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ABSTRACT 

Passive acoustic monitoring is a powerful tool for non-invasive and unbiased data 

collection in remote locations. The ability to collect data over long durations in areas that are not 

easily accessible and during all weather conditions has become a common technique for 

surveying for marine mammals as well as assessing the soundscape that may impact their 

behavior or distribution. Very little is known about the occurrence of fin (Balaenoptera physalus), 

sei (Balaenoptera borealis), and Bryde’s (Balaenoptera edeni) whales that are very rarely 

observed in the coastal waters around the main Hawaiian Islands. This dissertation presents 

results obtained from underwater passive acoustic data collected at five sites around the island 

of Kauai, Hawaii, from February 2009 through October 2010. Acoustic files scanned manually to 

search for sounds produced by fin, sei, and Bryde’s whales. The results corroborate the 

extremely low sighting rates for these three species. Out of a total 31 acoustic encounters, 18 

were from fin whales, 9 were from sei whales, and 4 were from Bryde’s whales. These 

detections were also compared to those produced by two automated techniques and 

unfortunately, neither performed well enough to be reliable alternatives to time consuming 

manual analyses. The broadband acoustic data collected for this study are very useful for 

determining contributions of natural and anthropogenic sources towards the overall soundscape 

around Kauai. While fin, sei, and Bryde’s whales were not frequently detected in the data, 

humpback whale song was ubiquitous during the winter months and was present in nearly each 

recording from December through March. When comparing the broadband noise levels around 

Kauai to sites off of Oahu and Nihoa (the closest of the Northwest Hawaiian Islands), it is 

evident that weather (mainly wind) and shipping noise have the greatest impact on the 

soundscape.  

 



 

vii 

TABLE OF CONTENTS 
DEDICATION ............................................................................................................................. III 

ACKNOWLEDGEMENTS ......................................................................................................... IV 

ABSTRACT ............................................................................................................................... VI 

CHAPTER 1: DISSERTATION INTRODUCTION ........................................................................ 1 
1.1 Introduction ................................................................................................................ 1 
1.2 Dissertation Objectives .............................................................................................. 4 

CHAPTER 2: MANUAL ANALYSIS OF KAUAI EAR DATA FOR BALEEN WHALE 
OCCURRENCE ................................................................................................................. 5 
2.1 Introduction ................................................................................................................ 5 
2.2 Methods ................................................................................................................... 10 
2.3 Results .................................................................................................................... 13 
2.4 Discussion ............................................................................................................... 19 

CHAPTER 3: ASSESSMENT OF AUTOMATED ANALYSES FOR BALEEN WHALE 
CALLS RECORDED OFF OF KAUAI, HAWAII ................................................................ 23 
3.1 Introduction .............................................................................................................. 23 
3.2 Methods ................................................................................................................... 28 

3.2.1 Field Recordings .................................................................................... 28 
3.2.2 Manual Data Analysis ............................................................................. 31 
3.2.3 Automated Data Analysis ....................................................................... 31 

3.3 Results .................................................................................................................... 34 
3.4 Discussion ............................................................................................................... 43 

CHAPTER 4: SOUNDSCAPE AND NOISE CHARACTERISTICS AROUND KAUAI, 
HAWAII ............................................................................................................................ 50 
4.1 Introduction .............................................................................................................. 50 
4.2 Methods ................................................................................................................... 57 

4.2.1 Field Recordings .................................................................................... 57 
4.3 Results .................................................................................................................... 61 
4.4 Discussion ............................................................................................................... 84 

LITERATURE CITED ................................................................................................................ 98 
 



 

viii 

LIST OF FIGURES 
Figure 2.1: Known frequency ranges of cetacean sounds. ......................................................... 7 

Figure 2.2: The underwater hydrophone ranges located off of Kauai and Niihau. ....................... 9 

Figure 2.3: Map of Kauai and Niihau indicating the location for each of the EAR 
deployments. .................................................................................................................11 

Figure 2.4: Deployment timeline of the EARs that recorded the data used to manually 
document baleen whale signals. ....................................................................................14 

Figure 2.5: Example of fin whale 20 Hz pulse calls recorded on the Kauai EARs. Only the 
incident pulse was counted, not the reflected sounds that followed. ..............................16 

Figure 2.6: Example of sei whale calls recorded on the Kauai EARs. Only the incident 
signal was counted, not the reflected sounds that followed. ...........................................16 

Figure 2.7: Example of possible Bryde’s whale calls recorded on the Kauai EARs. ..................17 

Figure 2.8: Example of unknown call likely produced by a baleen whale recorded on 13 
July 2010 at the Kauai NE site. ......................................................................................18 

Figure 2.9: Visual sightings of baleen whales made during the 2010 survey of the Hawaii 
EEZ. ..............................................................................................................................21 

Figure 3.1: Map of Kauai indicating the location for each of the EAR deployments. ..................29 

Figure 3.2: Example of fin whale 20 Hz pulse calls detected by Baleen 5. ................................38 

Figure 3.3: Example of low signal-to-noise ratio of fin whale calls masked by unknown 
low-frequency noise. ......................................................................................................38 

Figure 3.4: Example of sei whale downsweep calls detected by Baleen 5. ................................40 

Figure 3.5: Example of false positive sei whale calls triggered by low-frequency 
components of humpback whale calls below 150 Hz. ....................................................40 

Figure 4.1: Wenz curves describing spectra levels of ambient noise sources from weather, 
geologic activity, and shipping (adapted from Wenz 1962). ...........................................52 

Figure 4.2: Annual shipping density around the Main Hawaiian Islands for 2016. .....................55 

Figure 4.3: Annual shipping density around Oahu, Kauai, Niihau, and Nihoa for 2016. .............58 

Figure 4.4: Box plots of band level noise measurements from 20 Hz to 25 kHz for each 
EAR deployment. ..........................................................................................................63 

Figure 4.5: Spectrum level measurements for recordings made at the Nihoa site. ....................64 

Figure 4.6: Spectrum level measurements for recordings made at the Oahu site. .....................65 

Figure 4.7: Spectrum level measurements for recordings made at the Kauai N site. .................66 

Figure 4.8: Spectrum level measurements for recordings made at the Kauai NE site................67 

Figure 4.9: Spectrum level measurements for recordings made at the Kauai NW site. ..............68 

Figure 4.10: Spectrum level measurements for recordings made at the Kauai SE site. .............69 

