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Abstract 

 

QuickLET:  A Web-based Tool for Estimating Pollutant Loads in a 

Watershed 

 

Marilyn Aldover Gambone, M.S.E. 

The University of Texas at Austin, 2015 

 

Supervisor:  Adnan Aziz 

 
Web-based modeling tools for estimating pollutant loads in watersheds are 

few in literature.  Those that are available for public access often require domain 

expertise, making them relevant mostly among environmental researchers.  Aside 

from intensive efforts required to gather enormous amount of data, the complexity of 

the modeling tools themselves hinder their application among non-technical users.  

Consequently, environmental decision makers often rely on outside consultants to 

perform watershed assessments for them. 

This report presents the Quick Load Estimating Tool (QuickLET), a Web-based 

tool for estimating pollutant loads in watersheds across the contiguous US.  QuickLET 

empowers users to visualize the effects of land use patterns, cultivated crops, and 

conservation practices through graphical representation.  QuickLET implements an 

export coefficient approach for predicting the pollutant loads resulting in significant 

simplification of the estimating process.   
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Chapter 1 

Introduction 

 Watershed modeling tools are essential in assessing the impact of changes in 

land use patterns, crop cultivation and conservation practices on the environment.  

However, the complexity of existing modeling tools hinder their widespread 

application among non-expert users.  Consequently, decision makers oftentimes 

require outside consultants to perform watershed analysis for them.  Quick Load 

Estimating Tool (QuickLET) is a Web-based tool developed to address the need for a 

user-friendly, reliable and cost-effective watershed modeling tool.  The ease of 

reaching a wide range and diverse audience makes the Web an ideal environment for 

application tools like QuickLET.  Web-based application development, however, is 

fraught with challenges, from rapidly evolving technologies and infrastructure, to 

lack of standards among different browsers.  A particular challenge for building 

QuickLET was reconciling the demands for faster, platform-agnostic application with 

demands for richer, process-intensive, and resource-hungry features.  Resolving 

these competing demands provided the underlying motivation for the export 

coefficient approach that QuickLET employed in its design.     

1.1 Problem Definition 

 Assessing the effects of land use, crop cultivations and conservation practices 

on the environment has been the focus of sustainable resource management.  To fulfill 

their responsibilities, environmental practitioners and decision makers required 
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tools that facilitated the monitoring and assessment of the nation's natural resources.  

The research community pioneered the building of modeling tools, which provided 

an understanding of the environment and its response to change that would not be 

possible by any other means.  For example, gathering monitoring data on nonpoint 

pollutant loads is expensive at the watershed level because monitoring is a resource-

intensive activity. Monitoring all impaired watersheds would be cost-prohibitive at 

this national scale.  Modeling tools, on the other hand, allow the approximation of 

natural processes on large spatial scales as well as the prediction of future 

environmental phenomena [1].   Despite these strengths, the success of modeling 

tools were confined essentially among the research community.  The limited adoption 

of environmental modeling tools were due largely to the following weaknesses: 

 Extensive efforts were required to gather, update and maintain the input 

data for the models. 

 Complexity of the modeling tools required an intermediate or advanced 

domain knowledge and technical expertise that most users do not have. 

 Model construction, data input, calibration, and scenario development 

required a significant amount of time.  

1.2  Objectives 

The primary goal of this report is to develop a Web-based application for 

predicting pollutant loads at the national level using a combination of land uses, types 

of cultivated crops, and conservation practices.  The specific goals of this report are: 
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1. Develop a dynamic Web-based application that is user-friendly, does not 

require technical expertise from users, and generates pollutant load 

estimates rapidly. 

2. Develop a dynamic Web-based application using pre-processed and 

scientifically reliable data from all watersheds within the contiguous US.  

3. Design a dynamic Web-based application primarily targeting the PC 

environment. 

1.3   Organization of this Report 

 The remainder of this report are organized as follows:   

 Chapter 2 - Watershed Modeling.  This chapter explains the basics of 

watershed modeling and the export coefficient approach. 

 Chapter 3 - QuickLET's Design and Implementation.  This chapter 

describes QuickLET’s architectural design and its implementation using a 

Model-View-Controller software design pattern.  It also discusses the 

methods for estimating pollutant loads in a watershed. 

 Chapter 4 - Code and Performance Metrics.  This chapter discusses the 

results of code analysis and performance metrics employed in QuickLET. 

 Chapter 5 – Conclusion.  This chapter provides a conclusion and 

discusses related work, future work and lessons learned. 
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Chapter 2 

Watershed Modeling 

 A watershed is an area of land where all of the water that drains off of it goes 

into the same place [2].  Watershed modeling describes the processes involved in 

delivering the amount of pollutants in a watershed and identifies their sources [3].  

Most watershed modeling tools analyze only portions of the watershed processes due 

to the complexity of real watershed systems.  Balancing the simplicity of model use 

and the complexity of model representation remains an ongoing challenge in 

watershed modeling, as Ma, Ahuja and Malone [4] observed: 

On one hand, it is necessary to represent the processes in as much 
detail as possible for the model to be applicable to a wide range of 
conditions.  On the other hand, it is equally important for a model to be 
not too complicated so as to discourage its use. 
 

