 (Method

2, df = 0.5). In addition, it results in 75% of computational time savings when the

forcing function is damped by a factor of 0.1 (Method 2, df = 0.1).

• The CPU computational time savings we obtained tend to increase as we increase the

period of the simulation (number of simulated days). For instance, compare compu-

tational time savings of 75% (for the full SPE10 model simulating 1000 days) to 10%

(for the first layer SPE10 model simulating 500 days). Running long simulations is

typical in reservoir simulation, which makes this strategy (Method 1) very attractive.

In the case of the full SPE10 model, this results in huge time savings (a factor of 58%

compared to the case of (Method 2, df = 0.5).
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Figure 8.6: Comparison of different optimization algorithms for obtaining the value of θ
for the SPE10 first layer model. We conclude that the efficiency of choosing θ = 0.5 for all
line-search backtracking iterations is comparable to the efficiency of the optimal algorithm
(Algorithm (2): the three point parabolic model). Due to its simplicity and optimality, we
will follow this approach (θ = 0.5 for all line-search backtracking iterations) when solving
the flow problem in multirate iteratively coupled problems.

236



• The results we obtained vary based on several input parameters (maximum number

of Newton iterations, maximum number of linear iterations, and the sequence of

timesteps specified)

• Overall, the line search backtracking computational time savings obtained by either

taking aggressive time stepping or by loosening the linear solver tolerance overshadow

the additional overhead of computing the right hand side at every Newton nonlinear

iteration (to check the sufficient decrease condition).

• The inexact Newton method with a heuristic damping of the forcing term without

incorporating the line-search backtracking algorithm (Method 2) does not necessarily

ensure global convergence of the Newton iteration unless severe damping of the forcing

term is enforced. For iteratively coupled problems (to be considered in the next

section), we will abandon this strategy and compare the results of (Method 1) to

(Method 3) when solving the nonlinear flow problem.

• Based on the comparison shown in figure 8.6, we will be using a contraction factor

of the value of “θ = 0.5” across all backtracking iterations in iteratively coupled

problems (to be considered in the next section).

8.5 Iteratively Coupled Problems (Implicit Two-phase Flow Model
Coupled with Geomechanics) Results

In this section, we provide an implementation of the global inexact Newton method as a

nonlinear solver framework for the flow problem in iteratively coupled flow and mechan-

ics problems. The global inexact Newton method, globalized by line-search backtracking,

helps reducing the number of flow linear iterations, while ensuring that the sufficient de-

crease condition is satisfied at every Newton iteration. In contrast, the multirate coupling

algorithm helps reducing the number of mechanics linear iterations, as illustrated earlier.

Combining the two approaches (the multirate scheme for the coupled problem along with

the global Inexact Newton method for flow) results in reducing both the number of flow

and mechanics linear iteration, while maintaining an acceptable level of accuracy. The

combined scheme is illustrated in figure 8.7.
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tflow(tf ), tmech(tm) = 0
(initial time = 0)

k = 0

n = 0 (iterative
coupling index)

m = 1 (flow iteration index)

Fluid Flow:
tflow = tflow + ∆t

Compute pore pressure, pn+1,k+m

Flow
Nonlinear

Solver:
Global
Inexact
Newton

m = (Max flow
iterations: q)?

m = m + 1

Mechanics (Biot Model):
tmech = tmech + q∆t

Compute displacement, un+1,k+q

Update pore volume

Converged? k = k + q
tf = tf − q∆t
tm = tm − q∆t
n = n + 1

No

Yes

No Yes

Figure 8.7: Multirate Iterative Flow and Mechanics Coupling Algorithm with The Global
Inexact Newton Method as a Nonlinear Solver Framework.
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8.5.1 Test Case: Frio Field Model

The scheme described in figure 8.7 is implemented in IPARS for the two-phase implicit

MFMFE flow model coupled with linear elasticity. We consider the Frio field model (studied

and described in Chapters 2 and 4). The model input specifications are shown in Table 8.2.

The simulation is run for five different cases, as follows:

• Case (1): Single Rate Iterative Coupling (q = 1) with “Exact Newton” flow solve

(Method 3: no forcing and no backtracking, η(k) = 1.E − 6, for all backtracking

iterations, indexed by “k”).

• Case (2): Multirate Iterative Coupling (q = 2) with “Global Inexact Newton” flow

solve (Method 1: forcing and backtracking).

