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1. Abstract 
T cell adoptive transfer is an important procedure in immunotherapy. In immuno-

compromised patients, T cells may need to be developed from stem cells, requiring the induction of 

Notch signaling events responsible for native T cell differentiation in the thymus. Current methods 

to develop T cells in vitro fail to mimic the 3D thymic niche and are not mechanically tunable. In 

this study, we improve on these approaches with a 2D polymer system with controllable mechanical 

properties, and with a 3D system that more accurately mimics the thymic niche. 3D inverse opal 

poly(ethylene glycol) (PEGDA) scaffolds were fabricated with defined pores using poly(methyl 

methacrylate) microspheres that are soluble in acetic acid, leaving negative space for cell growth. 

The PEGDA surface was made bioactive via biotinylation, followed by a streptavidin linker 

attaching biotinylated Notch ligand Delta-Like Ligand 4 (bDLL4). 2D polyacrylamide gels were 

prepared by sandwiching a pre-polymer droplet between two glass surfaces during redox initiation. 

Mechanical properties were modified by adjusting the concentrations of acrylamide and bis-

acrylamide. Gels were functionalized by immobilizing streptavidin via a SANPAH linker and 

binding bDLL4. After fabricating the systems and demonstrating their chemical and mechanical 

tunability, RT-PCR was used to detect Hes-1 expression, a downstream target of Notch, and flow 

cytometry was used to detect T cell differentiation levels following incubation of T cell progenitors 

with functionalized polymer systems. We show that a) the thymic niche can be effectively mimicked 

by synthetic systems, b) these systems effectively induce Notch signaling, and c) Notch signaling 

results in early T cell differentiation. These data are promising and suggest the potential to develop T 

cell banks from stem cells for the purposes of immunotherapy. 
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2. Background 

2.1 Adoptive Transfer and Medical Motivation 

Cancer immunotherapy is a promising approach in cancer therapeutics. With this 

strategy, the body’s immune cells are trained to attack malignant cells as they would any other 

invader, by educating the effector cells of the immune system to recognize cancer cells are 

foreign and pathogenic. Immunotherapy is an attractive alternative or complement to the current 

paradigm of surgery, radiation, and chemotherapy, as these traditional approaches are very non-

specific and can often be cripplingly painful or uncomfortable for patients. The immune system, 

however, is effective due to its precision and highly amplified response.  

The presence of tumor-infiltrating lymphocytes (TILs) in malignant cancer sites 

underscore the potential for immunotherapy’s efficacy1. High numbers of effector T cells in the 

tumor microenvironment are indicative of a favorable prognosis, demonstrating the role that 

immune cells can play in the reduction of tumor burden1. While the potential therapeutic benefits 

of a strong immune response are clear, however, the tumor microenvironment secretes 

immunosuppressive signals that can inhibit expansion and proliferation of immunological 

effector cells, essentially silencing the immune system1. As a result, medical engineers are 

attempting to strengthen the immune response. One technique already in clinical practice is 

called adoptive transfer. In this technique, T cells from cancer patients are extracted from 

peripheral blood, pulsed with antigen from the tumor microenvironment, and the antigen-specific 

T cells are isolated, expanded, and infused back into the patient2. This method has been 

especially effective in the treatment of melanomas3.  

However, there are several limitations to adoptive transfer4: The procedure requires the 

isolation of peripheral blood, which can be invasive to the patient. Furthermore, expanding T 
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cells ex vivo can be time-consuming, a non-trivial barrier in the case of time-sensitive treatment 

requirements. Perhaps most significantly, however, a patient’s T cells may not be available due 

to severe immunodeficiency, and obtaining T cells from an alternative source poses the 

possibility of host rejection and forces patients to become dependent on long donor waitlists.  

The limitations in the current practice of adoptive transfer therapy combined with 

immunotherapy’s enormous potential creates an urgent need to develop therapeutic banks of 

antigen-specific T cells against various diseases, including cancer. This would allow clinicians to 

reliably access effector cells for the purpose of immunotherapy. Furthermore, to reduce the 

dependence on cell donors, these disease-specific T cells may be derived from stem cells. A 

critical first step in the realization of this vision is the engineering of early-stage immunological 

cells from stem cells. Biomaterials functionalized with biological signals show enormous 

potential in the direction of stem cells down the T cell lineage. The efficacy of this strategy will 

be explored in the studies that follow. 

 

2.2 T Cell Development In Vivo 

 To accurately induce T cell development in vitro for therapeutic purposes, native T cell 

differentiation in vivo must be explored. Hematopoietic stem cells (HSCs) are multipotent stem 

cells that can repopulate all cells of the blood. HSCs initially develop in the bone marrow, but for 

HSCs to progress down the T cell lineage, they must leave the bone marrow and migrate to the 

thymus. There hematopoietic progenitor cells are directed to differentiate into mature T cells5. 

Microenvironments that direct stem cell differentiation down a particular pathway are called 

stem cell niches and can be comprised of several complicated signals that synergize to determine 

a stem cell’s eventual fate6.  
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 Mature T cells are positive for one of two surface protein markers: either CD4 or CD8. 

CD4 single-positive cells are helper T cells that support the immune system via the release of 

cytokines: soluble signals in the immune system that regulate immune responses7. CD8 single-

positive cells are cytotoxic T cells that kill invading pathogens. As HSCs from the bone marrow 

migrate to the thymus, however, they are CD4-CD8-, or double negative (DN) cells5. Upon 

entering the thymus, two main phases comprise the T cell developmental pathway. HSCs arrive 

and congregate in the cortical region of the thymus, where the first phase begins, before moving 

to the medullary segments of the thymus for the second phase5. The two phases are characterized 

by different signaling events and different levels of T cell development. A schematic of these 

steps can be seen in Figure 1. 

 

 

 

 

 

 

 

 

 

 
Figure 1. Simplified schematic of T cell differentiation steps. 

