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ABSTRACT 

Hawaiian photic reef ecosystems, found from the surface to 30 m depth, are imperiled by 

anthropogenic stressors such as climate change, overfishing, introduction of invasive species, 

and sedimentation from coastal construction. Mesophotic coral ecosystems (MCEs) found from 

30 to 180 m may be buffered from these stressors by their deeper depth range. However, their 

vulnerability is not well known because minimal data exist on their location and community 

structure around the main islands. Consequently, I developed multiple, spatially explicit models 

to predict the distribution of important MCE members, which included scleractinians of the 

genera Montipora and Leptoseris, and the calcified alga Halimeda kanaloana.  Similar models 

were also created for the invasive alga Avrainvillea amadelpha to better understand its potential 

impact on Hawaiian MCEs. Using the results of my models, I created maps across the main 

Hawaiian Islands, identifying the most suitable habitat for (i.e., the most probable location for 

colonization by) these species of interest. These are the first pan-Hawaiʻi predictive distribution 

maps for corals and algae within the mesophotic zone, which will hopefully serve as a valuable 

source of information to resource managers, scientists, and stakeholders in future marine spatial 

planning efforts. 
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Chapter 1: Introduction 

1.1 Painting a picture of the unseen 

 Approximately one-quarter of the estimated 8.8 million eukaryotic species on earth are 

marine (Mora et al. 2011), and given that less than 5% of the ocean has been mapped in detail, 

this number may markedly underestimate the true biological wealth hidden in the depths of the 

sea. Technological advancements in survey methods, including satellite imagery, submersible 

vehicles, and closed-circuit diving, combined with the powerful processing capabilities of 

modern computers, facilitate the investigation of underexplored ocean regions like never before 

(Whitcomb et al. 2000; Sieber & Pyle 2010; Morrow & LeTraon 2012; Blondeau-Patissier et al. 

2014; Pyle et al. 2016). The creativity and dedication of scientists across disciplines promoted 

the discovery of tens of thousands of terrestrial and marine plant and animal species in the past 

decade alone (Appeltans et al. 2012; Christenhusz & Byng 2016).  

 Despite the apparent abundance of information we have yet to uncover about the natural 

world, evidence suggests we are in the midst of the sixth mass extinction event- and fault lies 

entirely with us (Wake & Vredenburg 2008; Steffen et al. 2011). Industrialized animal 

agriculture and overconsumption of animal products (e.g., Carlsson-Kanyama et al. 2009; 

Tilman et al. 2002; Gill et al. 2010), overpopulation (Pimentel 2012; Butler 1994), changes in 

land use (e.g., Gauthier et al. 2005), and the broad, unstoppable impacts of human-caused 

climate change (Intergovernmental Panel on Climate Change 2014) are all playing a role in the 

decline of natural habitat that is contributing to the current extinction event. Two-thirds of 

monitored invertebrate populations show a global decline in mean abundance of almost 50% in 

the past several hundred years (Dirzo et al. 2014). With extinction rates at an estimated 102 – 103 

times higher than pre-Anthropocene levels, scientists estimate an annual loss of 11,000 – 58,000 

species worldwide (Pimm et al. 1995; Scheffers et al. 2012; Mora et al. 2013). 

 A report by the National Research Council explains the irreversibility of crossing a 

climate threshold: “Technically, an abrupt climate change occurs when the climate system is 

forced to cross some threshold, triggering a transition to a new state at a rate determined by the 

climate system itself and faster than the cause” (National Research Council 2013). We are on the 

cusp of such a threshold. Now, more than ever before, we need to assess the world around us to 

define some baseline for species biodiversity, abundance, and distribution. 

1.2 Niche theory 



2 

 

When introducing a new term, one would customarily start with the definition. For the 

term "niche", it's not so simple; for almost a century, ecologists have wrestled with the 

complexity of such a keystone concept. The term itself is likely derived from the Middle French 

word nicher, which translates as to nest. I will briefly introduce the three predominant 

perspectives on the concept of an ecological niche, starting with the Grinnellian niche, followed 

by the Eltonian niche, and finally, the most widely accepted Hutchinsonian niche. 

Grinnell (1917) is the first researcher to apply this term in a paper about adaptations of 

the California thrasher (Toxostoma redivivum)- i.e., strong legs, long tail, and short wings, all 

perfectly conducive to hopping slyly through brush- to its woody chaparral habitat. The 

Grinnellian niche is environment-centric in that the habitat determines the various physiological 

and behavioral adaptations of a species. This definition permits the existence of both overlapping 

and empty niche spaces. 

A more food-specific definition comes from Elton (1927). This definition is dynamic: the 

feeding habits of an animal may change over its lifespan or due to external forcings, such as 

changes in climate or prey populations. Elton grouped species into niches based on their foraging 

habits (e.g., "birds of prey"). This perspective introduces the idea of the effects of a species on 

both the biotic and abiotic components of their surrounding environment. 

The Hutchinsonian niche is defined as an n-dimensional volume (i.e., "hypervolume") 

configured by the resources and environmental state which collectively determine the 

requirements of a species to persist. Theoretically, each species has a "fundamental niche" of 

usable resources that it could exploit if freed from interference by other species. Of course, 

species never exist in such a vacuum; thus, the "realized niche" is the true, real-world niche 

space of a species. Defined this way, each species has its own unique niche; in other words, this 

is very much a species-centric definition, and it is the one I have subscribed to while writing this 

dissertation. 

In seeking to understand the role of a species in a given ecosystem, we are actively 

looking to define its niche space. Scientists can procure this understanding through long-term in 

situ observation, but this type of study can become cost-prohibitive, time-intensive, and 

logistically challenging. This is when ecological modeling can help. 

1.3 Ecological modeling: species distributions and habitat suitability 
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Ecological modeling, alternatively defined as “environmental niche modeling” or, more 

commonly, “species distribution modeling”, combines mathematical formulae and computing 

power to uncover drivers that determine where and why organisms persist in particular areas.  

Models can provide a mathematically-sound basis for assessing the probability of the presence of 

a study organism in a given location at a given time; this may also be interpreted as the 

suitability of a given area for habitation by that organism. Factors affecting the performance of 

models include the quality and availability of input data used to train the model (Wisz et al. 

2008; Guisan et al. 2007; Kramer-Schadt et al. 2013), the complexity of the model (Syfert et al. 

2013), and unincorporated factors affecting the realized niche space of a species, such as life 

history traits, interspecific competition, or dispersal barriers (Araujo & Guisan 2006; Václavík & 

Meentemeyer 2009). 

Despite the aforementioned challenges modelers must address, ecological models may 

offer an otherwise infeasible snapshot of the spatial ecology of unsurveyed regions or project 

how a community may change as the result of some perturbation (e.g., Gottfried et al. 1999; Van 

der Putten et al. 2010; Barve et al. 2011). Ecological models are particularly useful in areas that 

are hard to reach. The marine region of study explored in this dissertation, the mesophotic zone, 

is an example of an underexplored, hard-to-reach habitat.  

1.4 Mesophotic coral ecosystems (MCEs): globally and in Hawaiʻi  

The name of the mesophotic (“meso” + “photic” = “middle light”) zone conveys its very 

nature: a light-starved transition zone extending from 30 – 180 m in depth and found in tropical 

and subtropical oceans (across the equator to about ~ 40° north and south latitude). Dr. Rich Pyle 

applied the “twilight zone” label to reefs in this depth range to convey its uniquely light-limited, 

relatively understudied qualities (Pyle 1996). The transitional nature of this zone plays a part in 

the relative dearth of data: the upper depth boundary (30 m) is the lower limit for standard open 

circuit diving, while the lower depth boundary (~165 – 200 m) is too shallow to justify costly, 

extensive exploration via submersibles or robots.  

The potential biological and economic importance of MCEs cannot be underestimated. 

The sessile inhabitants of this zone, including corals, algae, and sponges, provide structurally 

complex habitat that is buffered by depth from thermal stress events, which may provide refuge 

for juvenile fishes, stressed shallow-water populations, or migratory organisms from other 

regions (Glynn 1996). Mesophotic depths are part of essential bottomfish habitat (Blyth-Skyrme 
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et al. 2013) and host commercially valuable black corals (Wagner et al. 2011). Researchers have 

observed up to 100% endemism within mesophotic reef fish assemblages in the Northwestern 

Hawaiian Islands (Kosaki et al. 2017). As the number of processed samples of mesophotic flora 

and fauna steadily increases, so do the records of newly identified algae (Spalding 2012; 

Spalding et al. 2016) and coral (e.g., Rooney et al. 2010) species, many of which may be 

endemic to the Hawaiian Islands.  

The mesophotic zone may be our only hope for reef persistence as we face the looming 

climate change crisis. Coral bleaching (Hoegh-Guldberg 1999; Baker et al. 2008), overfishing 

(Mumby 2016), and land-based nutrient and sediment influxes (Pastorok & Bilyard 1985; Iar & 

Thurber 2015; Zaneveld et al. 2016) plague shallow (< 30 m) reefs, which have experienced a 

decline of up to 80% across certain regions (Gardner et al. 2003). In a survey of Caribbean reefs, 

Bak et al. (2005) found that the percent coral cover of deep coral communities remained fairly 

stable over several decades, and that these deep reefs experienced losses only in response to 

periodic, catastrophic events, such as storms or cold water upwelling episodes (it should be noted 

that thermal stress and storm events are also periodic stressors across shallow reef systems). 

However, MCEs are not invincible in the face of climate change; they face some of the same 

stressors as shallow reefs - including disease (Smith et al. 2016), storm damage (White et al. 

2017), pollution (Appeldoorn et al. 2016; Etnoyer et al. 2016), invasive species (Andradi-Brown 

et al. 2017), and overfishing (Loya et al. 2016). Their depth makes them uniquely susceptible to 

the potential effects of a steadily shoaling aragonite saturation horizon (Sarma et al. 2002; 

Thresher et al. 2015) and increased light attenuation, and drowning due to sea level rise (Sanborn 

et al. 2017).  

Given that we now know of at least some of the ecological and economic importance of 

MCEs, and given that we are in the midst of a human-driven mass extinction event, it serves 

scientists, coastal communities, policy makers, and resource managers to gather as much 

information as possible about our marine resources and use this knowledge to establish a 

baseline for management and conservation of these resources. 

1.5 Dissertation objectives 

This thesis uses biological observational data of hard corals (Leptoseris sp. and 

Montipora sp.) and green algae (Halimeda kanaloana and Avrainvillea amadelpha) and 

explanatory environmental data to create species distribution models at different spatial scales 
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and across different study areas within the main Hawaiian Islands (MHI). The work composing 

this dissertation achieves the following objectives: 

1. Generate the first models of hard coral distribution across the mesophotic zone (30 – 180 

m) of the entire span of the MHI; 

2. Explore the influence of different environmental predictors at varying spatial scales on 

the distribution of mesophotic corals and algae; 

3. Generate the first model of predicted native invasive Avrainvillea amadelpha distribution 

and identify “hotspot” regions of concern across nearshore to mesophotic (0 – 90 m) 

Oʻahu and surrounding MHI. 

My hope in this endeavor is to figuratively “shed light” on the mysteries of the 

underexplored mesophotic reef system: What does it look like? What drivers shape certain 

mesophotic coral and algae communities? This work serves to answer those questions and 

provide scientists and managers with a greater understanding of the ecology of these 

communities so that we may all continue to work together to conserve endemic marine fauna of 

Hawaiʻi, especially those just beyond reach. 
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Chapter 2: The implementation of rare events logistic regression to predict the distribution 

of mesophotic hard corals across the main Hawaiian Islands 

Published as Veazey, L. M., Franklin, E. C. Kelley, C., Rooney, J., Frazer, L. N. and Toonen, R. 

J. (2016) The implementation of rare events logistic regression to predict the distribution of 

mesophotic hard corals across the main Hawaiian Islands. PeerJ 4:e2189. 

2.1 Abstract  

Predictive habitat suitability models are powerful tools for cost–effective, statistically 

robust assessment of the environmental drivers of species distributions. The aim of this study 

was to develop predictive habitat suitability models for species in two genera of scleractinian 

corals (Leptoseris and Montipora) found within the mesophotic zone across the main Hawaiian 

Islands (MHI). The mesophotic zone (30 – 180 m) is challenging to reach, and therefore 

historically understudied, because it falls between the maximum limit of SCUBA divers and the 

minimum typical working depth of submersible vehicles. Here, I implement a logistic regression 

with rare events corrections to account for the scarcity of presence observations within the 

dataset. These corrections reduced the coefficient error and improved overall prediction success 

(73.6% and 74.3%) for both original regression models. The final models included depth, 

rugosity, slope, mean current velocity, and wave height as the best environmental covariates for 

predicting the occurrence of the two genera in the mesophotic zone. Using an objectively 
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selected theta (“presence”) threshold, the predicted presence probability values (average of 0.051 

for Leptoseris and 0.040 for Montipora) were translated to spatially–explicit habitat suitability 

maps of the main Hawaiian Islands at 25 m grid cell resolution. My maps are the first of their 

kind to use extant presence and absence data to examine the habitat preferences of these two 

dominant mesophotic coral genera across Hawaiʻi. 

2.2 Introduction 

 Consistent and pervasive deterioration of marine ecosystems worldwide highlights 

significant gaps in current management of ocean resources (Foley et al. 2010; Douvere 2008; 

Crowder & Norse 2008). One such gap is acquiring the data required for informed marine spatial 

planning, a management approach that synthesizes information about the location, anthropogenic 

use, and value of ocean resources to achieve better management practices such as defining 

marine protected areas and implementing harvesting restrictions (Jackson et al. 2000, Larsen et 

al. 2004). The creation of spatial predictive models for improved marine planning is a relatively 

low–cost and non–invasive technique for projecting the effects of present–day human activities 

on the health and geographic distribution of marine ecosystems. 

 Defining and managing the biological and physical boundaries of ecosystems is a 

complicated but essential component of marine spatial planning (McLeod et al. 2005). The 

heterogeneous nature of ecological datasets can require the time–intensive development of 

problem–specific ecosystem models (Cramer et al. 2001; Tyedmers et al. 2005). Scientists 

frequently use straightforward, easy–to–implement regression methods to analyze complex 

datasets. The development of software accessible to relative novices has contributed to the 

growing popularity of regression methods (e.g., Lambert et al. 2005; Tomz et al. 2003).  

 Here, I employ a logistic regression with rare events corrections (King & Zeng 2001) to 

analyze the presence and absence data of two coral genera (Leptoseris and Montipora) and, thus, 

develop a predictive framework for the geographic mapping of mesophotic coral reef ecosystems 

(MCEs) across the main Hawaiian Islands (MHI). MCEs, located at depths of 30 – 180 meters, 

are considered to be extensions of shallow reefs because they harbor many of the same reef 

species present at shallower depths, and are also oases of endemism in their own right (Grigg 

2006; Lesser et al. 2010; Kane et al. 2014; Hurley et al. 2016). MCE habitats are formed 

primarily by macroalgae, sponges, and hard corals tolerant of low light levels (Lesser et al. 

2009). Corals of genus Montipora colonize primarily the shallow reef zone (< 30 m), but some 



14 

 

species, particularly Montipora capitata (Rooney et al. 2010), are able to extend their settlement 

into mesophotic depths. Corals of genus Leptoseris construct extremely efficient, light–capturing 

skeletons that facilitate their habitation of the lower mesophotic zone (Kahng et al. 2012) and are 

considered to be exclusively mesophotic dwellers (Kahng & Kelley 2007). 

 Ecological studies in the mesophotic zone are sharply limited in contrast to the shallower 

photic zone more accessible by open circuit SCUBA, but steady advances in diving, computing, 

and remotely operated vehicle technologies continue to facilitate interdisciplinary mesophotic 

research (Pyle 1996; Puglise et al. 2009). Mesophotic research in Hawaiʻi has been conducted 

primarily in the ʻAuʻau Channel, Maui, a relatively shallow, semi–enclosed waterway between 

the islands of Maui and Lānaʻi that is among the most geographically sheltered and accessible 

areas in the Hawaiian Archipelago, and, as a result, much of the existing video and photo records 

of MCEs are from this area. This concentration of historic surveys highlights the importance of 

creating a pan–Hawaiʻi predictive habitat model to identify likely areas of MCEs across 

unexplored areas of Hawaiʻi's mesophotic zone. Increasing my knowledge about the habitat 

preferences of the deep extensions of shallow coral species is critical given that approximately 

40% of shallow (< 20 m) reef–building corals face a heightened extinction risk from the effects 

of climate change (Carpenter et al. 2008). Here, I model the habitat associations of mesophotic 

scleractinian corals because of both their intrinsic biological value as well as their potential to 

recolonize globally threatened shallow reef areas and serve as a refuge to mobile reef organisms 

(Bongaerts et al. 2010; Kahng et al. 2014).  