 Maintaining the ease of application usage as well as providing scientifically 

reliable estimates was the approach employed in the design of QuickLET.  The 

following sections explain how QuickLET steered through these complex tasks. 

2.1 Quantifying a problem using "scoping" estimates 

 When a better understanding of an environmental quality problem is desired, 

a simple model that quickly provides "scoping" or "screening" estimates of the extent 

and severity of a problem is often sufficient [5].   The ideal condition would be to 

collect monitoring data since they provide a more reliable information.  But 

oftentimes, a lack of funding and insufficient time prevented the necessary collection 

of data.  Thus, using a scoping modeling tool, like QuickLET, would be a more cost-
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effective alternative since one could obtain reasonable estimates of contaminant 

loads for assessing relative magnitudes and areas of greatest risk with very little cost.  

2.2   QuickLET's watershed modeling strategy 

 QuickLET's purpose for scoping estimates was to predict pollutant loads 

downstream of a watershed, where all streams and their tributaries converged.  To 

do this, QuickLET extrapolated data from current conditions to potential future 

conditions.  QuickLET relied on representing the general loading pattern within an 

ecoregion using an export coefficient (EC) method.  The following sections explain the 

EC approach that QuickLET implemented. 

2.2.1   The Export Coefficient approach 

 The EC approach has been successfully used for estimating pollutant exports 

from small catchment with predominant land use patterns.  Do et al. [6] asserted that 

one advantage of the EC approach is its simple model format and spreadsheet-based 

mode of operation.  White et al. [7] noted, however, that the small watershed 

monitoring data on which ECs were based often relied on data collected from distant 

watersheds with disparate conditions.  The discrepancy between actual monitoring 

data and empirical ones had long been observed in literature.  Liu and Lu [8] 

explained in their study that a great variance between actual ECs and experimental 

ones exists because nonpoint pollution is influenced by local factors such as 

geography, climate, soil, land use patterns, and precipitation among others.  Despite 

their weaknesses, ECs are effective tools for predicting nutrient loads on watersheds. 
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2.2.2 Empirical modeling 

 To mitigate the uncertainties in ECs, QuickLET used a national database of 

localized ECs for ecoregions in the US developed by White et al. [7].  The database was 

created using a combination of available monitoring data and empirical modeling 

using Soil and Water Assessment Tool (SWAT).  SWAT is a river basin- or watershed-

scale modeling tool for quantifying and predicting the impacts of land management 

practices on water, sediment, and agricultural yields [9]. 

 To perform the simulation, a modeling framework was built using available 

distributional data for land use, topography, climate, management, structural 

conservation practices, and soils in the contiguous US.  The data served as input 

parameters for building a SWAT simulation for every land use in every ecoregion 

within the US.  A Monte-Carlo technique was developed to randomly sample the basic 

input data layers in a statistically valid fashion to further reduce bias in load 

predictions.  The SWAT predictions were stored in the database for subsequent 

grouping and statistical analysis. 

2.2.3 National datasets used in QuickLET 

 To define a location, individual sample data was assigned a unique 8-digit, 

United States Geological Survey (USGS) Hydrologic Unit Code (HUC8) [10].  The 

probability that the sample will be assigned a particular HUC8 was based on HUC8 

land area; larger HUC8s have higher probability of being selected.  QuickLET obtained 

the HUC8s from the Watershed Boundary Dataset (WBD) at 1:250,000 scale, available 
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from US government agencies.  Figure 2.1 shows the geographic information system 

(GIS)-based data consisting of 2,091 HUC8s. 

 

Figure 2.1. HUC8s at 1:250,000 resolution in polygon shapefile format. 

 

 Land use data in QuickLET was obtained from 2009 Cropland Data Layer 

(CDL) [11].  The data was simplified into 123 categories representing both cultivated 

and non-cultivated land uses.  The probability that a sample would be assigned a 

given land use was based on the area of each land use with the assigned HUC8.  Figure 

2.2 shows the CDL used in QuickLET. 

 

Figure 2.2.  2009 Cropland Data Layer in raster format.  
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 Soils and topography for each sample were selected from a database 

developed for the Conservation Effects Assessment Project (CEAP) [12].  The CEAP 

database was created with soils from State Soil Geographic Database (STATSGO) [13], 

land cover from 2001 National Land Cover Data Sets (NLCD) [14], and Hydrologic 

Landscape Regions (HLR) of the United States [15].   

 In addition to the nationally available data, databases were created to store 

irrigation data in urban or agricultural land uses as well as management data for 

cultivated and non-cultivated croplands.  Samples assigned as cultivated cropland 

were further attributed with structural conservation practices, which were derived 

from the CEAP database. 

2.2.4 Simulated data   

 The simulated data that QuickLET used was obtained from the work of White 

et al. [7].  The method used was described by the authors as follows: 

 A model constructor program was developed to perform the sampling 

procedure, construct a representative SWAT model, execute that 

model, summarize the results, and write those results to a master 

database.  Input data were stored in either a Microsoft Access database 

or as preprocessed SWAT input files.   Methods used to construct the 

simulations were derived from Texas BMP Evaluation Tool (TBET) 

(White et al., 2012).  Once the model constructor finished a simulation 

and uploaded the results, the SWAT model was deleted, and the 

processes repeated drawing another sample until instructed to stop.  A 

dedicated computer cluster of 40 computers (160 processing cores) 

connected via a private gigabit network running Windows 7 was used.  