Figure 4.11: Spectrum level measurements for recordings made at the Kauai SW site. ............70 

Figure 4.12: Spectral probability density plot for the Nihoa EAR deployment from June 
2010 through September 2011. .....................................................................................71 



 

ix 

Figure 4.13: Spectral probability density plot for the Oahu 1 EAR deployment from 
February through March 2009. ......................................................................................72 

Figure 4.14: Spectral probability density plot for the Oahu 2 EAR deployment from June 
through September 2009. ..............................................................................................73 

Figure 4.15: Spectral probability density plot for the Kauai N 1 EAR deployment from 
February through June 2009. ........................................................................................74 

Figure 4.16: Spectral probability density plot for the Kauai N 2 EAR deployment from June 
through September 2009. ..............................................................................................75 

Figure 4.17: Spectral probability density plot for the Kauai NE 1 EAR deployment from 
February through May 2009. .........................................................................................76 

Figure 4.18: Spectral probability density plot for the Kauai NE 2 EAR deployment from 
June through September 2009. .....................................................................................77 

Figure 4.19: Spectral probability density plot for the Kauai NW 1 EAR deployment from 
February through May 2009. .........................................................................................78 

Figure 4.20: Spectral probability density plot for the Kauai NW 2 EAR deployment from 
June through September 2009. .....................................................................................79 

Figure 4.21: Spectral probability density plot for the Kauai SE 1 EAR deployment from 
February through March 2009. ......................................................................................80 

Figure 4.22: Spectral probability density plot for the Kauai SE 2 EAR deployment from 
June through September 2009. .....................................................................................81 

Figure 4.23: Spectral probability density plot for the Kauai SW 1 EAR deployment from 
February through May 2009. .........................................................................................82 

Figure 4.24: Spectral probability density plot for the Kauai SW 4 EAR deployment from 
June through September 2010. .....................................................................................83 

Figure 4.25: Band level noise (20 Hz to 25 kHz) at the Nihoa EAR site. ....................................86 

Figure 4.26: Band level noise (20 Hz to 25 kHz) at the Oahu EAR site for all deployments. ......88 

Figure 4.27: Band level noise (20 Hz to 25 kHz) at the Oahu EAR site (deployment 4). ............89 

Figure 4.28: Band level noise (20 Hz to 25 kHz) for the Kauai 1 deployments...........................91 

Figure 4.29: Band level noise (20 Hz to 25 kHz) for the Kauai 2 deployments...........................92 

Figure 4.30: Band level noise (20 Hz to 25 kHz) for the Kauai 3 deployments...........................93 

Figure 4.31: Band level noise (20 Hz to 25 kHz) for the Kauai 4 deployments...........................94 

Figure 4.32: Band level noise (20 Hz to 25 kHz) for the Kauai 5 deployments...........................95 

Figure 4.33: Example of an underwater detonation recorded on the Kauai NW EAR, 
presumably from a U.S. Navy training exercise. ............................................................96 

 



 

x 

LIST OF TABLES 
Table 2.1: EAR deployment information for the site location, deployment waypoint, unit 

depth, recording sampling rate (SR), and the recording durations for each unit on 
each deployment used for the analysis. .........................................................................12 

Table 2.2: Results from manual analyses of the 12 EAR datasets collected around Kauai 
Island.............................................................................................................................15 

Table 2.3: Total number of encounters detected at each of the EAR deployment sites. ............18 

Table 3.1: EAR deployment information for the site location, deployment waypoint, unit 
depth, recording sampling rate (SR), and the recording durations for each unit on 
each deployment used for the analysis. .........................................................................30 

Table 3.2: The criteria used by Baleen 5 for fin and sei whale detections. .................................32 

Table 3.3: Results from manual analyses of the 12 EAR datasets collected around Kauai 
Island.............................................................................................................................35 

Table 3.4. Results from the Baleen 5 fin whale detector. ...........................................................37 

Table 3.5: Results from the Baleen 5 sei whale detector. ..........................................................39 

Table 3.6. Results from the Raven fin whale detector. ..............................................................42 

Table 4.1: EAR deployment information for the site location, deployment waypoint, unit 
depth, recording sampling rate, and the recording durations for each unit on each 
deployment used for the noise analyses. .......................................................................59 

Table 4.2: The 10th percentile, 90th percentile, median, and quarter percentile values for 
the band level measurements from each deployment. ...................................................62 

 



 

1 

CHAPTER 1:  
DISSERTATION INTRODUCTION 

1.1 Introduction 
The main Hawaiian Island chain is among the most remote archipelagos on the planet. 

Marine mammals are commonly encountered in the coastal waters of the Hawaiian Islands, and 

in the winter, no species occurs more frequently than humpback whales (Megaptera 

novaengliae). Humpbacks migrate to lower latitudes each winter for mating opportunities and to 

give birth. In recent years, particularly after the discovery that the mysterious “boing sound” was 

attributed to minke whales (Balaenoptera acutorostrata), it has been demonstrated that this 

species also winters in the tropics, presumably for the same reason as humpback whales 

(Thompson and Friedl 1982, Rankin and Barlow 2005, Oswald et al. 2011). This behavior has 

been well documented and provides a plausible model for the occurrence of other baleen whale 

species in Hawaiian waters. 

The other baleen whale species of the Eastern North Pacific include blue whales 

(Balaenoptera musculus), fin whales (Balaenoptera physalus), sei whales (Balaenoptera 

borealis), Bryde’s whales (Balaenoptera edeni), gray whales (Eschrichtius robustus), and North 

Pacific right whales (Eubalaena japonica). Baleen whales, in general, are mostly solitary 

animals that have ephemeral interactions with conspecifics usually associated with breeding 

and foraging opportunities. The diet of a variety of filter feeding baleen whale species can be 

similar. For lunge feeding balaenopterid species (blue, fin, sei, and Bryde’s), small shoaling fish 

and krill (euphausiids) are the dominant prey. Copepods and other invertebrates are targeted 

near the surface for skimming balaenid whales (right whales). Gray whales are unique in that 

they gulp sediment to filter invertebrates. As such, these animals tend to be encountered in 

shallower more coastal habitats.  



 

2 

The most enigmatic North Pacific species is the right whale. They were hunted to near-

extinction and most recently the only records of their occurrence have been made in the far 

North Pacific near Kodiak Island, Alaska, and in the Bering Sea. Interestingly, there were two 

sightings (likely of the same individual) in Hawaii in the winter of 1979 (Herman et al. 1980). No 

other records of right whales in Hawaii give reason to believe that this is no more than an 

isolated event.  