 Previous research about the environmental variables driving mesophotic scleractinian 

colonization in Hawaiʻi suggests that distinct variation in community structure exists between the 

upper (30 – 50 m) and mid to lower mesophotic (50 – 180 m) depths (Rooney et al. 2010; Kahng 

et al. 2010; Kahng et al. 2014). Potentially influential environmental variables include 

photosynthetically active radiation (PAR) levels (Goreau & Goreau 1973; Fricke et al. 1987; 

Kahng and Kelley 2007; Kahng et al. 2010), isotherms (Grigg 1981; Kahng & Kelley 2007; 

Rooney et al. 2010), and hard substrate availability (Kahng & Kelley 2007; Costa et al. 2012). 

Rooney et al. (2010) noted that hard coral abundance declined dramatically below 100 m despite 

high (> 25%) availability of colonizable substrate; this sudden reduction in coral cover occurs at 

increasingly shallower depths across the northwestern Hawaiian Ridge and may be driven by the 

synchronously shallower occurrence of isotherms. 
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 Light and temperature intensity (Jokiel & Coles 1977; Rogers 1990), physical stress (e.g., 

wave energy or uncontrolled tourism) (Dollar 1982; Nyström et al. 2000; Franklin et al. 2013), 

and availability of colonizable substrate (Jokiel et al. 2004; Franklin et al. 2013) are known 

drivers of shallow (< 30 m) reef coral distributions across the world. I expect that my model will 

capture the influence of these abiotic variables on the distribution of mesophotic corals, 

especially in the shallower mesophotic zone. I speculate that my model may detect unexpected 

drivers of Leptoseris distribution, particularly because Leptoseris is known to colonize deeper 

depths that bear little resemblance to shallow reefs (Lesser et al. 2009; Rooney et al. 2010). 

Finally, previous predictive modeling research about the drivers of Hawaiian mesophotic coral 

colonization identified depth, distance from shore, euphotic depth, and sea surface temperature 

as potentially influential environmental variables (Costa et al. 2012; Costa et al. 2015). My novel 

modeling approach utilizes all observational data (corals present and absent), which I believe 

will offer more insight into the dynamics that facilitate and inhibit coral colonization across the 

mesophotic zone. 

2.3 Materials and methods 

2.3.1 Organismal and environmental data 

 The Hawaiʻi Undersea Research Laboratory (HURL) and the Pacific Islands Fisheries 

Science Center (PIFSC) provided video and photo records from MCEs in the Hawaiian Islands 

for my analyses. This imagery came from 19 dives conducted using submersibles, remotely 

operated vehicles (ROVs), autonomous underwater vehicles (AUVs), and tethered optical 

assessment devices (TOADs) in the ʻAuʻau Channel, Maui (13 dives) and two other 

geographically distinct regions: south Oʻahu (5 dives) and southeast Kauaʻi (1 dive). These dives 

were conducted between 2001 and 2013. I analyzed dive video using the Coral Point Count with 

Excel extensions (CPCe) tool (Kohler & Gill 2006) in combination with a modified PIFSC 2011 

mapping protocol (PIBHMC 2015). PIFSC has used this type of combined analysis, referred to 

as the random five point overlay method (RFPOM), to process coral reef ecosystem benthic 

imagery throughout the U.S. Pacific Islands Region since August 2011, and my use of it ensures 

database consistency with regions processed prior to this study. The CPCe software placed five 

points randomly on each snapshot, which I then assessed for coral presence. If any of the five 

points was on coral, that observation was recorded as a “presence”. In an effort to evaluate the 

accuracy of RFPOM, I counted all corals in 200 randomly selected screengrabs and found that 
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this method misses 2.4% of coral observations recorded in these images. I categorized corals by 

genus, because both Montipora (Forsman et al. 2010) and Leptoseris (Luck et al. 2013) contain 

species complexes that remain the subject of taxonomic uncertainty which prevent us from being 

able to reliably identify corals to the species level from photographs. 

 I recorded snapshots every 30 seconds for the duration of each dive video. In addition to 

an existing database of 40,193 records from dives in the ʻAuʻau Channel, 3517 new snapshots 

were collected from the additional dives across south Oʻahu and Kauaʻi (Fig. 1). Of these 43,710 

total images, 20,980 were discarded because either: 1) crucial observational data were absent, 2) 

they were redundant due to an extended stationary period, or 3) they fell outside the study depth 

range of 30 – 180 m. Of the remaining 22,714 records, I analyzed 2757 unprocessed images 

using the RFPOM (Table 1).  

 I selected my environmental covariates, listed in Table 2, based on the sufficiency of the 

data and the potential significance of each variable as an indicator of hard coral habitat suitability 

(e.g., Dolan et al. 2008; Rooney et al. 2010; Costa et al. 2012). I defined summer and winter 

seasons as May – September and October – April, respectively (Kay 1994; Rooney et al. 2010).I 

delineated significant wave height estimates and mean current velocities by season and direction. 

I extracted and averaged significant wave height data from 144 days per season of twenty–four 

hourly PacIOOS Simulating WAves Nearshore (SWAN) regional wave models estimated values 

for 2011 – 2015 (see website: http://oos.soest.hawaii.edu/las/). Mean current velocity values 

were available from 0:00 – 21:00 every three hours for all months from 2013 – 2015; for each 

season and direction, 48 mean current velocity values were extracted and averaged from the 

PacIOOS Regional Ocean Modeling System (see website: http://oos.soest.hawaii.edu/las/). This 

model has a 4 km horizontal resolution with 30 vertical levels across seafloor terrain. I sourced 

monthly MODIS Aqua chlorophyll a averages for the year 2012 from the NOAA PIFSC 

OceanWatch Live Access Server (see website: http://oceanwatch.pifsc.noaa.gov/). Using the 

Morel (2007) method, we applied the following cubic polynomial equation to obtain logged 

euphotic depth:  

2 3

10 1.524  0.436   0.0145  0.018l 6og eu x x xZ    ,                (1) 

where x represents the measured Chlorophyll a concentrations (mg/m3) at sea surface. Euphotic 

depth is the depth at which the level of photosynthetically active radiation (PAR), a limiting 

factor for many heterotrophic mesophotic corals, is at 1% of surface PAR. In total, we used 14 
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environmental predictor variables to shape our model (Table 2) (Supplementary material, Figs. 

A1 – A5). 

 The spatial resolution of the bathymetry data was 50 m x 50 m for all islands. We 

resampled the bathymetry raster to a cell size of 25 x 25 m consistent with a conservatively 

estimated + 25 m positioning error margin observed at a depth of ~800 m. We estimated an 

average camera swath value of 3.24 m (range 2.45 – 4.54 m) based on previous measurements 

from 19 still image screenshots taken when the submersible was located at different heights 

above the seafloor. Our geopositional error for the images is + 5 m and we can expect that the 

location data are within a circle with a 10 m diameter. Our observation sampling area is 

projected out from the location area a distance of < 5m. Addition of a conservative 5 m 

observation area buffer to the location error area produces an observational data position of + 20 

m from the given coordinates of a data point.  

 We removed all subsampling within cells due to slight variations in camera angles or 

vessel speed through a point–to–raster conversion. We categorized all cells with > 1 presence 

observation as "present" cells and all cells with only absence observations as "absent" cells. This 

removal of multiple observations within the same 25 x 25 m pixel effectively eliminates 

pseudoreplication within the data. We used ArcToolbox and the Benthic Terrain Modeler 

Toolbox to calculate slope, curvature, rugosity, and aspect (compass direction) values (Wright et 

al. 2012). We performed a spatial join based on proximity to observation point data to assign 

values for surface Chlorophyll a concentration, mean current velocities, distance from shore, and 

significant wave heights.  

 

Regression methods 

 In describing the relationship between a response variable and one or more predictor 

variables, we use a logistic regression model because the response variable is dichotomous 

(Hosmer and Lemeshow 2004). The ordinary logistic regression (OLR) model is defined as: 

1
expit( )

1 exp( )
 


 

 
 ,               (2) 

where is the probability that the species of interest is present ( 1)y  , and 1   is the 

probability it is absent ( 0)y  .The logit function is the inverse of the expit function, and 
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0 1 1logit( ) ... n nx x        
                (3)

 

is the linear sum of predictor variables, 1 2, ,..., nx x x , with intercept 0 and regression 

coefficients 1 2, ,..., n   . In the language of generalized linear models (GLM), OLR is said to 

have the logit function as its link function and the expit function as its inverse link function. 

Logistic regression provides a straightforward, meaningful interpretation of the relationship 

between a dichotomous dependent variable y  and a set of predictor variables (Allison 2001). 

 Despite the popularity of OLR, it may yield extremely biased results when an imbalance 

exists in the proportion of the response variable data (e.g., such as in our case, when

0 1y y   ) (Van Den Eeckhaut et al. 2006). King and Zeng (2001) coined the term "rare 

events logistic regression" to describe their corrective methodology in dealing with unbalanced 

binary event data: 

 

1. The first step requires the selection of a representative sample. Though researchers generally 

prefer to work with more uniform response data (e.g., Liu et al.2005), selection of an unusually 

high proportion of the rare event (in this case, 1y  ) to "balance" the dataset and increase 

estimates will yield nonsensical results. We divided the data in half to create our training and 

testing datasets and checked that each set of observations had an approximately equal proportion (

y ) of presence observations to better reflect the "true state" of the full dataset. 

2. The second step rectifies any bias that might be introduced when dividing the dataset. This prior 

correction on the intercept ( 0 ) can be calculated as: 

~

00

1ˆ ln
1

y

y


 



   
     

   
 ;               (4)       

here,  0̂   is the corrected intercept, 
~

0   is the uncorrected intercept,   is the true proportion of 

1s in the population; and y   is the observed proportion of 1s in the training sample.  

3. The third step rectifies any underestimation of the  probabilities of the independent variables 

1...n  from the substitution of the intercept value, obtained as: 

~

( 1) ii iP y C    ,               (5)        

where the correction factor iC  is given by: 
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~ ~ ~ ~

(0.5 ) (1 ) ( )i i i iiC XV X        ,                (6)       

where X is a 1 ( 1)n  vector of values for each independent variable i , X  is the transpose of 

X , and 
~

( )iV  is the variance covariance matrix. We obtained the improved probability 

estimates through estimation of i via 
~

i  , thereby considered "mostly" Bayesian (King and 

Zeng 2001). Our priors in this case would be uninformative, which means that we lack sufficient 

knowledge to estimate the probability distributions of our data and our parameter of interest,  . 

This is often the case when working with sparse ecological datasets.  As the uninformative prior 

for a regression coefficient with domain ( , ) 
 
is uniform, a full Bayesian estimation with 

uninformative priors is equivalent to a traditional logistic regression. Therefore, this correction is 

effectively a correction to the approximate Bayesian estimator, and its addition improves our 

regression by lowering the mean squared error of our estimates. We implemented this rare events 

logistic regression using the 'Zelig' package run in R (Imai et al. 2008, Choirat et al. 2015).  

 

 We constructed a correlation scatterplot matrix per coral genus to observe correlation 

levels between all variables. In choosing which highly correlated variables to exclude from the 

analyses, we followed the criteria outlined by Dancey and Reidy (2004) and Tabachnick and 

Fidell (1996), who suggest a cutoff correlation value of 0.7. Only mean significant wave height 

parsed by season consistently overreached this threshold; the covariate that was least correlated 

with the response variable was removed. We excluded predictors that lacked a clear distribution 

pattern or correlated minimally (< 0.05) with the response variable. 

 One of the more studied habitat preferences of Leptoseris and Montipora is the influence 

of depth on their distribution (Rooney et al. 2010, Costa et al. 2012, Kahng et al. 2010). 

Increasing depths often correlate with greater distance from shore. The inclusion of squared 

terms (e.g., 
2

2 1x x  ) in our regression equation 0 1 1expit( ) ... n nx x        permits the 

logistic curve to reflect the bell curve shape expected in plotting the distribution of these animals 

across a range of depths or distance from shore. In order to account for these trends, we added 

Depth Squared and Distance Squared as potential variables for consideration in our final model. 

As depth or distance increases, its square increases even more rapidly, allowing the squared term 

to eventually dominate and "pull down" the probability curve. 
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 We withheld 50% of our information per genus as testing (i.e., validation) data. Using the 

remaining 50% (our training data), we performed the rare events corrected logistic regression 

described above. Using an exhaustive iterative algorithm (Calcagno and Mazancourt 2010), we 

modeled all possible combinations of included covariates. We ranked models using the corrected 

Akaike information criterion (AICc) (Hurvich and Tsai, 1989), which is considered an excellent 

comparative measurement of model strength, especially for sparse datasets. For both genera, the 

models with the lowest (lowest = best) AICc scores were lower than the "second best" AICc 

scores by at least 2 (i.e.,  AICc > 2), indicating strong preference for the best model (e.g., 

Hayward et al. 2007).  

 In an ideal and unrealistic study, all biotic and abiotic components of a model would be 

homogenous and evenly distributed across a sampling space. Our sampling design includes 

overlapping submarine dive tracks and the inherent heterogeneity of the marine environment, 

which could problematically violate our model’s underlying assumption regarding the 

independence of our biological and environmental data. We removed all instances of 

pseudoreplication (multiple observations in one grid cell) when we assigned each grid cell to a 

category of “corals present” or “corals absent”. After we removed subsampling within our 

observational data, we checked for the presence of clustering, or spatial autocorrelation, within 

these data. Uncorrected spatial autocorrelation between observational data points confounds and 

undermines any biological inferences drawn from model predictions.  

We checked small–scale, local spatial autocorrelation using Geary's C statistic (Geary 

1954), based on the deviations in the responses of observation points with one another: 
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.                (7) 

Here, x is the variable of interest, i and j  are locations (where i j  ),
ijw represents the 

components of the weight matrix, and 0S  is the sum of the components of the weight matrix. 

Geary’s C ranges from 0 (maximal positive autocorrelation) to 2 for high negative 

autocorrelation. In the absence of autocorrelation, its expectation is 1 (Sokal and Oden 1978).  

 We also examined global spatial autocorrelation using Moran's I statistic, which 

measures cross–products of deviations from the mean (Moran 1950): 
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Moran's I values generally range from –1 to 1, with 0 as the expectation when no spatial 

autocorrelation is present.  

 We also verified the spatial independence of our observational point data using a 

semivariogram, which is a graphical method of quantifying spatial correlation in a set of points 

(Figs. 2 – 3). We selected our theoretical semivariogram to fit the empirical semivariance using 

the ordinary least squares (OLS) method (Jian et al. 1996, Kendall et al. 2005). The spherical 

model had the best quantitative fit based on OLS estimates (Table 3). For each dataset, the low 

thresholds at which semivariance stopped increasing indicated the almost complete absence of 

spatial autocorrelation for each genus. 

 

2.3.3 Model assessment 

 Evaluation of the rare events logistic regression model output is more complicated than 

for the typical linear model. For example, R2 values, although calculated, have little applicability 

to logistic regressions and are therefore ignored (Menard 2000, Peng et al. 2002). Sample size 

and selected threshold largely influence the results of the Hosmer and Lemeshow goodness–of–

fit test (Hosmer et al. 1997). Accordingly, we use model classification accuracy as a second 

measure of goodness–of–fit (in addition to  AICc). We want to maximize true positives (TP) 

and true negatives (TN) while minimizing false positives (FP) and false negatives (FN). The 

sensitivity–specificity sum maximization approach (Cantor et al. 1999) therefore maximizes 

max

TP TN
SS

TP FN TN FP
 

 
,               (9) 

which is equivalent to finding the point on the ROC (receiver operating characteristics) curve at 

which the tangent slope is 1, indicating the optimal cutoff point at which "cost" (here, the 

number of FN and FP) and "benefit" (the number of TN and TP) is balanced. We chose this 

technique because we aim to identify regions devoid of hard corals as well as regions deemed 

potentially suitable for habitation. 

 ROC curves plot the true positive test rate against the false positive test rate across 

different theta cutoff points (Hadley and McNeil 1982). We calculated values for sensitivity and 
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specificity for threshold increments of 0.005 + 1 standard deviation of the rounded mean for each 

model. Because each theta threshold value varied based on the genus and model, the threshold–

independent area under the curve (AUC) test statistic best reflects the predictive accuracy of the 

model.  

 In addition to creating ROC curves, we also took into account the overall prediction 

success of each model, given as: 

TP TN
OPS

TP TN FP FN




   .               (10)
 

Overall prediction success is a measure of total correct classification of both present and absent 

observations. While this is a good final assessment of model classification error, consideration of 

the prediction success alone is not a viable evaluation method when binary data is highly 

imbalanced, as a value given by this method may primarily represent model success in 

identifying the most common observation type (Fielding and Bell 1997). We plotted our 

sensitivity and specificity values on a ROC curve to show how each model performed relative to 

chance (Fig. 4). All models fall in the range 0.7 < AUC < 0.9, which indicates good 

discrimination and reliability of model predictions (Hosmer and Lemeshow 2004).  