 
 

In the first phase, HSCs undergo Notch signaling and several forms of cytokine signaling 

via stromal cells in the cortex to differentiate into naïve, non-antigen-specific early T cells5. 

Infiltrating DN cells are characterized by two other surface markers: CD25 and CD445. DN 
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developmental stages are traced by measuring the levels of expression of these two markers: the 

first stage of DN development (DN1) is demarcated by a CD25-CD44+ fingerprint, DN2 by 

CD25+CD44+, DN3 by CD25+CD44-, and DN4 by CD25-CD44- 5. At this point, cells begin to 

express CD4 and CD8, or double positive (DP) cells5. Cells throughout this phase also express 

Thy1.2, a T cell marker that is constitutively expressed on all DN cells. Because CD25 is 

transiently expressed in the DN2 and DN3 stages of development, double expression of Thy1.2 

and CD25 is indicative of T cell maturation past the DN1 stage but before the DN4 stage. 

In the second phase of T cell development, DP cells bifurcate into either CD4+ helper T 

cells or CD8+ cytotoxic T cells, also known as single positive (SP) cells5. The fate difference is 

determined by interactions with major histocompatibility complexes (MHCs) on professional 

antigen-presenting cells (APCs) in the thymus5. Early T cells with strong affinity for MHC Type 

1 molecules express CD8 while cells with strong affinity for MHC Type 2 molecules express 

CD45. 

 

2.3 Notch Signaling 

 The goal of this study is to direct the differentiation of HSCs towards a naïve T cell state, 

or through the first phase of the developmental pathway described above. Because of this, the 

key signaling event in the experiments that follow is Notch signaling. Notch signaling is an 

insoluble signaling system. In vivo, the Notch ligand is immobilized to the surface of a cortical 

thymic stromal cell8. Ligands are physically presented on the plasma membrane of the signaling 

cell and sensed by receptor molecules on the plasma membrane of the receiving cell, in this case 

a T cell progenitor8. Notch signaling is present in several embryonic differentiation pathways, 
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and has even been implicated in cancer, but this study focuses on the role of Notch signaling in T 

cell development8,9.  

 In mammals, five Notch ligands have been found to signal via four receptor molecules8. 

The five ligands are Delta-like ligands 1, 2, and 3 (DLL1-3) and Jagged-1 and Jagged-2. All five 

signal through Notch receptors simply named Notch-1 through Notch-48. The Notch receptor is 

composed of both an extracellular region and an intracellular region; the extracellular region 

interacts with Notch ligands while the intracellular region interacts with coactivators in the 

nucleus to influence gene expression, triggering downstream phenotypic effects8. When Notch 

receptors are activated, metalloproteases cleave residues in the extracellular region, and the lost 

fragment is commonly endocytosed by the signaling cell8. This extracellular cleavage event is 

followed by a second cleavage event in the intracellular portion of the receptor, freeing the 

intracellular domain and allowing it to migrate to the nucleus to form a transcription intitiation 

complex with the transcription factor CSL8.  

 In the immune system, Notch signaling is critical to T cell lineage commitment. Notch-1 

inhibits several potential non-T cell differentiation fates for HSCs, including myeloid cells, 

dendritic cells, and B cells8. By inhibiting these cell fate potentials, Notch signaling helps induce 

efficient T cell differentiation. The delta-like ligands, DLL1 and DLL4, have been implicated in 

this process to a greater extent than DLL3 or the Jagged ligands, and data suggest that DLL4 

may be essential to T cell differentiation8. 

 

2.4 Prior Work Towards in vitro T Cell Differentiation 

 Several groups have worked on differentiating T cells in vitro. Two in particular are 

highly relevant to this study’s attempt at artificial Notch ligand presentation. The Zúñiga-
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Pflücker group at the University of Toronto obtained a bone marrow stromal cell line called OP9 

cells and transfected them to induce constitutive DLL1 expression. The modified cell line was 

named OP9-DL110. Studies have shown that growing HSCs in the presence of these Notch 

ligand-presenting stromal cells effectively directed the cells through the DN stages and formed 

DPs, even resulting in the development of CD8+ SP cells, although not CD4+ SP cells10. Without 

the artificial introduction of Notch ligand, however, non-T cell lineages develop, whereas when 

DLL1 is transduced, T cells develop at the expense of these other fates, demonstrating the 

expected role of the Notch ligand10. 

 For clinical purposes, however, it is desirable to create a stromal cell-free differentiation 

system. Ideally, T cells that develop should not come in contact with any other cell source—

especially not an immortalized cell line—to avoid the risk of contamination. For this reason, 

other groups have focused on developing stromal-free T cell differentiation systems. One notable 

example of this is the Varnum-Finney group. There, researchers identified a set of soluble 

cytokine signals that synergize with insoluble Notch ligand presentation on tissue culture-treated 

polystyrene to direct T cell differentiation11. Instead of relying on stromal cells for DLL1 

presentation, tissue culture wells were treated with an antihuman IgG antibody, blocked with 

bovine serum albumin (BSA), and incubated with DLL1-IgG, a construct in which an IgG 

domain was attached to the ligand to allow for binding with the receiving antibody in the tissue 

culture dish11. In addition, the group identified a defined set of cytokines to induce 

differentiation: murine stem cell factor (SCF), human Flt-3 ligand (hFlt3-l), human IL-6 (hIL-6), 

and human IL-7 (hIL-7) at 100 ng/mL, and human IL-11 (hIL-11) at 10 ng/mL. The group saw a 

significant increase in Thy+CD25+ cells in conditions with Notch signaling. 
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2.5 This Study’s Approaches and Potential Benefits Over Prior Work 

 From the standpoint of tissue engineering, there are several potential issues with the in 

vitro systems described above. First, the T cell differentiation methods outlined above are all in 

two-dimensional culture conditions, while the thymic niche is a complex three-dimensional 

environment where relative spatial orientation is critical, such as the relationship between the 

cortical and medullary regions of the thymus5. Furthermore, studies have indicated that even if 

components of the thymus are isolated, they must reaggregate into a three-dimensional structure 

to effectively induce T cell differentiation5. Even if three-dimensional environments are not 

essential, however, it is reasonable to hypothesize that three-dimensional ligand-presentation 

environments will more efficiently expose cells to Notch signals. 