Blue whales also occur in the North Pacific and in the tropics are most commonly 

observed along the coast between Baja, Mexico and Central America (in particular the region 

known as the Costa Rica Dome). The population was severely depleted from commercial 

whaling and, while they are still endangered, the populations are very slowly showing signs of 

recovery. Stafford (2003) reported blue whale sounds recorded in the Gulf of Alaska when, at 

that time, no post whaling surveys had sighted any individuals. More recently, blue whales have 

been sighted in Alaskan waters and, while not abundant, they are not as rare as a decade ago. 

Around Hawaii, however, there are no sightings reported nor are there whaling records that may 

indicate a historical range in these waters. Despite the lack of sightings, blue whales have been 

detected acoustically as early as 1965 (Northrop et al. 1968, Northrop et al. 1971) in the Main 

and Northwest Hawaiian Islands.  

Fin, sei and Bryde’s whales have been sighted during surveys in the Main Hawaiian 

Islands as well as the Northwest Hawaiian Islands (Papahānaumokuākea Marine National 

Monument). While it is not unexpected to see these species, sightings are very infrequent. Most 

observations have been in deep water and not in areas where research effort and vessel traffic 

is most common. Sightings in windward and open ocean conditions, where the ability to see 

them is significantly reduced, may be indicative of a habitat preference that differs from the 

shallow areas exploited by humpback whales. Due to the infrequency of their respective 

sightings, very little is known about their distribution and occurrence in the Central Pacific.  
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The inherent value of passive acoustic monitoring (PAM) with autonomous devices is 

that they are able to detect marine mammal signals in challenging sea conditions and in areas 

that are not easily accessible by traditional, and very cost prohibitive, visual survey means; 

boats and aircraft. These devices can be deployed for long durations and can be used to 

determine seasonal occurrence, movement patterns, spatial distribution, and vocal activity of 

soniferous marine life, including cetaceans. The Hawaiian Islands are ideal for employing PAM 

techniques for marine mammal monitoring. While many species are commonly encountered in 

coastal areas and are abundant seasonally, occurrence and distribution studies are difficult due 

to rough sea states and inaccessibility around the islands and further from shore.  

Fin, sei, and Bryde’s whales all produce distinctive vocalizations that have been 

described in the literature. Like most balaenopterids, their calls are downswept with frequencies 

between 200 and 20 Hz. In Hawaii, the majority of fin whales signals reported are a stereotyped 

“20 Hz pulse” (Schevill et al. 1964, Watkins et al. 1987, Thompson et al. 1992). While fin whales 

do produce downsweeps with other frequency characteristics, the 20 Hz pulse is most 

commonly heard in lower latitudes and is seasonally common (Thompson and Friedl 1982, 

Watkins et al. 1987, McDonald and Fox 1989). Sei whale signals recorded near the main 

Hawaiian Islands produced two downsweep signals. Rankin and Barlow (2007) report a  

39 – 21 Hz call that is similar to a “35 – 20 Hz irregular repetition” fin whale call. Even though 

the sei whale signal is longer than the fin calls, it may be hard to distinguish between them with 

certainty. Sei whales also produced a 100 – 44 Hz downsweep signal that has been confirmed 

in subsequent recordings among and between years (unpublished data analyzed during this 

study). These higher frequency calls are approximately 1.0s in duration and can be 

distinguished from published descriptions of Bryde’s whale calls in the North Pacific (Cummings 

et al. 1986, Oleson et al. 2003, Heimlich et al. 2005). 
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1.2 Dissertation Objectives 
For this study, autonomous Ecological Acoustic Recorders (EARs [Lammers et al., 

2008]) were deployed around the island of Kauai, Hawaii. These instruments were deployed 

over a period of two years and provide both spatial and temporal data in order to compare 

acoustic detections among and between deployment sites.  

The research questions I will be addressing in this dissertation are: 

1. What is the occurrence of baleen whales around the island of Kauai? 

a. Which species are present? 

b. What is the seasonality of the species detected on the acoustic recorders? 

c. Are there any spatial differences in the distribution of whales detected on the 

recorders? 

d. Does acoustic data offer a distinct advantage over the traditional visual 

survey methodology for species occurrence? 

2. Are automated acoustic detectors able to reliably locate and classify the sounds of 

non-humpback and non-minke baleen whales? 

a. What is the performance of the Baleen5 detection algorithm on a manually 

validated dataset? 

b. What is the performance of the Raven fin whale detection tool on a manually 

validated dataset? 

3. What is the deep-water soundscape around the island of Kauai? 

a. What are the seasonal trends of ambient noise levels around Kauai? 

b. How do baleen whales affect the overall soundscape around Kauai? 

c. What is the anthropogenic contribution to the soundscape around Kauai? 

These objectives are part of a comprehensive program to characterize the habitat and 

movement of cetaceans around Hawaii, in the hope of providing a stronger scientific foundation 

for the management and conservation of these species. 
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CHAPTER 2:  
MANUAL ANALYSIS OF KAUAI EAR DATA FOR BALEEN 

WHALE OCCURRENCE 

2.1 Introduction 
Passive acoustic monitoring (PAM) is a very powerful tool for non-invasive and unbiased 

data collection in remote locations. The ability to collect data over long durations in areas that 

are not easily accessible and during inclement conditions has become a common technique for 

surveying for animal occurrence, distribution, and density. Underwater recordings at sites 

around the globe have been used to detect and classify marine mammals for many decades. 

PAM systems are ideal for monitoring projects in the Hawaiian Islands. In the early 

1950’s Schreiber (1952) described sounds recorded off Oahu and attributed them to whales. 

These sounds were later identified as humpback whales (Megaptera novaengliae) by Schevill 

(1964). Northrup et al. (1971) described 20 Hz sounds, later attributed to blue whales 

(Balaenoptera musculus), recorded off of Midway Island. In the decades that followed, cabled 

hydrophones provided an abundance of data to continue describing sounds of whales in close 

proximity to the Main Hawaiian Islands (MHI). Thompson and Friedl’s paper (1982) was one of 

the first to look at a single dataset and describe multiple species detection and seasonal 

occurrences off Hawaii. The data were collected on two bottom-mounted hydrophones located 

offshore north of Oahu. With over two years of data they identified the presence of humpback 

whales, fin whales (Balaenoptera physalus), blue whales, sperm whales (Physeter 

macrocephalus), pilot whales (Globicephala macrorhynchus), and boing sounds (identified to be 

produced by minke whales [Balaenoptera acutorostrata]).  