 We also created maps of individual and summed predicted occurrence probabilities of 

both coral genera across the main Hawaiian Islands and ran a hotspot analysis using the ArcGIS 

Getis–Ord Gi* Hotspot Analysis tool. We constructed a polygon fishnet composed of 1 x 1 km 

cells which encompassed all islands. We summed each 25 x 25 m raster cell value for probability 

of Leptoseris occurrence and probability of Montipora occurrence. We performed a spatial join 

of raster cell values within each polygon for an average value of summed probabilities. The 

Getis–Ord Gi* statistic identifies clusters within these polygons that display values higher in 

magnitude than random chance would permit. The Getis–Ord local statistic is given as: 
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Here, ,i jw  represents the spatial weights between features i and j ; n  represents the total number 

of features; jx  is the attribute value for feature j ;  
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2.4 Results 

Geary’s C test statistic is a measure of local (small–scale) spatial autocorrelation; in the 

absence of correlation, 1 is the expected value of Geary’s C. Moran’s I is a measure of global 

(large–scale) spatial autocorrelation; in the absence of correlation, a value of 0 is expected for the 

Moran’s I test statistic. For my Leptoseris dataset, Geary's C = 0.990; for my Montipora dataset, 

Geary's C = 0.996. For my Leptoseris dataset, Moran's I = 0.006; for my Montipora dataset, 

Moran's I = 0.003. These values do not indicate any local clustering or global spatial 

autocorrelation within either dataset. I observed negligible levels of autocorrelation up to ~100 m 

for Montipora (Fig. 3).By ensuring that spatial autocorrelation is not present in my data, I do not 

violate the assumption that my response data are independently observed, which enables me to 

draw robust conclusions about the ecological factors influencing the distribution of these coral 

genera within the mesophotic zone across the MHI. 

 The OLR covariate coefficients were modified using the rare events corrections proposed 

by King and Zeng (2001), resulting in a change in predictive power (Table 4). Rare events 

corrected models usually performed better than the uncorrected models, in terms of improved 

specificity and prediction success. My sensitivity values for both corrected models were slightly 

lower than the corresponding OLR sensitivities, but in each case, specificity and prediction 

success values were improved. Additionally, standard errors of the coefficient estimates were 

lower for corrected models than for uncorrected models (Tables A1– A4). 

 Leptoseris corals inhabit mesophotic regions with high slope and rugosity values, high to 

moderate perennial current flow, and their occurrence peaks around 100 m (Table A3, Figs. A6 – 

A10). Montipora corals peak in occurrence around 60 m and colonize regions less exposed to 

high energy winter swells (Table A4; Figs. A11 – A12). Predicted presence probability values 

(θ) averaged 0.051 for Leptoseris and 0.040 for Montipora models in the validation data (Figs. 5 

– 6). These values agree well with the actual presence frequencies in that data (0.052, 0.042). To 

better interpret these realistically low theta values, I chose a theta threshold to transform the 

probability estimates to presence/absence values. This is standard practice when examining the 
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results of a rare events logistic regression, but less common when performing OLR (Liu et al. 

2005; Bai et al. 2011). Objective selection of a theta threshold on a per–model basis is more 

scientifically sound than, for example, an arbitrary assignment of 0.5 (Cramer 2003). The 

transformed model is valid if a threshold value yields a high percentage of correctly classified 

observations and a low number of FP and FN observations (Gobin et al. 2001). I selected an 

appropriate threshold for each model (Table 4) in order to maximize SSmax (Liu et al. 2005).  

My final hotspot maps show the results of my analysis for Leptoseris, Montipora, and 

both genera combined across all islands (Figs. 7 – 9). I show hotspots of habitat suitability for 

both coral genera in red for areas of highest suitability and blue for areas of lowest suitability. I 

identify a cell as a hotspot when the sum of its value and the values of its nearest neighbors is 

much higher or lower than the mean over all cells. When the local sum of a cluster is very 

different from the expected value, a statistically significant hotspot is identified (Gi* statistic > 

1.96 or Gi* statistic < –1.96). Neither genus clearly dominated the summed probabilities hotspot 

identification across any of the islands. Large Leptoseris hotspots were identified in southwest 

Molokaʻi, northeast Oʻahu, west Hawaiʻi, and the central ʻAuʻau Channel. Montipora hotspots 

were identified in east Niʻihau, southwest Kauaʻi, west and south Oʻahu, west Hawaiʻi, and the 

central ʻAuʻau Channel. 

2.5 Discussion 

 In this study, I used logistic regression with rare events corrections to predict the habitat 

preferences of two dominant scleractinian coral genera across the entire mesophotic zone 

surrounding the main Hawaiian Islands. The habitat preferences of Montipora in the mesophotic 

zone appear distinct from those of Leptoseris. Montipora prefers the middle mesophotic zone (50 

– 80 m) of reefs less exposed to high–energy winter swells. Leptoseris prefers steep, rugose 

slopes and the lower mesophotic zone (> 80 m) in regions of high year–round current flow. 

2.5.1 Important environmental covariates 

Predicted Montipora presence peaks at about 60 meters (median occurrence probability = 

7.5%); Leptoseris presence peaks at about 100 meters (median occurrence probability = 7.5%). 

These predictions are consistent with the inferences of Rooney et al. (2010), which separates 

mesophotic reefs into three distinct depth sections: upper (30 – 50 m), branching/plate dominated 

(50 – 80 m), and Leptoseris dominated (> 80 m). The depth at which suitability peaks for 
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Leptoseris occurs at a range where steep ridges and drop–offs are plentiful in my study region, 

and therefore the mean preferred depth may be prone to slight overestimation. 

 In addition to depth, four environmental covariates appeared to influence the distribution 

of Leptoseris: rugosity, slope, summer mean current velocity (northward), and winter mean 

current velocity (eastward). Scleractinians easily colonize environments that are relatively calm 

and rugose due to the larger amount of available surface area, and this positive correlation was 

reflected in my model. Leptoseris habitat preference was also positively associated with slope, 

which was not observed for Montipora. Corals that inhabit the upper mesophotic zone may be 

more susceptible to damage from debris displaced by high wave energy, and are therefore less 

likely to colonize steep slopes (e.g., Harmelin–Vivien & Laboute 1986; Bridge & Guinotte 

2013). The deeper distribution of Leptoseris may protect it from damage related to wave 

intensity, allowing it to colonize slopes (e.g., White et al. 2013). Another possibility is that the 

model is picking up drop–offs from masses accreted during the last glacial maximum. These 

steep drop–offs are present between 90 – 120 m in the Leptoseris–dominated lower mesophotic 

zone (Yokoyama et al. 2001; Webster et al. 2004). 

 Leptoseris also favors well–flushed areas exposed to year–round moderate current flow 

(i.e., up to 0.3 m/s). The plate–like morphology of Leptoseris corals effectively boosts sunlight 

capture by its symbiotic zooxanthellae and zooplankton capture by the corals themselves, but it 

also makes the coral vulnerable to smothering by sediment accumulation (Bak et al. 2005, 

Bongaerts et al. 2010; Marcellino et al. 2013). The success of Leptoseris corals in areas of 

moderate current flow may be related to the improbability of sediment settlement and 

accumulation. While the model did not capture the same effect of current flow on Montipora 

distribution, I recognize that the morphology of some Montipora species is extremely similar to 

that of Leptoseris. I do not expect either genus to readily colonize highly turbid regions, 

especially given that certain species of heterotrophic Montipora are thought to exploit strong 

currents to meet their energy requirements (Grottoli et al. 2006; Rooney et al. 2010).  

 Substrate hardness, a variable known to influence coral colonization, was notably absent 

from each model. Substrate hardness values were derived from acoustic backscatter imagery 

readings. The base resolution of these readings (50 x 50 m) was not sufficiently detailed for 

purposes of this analysis. I noted plentiful coral colonization along larger surfaces like lava 

fingers, the hardness of which would be detectable by backscatter surveys, as well as across 
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small rock fragments strewn across a sand flat, which would be obscured by the softness of the 

surrounding benthos. I can conclude that measurements of benthic hardness are not detailed 

enough for predictive modeling purposes at a 25 x 25 m resolution. 

 I emphasize that the purpose of this study was to build a pan–Hawaiʻi predictive habitat 

map for two dominant coral genera within the mesophotic zone. Because the scope of this study 

included all MHI, my work was constrained by the coarseness of available full–coverage 

environmental data. As I build on this analysis, I plan to use my maps to identify areas of interest 

for further study at higher resolution and to include additional variables currently only available 

in certain regions, such as light intensity and temperature at depth. For example, my predictive 

and hotspot maps identify Penguin Bank (southwest Molokaʻi) as particularly suitable for 

Leptoseris colonization, which has not been verified by video or photo records. High resolution 

backscatter data (1 x 1 m) exist for this region, and incorporation of these data into new analyses 

of subsets of my study area may refine my conclusions.  

2.5.2 Error sources and model reliability 

I examined two types of error (false negatives and false positives) and analyzed my 

models without giving preference to either one. This approach is widely accepted as the best 

method of overall error minimization (e.g., Liu et al. 2005; Fielding & Bell 1997). Rare events 

corrected models for both Leptoseris and Montipora achieved levels of specificity and sensitivity 

well above the null, indicating good predictive power. Additionally, both models attained about 

74% overall prediction success. I assumed coral detectability was constant across the study 

region and that I can therefore consider the true absence observations to be reliable indicators of 

a potentially unsuitable habitat for corals. For each genus, the model tended to slightly over–

predict presence observations; large numbers of false positives lowered sensitivity values. This is 

inevitable in the analysis of severely imbalanced or sparse binary data; the ongoing addition of 

presence observations to the dataset will improve overall model classification accuracy. 

 While the consistent identification of southern coastal areas as suitable is reliable, the 

comparatively infrequent selection of northern coasts is likely due to the source of the model–

building observations. The vast majority of mesophotic exploration has been along southern 

coastlines, which is often where waters are calmest in Hawaiʻi. It is speculated that because 

mesophotic corals are more shielded from winter long–period wave energy than their shallow 

water counterparts, they are able to flourish at depth along northern coastlines (Grigg 1998; 
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Rooney et al. 2010). The addition of data sourced from northern expeditions would likely 

improve predictive power of the model across north–facing coastlines (Alin 2010).  

 I acknowledge that the original data were not collected in a standardized fashion (e.g., 

variation in vessel traveling speed or differences in data collection vessel and/or quality). My 

careful exclusion of overlapping observation points within each 25 x 25 m rectified this sampling 

design flaw as much as possible and eliminated pseudoreplication. 

2.5.3 Distinctions between coral genera 

 My Montipora model was simpler than the Leptoseris model in that the only variable 

included other than depth was winter significant wave height. Though uncertainty was highest at 

lower values of significant wave height, Montipora demonstrated a preference in colonizing 

habitats that experience lower significant wave height during winter. This preference contrasts 

with Montipora species in shallow waters that were more likely to be observed in higher wave 

height environments (Franklin et al. 2013). This likely influenced the inability of the model to 

identify any suitable habitat around Niʻihau, where the average winter significant wave height 

equaled 1.78 meters, almost double the mean significant wave height of my model training data 

(0.91 m). Though mesophotic corals are generally thought to be exempt from the growth 

limitations faced by shallow water corals in regions of high wave energy, prolonged wave 

intensity has been shown to negatively affect the colonization of upper mesophotic 

scleractinians, especially in sloping areas prone to debris avalanches (Bridge & Guinotte 2013; 

Kahng et al. 2014). Continuation of this work might include a more in–depth examination of the 

relationship of this coral genus with the combined effects of slope of available substrate and 

exposure to wave energy. 

 I found no records of Montipora presence when processing my Oʻahu dataset, which 

probably contributed to the very low predicted mean probability of Montipora occurrence there 

(0.1%). I believe this is due in part to the sampling pattern across south Oʻahu; I recorded 62.3% 

of all observations processed for this region at a depth of 75 m or greater. Montipora prevalence 

is greater in the upper–to–middle mesophotic zone, and the relative deepness of the Oʻahu dives 

likely influenced their nonappearance in this portion of the dataset. I emphasize that the dearth of 

Montipora observations around Oʻahu is an artifact of the dataset I used to construct my model; 

Montipora corals have been observed in mesophotic depths across Oʻahu (e.g., Fig. 4b; Rooney 

et al. 2010).The mean significant wave height across the mesophotic zone was lower across the 



28 

 

southern and western coasts (1.50 m) than that observed across the northern and eastern coasts 

(2.37 m) of the island. As at Niʻihau, I assume that this high northern and eastern average height, 

coupled with the absence of Montipora presences in Oʻahu in the training dataset, greatly 

impacted my model's ability to detect areas of suitable habitat around the island. The results of 

my Getis–Ord Gi* Hotspot Analysis corroborate the findings of Costa et al. (2015), who used 

Maximum Entropy software to predict the highest occurrence probability of Leptoseris and 

Montipora in the middle and mid–coastal ʻAuʻau Channel, respectively (Costa et al. 2015). 

 The factors influencing the distribution of coral species in shallow and mesophotic 

habitats differ. One of the fundamental drivers of the occurrence and abundance of coral species 

on shallow reefs in Hawaiian waters is wave stress (Dollar 1982; Grigg 1983; Franklin et al. 

2013). Given the depth range of MCEs, wave stress is unlikely to serve as a direct influence on 

coral occurrence but may provide secondary effects as wave events lead to debris reaching 

MCEs (Kahng 2014). Furthermore, the decoupled effects of environmental drivers on shallow 

and mesophotic zones extend between the islands. In shallow reef communities Montipora 

species become relatively more dominant from Hawaii Island to Niʻihau (Franklin et al. 2013), 

but appear to peak in occurrence in the mesophotic zone of Maui Nui. While strong 

environmental drivers influence the distributions of shallow corals, the occurrence patterns of 

mesophotic corals may reflect a more stable environment with an increased influence of biotic 

factors such as interspecific competition in a habitat zone with limited light and space resources 

available. 

2.6 Conclusions 

 I implemented a rare events corrected logistic regression to determine the most influential 

environmental predictors of Montipora and Leptoseris colonization in the mesophotic zone. 

Habitat preference differences between these genera appear distinct and multi–faceted. 

Montipora thrives in the middle mesophotic zone in areas sheltered from high intensity winter 

swells, while Leptoseris tends to colonize steep, rugose, well–flushed areas in the lower 

mesophotic zone. Improved understanding of the distribution of mesophotic corals will enable 

resource managers to propose the construction of seafloor power cables and other offshore 

infrastructure in areas less likely to contain coral communities. Results will likewise facilitate 

efforts to protect these communities by supplementing scientific dive planning and strategies for 

conservation, such as marine spatial planning. 
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2.8 Figures 

 

Figure 1. The study domain, demarcated in blue, encompasses the mesophotic zone (30 – 180 m 

in depth) of the lower main Hawaiian Islands. Black circles are the observations from the pre-

existing Maui Nui dataset. Red circles are the previously unprocessed observations in south  

Oʻahu and southeast Kauaʻi. 

 

Figure 2. Modeled spherical semivariogram for Leptoseris. 
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Figure 3. Modeled spherical semivariogram for Montipora. 
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Figure 4. ROC curves for all models. AUC values for all models fall in between 0.7 and 0.9, 

which indicates predictive reliability. The dashed line from (0, 0) to (1, 1) indicates the null 

threshold at which model performance is considered unacceptable (< 0.5). 

 

 

 

Figure 5. Modeled area of suitable habitat for Leptoseris. Probability of presence is depicted 

along a color gradient ranging from red (1; most suitable) to blue (0; least suitable). 
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Figure 6. Modeled area of suitable habitat for Montipora. Probability of presence is depicted 

along a color gradient ranging from red (1; most suitable) to blue (0; least suitable). 

  

 

Figure 7. Mapped result of my Getis-Ord Gi* hotspot analysis performed for probability 
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estimates of Leptoseris occurrence. A significant hotspot is < -1.96 or > 1.96; here, all hotspots 

are shown in red (> 1.96) or blue (< -1.96). 

 

Figure 8. Mapped result of my Getis-Ord Gi* hotspot analysis performed for probability 

estimates of Montipora occurrence. A significant hotspot is < -1.96 or > 1.96; here, all hotspots 

are shown in red (> 1.96) or blue (< -1.96).   

 

 

Figure 9. Mapped result of my Getis-Ord Gi* hotspot analysis performed for summed 

probability estimates of Leptoseris and Montipora occurrence. A significant hotspot is < -1.96 or 

> 1.96; here, all hotspots are shown in red (>1.96). 
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Figure A1. Map of 25 m resolution bathymetry values. 
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Figure A2. Map of 25 m resolution aspect values. 
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Figure A3. Map of 25 m resolution curvature values. 
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Figure A4. Map of 25 m resolution rugosity values. 
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Figure A5. Map of 25 m resolution slope values. 

 

 

Figure A6. Effect of depth on Leptoseris probability values. 
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Figure A7. Effect of current velocity on Leptoseris probability values. 

 

 

Figure A8. Effect of current velocity on Leptoseris probability values. 
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Figure A9. Effect of slope on Leptoseris probability values. 

 

 

Figure A10. Effect of rugosity on Leptoseris probability values. 
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Figure A11. Effect of depth on Montipora probability values. 

 

 

Figure A12. Effect of winter significant wave height on Montipora probability values. 