Each machine can handle 8-12 threads of the model constructor 

software, allowing approximately 450 active instances of the 

constructor to run simultaneously.  The system performs 7 million 



 

9 
 

simulations per day, and ran for six days, generating database of 45 

million samples, representing a wide variety of conditions across the 

US.  The large size of this database, allowed very specific queries with 

respect to land use, location, soils, or tillage to return a statistically 

useful number of samples to define a distribution. 

 

2.2.5 "Distillation" of empirical data for QuickLET 

 A backend database consisting of 45-million rows would not be practical in a 

multi-user environment like the Web.  Although SQL Server has a built-in optimizer 

that decides when to apply parallelism or serial execution to a query, there is an 

overhead cost to rebuilding online indexes as concurrent users access the database.  

Thus, it was necessary to "distill" the database in order to define the statistical 

distribution of each prediction within each HUC8.  A non-parametric distributional 

definition procedure was applied to the database resulting in sampled data consisting 

of 639,844 rows.  These data define the probability that a pollutant load will exceed a 

particular value.  The sampled data were transformed into the main database 

supporting all of QuickLET's Web application queries. 
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Chapter 3 

QuickLET's Design and Implementation  

The three key considerations in the design of QuickLET were (1) its target 

users, (2) the system infrastructure on which it was to be deployed, and (3) the goals 

of the organization for which it was developed.  At the outset, QuickLET’s intended 

users were those with little or no experience in using hydrologic and other 

environmental modeling tools.  The design of the Web user interface (UI) was heavily 

weighted on the usability of the tool and overall user experience.  Along with its target 

users, considerations were given to the system infrastructure on which QuickLET was 

to be deployed, which required a Windows operating system.  Thus, all the 

components in QuickLET’s Web application were envisioned to run on a Microsoft 

Internet Information Services (IIS) Web server, a .NET Framework application server 

and a Microsoft SQL Server for its backend database.  For maintainability, QuickLET 

was designed with modular components in order to easily add or remove features as 

needs arise.  The following sections discuss the design decisions and rationale used 

in implementing QuickLET’s features. 

3.1  Architectural style 

QuickLET’s architecture adapted a three-layered style comprising 

presentation, business, and data layers.  This style’s distinct feature is the separation 

of tasks through its layers, thus allowing the implementation of design patterns at 
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code levels.  Figure 3.1 illustrates the logical architectural style employed in 

QuickLET. 

 

Figure 3.1. QuickLET’s three-layered architectural style. 

 

3.2 Software design pattern 

With the selection of a three-layered architectural style for QuickLET, the 

Model-View-Controller (MVC) was a logical choice for a software design pattern.  The 

MVC pattern reinforced the separation of concerns into three distinct areas: the model 
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(data layer), the view (presentation layer), and the controller (business layer).  Figure 

3.2 shows the MVC pattern for QuickLET. 

 

Figure 3.2.  QuickLET’s Model-View-Controller software design pattern. 

3.2.1 Models 

 QuickLET models consisted of two classes and an interface for generating 

charts to display on the client side.  The types of charts used to represent changes in 

the environment were: 

 Pie charts  - represented land use and crop data series; 

 Column charts - represented conservation practices; and 

 Box plot charts - represented four types of nutrient loads (water yield, 

sediment, nitrogen, phosphorus). 
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3.2.2  View   

The view or presentation layer provided the graphical display of the results of 

controllers’ actions.  The Web UI controls that were selected to handle a user input 

consisted of a dropdownlist, charts and sliders.  These UI controls enabled the least 

number of input requirements from the user.  In addition, only one Web page handled 

the queries required to render the graphical display on the client side.  This effectively 

eliminated the need to navigate between Web pages during the entire process.   

As a Web application, QuickLET required no user credentials for accessing the 

tool.  Upon entry to the Web site, the Home Web page displayed image placeholders 

for the charts.  Two panels represented the current (baseline) and the scenario 

conditions.  Figure 3.3 shows a snapshot of the Web site’s home page when users first 

navigate to the Web portal. 

 

Figure 3.4.  Screenshot of QuickLET’s Home page upon entry to the Web site. 
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  When users selected a HUC from the dropdownlist control, the image 

placeholders on the baseline panel were replaced by charts representing the HUC8-

based output of the simulated model.  The initial values of the charts in the scenario 

panel contained the same data as the baseline charts.  This was intended to illustrate 

that no change was made to the baseline condition at this point.  Figure 3.5 shows a 

graphical display of the baseline charts when users selected a HUC. 

 

Figure 3.5.  Baseline charts consisting of land use, crop, conservation 
practices, and nutrient loads. 

 
 Whenever users modified any of the sliders' values, the scenario panel would 

re-display the charts to reflect the corresponding change in the charts, i.e., if users 

moved any of the land use sliders, the scenario land use chart would reflect the 

change.  The same would be true for cultivated crops and conservation practices 

sliders and charts.  Figure 3.6 illustrates changes reflected in the scenario panel charts 

when users moved a slider. 