• Case (3): Multirate Iterative Coupling (q = 4) with “Global Inexact Newton” flow

solve (Method 1: forcing and backtracking).

• Case (4): Multirate Iterative Coupling (q = 8) with “Global Inexact Newton” flow

solve (Method 1: forcing and backtracking).

• Case (5): Multirate Iterative Coupling (q = 16) with “Global Inexact Newton” flow

solve (Method 1: forcing and backtracking).

We expect the first case to result in the largest number of both flow and mechanics linear

iterations. This overhead should lead to an increase in the CPU time as well.

8.5.2 Results

Figures 8.8 and 8.9 show the water pressure and saturation profiles after 48.0 days of

simulation for the five different cases. In addition, figures 8.10, 8.11, and 8.12 show the

displacements in the x, y, and z directions after 48.0 days of simulation. The five cases

result in almost identical solutions, with minor mismatches near wells for higher values of

q (q > 4) - nearly invisible -. This is primarily due to the multirate nature of the scheme

(as expected), and is not a result of the global Inexact Newton method. In general, the

five different cases result in similar pressure and saturation profiles.
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Wells: 3 production wells, 6 injection well
Injection well (1): Pressure specified, 4000.0 psi
Injection well (2): Pressure specified, 3300.0 psi
Injection well (3): Pressure specified, 4000.0 psi
Injection well (4): Pressure specified, 4400.0 psi
Injection well (5): Pressure specified, 3700.0 psi
Injection well (6): Pressure specified, 4400.0 psi

Production well (1): Pressure specified, 2000.0 psi
Production well (2): Pressure specified, 2000.0 psi
Production well (3): Pressure specified, 2000.0 psi

Total Simulation time: 56.0 days
Fine flow time step: ∆t = 0.01 for t ∈ [0.0, 8.0] days

∆t = 0.02 for t ∈ [8.0, 16.0] days
∆t = 0.05 for t ∈ [16.0, 24.0] days
∆t = 0.1 for t ∈ [24.0, 32.0] days
∆t = 0.25 for t ∈ [32.0, 40.0] days
∆t = 0.50 for t ∈ [40.0, 56.0] days

Number of grid elements: 891 grids (33 × 9 × 3)
Absolute Permeabilities: kxx, kyy, kzz highly varying, range: (5.27E-10, 3.10E+3) md

Initial porosity, ϕ0: 0.2
Water viscosity, µw: 1.0 cp

Oil viscosity, µo: 2.0 cp
Water compressibility cw: 1.E-6 (1/psi)

Oil compressibility co: 1.E-4 (1/psi)
Rock compressibility: 1.E-6 (1/psi)

Rock density: 165.44 lbm/ft
3

Initial water density, ρw: 62.34 lbm/ft
3

Initial oil density, ρo: 56.0 lbm/ft
3

Initial oil pressure, po: 400.0 psi
Initial water saturation, Sw: 0.2

Young’s Modulus (E): 5.E5 psi
Possion Ratio, ν: 0.4

Biot’s constant, α: 1.0
Biot Modulus, M : 1.0E8 psi

λ = Eν
(1+ν)(1−2ν) : 714286.0 psi

Flow boundary bonditions: no flow boundary condition on all 6 boundaries
Mechanics B.C.:

“X+” boundary (EBCXX1()): σxx = σ · nx = 12, 000psi, (overburden pressure)
“X-” - boundary (EBCXXN1()): u = 0, zero displacement
“Y+” - boundary (EBCYY1()): u = 0, zero displacement
“Y-” - boundary (EBCYYN1()): σyy = σ · ny = 6000psi
“Z+” - boundary (EBCZZ1()): u = 0, zero displacement
“Z-” - boundary (EBCZZN1()): σzz = σ · nz = 1000psi

Table 8.2: Input Parameters for the Frio Field Model
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Figure 8.13a shows the accumulated CPU runtime for the whole simulation run in the five

different cases. We see a monotonically decreasing trend in CPU runtime up to q = 8, which

corresponds to Case (4). However, the CPU runtime starts increasing again for q = 16,

which corresponds to Case (5). This is due to the fact that for larger values of q, the

algorithm requires more iterative coupling iterations to converge for each coarse mechanics

time step, as shown in figure 8.13d. More iterative coupling iterations result in more flow

and mechanics linear iterations which, in turn, increase the overall CPU runtime, as shown

in figures 8.13b and 8.13c. Table 8.3 shows the computational time savings for Case (2),

(3), (4), and (5) relative to Case (1).