 Another concern with previous attempts at in vitro T cell differentiation is that they are 

both carried out on hard tissue culture-treated plastic. These environments have significantly less 

compliance than the thymus. Recently, studies have identified the mechanical microenvironment 

to be critical to the detection of a stem cell niche. Pioneering work done by the Engler group at 

the University of California, San Diego has demonstrated that mesenchymal stem cells will 

differentiate into bone, muscle, or neuronal cells based exclusively on the stiffness of the 

substrate on which they are grown12. Thus, engineering the stem cell niche must take into 

account both the chemical microenvironment—by introducing the correct cocktail of cytokines 

and Notch signals—and the mechanical microenvironment—by striving to mimic the mechanical 

compliance of the thymus. 

 In this study, two novel independent methods of in vitro T cell differentiation are 

presented. One solves the problem of two-dimensionality while the other solves the problem of 

mechanical stiffness. Three-dimensional inverse opal (IO) scaffolds with highly ordered pores 
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for cell residence were developed from poly(ethylene glycol) diacrylate (PEGDA) and 

functionalized with Notch ligands to direct T cell differentiation in three dimensions. Two-

dimensional polymer gels were made of polyacrylamide (PA) and similarly functionlized with 

Notch ligands to induce T cell differentiation, but the ratios of the acrylamide and bis-acrylamide 

monomers could be fine-tuned to fabricate gels with a specific elasticity. By analyzing these 

systems, the roles of three-dimensionality and substrate stiffness in T cell differentiation could be 

independently analyzed. 

 This project consisted of three main phases: 1) each polymer system was fabricated and 

characterized both chemically and mechanically; 2) mouse HSCs were incubated with these 

systems in the short term and analyzed for Notch signal induction; 3) mouse HSCs were 

incubated with these systems in the long term and analyzed for T cell differentiation efficiency.  
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3. Materials and Methods 

3.1 Fabrication of PEGDA IO Scaffolds 

 PEGDA scaffolds were prepared based on a modified protocol developed by the Irvine 

group13. 100 µm poly(methyl methacrylate) (PMMA, Fluka) microparticles were suspended at 

60% w/w. Microsphere suspension was slowly added at 20 µl increments to PDMS molds 

shaking at 280 rpm to allow the microspheres to settle into a crystalline lattice shape while the 

ethanol evaporated. 40% PEGDA solutions were prepared with PEG-diacrylate and biotin-PEG 

acryl, added at 500:1 PEG:biotin molar ratios, using Irgacure 2959 (Ciba) at 0.05% w/w as the 

photoinitiator. 20 µl of the prepolymer solution were added to the microsphere structures and 

constructs spun down at 1500 rpm for three minutes to allow polymer solution to infiltrate 

between the packed microspheres. Gels were formed under UV radiation for eight minutes. The 

scaffolds were then incubated in 100% acetic acid for three days, to dissolve the PMMA 

microspheres, replacing with fresh acid every two to four hours initially and then every day. 

Scaffolds were then transferred to sterile PBS and washed several times before use. These steps 

are outlined in Figure 2 below. 

 

 

 

 

 

 

 

Figure 2. Steps in PEGDA IO scaffold fabrication 
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3.2 Fabrication of PA Gels 

 2D PA gels were fabricated based on the protocol developed by Tse, et al14. Thin, 

hydrophilic gel disks were polymerized between hydrophilic glass coverslips and hydrophobic 

glass slides, allowing the disks to adhere to the coverslips and to be easily removed from the 

slides, as seen in Figure 3. Circular glass coverslips were made hydrophilic via amino-silanation. 

Coverslips were treated with 0.1 M sodium hydroxide (NaOH) in water. Solvent was evaporated 

with heat, leaving a uniform residue of NaOH. Free ions were treated with 

aminopropyltriethoxysilane (APES, Acros Organics). Frosted glass slides were made 

hydrophobic via treatment with dichlorodimethylsilane (DCDMS, Acros Organics). Acrylamide 

and n,n’ methylene-bis-acrylamide (Sigma-Aldrich) were polymerized using redox chemistry 

initiated by 1/1000 volume of n,n,n’,n’-tetramethylethylenediamine (TEMED, Sigma-Aldrich) 

and 1/100 volume of 10% ammonium persulfate (APS, Sigma-Aldrich). Acrylamide and bis-

acrylamide were added at 100:1 ratios. During polymerization, 25 µl droplets were sandwiched 

between the coverslip and slides and allowed to crosslink for thirty minutes at room temperature 

before removal. Gels were subsequently washed twice with PBS to remove unpolymerized 

acrylamide, which can be toxic to cells.  
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Figure 3. Polymerizing PA between two modified glass surfaces 
 
 

3.3 Ligand Biotinylation 

 Mouse DLL4 obtained from R&D Systems was conjugated to biotin using the Biotin-XX 

Microscale Protein Labeling Kit (Life Technologies). Biotin-XX-succinimidyl ester was 

incubated in a sodium bicarbonate buffer solution for fifteen minutes, and unbound biotin was 

removed via a resin in a centrifugal filter. This was done to prevent free biotin from out-

competing biotinylated DLL4 (bDLL4) and rapidly binding streptavidin sites on polymer 

surfaces during functionalization. The yield of the reaction was determined using absorbance on 

a plate reader (BioTek).  