Acoustical analyses conducted in Hawaii over the past 50 years reveal that baleen 

whale species are recorded seasonally. Visual survey effort increased in the 1990’s and 

generally centered on the occurrence and distribution of humpback whales (Mobley et al. 2001). 

Aside from ubiquitous wintertime sightings of humpback whales, the documented encounters 
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with other large baleen whale species have been extremely rare. Prior to dedicated vessel 

surveys (Barlow 2002, Bradford et al. 2017) of the Hawaii Exclusive Economic Zone (EEZ) only 

a handful of fin whale sightings had been made (Mobley et al. 1996) to go along with those 

reported for Bryde’s whales (Balaenoptera edeni), sei whales (Balaenoptera borealis), minke 

whales (Rankin and Barlow 2005), and even North Pacific right whales (Eubalaena japonica; 

Herman et al. 1980). While blue whales were one of the first species to be acoustically 

identified, it was not until a 2010 research cruise assessing cetacean populations in the Hawaii 

EEZ that the first, and at present only time that blue whales (one sighting of two animals among 

fin whales) have been seen in Hawaiian waters (Bradford et al. 2017).  

It is not a surprise that baleen whales are heard more easily than they are seen. 

Generally speaking, from insects to large vertebrates, the size of the animal is proportionate to 

the frequencies of sound that they produce; the larger the animal, the lower the frequency 

(Ketten 1992, Ketten 1997, Fitch and Hauser 1995, Bennet-Clark 1998, Fitch 2006, Cranford et 

al. 2008). The sounds that baleen whales produce range from approximately 20 Hz up to 1500 

Hz (Figure 2.1, adapted from Mellinger et al. 2007). Sounds below 1000 Hz have significantly 

lower seawater absorption rates and are able to travel greater distances (Francois and Garrison 

1982). Since nearly all baleen whale signals are very low frequencies and can be detected from 

great distances, the animals do not necessarily have to be close to the PAM devices in order to 

be detected. It has been estimated that blue and fin whale signals can be detected over 

hundreds of kilometers as sounds propagate along the deep sound channel axis (Payne and 

Webb 1971) and others have empirically localized animals at ranges of 56 km to 200 km 

(Sirovic et al. 2007).  

The Hawaiian Islands rise from the seafloor in the middle of the North Pacific and are 

surrounded by deep water where baleen whale signals can travel relatively long distances. The 

majority of the large baleen whale sightings have been further offshore away from the coastal 

Main Hawaiian Islands (Barlow 2002, Bradford et al. 2017). While the majority of vessel traffic  
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Figure 2.1: Known frequency ranges of cetacean sounds. Large whales are listed by species 
while toothed whales are grouped into families. The thick bar shows the range of the most 
common types of vocalizations, while the thinner line shows recorded extremes of frequencies. 
The asterisk (*) indicates that the upper frequency is unknown (adapted from Mellinger et al., 
2007). 

and watchful eyes are closer to shore, acoustic detections coastally are a valuable way of 

determining the presence of baleen whale species that are very rarely seen. However, with the 

ability for their sounds to travel great distances in deep water, uncertainty would still remain as 

to how close the animals travel near coastal areas. 

Paired acoustic and visual surveys are perhaps the most comprehensive way to assess 

the occurrence of widely distributed cetacean species. Not all animals will be making noise all of 

the time and not all animals can be easily seen, particularly those that spend the majority of 

their lives below the surface. In addition to determining the detection function for visual and/or 

acoustic encounter rates, for poorly understood species validation of acoustic signals is 

imperative and can be very difficult to achieve. One of the most notable examples of this in the 

North Pacific is the boing sound first described by Wenz (1964) from U.S. Navy submarine 
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recordings in the 1950’s. The sounds were also recorded in other locations of the North Pacific 

but not verified as minke until visual sightings were made concurrently with localized positions of 

the sound (Rankin and Barlow 2005).  

The U.S. Navy operates a network of underwater hydrophones (Figure 2.2) off the North 

and West coast of Kauai that are cabled to the Pacific Missile Range Facility (PMRF) at Barking 

Sands. The data collected from these hydrophones have been made available to scientists, and 

numerous studies been conducted to localize and track soniferous marine mammals that pass 

through the range (Marques et al. 2013, Martin et al. 2013, Helble et al. 2015, Martin and 

Matsuyama 2015). Many of these studies have been able to use visual sightings to confirm the 

species being tracked acoustically (Tiemann et al. 2006). In addition to echolocating and 

whistling odontocetes, many baleen whale species have been studied on the range including 

humpback and Bryde’s whales. Until 2005, the mysterious boing sounds were also tracked on 

the range, but it was not until the origins were verified as minke whales that the seasonal 

occurrence and distribution made more sense.  

The minke whale boing example underscores the need to understand the sounds that 

particular species or populations make, in order to begin addressing regionally specific 

questions of animal species distribution and/or occurrence. Without knowing the full acoustic 

repertoire of geographically associated populations or without the ability to conduct visual 

validations of acoustic detections, conservative approaches to acoustic call classification are 

required. While the signals of some species are very well known, e.g. fin whale 20 Hz pulses, 

other more generic signals (low-frequency downsweeps) could possibly belong to a number of 

species likely to occur in a particular area. Nonetheless, documenting ambiguous signals is not 

without merit. Like the boing, they might later be classified with higher levels of confidence after 

validation studies are completed. However, without the ability to “search” for highly stereotyped 

signals that occur very regularly, the most rigorous way to examine particular acoustic datasets  
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Figure 2.2: The underwater hydrophone ranges located off of Kauai and Niihau. These cabled 
hydrophones are part of the Pacific Missile Range Facility (PMRF) located at Barking Sands. 
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is to comb over the recordings manually, which is perhaps the most labor intensive method 

possible. 

For this study, data were collected from bottom-mounted underwater PAM systems 

deployed near the island of Kauai. The aim of this research was to examine the occurrence of 

baleen whales based on the detection of stereotyped signals in the acoustic data recorded near 

the Hawaiian Archipelago (at depths less than 1000 m). Upon cursory examination of files, 

many different and ambiguous signals were present in the very low frequencies (under 100 Hz). 

