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In recent years, with increasing renewable supply variability, thermal

power plants have started up and shut down more frequently. These dis-

crete commitment decisions, optimized in the unit commitment (UC) problem,

have an impact on system operations as well as generation expansion planning

(GEP). The non-convex costs associated with the commitment decisions may

also lead to generators’ incentive to deviate from the optimal dispatch under

locational marginal prices. In this dissertation, we first propose a convex re-

laxation of UC based on a primal formulation of the Lagrangian dual problem.

This convex relaxation is used (i) to solve the convex hull pricing problem in

polynomial time, providing prices with better incentives in non-convex elec-

tricity markets, and (ii) to construct a computationally efficient GEP model

that represents operational flexibility limits. Next, we present a tight for-

mulation for the commitment of combined-cycle units with representation of

their transition ramping. Finally, we propose a pricing method that reduces

out-of-market payments in multi-interval real-time markets.
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Chapter 1

Introduction

1.1 Unit Commitment and Non-Convex Electricity Mar-
kets

With high shares of variable renewable energy sources and increasing

supply variability, thermal power plants in electric power systems have seen

more frequent start-ups and shut-downs [73]. These start-up and shut-down

decisions, also known as commitment decisions, are solved in the unit com-

mitment (UC) problem, an optimization problem that schedules a portfolio

of generators to satisfy the demand for electricity over a certain number of

periods. Because of the indivisibility of generators and their non-negligible

non-convex costs,1 the UC problem is typically formulated as a mixed-integer

program. Because thermal generators may take hours to be brought online,

UC is solved day-ahead or hour-ahead to deploy enough system resources to

adequately address the real-time uncertainty of demand and renewable gener-

ation.

In addition to making UC a computationally difficult mixed-integer

1As examples: start-up costs, the costs to bring the boiler, turbine, and generator from
shut-down conditions to a state ready to connect and be synchronized to the system; and,
no-load costs, the costs to maintain the boiler operating and the turbine and generator
spinning at synchronous speed.
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program, the indivisibility of generators has economic implications. Day-ahead

and some real-time electricity markets in the US currently base their market

clearing model on a UC problem [22,67,78]. The independent system operator

(ISO) who coordinates, controls and monitors the operation of the electrical

power system as well as the electricity market sends energy prices and target

quantity instructions to each generating unit (called “unit” for short hereafter)

based on a welfare-maximizing solution to the UC problem. From a micro-

economic viewpoint, the ISO’s UC problem is a social planner’s problem.

Ideally, energy prices provide incentives for profit-maximizing market

participants to comply with the ISO’s commitment and dispatch decisions.

Various issues prevent this ideal, however, including the indivisibility, or more

generally, non-convexities of the underlying UC problem that arise from units’

operating characteristics. Consequently, start-up and no-load costs of units

may not be covered by sales of energy at locational marginal prices (LMPs).

More generally, in a market with non-convexities, there might be no set of

uniform prices2 that supports a welfare-maximizing solution [29].3

One way to address this problem is to maintain uniform energy prices

based on marginal energy costs and provide side payments to units that have

an incentive to deviate from the ISO’s solution. This side payment is also

known as an “uplift” payment. In principle, the amount of uplift payment to

2A uniform price is a single price that applies to all transactions at a given bus. Prices
may vary locationally.

3A set of prices is said to support a solution if the economic agents’ profit-maximizing
decisions align with this solution.
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a unit should cover its lost opportunity cost, the gap between its maximum

possible profit and the actual profit obtained by following the ISO’s solution.

For example, the cost of a fast-start unit dispatched at its minimum limit

may not be covered by sales of energy at its marginal cost. If revenues are

based solely on LMP, then the profit-maximizing decision of this unit is to

shut down. An uplift payment is needed to keep this unit online [82]. Unlike

energy prices, uplift payments are non-uniform (discriminatory) in that the

amount of payment is unit-specific. These side payments make it harder for a

potential entrant to determine if new entry would be profitable, particularly

if the uplift payments are not disclosed publicly.

Transparency of the market can be improved by keeping uplift pay-

ments as low as possible. To this end, convex hull pricing [29, 34, 70] has

been proposed as a pricing scheme that minimizes certain uplift payments

over all possible uniform prices, and has received much attention. The convex

hull prices are the dual maximizers of the Lagrangian dual problem of UC.

Determining these dual maximizers is computationally expensive [33, 82]. In

Chapter 2 and Chapter 3 of this dissertation, we address this computational

issue by proposing a polynomially-solvable primal formulation for convex hull

pricing.
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1.2 Unit Commitment and Generation Expansion Plan-
ning

Generation expansion planning (GEP) chooses investments in new gen-

erating units to meet load growth and replace retirements. Vertically inte-

grated utilities use GEP to minimize investment and operational costs in a

centralized manner. In the context of a deregulated electricity sector, GEP

gives an optimal generation mix, providing the ideal outcome of a capacity

market and informs regulatory decisions such as renewable portfolio standards.

High penetration of renewable generation changes the short-term schedul-

ing of thermal power plants by increasing the requirement for operational

flexibility—the ability to cope with variability and uncertainty in both gen-

eration and demand [48]. Recent studies [41, 60, 76] show that operational

flexibility has a considerable impact on GEP. Ignoring limits on operational

flexibility (e.g., indivisibility of the generators, minimum run time constraints)

in GEP can lead to a suboptimal expansion plan and higher operational costs.

To fully represent limits on operational flexibility, the embedded opera-

tional model needs to be a UC problem that represents chronological demand

and renewable generation. However, the resulting GEP model is computa-

tionally challenging. The Lagrangian dual problem of UC provides a tight

relaxation, as the relative duality gap between the UC problem and its La-

grangian dual approaches zero as the number of heterogeneous generators ap-

proaches infinity [7, 8]. In Chapter 4 of this dissertation, following the line of

research that simplifies the operational UC model, we present a GEP model

5



that adopts the primal formulation of the Lagrangian dual of UC as the em-

bedded operational model. Our model is computationally efficient, because

the embedded operational model is a continuous and polynomially-solvable

optimization problem; the only integer variables in our GEP model are the

investment decisions.

1.3 Commitment and Transition of Combined-Cycle Units

A combined cycle unit (CCU) is a type of generator that consists of

one or more combustion turbines (CTs), each with a heat recovery steam

generator (HRSG), as well as one or more steam turbines (STs). Based on

different combinations of CTs and STs, a CCU can be operated in one of

several configurations. This is different from simple-cycle units for which we

assume binary on/off states.

Because of the increasing penetration of renewables, many combined

cycle units have been operated as providers of flexibility in power systems.

Whereas in the past CCUs might run for lengthy periods of time serving

base load, they now respond quickly to variations in renewable supply and

demand by frequent ramping, as well as more frequent transitions between

configurations. In addition to determining the configuration of CCUs in day-

ahead unit commitment, optimizing the configuration of CCUs in the look-

ahead commitment and dispatch can help meet projected system conditions

by pre-positioning CCUs to cope with the variability of renewables.

Most existing models for CCUs assume that CCUs start/end their pro-

6



duction within one interval. This assumption can often be violated, especially

in look-ahead commitment and dispatch models where the length of the inter-

val is typically fifteen minutes. To accurately model the transitions, Chapter

5 proposes a mixed-integer programming model for CCUs where we explicitly

represent their transition ramping.

1.4 Multi-Interval Real-Time Markets

Several wholesale markets in the US have implemented a multi-interval

real-time market (MIRTM) to cope with the variabilities of renewable re-

sources. Instead of solving a single-interval economic dispatch problem, MIRTM

is based on a look-ahead dispatch (LAD) problem that considers several inter-

vals. By expanding the time horizon, MIRTM allows for more efficient dispatch

of generation to meet projected system conditions by pre-positioning resources

to cope, for example, with large ramps in net load [32, 88, 89].

In a typical implementation of MIRTM, the ISO solves LAD in a fash-

ion that resembles model predictive control (MPC) [89]. In the MPC-like

implementation, the collection of settlement prices from a sequence of LAD

problems does not necessarily support the ISO’s dispatch. As a result, a

generator might have an incentive to deviate from the ISO’s dispatch. Fun-

damentally, this is the result of each successive optimization problem treating

historical losses as sunk costs.

To solve the incentive issues, we present a new multi-interval pricing

method in Chapter 6. We show the theoretical incentive properties of the

7



proposed method with a fixed finite horizon and perfect foresight. We also

perform numerical analysis on an ISO New England-based system.

1.5 Outline

Chapter 2 examines the Lagrangian dual problem of UC from a theoret-

ical perspective. We first introduce the UC problem and its Lagrangian dual.

We propose a polynomially-solvable primal formulation for the Lagrangian

dual problem. This formulation explicitly describes, for each generating unit,

the convex hull of its feasible set and the convex envelope of its cost function.

Chapter 3 applies our primal formulation to convex hull pricing. We

first introduce the convex hull pricing problem in non-convex electricity mar-

kets. Applying our primal formulation leads to exact convex hull prices absent

ramping constraints, and a tractable approximation when ramping constraints

are present. Using several case studies, we demonstrate the computational ef-

ficiency of our method. We show that our method leads to reduced uplift

payment compared to an approximation of convex hull pricing used by Mid-

continent ISO (MISO).

Chapter 4 applies our primal formulation to GEP. We present a GEP

model that adopts our primal formulation as the embedded operational model.

Our model is computationally efficient, because the embedded operational

model is a continuous and polynomially-solvable optimization problem; the

only integer variables in our GEP model are the investment decisions. We

demonstrate the performance of our GEP model and the tightness of our

8



convex relaxation using a Texas system in which we consider a chronological

load curve of 8760 hours.

Chapter 5 presents a tight formulation for the combined-cycle units

with representation of their transition ramping. We first identify the draw-

backs of the existing methods that assume the completion of any transition

within a single interval. We then remove this invalid assumption and propose

a formulation with explicit representation of transition ramping. We show

theoretical results on the tightness and compactness of our formulation.

Chapter 6 presents an existing proposal and a new multi-interval pricing

method for MIRTM. We show that both methods incorporate historical losses

and produce prices that appropriately incentivize generators to follow multi-

interval dispatch instructions when implemented with a fixed finite horizon

and perfect foresight. Realistic rolling horizon implementations for an ISO

New England-based system suggest that the new method results, in practice,

in lower out-of-market payments than both current ISO implementations and

the existing proposal.

We conclude this dissertation in Chapter 7 with a summary of results

and future research directions.
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Chapter 2

A Convex Relaxation of Unit Commitment

2.1 Introduction

In electric power system operations, the unit commitment (UC) prob-

lem schedules a portfolio of generators to supply the demand for electricity

over a certain number of periods at maximum social welfare. The constraints

include technical limits of each generators (called private constraints here-

after), as well as system-wide constraints that are complicating, such as power

balance constraints and transmission constraints.

In the context of a vertically-integrated utility, the monopolistic opera-

tor solves the UC problem for an optimal operational schedule. In the context

of a deregulated electricity sector, an independent system operator (ISO) has

to determine the set of accepted supply offers and demand bids submitted

from the market participants, as well as the energy prices to be used for set-

tlements. To this end, the ISO solves an offer-based UC model that can be

viewed as the social planner’s model in microeconomics.

Because of the indivisibility of the generating units, UC is a mixed-

This chapter is based in part on the following publication to which the coauthors con-
tributed equally: Bowen Hua and Ross Baldick. “A convex primal formulation for convex
hull pricing.” IEEE Transactions on Power Systems 32.5 (2017): 3814-3823.

11



integer and non-convex problem that is difficult to solve, especially for large-

scale problems. Since UC is separable across generators absent the system-wide

constraints, the Lagrangian relaxation method has in the past been used to

solve UC [5, 55]. Since the early 2000s, because of significant improvements

in MIP solvers, mixed-integer programming (MIP) became the dominant ap-

proach to solve UC problems [59].

Despite no longer being the dominant approach to solving UC, La-

grangian relaxation of UC remains an interesting problem because of two rea-

sons: the Lagrangian dual problem produces dual maximizers that are efficient

prices in a nonconvex electricity market; and the Lagrangian dual problem it-

self is a tight convex relaxation of UC.

In this chapter, we first describe a polyhedral study. The results of this

study will be utilized in Chapter 3 when characterizing the primal formulation

of the Lagrangian dual, and in Chapter 5 when we study the feasible region of

a combined cycle unit. We then introduce the UC problem and its Lagrangian

dual in which we dualize the system-wide constraints. Finally, we propose

a polynomially-solvable primal formulation for the Lagrangian dual problem.

Part of this work is also reported in [37].

2.2 Polyhedral Study of Some Mixed-Integer Sets

In this section, we develop a polyhedral study of two types of mixed-

integer sets. We present two new theorems that will be utilized when we

characterize the convex hull of the feasible sets of each individual generator.
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The convex hull of a compact set defined by linear inequalities and

integrality requirements is a bounded polyhedron. In general, it is difficult to

obtain an explicit description of the convex hull of a mixed-integer set defined

by arbitrary linear constraints. The number of valid inequalities needed is

typically exponential in the size of the input [16]. In the following, we will

describe special cases of mixed-integer sets for which it is easy to find their

convex hulls. These cases have specific relevance to the unit commitment

problem, but are also more widely applicable. We therefore develop the cases

in a general format.

2.2.1 Polyhedral Cone with an Integer Scalar

Let y ∈ Rny be a continuous vector and let z ∈ Z+ be a nonnegative

integer scalar. Let Z ⊂ Z+ be a finite set of nonnegative integer scalars.

Suppose we have the following mixed-integer set:

F1 = {(y ∈ Rny , z ∈ Z) |Ay ≤ zb}, (2.1)

where A ∈ Rna×ny and b ∈ Rny . Without the integrality requirement, this set

would have been a polyhedral cone.1

Let conv(·) denote the convex hull of a set.2 Let minZ and maxZ,

respectively, be the minimum and maximum elements in the set Z. We show

that the convex hull of F1 can be easily characterized.

1A set C is called a cone if for every x ∈ C and θ ≥ 0 we have θx ∈ C. A cone C is called a
polyhedral if there is a matrix A such that C = {x |Ax ≥ 0}. For the cases in this chapter,
x = (y, z).

2The convex hull of a set is all convex combinations of points in that set.
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Theorem 2.1. The convex hull of F1 is

G1 = {(y ∈ Rny , z ∈ R) |Ay ≤ zb,minZ ≤ z ≤ maxZ}.

Proof. Because

F1 = {(y ∈ Rny , z ∈ Z) |Ay ≤ zb,minZ ≤ z ≤ maxZ},

it suffices to show that z∗ is integral for all extreme points (y∗, z∗) of G1 [14,

Theorem 4.3]. We prove this by contradiction.

Suppose not. Then there exists an extreme point of G1, (y∗, z∗), with

fractional z∗. Since an extreme point lies within G1, we have Ay∗ ≤ z∗b

and minZ < z∗ < maxZ, since minZ and maxZ are integer-valued. The

following inequalities hold for any 1 > ϵ1 > 0 and 1 > ϵ2 > 0:

A(1 + ϵ1)y
∗ ≤ (1 + ϵ1)z

∗b,

A(1− ϵ2)y
∗ ≤ (1− ϵ2)z

∗b.

Now pick 1 > ϵ1 > 0 and 1 > ϵ2 > 0 such that the following inequalities

hold:

minZ ≤ (1 + ϵ1)z
∗ ≤ maxZ, (2.2)

minZ ≤ (1− ϵ2)z
∗ ≤ maxZ. (2.3)

We claim that such ϵ1 and ϵ2 always exist. For example, ϵ1 = min{maxZ
z∗

−

1, 0.5} and ϵ2 = min{1− minZ
z∗

, 0.5} would suffice. This is because (i) the left-

hand inequality of (2.2) and the right-hand inequality of (2.3) are satisfied for

14



Figure 2.1: An example for which Theorem 2.1 applies. The convex hull descrip-
tion of this mixed-integer set is trivial.

any ϵ1 > 0 and ϵ2 > 0, respectively, and (ii) the right-hand inequality of (2.2)

and the left-hand inequality of (2.3) are satisfied by construction of ϵ1 and ϵ2,

respectively.

The above inequalities imply that both (1+ϵ1)(y
∗, z∗) and (1−ϵ2)(y

∗, z∗)

are in G1. As a result, (y∗, z∗) is a convex combination of two points in G1,

namely (1+ ϵ1)(y
∗, z∗) and (1− ϵ2)(y

∗, z∗). This contradicts (y∗, z∗) being an

extreme point.

Fig. 2.1 shows an example for which Theorem 2.1 applies. In this

example, ny = 2 and Z = {0, 1}. The mixed-integer set is expressed as:

{(y ∈ R2, z ∈ {0, 1}) | z ≤ y1 ≤ 2z,

0.5z ≤ y2 ≤ 1.5z,

0 ≤ y1 + y2 ≤ 3z}.

Its convex hull is simply:
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{(y ∈ R2, z ∈ R) | z ≤ y1 ≤ 2z,

0.5z ≤ y2 ≤ 1.5z,

0 ≤ y1 + y2 ≤ 3z,

0 ≤ z ≤ 1}.

In the context of unit commitment, the case considered in Theorem 2.1

is sufficiently general to represent the feasible region of a single-cycle generator

in a single period. The integer variable z represents the commitment status

of the generator, and the continuous vector represents the power output and

ancillary services provision of the generator.

2.2.2 Polyhedral Cone with an Integer Vector

Consider the following polyhedral cone defined by double-sided inequal-

ities:

C = {y ∈ Rny , z ∈ Rnz |Bz ≤ Ay ≤ Dz}, (2.4)

where A ∈ Rna×ny , where B,D ∈ Rna×nz , and where z is redefined to be a

vector. Without loss of generality, assume that C is full-dimensional. If not,

we can make the polyhedron full-dimensional by eliminating some variables.

We can also assume without loss of generality that coefficient matrix of the

inequalities defining C has linearly independent rows.3 If not, since we do

not have constant terms in the inequalities that define the polyhedral cone C,

3That is, we require that
[
−A B
A −D

]
has linearly independent rows.
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either we have at least one redundant constraint that we can remove, or we

have an equality that violates the full-dimensionality assumption.

We consider the following set of (finitely many) feasible z vectors in

the non-negative orthant:

P ⊆ Znz
+ .

Suppose we have the following polyhedron:

Pr = {z ∈ Rnz |Hz ≤ h, z ≥ 0}. (2.5)

If conv(P) = Pr, and if C satisfies a certain condition, we show that the convex

hull of C ∩ (Rny × P) has a simple representation, namely C ∩ (Rny × Pr).

Theorem 2.2. Consider a set of integer vectors P ⊆ Znz
+ . Let Pr ⊆ Rnz

+

be as defined in (2.5), and let C ⊆ Rny × Rnz be as defined in (2.4), with na

being the number of rows of A. Assume w.l.o.g. that
[
−A B
A −D

]
has linearly

independent rows. Consider the following set:

F2 = C ∩ (Rny × P) = {y ∈ Rny , z ∈ P |Bz ≤ Ay ≤ Dz}.

If conv(P) = Pr, if na ≤ ny, and if each entry of D − B is nonnegative, then

the convex hull of F2 is:

G2 = C ∩ (Rny × Pr) = {y ∈ Rny , z ∈ Rnz |Bz ≤ Ay ≤ Dz, Hz ≤ h, z ≥ 0}.
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Proof. Because

F2 = {y ∈ Rny , z ∈ Znz |Bz ≤ Ay ≤ Dz, Hz ≤ h, z ≥ 0},

it suffices to show that any such extreme point (y∗, z∗) of G2 has an integral

z∗ ∈ P [14, Theorem 4.3].

By definition, (y∗, z∗) is the intersection of ny+nz linearly independent

hyperplanes. That is, among the inequalities that define G2, there exist ny+nz

of them that 1) have linearly independent coefficient vectors; 2) are active at

(y∗, z∗). Only Bz ≤ Ay ≤ Dz involve y; at least ny of the ny + nz linearly

independent active inequalities must be from them. There are two possibilities:

1) none of the double-sided inequalities is active on both sides; and, 2) at least

one double-sided inequality is active on both sides. We prove the integrality

of z∗ by considering these two cases separately.

Case 1). Since na ≤ ny, and since the double-sided inequalities can only be

active on one side, at most ny linearly independent hyperplanes can be from the

double-sided inequalities. Therefore, out of the ny + nz linearly independent

hyperplanes, exactly ny of them are from Bz ≤ Ay ≤ Dz, and nz of them

are from Hz ≤ h and z ≥ 0. We collect the coefficients of the ny active

inequalities into matrix A= ∈ Rny×ny and G ∈ Rny×nz , so that A=y
∗ = Gz∗.4

4The rows of G may come from either B or D, depending on which side of the inequality
is active.
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We next show that the projection of

{y ∈ Rny , z ∈ Rnz |A=y = Gz}

onto the z-space is the whole of z ∈ Rnz . To see this, suppose we are given

any z′ ∈ Rnz ; the point (A−1
= Gz′, z′) lies in the set (2.2.2).5

Consequently, the value of z∗ is completely determined by the nz lin-

early independent active inequalities from Hz ≤ h and z ≥ 0. That is to say,

z∗ is an extreme point of conv(P). Since conv(P) = Pr, z∗ ∈ P .

Case 2). Let the non-empty set K ⊆ {1, . . . , na} be the set of indices for the

double-sided inequalities that are active on both sides. For each k ∈ K,

Bkz = Aky = Dkz, (2.6)

where Ak, Bk and Dk are respectively the k-th row of A, B and D. In this case,

the system of linear equations that define (y∗, z∗) has degeneracy. Therefore,

we first simplify (2.6).

The set

{y ∈ Rny , z ∈ Rnz |Bkz = Aky = Dkz}

is equivalent to

{y ∈ Rny , z ∈ Rnz |Aky = Dkz, Bkz = Dkz},

5Inverting A= is justified by its linearly independent rows, which is implied by the linear
independence of the rows of

[
−A B
A −D

]
.