 

3.4 Functionalization of Tissue Culture Plates 

 Hard tissue culture plates were used as controls against which soft polymer substrates 

could be compared. Tissue culture plates were bound with ligand using methods similar to those 

described by Varnum-Finney11. 48-well plates were incubated in 150 µl of 10 µg/mL streptavidin 

(Promega) for thirty minutes at 37ºC. Wells were then washed twice with PBS and blocked with 
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Hank’s Balanced Salt Solution (HBSS, Gibco) + 2% BSA for thirty minutes at room 

temperature, and washed twice upon completion of the incubation period. Finally, wells were 

incubated with 150 µl of bDLL4 at the desired concentration, followed by two more PBS 

washes. 

 

3.5 Functionalization of PEGDA IO Scaffolds 

 Biotinylated scaffold constructs were placed in 1.5 mL low-adhesion tubes and incubated 

with 500 µl of 5 µg/mL streptavidin solution overnight at 4ºC. Unbound streptavidin was washed 

twice with PBS for twenty-four hours at 4ºC and then incubated with 500 µl of the desired 

bDLL4 concentration in low-adhesion tubes overnight at 4ºC. Two more PBS washes followed 

to remove unbound bDLL4. A schematic of the final chemical linkages in this functionalization 

scheme can be seen in Figure 4. 

 

3.6 Conjugation of Streptavidin and SANPAH 

 N-Sulfosuccinimidyl-6-(4’-azido-2’-nitrophenylamino) hexanoate (sulfo-SANPAH, 

Pierce) is a common reagent to bind free amine groups on polyacrylamide with a 

photoactivatable nitrophenyl azide, and was thus used to functionalize the surface of 2D PA gels. 

An N-hydroxysuccinimide (NHS) ester that reacts with amino groups on proteins was used to 

conjugate streptavidin to sulfo-SANPAH to form streptavidin-SANPAH. Streptavidin was 

incubated with sulfo-SANPAH at room temperature for three hours, and unconjugated SANPAH 

removed via centrifugal filtration. 
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3.7 Functionalization of 2D PA Gels 

Sulfo-SANPAH was used to attach streptavidin to gels by photo-crosslinking SANPAH 

to amines on the acrylamide backbone. 150 µl of streptavidin-SANPAH solution at 5 µg/mL 

were exposed to UV radiation for ten minutes. Modified gels remained on their glass coverslips, 

and fit into 24-well plates that were outfitted with PDMS molds to fit the dimensions of the 

coverslip. Following two PBS washing steps, streptavidin-modified gels were incubated with 

200 µl of solution at the desired concentration of bDLL4 at 4ºC overnight, and again washed 

twice in PBS before cell seeding to remove unbound ligand. The chemical presentation scheme 

is outlined in Figure 4 below. 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 4. Ligand presentation schemes for both 2D and 3D systems 
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3.8 Ligand Density Studies 

 Ligand density was measured indirectly. BSA tagged with biotin and fluorescein (biotin-

BSA-FITC, Nanocs) was used as a model for bDLL4 due their to similar molecular weights. 

Biotin-BSA-FITC was bound in an identical manner and concentration as bDLL4 to all 

streptavidin-modified in vitro systems. Three PBS washes were collected and analyzed on a 

fluorescent plate reader (Biotek) against a biotin-BSA-FITC standard curve to determine the 

mass of biotin-BSA-FITC remaining unbound. This was subtracted from the total probe added to 

determine the density of bound model protein.  

 

3.9 Rheology 

 The mechanical properties of hydrogels and tissues were determined using a rheometer 

(Anton Paar Physica MCR 101) utilizing a 7.974 mm diameter oscillatory measuring system. 

Measurements were taken at room temperature with a 1 Hz frequency and 5% strain, as these 

conditions were in the linear regions of representative frequency and amplitude sweeps for all 

material types. Gap sizes were chosen to approximately equalize initial compression across all 

samples. Thymus samples were obtained from BALB/c mice (Jackson Laboratory), PEGDA gel 

samples were photopolymerized in PDMS templates, and PA gel samples were polymerized in 8 

mm silicone isolators. The storage moduli were compared between materials and tissue samples 

to determine relative mechanical properties. 

 

3.10 HSC Isolation 

 Primary HSCs were isolated from four to six week old BALB/c mice (Jackson 

Laboratory). Mice were euthanized and legs were dissected and de-fleshed to collect the femur 
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and tibia. Bone tips were cut and the bone marrow flushed with PBS into a conical tube using a 

21-gauge needle. Cells were suspended via repeated aspirations through a 16-gauge needle. Any 

remaining flesh or bone debris was removed by straining through 40 µm cell strainers, and red 

blood cells were lysed using a red blood cell lysis buffer (eBioscience). Hematopoietic cells 

already committed to a mature lineage were removed using magnetic-activated cell sorting 

(MACS). Cells were stained with a cocktail of antibodies bound to magnetic beads that identify 

mature cell markers using a mouse lineage depletion kit (Miltenyi Biotec) and these cells were 

captured on a magnetic column. Lineage negative cells were stained with anti-cKit APC and 

anti-sca1 PE antibodies (eBioscience) and sorted for double positive cells on a BD FACS Aria II 

(Beckton Dickinson) to select for lin-ckit+sca1+ cells, markers characteristic of HSCs. 