 

Figure 3.6.  Scenario charts reflecting changes as users moved the sliders. 
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To achieve the same look and feel, QuickLET used ASP.NET’s Master Web page 

template.  The Master Web page contained Web UI components common to all the 

Web pages in the application.  Figure 3.7 shows the common theme for the header 

and footer as implemented in the Master Web page. 

 

 

Figure 3.7.  Master Web page header and footer common theme. 

3.2.3 Controllers   

The Controller classes provided the application’s functional workflow.  The 

controllers interacted with the models and forwarded requests to the server.  One 

controller, DatabaseGatewayController, served as the entry point for all requests to 

the database.  Other controllers responsible for updating the values of charts in the 

scenario panel of the Home page were: 

LandSlidersController.  This controller updated the values of the land use chart 

in the scenario panel every time users changed the value of land use sliders.   

CropSlidersController.  This controller updated the values of the crop chart in 

the scenario panel every time users changed the value of the crop sliders. 

CPracticeSlidersController.  This controller updated the values of the 

conservation practices chart in the scenario panel every time users changed the value 

of the conservation practices sliders. 
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3.3  Design rationale 

 The design of QuickLET involved weighing various options that would achieve 

the objectives set out at the beginning of the project.  There were design options that 

would have made QuickLET perform better but were not pursued.  Others were 

initiated at the start of the development phase, but were eventually scrapped due to 

the length of time needed to learn new methods or languages.  Ultimately, QuickLET's 

design would continue to be re-assessed and its code refactored to take advantage of 

new features from emerging technologies.  The following sections discuss the 

rationale used in selecting components for QuickLET's design. 

3.3.1 Integrated Development Environment (IDE) 

 Visual Studio (VS) 2013 Ultimate edition was chosen as the IDE for the 

QuickLET project.  The application design phase considered two Web development 

templates that were available in VS 2013: (1) the built-in MVC template and, (2) the 

ASP.NET Web form template.  The MVC template applied the separation of concerns 

more strictly than the “classic” ASP.NET template since the model, view and 

controller were completely de-coupled from each other.  The MVC template did not 

allow any server-side processing, thus, any server-side responses to user interactions 

with Web UI, such as buttons or text boxes, must be handled explicitly.  There were 

also no stored procedures allowed in the MVC template for accessing the data layer, 

since it used the Microsoft Entity Framework technology to handle data access [16].  

While the MVC template may be the ideal development template to use due to its strict 
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application of separation of concerns, it required a steep learning curve, especially for 

a developer used to the classic Web design environment.  In the interest of time, the 

ASP.NET Web form template was chosen as development platform for QuickLET. 

3.3.2 Charts and sliders 

 Several choices were available for the type of charts and sliders to use in the 

application.  There were a number of pleasing commercial-off-the-shelf (COTS) charts 

and sliders.  However, renewing licenses annually was an unsustainable proposition 

due to budgetary constraints.  In addition, using proprietary COTS libraries would 

create a tight dependency between the external software product and QuickLET, 

which could be a maintainability issue over time.  Initially, jQuery chart and slider API 

was used but the server-side processing requirements of a data-driven application 

were too numerous to be handled entirely on the client side.  For example, fetching 

data from multiple tables in the SQL Server backend database and storing them in 

two-dimensional arrays for further analysis was easily handled using T-SQL database 

scripting language, but difficult to manipulate using JavaScript or jQuery.  In the end, 

QuickLET implemented the Microsoft System’s Data Visualization library for 

displaying the charts and Microsoft’s AjaxControlToolkit for rendering the sliders.  

Since both are Microsoft products, the integration of the APIs within the Windows 

platform through the Nuget Package Manager was trivial, as both libraries allowed 

server-side processing.   
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3.3.3 Accordion panel 

 The decision to use accordion panel as a container for the sliders was due to 

its capability to hold multiple components in a single panel, and at the same time hide 

them when the components were not in use.  This would allow for future addition of 

other land uses, crops and conservation practices.  The accordion panel hid the sliders 

it contained by contracting, and showed them by expanding when users click it.  

Figure 3.8 shows snapshots of the accordion panel.  The figure on the left is a snapshot 

of an inactive accordion panel while the figure on the right shows an expanded 

accordion panel when users select it. 

           

Figure 3.8.  Accordion panel. 
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3.3.4 Cascading Stylesheet (CSS) and HTML  

CSS and HTML were the markup languages used for rendering the View 

component of the application.  QuickLET conformed to HTML 5 and CSS 3 Web 

standards.  The header, menu, body, footer, and the accordion panel were built using 

a Project Seven tool [17].  Although a COTS product, the Project Seven CSS API required 

no annual subscription or expiration of ownership, allowed modifications to the 

software without penalties, and allowed usage of the API in multiple Web sites.  The 

Project Seven tool was a plug-in for DreamWeaver Web design software.  Since it used 

CSS and JavaScript for its code base, it was relatively straightforward to adapt it 

within the Microsoft development platform.   

3.3.5  Web browsers 

Internet Explorer (IE) version 11 was the main Web browser used during the 

development stage.  QuickLET provided backward compatibility for previous 

versions of IE, down to IE6.  Other browsers used during the development were 

Firefox, Chrome and Safari.  There were subtle differences among the different 

browsers but no significant drawbacks were observed.  However, QuickLET rendered 

and ran faster using the Firefox Web browser.  Simple performance tests were 

conducted to compare the four browsers when selecting the dropdownlist and one of 

the sliders.  The tests were conducted in debug mode on the development machine 

running 64-bit Windows 7 Professional Service Pack 1 with 16 GB RAM and 3.50 GHz 

CPU.  Table 3.1 shows the results of the test. 
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Table 3.1.  Comparison of Web browsers' performance. 
 