19



which is equivalent to

{y ∈ Rny , z ∈ Rnz |Aky = Dkz,

zi = 0, ∀i such that Dki −Bki > 0}.

To see this, recall the nonnegativity of Dk − Bk and z. The equation

(Dk −Bk)z =
∑

i[(Dki −Bki)zi] = 0 implies that for each i:

• if Dki −Bki > 0, then zi = 0;

• if Dki −Bki = 0, then any zi ≥ 0 satisfies the equation.

Therefore, the set

{y ∈ Rny , z ∈ Rnz |Bkz = Aky = Dkz,∀k ∈ K}

is equal to

{y ∈ Rny , z ∈ Rnz |Aky = Dkz, ∀k ∈ K,

zi = 0,∀i such that
∃k ∈ K for which Dki −Bki > 0}. (2.7)

After the simplification, only |K| linearly independent equalities involve

y in (2.7). At the extreme point (y∗, z∗), there still need to exist ny − |K|

additional active inequalities that involve y; each of these active inequalities

can only be from a double-sided inequality that is active on one side.

We collect the y-coefficients and z-coefficients of active inequalities in K

into matrix A2 ∈ R|K|×ny and D2 ∈ R|K|×ny , respectively. We also collect the

y-coefficients and the z-coefficients of the other ny − |K| active inequalities
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involving y into matrices A1 ∈ R(ny−|K|)×ny and E ∈ R(ny−|K|)×nz ,6 respec-

tively. As a result, at the extreme point (y∗, z∗), we have the following active

inequalities that involve y: [
A2

A1

]
y =

[
D2

E

]
z (2.8)

Similar to Case 1), the projection of

{y ∈ Rny , z ∈ Rnz | (2.8)}

onto the z-space is the whole of z ∈ Rnz . Therefore, the value of z∗ is

determined by nz linearly independent hyperplanes from the following set:

{z ∈ Rnz |Hz ≤ h, z ≥ 0,

zi = 0,∀i such that ∃k ∈ K for which Bki > 0}. (2.9)

That is, z∗ is an extreme point of the set (2.9).

Compared to Case 1), we have additional equalities from (2.7) that fix

some entries of z to be zero. Because we already have the inequalities z ≥ 0

that define Pr, the extreme points of the set (2.9) can only be a subset of the

extreme points of Pr. Together with the fact that conv(P) = Pr, we conclude

that z∗ ∈ P .

We note that the proof of Theorem 2.2 still works if not all of inequal-

ities Bz ≤ Ay ≤ Dz are double-sided.

6Each row of E may be from either a row of B or a row of D, depending on which side
of the inequality is active.

21



Figure 2.2: An example of a polyhedral cone for which Theorem 2.2 applies. The
convex hull of this mixed-integer set is the intersection of the polyhedral cone C and
the triangular prism (R× Pr).

Fig. 2.2 shows an example for which Theorem 2.2 applies. In this

example, ny = 1 and nz = 2. The mixed-integer set is expressed as:

{(y ∈ R, z ∈ {0, 1}2) | z1 + 0.5z2 ≤ y ≤ 2z1 + z2,

z1 + z2 ≤ 1},

for which

C = {(y ∈ R, z ∈ R2) | z1 + 0.5z2 ≤ y ≤ 2z1 + z2}

is a polyhedral cone that is the intersection of two half-spaces, and

Pr = {z ∈ R2 | z1 + z2 ≤ 1, z1 ≥ 0, z2 ≥ 0}

is an integral triangle. For this example, na = ny = 1, and D − B = [1 0.5]

is nonnegative. Therefore, Theorem 2.2 implies that the convex hull of the

above set is simply the intersection of R× Pr and C.

Fig. 2.3 shows an example for which Theorem 2.2 does not apply. In

this example, n1 = 1 and nz = 2. The mixed-integer set is:
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Figure 2.3: An example of a polyhedral cone for which Theorem 2.2 does not
apply. The tetrahedron shown in this figure is the intersection of the polyhedral
cone C and the triangular prism Pr. It is not the convex hull of the mixed-integer
set, because C ∩ (R× Pr) has a fractional extreme point (0.5, 0.5, 0.5).

{(y ∈ R, z ∈ {0, 1}2) | 0 ≤ y ≤ z1,

y ≤ z2,

z1 + z2 ≤ 1},

for which

C = {(y ∈ R, z ∈ R2) | 0 ≤ y ≤ z1, y ≤ z2}

is a polyhedral cone, and

Pr = {z ∈ R2 | z1 + z2 ≤ 1, z1 ≥ 0, z2 ≥ 0}

is the same triangle as in the previous example.

In this example, we have one double-sided inequality, and an additional

inequality that involves y, which precludes the application of Theorem 2.2. The

intersection C ∩ (R×Pr) contains a fractional vertex (0.5, 0.5, 0.5), where the
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two linearly independent inequalities involving y are active. The convex hull

of this mixed-integer set is not C∩(R×Pr), but {0}×Pr, the two-dimensional

triangle on the y = 0 plane.

In the context of unit commitment, Theorem 2.2 applies to the feasi-

ble set of an individual generating unit as defined in the next section. We

also utilize Theorem 2.2 in Chapter 5 when we study the feasible region of a

combined cycle unit.

2.3 The Unit Commitment Problem and Its Lagrangian
Dual

We consider a T -period offer-based UC problem with |G| units. For

unit g ∈ G at time t ∈ {1, . . . , T}, the commitment variable xgt is 1 if the unit

is online and is 0 if the unit is offline. The start-up variable ugt is 1 if unit g

starts up at period t and is 0 otherwise.

Denote unit g’s dispatch-level (dispatched power output) vector by pg ∈

RT
+, whose t-th component is the dispatch level at time t. Similarly, xg ∈

{0, 1}T denotes the commitment vector, and ug ∈ {0, 1}T−1 is the start-up

vector.7 Let unit g’s offer cost function be Cg(pg,xg,ug), which may include

energy, start-up, and no-load costs. As in [30, 59], we assume that Cg is

convex piecewise linear or convex quadratic in pg. We assume that the start-

7The start-up variables ug are defined from period 2 to T . For simplicity we do not
consider the initial conditions of the units. Our formulation can be extended to consider
these conditions.
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up and no-load costs are independent of time t and independent of the time

since the last shut-down. Let Xg ⊆ RT
+ × {0, 1}T × {0, 1}T−1 be the set of

feasible commitment and dispatch decisions for unit g. We assume that private

constraints that define Xg are specified by linear inequalities: these constraints

may include generation limits, minimum up/down time, and perhaps ramping

constraints [30]. For simplicity, we first consider a UC problem in which the

only type of system-wide constraint is the power balance constraint.

Let d ∈ RT
+ be a demand vector, whose t-th component denotes system

demand at time t. Since we do not consider elastic demand for simplicity,

maximizing social welfare is equivalent to minimizing total operating costs.

The UC problem makes a set of commitment and dispatch decisions that

minimizes the total cost, while satisfying physical and operational constraints:

v(d) = min
pg ,xg ,ug , g∈G

∑
g∈G

Cg(pg,xg,ug) (2.10)

s.t.
∑
g∈G

pg = d (2.11)

(pg,xg,ug) ∈ Xg ∀g ∈ G. (2.12)

In addition, we view the UC problem as parametrized by the demand

vector d, and denote the value function of the UC problem by v(d).

In Lagrangian relaxation [43], we dualize all system-wide constraints.

Since the only type of system-wide constraints we consider for now is power

balance constraints (2.11), we dualize these constraints and obtain the La-
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grangian dual function:

q(π) =
∑
g∈G

(
min

(pg ,xg ,ug)∈Xg

Cg(pg,xg,ug)− π⊺pg

)
+ π⊺d, (2.13)

where π ∈ RT is now the dual vector associated with the power balance

constraints. The Lagrangian dual problem is:

max
π

q(π). (2.14)

The Langrangian dual problem is convex but non-smooth. Algorithms

such as sub-gradient methods, bundle methods [43], and cutting plane meth-

ods [27] have been proposed to solve the Lagrangian dual problem of mixed-

integer programming problems. None of the above-mentioned methods guar-

antees convergence in polynomial time. For non-smooth optimization tech-

niques like the sub-gradient method for which no certificate of optimality ex-

ists, the algorithm is often terminated before an optimal value is attained [86,

Section 10.3]. Efficient computation of the Lagrangian dual problem remains

challenging.

2.4 A Primal Formulation of the Lagrangian Dual

This section proposes a primal formulation for the Lagrangian dual

problem of the UC problem. For each unit in this formulation, the feasible set

is replaced by its convex hull, and the cost function is replaced by its convex

envelope.
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2.4.1 A Primal Formulation for the Lagrangian Dual Problem

We make the following:

Assumption 2.1. The set Xg is compact for all g ∈ G, and all system-wide

constraints are linear.

Let C∗∗
g,Xg

(·) be the convex envelope of Cg(·) taken over Xg. The function

C∗∗
g,Xg

(·) is the largest convex function on conv(Xg) that is an under-estimator

of Cg on Xg. It is also the conjugate of the conjugate of Cg.

Note that the UC problem is separable across g absent the system-wide

constraints. We have [37, Theorem 1]:

Theorem 2.3. Under Assumption 2.1, (a) the optimal objective function value

of the Lagrangian dual problem (2.14) equals the minimum of the following

problem denoted by LD-Primal:

min
pg ,xg ,ug ,g∈G

∑
g∈G

C∗∗
g,Xg

(pg,xg,ug) (2.15)

s.t.
∑
g∈G

pg = d (2.16)

(pg,xg,ug) ∈ conv(Xg) ∀g ∈ G, (2.17)

and (b) an optimal dual vector associated with (2.16) is an optimal solution to

(2.14).

Proof. Since the private and system-wide constraints are defined by linear

equalities and inequalities, strong duality holds between LD-Primal and its
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Lagrangian dual problem. Therefore, Theorem 2.3 holds by Theorem 3.3 in

[23].

Theorem 2.3 suggests that if we have an explicit characterization of

C∗∗
g,Xg

(pg,xg,ug) and conv(Xg), we can solve LD-Primal to obtain the dual

maximizers of (2.14).

2.4.2 Characterization of the Convex Hulls

As mentioned in Section 2.2, describing the convex hull of an arbitrary

non-convex set is difficult in general. A general-purpose method proposed

in [4] is used in [75] to obtain a convex hull description of a unit’s feasible set.

This method applies to a feasible set defined by arbitrary linear constraints.

All feasible commitment decisions are enumerated in this method, and both

the number of variables and number of constraints in the resulting description

are exponential in the number of time periods.

A recent polyhedral study of a unit’s state-transition polytope [69] ex-

ploits its structure. Using these special-purpose valid inequalities that charac-

terize the convex hull of the feasible binary commitment variables, we apply

the theorems in Section 2.2 to obtain a tractable description of conv(Xg), the

convex hull of the feasible region of an individual unit.

Once committed, many generators must remain on for a minimum up

time. Similarly, once decommitted, many generators must remain offline for

a minimum down time. Let Lg and lg, respectively, be the minimum up and
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minimum down times for unit g, and let p
g

and pg be the minimum and

maximum generation levels for unit g. We consider feasible commitment and

dispatch decisions of a unit limited by:

• state-transition constraints that represent the relationship between

binary variables:

ugt ≥ xgt − xg,t−1, ∀t ∈ [2, T ], (2.18)

• minimum up/down time constraints using the formulation in [69]:
t∑

i=t−Lg+1

ugi ≤ xgt, ∀t ∈ [Lg + 1, T ], (2.19)

t∑
i=t−lg+1

ugi ≤ 1− xg,t−lg , ∀t ∈ [lg + 1, T ], (2.20)

• dispatch level limits:

xgtpg ≤ pgt ≤ xgtpg, ∀t ∈ [1, T ]. (2.21)

Ramping constraints are not considered until Section 2.5.3. Therefore, a unit’s

feasible set is

Xg = {pg ∈ RT ,xg ∈ {0, 1}T ,ug ∈ {0, 1}T−1 | (2.18)–(2.20), (2.21)}.(2.22)

The set of feasible binary decisions alone is:

Dg = {xg ∈ {0, 1}T ,ug ∈ {0, 1}T−1 | (2.18)–(2.20)}. (2.23)

The following trivial inequalities are valid for Dg:

ugt ≥ 0, ∀t ∈ [2, T ]. (2.24)
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It is claimed in [69] that

conv(Dg) = {xg ∈ RT ,ug ∈ RT−1 |(2.18)–(2.20), (2.24)}. (2.25)

While this statement is true, the proof of it relies on a lemma that states that

all the extreme points of the polytope defined in (2.25) are integral, Lemma

2.9 in [69]. The proof of Lemma 2.9 given in [69] is flawed, however. We

identify the flaws and give our own proof in Appendix of this dissertation.

We also note that the minimum up/down time constraints in [69] have

been used in recent literature on tight formulations of the UC problem, such

as [52, 54, 59].

The following theorem extends the result in (2.25) to also include the

dispatch decisions [37, Theorem 2]:

Theorem 2.4. The result shown in (2.25) implies that

Cg = {pg ∈ RT ,xg ∈ RT ,ug ∈ RT−1 | (2.18)–(2.21), (2.24)}

describes the convex hull of Xg.8

Proof. We show that this theorem is a special case of Theorem 2.2. In this

special case, we have z = (xg,ug) and y = pg. The set of feasible integer

vectors P is described by Dg, and we have its convex hull description Pr shown

in (2.25). The constraints that couple z and y and define the polyhedral cone

C are the dispatch limit constraints (2.21). In this case, we have ny = na = T ,

8For T = 2 and T = 3, the convex hull of a more general Xg with ramping constraints
has been characterized in [64]. The result here does not consider ramping constraints, but
holds for an arbitrary T .
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A = I, B = diag(p
g
), and D = diag(pg). Since each entry of the matrix D−B

is nonnegative, applying Theorem 2.2 to this special case leads to desired

results.

2.4.3 Characterization of the Convex Envelopes

In LD-Primal, each cost function Cg(·) is replaced by its convex en-

velope taken over the non-convex feasible set Xg. When a unit has a constant

marginal cost, Cg(·) is affine, and the convex envelope of Cg(·) has the same

functional form as Cg(·) itself.

When Cg(·) is not affine (piecewise linear or quadratic in pg), its convex

envelope has a different functional form. We first discuss the convex quadratic

case.

Let the start-up and no-load cost of unit g be hg and cg, respectively.

Define the following set:

Xgt = {pgt ∈ R, xgt ∈ {0, 1}, ugt ∈ {0, 1} | xgtpg ≤ pgt ≤ xgtpg}.

Suppose the offer cost function Cg : Xg → R is defined by:

Cg(pg,xg,ug) =
T∑
t=1

Cgt(pgt, xgt, ugt), (2.26)

where for each period t, Cgt : Xgt → R is a convex quadratic function defined

by a single-period cost function:

Cgt(pgt, xgt, ugt) = agp
2
gt + bgpgt + cgxgt + hgugt, (2.27)

where we assume ag > 0.
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Theorem 2.5. The convex envelope of the quadratic cost function Cg taken

over Xg is the function C∗∗
g,Xg

: conv(Xg) → R defined by the following:

C∗∗
g,Xg

(pg,xg,ug) =
T∑
t=1

C∗∗
gt,Xgt

(pgt, xgt, ugt),

where C∗∗
gt,Xgt

: conv(Xgt) → R is defined by the following:

C∗∗
gt,Xgt

(pgt, xgt, ugt) =

{
ag

p2gt
xgt

+ bgpgt + cgxgt + hgugt, xgt > 0,

0, xgt = 0.

Proof. We first show that C∗∗
gt,Xgt

is the convex envelope of the single-period

cost function Cgt. Consider the value of the function C∗∗
gt,Xgt

with ugt fixed at

zero:

C∗∗
gt,Xgt

(pgt, xgt, 0) =

{
ag

p2gt
xgt

+ bgpgt + cgxgt, xgt > 0,

0, xgt = 0,
(2.28)

as (pgt, xgt) varies over {pgt ∈ R, xgt ∈ [0, 1] |xgtpg ≤ pgt ≤ xgtpg}. At points

where xgt ∈ {0, 1}, the value of this function is the same as Cgt(pgt, xgt, 0).

The value of C∗∗
gt,Xgt

at any point (pgt, xgt) with xgt ∈ (0, 1) is determined by

linear interpolation of Cgt(pgt, xgt, 0) between (0, 0) and ( pgt
xgt

, 1). The function

C∗∗
gt,Xgt

is continuous and convex on {pgt ∈ R, xgt ∈ [0, 1] |xgtpg ≤ pgt ≤ xgtpg},

as can be verified by taking its Hessian in this domain.

We prove by contradiction that among the convex under-estimators of

Cgt(pgt, xgt, 0) on the given domain, C∗∗
gt,Xgt

(pgt, xgt, 0) is the largest one. Sup-

pose not, then there exists a convex under-estimator of Cgt(pgt, xgt, 0), denoted

by C ′
gt(pgt, xgt, 0), for which there exist a point (p′gt, x′

gt) with x′
gt ∈ (0, 1) such

that C ′
gt(p

′
gt, x

′
gt, 0) > C∗∗

gt (p
′
gt, x

′
gt, 0). Consider the line interval connecting
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Figure 2.4: Convex envelope of a single-period cost function. The figure shows
the graph of a single-period cost function 0.2p2gt + pgt + 4xgt defined on {xgt ∈
{0, 1}, pgt ∈ R |xgt ≤ pgt ≤ 5xgt} (black dot and black curved line), together with
its convex envelope (the colored surface).

(0, 0, 0) and (
p′gt
x′
gt
, 1, Cgt(

p′gt
x′
gt
, 1, 0)). We have C ′

gt(p
′
gt, x

′
gt, 0) > C∗∗

gt (p
′
gt, x

′
gt, 0) =

0 + x′
gtCgt(

p′gt
x′
gt
, 1, 0), which implies that C ′

gt is not convex when restricted to

this line. This contradicts the convexity of C ′
gt, since a function is convex

if and only if it is convex when restricted to any line that intersects its do-

main [9, Chapter 3]. Therefore, C∗∗
gt,Xgt

(pgt, xgt, 0) is the convex envelope of

Cgt(pgt, xgt, 0).

Fig. 2.4 shows an example of Cgt(pgt, xgt, 0) and its convex envelope.

Since Cgt is affine in ugt, C∗∗
gt,Xgt

(pgt, xgt, ugt) is the convex envelope of Cgt(pgt, xgt, ugt).

Now consider the time-coupled domain Xg. Let X ′
g =

∏T
t=1Xgt, so

that Xg ⊆ X ′
g. The set X ′

g\Xg contains the commitment and dispatch deci-

sions that satisfy generation limit constraints (2.21) but not constraints (2.18)–

(2.20). Because constraints (2.18)–(2.20) restrict the binary variables xg and

ug, (X ′
g\Xg) ∩ conv(Xg) = ∅. Consequently, X ′

g ∩ conv(Xg) = Xg.
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By the separability of Cg and X ′
g across t, we have that the convex

envelope of Cg taken over X ′
g is the function C∗∗

g,X ′
g
: conv(X ′

g) → R defined by:

C∗∗
g,X ′

g
(pg,xg,ug) =

T∑
t=1

{
ag

p2gt
xgt

+ bgpgt + cgxgt + hgugt, xgt > 0,

0, xgt = 0.

Note that taking the convex envelope of a function is equivalent to

taking the convex hull of its epigraph. Because X ′
g ∩ conv(Xg) = Xg, on

conv(Xg), the convex hull of the epigraph of Cg taken over Xg is the same

as the convex hull of the epigraph taken over X ′
g. Therefore, on conv(Xg),

C∗∗
g,X ′

g
(pg,xg,ug) = C∗∗

g,Xg
(pg,xg,ug).

Using the convex envelopes gives us a better lower bound than simply

keeping the functional form of Cgt,Xgt and relaxing its domain. Given g ∈ G, t ∈

[1, T ], and pgt > 0, when xgt is integral, C∗∗
gt,Xgt

(pgt, xgt, 0) = Cgt,Xgt(pgt, xgt, 0);

however, when xgt is fractional, we have p2gt
xgt

> p2gt, providing a tighter bound.

We next consider convex piecewise linear cost functions. Suppose the

interval [p
g
, pg] is partitioned into |K| intervals:

[p
g
, pg] =

∪
k∈K

Ik, (2.29)

where k is the index for the partitioned intervals.

Recalling that hg denotes the start-up cost of unit g, suppose at each

period t, when pgt ∈ Ik, the operating cost (excluding start-up cost and no-load

cost) is

C̃gt(pgt, 1, 0) = agkpgt + bgk. (2.30)
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Introducing an auxiliary variable qgt ∈ R+, the single-period piecewise linear

cost function can be implemented as

C̃gt(pgt, xgt, ugt) = qgt + cgxgt + hgugt, (2.31)

qgt ≥ agkpgt + bgk,∀k ∈ K. (2.32)

The convex envelope of a convex piecewise linear cost function taken

over Xg is also piecewise linear. The proof is similar to that for Theorem 2.5.

Theorem 2.6. The convex envelope of the convex piecewise linear cost function

C̃gt defined in (2.31) taken over Xg is the function C̃∗∗
g,Xg

: conv(Xg) → R defined

by:

C̃∗∗
g,Xg

(pg,xg,ug) =
T∑
t=1

{
agkpgt + (cg + bgk)xgt + hgugt, if pgt

xgt
∈ Ik,

0, if xgt = 0.

Typically, bgk is non-positive. Therefore, similar to the quadratic case,

using the convex envelopes gives us a better lower bound than the implemen-

tation shown in (2.31) and (2.32).