 

3.11 Notch Signaling Studies 

 Cells were seeded onto 48-well plates, 2D PA gels, or 3D PEGDA gels and cultured with 

IMDM (HyClone) with 20% FBS (Stem Cell Technologies) and the cytokine cocktail previously 

described by the Varnum-Finney group11: SCF, hFlt3-l, hIL-6, and hIL-7 at 100 ng/mL and hIL-

11 at 10 ng/mL. Cells were loaded onto PEGDA gels by adding 15 µl of cell suspension onto the 

hydrogel surface and spinning at 800 rpm for one minute at 4ºC. After three hours in culture, 

cells were removed with two rounds of vigorous PBS washes. RNA was isolated using the 

RNeasy Plus Micro Kit (Qiagen), and the mass of isolated RNA was quantified using the Quant-

iT RiboGreen RNA Kit (Life Technologies). Reverse transcription was performed using 

Superscript II First Strand Synthesis System for RT-PCR (Life Technogies). Levels of Hes-1, a 

downstream target of Notch signaling, were used to determine whether the functionalized 

substrates had induced Notch signaling. Hes-1 expression was measured using quantitative real 
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time PCR (RT-PCR). An ABI Prism 7900HT Real Time PCR System measured the fluorescence 

emitted by dyes in the RT2 SYBR Green/ROX qPCR Mastermix (SA Biosciences). Hes-1 levels 

were normalized against β-actin levels, a gene that is constitutively expressed. The 2-ΔΔCt method 

was used to determine fold differences in Hes-1 levels between samples. 

 

3.12 Differentiation Studies 

 Differentiation studies were performed only in 48-well plates and in 2D PA gels. 1,000 

lin-ckit+sca1+ cells were seeded onto the substrates in the same media used for the Notch 

signaling studies. Media was replaced along with fresh cytokines every three to four days by 

gently aspirating out media without disturbing cells resting on the substrate floor. Fresh 

cytokines were added such that their total concentration matched the levels described above. If 

culture became too confluent, 4/5 of the cells were removed and discarded. 

 On day nine of culture, the differentiation state of the cells was measured using flow 

cytometry. Cells were suspended in FACS buffer (PBS + 2% FBS + 0.1% NaN3 + 2 mM 

EDTA). Non-specific binding was avoided by incubating with Fc Block (BD Pharmingen) at 4ºC 

for five minutes. Cells were then stained with three antibodies: anti-CD25 Alexafluor 488, anti-

CD44 PE, and anti-Thy1.2 APC (eBioscience). In addition, a live/dead stain (7-AAD, 

eBioscience) was added to differentiate viable from dead cells during the analysis. Antibody 

incubation proceeded for thirty minutes at 4ºC wrapped in foil. Cells were washed once in FACS 

buffer and flow cytometry was performed on an Accuri machine (Beckton Dickinson). Cells 

were isotype-stained as negative controls, and single-stained samples were used to optimize 

compensation values. The presence of Thy1.2+CD25+ double positive cells indicated either the 
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DN2 or DN3 stage of development and their abundance was used to quantify T cell 

differentiation.  
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4. Results 

4.1 High surface area scaffolds can be fabricated 

 One concern while developing 3D porous materials is maintaining pore integrity. If pore 

sizes are too large or if the material is too soft and compressible, pores tend to collapse, 

disturbing the controlled cellular microenvironment. The stiffness obtained with 40% PEGDA 

gels, however, was sufficient to prevent the collapsing of the pores. Surface area calculations 

indicate a highly spatially efficient substrate. The entire scaffold has a volume on the order of 

millimeters cubed, but has a surface area of 80.2 cm2. This is greater than the area of T75 tissue 

culture flasks that are commonly used in culture. 

 

4.2 Ligand density can be effectively controlled on well plates and 2D PA gels 

 Ligand density was measured using the indirect techniques described in the methods 

section. Biotin-BSA-FITC was incubated on either 48-well plates or 2D PA gels at a low 

concentration (2 µg/mL), moderate concentration (5 µg/mL), or high concentration (10 µg/mL). 

These were compared against a negative control with no fluorophore. A dose-dependence was 

observed on both hard tissue culture well plates and on 2D PA gels. The surface areas of the well 

plates and PA gel surfaces were calculated and used to determine ligand density in units of molar 

density of probe per area (pmol/cm2). The data are displayed in Figure 5. Wells in 48-well plates 

had molar densities of 0.96 ± 0.31 pmol/cm2, 2.0 ± 0.6 pmol/cm2, and 2.9 ± 0.6 pmol/cm2 at low, 

moderate, and high concentrations, respectively. Gels had molar densities of 4.4 ± 0.3 pmol/cm2, 

7.5 ± 0.5 pmol/cm2, and 13.3 ± 0.4 pmol/cm2 at low, moderate, and high concentrations, 

respectively. Gels were able to bind more biotin-BSA-FITC than hard tissue culture wells, but a 

dose-dependency was observed on both substrates. 
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Figure 5. PA ligand density. Increasing ligand model protein  
incubation concentration increases final immobilized density. 

* indicates p<0.05 
 

4.3 Ligand density is independent of acrylamide concentration 

 One concern was that ligand density and mechanical properties could not be tuned 

independently. Because acrylamide concentrations were found to correlate with mechanical 

properties, gels with different levels of acrylamide concentration were incubated with low and 

high concentrations of biotin-BSA-FITC to determine whether there were significant differences 

in density that resulted from different acrylamide concentrations. Gels with low concentration 

(3% acrylamide, 0.03% bis-acrylamide), moderate concentration (4% acrylamide, 0.04% bis-

acrylamide), and high concentration (10% acrylamide, 0.1% bis-acrylamide) of polymer were 

functionalized with biotin-BSA-FITC at low concentrations (2 µg/mL) and high concentrations 

(10 µg/mL) of ligand model protein. No statistical differences were found between the different 

stiffnesses, as seen in Figure 6. 
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Figure 6. Independence of ligand density and material stiffness. The final  

immobilized ligand density is independent of acrylamide percentage. 
* indicates p<0.05 

 
4.4 Streptavidin density can be effectively controlled on PEGDA IO scaffolds 

 Ligand density was again measured using the indirect method. Problems in the sensitivity 

of the assay prevented accurate measurements for the final biotinylated probe. Instead, 

biotinylated PEGDA scaffolds were incubated in 1 mL of solution with incrementally increasing 

streptavidin-PE concentration. The data are shown in Figure 7. Scaffolds incubated with 1 