3.3.6 Screen resolution 

The optimal desktop screen resolution for QuickLET was 1280 x 720 pixels.  

Anything lower would cause QuickLET’s charts to scroll down the screen.  Users could 

easily adjust the screen resolution by zooming in or out in the Web browser.  For 

smaller screen sizes like those in laptops, the Web site rendered better when zoom 

percentage was set at 67%. 

3.3.7 GIS mapping 

 QuickLET provided users with a simple GIS mapping display through a Web 

Service hosted by Environmental Sciences Research Institute’s (ESRI) ArcGIS Online 

[18].  ArcGIS Online allowed upload of shapefiles into the site.  However, the size of a 

shapefile was limited to 10 MB.  Some of the HUCs exceeded this size.  A shapefile is a 

proprietary file format developed by ESRI, usually used in GIS.  As a workaround to 

the size limit, the HUCs were converted from polygon to point shapefiles to reduce 

their sizes.  Figure 3.9 shows the data conversion from polygon to point shapefile. 
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Figure 3.9.  Conterminous US HUC8s converted from polygon to point shapefile 
format. 

 
 The points were not visible when the Web page first loaded.  Toggling the 

zoom-in button made the points visible and clicking a point popped-up a window 

displaying the attributes of the HUC, which included its official name, latitude and 

longitude.  Figure 3.10 shows snapshots of the Web map. 

 

Figure 3.10.  QuickLET’s Web mapping display. 

3.4 Database design 

Database performance in SQL Server database is dependent on factors such as 

number of rows and columns in a table or number of join statements.  In some 

instances, performance benefits from the normalization of tables; for example, if a 

table contains too many rows (e.g., exceeding a million).  There are also occasions 
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when denormalization would be a better option; for example, if the database contains 

several tables with very few rows, combining them into one would probably result in 

better performance than issuing multiple join statements. 

Initially, QuickLET's backend database contained a single table (AllHUC8) with 

639,844 rows.  This table had been distilled from the 45 million EC samples derived 

from SWAT modeling simulations.  Despite this greatly reduced number, performance 

continued to be an issue, exceeding the Google Analytics' performance threshold of 

200 milliseconds per server-side processing time [19].  To ease the performance 

bottleneck, the AllHUC8 table was normalized.  Figure 3.11 shows the entity 

relationships in QuickLET’s database before normalization while Figure 3.12 shows 

the entity relationships after normalization. 

 

Figure 3.11.  Entity relationship diagram before normalization. 
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Figure 3.12.  Entity relationship diagram after normalization. 

AllHUC8 table was normalized into five tables:  Baseline, Landuse, Crops, 

HucCodeMaster, and ConPractice.  AllHuc8 table included crops other than those 

covered in this report.  To further reduce the number of rows in the Crops table, crops 

that were not part of this report were eliminated  from the table.  The final normalized 

Crops table contained 94,095 rows and included five crop classifications: corn, 

sorghum, soybeans, wheat, and other crops.  No adjustment was made to the Landuse 

table.  The final normalized Landuse table also contained 94,095 rows and included 

five land use classifications: cropland, forest, pasture, rangeland, and urban. 
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Like the Crops table, practices not covered by this report were eliminated from 

the normalized ConPractice table to reduce the number of unneeded rows.  This 

resulted in the final normalized ConPractice table, containing 150,550 rows 

representing four conservation practice classifications: filter strips, terraces, 

waterways, and conservation tillage. 

The normalized HucCodeMaster table contained unique data for each HUC8 

and was used to populate the dropdownlist Web UI control.  There were 2,091 unique 

rows in the table, representing each of the HUC8 in conterminous US. 

The Baseline table contained the combined data from the normalized tables of 

Crops, Landuse and ConPractice tables totaling 338,740 rows. 

The Fractions table represented the ECs for the HUC8s.  The Fractions table 

served as the “heart” of the export coefficient methodology, and all the normalized 

tables, including the main sampling table, AllHuc8, had a one-to-many relationship 

with the Fractions table.  Table 3.2 shows the table structure for Fractions table.  

 
Table 3.2.  Fractions table structure. 
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3.5 Sample QuickLET prediction process  

Watershed modeling is composed of complex processes involving numerous 

factors in the environment.  Its primary objective is to predict the amount of 

pollutants that find their way into streams and other water bodies as water flows and 

nutrients are carried downstream the watershed.  To illustrate how QuickLET 

handled its prediction functionalities, a concrete example is given below, using HUC8 

with ID "12010001".   

3.5.1  Baseline calculations 

We start with the location of HUC 12010001, which is in hydrologic Region 12.  

Figure 3.17 shows its exact location in the State of Texas.  The multi-colored HUCs on 

the left represent the different watersheds in Region 12 while the single HUC on the 

right represents HUC 12010001. 

 
Figure 3.17.  HUC 12010001 located in Upper Sabine of Region 12 in Texas. 