2.4.4 Reformulation and Polynomial-Time Solution

When the cost functions are quadratic, non-linearity of the convex en-

velope comes from the quadratic-over-linear terms ag
p2gt
xgt

, which are known to

be convex. Moreover, we can move these terms from the objective into con-

straints and cast LD-Primal as a second-order cone program (SOCP).
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For each g and t, we replace ag
p2gt
xgt

by a new variable sgt ∈ R+ and

introduce the following constraint:

sgtxgt ≥ agp
2
gt. (2.33)

Since we are minimizing, when xgt = 0, the optimal value for sgt is zero, which

is consistent with the convex envelope. For xgt ≥ 0 and sgt ≥ 0, constraint

(2.33) is equivalent to

∥(2√agpgt, xgt − sgt)∥2 ≤ xgt + sgt, (2.34)

which is a second-order cone constraint [47]. With this reformulation tech-

nique, LD-Primal can be cast as an SOCP, which can be solved in polynomial

time using off-the-shelf interior-point solvers, e.g. GUROBI [31].

In the case where the cost functions are piecewise linear, the convex

envelope of the cost function is convex piecewise linear. The resulting LD-

Primal is a linear program (LP).

Since the number of constraints in our explicit formulation is polyno-

mial in T and |G|, LD-Primal can be solved as a convex program in polyno-

mial time in both cases.

2.5 Extensions
2.5.1 Transmission and Other Linear System-Wide Constraints

In Lagrangian relaxation, all system-wide constraints are dualized. The-

orem 2.3 applies to any linear system-wide constraints, but does not apply to

nonlinear system-wide constraints [42].
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We consider a linear approximation to the transmission constraints and

augment LD-Primal with angle-eliminated transmission constraints in terms

of the shift factors. Other linear system-wide constraints (e.g., contingency

constraints, constraints that approximate loss in the transmission system) can

be treated in a similar fashion.

2.5.2 Ancillary Services

When we co-optimize energy and ancillary services, we introduce a set

of variables to represent the ancillary services provided by market participants.

We use spinning reserve as an example.

Let vector rg denote the amount of spinning reserve provided by gen-

erator g in each time period. Let rg and rg be the lower and upper limits on

spinning reserve. We include the following constraints:

xgtpg ≤ pgt + rgt ≤ xgtpg, ∀t ∈ [1, T ], (2.35)

xgtrg ≤ rgt ≤ xgtrg, ∀t ∈ [1, T ]. (2.36)

The feasible set for each unit is redefined to be:

Xg = {pg ∈ RT , rg ∈ RT ,xg ∈ {0, 1}T ,ug ∈ {0, 1}T−1 |
(2.18)–(2.20), (2.35), (2.36)}.

We can show that:

conv(Xg) = {pg ∈ RT , rg ∈ RT ,xg ∈ RT ,ug ∈ RT−1 |
(2.18)–(2.20), (2.24), (2.35), (2.36)}.
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The proof is similar to that for Theorem 2.4.

Since the convex envelope of a convex function taken over a convex

domain is the convex function itself, and since the additional constraints (2.35)

and (2.36) define a convex feasible set, introducing ancillary services does not

alter the convex envelope.

2.5.3 Ramping Constraints

Ramping constraints are a set of private constraints that limit the in-

crease or decrease of power output from one time period to the next. Let

vg denote unit g’s start-up/shut-down ramp rate limit, and let vg be unit g’s

ramp-up/down rate when committed. The ramping constraints are [64]:

pgt − pg,t−1 ≤ vgxg,t−1 + vg(1− xg,t−1), ∀t ∈ [2, T ], (2.37)

pg,t−1 − pgt ≤ vgxgt + vg(1− xgt), ∀t ∈ [2, T ]. (2.38)

We redefine the feasible set for each unit to be

Xg = {pg ∈ RT ,xg ∈ {0, 1}T ,ug ∈ {0, 1}T−1 | (2.18)–(2.21), (2.37), (2.38)}.

Ramping constraints define a convex feasible set, and thus do not

change the convex envelope of the cost function. They complicate the convex

hulls, however. When these time-coupled constraints are included in the defi-

nition of Xg, equations (2.18)–(2.21), (2.24), together with ramping constraints
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(2.37) and (2.38) themselves, do not completely characterize conv(Xg). Addi-

tional valid inequalities are needed to describe the convex hulls. The number

of valid inequalities needed is in general exponential in T [18].

Explicit descriptions of conv(Xg) for the case where T = 2 are obtained

in [64]. The following valid inequalities

pg,t−1≤ vgxg,t−1 + (pg − vg)(xgt − ugt), ∀t ∈ [2, T ] (2.39)
pgt≤ pgxgt − (pg − vg)ugt, ∀t ∈ [2, T ] (2.40)

pgt − pg,t−1≤ (p
g
+ vg)xgt − p

g
xg,t−1 − (p

g
+ vg − vg)ugt, ∀t ∈ [2, T ] (2.41)

pg,t−1 − pgt≤ vgxg,t−1 − (vg − vg)xgt − (p
g
+ vg − vg)ugt, ∀t ∈ [2, T ] (2.42)

along with equations (2.18)–(2.21), (2.24), describe conv(Xg) for the case of

T = 2. Explicit descriptions of conv(Xg) for T = 3 are also shown in [64].

More importantly, valid inequalities in these descriptions can be applied to

any two or three consecutive time periods to tighten the approximation of

conv(Xg) for T > 3.

When considering ramping constraints, we can solve an approximation

of LD-Primal that includes the above-mentioned valid constraints for T = 2

and T = 3. Our description of conv(Xg) is not exact. Consequently, our

approximation provides a lower bound for LD-Primal. The gap between the

approximated LD-Primal and the UC problem gives an upper bound for the

duality gap between the UC problem and its Lagrangian dual problem. In

the next chapter, we apply LD-Primal to the problem of convex hull pricing.

Empirical characteristics of this gap will also be explored.
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Chapter 3

Convex Hull Pricing

3.1 Introduction

Some electricity markets are non-convex due to indivisibility of gen-

erators. Start-up and no-load costs of units may not be covered by sales of

energy at locational marginal prices (LMPs). Consequently, the ISO has to

make “uplift” payments to units that have an incentive to deviate from the

ISO’s solution. These uplift payments are detrimental to market transparency.

Transparency of the market can be improved by keeping uplift pay-

ments as low as possible. To this end, several alternative pricing schemes have

been proposed. For example, an ad hoc method to reduce uplift payments to

fast-start units is to relax their minimum generation limits to zero, so that they

can set the LMPs [26]. Keeping marginal prices as uniform energy prices, the

pricing scheme proposed in [57] introduces artificial constraints that set the

commitment variables at a welfare-maximizing solution and create discrim-

inatory side payments for commitment decisions based on the optimal dual

variables associated with these artificial constraints. Different from the pricing

This chapter is based in part on the following publication to which the coauthors con-
tributed equally: Bowen Hua and Ross Baldick. “A convex primal formulation for convex
hull pricing.” IEEE Transactions on Power Systems 32.5 (2017): 3814-3823.
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schemes that aim at supporting a welfare-maximizing solution, pricing schemes

such as [72] have been proposed to incentivize a commitment and dispatch so-

lution that is close, but not necessarily equal to the ISO’s welfare-maximizing

solution. In these methods, allocative efficiency is traded off against trans-

parency. Instead of focusing on unit-commitment based markets that are

typical in the US, Ortner and Huppmann [58] define a quasi-equilibrium for a

self-committed electricity market, and determine prices through a mathemati-

cal program with equilibrium constraints. See [45] for a comprehensive review

of different pricing schemes for markets with non-convexities.

Convex hull pricing [29, 34, 70] is a pricing scheme that minimizes cer-

tain uplift payments over all possible uniform prices, and has received much

attention. The Midcontinent ISO (MISO) has implemented an approximation

of convex hull pricing, and refers to convex hull prices as extended locational

marginal prices (ELMPs) [82]. Convex hull prices are slopes of the convex en-

velope of the system cost as a function of demand,1 and are thus non-decreasing

with respect to demand. These prices minimize the total uplift payment de-

fined by the duality gap between the UC problem and its Lagrangian dual.

Convex hull prices are the dual maximizers of the Lagrangian dual

of UC. As discussed in Section 2.1, Lagrangian dual problem is convex but

non-smooth. In the context of convex hull pricing, the focus is on the opti-

1More precisely, they are sub-gradients of the convex envelope of the system cost function.
The system cost function here is the value function of the UC problem parametrized by
demand. The convex envelope of a function is the largest convex under-estimator of the
given function.
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mality of dual variables, rather than obtaining primal solutions. Therefore,

in addition to general-purpose methods, an outer approximation method [29],

a sub-gradient simplex cutting plane method [83], and an extreme-point sub-

differential method [84] have been designed specifically for convex hull pricing.

None of the general-purpose non-smooth optimization methods or the

above-mentioned special-purposed methods guarantees convergence in poly-

nomial time. Obtaining exact convex hull prices has previously been thought

to be computationally expensive [33, 82]. Consequently, MISO implements a

single-period approximation of convex hull pricing that is based on a version of

the UC problem in which integer variables are relaxed to being continuous [82].

Section 3.2 introduces the concept of uplift payment in non-convex

electricity markets and gives the mathematical definition of convex hull prices.

Section 3.3 shows that, utilizing the primal formulation for Lagrangian dual in

Section 2, we can solve for exact convex hull pricing in polynomial time when

ramping constraints are not present. A tight and tractable approximation

is available when there are ramping constraint. Numerical results follow in

Section 3.4.

3.2 Uplift Payments and Convex Hull Prices

Suppose that an energy price vector π is specified by the ISO. Assume

that unit g is a price-taker.2 Given price π, its profit maximization problem

2We assume that the units are prices takers in the economic sense that they cannot affect
prices.
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is:

wg(π) = max
pg ,xg ,ug

π⊺pg − Cg(pg,xg,ug) (3.1)

s.t. (pg,xg,ug) ∈ Xg, (3.2)

where wg(π) is the value function of this problem.

From a microeconomic viewpoint, the ISO’s UC problem (2.10)–(2.12)

is a social planner’s problem whose solution is welfare-maximizing. Problem

(3.1)–(3.2) is the profit maximization problem of a rational agent. If the ISO’s

problem is convex and satisfies strong duality, we can set π to be the opti-

mal dual vector associated with the supply-demand balance constraints in the

planner’s problem. As a result, there exist individual profit-maximizing deci-

sions that align with the welfare-maximizing solution.3 If the ISO’s problem

were strictly convex, then prices alone would provide sufficient information for

the units to determine an efficient decision [49, Chapter 16].

However, the UC problem is non-convex because of the integer decision

variables xg and ug. Thus, in general, there does not exist a set of prices that

support the ISO’s decisions. In particular, revenues from locational marginal

prices (LMPs) may not cover the offered costs of a unit, and the unit may prefer

to deviate from the ISO’s commitment and dispatch decisions, unless there is

additional incentive to follow those decisions. LMPs are determined as the

optimal dual variables associated with the supply-demand balance constraints

3The ISO may need to specify which solution is welfare maximizing in the presence of
multiple profit-maximizing solutions to the individual problems.
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in a continuous convex economic dispatch problem with commitment decisions

fixed at ISO-determined optimal values.

One way to address the above-mentioned problem is for the ISO to

maintain uniform energy prices and provide side payments to units whose in-

dividually rational decision is different from the ISO’s. In principle, these side

payments, also known as “uplift,” should cover the gap between the maximum

possible profit (the optimal objective function value of problem (3.1)–(3.2)),

and the profit made by following the ISO’s decision (the profit (3.1) evaluated

at the ISO’s decisions).

Mathematically, given a set of uniform energy prices π and an ISO’s

welfare-maximizing decision (p∗,x∗,u∗), the amount of uplift payment needed

for unit g equals its lost opportunity cost:

Ug(π,p
∗,x∗,u∗) = wg(π)− (π⊺p∗

g − Cg(p
∗
g,x

∗
g,u

∗
g)), (3.3)

Since the ISO’s decision (p∗,x∗,u∗) is a feasible, but not necessarily optimal

solution to problem (3.1)–(3.2), Ug(π,p
∗,x∗,u∗) is non-negative.

The convex hull prices are defined to be the dual maximizers π∗ of

the Lagrangian dual of UC (2.14). The value function of the Lagrangian dual

problem (2.14) as a function of d is the convex envelope of v(d) [23]. The price

vector is a sub-gradient of the convex envelope of v(d).

The duality gap between the UC problem and its dual (2.13) is exactly
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the total lost opportunity costs,

∑
g∈G

Ug(π,p
∗,x∗,u∗). (3.4)

Consequently, convex hull pricing as a uniform pricing scheme minimizes total

uplift payment as defined by (3.4); that is, it minimizes the total lost oppor-

tunity costs of all participating units. This is a special case of a more general

result on the type of uplift payments convex hull pricing minimizes, as shown

in [10,29,75], since the only type of system-wide constraint considered for now

is the supply-demand balance constraint.

3.3 Primal Formulation

Theorems 2.3–2.6 imply that, if each unit faces only generation limits

and minimum up/down constraints, exact convex hull prices can be determined

by solving LD-Primal with the convex hulls explicitly described in Section

2.4.2 and convex envelopes explicitly described in Section 2.4.3. The convex

hull prices are the optimal dual variables associated with the supply-demand

balance constraints (2.16). When ramping constraints are present, Section

2.5.3 gives a close yet tractable approximation.

Since the number of constraints in our explicit formulation of LD-

Primal is polynomial in T and |G|, and since all variables are continuous, the

convex hull pricing problem can be solved as a convex program in polynomial

time. Note that in an optimal solution to LD-Primal, the commitment and

start-up variables can be fractional. In convex hull pricing, we focus on the
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optimality of dual variables. The ISO’s commitment and dispatch decisions

are still determined by the UC problem.

When there are transmission constraints or other system-wide con-

straints, as discussed in Section 2.5.1, these constraints are unaltered in LD-

Primal. The locational prices can be derived as a function of the dual variables

associated with the supply-demand balance constraints and the transmission

constraints, as in locational marginal pricing [87, Section 8.11]. Note that in

the presence of system-wide constraints that do not necessarily hold as equal-

ities at a welfare-maximizing solution, such as the transmission constraints,

the gap between the UC problem and its dual includes not only the total lost

opportunity cost of the units, but also another type of uplift that addresses

the ISO’s revenue insufficiency [10, 75].

We next consider two market design issues for convex hull pricing in

non-convex electricity markets: when uplift is only paid to some market par-

ticipants, and when prices are calculated on a rolling horizon basis.

3.3.1 Minimization of Uplift Payments to a Subset of the Partici-
pating Units

In certain electricity markets, only a subset of the participating units

G can receive uplift payments. For example, it may be the case that only

units dispatched to a strictly positive generation level are qualified for uplift

payments; that is, units are not paid for merely participating in the market.

In this case, the duality gap that convex hull pricing minimizes includes terms
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that might not end up being paid as uplift.

Let the set of units that are qualified to receive uplift payments be

G ′ ⊆ G. If the qualifications can be determined prior to computing the prices

(this is the case where G ′ is the set of units actually committed by the ISO),

we can solve LD-Primal with G replaced by G ′. The duality gap that the

resulting prices minimize includes only uplift payments to units in G ′.

3.3.2 Committing to Prices

In convex hull pricing, prices that are coupled across multiple time

periods as a whole minimize uplift payments over the specified horizon T of

the underlying UC problem. A subset of these prices does not necessarily

minimize uplift payments over any shorter time horizon that is a subset of

T . In a day-ahead market, the whole set of 24 hourly prices is calculated and

posted at once, so that the coupling would not be problematic insofar as the

ISO commits to buying and selling at these prices.

In contrast, look-ahead real-time markets are operated on a rolling basis

where only the commitment, dispatch, and price calculated for the upcoming

interval are implemented. Therefore, the coupling inherent across a single

look-ahead dispatch may not be represented appropriately by the sequence of

convex hull prices, each of which corresponds to the upcoming interval in each

successive look-ahead dispatch.

To make prices consistent across successive look-ahead dispatches, [35]

suggests that the pricing model represent past intervals in the convex hull
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pricing model, keep the commitment and dispatch decisions in the past as

variables, but constrain prices in the past intervals to be equal to the real-

ized prices. A simple way to achieve this in LD-Primal is to dualize the

system-wide constraints corresponding to each realized price with a penalty

equal to the realized price. For example, if no transmission constraint is bind-

ing in a previous period, we dualize the supply-demand balance constraint

corresponding to that period with a penalty equal to the realized price. If

there have been binding transmission constraints in previous periods, we can

dualize each of those binding transmission constraints with a penalty equal to

its realized optimal dual variable.

3.4 Numerical Results

We implement LD-Primal on a personal computer with a 2.2-GHz

quad-core CPU and 16 GB of RAM. The optimization problems are modeled

in CVX [28] and solved with GUROBI 6.5 [31]. We consider four examples

from the literature. The time resolution in all examples is one hour.

3.4.1 Example 1

We consider an example from [75] in which two units (including a block-

loaded one) serve 35 MW of load in a single period. We modify the original

example by including a start-up cost for each unit. Table 3.1 specifies each

unit’s offers. Both units are assumed to be off initially. The optimal (and the

only feasible) solution to the ISO’s UC problem is for unit 1 to generate 35
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MW and for unit 2 to stay offline.

Table 3.1: Supply Offers in Example 1

Unit
Start-up No-load Energy p

g
pg

$ $ $/MWh MW MW
1 100 0 50 10 50
2 100 0 10 50 50

Table 3.2: Comparison of Different Pricing Schemes for Example 1

Pricing Scheme
π U1 U2

$/MWh $ $
LMP 50 100 1900

CHP 12 1430 0

CHPq 52 30 -

Unit 1 is marginal4 and sets the LMP. Seeing the LMP, unit 2’s profit-

maximizing decision is to go online and generate 50 MW, which would result

in a profit of $1900. Therefore, based on the definition of Ug in (3.3), unit 2

has a lost opportunity cost of $1900. The start-up cost of unit 1 is not covered

by LMP. An uplift payment of $100 is needed to make unit 1 whole (guarantee

a non-negative profit). This result is summarized in the LMP row of Table

3.2.

4A marginal unit has an optimal dispatch level strictly between its maximum and mini-
mum power output.
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LD-Primal for this example is:5

min
pg ,xg ,ug ,g=1,2

100u1 + 50p1 + 100u2 + 10p2 (3.5)

s.t. p1 + p2 = 35 (3.6)
10x1 ≤ p1 ≤ 50x1 (3.7)
50x2 ≤ p2 ≤ 50x2 (3.8)
u1 ≥ x1, u2 ≥ x2 (3.9)
u1 ≥ 0, u2 ≥ 0. (3.10)

Theorems 2.3 and 2.4 imply that the exact convex hull price can be obtained

as the optimal dual variable associated with the demand constraint. Table 3.2

shows that the resulting uplift payments are lower than those under LMP but

still quite large.

Suppose that only units dispatched to a strictly positive generation level

are qualified for uplift payments. In this situation, unit 2 does not receive any

compensation for its lost opportunity cost. As suggested in Section 3.3.1,

to minimize the uplift payment to the qualified units, we can instead solve

LD-Primal with unit 2 excluded. We refer to this pricing scheme as CHPq

(CHP for qualified units). Table 3.2 shows that, if only unit 1 is qualified

for compensation, CHPq results in a lower uplift payment ($30) than CHP

($1430).

5Since the cost functions in this example are linear, our primal formulation is a linear
program.
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3.4.2 Example 2

We investigate a three-period two-unit example from [51] with ramping

constraints but without startup costs. Table 3.3 shows the supply offers and

ramp rate limits. For this example, the start-up/shut-down ramp rate limit

vg of each unit equals the unit’s ramp-up/down rate when committed, vg. All

units are assumed to be off initially. Table 3.4 presents the optimal commit-

ment and dispatch decisions as well as the demand in each period. Ramping

constraints require unit 2 to commit at t = 2 so that it can ramp up to the

generation level needed at t = 3. Table 3.5 displays energy prices and uplift

payments under different pricing schemes.

Since unit 1 is the marginal unit in all three periods, the LMPs are

set by unit 1 at $60/MWh. The payment based on LMPs covers all of unit

1 costs. As shown in the first row of Table 3.5, an uplift payment of $560 is

needed to “make unit 2 whole”.

We can approximate conv(Xg) with constraints (2.18)–(2.21), (2.24),

and ramping constraints. We refer to this pricing method as aCHP1 (approx-

imate CHP). In aCHP2, we augment our formulation with valid inequalities

describing conv(Xg) with T = 2. Finally, using the description of conv(Xg)

for T = 3, we formulate the convex hulls in this three-period example, which

results in the exact convex hull prices.

Table 3.5 shows the energy prices and uplift payments under different

pricing schemes. For this example, as the approximation of conv(Xg) becomes
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Table 3.3: Units in Example 2

Unit
No-load Energy p

g
pg Ramp Rate

$ $/MWh MW MW MW/hr
1 0 60 0 100 120
2 600 56 0 100 60

Table 3.4: Optimal Commitment and Dispatch for Example 2

t
dt x1,t p1,t x2,t p2,t

MW MW MW
1 70 1 70 0 0
2 100 1 40 1 60
3 170 1 70 1 100

Table 3.5: Comparison of Different Pricing Schemes for Example 2

Pricing Scheme
π1 π2 π3 U1 U2

$/MWh $/MWh $/MWh $ $
LMP 60 60 60 0 560

aCHP1 60 60 64 120 160

aCHP2 60 60 65.6 168 0

CHP 60 60 65.6 168 0

more accurate, the energy price at t = 3 increases. Roughly speaking, unit 1

has an increasing incentive to generate more than the ISO’s optimal dispatch,

increasing its lost opportunity cost, but unit 2’s no-load costs can be better

covered, decreasing its lost opportunity cost. The net effect is a decrease in

total uplift as π3 increases.

Note that the prices resulting from aCHP2 happen to equal the exact
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convex hull prices. This result implies that the valid inequalities for T = 3 are

“non-binding”. The approximation of conv(Xg) in aCHP2 is accurate enough

to yield the exact convex hull prices for this example.