µg/mL streptavidin-PE bound 0.0045 ± 0.0056 pmol/cm2. Gels incubated with the next lowest 

concentration (2 µg/mL) bound 0.027 ± 0.006 pmol/cm2. Scaffolds incubated with 3 µg/mL 

streptavidin-PE bound 0.034 ± 0.007 pmol/cm2, while the highest concentration (4 µg/mL) 

yielded the highest density (0.053 ± 0.008 pmol/cm2). All increasing concentrations resulted in 

significantly higher densities than that of scaffolds incubated with only 1 µg/mL streptavidin-PE. 
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Figure 7. PEGDA IO ligand density. Increasing cross-linker model protein  

incubation concentration increases final immobilized density. * indicates p<0.05 
 

4.4 Rheology is an effective measure of mechanical properties for tissues and soft substrates 

 Rheology optimization requires determining a strain (%) and frequency (Hz) of 

oscillation that provide linear storage modulus curves for all substrates examined. In this study, 

five substrates were examined: mouse thymuses, 3% PA gels, 4% PA gels, 5% PA gels, 10% PA 

gels, and 40% PEGDA gels. A sweep from 0.1% to 10% strain at 1 Hz and a sweep from 0.1 to 

10 Hz at 5% strain were performed. The strain sweep was linear at 5% strain and the frequency 

sweep was linear at 1 Hz for all materials, both synthetic and native, as seen in Figure 8. Thus, 

all rheological studies performed were executed with 5% strain and 1 Hz. 
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Figure 8. Frequency and strain sweeps for rheology  

optimization. A 1 Hz, 5% strain protocol is linear for all samples. 
 

 

4.6 4% acrylamide, 0.04% bis-acrylamide PA gels mimic the thymus 

 Rheological data is visualized in Figure 9. The thymus was found to have a storage 

modulus of 110 ± 30 Pa. A 40% bulk PEGDA gel with no pores had a storage modulus of 7300 

± 3500 Pa. PA gels decreased with decreasing concentrations of acrylamide. 10% PA gels had a 

storage modulus of 5100 ± 4400 Pa; 5% PA gels had a storage modulus of 220 ± 66 Pa; 4% PA 

gels had a storage modulus of 120 ± 35 Pa; 3% PA gels had a storage modulus of 3.3 ± 3.4 Pa. 

T-tests were performed comparing the storage modulus of the synthetic materials to that of the 

thymus. 40% PEGDA and 10% PA were both significantly stiffer than the thymus while 3% PA 

was significantly softer. Both 5% and 4% PA gels were not statistically different from the 

thymus, but 4% gels had an average storage modulus closer to that of the thymus. For all 

subsequent experiments, 4% gels were used to mimic the mechanical microenvironment of the 

thymus. 

 

 

 

 



27 

 

 

 

 

 

 

 

 

 

 

 
Figure 9. Rheological properties of substrates. 4% PA gels mimic the thymus. 

 

4.7 PEGDA IO scaffolds induce Notch signaling with dose dependency 

 Hes-1 gene expression was measured using RT-PCR. PEGDA IO gels were fabricated 

and functionalized with low and high concentrations of Notch ligand (2 µg/mL and 10 µg/mL, 

respectively). Following three hours of culture, levels of Hes-1 expression were found to be 

dose-dependent on the density of ligand bound, as seen in Figure 10. Levels of expression were 

compared against plain scaffold unmodified with DLL4, and normalized to calculate the fold 

change in Hes-1 expression. Cells seeded in scaffolds with low ligand density had a 1.9 ± 0.8 

fold increase in Hes-1 expression while cells in scaffolds with high ligand density experienced a 

2.9 ± 0.4 fold increase. The large standard deviation in the low-density scaffold data made the 

fold increase insignificant. However, results at 10 µg/mL demonstrated a significant increase in 

Notch signaling in the presence of a high concentration of immobilized bDLL4.  
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Figure 10. Hes-1 gene expression in PEGDA IO scaffolds. Increasing  

ligand density results in increasing levels of Notch signaling.  
* indicates p<0.05. 

  

4.8 Soft PA gels induce latent Notch signaling 

 RT-PCR with cells seeded on 2D PA gels revealed interesting patterns in Notch 

signaling, as seen in Figure 11. Hes-1 expression data was normalized against untreated well 

plates. Well plates treated with low and high concentrations of bDLL4 (2 µg/mL and 10 µg/mL, 

respectively) to demonstrate the effectiveness of immobilized Notch signaling in 2D. Wells 

modified with low concentrations of bDLL4 showed a significant increase in gene expression 

with a 2.8 ± 0.8 fold increase in Hes-1 expression. Furthermore, a significant increase in Hes-1 

expression was detected in 10% gels treated with a high concentration of bDLL4, with a 1.8 ± 

0.2 fold increase in Hes-1 expression. Interestingly, non-functionalized soft 4% and 10% 

surfaces also showed an increase in gene expression, although they were not bound with 

signaling ligand. 4% gels exhibited a fold increase of 2.3 ± 0.5 in levels of Hes-1 and 10% gels 
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displayed a fold increase of 1.9 ± 0.6 in levels of Hes-1. Only the 4% gels, however, had an 

increase in Hes-1 gene expression that was statistically significant. 

 

 

 

 

 

 

 

 

 

Figure 11. Hes-1 gene expression in 2D PA gels. No clear link between  
binding density and gene expression can be seen. However, there is some  

latent Hes-1 expression in 4% gels. * indicates p<0.05. 
 
 

4.9 PA gels induce early T cell differentiation after nine days of culture  

 The fraction of cells with a Thy1.2+CD25+ double-positive phenotype was measured after 

nine days in culture. The percentage of cells was relatively low, less than 5%, and due to large 

standard deviations, means and statistical analysis did not yield statistically significant results. 