 Given HUC 12010001, QuickLET queried the Fractions table in the database 

and fetched the data matching the given ID.  The data was used as input parameters 
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to calculate the distribution of land uses, crops and conservation practices found in 

the HUC.  Figures 3.18 through 3.20 illustrate this process. 

 

Figure 3.18.  Calculating baseline land use with export coefficients. 

 

Figure 3.19.  Calculating baseline crops with export coefficients. 

 

Figure 3.20.  Calculating baseline conservation practices with export coefficients. 
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 An algorithm was developed to calculate the edge-of-field nutrient loss—the 

amount of water, sediment, nitrogen, phosphorus—carried downstream from the 

HUC.   QuickLET employed units of measure for water yield in millimeter per year; 

sediment loading in milligram per hectare per year; and nitrogen and phosphorus in 

kilogram per hectare per year.  The results of calculating the current nutrient loads in 

the HUC were displayed in the form of box plot charts.  Figure 3.19 shows the 

algorithm for estimating the nutrient loads while Figure 3.22 illustrates the resulting 

box plot charts. 

 

Figure 3.21.  Algorithm for calculating baseline edge-of-field nutrient loads. 
 



 

28 
 

 
 

Figure 3.22.  Baseline nutrient loads. 

 
3.5.2  Calculating changes to land use, crops and conservation practices 

Moving the sliders represented changes in land use, crops or conservation 

practices.  The baseline values were used for comparison when evaluating the effects 

of these changes on nutrients, sediment loading and water yield on streams or water 

bodies within the HUC.  Estimates ranged from minimum and maximum to low, high, 

and median values.  Figure 3.23 shows the UML Activity Diagram reflecting changes 

in the scenario conditions. 

 

Figure 3.23.  UML Activity Diagram for calculating and rendering scenario charts. 
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 Calculating the scenario land use involved values from the land use sliders and 

ECs from the Fractions table.  The values of the sliders and the ECs were stored in 

separate arrays.  An algorithm for performing the calculations is shown in Figure 3.24. 

 

 

Figure 3.24.  Algorithm for calculating scenario land use. 

 The result of the calculations was used to create a table that was passed as 

parameter to the chart model for rendering the scenario land use pie chart.  Figure 

3.25 shows the pie chart generated by a change in land use.  The slider was moved to 

its 25th position. 
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Figure 3.25.  Calculating changes to scenario land use chart. 

 

 Similar algorithm and methodology were used to calculate changes to the 

scenario types of cultivated crops and conservation practices.  Figures 3.26 and 3.27 

show the algorithms used to calculate the respective changes in cultivated crops and 

conservation practices. 
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Figure 3.26.  Algorithm for calculating scenario cultivated crops. 
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Figure 3.27.  Algorithm for calculating scenario conservation practices distribution. 

3.5.3 Calculating scenario nutrient loads 

Box plot charts were used to display the estimated nutrient loads because they 

are non-parametric:  they display a range of values without making any assumptions 

of the underlying statistical distribution [20].  QuickLET selected values from the 

simulated data at the 2nd, 98th, 5th, 95th, and the 50th percentiles and assigned them as 
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minimum, maximum, low, high, and median values respectively.  Figure 3.28 shows 

sample box plot charts for the scenario conditions when a land use slider was moved 

to the 25th position. 

 

Figure 3.28.  Scenario box plot charts. 

 

Figure 3.29 shows a UML Activity Diagram with steps for calculating the 

nutrient loads due to changes in scenario conditions. 

 

Figure 3.29.  UML Activity Diagram for calculating scenario nutrient loads. 
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The algorithm for calculating the nutrient loads due to changes in scenario 

conditions is shown in Figure 3.30. 

 

Figure 3.30.  Algorithm for calculating scenario nutrient load values. 

3.5.4 Load differences between baseline and scenario estimates   

Load differences represented the percent increase or decrease in pollutant 

loads between the baseline and scenario.  To calculate the percentage differences, 

sums of nutrient loads from both baseline and scenario conditions were calculated 
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and values from the 50th percentile (median) were used for the load differences chart.  

Figure 3.31 shows the algorithm for calculating the load differences. 

 

Figure 3.31.  Algorithm for calculating differences between baseline and scenario 
nutrient loads. 
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Chapter 4 

Code and Performance Metrics 

 The role of software measurement in software development life cycle cannot 

be overstated.  Some described how software measurements could be used to 

estimate projects and monitor their progress [21] while others observed that 

software measurements could be used to gauge the quality and maintainability of 

software [22].  There were those who viewed the importance of software 

measurements from management objectives of prediction, progress and process 

improvement [23].  Despite the significant role that software measurements play in 

ensuring software quality, very few of the software metrics in industry have been 

examined closely from a measurement method perspective due to lack of agreed-

upon frameworks of verification and validation [24].  For Web application projects, 

the lack of consensus on software measurement standards makes it difficult to find 

appropriate and reliable benchmarks.  In the context of QuickLET, there were no 

historical data to derive credible Web application metrics.  In addition, the various 

types of Web browsers and lack of Web browser standards made establishing metrics 

an intricate exercise since what worked with one browser may not work with 

another.  Despite these limitations, certain measurements and metrics were applied 

to QuickLET to gauge its performance and assess the structure of its source codes.  