Manual analyses were deemed to be the most reliable way to identify and classify signals of fin, 

Bryde’s, and sei whales and distinguish them from sounds produced by humpback whales and 

anthropogenic noise sources. 

2.2 Methods 
Acoustic recordings were made on bottom-moored Ecological Acoustic Recorders 

(EARs). The EAR is a self-contained microprocessor-based autonomous recorder that samples 

the ambient sound field on a programmable duty cycle (Lammers et al. 2008). The EARs were 

deployed at five different sites around the island of Kauai, Hawaii (Figure 2.3) at depths ranging 

from 395 m to 710 m. Each EAR was paired with an acoustic release and custom syntactic 

foam collar for recovery and refurbishment. The first deployment at all five sites was February 

2009 and the refurbishment cycle was aimed to recover and redeploy each recorder every six 

months over the project span of two years (EAR locations, recording sampling rate, and 

recording durations are depicted in Table 2.1). Due to the remote nature of most of the 

deployment sites, and challenges associated with circumnavigating the island even during calm 

weather conditions, the EAR recording parameters were set with a 10 percent duty cycle (30s 

recordings every 5 min). The first two deployments recorded with a sampling rate of 64 kHz 

(effective bandwidth of 32 kHz) and the final two deployments had an increased sampling rate 

of 80 kHz (effective bandwidth of 40 kHz). The sampling rate settings would not impact the 

lower frequencies and the system limitations had a low-frequency limit for signals below 20 Hz.  
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Figure 2.3: Map of Kauai and Niihau indicating the location for each of the EAR deployments. 
The depths for each deployment are indicated by the site name. 
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Table 2.1: EAR deployment information for the site location, deployment waypoint, unit depth, recording sampling rate (SR), and the 
recording durations for each unit on each deployment used for the analysis.  

    Deployment 1 Deployment 2 Deployment 3 Deployment 4 

Site 
Latitude 

(N) 
Longitude 

(W) 
Depth 

(m) 
SR 

(kHz) 
Start 

Recording 
End 

Recording 
SR 

(kHz) 
Start 

Recording 
End 

Recording 
SR 

(kHz) 
Start 

Recording 
End 

Recording 
SR 

(kHz) 
Start 

Recording 
End 

Recording 

SE 21 51.577  159 21.542  696 64 10-Feb-2009 6-Mar-2009 64 10-Jun-2009 25-Sep-2009 80 26-Jan-2010 4-May-2010 80 13-Jun-2010 19-Sep-2010 

NW 21 11.221  159 50.298  609 64 10-Feb-2009 24-May-2009 64 9-Jun-2009 22-Sep-2009 80 25-Jan-2010 5-May-2010 80 14-Jun-2010 20-Sep-2010 

NE 22 08.954  159 14.702  710 64 10-Feb-2009 19-May-2009 64 9-Jun-2009 29-Sep-2009 80 25-Jan-2010 5-May-2010 80 13-Jun-2010 19-Sep-2010 
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Once the EARs were recovered, the raw acoustic data (.BIN files) were converted to 

.EWAV files, a variant of WAV files to be used within Triton, a MATLAB™ based analysis tool 

developed at Scripps Institute of Oceanography (Wiggins 2003). All data were decimated to 8 

kHz for low frequency analysis of baleen whale calls. Long-term spectral averages (LTSA) were 

created for each EAR deployment. LTSAs allow a view longer durations of spectrographic data, 

to identify periods that may contain frequency bands of interest. After a cursory analysis, and 

determination that the low-frequency signals of interest (blue, fin, sei, and Bryde’s whales) were 

not reliably and distinctly identifiable when viewing the LTSAs, all data were examined manually 

on a file by file basis. Trained analysts scrolled through each 30 second file and limited the 

frequency display to a range of 0 – 400 Hz to maximize their ability to identify low-frequency 

baleen whale signals. Individual calls were logged, as were the total encounter durations 

(defined as call bouts that had a minimum of two hours between two files containing logged 

calls). When calls were found, Triton was used to log the file location, duration, and frequency 

characteristics. In addition to exporting the call metrics to a spreadsheet, analysts also created 

sound and image files to be used for quality control. All calls annotated by each analyst were 

verified before the results were compiled and presented. For any calls that were questionable, 

other marine mammal acousticians were consulted to further ensure accuracy and consistency. 

2.3 Results 
Acoustic data were recorded at all five sites around the island of Kauai between 

February 2009 and January 2011. However, the EARs located at Kauai N (unrecoverable after 

the third deployment) and at Kauai SW (missing wintertime data from the second deployment) 

did not have concurrent recordings and these sites were omitted from analyses. Additionally, the 

EAR located at Kauai NW suffered from equipment failure on the fifth deployment and no data 

were obtainable. Thus, the 12 datasets collected from the first four deployments at Kauai SE, 

Kauai NW, and Kauai NE were used to scan for the occurrence of baleen whales (Figure 2.4).  
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Figure 2.4: Deployment timeline of the EARs that recorded the data used to manually document 
baleen whale signals. 

The 12 datasets had a cumulative number of 327,649 files of acoustic data (Table 2.2). 

Of these, only 110 files (0.034%) contained sounds produced by baleen whales of interest (fin, 

sei, and Bryde’s whales). In the winter, humpback whales were ubiquitous at each site and for 

the purposes of this study, their calling behavior was not analyzed. Despite searching between 

0 and 400 Hz, no blue whales signals were detected in this two year period.  

Fin whales were the most commonly detected species with 18 encounters among all 

three sites. Their short duration 20 Hz pulsed signals (Figure 2.5) were noted 132 times. These 

calls were only detected during the winter months with the earliest detection being 25 January 

(2010). The latest fin whale call was 2 April (in 2009) but the majority of signals were recorded 

during the month of February. 

Sei whale calls (Figure 2.6) were detected at all three sites. The downswept signals had 

a mean starting frequency of 100.1 Hz and a mean ending frequency of 40.1 Hz. The mean 

duration of each call was 1.2 seconds. The sei whale signals were recorded primarily in January 

and February; however, there was one encounter at Kauai NW on 29 June 2009. It is 

conceivable that this call is not actually produced by sei whales since they are expected to have 

a wintertime occurrence in Hawaii, but the calls look, and sound, most similar to sei whales.  
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Table 2.2: Results from manual analyses of the 12 EAR datasets collected around Kauai Island.  