3.4.3 Example 3

We consider a 24-period 32-unit example from [83]. The cost functions

for the units are linear. There are no ramping or transmission constraints. LD-

Primal is an LP through which the exact convex hull prices can be obtained.

LD-Primal solves in 0.02 seconds, resulting in the same convex hull prices as

reported in [83]. The duality gap between the UC problem and its Lagrangian

dual problem is $1 148, which equals the total lost opportunity cost.

3.4.4 Example 4

We consider a 96-period 76-unit 8-bus example that is based on struc-

tural attributes and data from ISO New England [40]. We consider the start-up

costs, no-load costs, minimum up/down time constraints, and ramping con-

straints for the generation units. The cost functions are quadratic. We use

Scenario 1 of the 90 load scenarios provided in [40]. Minimum generation levels

for the units are not specified in the original data, so we let p = 0.8p for each

nuclear plant and p = 0.6p for each coal-fired unit. The units’ initial statuses

are not provided. We solve a single-period UC problem to obtain the optimal

commitment and dispatch decisions for period 1. We use these optimal deci-

sions as the units’ initial statuses, and assume that the units have been on/off
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for sufficiently long time so that the minimum up/down time constraints are

not initially binding. The flow limits of the 12 transmission lines in the system

are not defined in the original data. Therefore, we first investigate the case

without transmission constraints (Case 1). We then set a limit of 2100 MW

on the flow over each transmission line (Case 2).

For each case, we first solve the UC problem and obtain the LMPs.

We then determine convex hull prices using two methods: an approximation

of LD-Primal and the single-period approximation proposed in [82]. Be-

cause of the ramping constraints, we approximate conv(Xg) using constraints

(2.18)–(2.21), (2.24), along with valid inequalities that completely characterize

these convex hulls for T = 2 and T = 3. We use the convex envelope described

in Theorem 2.5 and solve the primal formulation as an SOCP. When solving

the UC problems, we include above-mentioned valid inequalities a priori, and

set MIPgap to 0.01%.

Table 3.6 shows the results for the UC problem and the approximated

LD-Primal, as well as the relative gap between these two problems. The ap-

proximated LD-Primal solves in polynomial time with respect to the number

of constraints. However, if we were to solve the Lagrangian dual problem in

the dual space for Case 2, there would be 2400 dual variables. Such a large

number of dual variables due to transmission constraints creates difficulties

for non-smooth optimization methods [85].

The relative gap between approximated LD-Primal and the UC prob-

lem (called CHP gap hereafter) is 0.06% for Case 1 and 0.10% for Case 2.
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Table 3.6: UC and approximated LD-Primal for Example 4

Case 1 Case 2
UC Obj.($) 41 972 688 42 303 772

UC CPU Time (s) 87.42 112.02

LD-Primal Obj. ($) 41 946 298 42 259 962

LD-Primal CPU Time (s) 6.22 13.04

Gap (%) 0.063 0.104

This small CHP gap bounds two other gaps from above. First, the duality gap

between the UC problem and its Lagrangian dual problem can only be smaller

than the CHP gap. This verifies the theoretical result shown in [7], which

states that the relative duality gap of the UC problem and its Lagrangian

dual approaches zero as the number of heterogeneous generators approaches

infinity. Second, the approximation error (the gap between the conceptual

LD-Primal and our approximation) is bounded from above by the CHP gap.

Table 3.7 compares the total uplift payment under the three pricing

schemes. We only consider units’ lost opportunity costs. In the single-period

approximation, start-up and no-load costs are considered only for fast-start

units. We classify a unit with a minimum up/down time of one hour as a fast-

start unit, and 18 units fall into this category. We allocate start-up costs to

peak usage hours according to the recommendation in [82]. In both cases, each

single-period approximation solves in much less than a second. The convex

hull prices derived from the proposed method result in the least uplift payment

in both cases, with and without transmission constraints.
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Table 3.7: Total Lost Opportunity Cost ($) for Example 4

LMP
Primal

Formulation
for CHP

Single-Period
Approximation

of CHP
Case 1 183 473 33 965 96 938

Case 2 329 032 40 863 177 391
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Chapter 4

Generation Expansion Planning with
Consideration of Unit Commitment

4.1 Introduction

Large shares of renewable generation in electric power systems increase

the need for operational flexibility, which is limited by ramping constraints and

minimum up/down time constraints. Consideration of operational flexibility

in GEP necessitates the modeling of UC in system operations. However, the

problem of UC itself is computationally difficult. Therefore, to incorporate

operational flexibility, researchers have made efforts in improving two main

approaches of GEP, screening curve methods and mathematical optimization.

Screening curve methods have been widely adopted in GEP because of

its computational efficiency [6, 66, 91]. In these methods, the net demand1 is

modeled through a load duration curve (LDC), an aggregation of the demand

time series. This aggregation does not preserve the chronological information

This chapter is based on the following publication: Bowen Hua, Ross Baldick, and
Jianhui Wang. “Representing Operational Flexibility in Generation Expansion Planning
Through Convex Relaxation of Unit Commitment.” IEEE Transactions on Power Systems
33.2 (2018): 2272-2281. The first author designed the model, designed and implemented
the computational studies, and wrote the manuscript with support from coauthors.

1The net demand is defined as electric demand minus uncontrollable renewable genera-
tion.
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that captures temporal variation of renewable generation. As a result, tempo-

ral constraints of generating units (e.g., minimum up/down time constraints

and ramping constraints) cannot be fully represented in the planning problem.

Such loss of temporal information poses as a major difficulty for representing

limits on operational flexibility. To approximately consider flexibility-related

issues, [6, 91] use a heuristic short-term operational model that makes unit

commitment decisions.

In the mathematical optimization approach, GEP is typically modeled

as a mixed-integer program (MIP). Binary decision variables represent invest-

ment decisions, and an embedded system operational model makes short-term

operational decisions; total investment and operational costs are minimized.

Ideally, to fully represent operational flexibility, the embedded operational

model needs to be a unit commitment (UC) problem that represents chrono-

logical demand and renewable generation. In this ideal situation, we explic-

itly model discrete commitment decisions and temporal variations of load and

renewable generation, thereby enabling the consideration of key operational

flexibility issues (e.g., binary commitment decisions, minimum up/down time,

ramping constraints). Annual operational costs can also be accurately deter-

mined. However, the computational complexity of the UC problem prevents

this ideal. A few previous studies propose methods for incorporating unit com-

mitment constraints in an optimization-based GEP model. In these studies,

various types of approximations are introduced to reduce the computational

burden, including using a representative load curve and/or simplifying the
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embedded operational model.

For instance, Ma et al. [48] consider a GEP problem with a UC-based

operational model. To manage the computational burden, they select four

representative weeks, in which the chronological load and renewable genera-

tion curves are carefully determined to represent a whole year. In order for

simulated operational cost to be accurate, the load and renewable generation

curves in a representative week need to be a certain type of average among

the represented weeks. In particular, the representative weeks need to capture

the “worst-case” variation of net load, as opposed to a simple average. These

contradictory objectives, together with the need to consider the correlation of

variation between demand and renewable generation, make the determination

of the representative load and renewable generation curves a difficult task.

Other studies have adopted simplifications of the embedded UC model

in GEP. For example, ramping and operating reserves are considered in [19]

within a linear programming formulation. The commitment of the individ-

ual units and minimum up/down time constraints are not considered. It is

reported in [56] that the commercial software PLEXOS uses a linear program-

ming relaxation of the UC model to manage computational complexity. Also,

PLEXOS approximates the hourly chronological load curve by fitting the curve

with blocks that are coarser in temporal resolution.

A promising unit clustering approach has been proposed to reduce com-

putational complexity in the embedded operational model [60–63]. In this

method, units within the same cluster are assumed to have identical techno-
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logical parameters (capacity, heat rate, ramp rate, etc.), i.e., the heterogeneity

of units within the same cluster is assumed away. Instead of using a binary

commitment vector for each unit, an integer commitment vector is used for

each cluster of units. The clustering strategy is crucial in controlling the error

introduced by such approximation. Although not explicitly stated by the au-

thors of [60–63], finding an optimal clustering strategy that minimizes cluster-

ing error is itself a difficult combinatorial optimization problem. Thus, several

heuristic clustering strategies are proposed in [62]. Moreover, unit clustering

has only limited value if transmission constraints are considered and similar

units are not co-located.

In this chapter, following the line of research that simplifies the op-

erational UC model, we adopt LD-Primal proposed in Chapter 2 as the

embedded operational model. The Lagrangian dual problem provides a tight

relaxation of UC, as the relative duality gap between the UC problem and its

Lagrangian dual approaches zero as the number of heterogeneous generators

approaches infinity [7,8]. Compared to the standard bi-level formulation of the

Lagrangian dual problem, LD-Primal is single-level, thus can be embedded

into a GEP problem.

Section 4.2 presents the GEP model previously published in [36] that

adopts LD-Primal as the embedded operational model. Our model is compu-

tationally efficient, because the embedded operational model is a continuous

and polynomially-solvable optimization problem; the only integer variables in

our GEP model are the investment decisions. Section 4.3 demonstrates the
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computational efficiency of our GEP model and the tightness of our convex re-

laxation using a Texas system in which we consider a chronological load curve

of 8760 hours.

4.2 GEP Formulation

To incorporate operational flexibility in GEP in a computationally effi-

cient manner, we propose a MIP formulation of the GEP problem that employs

LD-Primal as the operational model.

4.2.1 Investment Constraints

Let GN denote the set of candidate new generating units, GE the set of

existing units, and G = GN ∪ GE.

The only integer variables in our GEP model are the binary investment

variables zg. The variable zg equals one when candidate unit g ∈ GN is built

and zero otherwise. The following constraints take investment decisions into

consideration:

xgt ≤ zg,∀t ∈ [0, T ],∀g ∈ GN. (4.1)

4.2.2 Private Constraints

We introduce private constraints that apply to each g ∈ G. We con-

sider the co-optimization of energy and spinning reserve. We consider min-

imum up/down time constraints and ramping constraints. We include valid
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inequalities that characterize the convex hull of an individual unit’s feasible

region when T = 2. Since the models in Section 2.5.3 do not consider spinning

reserve, we introduce the following constraints for all t ∈ [2, T ]:

pgt − pg,t−1 + rgt≤ vgxg,t−1 + vg(1− xg,t−1), (4.2)
pg,t−1 − pgt + rgt≤ vgxgt + vg(1− xgt), (4.3)

pg,t−1 + rg,t−1≤ vgxg,t−1 + (pg − vg)(xgt − ugt), (4.4)
pgt + rgt≤ pgxgt − (pg − vg)ugt, (4.5)

pgt − pg,t−1 + rgt≤ (p
g
+ vg)xgt − p

g
xg,t−1 − (p

g
+ vg − vg)ugt, (4.6)

pg,t−1 − pgt + rgt≤ vgxg,t−1 − (vg − vg)xgt − (p
g
+ vg − vg)ugt. (4.7)

Using results in Sections 2.4.2, 2.5.3, and 2.5.2, for each unit g ∈ G in

our GEP formulation, the feasible region is defined to be:

{pg ∈ RT ,xg ∈ RT ,ug ∈ RT−1, rg ∈ RT |
(2.18)–(2.21), (2.24), (2.35), (2.36), (4.2)–(4.7)},

which is a tractable approximation of conv(Xg). We note that, although we

only consider spinning reserve, our formulation can be extended to incorporate

other types of reserve.

4.2.3 System-Wide Constraints

We include the following system-wide constraints:

• power balance constraints (2.11),

• reserve requirement constraints:∑
g∈G

rg ≥ r, (4.8)
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where r ∈ RT
+ is a constant vector for system-wide spinning reserve require-

ment determined by operational protocols of the system operator.

We note that any other linear system-wide constraints can be incor-

porated without affecting the tightness of LD-Primal, since the system-wide

constraints are not dualized in the Lagrangian relaxation.

4.2.4 Objective Function

Since we concern ourself with system operations during a year, we con-

sider annualized capital cost ccapg , an amortization of the overnight capital cost

(OCC) of generation investment over the lifespan (LS) of the unit [79]:

ccapg =
γ ×OCC

1− 1/(1 + γ)LS
, (4.9)

where γ is the interest rate. Let parameter cFOM
g denote the annual fixed

operations and maintenance (O&M) costs.

The objective function is:

Ctotal =
∑
g∈GN

zg(c
cap
g + cFOM

g ) +
∑
g∈GE

cFOM
g +

∑
g∈G

Cvar,**
g . (4.10)

Recall that we use LD-Primal as the embedded operational model. Therefore,

instead of using the variable cost function, we include the convex envelope of

the variable cost function in the objective function.

The explicit formulation of the convex envelopes depends on the form

of the variable cost function, which may include startup costs, no-load costs,

fuel costs, and variable O&M costs. We consider three cases:
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1. The variable cost function is affine in pg. In this case we have

Cvar
g =

T∑
t=1

bgpgt + cgxgt + hgugt, (4.11)

where hg denotes the startup cost, cg the no-load cost, and bg a

constant. Since this function is affine in its arguments, its convex

envelope has the same functional form.

2. The variable cost function is piecewise linear in pg. Let p
g

and pg

be the minimum and maximum generation levels for unit g, respec-

tively. Partition the interval [p
g
, pg] into |K| intervals:

[p
g
, pg] =

∪
k∈K

Ik, (4.12)

where k is the index for the partitioned intervals. Let hg be the

startup cost, and let cg denote the no-load cost. Suppose at each

period t, when pgt ∈ Ik, the operating cost (excluding start-up cost

and no-load cost) is

C̃gt(pgt, 1, 0) = agkpgt + bgk. (4.13)

We have the variable cost function in this case:

Cvar
g =

T∑
t=1

{
agkpgt + bgk + cgxgt + hgugt, if pgt ∈ Ik

}
. (4.14)

According to the results in Section 2.4.3, its convex envelope is also

a convex piecewise linear function:

Cvar,**
g =

T∑
t=1

{
agkpgt + (cg + bgk)xgt + hgugt, if pgt

xgt

∈ Ik

}
. (4.15)

64



To implement the convex envelope, we can introduce a new variable

sgt ∈ R for each g ∈ G and t ∈ [0, T ], define

Cvar,**
g =

T∑
t=1

sgt + cgxgt + hgugt, (4.16)

and include the following constraints

sgt ≥ bgkpgt + bgkxgt,∀k ∈ Ik. (4.17)

The resulting GEP is a mixed-integer linear program.

3. The variable cost function is quadratic in pg. We have

Cvar
g = agp

2
gt + bgpgt + cgxgt + hgugt, (4.18)

where ag > 0 and bg are constants. Constant hg denotes the startup

cost and cg denotes the no-load cost. According to the results in

Section 2.4.3, the convex envelope of the variable cost function is:

Cvar,**
g =

T∑
t=1

{
ag

p2gt
xgt

+ bgpgt + cgxgt + hgugt, xgt > 0,

0, xgt = 0.
(4.19)

4.2.5 Formulations of GEP

We first present our GEP model that represents limits on operational

flexibility through convex relaxation of UC, GEP-UC-R:

min
∆UC

Ctotal (4.20)

s.t. (2.18)–(2.20), (2.24), (2.35), (2.36), (4.2)–(4.7), ∀g ∈ G (4.21)
(4.1), (2.11), (4.8), (4.22)
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where Ctotal is specified in (4.10), and

∆UC = {zg, g ∈ GN, (4.23)
pg,xg,ug, rg, g ∈ G}. (4.24)

To investigate the importance of considering operational flexibility in

GEP, we consider another formulation of GEP in which constraints on opera-

tional flexibility are ignored, GEP-ED:

min
∆ED

∑
g∈GN

zg(c
cap
g + cFOM

g ) +
∑
g∈GE

cFOM
g +

∑
g∈G

Cvar,ED
g (4.25)

s.t. 0 ≤ pgt ≤ zgpg, ∀t ∈ [1, T ], ∀g ∈ GN (4.26)
0 ≤ pgt ≤ pg, ∀t ∈ [1, T ], ∀g ∈ GE (4.27)
(2.11), (4.28)

where Cvar,ED
g is a variable cost function that excludes start-up cost, and

∆ED = {zg, g ∈ GN, (4.29)
pg, g ∈ G}. (4.30)

4.3 Numerical Results

We conduct case studies on a test case based on the Electric Reliability

Council of Texas (ERCOT) system. By comparing the generation expan-

sion plans obtained from different GEP models, we show that it is necessary

to consider limits on operational flexibility in GEP. We demonstrate that

LD-Primal provides an accurate yet tractable model for system operations,

enabling the representation of 8760-hour chronological system operations, a

task that would have been computationally formidable without the convex

relaxation.
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4.3.1 Test System

We adopt technical and cost parameters of the existing generating units

in ERCOT (as of year 2014), predicted chronological electricity generation

from renewables for the year 2030, and predicted chronological load for the

year 2030 reported in [21]. To fully consider the hourly, weekly, and seasonal

variability of load and renewable generation, we use hourly chronological load

and renewable generation predictions for a whole year (8760 hours), avoiding

the error that would have been introduced by selecting representative time

periods or by reducing temporal resolution.

We exclude the following sets of existing units in our planning problem:

1) units that would have retired in the year 2030; 2) hydro units, which amount

to a very small fraction (less than 1%) of the generation capacity in ERCOT;

3) units with uncommon fuel types, such as biomass. The existing thermal

generation mix (a total of 150 units) consists of: 19.67 GW of coal-fired units,

5.02 GW of simple-cycle gas-fired units, 35.20 GW of gas-fired combined-cycle

units, and 5.13 GW of nuclear units. The peak predicted system demand in

the year 2030 is 81.21 GW, and the mean system demand is 57.14 GW.

We consider the aggressive renewable scenario in [21], which predicts

33 846 MW of installed wind capacity, 3 091 MW of installed solar generation,

and provides a sample path of chronological renewable generation in the year

2030. We model investments in renewable generation as an input, rather

than decision variables, since such investments are in part policy-driven. The

operations and maintenance costs of renewables are not included in the total
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cost. In the embedded operational model, we allow economic curtailment

of renewables without penalty, and treat the dispatch of renewables, up to

available production dictated by the forecast, as continuous decision variables.

For new generation investments, we consider the following types of

candidate thermal units:

• Coal: coal-fired steam turbines,

• CCGT: combined cycle gas turbines,

• SCGT: simple cycle gas combustion turbines,

• Nuclear: nuclear units.

Table 4.1 shows input data for candidate generation units.

Table 4.1: Parameters of the Candidate Generating Units

Coal CCGT SCGT Nuclear
Unit Size (MW) 650 410 200 1215

ACC2 (103$/MW·yr) 174.7 60.1 38.5 224.0
Heat Rate (MMBTU/MWh) 8.00 7.34 14.31 13.62

Variable O&M ($/MWh) 7.33 4.73 13.41 1.33
Fixed O&M (103$/MW·yr) 43.56 25.28 16.95 58.62
Startup Cost ($/MW·start) 54.11 16.23 28.14 100

Min. Up Time (hr) 24 6 1 48
Min. Down Time (hr) 12 12 1 24

Ramp Rate (p.u.) 0.3 0.5 1 0.1
Min. Generation (p.u.) 0.5 0.3 0.25 0.8

2ACC = Annualized Capital Cost.
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We use the reference case of the year 2030 in the Energy Information

Administration’s (EIA’s) projection [81] for fuel costs. EIA does not predict

cost of uranium, and data from [71] is used to estimate the cost of uranium.

The fuel costs are converted to 2014 dollar and shown in Table 4.2.

Table 4.2: Fuel Costs

$/MMBTU
Coal 2.89

Natural Gas 5.78
Uranium 0.87

We consider an affine variable cost function (constant marginal cost)

for each unit. As a result, the embedded operational problem LD-Primal is a

linear program (LP), and GEP-UC-R is a mixed-integer linear program. We

do not model the transmission system. We do not consider outages of the

units. The spinning reserve requirement is set to be the maximum of the

following two values: 1) total capacities of two largest generators, 2) the sum

of 3.3% of load and 15% of wind power forecast. In all the GEP models, we

model the reserve requirement constraints as soft constraints, and penalize

reserve shortage at $1 000/MWh, a penalty ISO New England uses for 30-

minute operating reserve [1]. We model the power balance constraints as hard

constraints.

We implement our model on a personal computer with a 2.2-GHz quad-

core CPU and 16 GB of RAM in MATLAB. The optimization problems are

modeled in CVX [28] and solved with GUROBI 6.5 [31]. When solving the
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planning models, to reduce memory usage, we choose the dual simplex method

to solve the integer relaxations in the branch and bound process, and set the

thread count to one. We set the convergence criterion as a MIP gap of 0.01%.

4.3.2 Optimal Expansion Plans

We compare the optimal expansion plans obtained from different GEP

formulations. We name each optimal expansion plan after the model that is

used to obtain the plan.

Section 4.2.5 introduced two GEP formulations, GEP-UC-R and GEP-

ED. In addition, we implement a GEP model based on the unit clustering

approach proposed in [63].3 We cluster the existing thermal units by tech-

nology and heat rate, which results in one cluster for nuclear, three clusters

for coal, two clusters for SCGT, and three clusters for CCGT. The capacity

of a single unit in each cluster is determined by the average among all units

in that cluster. The technological parameters of a single unit in each cluster

is determined through an average weighted by the true capacity of each unit.

Candidate units of the same technology are assumed to be identical. There-

fore, we cluster the candidate units by technology only (coal, CCGT, SCGT,

nuclear). We refer to the clustered UC model as UC-C. We refer to the GEP

model that embeds UC-C as GEP-UC-C.