 

2.9 Tables 

 

Table 1. Number of field observations for each coral genus. 
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Source No. observations Leptoseris Montipora 

Oʻahu 2645 192 0 

Kauaʻi 112 38 3 

Maui 19957 708 791 

Total 22714 938 794 

 

 

Table 2. List of all variables considered for inclusion in my analyses.  
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Table 3. Summary statistics for theoretical semivariogram models. 

Genus 
Sum of 

squares 
Input  Input  Actual  Actual  Actual 

Leptoseris 2940.671 0.055 218 0.051 206.909 0 

Montipora 14013.610 0.020 390 0.032 390.000 0.003 

 

Table 4. Predictive model output. Results by genus: theta threshold subscripts indicate model 

type and training and validation (c-v) outputs. Sensitivity and specificity totals apply to training 

data only. 
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Table A1. Summary output for Leptoseris OLR model. 

Covariate Coefficient estimate Std. error 

Intercept -12.920 1.143 

Depth 0.201 0.02575 

Depth*Depth -0.001 0.0001413 

Mean current velocity: northward, 

summer 
-2.392 0.5673 

Mean current velocity: eastward, winter -6.625 0.8725 

Slope 0.033 0.008194 

Rugosity 64.910 18.250 

 

Table A2. Summary output for Montipora OLR model. 

Covariate Coefficient estimate Std. error 

Intercept -11.890 2.160 

Depth 0.3617 0.06851 

Depth*Depth -0.004 0.0005437 

Significant wave height: winter -1.303 0.1926 

Table A3. Summary output for Leptoseris rare events corrected model. 

Covariate Coefficient estimate Std. error 

Intercept  -12.740 1.142 

Depth  0.197 0.02572 
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Depth*Depth  -0.001 0.0001 

Mean current velocity: northward, 

summer  
-2.396 0.5666 

Mean current velocity: eastward, winter  -6.591 0.8715 

Slope 0.033 0.008185 

Rugosity 64.560 18.230 

 

Table A4. Summary output for Montipora rare events corrected model. 

Covariate Coefficient estimate Std. error 

Intercept  -13.990 2.158 

Depth  0.4407 0.06847 

Depth*Depth  -0.004 0.0005433 

Significant wave height: winter -1.300 0.1925 
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Chapter 3: Distribution of Hawaiian mesophotic coral Leptoseris spp. and calcified green 

alga Halimeda kanaloana influenced by seafloor slope, curvature, and aspect 

3.1 Abstract 

Mesophotic coral ecosystems (MCEs), named for their light-limited nature, extend from 

30 m to 180 m below the sea surface and are inhabited by specialized coral and algal species 

tolerant of low light conditions (Kahng et al. 2010). The relative inaccessibility of MCEs 
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contributes to the dearth of survey data and incomplete knowledge about their ecological 

community structure. To better understand the abiotic factors that influence the distribution of 

mesophotic coral and algal communities, I constructed multiple geographically-explicit species 

distribution models for two primary ecosystem architects, the corals of genus Leptoseris and the 

endemic calcified alga Halimeda kanaloana. Models are based on observations from submersible 

dives and environmental data collected across the mesophotic zone of eastern Penguin Bank, 

Molokaʻi, Hawaiian Islands during 2006 to 2010. Models performed consistently better 

(predictive performance) and consistently indicated the influence of certain covariates at high 

and moderate spatial scales, though the area under the curve (AUC) values of all models were 

comparable. Across all spatial scales, corals were positively influenced by seafloor slope, aspect, 

and curvature. H. kanaloana meadows were predicted across regions with minimal slope and 

aspect and perennial moderate current flux. This study furthers scientific understanding of the 

drivers of mesophotic community structure by examining the influence of different 

environmental covariates over spatial scales. Additionally, these are the first distribution models 

of an endemic mesophotic alga in Hawaiʻi. 

3.2 Introduction 

Mesophotic coral ecosystems (MCEs) are challenging to access due to their depth range 

(30 – 180 m), which extends beyond the recreational SCUBA limit but is too shallow to survey 

using costly submersibles. Scientific interest in MCEs has steadily increased in the past few 

decades largely due to the hypothesis that MCEs may act as refugia for organisms driven out of 

degraded shallow reefs (Glynn 1996). Sponges, algae, and zooxanthellate corals that have 

adapted to very low light levels dominate MCEs (Lesser et al. 2009). In the Northwestern 

Hawaiian Islands, some MCEs are known to harbor extremely high levels of endemism, up to 

100% across certain reef patches (Kane et al. 2014; Kosaki et al. 2017). Clear water and 

availability of rugose or sloped hard substrate are thought to influence coral colonization in 

Hawaiian MCEs (Costa et al. 2015; Veazey et al. 2016; Pyle et al. 2016). Water clarity and 

substrate type are thought to influence mesophotic algal communities (Spalding 2012). 

Ecological research on mesophotic organisms is challenging to conduct based on the 

costly, difficult logistics required to survey populations within this depth range. Prior efforts to 

characterize mesophotic coral communities in Hawaiʻi and around the world have required the 

use of species distribution models to generate maps of probable coral occurrence (e.g., Costa et 
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al. 2015; Veazey et al. 2016) or have made broad inferences from the aggregation of multiple, 

fragmentary surveys (e.g., Lesser et al. 2009; Wagner et al. 2014; Pyle et al. 2016). Minimal 

sampling and taxonomic uncertainty has slowed the creation of any maps to date pertaining to 

the distribution patterns of mesophotic algae. No prior work exists regarding the predicted 

distribution of mesophotic algal communities in Hawaiʻi or around the world (Kahng et al. 

2010). 

Isolated corals of the genus Leptoseris are scattered across Penguin Bank, a submerged volcanic 

shield southwest of the island of Molokaʻi (Kahng & Maragos 2006). Previous work has pointed 

to the region as a possible hotspot for Leptoseris colonization (Veazey et al. 2016), possibly due 

to the occurrence of strong, organic matter-carrying currents. The plate-like morphology, 

specialized gastrovascular cavity, and conical, light-refracting microskeletal structure of certain 

Leptoseris corals makes them uniquely suited to the light-starved mesophotic zone (Fricke et al. 

1987; Schlichter & Fricke 1991; Schlichter et al. 1992). Because these corals are heterotrophic 

(i.e., they feed from the water column and photosynthesize), I predict that they may colonize 

high-relief regions exposed to moderate current flow to maximize feeding and photosynthesizing 

and minimize smothering via sedimentation. Other deep water heterotrophic corals (i.e., 

Lophelia pertusa, Paragorgia arborea, Primnoaresedae formis) colonize on steep slopes or in 

the vicinity of strong currents (Mortensen et al. 2001; Leverette & Metaxas 2005; Locker et al. 

2010).  

The episodic influxes of nitrogen and phosphorus associated with strong currents may 

promote the growth of macroalgae (Leichter et al. 2003; Pérez-Mayorga et al. 2011). Smith et al. 

(2004) suggest that occurrences of dense Halimeda tuna beds across Conch Reef, Florida, are 

associated with periodic, localized increases in nutrient levels and decreases in temperature that 

may be indicative of internal tidal action. Similarly, exposure to current flux influences the 

growth and distribution of Halimeda meadows in the northern section of the Great Barrier Reef 

(Drew & Abel 1988; Wolanski et al. 1988). Spalding (2012) noted the high abundance of a 

psammophytic (i.e., thrives only in sand) species, Halimeda kanaloana, across the Maui Nui 

complex in Hawaiʻi. The endemic H. kanaloana is a calcareous green alga which can grow in 

thick, patchy meadows of 100% cover in certain areas to ~ 90 m depths (Spalding 2012). 

Relatively little information exists about the ecology or distribution of H. kanaloana across 

Penguin Bank. 

https://en.wikipedia.org/wiki/Molokai
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To better understand the abiotic drivers that influence the distributions of mesophotic 

benthic organisms, I explored relationships between coral and algae observations and abiotic 

covariates to create a suite of ecological niche models. These models were then used to produce 

predictive geographic maps of the probable occurrence of beds of the scleractinian corals in the 

genus Leptoseris and meadows of the algae H. kanaloana across eastern Penguin Bank, 

Molokaʻi. To better understand the role that spatial scale played in the niche models, I generated 

my analysis for corals and algae at multiple spatial resolutions (5 m, 25 m, and 100 m).  

3.3 Methods 

3.3.1 Study site 

Penguin Bank is located off the southwestern coast of the Hawaiian island of Molokaʻi 

(Fig. 1) is approximately 50 km long and 19 km wide with an average depth of 70 m across the 

bank. Along the perimeter, the depth rapidly drops to over 500 m (Gregory & Kroenke 1982). 

The bank is known for such features as endemic algae and corals, strong currents, and large, 

carbonate sandbanks (Norris et al. 1995; Kahng & Maragos 2006; Kelman et al. 2012; Sabine & 

Mackenzie 1995). It an important humpback whale calving area and is an important habitat for 

the commercial bottomfish fishery (Baker & Herman 1981; Haight et al. 1993; Sackett et al. 

2014). 

3.3.2 Biological and environmental data 

The Hawaiʻi Undersea Research Laboratory (HURL) and the Pacific Islands Fisheries 

Science Center (PIFSC) provided video from 39 submersible dives conducted from 2006 – 2010 

across Penguin Bank. I collected 10,782 frame grab images by pausing each video track every 30 

seconds that the sub was in motion. A sampling interval of 30 seconds has precedent in the 

literature (e.g., Costa et al. 2015; Veazey et al. 2016) and is the standard protocol for efficient 

optical validation data collection by PIBHMC. A subset of these images (4,304) were not used as 

they failed to fall inside my study range, lacked image clarity, or geographically overlapped with 

another observation. If more than one observation occurred in the same pixel, I assigned the 

pixel the maximum value of all observations (i.e., all zeroes designated the cell as an absence; 

any positive identification, denoted by a value of one, designated the cell as a presence). A 

further 2,211 observations were excluded from my model-building dataset due to missing 

covariate data, leaving a final dataset of 4,267 observations for inclusion in my 5 m analyses 

(Figs. 2, 3). I resampled these data for my 25 m and 100 m analyses and recorded 2,571 
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observations and 726 observations, respectively (Table 1). Seventy percent of my data was 

randomly selected for model building and 30% was set aside for cross-validation (Araujo et al. 

2005).  

I considered oceanographic and benthic geomorphological covariates that may influence 

the distribution of mesophotic Leptoseris corals and green alga Halimeda kanaloana in Hawaiʻi 

(Table 2). Substrate hardness values, based on the strength of the returned sonar signal, were 

categorized as rocky (> 187; Kahng & Kelley 2007), moderately rocky, mostly sandy with 

scattered rocks or gravel, and mostly soft sand. My bin ranges were determined by subtracting 

one standard deviation from the next-highest classification. I also aimed to construct novel 

predictive species distribution models for H. kanaloana across eastern Penguin Bank. H. 

kanaloana colonizes deep, soft sediment, which differs from the hard substrata typically 

inhabited by hermatypic corals (Spalding 2012). In addition to substrate hardness, I selected 

variables that characterize the seafloor, including rugosity, slope, curvature, and compass 

direction.  

To characterize the water column, I included variables that would indicate water clarity 

and current flux. I used seasonal (summer = May – September and winter = October – April; 

Kay 1994) mean, max, mean maximum, and maximum variance values of the diffuse attenuation 

coefficient at 490 nm (the wavelength for blue light) to calculate proportional downwelled 

irradiance at depth, such that  

( )
exp( )

(0 )

d
d

d

E z
K z

E 
  . 

Here, Ed (0-) represents downwelled irradiance just below the sea surface (Franklin et al. 2013). I 

also included estimates of the mean euphotic depth, or the depth at which light levels are 

sufficient for the rate photosynthesis to match the rate of respiration. I sourced my Kd and 

chlorophyll a values from the NOAA Coral Reef Watch Satellite Oceanography and Climatology 

Division.  

 Water movements were modeled with estimates of the mean and variance of directional, 

seasonal current velocities. I sourced these data from the PacIOOS Hawaiʻi Regional Ocean Data 

Assimilating Model (2007 – 2012). 

3.3.3 Data cleaning and model specification 
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I followed a straightforward data exploration and cleaning protocol recommended by 

Zuur et al. (2010); this procedure included checking for outliers and collinearity among the 

covariates and independence of my response variable. A preliminary exploration of my 

covariates revealed strong correlation between several variables (> 0.6) or complete separation of 

the variable values (i.e., most values at either end of a given variable's range occurred when 

observational data values were all equivalent to 0 or 1, but not both) (Figs. 4 – 9). Subsequently, 

I refined my lists of considered covariates (Tables 3, S1).  

I chose best-fit generalized linear models (GLMs) for my coral and algal observations 

and environmental covariates at each spatial scale based on Δ AICc values of > 2. This value 

meets the threshold (value = 2) of “strong support” as identified by Burnham and Anderson 

(2002), and the significant change in AICc values between the best model and the “next best” set 

of predictors indicates that the selected set of predictors significantly impact the model’s 

predictive capacity.  

The generalized linear model, also known as a GLM, generalizes the permissible 

distributions for the regression residuals beyond the normal through the use of a link function. A 

GLM with a logistic regression function that uses a logit link is widely used in studies about 

habitat suitability, epidemiology, environmental science, etc. (e.g., Kennedy et al. 2002; Peduzzi 

et al. 1996; Ohlmacher & Davis 2003). The equation for this GLM is given as 

0 1 1logit( ) ... n n ix x          
.
 

Here, theta represents the probability that an organism is present at a given pixel; betas
 
are the 

intercept and regression coefficients, respectively; and the x variables
 
are the linear sum of 

covariates. One assumption inherent in this equation is the independence of residuals, which are 

the differences in the observed value and the model-predicted value at a given pixel i.  

Spatial autocorrelation can result in spurious ecological inferences (Legendre 1993), so I 

evaluated both global-scale (i.e., Moran’s I; expectation in the absence of autocorrelation = 0; 

Moran 1950) and local-scale (i.e., Geary’s; expectation = 1; Geary 1954) spatial autocorrelation 

for models at all spatial scales. The values of global and local autocorrelation indicated spatial 

autocorrelation at different scales was present in the data (Moran 1950; Geary 1954). The 

presence of both localized and large-scale geographic clustering in the data necessitated my 

specification of spatially explicit models, as this clustering violates the assumption of 

independence of residuals. 
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To account for spatial autocorrelation in the data, I ran generalized linear mixed models 

(GLMMs) at all resolutions (McCulloch & Neuhaus 2001). GLMMs account for spatial 

autocorrelation in the data through inclusion of a random effect, so they can be considered an 

extension of the GLM, which includes only fixed effects (hence, GLMMs are "mixed"). A 

GLMM is expressed as 

0 1 1 ... n n n n ix x z           .
  

Here, tau represents the random complement to the fixed beta coefficients and z represents the 

random complement to the fixed x predictor variables. The non-normality of my residuals (i.e., a 

sample of the predicted values of my dependent variable subtracted from the observed values) as 

indicated by an assortment of quantile plots guided my selection of spatial models. I adapted the 

methodology outlined by Dormann et al. (2007) to specify my GLMMs. I fit my Leptoseris 

GLMMs by specifying all variables as fixed effects and included a dummy variable as my 

random effect, which incorporated my coordinate data, and thus took into account any spatial 

autocorrelation, in the estimation of the coefficient values. In addition, I fit H. kanaloana 

GLMMs at all resolutions to create spatial predictive layers of probable meadows across eastern 

Penguin Bank. The coefficients of my GLMMs are provided in Tables S2 – S13. 

The probability of the occurrence of an organism in an environment is most often not 

equivalent to 50%, which has long been the default probability, or theta, threshold value for 

interpreting model predictions during cross-validation with binary response variable data (Liu et 

al. 2005). Theta threshold selection is a technique that requires the calculation of correctly 

predicted presences (sensitivity) and absences (specificity) during cross-validation given 

different thresholds (i.e., above a certain threshold, a probability value equals 1; below the 

threshold, it is taken as 0) (e.g., Liu et al 2005; Veazey et al. 2016). I used theta threshold 

selection to pick the most appropriate occupancy probability threshold for each model at each 

resolution. The best threshold value was identified as the value occurring at the point on the 

receiver operating characteristic (ROC) curve furthest from the line of chance (i.e., at which the 

model is predicting correctly as often as it is predicting incorrectly). I calculated the area under 

the curve (AUC), which is the area between the ROC curve and the line of chance; larger AUC 

values indicate better-performing, more trustworthy models. 

All data manipulation was performed using R statistical software (R Core Team, 2017) 

and ESRI ArcGIS v.10.1 (ESRI 2012).  
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3.4 Results 

The aspect, curvature, and slope of the seafloor consistently positively influenced the 

distribution of Leptoseris corals (Table 3). Substrate hardness also correlates positively with 

coral distribution, as noted previously by Taylor & Wilson (2003). All models consistently 

indicated some influence of mean maximum proportional downwelled irradiance during summer 

on coral distribution, though the nature of this influence is uncertain when examining results 

across spatial scales. My 5 m Leptoseris model performed well in the identification of coral 

presences and absences (all AUC values > 0.75; all cross-validated sensitivity and specificity 

values > 0.7). The AUC (0.77) was high enough to be classified as “very trustworthy” in its 

predictive capabilities (Hosmer & Lemeshow 2004). Despite slightly better AUC values, my 

moderate (25 m) and coarse (500 m) resolution Leptoseris models did not perform as well as my 

5 m models during cross-validation. Cross-validation of the 25 m GLMM revealed low 

specificity (0.47). Surprisingly, my 100 m model fared better than the 25 m model (GLMM 

sensitivity = 0.73; specificity = 0.88). Theta threshold values for my Leptoseris models were 

universally 0.05.  