From the above results, we can draw the following conclusions:

• The global Inexact Newton method (Method 1: forcing with backtracking) helps

reducing the number of consumed flow linear iterations in the multirate iteratively

coupled scheme compared to the single rate scheme with the exact Newton flow solve

(Method 3). In general, subject to the value of the coupling iteration tolerance, the

time step size, and other input parameters, the multirate iteratively coupled scheme

might result in an increase in the number of flow linear iterations (if we do not

incorporate the global inexact Newton method for the nonlinear flow solve, as in the

case of figure 2.8c in Chapter 2). The obtained results suggest that this problem (i.e.

the increase in the number of flow linear iterations in the multirate scheme) can be

alleviated if the global inexact Newton method is used for the flow solve.

• Larger values of q result in more iterative flow-mechanics coupling iterations. This

can increase the number flow and mechanics linear iterations, and hence spoil the

computational time savings obtained by combining the multirate coupling algorithm

with the global inexact Newton method for the flow solve (the case of q = 16).

• We conclude that for multirate iteratively coupled problems, (Method 1) is highly

recommended for solving the nonlinear flow problem. Provided that the value of q

is not very large, the combined scheme (multirate coupling with the global inexact
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Figure 8.8: Water Pressure Profiles (psi) of the Frio Field Model after 48.0 Simulation Days
for the Five Different Cases.

Newton method for the flow solve) efficiently reduce the number of flow and mechan-

ics linear iterations, without affecting the accuracy of the solution. This leads to

substantial CPU time savings.
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Figure 8.9: Water Saturation Profiles of the Frio Field Model after 48.0 Simulation Days
for the Five Different Cases.

Computational Savings Relative to Case (1) Case (2) Case (3) Case (4) Case (5)

CPU run time 11.76% 21.59% 24.97% 10.70%

Number of flow linear iterations 37.96% 26.50% 21.24% 0.49%

Number of mechanics linear iterations 49.93% 74.12% 86.47% 91.71%

Table 8.3: Computational savings of “Case (2)”, “Case (3)”, “Case (4)”, and “Case (5)”
relative to “Case (1)” for the whole simulation run. We see that for q = 16, which corre-
sponds to “Case (5)”, the efficiency of the scheme is severely affected by the increase in
the number of flow linear iterations, as a result of the increased number of flow-mechanics
iterative coupling iterations shown in figure 8.13d.
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Figure 8.10: Displacement in (x) Direction (ft) for the Frio Field Model after 48.0 Simula-
tion Days for the Five Different Cases.
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Figure 8.11: Displacement in (y) Direction (ft) for the Frio Field Model after 48.0 Simula-
tion Days for the Five Different Cases.
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Figure 8.12: Displacement in (z) Direction (ft) for the Frio Field Model after 48.0 Simula-
tion Days for the Five Different Cases.
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Figure 8.13: Frio Field Model (Multirate/Global Inexact Newton) Numerical Results
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Chapter 9

Conclusions

In this work, we considered different coupling schemes for coupling flow with linear elasticity

(the quasi-static Biot Model). We rigorously formulated single rate and multirate iterative

and explicit coupling schemes in both poro-elastic and fractured poro-elastic media. In

the single rate case, the flow and mechanics problems share the same time step, while in

the multirate case, the flow takes multiple finer time steps within each coarser mechanics

time step. We thoroughly investigated the contracting behavior for all considered iterative

coupling schemes, both theoretically and numerically (in IPARS). Moreover, we analyzed

the stability of the proposed explicit coupling schemes, and showed that they are only con-

ditionally stable, under certain conditions on the flow and mechanics parameters. Stability

conditions have been derived for both poro-elastic and fractured poro-elastic media. The

condition for the poro-elastic case was validated numerically against field-scale problems.

This gives us a practical hint that for explicit coupling schemes to be numerically stable,

sufficient level of compressibility should be maintained for both the fluid and the solid

(i.e. the poro-elastic media). Unconditionally stable explicit coupling schemes have been

proposed as well, by introducing theoretically derived stabilisation terms.