3Apart from different assumptions such as outages and ancillary services, we make two
modifications in our implementation compared to [63]. First, due to what we believe is a
typo in the original paper, we modify the first item in equation (19) of [63] from 1 to Ng

(notation in [63] used here). Second, we model the reserve constraints as soft constraints in
GEP, whereas [63] models them as hard constraints.
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Table 4.3: Computational Time and Objective Function Values

CPU Time (s) Optimal Obj. Value ($)
GEP-UC-R 97371 1.286× 1010

GEP-UC-C 82921 1.288× 1010

GEP-ED 749 1.275× 1010

3.645

3.645

6.075

1.8

2.2

0.8

3.69

4.1

1.64

0 2 4 6 8 10 12

GEP-UC-R

GEP-UC-C

GEP-ED

New Capacity (GW)

Coal CCGT SCGT Nuclear

Figure 4.1: Comparison of optimal generation expansion plans.

Fig. 4.1 shows the differences between the optimal expansion plans.

None of the plans involves any investment in coal. GEP-ED invests in more

nuclear generation, while GEP-UC-R and GEP-UC-C include more flexible

gas-fired units, presumably because the representation of limits on operational

flexibility. The total capacity investments obtained from GEP-ED (8.515 GW)

is less than that from GEP-UC-R (9.135 GW), which is less than that from

GEP-UC-C (10.145 GW).

Table 4.3 shows computational time and optimal objective function

value of the three GEP models. Despite appearing to have a lower optimal
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objective function value, GEP-ED fails to incorporate commitment-related

issues, which leads to a suboptimal expansion plan and even infeasibility in

system operations, as we show in Section 4.3.3.

The difference in optimal objective values of GEP-UC-R and GEP-

UC-C can be explained by different expansion plans (more gas-fired units in

GEP-UC-C) and different approximation errors. We examine the latter issue

in Section 4.3.4.

4.3.3 System Operations

To better illustrate the optimality of the expansion plans and evalu-

ate the impacts of neglecting operational flexibility, we use a full UC model

to simulate system operations in the year 2030. In this simulation, we take

generation investment decisions as input.

Since solving an ERCOT-size UC problem of 8760 hours is computa-

tionally impractical, we simulate system operations by solving a series of UC

problems on a rolling basis, similar to how day-ahead markets operate in the

US. The units’ operational status at the ending period of one UC problem

serves as the initial status of the subsequent UC problem. Each unit commit-

ment problem concerns 48 hours of system operations, except for the last one

(8760 = 48 × 181 + 72). We choose the length of the simulation to be equal

to the longest minimum up/down time of the units. We refer to such yearly

operations simulation as Ops-UC.

In the operational UC problems, we model the power balance con-
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straints as hard constraints, and the reserve requirement constraints as soft

constraints, which is consistent with the GEP models. However, as we will

see later, under the GEP-ED expansion plan, UC problems for certain time

periods would be infeasible if we keep the power balance constraints as hard

constraints. In this case, we re-solve the UC problem with the power balance

constraints converted to soft constraints with a penalty of $9 000/MWh, the

value of lost load used by ERCOT [22]. The rolling simulation then continues.

Table 4.4: System Operations in the Year 2030

GEP-UC-R GEP-UC-C GEP-ED
Coal 64.18 64.19 56.08

CCGT 122.74 122.78 130.17
SCGT 3.93 3.79 4.17

Nuclear 44.96 44.97 44.96
Coal 0.00 0.00 0.00

CCGT 25.86 25.90 10.21
SCGT 1.07 1.11 0.47

Nuclear 31.93 31.93 53.13
59.02 59.02 58.96
67.90 63.77 124.42

0.00 0.00 2.23
66.94 32.28 94.22
11.91 11.89 11.49

1.16 1.19 1.64
13.07 13.08 13.14

Exist-
ing

New

RC (GWh)
LS (GWh)

Energy 
(TWh)

Renewables

*RC = Renewable Curtailment, LS = Load Shedding, RS = 
Reserve Shortage, OC = Operational Cost, IC = Investment Cost, 
TC = Total Cost

IC ($×109)
OC ($×109)

TC ($×109)

RS (GW·h)

Table 4.4 shows the results for system operations under the three gener-

ation expansion plans, including energy generation from different technologies,

renewable curtailment, load shedding, reserve shortage, and costs. We note

that, under GEP-ED, the operational UC problem is infeasible for periods
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110, 115, and 117 (which are all summer weeks) if the power balance con-

straints are modeled as hard constraints. In these three periods, we re-solve

the operational UC problem by penalizing the violation of power balance con-

straints. Since GEP-ED does not take commitment issues into consideration,

not enough flexible units are built, so that the power balance constraints can-

not be satisfied during the periods with dramatic net load variation. Such lack

of operational flexibility in the GEP-ED plan results in a total of 2.2 GWh

load shedding. In contrast, power balance constraints for all hours are satisfied

under GEP-UC-R and GEP-UC-C.

Since the GEP-ED expansion plan invests in more nuclear generation,

more energy is generated from nuclear, so that the total operational cost is

lower than that of the other two plans. However, such low cost is achieved at

the price of more renewable curtailment, reserve shortage, and load shedding.

Also, the capacity factor of the existing SCGT units is higher under the GEP-

ED plan, because these units have to be utilized and ramped more often due to

lack of operational flexibility in the GEP-ED plan. Moreover, the investment

cost of the GEP-ED plan is higher due to the high construction cost of nuclear

units. In sum, the total annual cost under GEP-ED is the highest of the three

expansion plans.

When compared to GEP-UC-R, GEP-UC-C invests in more gas-fired

units, leading to less reserve shortage and less operational cost. However,

GEP-UC-R results in the least total annual cost of the three plans.

We note that, under the GEP-UC-R plan, the total annual operational
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cost obtained in Ops-UC ($1.191 × 1010) is higher than the total operational

costs evaluated in the planning model ($1.170 × 1010). The same pattern is

also observed for the other two expansion plans. This may be attributed to:

1) suboptimality of solving UC problems on a rolling basis as compared to

solving a single UC problem of 8760 hours; 2) relaxation gap of LD-Primal.

We investigate the relaxation gap in the next subsection.

4.3.4 Computational Efficiency and Tightness of Convex Relax-
ation

In this subsection, we solve the three operational problems (full UC,

our convex relaxation LD-Primal, and the unit-clustering model UC-C) to

illustrate the tightness and computational efficiency of LD-Primal. We fix

the expansion plan to be GEP-UC-R, the plan that leads to the least annual

cost out of the three expansion plans.

Similar to Ops-UC in which a series of UC problems are solved, we

simulate yearly system operations by solving a series of LD-Primal and UC-

C on a rolling basis. The initial status of the units for each LD-Primal/UC-C

problem is set to be identical with the initial status of the corresponding time

period in Ops-UC. We refer to such operations simulations as Ops-UC-R and

Ops-UC-C, respectively.4

4We believe that reserve constraints were modeled as hard constraints in [63] when power
balance constraints are relaxed for feasibility, because no information on reserve shortage
is given even when there is load shedding. In our implementation, we model the reserve
constraints as soft constraints whose penalty is lower than the value of lost load.
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When solving the operational models, we set the thread count to eight.

We set the convergence criterion for the full UC problems and UC-C problems

as a MIPgap of 0.01%. The optimization problems solved in Ops-UC-R are

continuous. Although both LD-Primal and UC-C have the potential to solve

a large-scale problem for 8760 hours, we choose the rolling-basis approach in

the operations simulation because the benchmark problem, the full UC model,

is computationally too difficult to be solved as a monolithic problem of 8760

hours.

Table 4.5 shows the computational results of the three operations sim-

ulation models under the GEP-UC-R plan. The absolute error is defined to

be the gap in the summed optimal objective value (annual operational cost)

between Ops-UC and its simplified model. While Ops-UC-C requires less

computational time, Ops-UC-R clearly outperforms Ops-UC-C in terms of ac-

curacy. This result shows that, for the system that we consider, LD-Primal is

a better approximation of the UC problem compared with the unit clustering

approach.

Although we do not consider the transmission system, since system-

wide constraints are dualized in the Lagrangian relaxation, LD-Primal could

be easily extended to incorporate transmission constraints. In contrast, in a

transmission-constrained system, unit clustering that does not take location

into consideration would introduce more error.

We have previously observed that the annual operational cost obtained

in Ops-UC is 1.76% higher than the annual operational cost evaluated in the
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Table 4.5: System Operations Under GEP-UC-R Plan

Ops-UC Ops-UC-R Ops-UC-C
CPU Time (s) 7094 883 511

OC ($) 1.1914× 1010 1.1909× 1010 1.1939× 1010

Absolute Error ($) - 4.978× 106 2.502× 107

Error (%) - 0.042% 0.21%

planning model. Since the relaxation gap of LD-Primal is only 0.042%, we

can conclude that the higher operational cost can be largely attributed to the

suboptimality of solving UC on a rolling basis.
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Part III

Modeling of Combined Cycle
Units
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Chapter 5

Tight Formulation of Transition Ramping of
Combined Cycle Units

5.1 Introduction

A combined cycle unit (CCU) is a type of generator that consists of one

or more combustion turbines (CTs), each with a heat recovery steam generator

(HRSG), as well as one or more steam turbines (STs) (see Fig. 5.1 for example).

Steam produced by each HRSG is used to drive STs.

Based on different combinations of CTs and STs, a CCU can be oper-

ated in one of several configurations. This is different from the formulation

in Chapter 2 where we assume binary on/off states for each generation unit.

Certain rules have to be followed for the transitions between different config-

urations; not all transitions are feasible. For instance, to switch on an ST, at

least one CT must be on. Fig. 5.2 shows an example of feasible transitions for

a CCU with two CTs and one ST, known as a 2-on-1 CCU.

As described in the introduction, large shares of renewable generation

in electric power systems increase the need for operational flexibility. As a re-

sult, many combined cycle units (CCUs) have been built as a major provider

of flexibility in power systems. Whereas in the past CCUs might run for

79



Figure 5.1: Typical configurations of a 2-on-1 (2CT + 1ST) CCU. The orange
arrows indicate gas flows, and the cyan arrows indicate steam flows. The orange
trapezoids represent CTs, the cyan trapezoids represent STs, the cyan squares rep-
resent condensers, and the bi-color squares represent HRSGs. Source: [3].

Figure 5.2: Configurations and feasible transitions of a 2-on-1 CCU. Source: [52].

lengthy periods of time serving base load, they now respond quickly to varia-

tions in renewable supply and demand by frequent ramping, as well as more

frequent changing of configurations (transitions). In addition to determining

the configuration of CCUs in day-ahead unit commitment, optimizing their

configurations in real time (e.g., through the look-ahead commitment) can

pre-position CCUs to cope with the variability of renewables.

Because of the flexible, cyclic pattern of use, the modeling of the tran-

sitions becomes increasingly important. As we will show in Section 5.2, most
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existing modeling approaches of CCUs assume that units are considered to

start/end their production within one interval. This assumption can often be

violated, especially in look-ahead commitment and dispatch models where the

length of the interval is typically fifteen minutes or even five minutes. To accu-

rately model the transitions, we propose a mixed-integer programming model

for the transition ramping of CCUs in Section 5.3. We also show the tightness

of the proposed model using our polyhedral results from Chapter 2. Section

5.4 presents a numerical example.

5.2 Existing Modeling Approaches
5.2.1 Overview of Existing Approaches

Currently, many ISOs in the US (e.g., MISO, NYISO, PJM, and ISO-

NE) use an aggregated modeling approach for CCUs in their UC model [24].

The aggregated modeling approach assumes that at each time interval each

CCU may either be on or off, which is only a rough approximation for CCUs

that have multiple configurations. As the number of CCUs increases, ISOs such

as ERCOT, CAISO, and SPP have moved toward more detailed modeling of

CCUs.

Besides the aggregated approach, there are mainly two types of model-

ing approaches of CCUs in the unit commitment problem. The first approach

is the component-based (or physical-unit-based) modeling [15]: each of the

physical units of a CCU is represented by a set of commitment and dispatch

variables. This approach has been recognized as more suitable for security
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analysis than for market-clearing [38], in part because many technical param-

eters would have to be submitted to the ISO had this approach been adopted.

Another approach is the configuration-based modeling in which each

configuration of a CCU is represented by a set of commitment and dispatch

variables [12, 44]. This approach is viewed as suitable for market clearing

and bid/offer processing [2, 38], and is adopted by CAISO and ERCOT [52].

However, as pointed out by [24], the standard configuration-based approach

cannot describe the minimum up/down time constraints of each individual

CT and ST in a CCU. To this end, an edge-based formulation is proposed

in [24] in which the minimum run time constraints of each individual turbine

are captured, at the cost of introducing more variables into the formulation.

In addition, a new configuration-based model is proposed in [17] where the

minimum run time constraints of individual turbines are formulated in the

configuration-based variables via projection.

There have been efforts in obtaining tight and compact formulations

for UC, a task closely related to the characterization of the convex hull of an

individual unit’s feasible region and the convex envelope of its cost function

(Chapter 2). The tightness of a MIP formulation refers to how close the

MIP’s integer relaxation is to the MIP itself. The compactness of a MIP

formulation refers to its size. Using the minimum up/down time constraints

proposed by [69], [59] show that the three-binary (on/off, startup, shutdown)

formulation of UC leads to better computational performance than the one-

binary (on/off) formulation [11] mainly due to tightness. The three-binary
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formulation is further improved in [54]. A tight and compact formulation for

UC with configuration-based modeling of CCUs is presented in [52].

5.2.2 Issues with the Existing Models for CCU Transition

For physical reasons, combined-cycle units have little ability to follow

an exterior control signal during start-up (synchronization and ramping up

to minimum output) and shut-down process, although the unit injects power

into the grid after synchronization. The CCU’s electrical output is reason-

ably predictable during the start‐up process. The output during start‐up,

while fairly predictable, does not increase smoothly from minimum load to

maximum load. Instead, output during start‐up is characterized by extended

holds, where plant output does not change, periods where plant output in-

creases slowly, and periods where plant output increases rapidly [3]. As we

can see from Fig. 5.3, during the start-up of this CCU, the operations of the

two CTs and one ST are coordinated.

In addition to the starting up of the entire CCU, turbines of the CCU

might also start up during the transitions between different configurations.

The total power output of a CCU during transitions can usually be modeled

as a fixed trajectory. For example, for a 2-on-1 (two CTs and one ST) CCU to

transition from 2CT to 2CT+1ST, typically the CTs have to reach maximum

output before the ST starts up. In the meantime, the output from ST during

its start-up is also predictable. As a result, the total power output from the

CCU (maximum output of the two CTs plus the start-up power-trajectory of
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Figure 5.3: Cold start‐up of a typical CCU with two CTs and one ST. Source: [3]
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the ST) during the transition can be viewed as a known trajectory.

The start-up and shut-down trajectories of simple-cycle units have been

studied in [53]. However, most existing modeling approaches for CCUs do not

reflect the above-mentioned transition behavior: they assume that units start

up, shut down, and transition1 within one interval while the transition ramping

is ignored. This assumption has the following problems:

• the transition times are usually longer than the time length of a sin-

gle interval, which invalidates the assumption. The short interval

length of look-ahead commitment and dispatch (typically 15 min-

utes) exacerbates this problem.

• CCUs are always modeled as dispatchable. As a result, the actual

CCU output during transition might be different from the ISO’s

dispatch in the day-ahead or look-ahead commitment problem. The

difference has to be compensated by real-time dispatch or regulation.

• Moreover, it has been observed in practical real-time markets that

CCUs during transition may submit a ramp rate limit of 0.1 MW

as a proxy of the non-dispatchable status of the unit.

To sum up, most existing CCU models make the invalid assumption

that all transitions are completed within a single interval. This assumption

leads to a discrepancy between the model and the reality, as well as subopti-

mal commitment and dispatch. In this chapter, we propose a mixed-integer

1We will use transition as an unified term for start-up, shut-down, and transition between
different configurations hereafter.
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programming model for CCUs where we remove the invalid assumption and

model the power output of CCUs in transition as a fixed trajectory.

5.3 Mathematical Formulation

In this section, we describe the mathematical formulation of the pro-

posed CCU model with representation of transition ramping. For brevity, we

only show the constraints that define the feasible region of a single CCU. Em-

bedding these equations into a complete MIP formulation of unit commitment

is straightforward.

Specifically, we first introduce a standard configuration-based formula-

tion for CCU where we assume the completion of any transition within a single

interval. Next, we describe a new formulation where we remove the aforemen-

tioned assumption, and show the tightness of the proposed formulation.

5.3.1 Standard Configuration-Based Formulation

We show a standard configuration-based formulation from [52]. Let y

index the set of configurations Y . Let t ∈ {1, . . . , T} be the index for the time

interval.

Decision Variables. In configuration-based modeling, we have a set of bi-

nary variables x for each of the configurations, and a set of transition variables

v for each of the feasible transitions. The decision variables are:

xy
t Binary variable for whether configuration y ∈ Y is on at t;
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vy,y
′

t Binary variable for transition from y ∈ Y to y′ ∈ Y at t;

pyt Continuous variable for power output from configuration y ∈ Y

at t;

pt Continuous variable for power output of the CCU at t.

Constraints.

• Bounds on the power output of each configuration:

pyxy
t ≤ pyt ≤ pyxy

t , ∀t, ∀y ∈ Y , (5.1)

where py and py are respectively the lower and upper bound of power

output from configuration y.

• Total power output of the CCU:

pt =
∑
y∈Y

pyt , ∀t. (5.2)

• Configurations are mutually exclusive:

∑
y∈Y

xy
t = 1, ∀t. (5.3)

• Logical relationship between configuration and transition variables:

xy
t − xy

t−1 =
∑

y′∈MT,y

vy
′y

t −
∑

y′∈MF,y

vyy
′

t , ∀t,∀y ∈ Y . (5.4)

where MF,y is the set of reachable configurations from y ∈ Y , and

MT,y is the set of configurations that can reach y ∈ Y .
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• At most one transition in each interval:

∑
yy′∈M

vyy
′

t ≤ 1, ∀t, (5.5)

where M is the set of all feasible transitions.

We note that there might be additional constraints characterizing the

feasible set of a CCU, including ramping and minimum run time of each con-

figuration or turbine. However, since these constraints are irrelevant to the

representation of the transition between configurations, we omit them here.

The feasible set of a CCU under the single-interval transition assumption is

defined by constraints (5.1)–(5.5).

Next, we extend this standard configuration-based formulation by re-

moving the invalid assumption of single-interval transition.

5.3.2 Proposed Formulation

Additional Data for Transition Modeling. Recall that we model the

total power output from CCU as a fixed trajectory because CCU has little

ability to follow an external control signal during transition. To represent the

power-trajectories for each feasible transition, we introduce additional data

that describe the length of the transition and the shape of the trajectory:

• Let TP yy′

i be the total power output from the CCU in transition at

the end of the i-th interval of the transition process between y and

y′.
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Figure 5.4: Illustration of additional data for transition ramping. The horizontal
axis shows the interval and the vertical axis shows the power output of the CCU at
each interval.

• Let TDyy′ be the duration (number of intervals) of the transition

process between y and y′.

The vector [TP yy′

1 , TP yy′

2 , . . . , TP yy′

TDyy′ ] describes the transition power-trajectory.

Fig. 5.4 illustrates the two sets of additional data we need for modeling

transition ramping. The CCU shown in the figure operates in configuration 1

at the beginning, transitions to configuration 2, and then transitions back to

configuration 1. The duration of the transition from configuration 1 to 2, as

well as 2 to 1, is TD12 = TD21 = 4 intervals. The power output during the

four-interval transition from configuration 2 to 1 is specified by the 4-vector

(TP 21
1 , TP 21

2 , TP 21
3 , TP 21

4 ), with TP 21
4 shown explicitly in Fig. 5.4.
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Decision Variables. The decision variables of the proposed formulation are:

wy
t Binary variable for whether configuration y is dispatchable at

t;

xy
t Binary variable for whether configuration y is either 1) dis-

patchable or 2) on the from end of an ongoing transition at

t;

vy,y
′

t Binary variable for transition from y to y′ at t. The transi-

tion variable becomes one when a new configuration becomes

dispatchable;

pyt Continuous variable for power output from configuration y ∈ Y

at t;

pt Continuous variable for power output of the CCU at t.

We note that we introduce a new set of binary variables w for dis-

patchability. Fig. 5.5 illustrates this new variable using the same transition

events shown in Fig. 5.4. At the first interval, configuration 1 is dispatchable,

and w1
1 = 1. The transition from configuration 1 to 2 lasts four intervals,

and w2
t does not become 1 until interval 6. Similarly, when transition back to

configuration 1, w1
t does not become one until interval 13.

Compared to the standard formulation, the definition of pt and pyt re-

mains the same, although pyt does not include the output implied by the transi-

tion power-trajectories. To adjust for the transition intervals when the CCU is

non-dispatchable, vy,y
′

t is defined to be one when a new configuration becomes
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Figure 5.5: Illustration of the new binary variable w. The horizontal axis shows
the time interval and the vertical axis shows the power output of the CCU at each
interval. The table below shows the values of the variables xyt and wy

t for t ∈ [1, 13]
and y ∈ {1, 2}.

dispatchable. That is, the transition variable vy,y
′

t is one when the transition

completes. The definition of xy
t is changed accordingly so that constraints

(5.4) still hold.

Constraints. We keep constraints (5.3)–(5.5) from the standard formula-

tion. In addition, we have:
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• Bounds on the power output of each configuration:

pywy
t ≤ pyt ≤ pywy

t , ∀t,∀y. (5.6)

• Constraint that defines wy
t :

wy
t = xy

t −
∑

yy′∈M

TDyy′∑
i=1

vyy
′

t−i+1+TDyy′ , ∀t, ∀y. (5.7)

– The last term forces wy
t to zero when CCU is transitioning

away from configuration y.

• Total power output of CCU:

pt =
∑
y∈Y

pyt +
∑

yy′∈M

TDyy′∑
i=1

TP yy′

i vyy
′

t−i+1+TDyy′ , ∀t. (5.8)

– The last term represents the output from the transition

power-trajectory.