The aspect and slope of the seafloor consistently negatively influenced H. kanaloana 

distribution at all resolutions. Mapped predictions for highly suitable H. kanaloana habitat did 

not exclusively overlay sites with low backscatter values, which represent soft sediment 

readings, a known habitat requirement for colonization by this alga (Spalding 2012). My H. 

kanaloana 5 m GLMM correctly predicted 88% of presence observations and 91% of absence 

observations in the testing dataset, and the model was trustworthy in its predictive capacity 

(AUC = 0.95). The model performed well following cross-validation (sensitivity = 0.96; 

specificity = 0.99). The 25 m GLMM performed relatively poorly, especially during cross-

validation (AUC = 0.81; cross-validation sensitivity = 1; cross-validation specificity = 0.662). 

Similar to the performance of the Leptoseris models, I found that my 100 m alga model 

performed better than the 25 m model, but worse than the 5 m model (AUC = 0.89; sensitivity = 

0.96; specificity = 0.76). Tables 4 – 6 outline the performance of all models.  

The 5 m Leptoseris GLMM map predicted suitable habitat across the southern slopes of 

east Penguin Bank (Fig. 10). The 25 m Leptoseris model agreed with this general trend and 

predicted the highest suitability across the south and along slopes to the north (Fig. 11). The 100 

m Leptoseris model showed less of a distinct region of suitability, but the output demarcating the 
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southern flank of the bank as most suitable agrees with the output of the other models; in 

addition, the 100 m model specified more suitable habitat closer to shore in the north (Fig. 12). 

All Leptoseris maps identify the southern portion of east Penguin Bank as most suitable for coral 

colonization, while the middle and far northern regions of the bank were not identified as 

suitable. 

The 5 m H. kanaloana model predicted high habitat suitability across the middle to 

southeastern portion of Penguin Bank (Fig. 13). The 25 m H. kanaloana also predicts highest 

habitat suitability across the southeastern flank and nearshore, with moderate habitat across the 

middle of the bank (Fig. 14). The 100 m alga map identified the southeastern quadrant of the 

bank as most suitable for H. kanaloana (Fig. 15). Striping is present in these maps and is an 

artifact of the raw covariate data layers. 

I implemented a G-test for goodness of fit for all models based on their identified best 

threshold value (Fig. 16). Almost all models displayed a very slight tendency to overpredict 

suitability, with the coarser resolution H. kanaloana model faring worse than the finer resolution 

models. 

3.5 Discussion 

I implemented spatially explicit models to predict the distribution of Leptoseris spp. 

corals and H. kanaloana meadows across Penguin Bank, Molokaʻi at three resolutions: 5 m, 25 

m, and 100 m. The predictive maps created at 5 m resolution are the most finely resolved 

Hawaiʻi-specific mesophotic coral and algal habitat suitability maps to date. 

3.5.1 Consistently influential environmental covariates at varying resolutions 

 Leptoseris habitat suitability values were highest (third quantile; probabilities > 0.04) in 

my 5 m model at a median depth of 128 m. The clarity of oligotrophic Hawaiian waters extends 

the potential suitable habitat for these corals far offshore and at depths as great as 153 m (Kahng 

& Maragos 2006; Kahng 2013; Dinesen 1980; Costa et al. 2015). 

The steepness (slope) of a pixel only slightly impacted the coral habitat suitability values 

generated by my 5 m model, with the third quantile of suitability values assigned to pixels with 

slope values between 0 and 90 degrees, though the mean slope value within this higher suitability 

subset only equaled 4.85 degrees. Across all of the relatively flat expanse of eastern Penguin 

Bank, the mean slope value was approximately 2.28 degrees. Similarly, the curvature of the 

seafloor only slightly influenced the spread of the habitat suitability values, with the highest 
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probabilities assigned to pixels with somewhat laterally convex curvature. My prior analyses 

(Veazey et al. 2016) indicated that Leptoseris corals may colonize areas of high relief in order to 

heighten their exposure to suspended organic matter, but across the plane of Penguin Bank, my 

models are unable to expand on this hypothesis. 

Aspect values encompassed flat terrain (-1) and all values from 0 to 360 (due north) 

within pixels exhibiting habitat suitability values higher than the threshold value, though the 

mean aspect value within the high suitability subsets for all models fell between 146 – 189 

degrees (south-southeast). Ralston et al. (1986) and Haight et al. (1993) conducted bottomfish 

surveys in Johnston Atoll and Penguin Bank, respectively, and each study concluded that the 

deflection of stronger deep currents along the perimeter of the banks may influence the increased 

abundance of fish species around the bank edges due to the boost in suspended planktonic 

biomass. My models predict some increase in Leptoseris habitat suitability across the southern 

portion of the east bank, which borders the Kalohi Channel to the southwest. Given the presence 

of mean winter northerly or easterly current flux values in all coral models, I speculate that the 

topographical feature of aspect is present in my models as a potential proxy for the heightened 

habitat suitability in areas exposed to deflected, upwelled, nutrient-rich currents around the 

perimeter of the bank. Patzert et al. (1970) recorded a consistent northerly current flowing across 

the bank, which is consistent with the high habitat suitability predicted across southern-facing 

surfaces.  

In addition, year-round sunlight exposure is highest across southern aspects, with the 

midday winter solstice solar azimuth value for 2017 calculated as 170°. Given that Leptoseris 

corals are zooxanthellate (i.e., their symbionts photosynthesize), I expect that both H. kanaloana 

and Leptoseris may colonize southern-facing surfaces to maximize productivity.  

I recorded Halimeda kanaloana present from approximately 66 to 74 m depth and from 

4.8 to 6.5 km distance from the Molokaʻi coastline. My 5 m model suggests that the most 

suitable habitat for this macroalgae exists across the middle and southeastern portion of Penguin 

Bank. Areas predicted by my 5 m model as highly suitable (i.e., third quantile of suitability 

values; probability > 0.09) included depths between 30 m and 75 m with a mean seafloor aspect 

of 171 degrees (south-southeast). The alga model and the Leptoseris models indicated that prime 

colonizable habitat exists across south-tilting substrate. Despite this commonality, swaths of 
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habitat predicted as suitable for H. kanaloana were predominantly separate and southeastward of 

the highest Leptoseris probabilities. 

 The characteristics of all environmental predictor variables at all resolutions are 

summarized in Tables S14 – S16.  

3.5.2 Comparison of coral models 

 All 5 m models correctly identified at least 70% of true presence observations and at least 

75% of true absences in the training datasets. Both the 5 m and 25 models identified the southern 

slopes of eastern Penguin Bank as most suitable for Leptoseris colonization. The 100 m model 

did not offer markedly different spatial predictions in comparison to the highly- and moderately-

resolved models, though the nearshore portion of the bank was identified as suitable for coral 

habitation. All three models demarcated the middle-northern side of the bank as most unsuitable 

for Leptoseris colonization.  

3.5.3 Comparison of alga models 

 The H. kanaloana models identified the southeastern flank of Penguin Bank as likely 

locations for extensive meadows. The eastern (i.e., coastal) and middle portion of Penguin Bank 

was identified as moderately suitable for colonization. Substrate hardness was featured in my 5 

m models and was slightly, but highly significantly, negatively correlated with alga occurrence 

(i.e., meadows are more likely to be found in soft, sandy substrate). Aspect, slope, and seafloor 

curvature were featured in all models; however, the influence of these variables was slight. 

Moderate current flux minimally, but significantly, influenced alga distribution in my finely 

resolved model (Tables S2 – S3, S6 – S7, S10 – S11). From this, I conclude that H. kanaloana 

meadows are found in locations with flat, sandy substrate that are exposed to moderate year-

round current flux. 

 The 5 m alga model performed better than the 100 m model, which performed better than 

the 25 m model, based on AUC values. While AUC is a valuable performance metric, the 

differences observed in this metric for these models cannot stand alone as a measure of their 

overall trustworthiness. Numerous artifacts are present in the mapped output of certain models, 

and these should be considered in a balanced evaluation of overall model predictive 

performance. 

 These maps, specifically at the 5 m and 100 m resolutions, contain extensive artifactual 

striping. I strongly suspect that these artifacts are a result of the addition of the coarse resolution 
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(4 km) variable “winter euphotic mean depth”, which featured in both models, but did not feature 

in the artifact-free 25 m model. As the environmental covariates were regressed at each 

resolution, I observed variations in the magnitude of their interactions with each other and their 

effects on the dependent variable. I wasn’t surprised by the appearance of these interactive 

oscillations, but I did not expect the emergence of such major striping artifacts as a result of the 

inclusion of coarse resolution covariates in certain models. As I build on this work, I will further 

investigate these interactions by rerunning the 5 m and 100 m models without the coarse 

covariates. I am also interested in developing a coarser model (i.e., > 1 km resolution) in order to 

consider all potential covariates and reduce the possibility of striping within the mapped output. 

 

3.5.4 Limitations and continuing research 

Notably, seafloor hardness was a consistently influential variable for determining coral 

presence or absence at 5 m and 25 m only after I binned values based on standard deviation. 

Based on the appearance of this variable as a predictor for benthic organismal occurrence after 

categorization, I caution modelers against prematurely restricting their map output area as 

delimited exclusively by raw backscatter values; instead, I suggest that researchers carefully 

consider their overall research goals, and apply backscatter maps to fit those goals. For example, 

the spatial extent of distribution maps of a marine species that has some known relationship with 

substrate type (e.g., scleractinian corals or psammophytic algae) should not be restricted based 

solely on backscatter data. However, submersible or technical dive operations may be able to 

more efficiently isolate regions of interest, like hard, coral-rich bioherms, by identifying 

particularly hard substrate. Because backscatter is density dependent, we can assume that corals 

in dense aggregations will reflect a higher regional backscatter value. 

The amount of data associated with my high-resolution (5 m) layers pushed 

computational limitations and forced us to subdivide my data multiple times to complete the 

necessary analyses, which introduced the possibility of human error and further slowed my work. 

While the findings of this work offer novel insight on the effect of different habitat covariates on 

the distribution of certain prominent mesophotic organisms, I urge spatial analysts to carefully 

consider their pixel size based on the massive processing power required for fine-scale analyses. 
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3.7 Figures 

 

 

Fig. 1. The geographical extent of the main Hawaiian Islands. The study area of eastern Penguin 

Bank, Molokaʻi, is visible in the red box in the inset. 
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Fig. 2. HURL submersible and ROV survey tracks overlaying the study area. Leptoseris sp. 

presences (red) and absences (open black circle) denoted. 
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Fig. 3. HURL submersible and ROV survey tracks overlaying the study area. Halimeda 

kanaloana presences (red) and absences (open black circle) denoted. 
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Fig. 4. Correlation scatterplot showing the relationship between the response variable 

(Leptoseris) and covariates included in my final models at 5 m resolution. On the left of the 

diagonal, locally weighted scatterplot smoothing lines display the relationships between the 

values of the corresponding variables. On the right of the diagonal, a numerical value expresses 

the degree of correlation between the corresponding variables. 

 

 
Fig. 5. Correlation scatterplot showing the relationship between the response variable 

(Leptoseris) and covariates included in my final models at 25 m resolution. 
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Fig. 6. Correlation scatterplot showing the relationship between the response variable 

(Leptoseris) and covariates included in my final models at 100 m resolution. 
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Fig. 7. Correlation scatterplot showing the relationship between the response variable (H. 

kanaloana) and covariates included in my final models at 5 m resolution. 

 

 
Fig. 8. Correlation scatterplot showing the relationship between the response variable (H. 

kanaloana) and covariates included in my final models at 25 m resolution. 

 

 
Fig. 9. Correlation scatterplot showing the relationship between the response variable (H. 

kanaloana) and covariates included in my final models at 100 m resolution. 
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Fig. 10. Predicted habitat suitability for Leptoseris sp. across eastern Penguin Bank at 5 m 

resolution. a) Moderate and high suitability was reserved mostly for the southern slopes of the 

bank, but regions across the bank with high relief and a southern aspect were also predicted to 

have high suitability for Leptoseris colonization. b) The southern slopes of the bank are exposed 

to high current flow from the Kalohi Channel; my model predicted swaths of moderate to high 

suitability in this region. 
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Fig. 11. Predicted habitat suitability for Leptoseris sp. across eastern Penguin Bank at 25 m 

resolution. The model predicted highest suitability across the sloping southern portion of the 

bank.  
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Fig. 12. Predicted habitat suitability for Leptoseris sp. across eastern Penguin Bank at 100 m 

resolution. The highest habitat suitability is predicted along the southern portion of the bank. a) 

The inset shows the higher suitability predicted by this model around nearshore Penguin Bank. 
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Fig. 13. Predicted habitat suitability for H. kanaloana across eastern Penguin Bank at 5 m 

resolution. a) The model predicted high suitability across the flat, sandy portions of the bank. 
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Fig. 14. Predicted habitat suitability for H. kanaloana across eastern Penguin Bank at 25 m 

resolution. Highest suitability was predicted nearshore and in the middle portions of the bank. 
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Fig. 15. Predicted habitat suitability for H. kanaloana across eastern Penguin Bank at 100 m 

resolution. Patches of high suitability are predicted across the middle of the bank.  
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Fig. 16. Results of a G-test for goodness of fit for all models based on their identified best 

threshold value. 

3.8 Tables 

Table 1. Observational presence/absence data information. 

Response 

variable 
Resolution (m) 

Number of 

presence points 

Number of 

absence points 
Total 

Leptoseris 

sp. 

5 217 4050 4267 

25 120 2451 2571 

100 57 669 726 

Halimeda 

kanaloana 

5 242 4025 4267 

25 112 2459 2571 

100 33 693 726 

 

 

Table 2. List of variables considered for my analyses. 

 

 

Variable 

type 
Category Variable description Source Resolution Variable 
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Table 3. Variables included in my analyses following refinement of the covariate list based on 

high correlation with other variables or evidence of complete separation. Covariates that were 

most strongly correlated with the dependent variable were reserved and are denoted with a 

checkmark; covariates that correlated strongly (> 0.6) with these variables were removed. 

B
io

lo
g
ic

al
 

(r
es

p
o
n

se
) 

Hard coral 
Presence/ absence between 10 

– 180 m in depth PIFSC, 

HURL optical 
validation data 

 
 

NA 

 

Leptoseris spp. 

Calcareous 
algae 

Presence/ absence between 30 
– ~90 m in depth 

Halimeda kanaloana 

E
n
v

ir
o

n
m

en
ta

l 
(p

re
d
ic

to
r)

 

T
o
p

o
g

ra
p

h
ic

 

Seafloor complexity calculated 

with the ArcGIS BTM Terrain 

Ruggedness tool 

University of 
Hawaiʻi 

SOEST, 2016 

5 m 

 

Rugosity (unitless) 

Depth of seafloor Depth (m) 

Rate of change calculated with 
the ArcGIS BTM Slope tool 

Slope (degrees) 

Lateral convexity  of seafloor  
calculated using the ArcGIS 

Curvature tool 

Planform curvature (degrees of 

degrees) 

Concavity of seafloor  

calculated using the ArcGIS 

Curvature tool 

Profile curvature (degrees of 

degrees) 

Curvature of the seafloor 

calculated using the ArcGIS 

Curvature tool 

Curvature (degrees of degrees) 

Hardness of seafloor detected 

by acoustic backscatter 
Substrate hardness (unitless) 

Seafloor hardness categorized 

based on subtraction of one 
standard deviation per bin 

Categorized substrate hardness 

classified from 1 (soft) to 4 (hard) 
(unitless) 

Compass direction of 

maximum slope calculated 
using the ArcGIS Aspect tool 

Aspect (degrees) 

O
ce

an
o
g

ra
p
h

ic
 

The depth of the euphotic zone 

(PAR 1%) per season 

(summer/winter) determined 

using the Morel method (2007) NOAA Coral 

Reef Watch:  
Satellite 

Oceanography 

and 
Climatology 

Division 

(2012 – 2017)  

750 m 

Mean euphotic depth (m) 

Mean and variance of water 
column turbidity per season 

(winter/summer); i.e., the rate 

at which light at 490 nm 
attenuates with depth 

Diffuse attenuation coefficient (Kd) 
at 490 nm (m-1) 

Mean, variance, mean max, 

and max variance of 

proportional downwelled 
irradiance at depth (z) 

 

Mean and variance of 

directional current velocities 
per season (winter/summer) 

for depths: 150, 100, 50 m 

PacIOOS 

Hawaiʻi 
Regional 

Ocean Model: 
Data 

Assimilation 

(2007 – 2017) 

4 km 

Mean and variance of current vel. 