For both iterative and explicit coupling schemes, our numerical results highlight the effi-

ciency of the multirate scheme in reducing the number of mechanics linear iterations, and

subsequently, the CPU run time, while maintaining an acceptable level of accuracy com-

pared to the results obtained by the single rate scheme. Moreover, subject to the value

of the damping factor obtained in remark 2.3.3, by comparing our theoretical contraction

estimates against numerical computations, we conclude that the theoretical estimates can

predict the contracting behavior, and subsequently, the rate of convergence of the corre-

sponding iterative scheme with high accuracy.
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Our main contributions in this dissertation can be summarized as follows:

9.1 Contributions

• For multirate iterative coupling schemes, the main contributions are as follows:

– For the quasi-static Biot model in poroelastic media, we established the contract-

ing behavior leading to geometric speed of convergence for two iterative coupling

schemes (the fixed-stress split and the undrained-split coupling schemes). Ba-

nach fixed-point contraction results were derived in both cases. In addition,

both schemes were extended to the multirate settings, and Banach fixed-point

contraction results were rigorously established for the both multirate schemes

for the first time (to the best of our knowledge). (Area A)

– For both schemes (fixed stress split and undrained split), the derived mathe-

matical proofs provide the optimal values of the coefficients in the regularization

terms used in both schemes. (Area A)

– We proposed an alternative modified multirate scheme for the fixed-stress split

coupling algorithm. Banach contraction was established for this scheme as well,

and the quantity of contraction is independent of the number of flow fine time

steps taken within one coarse mechanics time step (q). (Areas A & B)

– For fractured poroelastic media, Banach contraction results were established for

the fixed-stress split multirate iterative coupling scheme (extending the work

of [43]). A modified multirate coupling scheme was proposed as well (in which

the combined quantity of contraction is independent of q). Our proofs provide

the optimal values of the coefficients of the regularization terms considered in

this case as well. (Area A)

– We derived a priori error estimates for the single rate fixed-stress split iterative

coupling scheme. To the best of our knowledge, this is the first rigorous deriva-

tion of a priori error estimates for the fixed-stress split iterative coupling scheme

for the quasi-static Biot model. The novelty of the approach used in deriving
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our error estimates lies in its ability to utilize previously established results for

the simultaneously coupled scheme. A similar result can be obtained for the

undrained split coupling scheme, and is left for future work. (Area A)

– We established the “localized” contracting behavior (leading to geometric speed

of convergence) for the fixed-stress split algorithm in (spatially and temporally)

heterogeneous poro-elastic media. An upper bound on q was derived theoreti-

cally in this case. (Area A)

– We implemented and validated the efficiency of the proposed multirate iterative

coupling scheme - Algorithm 2 - for different flow models in IPARS. This includes

the single-phase MFMFE flow model, and the two-phase MFMFE (both IMPES

and implicit schemes) flow models coupled with linear elasticity. The efficiency of

the scheme was validated against two field-scale problems (the Frio field model,

and the Brugge field model). (Areas B & C)

– We compared the values of the contraction estimates derived theoretically against

numerically computed values for field-scale problems. This confirmed that theo-

retical contraction estimates provide an upper bound for numerically computed

values. Moreover, the effect of the Lame parameters on the contracting behavior

of the scheme was investigated both theoretically and numerically. As predicted

in theory, for a fixed value of the poisson’s ratio, theoretical contractions coeffi-

cients are sharper for larger Young’s modulus values. (Area C)

– It was observed by numerical simulations that the multirate scheme can (some-

times) result in an increase in the number of flow-mechanics iterative coupling

iterations. This leads to an increase in the number of flow linear iterations.

The global Inexact Newton (combined with forcing functions and line-search

backtracking) was incorporated in the multirate iteratively coupled algorithm

to alleviate this effect. The combined algorithm (multirate coupling with the

global Inexact Newton method for the flow solve) resulted in a robust, and effi-

cient scheme (validated against the Frio field model). Incorporating the global

inexact Newton method as a nonlinear solver framework for the flow problem in
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multirate iteratively coupled problems is a novel idea that has not been explored

in the past. (Area B)

• For multirate explicit coupling schemes, the main contributions are as follows:

– For both poro-elastic and fractured poro-elastic media, we performed rigorous

stability analysis of the single rate and multirate explicit coupling schemes. We

also derived the conditions on reservoir and fracture parameters under which

the corresponding explicit coupling scheme is stable. (Areas A & C)

– For the explicit coupling scheme in poro-elastic media, the derived stability

criterion was validated numerically against the Frio field model (in IPARS).