Again, here we omit ramping and minimum up/down time of config-

uration/turbine. The feasible set of a CCU with representation of transition

ramping is defined by constraints (5.3)–(5.8).

5.3.3 Analysis of the Proposed Formulation
5.3.3.1 Tightness of the Proposed Formulation

To study the tightness of the proposed formulation, we focus on the

following feasible set:

S = {(x ∈ {0, 1}T |Y|,v ∈ {0, 1}T |M|,w ∈ {0, 1}T |Y|,p ∈ RT |Y|)|(5.3)–(5.7)},

(5.9)

92



where x is a vector that collects all xy
t variables, v collects all vy,y

′

t variables, w

collects all wy
t variables, and p collects all pyt variables. Note that we omit pt

variables in our polyhedral study. This is because 1) they are defined through

equality constraints (5.8), and thus can be eliminated; 2) they do not affect the

tightness of the formulation, as shown by the polyhedral result from Chapter

2.

Remark 5.1. Without ramping constraints, if we can describe the convex hull

of the feasible set of the binary variables:

Sbin = {(x ∈ {0, 1}T |Y|,v ∈ {0, 1}T |M|,w ∈ {0, 1}T |Y|)|(5.3)–(5.5), (5.7)},

(5.10)

then by Theorem 2.2 applied to S, the convex hull description together with

constraints (5.6) define the convex hull of the whole feasible set S.

The constraints that link the binary and the continuous variables are

(5.6). For Theorem 2.2 to hold, the double-sided inequality constraints (5.6)

have to be of the form of

B(x,v,w) ≤ Ap ≤ D(x,v,w), (5.11)

and satisfy:

1. The number of rows of A has to be less than the number of contin-

uous variables pyt .

2. Each entry of D −B is nonnegative.
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When constraints (5.6) are expressed in the form of (5.11), we see that A = I,

B = 0, and D is a diagonal matrix with nonnegative entries. In addition, the

number of rows of A equals the length of the p vector. Therefore, Theorem

2.2 holds.

Remark 5.1 implies that, once we determine the convex hull of the

binary variables, characterizing the convex hull of the whole feasible set is

trivial. However, characterizing the convex hull of the binary variables is itself

a difficult problem, especially in the presence of minimum run time constraints

(see a discussion in [52]).

5.3.3.2 Compactness of the Proposed Formulation

Since variables wy
t are defined through equality constraints (5.7), we

can replace all appearances of wy
t in the other constraints by the right hand

side of (5.7), thereby reducing the number of variables as well as the number of

constraints. Same applies to variables pt defined through equality constraints

(5.8).

Remark 5.2. If we eliminate all wy
t and pt variables in the proposed formulation

using (5.7), then the number of constraints and the number of variables in the

proposed formulation remain the same as those in the standard formulation.

If we eliminate all wy
t and pt variables, then the set of decision variables

(x,v,p) is the same as the standard formulation. The number of constraints

does not change, either, because constraints (5.6) and (5.8) replace (5.1) and
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(5.2), respectively. Compared with the standard formulation, the proposed

formulation only makes the coefficient matrix denser.

5.3.3.3 Additional Aspects

Ramping Constraints. As with the single-cycle units, the introduction of

ramping constraints complicates the convex hull of the CCU feasible set S and

invalidates Remark 5.1.

In the existing literature such as [52], both intra-configuration and

inter-configuration ramp rates are defined. However, the inter-configuration

ramp rate is only a rough proxy to the transition power-trajectories.

We propose to use plant-wise ramping constraints:

pt − pt−1 ≤
∑
y∈Y

Ry
Ux

y
t , ∀t, (5.12)

pt−1 − pt ≤
∑
y∈Y

Ry
Dx

y
t , ∀t, (5.13)

where Ry
U and Ry

D are respectively the ramp-up and ramp-down rate limits of

configuration y when the CCU is dispatchable.

For some CCUs, the CT has to reach its maximum output before com-

mitting the ST. Plant-wise ramping constraints take such transition rules into

consideration. In addition, plant-wise ramp rate leads to fewer constraints

compared to the existing formulations.

Constraints (5.12) and (5.13) assume that the ramp rate of the power-

trajectories are within the limit on the ramp rates when the CCU is dispatch-
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able. If this assumption is not satisfied, we can introduce additional terms on

the right hand side that relax these constraints when the CCU is in transition.

No Overlapping Transitions. Since we remove the one-interval transition

assumption in the proposed formulation, one may worry about overlapping

transitions. That is, the start of a new transition before the completion of a

previous transition.

The minimum run time constraints may prevent such overlapping. More

importantly, we show that overlapping is not possible in the proposed formu-

lation even without the minimum run time constraints.

Remark 5.3. The proposed formulation (5.3)–(5.8) does not allow overlapping

transitions.

To see this, suppose there are two overlapping transitions, first from

y to y′, then from y′ to y′′. The durations these two transitions are TDy,y′

and TDy′,y′′ , respectively. Without loss of generality, we assume that the first

transition starts at interval 1. Since the two transitions are overlapping, the

starting time s of the second transition has to satisfy 1 < s ≤ TDy,y′ .

Because the first transition has not completed at s, xy
s = 1, wy

s = 0,

and xy′
s = 0. At t = s, constraint (5.7) specifies:

wy′

s = xy′

s −
TDy′y′′∑
i=1

vy
′y′′

t−i+1+TDy′y′′ .

Since the second transition starts at s, the second term on the right hand side
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is one. The above constraint implies wy′
s = −1, which contradicts wy′

s ∈ {0, 1}.

Therefore, there can be no overlapping transitions.

5.4 Numerical Results

To illustrate the proposed CCU model, we use an example where we

solve a multi-interval unit commitment problem.

5.4.1 Problem Data

Consider a look-ahead commitment and dispatch problem with one

simple-cycle unit, one CCU, 8 intervals, and no transmission constraints. The

demand vector is d = [370, 425, 435, 450, 480, 520, 560, 580].

The simple cycle unit has a minimum output of 0 MW, a maximum

output of 200 MW, a constant marginal cost of $5/MWh, and a start-up cost

of $200. Ramp rate limits are not considered.

The combined cycle unit has two CT, one ST, and a duct burner (DB)2.

Table 5.1 shows the five configurations of the CCU.

The feasible transitions of the CCU, the transition costs, and transition

power-trajectories are shown in Table 5.2. If the length of a transition is zero,

then we assume that transition is completed within a single interval because

we do not have data for the power-trajectory of that transition.

2Duct burners increase the steam production from heat recovery steam generators
(HRSGs) to above what is possible with just the heat from the CT exhaust.
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Table 5.1: Configurations of the Combined Cycle Unit

Configuration
Marginal Cost No-load Cost py py

$ $/MWh MW MW
1: All off 0 0 0 0

2: 1CT+1ST 18.99 1596 150 225
3: 2CT+1ST 17.98 4457 330 445

4: 1CT+1ST+DB 26.33 1596 225 250
5: 2CT+1ST+DB 23.94 4457 445 525

Table 5.2: Feasible Transitions of the Combined Cycle Unit

From Config To Config
Transition Cost Length Trajectory

$ Intervals MW
1 2 16854 0
1 3 49486 0
2 3 36807 4 [225, 240, 280, 300]

2 4 12000 2 [225, 225]

2 1 450 0
3 2 36450 4 [300, 280, 240, 225]

3 5 20000 2 [445, 445]

3 1 900 0
4 2 10000 2 [225, 225]

5 3 18000 2 [445, 445]

Initially, the simple cycle unit generates 200 MW of power; the CCU

is in configuration 2, with 150 MW of power output. We ignore the ramping

constraints and the minimum run time constraints.
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Figure 5.6: Optimal dispatch with the proposed CCU model. The horizontal axis
indicates the time interval, and the vertical axis represents the MW output. The
height of each stacked bar is the system-wide load. Each segment of a stacked bar
indicates the portion of load served by different resources.

5.4.2 Results

Fig. 5.6 shows the optimal commitment and dispatch solved with the

proposed model. To satisfy the increasing demand, the CCU starts to tran-

sition from configuration 2 (1CT + 1ST) to configuration 3 (2CT + 1ST) at

interval 2, bringing online the second combustion turbine. The transition lasts

four intervals, during which the total power output from CCU is a pre-defined

trajectory, shown as the dark green bars in Fig. 5.6. Starting from interval 6,

the CCU becomes dispatchable again.

In comparison, Fig. 5.7 shows the optimal commitment and dispatch

solved with the standard model where we make the invalid assumption of
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Figure 5.7: Optimal dispatch with the standard CCU model. The horizontal axis
indicates the time interval, and the vertical axis represents the MW output. The
height of each stacked bar is the system-wide load. Each segment of a stacked bar
indicates the portion of load served by different resources.

single-interval transitions. The CCU transitions from configuration 2 to con-

figuration 3 at interval 3, bringing online another CT. However, due to the

invalid assumption we make, the CCU becomes instantly dispatchable at in-

terval 3, generating 330 MW of power.

The power outputs of the CCU during the first four intervals after

the transition are [330, 330, 330, 330] MW, which deviates from the transition

power-trajectory [225, 240, 280, 300] MW. Because the CCU has limited ability

to follow exterior control signal during the transition, this discrepancy makes

the dispatch and commitment solutions sub-optimal.
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Part IV

Pricing in Multi-Interval
Real-Time Markets
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Chapter 6

Pricing in Multi-Interval Real-Time Markets

6.1 Introduction

Large shares of renewable generation in electric power systems have

increased the variability of net load. To better manage the variabilities,

several wholesale markets in the US have been contemplating or have im-

plemented a multi-interval real-time market (MIRTM). Instead of solving a

single-interval economic dispatch problem, MIRTM is based on a look-ahead

dispatch (LAD)1 problem that considers several intervals. By expanding the

time horizon, MIRTM allows for more efficient dispatch of generation to meet

projected system conditions by pre-positioning resources to cope, for example,

with large ramps in net load [32, 88, 89]. In particular, a satisfactory short-

term forecast for renewable generation can allow LAD to meet high ramping

requirements due to renewable generator variability in a reliable and economic

manner. Consequently, the New York Independent System Operator (NY-

ISO) and California ISO (CAISO) have already implemented MIRTM, while

1Some MIRTMs might involve commitment decisions, so that the underlying optimiza-
tion problem is a look-ahead commitment and dispatch problem. In this chapter, we focus
on the pricing of the dispatch problem, as the pricing issues related to the non-convex
commitment decisions have been addressed in Chapter 3.

102



the Electric Reliability Council of Texas (ERCOT) has proposed the approach

(see [68], [50], [90], and [25]).

In a typical implementation of MIRTM, the ISO solves LAD in a fashion

that resembles model predictive control (MPC) [89]. Fig. 6.1 shows such an

implementation. For each dispatch problem, only the dispatch decisions for

the upcoming interval2 are used; dispatch decisions for the later intervals are

advisory. Similarly, in a typical implementation of MIRTM, prices for the

upcoming interval are used for settlement; we refer to such prices as settlement

prices hereafter. Prices for intervals further in the future may be published but

are not financially binding; we refer to these prices as advisory prices hereafter.

If the ISO did not need to solve dispatch problems on a rolling horizon

basis, then the optimal price sequence from a single MIRTM problem would

support the ISO’s multi-interval dispatch instructions.3 However, in a MPC-

like implementation of MIRTM, the collection of settlement prices from a

sequence of LAD problems does not necessarily support the ISO’s dispatch (see

Section 6.2). In this situation, as discussed in Chapter 3, a generator might

have an incentive to deviate from the ISO’s dispatch. ISOs typically provide

out-of-market payments (usually referred to as “uplift”) when necessary to

incentivize these generators to follow dispatch instructions, but these payments

2The upcoming interval is the the most immediate future interval in the time horizon.
It is also called the “binding” interval in some literature. However, to avoid collision with
the concept of a binding constraint, we use the word “upcoming”.

3A set of prices is said to support the ISO’s solution if each of the price-taking market
participants’ profit maximizing decisions align with the ISO’s solution.
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LAD(4,7)

Upcoming interval

Intervals further
in the future

Figure 6.1: A series of LAD problems solved in a rolling implementation of
MIRTM. Each look-ahead dispatch problem considers four intervals. For the first
problem (LAD(1, 4)) that considers a fixed horizon of t ∈ [1, 4], only the dispatch
decisions and prices for the upcoming interval (in dark blue) are used for settlement;
dispatch decisions and prices for the other three intervals (in light blue) are only
advisory.

are non-transparent and discriminatory [34]. In addition to uplift, penalties

may apply for generators who deviate from the ISO’s instructions. See [77] for

a discussion.

Several authors discuss the incentives under MIRTM. For example,

Peng and Chatterjee [65] recognize the incentive to deviate in MIRTM but

only give a high-level design of their solution. Ela and O’Malley [20] pro-

pose cross interval marginal prices (CIMP) where the energy price for the first

interval includes the marginal cost of serving load in the subsequent inter-

vals. However, no theoretical or empirical analysis is provided for incentive

properties of CIMPs. Moreover, CIMPs may differ from traditional locational

marginal prices (LMPs) even when LMPs support the ISO’s dispatch solu-
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tion. Schiro [74] proposes a multi-settlement market where the ISO settles on

all prices in each of the successive LAD problems. This multiple-settlement

approach mitigates the incentive problem but complicates the settlement pro-

cess.

Other lines of relevant research consider a slightly different setting. For

example, Thattle et al. [80] study LMPs in LAD-based markets and compare

them with prices from a single-interval market. Choi and Xie [13] study the

sensitivity of LAD-based markets with respect to data perturbation. However,

the two aforementioned studies do not consider incentive issues. Kaye and

Outhred [39] address incentive issues in a multi-interval market but do not

consider a rolling implementation.

To mitigate the incentive to deviate in MIRTM, a promising pricing

method suggested in [35] dualizes system-wide constraints in the past inter-

vals. We show that this existing method gives satisfactory incentives for a

fixed finite horizon with perfect foresight.4 However, in the presence of a

rolling horizon, it may produce prices that incentivize a physically infeasible

dispatch. Therefore, we propose a new method that instead dualizes binding

inter-temporal constraints that link the past and the future. We show that

this new method produces appropriate incentives for a fixed finite horizon with

perfect foresight. In more practical scenarios where we have a rolling horizon,

computational studies suggest that the new method better mitigates incentives

4Perfect knowledge about future demand and future offers from market participants.
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to deviate than the existing method.

Section 6.2 formulates the LAD problem and illustrates potential in-

centives to deviate with a small example. Section 6.3 describes the existing

pricing method and Section 6.4 presents a new pricing method. Section 6.5

analyzes the theoretical properties of the two pricing methods for a fixed finite

horizon. Section 6.6 discusses more practical scenarios where we have a rolling

horizon. Section 6.7 describes numerical tests for a system based on the ISO

New England grid.

6.2 Multi-Interval Real-Time Market

In this section, we formulate the LAD problem. Using a small example,

we show that settlement prices derived from LAD might lead to incentives to

deviate for market participants. Throughout this chapter, we treat that all

generators as price takers with truthful offers.

6.2.1 Look-Ahead Dispatch

LAD minimizes total incremental cost5 over the relevant time hori-

zon subject to system-wide and private constraints. System-wide constraints

are coupling constraints that enforce system-wide requirements (e.g., power-

balance and transmission constraints). Private constraints include generator

output limits and ramp rate restrictions.

5The costs do not include fixed (start-up, no-load) costs of resources that are already
committed but do include all of the incremental energy costs going forward.
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We first define the symbols we use in this chapter:

Sets and indices:

k ∈ K Generators.

t Index for time interval.

Parameters:

T0 Starting interval of the look-ahead horizon.

T End interval of the look-ahead horizon.

dt System-wide load at time t.

pk Generator k’s maximum output level.

p
k

Generator k’s minimum output level.

Ak Coefficient matrix for inter-temporal constraints of generator

k.

bk Constant term for inter-temporal constraints of generator k.

Variables:

pkt Generator k’s power output at time t.

λt Dual variable associated with the power-balance constraint at

interval t.

µk Dual vector associated with the inter-temporal constraints of

generator k.
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ϕk Dual vector associated with the output limits of generator k.

Functions:

fkt Generator k’s convex cost function at interval t.

We denote the look-ahead dispatch problem as LAD(T0, T ), where the

ordered pair (T0, T ) indicates the starting and ending intervals of the look-

ahead horizon and K is the set of generators:6

min
∑
k∈K

∑
t∈[T0,T ]

fkt(pkt) (6.1)

over pkt, k ∈ K, t ∈ [T0, T ] (6.2)
s.t. −

∑
k∈K

pkt + dt = 0, ∀t: λt (6.3)

Akpk ≤ bk, ∀k: µk (6.4)
p
k
≤ pk ≤ pk, ∀k: ϕk = (ϕ+

k ,ϕ
−
k ), (6.5)

where pk = (pkT0 , . . . , pkT )
⊺ ∈ RT .

We assume that the marginal cost functions fkt for each generator are

convex. We minimize total cost. Power-balance constraints (6.3) require to-

tal generation to equal total demand; these constraints are the only type of

system-wide constraint we consider in the analysis and examples. We discuss

extension to the transmission-constrained case in Section 6.4. Constraints

(6.5) limit power injection from each generator.

6To facilitate our analysis, we assume a starting point T0 when any loss in the past has
been compensated, and when the dispatch trajectory at previous intervals can be ignored.
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Since the pricing methods we are about to describe work with any

linear inter-temporal constraints, we present a general formulation of these

constraints. All private inter-temporal constraints are aggregated into (6.4),

which could include ramping constraints, maximum energy constraints, and

state-of-charge constraints for energy storage resources. Despite the generality

of our formulation, we note that ramping constraints are the only type of inter-

temporal constraints we consider in all the numerical examples in this chapter.

The formulation of the ramping constraints are shown as follows:

pkt − pk,t−1 ≤ rk, ∀t (6.6)

pk,t−1 − pkt ≤ rk, ∀t, (6.7)

where rk is the limit for both the upward and downward ramping of generator

k.

The dual variables, λ, µ, and ϕ, are displayed to the right of their

corresponding constraints. If an ISO adopts LAD as the pricing problem, λt

would be the energy price for interval t, with the price for t = T0 being the

settlement price and the prices for t = T0+1, . . . , T being advisory prices. We

refer to prices obtained from LAD as locational marginal prices (LMPs).7

6.2.2 Example 6.1

In this subsection, a simple example shows that the collection of settle-

ment prices from a sequence of LAD problems does not necessarily support

7In this simplified framework, the LMPs do not vary by location because no transmission
constraints are modeled.
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Table 6.1: Unit Parameters

Unit
Energy p

g
pg Ramping

$/MWh MW MW MW/min
1 28 0 100 3
2 30 0 100 4

Table 6.2: Optimal Solution to LAD(1, 2)

t
dt p1,t p2,t λt

MW MW MW $/MWh
1 130 95 35 28
2 155 100 55 32

Table 6.3: Optimal Solution to LAD(2, 3)

t
dt p1,t p2,t λt

MW MW MW $/MWh
2 155 100 55 30
3 160 100 60 30

the ISO’s dispatch.

Example 6.1. Consider a stylized example in which we have two generating

units (referred to as units hereafter): Unit 1 is cheaper than Unit 2 but has

less ramping capability (see Table 6.1). We consider three 5-minute intervals

and a demand vector d = (130, 155, 160). We assume that each LAD problem

models two future intervals. The initial power outputs (t = 0) of the two

units are p10 = 95 MW and p20 = 35 MW. Table 6.2 and Table 6.3 show the

solutions of the sequential dispatch problems LAD(1, 2) and LAD(2, 3).

110



The ramping constraint between t = 1 and t = 2 for Unit 2 is binding

in LAD(1, 2), reducing the price in t = 1 and raising the price in t = 2.

Following currently implemented ISO approaches, only the price for t = 1

from LAD(1, 2) is used for settlement. Unit 2 loses $5.83 at t = 1, but

believes that it will recover its losses due to the high advisory price for t = 2.

However, the subsequent dispatch problem LAD(2, 3) treats Unit 2’s t = 1

loss as sunk and identifies a settlement price of $30/MWh for t = 2.8 Unit 2’s

loss is not compensated by energy prices.

6.2.3 Incentive to Deviate

Given an instance of LAD(T0, T ), suppose the ISO obtains an optimal

dispatch vector p∗ and energy price vector λ∗. Since LAD is a convex problem,

the prices across multiple intervals (vector λ∗) as a whole support the ISO’s

welfare-maximizing solution p∗. That is, assuming that generator k is a price-

taker, the ISO-determined decision p∗
k is individually rational for generator k.

Mathematically, this means that p∗
k is an optimal solution to generator k’s

profit maximization problem:

wk(λ
∗) = max

pk

(λ∗)⊺pk −
∑

t∈[T0,T ]

fkt(pkt) (6.8)

s.t. Akpk ≤ bk, (6.9)
p
k
≤ pk ≤ pk, (6.10)

8Note that dual degeneracy exists for LAD(2, 3) and λ∗
2 can be any value in [30,∞]. We

believe that a commercial solution algorithm is likely to find the price $30/MWh.
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where wk is the value function of this problem denoting the maximum profit.

As long as the ISO commits to settlement for all intervals T0, . . . , T

at the corresponding prices λ∗
t , losses incurred due to binding inter-temporal

constraints will be compensated by high prices in other intervals. For instance,

in Example 6.1, if the ISO were to commit to the price vector (28, 32) computed

from LAD(1, 2), there would be no incentive to deviate.

However, as mentioned in the introduction, CAISO and NYISO’s MIRTM

implementations only settle at the upcoming interval’s price in each of the

successive LAD problems. Subsequent LAD problems treat losses incurred in

previous intervals as sunk, leading to incentives to deviate. This can be seen

in Example 6.1: the settlement price for t = 2 is lower than the advisory price

for t = 2 published in the previous interval. Had Unit 2 known the t = 2

settlement price, it would have generated 0 MW at t = 1 instead of the ISO’s

dispatch. In practice, the ISO pays each generator who has an incentive to

deviate an out-of-market payment as will be discussed in Section 6.6.2.