Thus, a representative flow cytometry plot is shown below in Figure 12 that demonstrates the 

common trends. In well plates, cells cultured on substrates with no ligand or with low 

concentration of ligand (2 µg/mL) exhibited low levels of differentiation, and less than 1% of the 

cells were Thy1.2+CD25+. Plates with high density (10 µg/mL), however, showed 3.83% 

differentiation efficiency. 4% and 10% PA gels both induced a higher degree of differentiation in 

low DLL4 density conditions, with 1.11% and 2.94% fractions of double-positive cells. Gels 
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with high DLL4 densities exhibited 3.03% differentiation in 4% gels and 3.76% differentiation 

in 10% gels. 

 

Figure 12. Induced differentiation on PA gels. Thy1.2+CD25+  
cells are considered early T cells. 
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5. Discussion 

 In adoptive transfer therapy, autologous T cells are expanded ex vivo, pulsed with 

antigen, and re-infused back into the patient in the hopes that these T cells will help the patient 

defend against an invasive pathogen or malignant tumor2–4. However, if the patient is severely 

immunocompromised, finding sufficient T cells to culture ex vivo may be challenging if not 

impossible. Perhaps even more significantly, expanding and maturing T cells in the laboratory 

can be extremely time-consuming, and waiting for T cell growth in imperfect laboratory 

conditions is a luxury that patients suffering from life-threatening diseases may not have. 

Because of this, there is an urgent need to have T cell banks on store for patients in case they 

become severely immunocompromised or need immediate immunotherapy to defend against an 

infiltrating pathogen.  

 Stem cells are an attractive source from which to develop these banks because of their 

differentiating potential and tendency to self-replicate, providing a potentially steady and 

constant source of T cells. The field of tissue engineering has made great strides in the past 

decades regarding optimal conditions to induce stem cell differentiation. Engineers have utilized 

the idea of bio-mimicry to as accurately as possible replicate the conditions of the native tissue in 

synthetic system, with the hypothesis that stem cells sense their local niche to determine towards 

which lineage they should differentiate. To this end, tissue engineers have fabricated elaborate 

three-dimensional systems that present growth factors and signals to cells occupying carefully 

designed pores, because cells grow in three-dimensions in the body, and not on flat surfaces. 

Similarly, engineers have concluded that the mechanical properties of a stem cells’ 

microenvironment also contribute to the stem cell niche, and cells will differentiate into different 

types of cells depending on the stiffness and compliance of the substrate on which they reside12.  
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 The development of a precisely-designed spatial, chemical, and mechanical 

microenvironment for differentiation appears particularly critical in T cell differentiation. T cells 

natively develop in the thymus, an organ with an elaborate three-dimensional architecture. There 

are distinct cortical and medullar regions, each of which are responsible for different stages in 

the T cell developmental pathway. Thus, it is reasonable to believe that a three-dimensional 

environment could be substantially more efficient at inducing T cell differentiation than a flat 

surface more traditionally used in cell culture techniques.  

In addition, the chemical microenvironment of the T cell differentiation scheme must be 

finely tunable. Immunologists have elucidated several factors in the differentiation pathway, but 

one of the most critical is an immobilized Notch ligand, such as DLL4, that blocks B cell 

differentiation and thus promotes T cell differentiation instead. Any substrate capable of 

directing stem cells toward the T cell lineage must thus be capable of immobilizing these ligands.  

 Furthermore, the mechanical environment must be finely tuned. One of the prevailing 

hypotheses describing the mechanism for a cell’s sensing of its mechanical microenvironment is 

that mechanosensors in the cytoskeleton of a cell pull on the extracullular substrate12. If the 

substrate is non-compliant and tugs back with a force that is too great, the mechanotransducing 

structure can unfold, making it non-functional. On the other hand, if the substrate is too soft, the 

mechanosensor remains in a conformation that obscures its active site, also making it non-

functional. Only if the substrate is ideally compliant will the mechanosensor remain natively 

folded but with an exposed active site, facilitating down-stream signaling events. While HSCs 

are non-adherent cells and thus do not exchange forces with a permanent substrate with defined 

mechanical properties, they do come into contact with a physical substrate during the process of 

Notch signaling, because the Notch ligand must be immobilized. During the first step in Notch 
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ligand sensing, the receptor binds to the ligand and the force results in a cleavage event in the 

extracellular portion of the receptor. Because of this, it is reasonable to believe that 

mechanotransduction could be a part of the Notch transduction pathway. Thus, mimicking 

thymic mechanical properties could significantly increase T cell differentiation potential.  

 Unfortunately, current methods of in vitro T cell differentiation are neither three-

dimensional nor are they of suitable material stiffness. One current method of in vitro T cell 

differentiation involves growing stem cells on a modified layer of stromal cells derived from the 

bone marrow that has been transfected with DLL4 to induce T cell differentiation. Another 

isolates DLL4 and independently binds the ligand to tissue culture treated plates to promote 

Notch signaling and T cell lineage commitment. Neither are adequate simulations of the thymic 

microenvironment. 

 To this end, this study presents two differentiation protocols that improve synthetic 

conditions using biomaterials, or materials that can interface with biological systems. One 

substrate is an ordered, porous scaffold called an inverse opal structure made from PEGDA. The 

other is a two-dimensional gel with finely tunable mechanical properties composed of PA. 

Because the pores in the PEGDA IO scaffolds collapse if the gel is too soft, this study does not 

present a system that solves both the three-dimensional problem and the problem of the tunable 

mechanical environment. Instead, model systems explore each variable independently. 

 Data presented above demonstrate that both the PEGDA IO and 2D PA systems provide 

intricate control over the chemical microenvironment. Chemical connection systems have been 

developed to present streptavidin on the surfaces of functionalized polymer gels that can then be 

bound to biotin-modified DLL4. Incubating with higher concentrations of streptavidin and/or 

biotin result in higher final spatial densities of DLL4 on the polymer surface. Thus, the chemical 
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microenvironment can be finely tuned to develop any density of DLL4 between zero and the 

saturation point on the gel, a point that was never reached in the experiments described here. 