   Fin Detections Sei Detections Possible Bryde's Total 
Files 
with 
Calls Site Deployment 

Files 
Analyzed Encounters Calls Encounters Calls Encounters Calls 

Kauai 
NE 1 28,159 2 3 0 0 0 0 2 

Kauai 
NW 1 29,639 3 29 0 0 0 0 28 

Kauai 
SE 1 6,938 1 18 1 3 0 0 11 

Kauai 
NE 2 32,059 0 0 0 0 0 0 0 

Kauai 
NW 2 30,179 0 0 1 6 1 1 4 

Kauai 
SE 2 30,659 0 0 0 0 0 0 0 

Kauai 
NE 3 28,330 4 13 1 1 0 0 10 

Kauai 
NW 3 28,330 3 7 4 25 0 0 14 

Kauai 
SE 3 28,329 5 62 2 10 0 0 32 

Kauai 
NE 4 28,370 0 0 0 0 2 4 4 

Kauai 
NW 4 28,330 1 2 0 0 1 8 7 

Kauai 
SE 4 28,327 0 0 0 0 0 0 0 

 Totals 327,649 18 132 9 45 4 13 110 
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Figure 2.5: Example of fin whale 20 Hz pulse calls recorded on the Kauai EARs. Only the 
incident pulse was counted, not the reflected sounds that followed. 

 
Figure 2.6: Example of sei whale calls recorded on the Kauai EARs. Only the incident signal 
was counted, not the reflected sounds that followed. 
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Possible Bryde’s whale signals were also observed (Figure 2.7); however, only for a total 

of 13 calls during four encounters. Oleson et al. (2003) described six call types recorded in the 

tropical and subtropical Pacific. The calls recorded on the EARs could be one of two different 

call types Be1 and Be3. All of these calls were detected on the NW and NE EARs and only in 

the summertime (June 2009 through August 2010). 

 

Figure 2.7: Example of possible Bryde’s whale calls recorded on the Kauai EARs.  

An unknown sound was recorded on 13 July 2010 at the Kauai NE site (Figure 2.8). This 

call is most likely produced by a baleen whale and is similar to sounds produced by sei whales 

but the downsweep is higher frequency than the others observed. This signal was not tallied in 

the totals for fin, sei, and Bryde’s whales. 

Three EAR sites recorded concurrent data for the first four deployments. The units 

deployed on the northwest and northeast corners, as well as another one on the southeast side  
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Figure 2.8: Example of unknown call likely produced by a baleen whale recorded on 13 July 
2010 at the Kauai NE site.  

were three areas that could hopefully provide some comparison of occurrence. All three sites 

recorded sounds from fin, sei, and Bryde’s whales (Table 2.3); however, the sample sizes were 

extremely low and no statistical comparisons of detection rates would yield significant results.  

Table 2.3: Total number of encounters detected at each of the EAR deployment sites. The 
number in the parentheses indicate encounters in the summertime (June through August). All of 
the other encounters are during the winter months (January through April [one fin whale 
encounter in March and one fin whale encounter early April]).  

 Fin Sei Bryde’s 

Kauai NE 6 1 2 (2) 

Kauai NW 6 5 (1) 2 (2) 

Kauai SE 6 3 0 
 



 

19 

2.4 Discussion 
Fin, sei, and Bryde’s whales have all been seen close to the MHI but very few records 

exist for waters near shore. The ability to acoustically monitor 24 hours per day in all seasons 

and weather conditions is a robust method for detecting species that are rarely seen. The initial 

objective of this study was to examine the occurrence of rarely seen whales around the island of 

Kauai using acoustic data recorded on bottom mounted PAM devices deployed relatively close 

to the shore. 

Of the 327,649 files analyzed manually (each file individually), a surprisingly low number 

of files (110) detected fin, sei, or Bryde’s whales. This detection rate of 0.0003 per file was 

significantly lower than expected since all three species are known to occur near the MHI, and 

the acoustic propagation of signals in deep water would augment the detection rates of whales 

that were not in direct proximity to the instruments. The number of detections may have also 

been higher had the first wintertime deployment of the EAR at the Kauai SE site had not 

suffered a malfunction; however, the detection rates would still be much lower than anticipated 

at the outset of the study. 

There was a total of 31 encounters for all three species. Each species was observed at 

all three sites with the exception of Bryde’s whales that were not detected on the Kauai SE 

EAR. Most of the encounters were very brief (5 to 40 minutes). The longest encounters were 

290 minutes for a sei whale and 210 minutes for a fin whales. The short duration of the 

encounters likely indicates animals in transit. Localization was not possible with these data to 

confirm this; however, the calls appeared to have consistent signal to noise ratios indicating that 

only one individual was producing them while traveling. This is unlike the stationary singing 

behavior of humpback whales (Payne and McVay 1971) on the breeding grounds  

Detections of blue and right whales were not made during this two year sampling period. 

Humpbacks were ubiquitous during all wintertime months and confounded the ability to detect 

other low-frequency whale signals, thus necessitating the manual analysis approach to validate 
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detections. The signals of minke whales were also present during wintertime months although 

the frequency range used for the manual analyses (0 to 400 Hz) precluded logging those higher 

frequency signals. North Pacific right whales have been seen in Hawaii on very rare occasions 

and their calls would be detectable in the frequency band examined in this study. However, no 

signals similar to those described by McDonald and Moore (2002) were observed in the data. 

The only other baleen whale that occurs in Hawaiian waters is the blue whale. Their stereotyped 

AB calls (Stafford et al. 2001, Oswald et al. 2016) are longer duration (~20 seconds) and the 

window to capture the entirety of those calls in one 30 second EAR file is very slim. Their 

variable Type D calls (Oleson et al. 2007) have been recorded around Hawaii but in the coastal 

environment where humpback whales are extremely prevalent, making it difficult to distinguish 

the blue whale downsweeps produced in the same frequency range. Type D blue whale calls 

were targeted but none were verified in the datasets. 

Visual data is concordant with the EAR data in confirming the presence and relative 

abundance of three baleen whale species. The most recent comprehensive survey of marine 

mammals within the Hawaii EEZ was in 2010, coincidentally during the same time that the 

EARs were deployed and recording off Kauai (Bradford et al. 2017). A single sighting of a blue 

whale approximately 460 kilometers to the northwest of Kauai was the first confirmation of their 

presence in Hawaiian waters, beyond the acoustic detections noted since the 1950’s. Bryde’s 

whales were the most abundant species observed, with a total of 32 sightings. There were also 

two sightings each for fin and sei whales. The Bryde’s whales were the only species to be seen 

close to the MHI and even then, they occurred west of Kauai and Niihau (Figure 2.9).  