Tests were performed using Visual Studio 2013 Ultimate’s built-in code analyzer.    No 

actual tests were performed on the production server.  However, a Web application 
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monitoring tool from Microsoft, Application Insights (AI), was integrated into Visual 

Studio to allow the monitoring of QuickLET from both the client and server sides.  The 

results of the code analysis and AI monitoring metrics are discussed below. 

4.1 Code metrics 

 Visual Studio’s built-in code analyzer was used to calculate the code metrics 

for QuickLET.  The analyzer include the following metrics: 

 Maintainability Index (MI) - represents the relative ease of maintaining the 

code.  The maintainability index score is always in the range 0–100.  A high 

value means better maintainability.   MI ranking is shown in Table 4.1. 

 
Table 4.1.  Maintainability Index score. 

   
 Cyclomatic Complexity –measures the structural complexity of the code.  

The code analyzer calculates the number of different code paths in the flow 

of the program.  A high value means a program has complex control flow, 

requires more tests to achieve good code coverage and is less 

maintainable.  

 Lines of Code (LOC) – indicates the approximate number of lines in the 

code.  The LOC usually does not include comments or blank spaces, but 

Visual Studio does not provide an exact definition of this metric. 
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 Depth of Inheritance – indicates the number of class definitions that extend 

to the root of the class hierarchy.  Deeper hierarchies signify a program 

that is difficult to understand. 

 Class Coupling – measures the coupling to unique classes through 

parameters.  

The overall code analysis results for QuickLET is shown in Table 4.2. 

 

Table 4.2.  Code metrics results for QuickLET. 

 QuikLET scored high in Maintainability Index.  However, its Cyclomatic 

Complexity and Class Coupling scores were also very high, which warranted further 

investigation as to which codes were responsible for the high marks.  A look at the 

models showed that MsChartModel was mainly responsible for the complexity in the 

code.  A further inspection revealed that since the model performed the drawing 

behavior for all 15 charts, it was incurring the burden of the code paths for all drawing 

method calls.  The Controller classes also showed high complexity across the board.  

Any future rework or refactoring must therefore investigate further the results of this 

analysis, especially those with high complexity scores. 
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4.2 Microsoft Application Insights (AI) 

Metrics for monitoring client-side requests and server-side responses were 

measured using Microsoft’s Application Insights (AI) tool, which provided telemetry 

services via Windows Azure.  The tool was added to the production server’s Web 

application.  AI was also integrated within the Visual Studio IDE, which required a 

Windows Azure subscription account.  Since QuickLET was not yet officially launched 

at the time of this writing, the measurements collected reflect mostly testing data.  

The sample metrics, however, helped to assess the current “health” of the application.  

Following are some of the measures collected. 

4.2.1  Client-side metrics 

The client-side metrics measured the performance in the client browser, e.g., 

how fast the Web page loaded and which part of the process took the most time.  The 

topmost metrics, Client Processing Time and Send Request Time, are the key indicators 

for this metric.   

 

Figure 4.1.  Client-side metrics. 
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4.2.2 Server-side metrics 

 These metrics measured performance or load at the production server.  

Figure 4.2 shows the metrics for QuickLET’s hosting server. 

 

Figure 4.2.  Server-side metrics. 

4.3 Deployment to production server 

 Deployment to a production server was a three-step process, following the 

three-layered architectural design: (1) Web application deployment; (2) database 

deployment; and (3) creating a package and publishing it to IIS Web server.   

4.3.1 Internet Information Services (IIS) 7.0 

 The Microsoft IIS 7.0 in Windows Web Server 2008 R2 provided the platform 

for administering and hosting the QuickLET Web application.  A web.config file stored 

the IIS settings that are specific to the QuickLET Web application.  IIS 7.0 has five main 
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components consisting of application pool, worker process (w3wp.exe), http.sys, 

svchost.exe, and configuration store [25]. 

 An IIS application pool is a grouping of URLs that is routed to one or more 

worker processes.  Since several Web applications may share one or more worker 

processes, application pools provide a convenient way to manage a Web 

infrastructure.  QuickLET was setup to run on an application pool having a unique 

name so that it is isolated from problems in other application pools. 

 An IIS worker process is a Windows process responsible for handling requests 

sent to a Web server for specific application pool.  The http.sys listens to requests in 

kernel mode and passes it to the svchost.exe through the World Wide Web publishing 

service (w3svc).  The configuration store is the storage unit for all web.config files, 

ASP.NET settings, and other configuration. 

4.3.2 Deploying QuickLET to IIS 7.0 

 The QuickLET Web application was deployed to IIS 7.0 using a publishing 

profile created with Visual Studio 2013.  A domain name was previously obtained 

before deploying the Web application and all security requirements cleared by the IT 

administrator. 

4.3.3 Deploying the database to SQL Server 2012 

 Database deployment to Microsoft SQL Server 2012 Standard edition was 

performed by copying the database from the development machine into the 

production server.  This method required stopping the SQL Server and SQL Server 



 

42 
 

Agent services from both machines and restarting them after copying.  The web.config 

file was updated based on the production server settings.  The database may be 

deployed before or after the deployment of the Web application.  After the 

deployment of the database, necessary user permissions were configured. 
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Chapter 5 

Conclusion 

 This report presented QuickLET’s Web application design and the export 

coefficient (EC) approach it implemented in delivering pollutant load estimates 

within a watershed.  The three-layered architecture and MVC software design pattern 

on which QuickLET’s framework was built upon weighed various options in selecting 

the Web UI controls that were necessary to accomplish the development objectives.  