(northward/summer) (m s-1) 

Mean and variance of current vel. 

(northward/winter) (m s-1) 

Mean and variance of current vel. 

(eastward/summer) (m s-1) 

Mean and variance of current vel.  
(eastward/winter) (m s-1) 
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Covariates that appeared highly significant (significance level < 0.05) in my GLMM output per 

analysis are denoted with an asterisk. 

 

Variable 

Inclusion in analyses 

Lep. (5 

m) 

Lep. (25 

m) 

Lep. 

(100 m) 

H. k. (5 

m) 

H. k. 

(25 m) 

H. k. 

(100 m) 

Aspect   * * *  

Curvature       

Current velocity (winter eastward mean)   * *   

Current velocity (winter northward mean) *      

Current velocity (summer northward 

mean) 
   *   

Depth     *  

Proportional downwelled irradiance 

(summer mean max) 
* * *    

Proportional downwelled irradiance 

(summer variance) 
      

Proportional downwelled irradiance 

(winter variance) 
      

Euphotic mean depth (winter)    *  * 

Planform curvature   *    

Profile curvature   *    

Slope * * * *  * 

Substrate hardness (categorized) * *  *   

 

 

Table 4: Performance statistics of 5 m spatial models. 

 

 

 

 

 

 

 

 

Model (5 m 

resolution) 
Threshold Specificity Sensitivity AUC 

Lep. GLMM 5.00E-02 7.50E-01 7.29E-01 7.69E-01 

Lep. GLMM 

(c.v.) 
5.00E-02 7.76E-01 7.37E-01 - 

H. kanaloana 

GLMM 
1.00E-01 9.08E-01 8.82E-01 9.45E-01 

H. kanaloana 

GLMM (c.v.) 
1.00E-01 9.93E-01 9.59E-01 - 
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Table 5: Performance statistics of 25 m spatial models. 

 

Table 6: Performance statistics of 100 m spatial models. 

 

Table S1. Covariates considered for, but not included in, my final models. 

Variable 

Current velocity (summer eastward mean) 

Current velocity (winter eastward 

variance) 

Current velocity (summer eastward 

variance) 

Current velocity (winter northward 

variance) 

Current velocity (summer northward 

variance) 

Kd490 (winter mean) 

Kd490 (summer mean) 

Kd490 (winter variance) 

Kd490 (summer variance) 

Proportional downwelled irradiance 

(summer mean) 

Proportional downwelled irradiance 

(winter mean) 

Proportional downwelled irradiance 

(winter mean max) 

Proportional downwelled irradiance 

(summer variance max) 

Model (25 m 

resolution) 
Threshold Specificity Sensitivity AUC 

Lep. GLMM 5.00E-02 8.68E-01 6.81E-01 8.06E-01 

Lep. GLMM 

(c.v.) 
5.00E-02 8.59E-01 4.69E-01 - 

H. kanaloana 

GLMM 
5.00E-02 6.80E-01 1.00E+00 8.08E-01 

H. kanaloana 

GLMM (c.v.) 
5.00E-02 6.62E-01 1.00E+00 - 

Model (100 m 

resolution) 
Threshold Specificity Sensitivity AUC 

Lep. GLMM 5.00E-02 8.84E-01 5.77E-01 7.82E-01 

Lep. GLMM 

(c.v.) 
5.00E-02 8.78E-01 7.27E-01 - 

H. kanaloana 

GLMM 
5.00E-02 7.61E-01 9.56E-01 8.90E-01 

H. kanaloana 

GLMM (c.v.) 
5.00E-02 7.68E-01 1.00E+00 - 
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Proportional downwelled irradiance 

(winter variance max) 

Euphotic mean depth (summer) 

Rugosity 

Substrate hardness (raw) 

 

Table S2: H. kanaloana 5 m GLM descriptive statistics. 

Variable Estimate 
Adjusted Std. 

Error 
Pr(>|z|) 

Intercept 2.50E+01 1.39E+00 < 2E-16 

Aspect 3.70E-04 5.78E-05 < 2E-16 

SHClass -4.49E-02 4.88E-03 < 2E-16 

Slope -3.90E-03 8.19E-04 1.90E-06 

EuphW -5.49E+00 3.07E-01 < 2E-16 

umw -1.43E+00 1.95E-01 < 2E-16 

vms 2.11E+00 2.97E-01 < 2E-16 

PlanCurv 4.72E-04 1.71E-03 7.82E-01 

 

 

Table S3: H. kanaloana 5 m GLMM descriptive statistics. 

Variable Estimate 
Adjusted Std. 

Error 
Pr(>|z|) 

Intercept 5.49E+02 3.75E+01 < 2E-16 

Aspect -7.50E-03 1.34E-03 < 2E-16 

SHClass -1.97E+00 1.89E-02 < 2E-16 

Slope -2.68E-01 6.68E-02 1.00E-04 

EuphW -1.22E+02 8.30E+00 < 2E-16 

umw -4.17E+01 5.50E+00 < 2E-16 

vms 7.17E+01 1.02E+01 < 2E-16 

PlanCurv -8.97E-02 1.55E-01 5.62E-01 
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Table S4: Leptoseris 5 m GLM descriptive statistics. 

Variable Estimate 
Adjusted Std. 

Error 
Pr(>|z|) 

Intercept -3.08E+00 5.00E-01 < 2E-16 

SHClass 3.20E-01 1.11E-01 4.00E-03 

Slope 8.24E-02 1.00E-02 < 2E-16 

vmw -1.48E+01 4.98E+00 3.00E-03 

mMaxSPDI -4.50E+00 7.12E-01 < 2E-16 

Aspect 6.06E-04 1.28E-03 6.37E-01 

PlanCurv 8.18E-03 1.95E-02 6.75E-01 

 

 

Table S5: Leptoseris 5 m GLMM descriptive statistics. 

Variable Estimate 
Adjusted Std. 

Error 
Pr(>|z|) 

Intercept -3.10E+00 5.22E-01 < 2E-16 

SHClass 3.21E-01 1.14E-01 5.05E-03 

Slope 8.25E-02 1.10E-02 < 2E-16 

vmw -1.47E+01 5.11E+00 3.98E-03 

mMaxSPDI -4.51E+00 7.32E-01 < 2E-16 

Aspect 5.98E-04 1.32E-03 3.21E-01 

PlanCurv 8.06E-03 2.00E-02 6.88E-01 

 

 

Table S6: H. kanaloana 25 m GLM descriptive statistics. 

Variable Estimate 
Adjusted Std. 

Error 
Pr(>|z|) 

Intercept 1.89E+00 5.58E-01 7.00E-04 

Aspect -7.20E-03 2.00E-03 4.00E-05 

Depth -4.30E-02 7.00E-03 < 2E-16 

Slope -1.04E-01 8.00E-02 1.93E-01 
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ProfCurv 3.48E-02 1.36E-01 7.98E-01 

 

 

 

Table S7: H. kanaloana 25 m GLMM descriptive statistics. 

Variable Estimate 
Adjusted Std. 

Error 
Pr(>|z|) 

Intercept 1.89E+00 4.12E-01 < 2E-16 

Aspect -7.20E-03 1.30E-03 < 2E-16 

Depth -4.30E-02 4.60E-03 < 2E-16 

Slope -1.04E-01 5.90E-02 7.86E-02 

ProfCurv 3.40E-01 9.83E-02 7.11E-01 

 

 

Table S8: Leptoseris 25 m GLM descriptive statistics. 

Variable Estimate 
Adjusted Std. 

Error 
Pr(>|z|) 

Intercept -3.79E+00 5.98E-01 < 2E-16 

SHClass 4.17E-01 1.48E-01 4.90E-03 

Slope 1.37E-01 1.89E-02 < 2E-16 

mMaxSPDI -2.11E+00 8.73E-01 1.59E-02 

vmw -7.13E+00 6.74E+00 2.90E-01 

Aspect 8.57E-04 1.78E-03 6.31E-01 

Curv 4.41E-03 9.60E-03 6.46E-01 

 

 

Table S9: Leptoseris 25 m GLMM descriptive statistics. 

Variable Estimate 
Adjusted Std. 

Error 
Pr(>|z|) 

Intercept -3.84E+00 4.75E-01 < 2E-16 

SHClass 3.75E-01 1.35E-01 5.50E-03 

Slope 1.32E-01 1.71E-02 < 2E-16 
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mMaxSPDI -1.87E+00 8.11E-01 2.20E-02 

vmw 1.00E-01 6.55E+00 9.88E-01 

Aspect 7.34E-04 1.69E-03 6.64E-01 

Curv -4.00E-03 9.85E-03 6.85E-01 

 

 

Table S10: H. kanaloana 100 m GLM descriptive statistics. 

Variable Estimate 
Adjusted Std. 

Error 
Pr(>|z|) 

Intercept 2.16E+02 5.83E+01 4.21E-02 

Slope -4.14E-01 2.02E-01 4.07E-02 

EuphW -4.85E+01 1.17E+01 3.90E-05 

Aspect 3.61E-03 3.37E-02 2.86E-01 

PlanCurv 2.22E-01 3.20E-01 4.88E-01 

 

 

Table S11: H. kanaloana 100 m GLMM descriptive statistics. 

Variable Estimate 
Adjusted Std. 

Error 
Pr(>|z|) 

Intercept 2.16E+02 3.80E+01 < 2E-16 

Slope -4.10E-01 1.76E-01 8.00E-03 

EuphW -4.84E+01 8.51E+00 < 2E-16 

Aspect 3.61E-03 2.46E-03 1.44E-01 

PlanCurv 2.22E-01 2.34E-01 3.44E-01 

 

 

Table S12: Leptoseris 100 m GLM descriptive statistics. 

Variable Estimate 
Adjusted Std. 

Error 
Pr(>|z|) 

Intercept -9.30E-02 5.33E-02 8.18E-02 

ProfCurv 1.74E-02 7.12E-03 1.46E-02 
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Slope 2.08-02 3.29E-03 < 2E-16 

umw 1.34E+00 6.11E-01 2.91E-02 

mMaxSPDI 2.78E-01 9.46E-02 3.42E-03 

vmw -4.341E-01 5.02E-01 3.88E-01 

Aspect 6.49E0-05 1.79E-04 7.16E-01 

 

Table S13: Leptoseris 100 m GLMM descriptive statistics. 

Variable Estimate 
Adjusted Std. 

Error 
Pr(>|z|) 

Intercept -4.95E+00 1.01E+00 < 2E-16 

ProfCurv 1.94E-01 9.21E-02 3.67E-02 

Slope 1.53-01 4.06E-02 2.00E-04 

umw 3.39E+01 1.27E+01 7.76E-03 

mMaxSPDI 4.80E+00 9.46E-02 3.42E-03 

vmw -4.341E-01 5.02E-01 3.88E-01 

Aspect 6.49E0-05 1.75E+00 6.50E-03 

 

Table S14: Summary statistics for environmental predictor variables for each training dataset at 

5 m resolution. 

Variable (5 m resolution) Min Mean Max 

Longitude 666712 673283 679172 

Latitude 2323341 2330626 2350626 

Leptoseris spp. 0 0.051 1 

Halimeda kanaloana 0 0.057 1 

Aspect 0.704 190.793 357.257 

Curvature -72.908 0.075 120.15 

Current velocity (winter eastward mean) -0.074 -0.028 0.015 

Current velocity (summer eastward mean) -0.088 -0.034 0.042 

Current velocity (winter northward mean) -0.128 -0.055 -0.0111 

Current velocity (summer northward mean) -0.047 -0.005 0.025 

Current velocity (winter eastward variance) 0.012 0.023 0.038 

Current velocity (summer eastward variance) 0.011 0.024 0.039 

Current velocity (winter northward variance) 0.005 0.034 0.073 

Current velocity (summer northward variance) 0.004 0.031 0.07 

Depth 44.11 100.57 177.43 
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Diffuse attenuation coefficient at 490 nm (Kd490) (winter mean) 0.008 0.013 0.023 

Diffuse attenuation coefficient at 490 nm (Kd490) (summer mean) 0.002 0.006 0.012 

Diffuse attenuation coefficient at 490 nm (Kd490) (winter variance) 5.27E-06 7.34E-06 1.21E-05 

Diffuse attenuation coefficient at 490 nm (Kd490) (summer variance) 2.28E-06 5.83E-06 1.06E-05 

Proportional downwelled irradiance (summer mean) 0.264 0.58 0.895 

Proportional downwelled irradiance (winter mean) 0.053 0.287 0.623 

Proportional downwelled irradiance (summer mean max) 0.164 0.461 0.819 

Proportional downwelled irradiance (winter mean max) 0.001 0.082 0.329 

Proportional downwelled irradiance (summer variance) 0.999 0.999 0.999 

Proportional downwelled irradiance (winter variance) 0.998 0.999 1 

Proportional downwelled irradiance (summer variance max) 0.997 0.999 1 

Proportional downwelled irradiance (winter variance max) 0.995 0.999 1 

Euphotic mean depth (winter) 4.467 4.52 4.552 

Euphotic mean depth (summer) 4.534 4.563 4.582 

Planform curvature -44.431 -0.018 61.428 

Profile curvature -58.722 -0.094 30.339 

Rugosity 0 0.001 0.075 

Slope 0.017 3.583 58.125 

Substrate hardness (raw) 6.799 113.494 252.449 

Substrate hardness (categorized) 1 1.806 4 

 

 

Table S15: Summary statistics for environmental predictor variables for each training dataset at 

25 m resolution. 

Variable (25 m resolution) Min Mean Max 

Longitude 666712 673173 679162 

Latitude 2323341 2331408 2350616 

Leptoseris spp. 0 0.047 1 

Halimeda kanaloana 0 0.044 1 

Aspect 3.298 195.525 351.005 

Curvature -70.312 0.198 172.26 

Current velocity (winter eastward mean) -0.074 -0.029 0.015 

Current velocity (summer eastward mean) -0.088 -0.033 0.042 

Current velocity (winter northward mean) -0.128 -0.056 -0.011 

Current velocity (summer northward mean) -0.047 -0.006 0.025 

Current velocity (winter eastward variance) 0.012 0.024 0.038 

Current velocity (summer eastward variance) 0.011 0.023 0.039 

Current velocity (winter northward variance) 0.005 0.035 0.073 

Current velocity (summer northward variance) 0.004 0.032 0.07 

Depth 44.85 99.92 177.8 

Diffuse attenuation coefficient at 490 nm (Kd490) (winter mean) 0.008 0.013 0.023 

Diffuse attenuation coefficient at 490 nm (Kd490) (summer mean) 0.002 0.006 0.012 

Diffuse attenuation coefficient at 490 nm (Kd490) (winter variance) 5.29E-06 7.40E-06 1.20E-05 

Diffuse attenuation coefficient at 490 nm (Kd490) (summer variance) 2.29E-06 5.77E-06 1.06E-05 

Proportional downwelled irradiance (summer mean) 0.264 0.588 0.896 
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Proportional downwelled irradiance (winter mean) 0.053 0.293 0.624 

Proportional downwelled irradiance (summer mean max) 0.165 0.472 0.82 

Proportional downwelled irradiance (winter mean max) 0.001 0.083 0.332 

Proportional downwelled irradiance (summer variance) 0.999 0.999 1 

Proportional downwelled irradiance (winter variance) 0.998 0.999 1 

Proportional downwelled irradiance (summer variance max) 0.997 0.999 1 

Proportional downwelled irradiance (winter variance max) 0.995 0.999 1 

Euphotic mean depth (winter) 4.467 4.52 4.551 

Euphotic mean depth (summer) 4.535 4.564 4.582 

Planform curvature -38.41 0.057 89.366 

Profile curvature -82.894 -0.139 31.902 

Rugosity 0 0.001 0.119 

Slope 0.131 3.234 40.527 

Substrate hardness (raw) 21.98 115.82 239.26 

Substrate hardness (categorized) 1 1.809 4 

 

 

Table S16: Summary statistics for environmental predictor variables for each training dataset at 

100 m resolution. 