The survey in 2010 was a follow up to a 2002 research cruise (Barlow 2004). Bryde’s, 

fin, and sei whales were also seen during these efforts with the most common also being 

Bryde’s (n=13) followed by sei (n=6) and fin whales (n=5). All of these sightings were also west 

of Kauai and this survey was the first to document sei whales in Hawaiian waters. The important 

thing to note about both of these EEZ surveys is that they occurred during the summer and fall  
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Figure 2.9: Visual sightings of baleen whales made during the 2010 survey of the Hawaii EEZ. 
The squiggly lines inside the outlined area indicate the effort trackline for the survey when 
observers were actively searching for animals. Adapted from Bradford et al., 2017.  

months (August through November). Baleen whales are expected to be seasonal migrants to 

the lower latitude waters around Hawaii and if these projects were conducted during winter 

months, the detection rates for all baleen whales would likely differ. 

The PMRF bottom-mounted hydrophone arrays have also been used to document the 

occurrence of baleen whales and their proximity to Kauai. Researchers have been able to track 

and localize individual singing humpback whales, minke whales, and Bryde’s whales (Marques 

et al. 2012, Martin et al. 2013, Helble et al. 2015, Martin et al. 2015). In addition to applying 

density estimation and abundance techniques, the ability to track the movements of individual 

whales has been helpful to document their occurrence and calling behavior. Helble et al. (2015) 

was able to depict the movement of individual humpback whales and noted that their behavior 

did not depart from what was already known about their movement and singing behavior. The 

follow on work was also able to track the calling of individual Bryde’s whales. In contrast to the 

EAR encounters, the animals on the PMRF range had long vocal bouts and multiple individuals 

were observed calling at the same time and moving parallel to one another, however, separated 

by many miles. The fact that the EAR was not able to detect the same number of Bryde’s 
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whales may simply be due to deployment close to the island. The EARs have a depth limitation 

of 1000 meters and the PMRF range has hydrophones in much deeper water; where most of 

the Bryde’s whales were detected.  

While the initial aim of this study was to look at the seasonal distribution and spatial 

occurrence around Kauai Island, the low detection rates precluded applying meaningful metrics 

to examine this in detail. The conclusion after conducting thorough manual analyses on the data 

is simply that baleen whales that are infrequently seen close to the island are also very 

infrequently heard. The acoustic data from this study corroborates the visual data; we don’t see 

nor hear the whales close to the island of Kauai. While the detection distances is likely 

significantly further for acoustic data, the scant number of encounters over two years of 

geographically spaced PAM data collection is an example of where the lack of positive results 

(detections) are meaningful. The paucity of acoustic encounters on the EARs further confirms 

what has been observed from dedicated shipboard surveys and from acoustic studies 

conducted on the PMRF range; (1) these species do occur in Hawaiian waters and (2) we 

should not expect to encounter them with any regularity at close proximities to the shore. 
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CHAPTER 3:  
ASSESSMENT OF AUTOMATED ANALYSES FOR BALEEN 

WHALE CALLS RECORDED OFF OF KAUAI, HAWAII 

3.1 Introduction 
Animals (vertebrate and invertebrates alike) produce sound for a wide variety of social 

and survival needs. Intraspecific communication for reproductive displays, territoriality, group 

cohesion, migration, and a multitude of communicative purposes in addition to prey detection 

and localization are well documented across multiple taxa. The ability to correctly classify 

animals by the sounds they make has proven to be extremely useful for biological studies and 

species conservation and management. Passive acoustic studies in terrestrial ecosystems have 

been successfully used to monitor frog populations (Driscoll 1998, Bridges and Dorcas 2000, 

Bee et al. 2001, Rödel and Ernst 2004), but perhaps the most studied terrestrial animals are 

birds. Their songs and call production have been published in scientific literature for over a 

century. From species occurrence, to population surveys and from migratory routes through 

population structure, their acoustic behavior has been extremely well documented. In the first 

edition of The Auk, Bicknell (1884) described how bird song is not used for scientific purposes 

beyond descriptive purposes and does not have its own designated area of study. Today, it 

would be difficult to conduct a literature search on bioacoustics without examining, and 

acknowledging, the significant contributions of ornithologists. In 1935, Albert Brand used motion 

picture photography to record bird sound and study call characteristics. The ability to record 

sounds and examine it in detail has led to an incredibly diverse and technical scientific field. 

Recording sound underwater is much more prohibitive, and less intuitive that terrestrial 

acoustics; however, remote recording stations have been used since the 1950’s (Nishimura and 

Conlon 1993). The U.S. Navy has been at the forefront of ocean acoustics since before World 

War II. While the initial efforts were primarily focused on military applications, eventually 

underwater assets were opened up to research and, after the cold war, included access to the 
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Sound Surveillance System (SOSUS) arrays. These cabled hydrophones were developed to 

passively track the sounds produced by submarines and, as such, were also ideal for tracking 

the low-frequency sounds of baleen whales in the Pacific and Atlantic (Clark 1995).  

Acoustic research has always been integral to the study of marine mammals and has 

been very complimentary to traditional visual survey methodology. Hydrophones deployed from 

boats in the presence of wild animals were the first to tease out the sounds that different 

species make and, in certain circumstances, the context in which they were produced. Passive 

acoustic techniques to study and monitor for marine mammal occurrence and distribution are 

becoming more prevalent, particularly in remote areas of the world. The rate of technological 

development has allowed for recorders to be more compact, be deployed for longer durations 

with increased storage capacity, with improved bandwidth capabilities, and in some cases with 

on-board processing for signal detection. As the technology improves so do the analyses and 

acoustic data that are now being used to assess animal occurrence, behavioral responses, 

population trends, population density, and many other developing applications. 

With the advancements of hardware technology and amassing of large datasets, a 

secondary need is established; efficient and reliable data analysis for signals of interest. 