QuickLET used a final database of over 600,000 EC samples.  The samples 

represented combinations of land use, soils, location, climate, time, topography, and 

conservation practices.  Most watershed modeling tools that exist today have limited 

scope, largely because watershed data are localized in nature.  The national scope of 

QuickLET’s pre-processed data, randomly drawn from 45 million SWAT simulations, 

provided QuickLET with a unique predictive capability not found in today’s existing 

Web-based watershed modeling tools.  QuickLET’s modeling uncertainty is 

acceptable for initial scoping.  If the level of uncertainty exceeds the decision maker’s 

tolerance, additional rigor and more resource-intensive analysis may be required. 

5.1  Related work 

 Web-based modeling tools assessing the impact of land use, crop cultivation, 

or structural conservation practices on pollutant loads are difficult to develop owing 

to the complex nature of environmental modeling.  Currently, few websites provide 

these types of tools for general public use.  Among the few that exist, is the Spatially 
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Referenced Regressions on Watershed (SPARROW) developed by the US Geological 

Survey (USGS).  SPARROW integrates monitoring data with landscape information on 

national, regional, and basin-wide levels [26].  The tool, designed for water-resources 

managers across the United States, requires domain knowledge of water quality 

assessments.  A Web-based decision support system has been developed to allow the 

use of SPARROW predictions by the public.  The My Waters Mapper tool available from 

the US Environmental Protection Agency’s (EPA) website provides static information 

on water quality assessments for a specified geographic location [27].  Purdue 

University’s Load Duration Curve (LDC) tool enables the collection of water quality 

data and provides suggestions for best management practices scenarios for reducing 

annual pollutant load [28].  The LDC tool derives data from EPA and USGS through 

direct links to those websites.  The Soil Nutrient Assessment Program (SNAP) tool, 

developed by the Agricultural Research Service (ARS) for the Texas State Soil and 

Water Conservation Board, assists Texas farmers in planning for their next year’s 

fertilizer inputs [29].  The Small Watershed Nutrient Forecasting Tool (SWIFT), also 

developed by the ARS, provides the same estimation methodologies as QuickLET, 

except on a larger scale instead of at HUC8-level [30].   

5.2 Future work  

Although QuickLET, in its present design and implementation, fulfilled the 

objectives it set out to do, some areas of improvement remain.  Among these, in order 

of priority, are as follows: 
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 Re-design the architecture using VS 2013 MVC template.  The poor 

performance test results and high code complexity scores were due 

essentially to its current architecture.  The tight coupling QuickLET had 

with its database would be avoided with the use of enhanced MVC pattern 

since data models could be re-created easily, without affecting its code 

base. 

 Add a Web service.  Adding a Web service that exposes QuickLET’s EC 

method for estimating pollutant loads would enable other Web sites or 

users to access this functionality, without having to obtain, process and 

maintain the associated data. 

 GIS geoprocessing.  Providing thematic maps for viewing changes in the 

scenario landscape would provide added visuals to users.  However, this 

enhancement should be weighed against additional efforts needed to 

create a separate View page due to the limited screen space to 

accommodate it in the current Home page. 

5.3 Lessons learned 

This section takes a look at all the steps and missteps taken throughout the life 

cycle of this project.  It has been a long journey and reflecting upon what went right 

and what went wrong may help another software engineer who chooses to venture 

into the wide world of the Web. 
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5.3.1.   What went wrong 

 Lesson 1.  “Normalize until it works; denormalize until it doesn’t.” 

We waited too long before normalizing the database.  This should have 

been done during the planning stage, before any actual coding began.  It set 

us back time wise and made the architectural design an arduous task. 

 Lesson 2.  Good codes come from good tools. 

We used Visual Studio Ultimate very late in the life cycle of the project.  As 

such, we did not use its code analyzer and architectural design tools until 

late in the development phase.  Still, the tools rescued us many times from 

the doldrums of code purgatory. 

 Lesson 3.  Understand the domain. 

About 70% of time was spent trying to understand the world of watershed 

modeling.  Countless times we thought we finally nailed what QuickLET 

was meant to do, only to realize we were on the wrong path.  There are no 

fast answers to this predicament; just a lot more time needed to research 

the domain, a luxury that we did not have. 

5.3.2 What went right 

 The right IDE and fast machines. 

Having a robust development environment and fast machines were by far 

the most important elements that made developing QuickLET an 

interesting and enjoyable journey. 
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 The right project. 

Developing a work-sponsored project provided the best of both worlds, 

since we were able to work on the project during work hours as well as at 

home. 

 The right programming language. 

C# continued to prove itself capable with each project we undertake, and 

QuickLET was no exception.   

 The right support group. 

The Microsoft Developer Network forums for C#, ASP.NET and SQL Server 

had been outstanding in their responses to tough questions.  Most of all, 

there was always someone responding directly to questions within 24 

hours, often, even less than that. 
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