Variable (500 m resolution) Min Mean Max 

Longitude 666712 672784 679212 

Latitude 2323341 2332553 2350841 

Leptoseris spp. 0 0.079 1 

Halimeda kanaloana 0 0.047 1 

Aspect 5.457 191.823 341.654 

Curvature -24.911 -0.070 31.273 

Current velocity (winter eastward mean) -0.072 -0.028 0.015 

Current velocity (summer eastward mean) -0.087 -0.033 0.042 

Current velocity (winter northward mean) -0.134 -0.054 -0.011 

Current velocity (summer northward mean) -0.048 -0.002 0.024 

Current velocity (winter eastward variance) 0.012 0.020 0.038 

Current velocity (summer eastward variance) 0.011 0.021 0.039 

Current velocity (winter northward variance) 0.005 0.035 0.079 

Current velocity (summer northward variance) 0.004 0.031 0.076 

Depth 46.36 98.60 178.01 

Diffuse attenuation coefficient at 490 nm (Kd490) (winter mean) 0.008 0.014 0.023 

Diffuse attenuation coefficient at 490 nm (Kd490) (summer mean) 0.002 0.005 0.012 

Diffuse attenuation coefficient at 490 nm (Kd490) (winter variance) 5.29E-06 7.48E-06 1.21E-05 

Diffuse attenuation coefficient at 490 nm (Kd490) (summer variance) 2.30E-06 5.76E-06 1.03E-06 

Proportional downwelled irradiance (summer mean) 0.265 0.594 0.889 

Proportional downwelled irradiance (winter mean) 0.044 0.298 0.616 

Proportional downwelled irradiance (summer mean max) 0.090 0.481 0.808 

Proportional downwelled irradiance (winter mean max) 2.00E-05 0.091 0.321 

Proportional downwelled irradiance (summer variance) 0.999 0.999 1 

Proportional downwelled irradiance (winter variance) 0.998 0.999 1 
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Proportional downwelled irradiance (summer variance max) 0.997 0.999 1 

Proportional downwelled irradiance (winter variance max) 0.996 0.999 1 

Euphotic mean depth (winter) 4.467 4.520 4.550 

Euphotic mean depth (summer) 4.535 4.564 4.581 

Planform curvature -16.79 -0.106 17.77 

Profile curvature -17.48 -0.036 8.121 

Rugosity 4.40E-07 6.57E-04 4.77E-03 

Slope 0.196 3.254 41.897 

Substrate hardness (raw) 20.99 116.91 216.31 

Substrate hardness (categorized) 1 1.834 4 
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Chapter 4: Present-day distribution and potential spread of the invasive green alga 

Avrainvillea amadelpha around the main Hawaiian Islands 

4.1 Abstract 

Algal assemblages are critical components of marine ecosystems from the intertidal to 

mesophotic depths; these plants are primary producers, nutrient cyclers, and substrate providers. 

Coastal reef ecosystems can be disrupted by stressors such as storm events, effluent inundation, 

sudden temperature shifts, and non-native invaders. Avrainvillea amadelpha, also known as 

leather mudweed, is an invasive green alga first recorded in the main Hawaiian Islands on the 

island of Kauaʻi, prompting concern due to extreme competitiveness with native algae and 

seagrasses. This alga has spread rapidly around parts of Oʻahu, decreasing the biodiversity of the 

benthos from shorelines to ~90 m depth. Here I employ a boosted regression tree (BRT) 

modeling framework using past and current distribution data to create maps identifying highly 

vulnerable regions prone to Avrainvillea invasion. My models indicate that regions exposed to 

minimal bottom currents and at least an annual maximum of eight degree heating weeks (DHW) 

are particularly susceptible to Avrainvillea colonization, especially in areas adjacent to some 

coastal development, fishing pressure, and shipping traffic. I identified Mokuleʻia, eastern Oʻahu 

(southward from Kahuku through Waimānalo), and much of the Honolulu metro area (eastward 

from ʻEwa through Maunalua Bay) as leather mudweed “hotspots”. Additionally, I extrapolated 

the model to the main Hawaiian Islands and forecasted how a 25% increase in statewide annual 

maximum DHW may change habitat suitability for Avrainvillea. I identified hotspots along 

eastern and western Hawaiʻi, all coasts of Maui, south Molokaʻi and Lānaʻi, northern and eastern 

Kauaʻi, and south Niʻihau as susceptible regions of particular note for resource managers and 

conservationists. 

4.2 Introduction  

Disturbances can dramatically alter the community composition of coral reef ecosystems. 

The replacement of coral cover by macroalgae is known as a “phase shift” (Littler & Littler 

1984; MacManus & Polsenberg 2004), which can occur in response to pressures such as storm 

events (Rogers & Miller 2006), coral disease outbreaks (Aronson & Precht 2001; Porter et al. 

2001), nutrient input (McCook 1999), or removal of herbivores (Hughes et al. 2007). Often, 

these stressors occur simultaneously or in sequence as one stress event lowers the threshold of 
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coral resilience, thereby magnifying total coral mortality (Brandt et al. 2013; Redding et al. 

2013; Vega-Thurber et al. 2014; Casey et al. 2014). 

 In Hawaiʻi, shallow coral reef ecosystems endure common reef stresses, including 

overuse and physical degradation (i.e., trampling), overextraction (i.e., overfishing of important 

food fish, such as parrotfish (uhu) and jacks (ʻōmilu), chemical degradation from freshwater 

input, effluent, or sunscreen, and invasion by harmful bacteria, viruses, or competitors (Rodgers 

& Cox 2003; Stamoulis et al. 2017; Takesue & Storlazzi 2017; Friedlander et al. 2018;). Invasive 

algae can become opportunistic when some environmental change facilitates their spread or 

allows them to outcompete native species. They are a strong ecological and economic concern in 

Hawaiʻi (Schaffelke et al. 2006), where eutrophication due to runoff likely influenced the spread 

of invasive Hypnea musciformis on Maui (Smith et al. 2002) and Dictyosphaeria cavernosa in 

Oʻahu (Stimson et al. 1996).  

One particularly troublesome competitor that has garnered statewide attention in the past 

several decades is the invasive green macroalga Avrainvillea amadelpha sensu Brostoff 

(Avrainvillea herein). This macroalga, also known as “leather mudweed” due to its thick, paddle-

like blades (Fig. 1), was first discovered in Hawaiʻi in 1981 (Brostoff 1989) and has been 

observed from the intertidal to the mesophotic zone (30 – 90 m) (Spalding 2012; Pyle et al. 2016; 

Cox et al. 2017). Its origin and phylogeny remain uncertain, but it is not present in historical 

records of shallow marine habitats around the main Hawaiian Islands (MHI) (Brostoff 1989). To 

date, this highly successful macroalga has spread across Oʻahu (Fig. 2) and has been detected in 

several locations around Kauaʻi (Smith et al. 2002; Wade & Sherwood, submitted). In the 

mesophotic zone, video records show Avrainvillea beds competing with meadows of a native 

Udotea species. (Spalding 2012) (Fig. 3). 

Avrainvillea is of particular concern in Hawai‘i because of the weedy characteristics it 

exhibits, such as benthos alteration (Martinez et al. 2009; Sansone et al. 2017), tolerance to 

environmental extremes (e.g., light availability, exposure, etc.), and unpalatability to native 

herbivores (Van Heukelem 2016; S. Chulakote, pers. comm.). The alga is also presumed to have 

successful vegetative propagation via fragmentation, and holdfast siphon viability like many 

other siphonous green algae (Walters & Smith 1994). This alga may also change the community 

diversity and structure across the reefs it invades. Langston & Spalding (2017) recorded a higher 

abundance of fishes above open sand versus within Avrainvillea canopy; Longenecker et al. 
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(2011) determined that removal of Avrainvillea returned invertebrate communities to 

compositions observed in unaffected regions. All of these traits combine to make Avrainvillea a 

formidable competitive presence across native coral reefs. 

The state has spent over $2 million to remove 1.32 million kilograms of Avrainvillea 

across a 90,000 m2 swath of Maunalua Bay, Oʻahu (Kittinger et al. 2013). Much effort has been 

invested in observing and recording Avrainvillea invasions, as well as stymying the progress of 

ongoing invasions (Hawaiʻi Department of Aquatic Resources, unpublished data). However, to 

date, no projections exist regarding the potential spread of this invasive macroalga across 

Hawaiʻi’s reef systems. When used as a management tool, habitat suitability models may provide 

critical information about the current or probable future distribution of opportunistic competitors. 

Habitat suitability models can also improve understanding of dispersal methods and provide 

early warning about regions that are particularly vulnerable, but not yet invaded. This work will 

shed light on areas of concern around Oʻahu and across the MHI, and provide guidelines for 

resource managers monitoring the spread of this botanical invader. 

4.3 Methods 

4.3.1 Observational data 

 I sourced my observational data from video obtained during submersible and ROV dives 

and shore-based or snorkeling surveys (Fig. 4; Table 1). The Hawaiʻi Undersea Research 

Laboratory (HURL) provided records of Pisces submersible and RCV-150 ROV dives conducted 

during November 2006. To obtain mesophotic records of Avrainvillea occurrence, I processed 34 

hours of footage from 7 dives across all coastlines around Oʻahu (Table 2). I collected 3,796 new 

snapshots of the benthos by pausing each video track in 30 second intervals, but excluded 2,441 

photo stills due to blurriness, stationarity of the vessel, or positioning outside the depth 

maximum (> 90 m).  

Shallow (~5 – 10 m) subtidal observations of Avrainvillea were collected during multiple 

snorkeling and free-diving trips conducted from July 2015 to November 2017. I combined these 

data with two existing subtidal survey datasets, which included data from 2015 – 2017 provided 

by the Hawaiʻi Department of Aquatic Resources. The Our Project in Hawaiʻi’s Intertidal 

(OPIHI) school-based monitoring program acquired intertidal shore-based survey data through 

transect sampling at low tides (0 – -0.15 m) from March – June 2017.  



99 

 

I removed 8,040 observations from the raw dataset of 33,286 due to overlap within pixels 

or failure to fall within my depth range. All shoreline survey point data were inspected for 

geographical precision and manually moved to the closest classified marine pixel if needed. I 

combined all observational data into one dataset spanning depths from 0 – 90 m and covering all 

coastlines across Oʻahu. I resampled all data to a grid size of 250 x 250 m, resulting in a final 

dataset of 276 observations of Avrainvillea presence (207) or absence (69). 

4.3.2 Environmental data 

 Fifteen environmental predictor variables were included in my model (Table 3). I 

represented all covariates as 250 m raster grids across the study domain. These covariates may 

have a direct influence on the metabolic constraints and, therefore, the distribution of 

Avrainvillea. I broadly categorized predictors into three classifications: 1) topographic, which 

included seafloor slope, aspect (i.e., compass direction of seafloor), rugosity (i.e., roughness), 

and bathymetric position index; 2) oceanographic, which included values for seafloor current 

velocity (annual mean and standard deviation), surface chlorophyll a concentration (annual 

mean), and surface turbidity (annual mean); and 3) anthropogenic, which included indices 

describing fishing pressure, nearshore coastal development, anomalous sea surface warming, 

shipping traffic, nutrient and sediment inputs, and proximity to human population. Table 3 

includes further details about considered environmental covariates. 

 I first examined the spatial coverage of all covariate layers. Due to insufficient coverage, 

I excluded the layers displaying proximity to human population, annual mean turbidity, and 

sediment influx. To account for similar lack of spatial coverage of my nutrient flux and coastal 

development layers, I extrapolated the closest offshore values and applied these values to 

offshore observational data points outside the layer coverage. 

Collinearity of predictor variables may preclude suitable model fitting (i.e., preventing 

the model from converging or contributing to high standard errors in coefficient estimates). I 

created a correlation scatterplot to examine the relationships between all covariates and the 

response variable (i.e., Avrainvillea occurrence) (Fig. 5). Following Dancey and Reidy (2004) 

and Tabachnick and Fidell (1996), I removed any covariates that exceeded a correlation cutoff 

threshold of 0.7 or did not show a correlation with the response variable. We included seven 

covariates in my initial model (seafloor slope, annual mean seafloor current velocity, maximum 



100 

 

degree heating weeks (DHW), nutrient flux, shipping traffic, shoreline development percentage, 

and scaled annual fishing catch). 

4.3.3 Model development 

Boosted regression tree (BRT) models fit an ensemble of statistical models by combining 

the power of boosting (a technique that blends multiple models to improve predictions) and 

regression trees (models that identify links between response variables and covariates via 

recursive binary splits; Elith et al. 2008). Per Elith et al. (2008), I built one BRT model and 

applied it to my entire dataset. To start, I retained stochasticity in my model (bag fraction = 0.5) 

and specified a slow learning rate (lr = 0.0025), which 1) minimized the contributions of each 

tree to the final model, 2) minimized the number of very small, random subsets of data selected 

for fitting each tree, and 3) decreased the chance of fitting abnormal trees.  

Binomial deviance was used for my loss function to enhance the robustness of the 

predictions (Hastie et al. 2001; Elith et al. 2008). I selected my final parameters by 

systematically varying each parameter and examining the change in residual deviance, or 

goodness of fit, of the model (Elith & Leathwick 2017). The regression trees partition the study 

space into sets of rectangles in order to detect important effects, thereby incorporating 

geographical effects within the model.  

The relative importance of each predictor variable was established using formulae within 

the gbm library (Friedman 2001; Friedman & Meulman 2003). These values are determined by 

the number of times each variable is selected in a split, and weighted by the subsequent model 

improvement based on that split (weights are squared to give higher value to predictors that 

improve the model more considerably). I scaled predictor contributions such that the sum 

equated to 100, with higher values indicating greater influence on the response variable, i.e., 

occurrence of Avrainvillea.  

4.3.4 Evaluation of model performance 

I randomly divided my dataset 70/30 to develop my model (i.e., my “training” and 

“testing” datasets). Per Elith et al. (2008), I initially set nt0 = 50 and ran 10 unique BRTs. I 

subsequently increased the value of nt by 10 (i.e., nt1 = 60, nt2 = 70, and so on) and ran new 

models until I found a combination that produced higher average mean predictive performance 

and lower average standard errors than the previous set of models. I kept my lr very low (lr = 

0.0025) to ensure precise estimation of the optimal nt = 80 (cross-validated optimal nt = 80).  
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I used R statistical software (R Core Team 2017) and ESRI ArcGIS v.10.4 (ESRI 2017) 

to perform all data analyses. I specified my BRTs using the dismo package v. 1.1 – 4 (Hijmans et 

al. 2017).  

4.4 Results 

4.4.1 Performance of models 

My initial model (193 observations, 7 predictors) fit 1620 trees. I then reran my initial 

model using k-fold cross-validation (k = 10) to simulate a fixed number of five variable drops. 

The ideal number of two variable drops resulted in the removal of mean nutrient flux and 

seafloor slope from my simplified model (nt = 1760; 193 observations, 5 predictors) (Fig. 6). 

Though model simplification resulted in no significant change in total deviance or total residual 

deviance, and cross-validated calibration predictive accuracy increased slightly (+0.03 change to 

0.955) (Table 4). 

I cross-validated the model using withheld validation data (83 observations). The cross-

validated AUC (0.961) indicated high predictive accuracy and model trustworthiness, with an 

average of 89% of observations identified correctly (Hosmer & Lemeshow 2004). 

4.4.2 Influential environmental covariates  

My model indicated that the five variables exhibiting the most influence on the 

probability Avrainvillea sp. occurrence across Oʻahu coastlines include percentage of shoreline 

development (32%), scaled maximum degree heating weeks (27%), scaled fishing catch (17%), 

mean current velocity at the seafloor (13%), and shipping traffic (11%) (Table 5). We produced 

partial dependence plots (Fig. 7) to visually interpret the relative importance of each predictor 

variable in determining the distribution of Avrainvillea.  

4.4.3 Interactions between environmental variables 

I identified interactions between 1) seafloor current and shipping traffic, and 2) seafloor 

current and DHW. These interactions indicated that relatively calm regions exposed to shipping 

traffic above the 50th percentile (~500 transits annually) and > 8 DHW may be more susceptible 

to Avrainvillea invasion. 

4.4.4 Areas highlighted as hotspots 

 Areas around Oʻahu identified by the model as most susceptible to Avrainvillea invasion 

include Mokuleʻia in north Oʻahu, eastern Oʻahu (southward from Kahuku through Waimānalo), 

and much of the Honolulu metro area (eastward from ʻEwa through Maunalua Bay) (Fig. 8), 
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most of which is already inundated with Avrainvillea (Fig. 2).  I extended the model to predict 

areas of high Avrainvillea suitability around the surrounding MHI. The results indicate that 

managers should concentrate surveys for Avrainvillea along the southern and western coasts of 

Maui, western and eastern Hawaiʻi, south Molokaʻi and Lānaʻi, northern and eastern Kauaʻi, and 

south Niʻihau (Fig 9). Model predictions extend approximately 1.5 – 2 km offshore and 

encompass the shoreline to the mesophotic zone (to 90 m depth). The model indicated that 

approximately one quarter (423 km2) of the modeled area (1691 km2) is highly suitable 

Avrainvillea habitat (θ > 0.91, or third quantile cutoff value).  

4.5 Discussion 

 This is the first study to predictively model and map the present-day and potential 

distribution of invasive leather mudweed across Oʻahu and extrapolate results to surrounding 

islands in the event of potential future climate conditions. I highlight this approach as one 

possible management tool for prioritizing management and conservation efforts and in the face 

of changing anthropogenic and environmental drivers and future climate conditions. 

4.5.1 Traits of imperiled reefs 

Marine regions identified as most susceptible to Avrainvillea colonization experience 

minimal annual mean current flux (< 0.005 m/s). These predictions agree with the observational 

data used to train and test my final model. Littler et al. (2004) hypothesized that Avrainvillea 

mounds in Belize may strategically colonize protected, calm, and shallow embayments in order 

to maximize productivity. I caution that my current flux values were generally very low (range = 

0 – 0.02 m/s) and the mean current flux value for pixels containing Avrainvillea did not differ 

significantly from the mean value for pixels without Avrainvillea (mean difference < 0.01 m/s). 