6.3 An Existing Pricing Method

Intuitively, we can create a separate pricing problem that incorporates

losses from past intervals. In this approach, the dispatch problem (LAD)

determines the dispatch quantities and a separate pricing problem identifies

the prices.9 We note that such a separation of dispatch and pricing problems

9The dispatch solutions in the pricing problem are discarded.
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has been a common practice in US wholesale electricity markets. For example,

ISO New England, Midcontinent ISO, and NYISO have separate dispatch and

pricing runs in their real-time markets.

In this section, we describe an existing pricing proposal that employs

such a separate pricing problem. Using a small example, we show that this

method might produce prices that incentivize a physically infeasible solution.

6.3.1 Price-Preserving Multi-Interval Pricing

To provide better incentives in MIRTM, Hogan [35] suggests that the

pricing problem constrain prices in the past intervals to be equal to the realized

prices. Although a detailed implementation of this idea is not provided in

[35], the desired result can be achieved by making the following changes to

LAD: 1) keep past dispatch decisions as variables, and 2) dualize system-wide

constraints corresponding to the past intervals with a penalty equal to realized

prices.10 Intuitively, historical loss is incorporated through the penalties that

equal the realized prices.

We denote this pricing problem by PMP(T0, t̂, T ), where the ordered

triplet (T0, t̂, T ) comprises three numbers indicating the earliest past interval

considered, the upcoming interval, and the ending interval of the horizon,

respectively. That is, we “look back” t̂ − T0 intervals. Let λ∗
t be the realized

settlement prices for t ∈ {T0, . . . , t̂− 1}.

10Additional details of this idea were discussed in personal communications between ISO
New England and William Hogan.
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PMP(T0, t̂, T ) (Price-preserving Multi-interval Pricing) is formulated

as follows:

min
∑
k∈K

∑
t∈[T0,T ]

fkt(pkt) +
t̂−1∑
t=T0

λ∗
t (−

∑
k

pkt + dt) (6.11)

over pkt, k ∈ K, t ∈ {T0, . . . , T} (6.12)
s.t. −

∑
k

pkt + dt = 0,∀t ∈ {t̂, . . . , T} : λt (6.13)

Akpk ≤ bk,∀k : µk (6.14)
p
k
≤ pk ≤ pk,∀k : ϕk (6.15)

where pk = (pk1, . . . , pkT )
⊺ ∈ RT . We use the same symbols (λ,µ,ϕ) as

in LAD for the dual variables in this optimization problem. Note that the

dispatch decisions for the past intervals are kept as variables, and that all

private constraints are preserved for those intervals.

We set the length of the time horizon T − T0 of the pricing problem to

be equal to that of the LAD problem. The length of the horizon impacts the

operational cost and price volatility of the MIRTM. The choice of T − T0 is

beyond the scope of this chapter. We refer the interested readers to [80] for a

discussion.

Applying PMP to Example 6.1, we solve PMP(1, 2, 3) at t = 2 with a

t = 1 penalty of $28/MWh. The resulting t = 2 price from PMP is $32/MWh.

The final settlement price vector (π1, π2) = (28, 32) gives neither unit an in-

centive to deviate.
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Table 6.4: Unit Parameters

Unit
Energy p

g
pg Ramping

$/MWh MW MW MW/min
1 28 0 100 3
2 30 0 100 4
3 40 0 100 5

6.3.2 Example 6.2

Although PMP works well for Example 6.1, we show another example

for which PMP identifies prices that incentivize an infeasible dispatch.

Example 6.2. Consider the addition of an expensive Unit 3 to Example 6.1

(see Table 6.4). We also consider an additional interval t = 4, and augment the

demand vector to d = (130, 155, 180, 180). Initially, the power output of each

generator is (p10, p20, p30) = (95, 35, 0). We assume that the MIRTM considers

two future intervals. Table 6.5 shows:

• the realized dispatch obtained by sequential solutions to LAD(1, 2),

LAD(2, 3), and LAD(3, 4);

• the settlement prices obtained by sequential LAD problems (de-

noted by LMP from here on) and those obtained by PMP.

Surprisingly, the t = 3 settlement price produced by PMP is $34/MWh,

lower than the marginal cost of Unit 3. As a result, Unit 3 would be better

off shutting down and has an incentive to deviate.

To investigate this pricing, Table 6.6 shows the solution to PMP(1, 3, 4).
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Table 6.5: Realized Dispatch and Settlement Prices from Rolling Implementations

t
dt p1,t p2,t p3,t LMP PMP

MW MW MW MW $/MWh $/MWh
1 130 95 35 0 28 28
2 155 100 55 0 28 28
3 180 100 75 5 40 34

Table 6.6: Optimal Solution to PMP(1, 3, 4)

t
dt p1,t p2,t p3,t λt

MW MW MW MW $/MWh
1 130 85 40 0 -
2 155 100 60 0 -
3 180 100 80 0 34
4 180 100 80 0 30

In this table, the t = 3 dispatch for Unit 3 is 0 MW, indicating that (from

a pricing perspective) Unit 3 shouldn’t be online or set price. Furthermore,

because PMP keeps past dispatch decisions as variables, the counter-factual

dispatch trajectory in PMP can differ significantly from the realized (LAD-

instructed) solution (see Fig. 6.2). As a result, the dispatch decisions for Unit

2 from PMP(1, 3, 4) are physically infeasible: at t = 3, the 80 MW dispatch

point from PMP(1, 3, 4) violates Unit 2’s ramping limit from its realized 55

MW dispatch at the previous interval.
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Figure 6.2: Assume that Unit 2 follows the LAD instructions (described in Table
6.5 and shown as the solid line here). The feasible dispatch range at t is determined
by technical constraints relative to the realized (LAD-instructed) dispatch at t− 1.
Suppose the ISO adopts PMP as the pricing problem. At t = 3, PMP(1, 3, 4) is
solved; its dispatch decisions for Unit 2 are shown as the dotted line. The t = 3
dispatch of 80 MW from PMP violates Unit 2’s ramp rate limit based on the realized
dispatch p22 = 55. PMP(1, 3, 4) incentivizes this infeasible dispatch.

6.4 Proposed Pricing Method

Since PMP keeps past dispatch decisions as variables, its dispatch de-

cisions can be infeasible relative to realized unit output (e.g., violating ramping

constraints, or dispatching a unit off that is needed to meet demand). As a

result, prices produced by PMP might lead to large uplift payments.

To overcome this drawback of PMP, this section proposes a differ-

ent pricing method that fixes past dispatch decisions to their realized values.

Instead of dualizing system-wide constraints, the new method relaxes inter-

temporal constraints that link the past to the future. Price consistency is

achieved by setting the penalty for these relaxed constraints to their corre-
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sponding optimal dual variables from the past.

We let µ∗
k denote the realized optimal dual vector associated with gen-

erator k’s inter-temporal constraints in LAD. Let Ak = [A′
k;A

′′
k;A

′′′
k ], bk =

[b′k; b
′′
k; b

′′′
k ], and µk = [µ′

k;µ
′′
k;µ

′′′
k ]

11 be a partition of the inter-temporal con-

straints (as well as their corresponding coefficients and dual variables) such

that:

1. constraints A′
kpk ≤ b′k only involve the dispatch decisions in the

past with respect to t̂ (i.e., each row of A′
k has all zero entries in the

last T − t̂+ 1 columns);

2. constraints A′′
kpk ≤ b′′k involve both past and future decisions with

respect to t̂ (i.e. each row of A′′
k has at least one nonzero entry in

the first t̂ − 1 columns, and at least one nonzero entry in the last

T − t̂+ 1 columns);

3. constraints A′′′
k pk ≤ b′′′k only involve dispatch decisions in the future

with respect to t̂ (i.e., each row of A′′′
k has all zero entries in the first

t̂− 1 columns).

Let p′∗
k = (pk1, . . . , pk,t̂−1) be the realized dispatch decisions for genera-

tor k in the past. Let p′′′
k = (pkt̂, . . . , pkT )

⊺ ∈ RT−t̂+1 be the dispatch variables

for the future. Note that [p′∗
k ;p

′′′
k ] represents the complete decision vector,

with past decisions fixed at their realized values and future decisions consid-

ered variables. We denote the following optimization problem by CMP(t̂, T )

11The semicolon indicates that the matrices/vectors are stacked vertically.
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(Constraint-preserving Multi-interval Pricing), where the ordered pair indi-

cates the upcoming interval and the ending interval of the look-ahead horizon:

min
∑
k∈K

∑
t∈[t̂,T ]

fkt(pkt) + (µ′′∗
k )⊺A′′

k[0;p
′′′
k ] (6.16)

over pkt, k ∈ K, t ∈ {t̂, . . . , T} (6.17)
s.t. −

∑
k

pkt + dt = 0, ∀t: λt (6.18)

A′′
k[p

′∗
k ;p

′′′
k ] ≤ b′′k, ∀k: µ′′

k (6.19)
A′′′

k [0;p
′′′
k ] ≤ b′′′k , ∀k: µ′′′

k (6.20)
p
k
≤ p′′′

k ≤ pk, ∀k: ϕk (6.21)

Reusing notation from LAD again, we use the same symbols (λ,µ,ϕ) for the

dual variables. Note that we have replaced the first t̂− 1 entries of the vector

[p′∗
k ;p

′′′
k ] by zero in (6.16) and (6.20). This is to indicate that only future

decisions p′′′
k matter in these equations.

Since CMP fixes past dispatch decisions to their realized values, and

since CMP dualizes inter-temporal constraints that link the past to the future,

we no longer have to represent past intervals. This is an important difference

between CMP and PMP.

The second term in the objective function (6.16) results from the du-

alization of inter-temporal constraints that link the past to the future. There

remain two other sets of inter-temporal constraints: (6.19) represents coupling

between past fixed dispatches and future decisions; (6.20) couple only future

decisions.
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Finally, we note that CMP can be easily extended to consider lin-

earized transmission constraints. Since CMP does not modify the system-

wide constraints, we can apply CMP to the transmission-constrained case

without any special treatment. The locational prices can be derived in the

standard way (e.g., see [46]).

For PMP, the original formulation in [35] dualizes only power balance

constraints in the past. To constrain all locational prices in the past to be equal

to the realized values, we can dualize each system-wide constraints (power

balance constraint and transmission constraint) in the past, with a penalty

equal to its realized optimal dual variable.

6.5 Fixed Finite Horizon

In this section, we first propose a fixed-horizon framework that facili-

tates the analysis of pricing methods. We show that both PMP and CMP

produce satisfactory prices in this ideal framework. However, the two pricing

methods lead to different incentives in the scenario where there is a mov-

ing time horizon (depicted in Fig. 6.1). This more practical scenario will be

considered in the next section.

6.5.1 Fixed Finite Horizon and Consistent Prices

As a starting point of our analysis, this section considers a fixed finite

horizon t = {1, . . . , T} as illustrated in Fig. 6.3. For ease of analysis, we treat

t = 1 as the beginning of time, where we assume that any loss in the past

120



1 2 3 4

Interval

LAD(1,4)

LAD(2,4)

LAD(3,4)

LAD(4,4)

Figure 6.3: A series of LAD problems solved for a fixed finite horizon of four
intervals. As a starting point of our analysis, we ignore the new intervals that would
have been included in the more practical situation where there is a moving horizon.

for every generator has been compensated. Therefore, LAD is the pricing

problem for t = 1. Starting with t = 2, there might be losses from earlier

intervals. A separate pricing problem identifies prices for t ≥ 2.

With the assumption of a fixed finite horizon, no new information (e.g.,

demand and offers from market participants at a future interval) is introduced

as time progresses. Given no change in demand and supply in this setting, it

is desirable for the settlement price and all advisory prices for a given interval

to be identical. To formalize this idea, we make the following assumption.

Assumption 6.1 (Perfect Foresight). The demand forecast is perfect and the

market participants’ offered parameters do not change as time progresses.

We then have the following definition:
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Definition 6.1 (Consistent Prices). Given Assumption 6.1, a pricing method

for MIRTM gives consistent prices if successive pricing problems produce the

same price for the same interval.

For Example 6.1, if a pricing method produces consistent prices, then

the advisory price for t = 2 obtained at t = 1 would equal the settlement

price for t = 2. If we use LAD as the pricing problem, then we lose price

consistency because the advisory price for t = 2 ($32/MWh) is different from

the settlement price ($30/MWh) for the same interval.

6.5.2 Analysis of PMP and CMP

We next show that both PMP and CMP produce consistent prices

for a fixed finite horizon with perfect foresight.

Theorem 6.1. Let λ∗ be an optimal dual vector associated with constraints

(6.3) in LAD(1, T ). For every t̂ ∈ {2, . . . , T},
((
λ∗
t̂
, . . . , λ∗

T

)
,µ∗,ϕ∗) is an

optimal dual solution to PMP(1, t̂, T ) given Assumption 6.1.

PMP dualizes part of the constraints in LAD with a penalty equal to

the optimal dual variables. Theorem 6.1 is implied by the strong duality of

LAD.

Proof. Let (p∗,λ∗,µ∗,ϕ∗) denote an optimal primal-dual solution to LAD(1, T ),

where p∗ ∈ R|K|×T is a vector that collects all primal solutions. Since LAD(1, T )

is a convex optimization problem, and since PMP(1, t̂, T ) is only different
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from LAD(1, T ) in that some constraints are dualized with a penalty equal to

corresponding optimal dual variables, strong duality holds between these two

optimization problems. In addition, p∗ is also a minimizer of PMP(1, t̂, T ) [9,

Section 5.5].

Convexity implies that KKT conditions are necessary and sufficient for

both optimization problems. With identical primal optimal solutions, com-

paring the KKT conditions of the two optimization problems leads to the

conclusion that

(p∗, (λ∗
t̂ , . . . , λ

∗
T ),µ

∗,ϕ∗)

is also an optimal primal-dual solution to PMP(1, t̂, T ).

Recall that the solution of LAD(1, T ) gives a binding settlement price

for t = 1 and advisory prices for t ∈ [2, T ]. Theorem 6.1 implies that these

advisory prices can be reproduced by the sequential solutions of PMP given

perfect foresight. Thus, price consistency holds.

We have the following theorem implying that CMP produces consistent

prices for a fixed finite horizon.

Theorem 6.2. Let λ∗ be an optimal dual vector associated with the power-

balance constraints in LAD(1, T ). Given t̂ ∈ {2, . . . , T}, under Assumption

6.1, there exists an optimal dual solution (λ∗∗,µ∗∗,ϕ∗∗) to CMP(t̂, T ) such

that λ∗∗
t = λ∗

t for all t ∈ {t̂, . . . , T}.

Proof. First, consider an undecoupled version of CMP where we only dualize
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inter-temporal constraints that link the past and the future, and where we

have not yet removed the decision variables for the past intervals:

min
∑
k∈K

fk(pk) + (µ′′,∗
k )⊺(A′′

kpk − b′′k) (6.22)

over pkt, k ∈ K, t ∈ {1, . . . , T} (6.23)
s.t. −

∑
k

pkt + dt = 0, ∀t: λt (6.24)

A′
kpk ≤ b′k, ∀k: µ′

k (6.25)
A′′′

k pk ≤ b′′′k , ∀k: µ′′′
k (6.26)

p
k
≤ pk ≤ pk, ∀k: ϕk, (6.27)

Similar to the proof of Theorem 6.1, because of strong duality, an op-

timal primal-dual solution to LAD(1, T ) is also optimal for this undecoupled

problem.

A sub-vector of the optimal primal-dual solution to the undecoupled

problem above is also optimal for CMP(t̂, T ), because the two problems only

differ in the following ways that do not alter the optimal solution:

1. separability resulting from dualized inter-temporal constraints al-

lows us to discard decision variables for the past intervals, as well

as their corresponding items in the objective function;

2. constant term (µ′′,∗
k )⊺b′′k is discarded in CMP(t̂, T );

3. constraints (6.25) only involve decision variables for the past inter-

vals and are discarded in CMP(t̂, T );

4. constraints (6.19) are added to CMP(t̂, T ); these constraints are

redundant because any optimal solution to the undecoupled problem
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satisfies these constraints.

6.6 Rolling Horizon

Section 6.5 has shown that both PMP and CMP produce consistent

prices for a fixed finite time horizon with perfect foresight. Prices produced by

either of these two methods incentivize the ISO’s welfare-maximizing decisions

throughout the fixed time horizon.

In practice, the look-ahead horizon moves forward with time. Accord-

ingly, we solve the proposed pricing problems on a rolling basis just as the

dispatch problems. In this general case, neither PMP nor CMP guarantees

price consistency since new variables and constraints corresponding to the new

future interval alter the optimality conditions.

By revisiting Example 6.2 we show that, unlike PMP, the dispatch

decisions in CMP are feasible relative to realized unit output. We then de-

scribe two types of out-of-market payments as quantitative measures of the

incentives provided by energy prices. We will use these measures in our com-

putational studies to examine how well the proposed pricing methods mitigate

the incentive to deviate.
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Table 6.7: Optimal Solution to CMP(3, 4)

t
dt p1,t p2,t p3,t λt

MW MW MW MW $/MWh
3 180 100 75 5 40
4 180 100 80 0 30

6.6.1 Revisiting Example 6.2

Recall that Example 6.2 has four intervals, with a rolling look-ahead

horizon of length two. As the horizon moves, the ramping constraint for Unit 2

remains binding and PMP fails to achieve price consistency. Moreover, because

PMP keeps past dispatch decisions as variables, the obtained prices incentivize

an infeasible solution and Unit 3 has an incentive to deviate.

Table 6.7 show the optimal solutions to CMP solved at t = 3. We can

see that the dispatch variable for Unit 2 at t = 3 is 75 MW, a value that is

feasible due to constraints (6.19). The set of settlement prices under CMP is

(28, 28, 40), providing incentives for all generators to follow the ISO’s dispatch.

In the practical scenario with a rolling horizon, the dispatch decisions in

CMP can often be more reasonable than those in PMP because past dispatch

decisions are fixed to their realized values. These realized dispatch decisions

interact with future dispatch decisions through constraints (6.19), restricting

the future dispatch variables to values that are technically feasible given the

earlier dispatch decisions.12 We also note that CMP is smaller in size than

12They are redundant when we have perfect foresight of a fixed horizon. In the general case
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PMP since it does not represent past intervals.

6.6.2 Uplift Payment as a Measure of Incentive

Although price consistency cannot be guaranteed in the general case,

it is still desirable to have reasonable prices that incentivize the ISO’s opti-

mal dispatch as much as possible. One measure of the effectiveness of price

incentives is the amount of out-of-market (i.e., uplift) payments needed to

compensate the generators. In general, there are two primary uplift types

that an ISO may calculate [75].

Lost Opportunity Cost One type of uplift payment covers a unit’s lost

opportunity cost (LOC), the gap between its maximum possible profit and the

actual profit obtained by following the ISO’s dispatch instruction. In MIRTM,

we adopt an ex-post definition of LOC where a unit’s maximum possible profit

for a specified period of time (e.g., a commitment cycle) is calculated after

the publication of all settlement prices within the given time window. Given

a vector of settlement prices over relevant intervals λ∗ and an ISO’s optimal

dispatch decision p∗
k, LOC is:

Lk(λ
∗,p∗

k) = wk(λ
∗)− ((λ∗)⊺p∗

k − fk(p
∗
k)), (6.28)

where the first term on the right hand side is the maximum profit computed

using the profit maximization problem (6.8)–(6.10), and the second term is the

when we have a rolling horizon with imperfect foresight, these constraints can be binding.
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actual profit made by following the ISO’s dispatch. Since the ISO’s decision

p∗ is a feasible but not necessarily optimal solution to problem (6.8)–(6.10),

LOC is non-negative.

If prices are too high, a generator might have an incentive to generate

more than the ISO’s dispatch; if prices are too low, there might be an incentive

to under-generate. Both scenarios lead to positive LOC. When prices support

the ISO’s dispatch, LOC is zero.

Make-Whole Payment Another type of uplift payment that most ISOs

adopt is make-whole payment (MWP). This payment guarantees that no unit

that is economically committed by the ISO loses money over a specified period

of time (e.g., a commitment cycle). Given a vector of settlement prices λ∗ and

ISO’s optimal dispatch vector p∗
k, MWP is:

Mk(λ
∗,p∗

k) = max{0, fk(p∗
k)− (λ∗)⊺p∗

k}, (6.29)

where the second argument of the max operator is the loss (negative profit)

generator k incurs by following the ISO’s dispatch. When the loss is positive,

Mk > 0; when the loss is negative (i.e., profit), Mk = 0.

If prices are too low, a generator that follows the ISO’s dispatch might

have a loss, leading to positive MWP. Higher prices generally lead to lower

MWP.

Unlike energy prices, uplift payments are unit-specific and thus discrim-

inatory. These private side payments make it harder for a potential entrant
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to determine if entry would be profitable, particularly if the uplift payments

are not disclosed publicly. Therefore, smaller uplift payments imply a more

transparent market where energy prices better incentivize the ISO’s dispatch.

We note that while make-whole payments exist in most ISOs, only

ISO-NE pays the aforementioned type of LOC among the US ISOs. In the

following computational studies, the two types of uplift serve as a quantitative

measure of dispatch-following incentives with lower uplift indicating better

market incentives.

6.7 Computational Results

We implement three pricing methods (LAD, PMP, and CMP) on a

personal computer with a 2.2-GHz quad-core CPU and 16 GB of RAM. We

refer to the prices obtained through LAD as LMPs, and name the other two

types of prices after the pricing model. The optimization problems are solved

by GUROBI 6.5 [31].