 Similarly, the mechanical properties of the 2D PA gel system can be tightly controlled by 

modifying the amount of acrylamide versus bis-acrylamide, the two monomer types in the PA 

chain. Rheological studies demonstrated that 4% acrylamide, 0.04% bis-acrylamide gels 

accurately mimic the mechanical properties of the thymus, which has a storage modulus of 

approximately 110 Pa. These gels can be made more or less stiff by increasing or decreasing the 

concentration of acrylamide and bis-acrylamide, respectively. Importantly, modifying the 

stiffness of the gel does not affect the density of ligand that can be bound. Thus, for the 2D PA 

system, mechanical stiffness and ligand density are orthogonal systems each independently 

tunable for optimization. 

 Although PEGDA scaffolds could not be mechanically modified to the same extent as 2D 

PA gels, rheological studies were also performed to elucidate their mechanical strength. The 

concentration of PEGDA used in this study (40%) yielded a storage modulus several orders of 

magnitude higher than that of the thymus or 4% PA gels, averaging at approximately 7000 Pa. 

However, this elasticity is still a significant improvement over traditional polystyrene surfaces, 

which have elastic moduli on the order of GPa. Thus, even though the 3D PEGDA system 

suffers from a lack of mechanical tunability, it still offers compliance far closer to the thymus 

than customary tissue culture practice. 

 None of the attempts to mimic the thymus are meaningful, however, unless they 1) 

successfully induce Notch signaling and 2) result in T cell differentiation. The most promising 

Notch signaling data collected thus far is with the 3D PEGDA scaffolds, which show a clear 

dose dependency in levels of Hes-1 expression following incubation of cells in functionalized 
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scaffolds for three hours. The clear relationship between ligand density and Notch signaling was 

absent when cells were instead seeded on 2D softer surfaces. On one hand, this indicates that the 

tunability of the PA system is somewhat lacking, because although ligand density can be finely 

regulated, this does not translate into effective control over the level of Notch signaling. On the 

other hand, however, the basal level of Notch signaling on soft 4% PA surfaces that mimic the 

mechanics of the thymus (~2.5 fold above the control) is comparable to the high levels of Notch 

signaling induced on the slightly harder 3D surfaces with the highest density of Notch ligand 

(~2.75 fold above the control). 

 The idea that soft surfaces can induce basal levels of Notch signaling is an interesting one 

that has not yet been explored in the literature. Further mechanical studies on the molecular 

interactions between ligand-bearing stromal cells and receptor-bearing progenitor cells in vivo 

must be conducted to determine whether there is a causal relationship between mechanical 

properties and Notch induction or whether the observed apparent relationship is instead due to 

some other variable that has not been controlled in this study. 

 Finally, differentiation data was collected for lin-ckit+sca1+ cells cultured on 2D PA gels 

with a cytokine cocktail designed for expansion and differentiation. After nine days of culture, 

about 3% of the cells had a Thy1.2+CD25+ double-positive phenotype indicative of early T cells. 

This efficiency is relatively low compared to other in vitro T cell differentiation systems that 

have been developed. In their studies using OP9-DL1 co-culture, the Zúñiga-Pflücker group 

reports nearly 95% CD25 expression, whereas the experiments described above produced 

roughly 4% CD25. Differentiation on 2D PA gels also yields high numbers of CD44+CD25- cells 

(data not shown), indicative of the DN1 stage in development, whereas CD25 expression is 

indicative of DN2 and DN2 expression. Thus, compared to the Zúñiga-Pflücker method, the soft-
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substrate differentiation strategy appears to arrest the cells at an earlier stage in  development. 

The Varnum-Finney group has also reported highly efficient T cell differentiation using 

immobilized ligands on tissue culture treated polystyrene surfaces. They report plots where 

>50% of the cells are Thy1.2+CD25+ double positive. However, it should be noted that these 

results were measured after three weeks of culture, versus culture just over one week on soft 

surfaces.  

 These data indicate that further optimization may be required to induce differentiation 

beyond the DN1 stage in development. Nonetheless, the systems presented in this thesis have 

clear advantages. First, the creation of highly porous 3D systems potentially allows for much 

more robust scale-up in the future. These scaffolds have significantly higher spatial efficiency 

than conventional tissue culture flasks. If the dream of creating a bank of T cells is to be realized, 

using porous ex vivo scaffold technology would be a far more space-efficient means of growing, 

cultivating, and differentiating cells prior to re-implantation into the immunocompromised host. 

Second, although the 2D PA system seems less effective at inducing efficient T cell 

differentiation, it provides a novel means to study the effects of mechanical properties on 

differentiation, which may be critical to further research in the field. Results hint at a non-

canonical form of Notch signaling that should be further explored. 
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6. Conclusions 

	  	   	   The data described in this thesis indicate that soft polymer systems can be developed to 

mimic the thymic microenvironment both chemically and mechanically. These include a 

polyacrylamide two-dimensional system and a porous three-dimensional poly(ethylene glycol) 

system. Furthermore, these systems are suitable as substrates for cell growth and differentiation. 

Studies presented above show that the polymers can be chemically modified to be bioactive. 

Ligands, or biological signals, can be attached in a reliable fashion, and used to direct stem cells 

down a particular differentiation pathway. Gene expression studies indicate that when ligands 

responsible for Notch signaling—the key signaling event in early T cell differentiation—are 

chemically bound to these polymer surfaces, they increase the expression of genes downstream 

in the Notch signaling pathway. These short-term studies have also been translated into long-

term differentiation studies, and functionalized polyacrylamide has been shown to produce early-

stage T cells. Together, these results demonstrate the potential that biomaterials have in the field 

of immunotherapy, in particular in the differentiation of T cells from stem cells. 
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