Additionally, little is known of the success of tidal current dispersing asexual fragments or any 

details for sexual reproduction among Oʻahu populations.  

My model also indicated some influence of degree heating weeks (DHW) on the 

susceptibility of habitat to Avrainvillea colonization. DHW is a metric that couples the duration 

and intensity of anomalously warm regional sea surface temperatures, and Eakin et al. (2010) 

note that thresholds of 8 and 12 DHW indicate high and very high risks of bleaching-related 

coral mortality, respectively. My model indicated that regions experiencing a maximum of at 

least 8 DHW during 2013 – 2016 were more suitable for Avrainvillea invasion. Cox et al. (2017) 

speculate that recent warming events in 2015 caused a die-back in abundant native intertidal 
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macroalgae, facilitating the rapid spread of leather mudweed in this intertidal environment. They 

observed an opportunistic increase in abundance of Avrainvillea following the reduction in 

brown algae (Padina sanctae-crucis and Dictyota spp.), which dominate multiple intertidal sites 

around Oʻahu (Cox et al. 2017). This invasion notably followed a period of unseasonably warm, 

calm seas and a series of severe bleaching events from 2014 – 2017. The impact of warmer 

ocean temperatures and the resulting die-back of native macroalgae may also increase the 

success of more thermally resistant invasive species. I hypothesize that reefs destabilized from 

repeated heat stress are more susceptible to incursion of invasive species like Avrainvillea. 

Peyton (2009) noted that Avrainvillea in Maunalua Bay hosts epiphytes in its canopy that may 

act as “sunscreen” during periods of high light exposure, which suggests some level of shade 

tolerance in this alga. 

Finally, my model suggested that anthropogenic stresses on land and in coastal regions 

may increase the possibility of Avrainvillea invasion. Regions adjacent to coastal development or 

higher-than-average shipping traffic were identified as more susceptible to colonization by the 

invasive alga. Additionally, the model suggests that regions exposed to moderate to heavy (> 

50th quantile; scaled values, > 0.2) fishing pressure are more prone to Avrainvillea invasion. 

Prior survey data (K. Peyton, Hawaiʻi Conservation Conference; unpublished data) shows some 

correlation with the removal of herbivorous fish and urchins and the subsequent appearance of 

Avrainvillea. Though phase shifts may occur across overfished reefs (e.g., Hughes 2007), 

researchers are uncertain about the role of grazing pressure in controlling the spread of an 

unpalatable invader like Avrainvillea (Van Heukelem 2016). However, scaled fishing catch was 

one of the six factors that best explains the presence of Avrainvillea, which argues that the role of 

reduced herbivory must also be considered. Although herbivorous coral reef fish populations 

around Oʻahu are generally low (Williams et al. 2016), and the influence of broadly reduced 

herbivory (as many species have been reduced or lost) on the increase of Avrainvillea is 

unknown, the correlation between fishing pressure and spread of this alien invasive merits 

further study.   

4.5.2 Looking to the future 

 My model pinpointed much of Oʻahu’s east coast, the Honolulu metro area, and 

Mokuleʻia (on the north shore) as regions particularly susceptible to Avrainvillea invasion (Fig. 

8). Binary representation of the absence (0) or presence (1) of coastal modification (i.e., change 
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of geomorphology due to human activity; Wedding et al. 2018) highlights the correlation of 

model-identified highly vulnerable regions and developed regions (Fig. 10). Given this visible 

association between vulnerability and coastal development, I urge managers to consider 

concentrating resources across reef systems adjacent to expanding urban centers. 

In addition to using the model to highlight important stressors and the most vulnerable 

coastal regions island-wide based on present-day conditions, I used my framework to forecast 

how reef vulnerability might change following a 25% increase in statewide maximum DHW. 

With all other predictors held constant (i.e., held at present-day values), my model predicted 

changes in habitat suitability per 250 m pixel ranging from decreases of up to 31% to increases 

as high as 58%. The Waiʻanae (west) coast of Oʻahu and much of the southern coast experienced 

little to no increases, or even slight decreases, in overall vulnerability to Avrainvillea invasion. 

Portions of the eastern coast (from Lāʻie wrapping around south through Hanauma), patches of 

the Honolulu metro area, and Kaʻena Point through Mokuleʻia (north shore) displayed the most 

dramatic increases in vulnerability (Fig. 11, inset C). Across the other MHI, I observed increased 

vulnerability around the southern and western shores of Kauaʻi and Maui Nui, and around 

northwestern and eastern Hawaiʻi, including Hilo Bay (Fig. 11). 

4.6 Conclusions  

 We constructed a series of boosted regression trees to predictively map marine habitat 

vulnerability to invasion and dominance by the alien invasive mudweed Avrainvillea as a method 

to highlight possible management actions in the face of a changing climate. Our findings indicate 

that conservationists and state agencies concerned about the spread of this alga may consider 

focusing monitoring or removal resources across shallow reef systems adjacent to coastal 

development activities and subject to high fishing pressure or shipping traffic, particularly where 

Avrainvillea has not yet been or has only sporadically been observed. Conversely, areas less 

susceptible to invasion by Avrainvillea may be considered as a higher priority for conservation 

measures. The long-term success of Avrainvillea removal efforts once this alga invades a system 

remains uncertain. 
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4.8 Figures 

 

 

Figure 1. Video still of dense Avrainvillea amadelpha meadow at 42 m depth off the coast of 

southwest Oʻahu observed during submersible dive RCV-369 in November 2006.  
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Figure 2. Geolocated survey data denoting 23,421 observations of Avrainvillea amadelpha 

occurrence around Oʻahu, Hawaiʻi, from 2015 – 2017. Observations demarcated with red 

triangles. 
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Figure 3. Video stills of Avrainvillea amadelpha overtaking the lime green blades of native 

Udotea alga. Dives RCV-369 (top) and P4-188 (bottom) were conducted off the southwestern 

and southern coasts, respectively, of Oʻahu in November 2006. Stills were taken at depths of 40 

– 50 m in the upper mesophotic zone. 
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Figure 4. Map of Avrainvillea amadelpha presence (red triangles) or absence (blue circles) 

across Oʻahu from depths 0 – 200 m. Observations edited for overlap at 250 m raster resolution 

scale and constrained to depths < 90 m. 

 

 
Figure 5. Correlation scatterplot displaying relationships between covariates and response 

variable.  

 



109 

 

 
Figure 6. Plotted changes in predictive deviance of model following k-fold cross-validation and 

model simplification. 

 

 
Figure 7. Partial dependence plots indicating the influence of each predictor in the final 

simplified model. 
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Figure 8. Mapped model predictions around nearshore Oʻahu represented at 250 m raster 

resolution. Blue pixels indicate habitat less suitable for Avrainvillea invasion; red pixels indicate 

regions identified as highly suitable for Avrainvillea invasion. 
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Figure 9. Side-by-side comparison of coastal modification index values across nearshore Oʻahu 

(left) and model predictions of Avrainvillea habitat suitability. Modification was classified on a 

binary scale, such that areas without modification were marked “0”. Modified areas (“1”) may 

contain structures, altered coastline, or dredged habitat. See Lecky (2016) for further 

information. 

 

 

 
Figure 10. Mapped model predictions around the main Hawaiian Islands represented at 250 m 

raster resolution. Cool colors indicate low habitat suitability for Avrainvillea; warm colors 

indicate high suitability. 

 

 
Figure 11. Forecasted changes in habitat vulnerability subsequent to a theoretical 25% increase 

in maximum DHW across all coasts of the main Hawaiian Islands. Yellow tones indicate slight 

decreases or no changes in susceptibility to Avrainvillea invasion, while orange and red colors 

indicate increases in vulnerability compared to present day (Fig. 10) predictions. 

 

4.9 Tables  
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Table 1. Raw observational data survey information. 

Survey 

type Survey dates 

Number of presence 

points 

Number of absence 

points 

Mesophotic 11/2006 124 1874 

Snorkel 

6/2015 - 

11/2017 31,223 56 

Shore 3/2017 - 6/2017 4 5 

 

Table 2. Detailed mesophotic survey information. 

Latitude 

(start) 

Longitude 

(start) 

Vessel Dive Date Max Depth 

(m) 

Location 

21.5739 -158.3373 RCV 371 6-Nov-06 67 Oahu N 

21.3208 -158.1458 RCV 369 15-Nov-

06 

66 Oahu 

SW 

21.4333 -158.2067 RCV 370 15-Nov-

06 

120 Oahu W 

21.6214 -158.2998 P4 183 16-Nov-

06 

179 Oahu N 

21.2662 -158.1003 P4 188 27-Nov-

06 

117 Oahu S 

21.2833 -158.0167 RCV 376 27-Nov-

06 

82 Oahu W 

21.2483 -157.7588 RCV 377 27-Nov-

06 

112 Oahu S 

 

 

Table 3. List of variables considered for our analyses. 

Variable 

type 
Category Variable description Source Resolution Variable 

B
io

lo
g
ic

al
 

(r
es

p
o
n

se
) 

M
ac

ro
al

g
ae

 

Presence/ absence between 0 – 90 m 

depth 

Hawaiʻi Undersea 

Research Lab optical 

validation data; 
snorkel and Our 

Project in Hawaiʻi’s 

Intertidal (OPIHI) 

shore-based surveys 

 

 

NA 
 

“Avrainvillea amadelpha” 

E
n
v

ir
o

n
m

en
ta

l 
(p

re
d
ic

to
r)

 

T
o
p

o
g

ra
p

h
ic

 

Seafloor complexity 

NOAA  National 

Centers for Coastal 
Ocean Science 

Marine 

Biogeographic 
Assessment of the 

Main Hawaiian  

Islands (2016) 

360 m 

Rugosity (unitless) 

Mean rate of change Slope (degrees) 

Compass direction of maximum 
slope  

Aspect (degrees) 

Focal mean analysis of bathymetry 
and slope; 5 km neighborhood 

Bathymetric position index 
(m) 

O
ce

an
o

g
ra

p
h
ic

 

Seafloor current velocity (annual 

mean and standard deviation) 

Bottom current velocity 

(annual mean, std. dev.) 
(m/s) 
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Table 4. Model performance details.  

Model 
Number of 

predictors 

Total 

Deviance 

(mean) 

Residual 

deviance 

(mean) 

AUC 

(training) 

AUC 

(testing) 

Standard error 

(testing AUC) 

Initial model 

(av.mod) 
7 1.122 0.21 0.998 0.925 0.022 

Simplified 

model 

(av.simp) 

5 1.122 0.205 0.997 0.955 0.014 

 

derived from  Hybrid Coordinate 

Ocean Model (HYCOM) output 

Annual mean surface chlorophyll a 
concentration as proxy for 

phytoplankton biomass; data from 

the  Moderate Resolution Imaging 
Spectroradiometer (MODIS) satellite 

Sea surface concentration 

of chl. a (annual mean) 

(mg/m3) 

Annual mean turbidity derived from 

quantification the light reflected by 
organic and inorganic matter in the 

547 nm wavelength 

Sea surface turbidity 
(annual mean) (sr-1) 

A
n

th
ro

p
o
g
en

ic
 

Scaled (0 – 1) average annual 

fisheries haul from non-commercial 
shore-based fishing, and non-

commercial boat-based fishing using 

line, net, and spear fishing gear 

Wedding et al. 
(2018); Lecky 

 (2016) 

100 m 

Scaled (0 – 1) average 

annual reef fish catch of fin 

fish spp. (excluding akule 
and ʻopelu) 

Development of land to hard, man-

made surface from 2005 – 2010; 

decay function implemented to 

represent sediment dispersal from 

coastal construction; values scaled 

from 0 – 1 to represent relative 
magnitude of development 

Nearshore new 

development  

impact, 2005 – 2011   

Maximum observed degree heating 

weeks from 2013 – 2016; data from 

NOAA Coral Reef Watch 5 km 
products; values scaled 0 – 12 

Maximum degree heating 

weeks (unitless) 

Addition of sediment due to land use 

changes (i.e., coastal construction, 
agricultural activities); calculated by 

Falinski (2016) 

Sediment input (t/yr/ha) 

Addition of nitrogen, phosphorus, 
and other nutrients from sewage 

released from submarine disposal 

systems (i.e., cesspools and septic 
tanks) 

On site waste disposal 

system nutrient input 

(g/day/km2) 

Ship location data from August 2011 

– August 2012 was sourced from the 

Pacific Islands Ocean Observing 
System. The ArcGIS line density 

tool was used to calculate ship track 

density within pixels. 

Ship-based shipping 

(estimated annual number 

of ship crossings) 

Sum of human population in 15 km 
neighborhood 

Human population in 15 

km radius (number of 

people) 



114 

 

Table 5. Ranked influence of predictors included in simplified model. 

Variable 

Scaled importance (0-

100) 

Shoreline development index (0-100%) 32.03097 

Degree Heating Weeks (DHW) 27.01103 

Scaled annual mean fishing catch 17.20106 

Mean seafloor current (m/s) 13.03637 

Shipping traffic 10.72057 
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Chapter 5: Synthesis and conclusions 

5.1 Overview of dissertation objectives 

 As I wrap up this dissertation, I will address how I met each of my initially stated 

objectives; when I began this work, I wanted to: 

1. Generate the first maps of hard coral distribution across the mesophotic zone (30 – 180 m) of 

the entire span of the MHI: In Chapter 2, I outline the novel methodology applied to a newly 

processed dataset of occurrence data for scleractinians of genera Montipora and Leptoseris to 

create the first pan-Hawaiʻi predictive distribution maps across the mesophotic zone.  

2. Explore the influence of different environmental predictors at varying spatial scales on the 

distribution of mesophotic corals and algae: In Chapter 3, I examine how the influence of 

different environmental drivers on the distribution of Leptoseris sp. corals and calcified alga 

Halimeda kanaloana changes when modeled at different spatial scales (fine, moderate, and 

coarse). I chose Penguin Bank, Molokaʻi, as my study site for this chapter based on the results of 

my models in the second chapter, which seemed to pinpoint this area as a potential hotspot for 

Leptoseris sp. colonization. 

3. Generate the first map of predicted native invasive Avrainvillea amadelpha distribution and 

identify “hotspot” regions of concern across nearshore to mesophotic (0 – 90 m) Oʻahu and 

surrounding MHI: Knowing that the predictive map of Halimeda kanaloana distribution was the 

first continuous layer of habitat suitability for any alga in Hawaiʻi, I wanted to create a product 

that would have management applications statewide. In Chapter 4, I outline the methodology 

applied to a dataset of Avrainvillea occurrence across the intertidal to mesophotic (< 90 m) zones 
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around Oʻahu to create the first pan-Hawaiʻi map of predicted habitat suitability for this invasive 

macroalgae. Other than a couple of lone sightings in Kauaʻi, researchers have not spotted 

Avrainvillea adjacent to any other MHI. I produced maps of habitat suitability for all MHI for 

present-day and “warm seas” (+1°C annual mean seafloor temperature) conditions in order to 

better inform managers about the spatial allocation of their biosecurity resources. 

 I successfully achieved all of my objectives listed in the introduction of this dissertation. 

5.2 Next steps for MCE research, management, and conservation in Hawaiʻi   

 In the approximately five years since I conceptualized this dissertation project, I have not 

seen any meaningful change in the management practices of the state in regards to MCEs. I 

suspect that MCEs will, for the time being, fall victim to the “out of sight, out of mind” adage, as 

do all but nearshore marine habitats, at least in the public eye. I am not discouraged by this lack 

of attention for my chosen study zone. I’ve successfully defended the scientific, economic, 

ecological, and intrinsic importance of the mesophotic biota highlighted in this dissertation to 

grant agencies and scientific and public audiences. At this point, it has become second nature to 

draw parallels between shallow and mesophotic reefs as a way to hook the attention of a given 

audience, 99% of whom have never seen and will never see the mesophotic zone. One of my 

deep dives a few years ago took me beyond the 30 m upper limit of the mesophotic zone; the 

descent into the dim quiet was peaceful and decidedly anticlimactic- a nice reminder that this 

delineation between marine zones is arbitrary. All natural spaces are important and intrinsically 

valuable, even if humans do not directly and regularly use them. As I conducted my dissertation 

research, this worldview came to mind quite often. 

 However, the cold truth is that intrinsic value doesn’t speak- money does, and so my 

work has consistently provided strong and direct management applications with the economic 

benefits of such applications highlighted in each study. My hope is that my rigorous application 

of the scientific method to the various ecological datasets that were painstakingly collected and 

processed by me and my fellow scientists has produced useful, informative, and genuinely 

interesting results in the form of habitat suitability maps and related, novel inferences.  

I would like to see this work inform resource managers and also act as a springboard for 

new projects, particularly related to habitat modeling in Hawaiʻi. Models are only as good as the 

data used to build them, so I am confident that the researchers who come after me will be able to 

improve upon and expand this work. My wishlist for that improvement includes more 
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interdisciplinary collaboration between ecologists and mathematicians and more funding (of 

course) for biological sampling and model validation.  

I feel privileged to have devoted my graduate career to researching the deep(er) ocean, 

one of the last, relatively minimally human-impacted regions on our planet, and I look forward to 

what’s next. 