We consider scenario 1 of [40], which is based on structural attributes

and data from ISO New England. We use linear cost functions, no-load costs,13

and constant marginal cost terms but ignore start-up cost and the quadratic

cost terms in the original data. Minimum generation levels for the units are

not specified in the original data, so we let p = 0.8p for each nuclear plant,

p = 0.6p for each coal-fired unit, and p = 0 for the rest.

13Quasi-fixed costs incurred to keep a generator online that is independent of the amount
of energy generated.
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We assume the following setting for MIRTM:

• an interval length of five minutes;

• a look-ahead length of five intervals,

• five most recent past intervals included in PMP;

• ramping constraint is the only type of inter-temporal constraint we

consider.

6.7.1 Ramping Up

Typically, ramping constraints are binding when the increase of demand

from one interval to the next is high. Therefore, we focus on the hour-long

horizon between the sixth and the seventh hour of the original dataset,14 where

there is a 2046 MW demand increase. Since we assume an interval length of

five minutes, we use linear interpolation to determine the 11 demand values

within the hour. We then add random Gaussian noise to each demand value.

The Gaussian noise has zero mean and a standard deviation of 2% of the

interpolated demand. We first focus on one sample of the load curve (Fig.

6.4).

There are 47 units committed within this hour. The commitment de-

cisions are made by solving a 96-hour unit commitment problem. The total

generation cost from LAD is $6.33 × 106. We next study the performance of

the three pricing methods on this sample.

14The original data contain four-day hour-by-hour demand information designed for the
day-ahead market.
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Figure 6.4: A sample of a ramping-up load curve.

Fig. 6.5 shows settlement and advisory prices under the three pricing

methods. Since the look-ahead length is five intervals, the last dispatch prob-

lem is LAD(9, 13). As a result, we obtain nine settlement prices. Since we

begin with intervals t = 1, there are t − 1 advisory prices for each interval

t ≤ 4; for all other intervals, there are four advisory prices. We use a shaded

area to show the range of prices (settlement and advisory) for a given interval.

The total energy payments (excluding uplift payments) from load under LMP,

CMP, and PMP are respectively 3.15 × 107, 3.26 × 107, and 2.23 × 107. For

this example, there is a welfare transfer from consumers to suppliers if we use

CMP instead of LMP.

As seen in Fig. 6.4, a high ramping requirement happens between t = 6

and t = 7. The corresponding ramping constraints for multiple expensive units

are binding, causing the price at t = 6 to decrease and the price at t = 7 to in-

crease. For instance, in LAD(6, 10), the advisory price for t = 6 is $52/MWh,
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Figure 6.5: Settlement and advisory prices under different pricing methods. For
each interval, the solid line shows the settlement prices; the area between maxi-
mum and minimum prices (including settlement and advisory) is shaded. Values at
fractional points on the interval axis are linearly interpolated. We can see that the
high advisory prices for t = 7 does not realize under LMP, whereas under CMP the
settlement price equals the advisory prices.

lower than the highest marginal price of the dispatched units, while the advi-

sory price for t = 7 is $598/MWh, higher than the highest marginal price of

the dispatched units. As time progresses to t = 7, LAD(7, 11) treats historical

loss as sunk. Consequently, the settlement LMP for t = 7 is $400/MWh, lower

than the advisory prices for that interval. This is similar to, but more extreme

than, what we saw in Example 6.1. In contrast, the advisory prices are equal

to the settlement price at t = 7 when we use CMP.
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Figure 6.6: Total make-whole payments (with and without considering no-load
costs, NLC) and lost opportunity costs under different pricing methods.

We also note that although PMP incorporates historical loss, the re-

sulting prices are often lower than LMP. This can be explained by the poten-

tially infeasible dispatch decisions in PMP. For example, multiple expensive

units are dispatched at t = 8 to meet the increase in demand. In PMP

(3, 8, 12) however, similar to what happened in Example 6.2, the dispatch de-

cisions of some units at t = 8 are infeasible based on the realized dispatch,

leading to low prices.

To examine the effectiveness of the prices in incentivizing the ISO’s

decisions, we compute the make-whole payments and lost opportunity costs

resulting from different prices, shown in Fig. 6.6. Because no-load cost is

lumpy and cannot be incorporated in marginal pricing, we compute two types

of make-whole payments: one that includes no-load costs, and one that does
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Figure 6.7: Mean settlement prices under different pricing methods.

not. We see that CMP results in the least MWP and the least LOC.

6.7.2 More Samples

We sample 50 load curves and analyze the performance of three pric-

ing methods on these samples. The samples are created by adding the same

Gaussian noise as in the previous subsection. Fig. 6.7 shows the settlement

prices of each interval averaged over all the samples. We can see that CMPs

are on average higher than LMPs for most intervals, whereas PMPs are the

lowest. These observations are consistent with what we have seen in Section

6.7.1.

Since CMPs are on average higher than LMPs, we expect CMPs to re-

duce MWP. However, if prices are too high, a generator might have incentives

to over-generate, resulting in high LOC. Fig. 6.8 shows both type of uplift
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Figure 6.8: Mean total uplift payments under different pricing methods.

payments under the three pricing methods. We can see that CMPs best in-

centivize the ISO’s dispatch, since they lead to the least MWP and LOC on

average.
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Conclusions
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Chapter 7

Conclusions

We conclude this dissertation by summarizing our findings and describ-

ing future research opportunities. We present the conclusions in three sections,

each corresponding to a part of this dissertation.

7.1 Convex Relaxation of Unit Commitment and its Ap-
plications

We have proposed a polynomially-solvable primal formulation for the

Lagrangian dual problem of the UC problem. This primal formulation explic-

itly describes the convex hull of each unit’s feasible set and the convex envelope

of each unit’s cost function. We cast our formulation as a second-order cone

program if the cost functions are quadratic, and as a linear program if the cost

functions are affine or piecewise linear.

We then apply our primal formulation to convex hull pricing. We

show that exact convex hull prices can be obtained in the absence of ramping

constraints, and that exactness is preserved when we consider ancillary ser-

vices or any linear system-wide constraints. A tractable approximation applies

when ramping constraints are considered. A 96-period 76-unit transmission-
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constrained example solves in less than fifteen seconds on a personal computer.

This example shows that prices obtained through our formulation further re-

duce uplift payments compared to a single-period approximation of convex

hull pricing.

Next, we apply our primal formulation to generation expansion plan-

ning (GEP). We propose a GEP model that incorporates commitment deci-

sions in a tractable manner by employing our convex relaxation of UC as the

operational model. We apply our GEP model to a Texas system in which

we model hourly system operations in the year of 2030. We demonstrate

that neglecting commitment decisions in GEP results in an under-investment

in flexible generation, which may lead to reserve shortage, load shedding, and

curtailment of renewable generation. We show that our convex relaxation out-

performs an existing unit-clustering method in terms of accuracy. We believe

that our approach might be even more advantageous in terms of accuracy when

transmission constraints are considered, since clustering similar units that are

not co-located introduces additional error in the presence of congestion.

Our convex relaxation could be used in future research for other power

system optimization problems in which commitment decisions need to be rep-

resented. The convex envelopes presented in this dissertation may also be

used to accelerate the solution of UC. Characterizing the convex hull of an

individual unit’s feasible set in the presence of additional complications (e.g.,

ramping constraints, startup types) is another research direction.

Our GEP model embeds a convex operational problem, lending itself
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to Benders decomposition. This decomposition approach could be used in a

transmission-constrained context and include additional features such as, for

example, Monte Carlo simulation of outages.

7.2 Modeling of Combined Cycle Units

We have presented a mixed-integer programming formulation of combined-

cycle units with explicit representation of transition ramping. This formulation

removes a common assumption in the existing literature: the completion of

any transition within a single interval. We show the tightness and compact-

ness of the proposed model. We also present a computational study on a test

system.

We have showed that if we have the characterization of the convex

hull of the feasible binary transition decisions, then the characterization of the

entire feasible set of an individual unit is trivial. However, the characterization

of the convex hull of the binary decision needs to be explored in the future in

the presence of minimum up/down time constraints.

Large-scale computational studies in the future can quantify the ben-

efit of the proposed model in practice. The proposed configuration-based

model can potentially apply to any unit with multiple operational modes,

e.g., pumped-hydro storage plants.
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7.3 Pricing in Multi-Interval Real-Time Markets

We have considered a multi-interval real-time market formulated as a

look-ahead dispatch (LAD) problem implemented in a model predictive control

fashion. If an independent system operator (ISO) adopts prices obtained from

the Lagrange multipliers of this LAD problem, market participants may have

an incentive to deviate from the ISO’s dispatch because historical losses are

treated as sunk. To mitigate incentives to deviate, we describe two methods

that incorporate historical loss: an existing method that dualizes the system-

wide constraints and a new method that dualizes inter-temporal constraints.

Both methods produce prices that support the ISO’s optimal dispatch

given a fixed finite horizon with perfect foresight. In more practical scenarios

with a rolling horizon, we use two types of uplift payment as qualitative mea-

sures of incentive: make-whole payment and lost opportunity cost. Computa-

tional studies on an ISO New England-based system show that the proposed

method results in lower out-of-market payments and a welfare transfer from

consumers to suppliers.

Although our formulations allow general linear inter-temporal constraints,

we have mainly considered ramping constraints in the computational studies.

If an ISO were to manage the state-of-charge of energy storage resources, new

inter-temporal equality constraints would need to be introduced to reflect the

change of state-of-charge from one interval to the next. Pricing in the pres-

ence of inter-temporal operations of storage resources is one future research

direction.
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Appendix A

A Proof of Lemma 2.9 in [69]

Over a time horizon T ∈ Z++, consider a generating unit with minimum

up time of L ∈ Z+ dispatch intervals and minimum down time of l ∈ Z+

dispatch intervals. Let x (denoted by u in [69]) be the commitment vector

and u (denoted by v in [69]) be the start-up vector.

The commitment polytope of a unit DT (L, l) is defined to be

DT (L, l) = {x ∈ RT ,u ∈ RT−1 |
t∑

i=t−L+1

ui ≤ xt, ∀t ∈ [L+ 1, T ],(A.1)

t∑
i=t−l+1

ui ≤ 1− xt−l, ∀t ∈ [l + 1, T ],(A.2)

ut ≥ xt − xt−1, ∀t ∈ [2, T ], (A.3)
ut ≥ 0, ∀t ∈ [2, T ]}. (A.4)

To simplify our proof, let w be the shut-down vector, so that

wt = ut + xt−1 − xt,∀t ∈ [2, T ]. (A.5)

Lemma 2.9 in [69]:

Lemma A.1. Let (x,u) ∈ DT (L, l). Then there exist integral points as ∈

DT (L, l), s ∈ S, and λs ∈ R+, s ∈ S such that
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(i). x =
∑

s∈S λsx(a
s), u =

∑
s∈S λsu(a

s), and
∑

s∈S λs = 1;

(ii). let Sd
t be the set of all points that have been shut down at t, then

∀t ∈ [2, T ], wt =
∑

s∈Sd
t
λs;

(iii). let Su
t be the set of all points that have been started up at t, then

∀t ∈ [2, T ], ut =
∑

s∈Su
t
λs,

where u(as) is the u vector corresponding to as.

This lemma states that any point in DT (L, l) can be written as a convex

combination of a set of integral points in this polytope. This implies that every

extreme point of DT (L, l) is integral.

The proof of this lemma provided in [69] has the following flaws:

• the proof by induction uses a base case of D2(1, 1) and an inductive

step that shows the statements are true for DT (L, l) if they are true

for DT−1(L, l). Multiple natural numbers are varying, and induction

must be applied to T , L and l;

• in the inductive step, the authors consider “ut of the integral points”,

which is not well-defined, since a fraction of a natural number can

be fractional;

• the determination of λs is not specified.

We state the lemma in a slightly different way and give a proof of the

new lemma.

Lemma A.2. For all T ∈ Z++\{1}, ∀L, l ∈ Z+ such that L ≤ T − 1 and
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l ≤ T −1, ∀(x,u) ∈ DT (L, l), there exists a set of integral points {(x̂s, ûs), s ∈

S = {1, 2, . . . , |S|}} ⊂ DT (L, l), and {λs ∈ R+, s ∈ S} such that

(i). x =
∑

s∈S λ
sx̂s, u =

∑
s∈S λ

sûs, and
∑

s∈S λ
s = 1;

(ii). for all t ∈ [2, T ], wt =
∑

s∈St,d
λs, where St,d = {s | ŵs

t = 1};

(iii). for all t ∈ [2, T ], ut =
∑

s∈St,u
λs, where St,u = {s | ûs

t = 1}.

Proof. We prove by induction.

Base case: consider T = 2. Since the time resolution we consider

is one dispatch interval, a minimum up/down time of less than one dispatch

interval has the same effect as a minimum up/down time of one dispatch

interval. Therefore, D2(1, 1) = D2(1, 0) = D2(0, 1) = D2(0, 0), so that we can

only consider the case D2(1, 1), which is the case considered in the original

proof of [69].

Induction hypothesis: suppose the given statement holds for T − 1,

where T > 2 and T ∈ Z. That is, suppose ∀L′, l′ ∈ Z+ such that L′ ≤ T − 2

and l′ ≤ T − 2, ∀(x,u) ∈ DT−1(L
′, l′), there exists a set of integral points

{(x̃s, ũs), s ∈ S ′ = {1, 2, . . . , |S ′|}} ⊂ DT−1(L
′, l′), and {µs ∈ R+, s ∈ S ′} such

that (i), (ii), and (iii) hold.

We need to show: the statement holds for T . That is, ∀L, l ∈ Z+ such

that L ≤ T −1 and l ≤ T −1, ∀(x,u) ∈ DT (L, l), there exists a set of integral

points {(x̂s, ûs), s ∈ S = {1, 2, . . . , |S|}} ⊂ DT (L, l), and {λs ∈ R+, s ∈ S}

such that (i), (ii), and (iii) hold.
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Given any L, l ∈ Z++ such that L ≤ T − 1 and l ≤ T − 1, and given

any (x,u) ∈ DT (L, l), we drop the last entry of x and denote the truncated

vector by x ∈ RT−1. Similarly, we drop the last entry of u and denote the

truncated vector as u ∈ RT−2. We then have (x,u) ∈ DT−1(L − 1, l − 1).1

Since L−1 ≤ T −2 and l−1 ≤ T −2, by the induction hypothesis, we can find

a set of integral points {(x̃s, ũs), s ∈ S ′} and {µs ∈ R+, s ∈ S ′} that satisfy

(i), (ii), and (iii). Similarly, we let S ′
t,d = {s | w̃s

t = 1} and S ′
t,u = {s | ũs

t = 1}.

We construct {(x̂s, ûs), s ∈ S} ⊂ DT (L, l) from {(x̃s, ũs), s ∈ S ′} ⊂

DT−1(L − 1, l − 1) by defining all but the last components of x̂s and ûs to

be the same as x̃s and ũs, respectively, and appending a T -th component as

needed. When necessary, we may construct more than one (x̂s, ûs) based on

a single (x̃s, ũs). We construct (x̂s, ûs) in a way that allows us to find a set

of λs satisfying (i), (ii), and (iii).

To facilitate our proof, we partition S ′ into S ′
1 and S ′

2, so that

S ′
1 = {s ∈ S ′ | x̃s

T−1 = 1}, (A.6)

and

S ′
2 = {s ∈ S ′ | x̃s

T−1 = 0}. (A.7)

That is, S ′
1 contains integral points that involve the unit being on at time

T − 1.

1For the boundary cases where either L or l equals one, or both, note that DT (L, 0) =
DT (L, 1), DT (0, l) = DT (1, l), and DT (0, 0) = DT (1, 1).
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We further partition S ′
1 into S ′

11 and S ′
12, so that

S ′
11 = {s ∈ S ′

1 | ũs
T−L+1 = ũs

T−L+2 = · · · = ũs
T−1 = 0}. (A.8)

and S ′
12 = S ′

1\S ′
11. That is, the integral points in S ′

11 involve the unit not

starting up during t ∈ [T − L+ 1, T − 1].

Similarly, we partition S ′
2 into S ′

21 and S ′
22, so that

S ′
21 = {s ∈ S ′

1 | w̃s
T−l+1 = w̃s

T−l+2 = · · · = w̃s
T−1 = 0}, (A.9)

and S ′
22 = S ′

2\S ′
21. That is, the integral points in S ′

21 involve the unit not

shutting down during t ∈ [T − l + 1, T − 1].

We have effectively partitioned S ′ into S ′
11, S ′

12, S ′
21, and S ′

22, which

results in the following properties:

•
∑

s∈S′
1
µs = xT−1, and

∑
s∈S′

2
µs = 1− xT−1.

•
∑

s∈S′
11
µs ≥ wT .

To see this, notice that
∑

s∈S′
11
µs = xT−1 −

∑T−1
t=T−L+1

∑
s∈S′

t,u
µs =

xT−1 −
∑T−1

t=T−L+1 ut, where the first equality follows the definition

of S ′
11 and S ′

t,u, and the second equality follows from (iii). Now

we invoke the turn on inequality at T for DT (L, l):
∑T

t=T−L+1 ut =∑T−1
t=T−L+1 ut + uT ≤ xT . Applying this turn on inequality to the

previous equality yields
∑

s∈S′
11
µs ≥ −xT + xT−1 + uT . The desired

result follows from (A.5).

•
∑

s∈S′
21
µs ≥ uT .
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To see this, notice that
∑

s∈S′
21
µs = 1−xT−1−

∑T−1
t=T−l+1

∑
s∈S′

t,d
µs =

1 − xT−1 −
∑T−1

t=T−l+1wt, where the first equality is by definition of

S ′
21 and S ′

t,d, and the second equality follows from (ii). Now we

invoke the turn off inequality at T for DT (L, l):
∑T

t=T−l+1wt =∑T−1
t=T−l+1wt+wT ≤ 1−xT . Applying this turn off inequality to the

previous equality yields
∑

s∈S′
21
µs ≥ xT − xT−1 + wT . The desired

result follows from (A.5).

To satisfy (ii), we would like to append a one to some of the shut-

down vectors w̃s and assign positive values to their associated λs, so that

wT =
∑

s∈ST,d
λs. Because of the minimum up time constraints, we can only

append a one to those w̃s with s ∈ S ′
11.

To satisfy (iii), we would like to append a one to some of the start-

up vectors ũs and assign positive values to their associated λs, so that uT =∑
s∈ST,u

λs. Because of the minimum down time constraints, we can only

append a one to those ũs with s ∈ S ′
21.

We construct {(x̂s, ûs), s ∈ S} according to the following rules:

• Construct two integral points (x̂s1, ûs1), (x̂s2, ûs2) from each {(x̃s, ũs), s ∈

S ′
11}. Each shut-down vector ŵs1 is created by appending a one

to w̃s, and each ŵs2 is created by appending a zero. Each start-

up vector ûs1 and ûs2 can only be created by appending a zero

to ũs. Each commitment vector x̂s1 is created by appending a

zero to x̃s, and each x̂s2 is created by appending a one. We set
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λs1 + λs2 = µs,∀s ∈ S ′
11. Because

∑
s∈S′

11
µs ≥ wT , we can find

λs1, λs2, s ∈ S ′
11 such that

∑
s∈S′

11
λs1 = wT .

• Construct only one integral point (x̂s, ûs) from each {(x̃s, ũs), s ∈

S ′
12}. Because of the minimum up time constraints, we can only

append a one to x̃s, a zero to ũs, and a zero to w̃s. We set λs =

µs,∀s ∈ S ′
12.

• Construct two integral points (x̂s1, ûs1), (x̂s2, ûs2) from each {(x̃s, ũs), s ∈

S ′
21}. We create each start-up vector ûs1 by appending a one to ũs,

and each ûs2 by appending a zero. Each shut-down vector ŵs1, and

ŵs2 can only be created by appending a zero to w̃s. Each com-

mitment vector x̂s1 is created by appending a one to x̃s, and x̂s2

is created by appending a zero. We set λs1 + λs2 = µs,∀s ∈ S ′
21.

Because
∑

s∈S′
21
µs ≥ uT , we can find λs1, λs2, s ∈ S ′

21 such that∑
s∈S′

21
λs1 = uT .

• Construct only one integral point (x̂s, ûs) from each {(x̃s, ũs), s ∈

S ′
22}. Because of the minimum down time constraints, we can only

append a zero to x̃s, a zero to ũs, and a zero to w̃s. We set λs =

µs,∀s ∈ S ′
22.

To summarize, we have constructed {(x̂s, ûs), s ∈ S} = {(x̂s1, ûs1), s ∈

S ′
11} ∪ (x̂s2, ûs2), s ∈ S ′

11} ∪ {(x̂s, ûs), s ∈ S ′
12} ∪ {(x̂s1, ûs1), s ∈ S ′

21} ∪

{(x̂s2, ûs2), s ∈ S ′
21} ∪ {(x̂s, ûs), s ∈ S ′

22} and their associated λ.

Finally, we verify (i), (ii), (iii) using the integral points and λs, s ∈ S

that we have constructed. Since we keep the first T −1 components of each as
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to be the same as its corresponding ps, by the way we construct λs, it suffices

to verify (i), (ii), (iii) for only t = T .

(i). We have
∑

s∈S λ
s = 1. It suffices to show that xt =

∑
s∈S λ

sx̂s
T ,

uT =
∑

s∈S λ
sûs

T .

By construction, we have
∑

s∈S λ
sx̂s

T =
∑

s∈S′
11
λs2 +

∑
s∈S′

12
λs +∑

s∈S′
21
λs1 = xT−1 − wT + uT = xt.

Also, we have
∑

s∈S λ
sûs

T =
∑

s∈S′
21
λs1 = uT .

(ii). By construction, we have
∑

s∈ST,d
λs =

∑
s∈S′

11
λs1 = wT .

(iii). By construction, we have
∑

s∈ST,u
λs =

∑
s∈S′

21
λs1 = uT .
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