(Area C)

– The efficiency and computational time savings of multirate explicit coupling

schemes versus multirate iterative coupling schemes were investigated numeri-

cally for a realistic field-scale problem (the Brugge field model). Our compu-

tational results suggest that if the considered parameters satisfy the derived

stability conditions, explicit coupling schemes reduce the CPU run time effi-

ciently compared to their counterpart iterative coupling schemes. (Areas B &

C)

9.2 Future Work

This work can be extended in different directions. The list below provides possible exten-

sions which will be considered for future work:

• Validating (numerically) our derived stability conditions for explicit coupling schemes

in fractured-poroelastic media.

• Comparing the efficiency of the standard multirate iterative coupling scheme to the

efficiency of the modified multirate iterative coupling scheme for both poroelastic and

fractured poroelastic media.
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• Deriving Banach contraction estimates for multirate iterative coupling schemes in-

volving finer flow solves with varying time step sizes (i.e. ∆t is not constant within

one particular coarse mechanics solve).

• Deriving error estimates (a priori and a posteriori error estimates) for multirate iter-

ative coupling schemes in both poro-elastic and fractured poroelastic reservoirs.

• Deriving error estimates (a priori and a posteriori error estimates) for multirate ex-

plicit coupling schemes in both poroelastic and fractured poroelastic reservoirs.

• Investigating nonlinear extensions of the considered algorithms, their analyses, and

computational performance. This includes nonlinear flow models coupled with non-

linear mechanics models (e.g plasticity, thermoporoelasticity, thermoporoplasticity ..

etc).
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Appendix A

The Multipoint Flux Mixed Finite Element Method

We provide a brief review of the finite element spaces used in the MFMFE scheme. It should

be pointed out that the MFMFE scheme has been developed by Wheeler and Yotov [90]

in 2006 for simplicial and quadrilateral grids. It was then extended to general hexahedral

grids [47], and distorted quadrilaterals and hexahedra [87] in 2010, 2012 respectively.

We assume our elements to be quadrilatrs in 2D and hexahedra in 3D. We recall that Th

represents the finite element partition of Ω̄, which is assumed to be shape-regular [39]. On

a physical element E, the pressure and flux finite element spaces are defined through the

transformations:

Scalar Transformation: w ↔ ŵ : w = ŵ ◦ F−1
E (A.0.1)

Piola Transformation: z ↔ ẑ : z =
1

JE
DFE ẑ ◦ F−1

E (A.0.2)

in which FE is a mapping from the reference element Ê to the physical element E. The

Jacobian of the mapping FE is given by DFE, and JE = |detDFE|. We note that the Piola

transformation preserves the divergence and the normal components of the flux vectors

on the faces (3D) and edges (2D) [39], which is need for H(div; Ω)-conforming flux space.

Thus, we have:(
∇ · z, w

)
E

=
(
∇̂ · ẑ, ŵ

)
Ê

and 〈z · n, w〉E = 〈ẑ · n̂, ŵ〉Ê

A.1 MFMFE Spaces

We recall that the infinite dimensional mixed finite element spaces for pressure and flux

are given by:

Q = L2(Ω), and Z = {q ∈ H(div; Ω)d ; q · n = 0 on ∂Ω} (A.1.3)
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respectively. The finite dimensional discretized MFMFE spaces are given by:

Qh = {w ∈ Q ;w|E↔ ŵ, ŵ ∈ Q̂(Ê),∀E ∈ Th}

Zh = {z ∈ Z ; z|E↔ ẑ, ẑ ∈ Ẑ(Ê),∀E ∈ Th}

where Ẑ(Ê) and Q̂(Ê) are finite element spaces on the reference element Ê. In what follows,

we recall that Pk denotes the space of polynomials of degree k in two or three variables.

Consider a hexahedral element in the reference domain (i.e. unit cube Ê). Its vertices are

given by r̂1 = (0, 0, 0)T , r̂2 = (1, 0, 0)T , r̂3 = (1, 1, 0)T , r̂4 = (0, 1, 0)T , r̂5 = (0, 0, 1)T ,

r̂6 = (1, 0, 1)T , r̂7 = (1, 1, 1)T , r̂8 = (0, 1, 1)T . The map FE is defined as follows:

FE =r1(1− x̂)(1− ŷ)(1− ẑ) + r2x̂(1− ŷ)(1− ẑ) + r3x̂ŷ(1− ẑ) + r4(1− x̂)ŷ(1− ẑ)

+ r5(1− x̂)(1− ŷ)ẑ + r6x̂(1− ŷ)ẑ + r7x̂ŷẑ + r8(1− x̂)ŷẑ

The space Ẑ(Ê) is the enhanced BDDF1 space, given as follows:

Ẑ(Ê) =BDDF 1(Ê) + s2curl(0, 0, x̂
2ẑ)T + s3curl(0, 0, x̂

2ŷẑ)T + t2curl(x̂ŷ
2, 0, 0)T

+ t3curl(x̂ŷ
2ẑ, 0, 0)T + r2curl(0, ŷẑ

2, 0)T + r3curl(0, x̂ŷẑ
2, 0)T

=BDDF 1(Ê) + s2(0,−2x̂ẑ, 0)T + s3(x̂2ẑ,−2x̂ŷẑ, 0)T + t2(0, 0,−2x̂ŷ)T

+ t3(0, x̂ŷ2,−2x̂ŷẑ)T + r2(−2ŷẑ, 0, 0)2 + r3(−2x̂ŷẑ, 0, ŷẑ2)T

where the space BDDF1 is given as:

BDDF 1(Ê) = P1(Ê)3 + s0curl(0, 0, x̂ŷẑ)T + s1curl(0, 0, x̂ŷ
2)T + t0curl(x̂ŷẑ, 0, 0)T

+ t1curl(ŷẑ
2, 0, 0)T + r0curl(0, ŷŷẑ, 0)T + r1curl(0, x̂

2ẑ, 0)T

= P1(Ê)3 + s0(x̂ẑ,−ŷẑ, 0)T + s1(2x̂ŷ,−ŷ2, 0)T + t0(0, x̂ŷ,−x̂ẑ)2+

+ t1(0, 2ŷẑ,−ẑ2)T + r0(−x̂ŷ, 0, ŷẑ)T + r1(−x̂2, 0, 2x̂ẑ)T (A.1.4)

where, si, ti, and ri for i = 0, 1, 2, and 3, are real constants. The space Q̂(Ê) is given as:

Q̂(Ê) = P0(Ê)

We note that the flux degrees of freedom are chosen to be the normal components at the

vertices for each edge (face). It should be noted that the original BDDF1 spaces have only

three degrees of freedom per square face. The enhanced BDDF1 space has four degrees of

freedom per square face, which is needed in the reduction of the discretized system to a

cell-centered pressure stencil for pure Darcy flow problem [39].
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A.2 Quadrature Rules

By mapping the physical element to the reference element (using Piola transformation for

fluxes), the integration can be carried out over Ê using a quadrature rule. By the Piola

transformation, we have:(
K−1z, q

)
E

=
( 1

JE
DFTEK−1(FE(r̂i))DFEẑ, q̂

)
Ê

=
(
MEẑ, q̂

)
Ê

where ME = 1
JE

DFTEK−1(FE(x̂))DFE, where x̂ ∈ Ê. The trapezoidal rule on the reference

element Ê is defined by: Trap(ẑ, q̂) ≡ |Ê|
k

∑k
i=1 ẑ(r̂i) · q̂(r̂i), where {r̂i} denote the vertices

of Ê. Thus, we define the quadrature on the physical element E as:(
K−1z, q

)
Q,E
≡ Trap(ẑ, q̂)

=
|Ê|
k

k∑
i=1

ME(r̂i)ẑ(r̂i) · q̂(r̂i)

Mapping back to a physical hexahedral element, we obtain:

Symmetric Quadrature Rule:(
K−1z, q

)
Q,E

=
1

8

8∑
i=1

JE(r̂i)(DF−1
E )

T
(ri)DFET (ri)KE

−1(FE(r̂i))z(ri) · q(ri)

Non-Symmetric Quadrature Rule:(
K−1z, q

)
Q,E

=
1

8

8∑
i=1

JE(r̂i)(DF−1
E )

T
(ri)DFET (r̂c,Ê)K̄

−1
E z(ri) · q(ri)

where r̂c,Ê is the center of mass of Ê, and K̄E is the mean of K on E [39, 47,82,87,90].
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[65] A. Mikelić, M. F. Wheeler, and T. Wick. A phase-field approach to the fluid-filled

fracture surrounded by a poro-elastic medium. ICES Report 13-15, Institute for

263



Computational Engineering and Sciences, The University of Texas at Austin, Austin,

Texas, 2013.
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