Copious volumes of data are commonly archived and for passive monitoring without on-board 

filtering or signal processing, post-processing data is an arduous, extremely time consuming, 

and expensive effort. As is the point with the data collection, the need to find signals efficiently 

and accurately is paramount. There are many different approaches for detection and 

classification of sounds; however, in the case of marine mammal vocalizations, there is no 

panacea. Animal sounds, while often stereotyped, are highly variable and generally regionally 

specific within the same species (Thomas and Stirling 1983, Moore and Ridgeway 1995, 

Deecke et al. 2000, McDonald et al. 2006, Papale et al. 2013). So, while one technique or 

algorithm may be trained for a species in one region, it will likely not perform consistently or 

effectively for the same species in other regions. Other confounding issues for detecting signals 
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in broadband acoustic data include masking noise sources (anthropogenic or environmental), 

interspecific vocal production, the transient nature of bioacoustic sounds, as well as the 

contextual use of sound production. 

Despite the numerous challenges to developing reliable automated detectors, the 

sounds of many animals are very well suited their use. The first step in processing large 

datasets is to know what one is looking for. Recordings of wild populations and of animals in 

captivity have provided a catalogue of sounds that are not only unique for species and 

populations, but also demonstrative of the most instrumental component; stereotypy of sounds 

to provide a template for detection and classification. Baleen whales often produce very low 

frequency (predominantly under 150 Hz) and repetitive calls with very little structural variation. 

The most commonly used detectors are template-matching. Stafford et al. (1995) used a match 

filter to scan for blue whale (Balaenoptera musculus) calls recorded off the coast of central 

California. Templates were created from analyzed call components and the filter was convolved 

with the original time-series data to look for correlation peaks to indicate the presence of blue 

whales. Similarly, spectrogram correlation can be used to scan for template signals with high 

correlation peaks (Mellinger and Clark 1997, Mellinger and Clark 2000, Urazghildiiev and Clark 

2007).  

The use of detectors has become very prevalent in marine mammal monitoring and 

mitigation. Based on the matched-filtering techniques, near real-time detection of large whales 

is used for endangered North Atlantic right whale (Eubalaena glacialis) to avoid ship strikes in 

busy U.S. east coast waterways (Moscrop et al. 2001, Clark et al. 2005, Spaulding et al. 2009). 

Additional development of detectors using pitch tracking has been an effective tool as well. Pitch 

tracking, also called edge detectors or contour extractions, trace the fundamental frequency of 

all sounds in a spectrogram and correlate those characteristics with templates of known signals 

or compare them to known attributes of the desired call (Gillespie 2004, Urazghildiiev et al. 

2009, Baumgartner and Mussoline 2011, Ou et al. 2013). This method is often much more 
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computationally efficient and allows for smaller packets of data to be transferred to shore 

stations for near real-time monitoring. The ability to run detection and classification algorithms 

with on-board processors allows for the transmission of “results” rather than raw data needing 

post-processed analyses. While some of the detections may be falsely classified, the majority of 

effort has already been concluded by the time an experienced analyst reviews and confirms the 

presence of endangered right whales. Once an animal has been detected near the monitored 

shipping lanes of Boston Harbor, alerts are disseminated to commercial vessels and other 

operators in the area. The mitigation efforts to slow vessels in the area are much more 

successful with the use of automated signal detection and classification. 

While the ability to detect whales near real-time is an emerging reality, the vast majority 

of acoustic data are archived and require analysts to find signals of interest. Detectors are 

incredibly useful and continue to be refined to reliably identify more species and in variable 

noise conditions. However, before any particular detector can be relied upon exclusively, it is 

necessary to first test its efficacy and ground-truth as much data in different recording 

environments as feasibly possible. Detector performance is subject to variations in the signal 

quality, changing ambient levels, masked signals due to other biologic or anthropogenic 

sources, geographic contours, seasonality and vocal behavior, and many other confounding 

circumstances. Ideally, automated detectors will be able to identify all the instances that a signal 

is found in a particular dataset. Realistically, even the most skilled and well trained human 

analyst will not be able to identify and locate each signal due to the many issues affecting the 

signal-to-noise as well as the aural and visual (most use spectrograms to visually scan acoustic 

data) degradation of signals in broadband data. Ultimately a balance will need to be achieved 

with regard to the allowable number of missed detections coupled with false detections. Fine-

tuning detection thresholds for one dataset will likely need to be adjusted for another dataset 

recorded at a different time and location, but all automated techniques will need to be assessed 

for accuracy and consistency depending on the goals of the study. If occurrence trends are the 
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aim, the thresholds can be lowered and false detection rates may be more allowable than 

missed detections (Mellinger 2004, Munger et al. 2005). However, if one is trying to conduct 

abundance estimation and/or other population level statistical analyses, the missed detections 

cannot be sacrificed. Regardless, using a detector should be done with a modicum of scrutiny 

as well as forgiveness.  

Many studies have evaluated the effectiveness of automated detectors compared to 

skilled manual analyses. In addition to marine mammal studies, automated systems have been 

used for a diverse array of marine and terrestrial taxa (Mann and Lobel 1995, Bridges and 

Dorcas 2000, Rempel et al. 2005, Acevedo and Villanueva-Rivera 2006, Menhill et al. 2006, 

Tremain et al. 2008, Bardeli et al. 2010). Terrestrial surveys, or those in more confined 

ecosystems, are perhaps the better option for assessing automated techniques versus human 

analysts or other traditional survey methodology. Whereas remote underwater recordings for 

marine mammals requires an assumption that you are recording all animals that pass within an 

acoustically detectable range, terrestrial surveys can actually compare the number of known 

animals being soniferous to those detected using passive recorders. Despite the advantages 

and disadvantages of accurately measuring the correct classification rates relative to known 

animal occurrence, the outcome of the comparisons between automated and manual analyses 

are similar; the tradeoff between correct classification, missed detections, and incorrect/false 

positives will always need to be considered. Before publication, particularly for studies relying on 

passive acoustic monitoring to assess population abundance, risk, and exposure, validation is 

essential. While the entire dataset does not need to be screened using both techniques, a 

subset of automated results will need to be examined to test detector performance. 

For this study, a large volume of underwater recordings had already been screened 

manually to identify low-frequency calls produced by large baleen whales around Kauai Island, 

Hawaii. Downswept signals of fin whale (Balaenoptera physalus) and sei whales (Balaenoptera 

borealis) were identified amongst three different deployment sites. Having a large validated 
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dataset provides a unique opportunity to compare automated detectors and their ability to 

correctly locate and classify very infrequent baleen whale signals. Two different automated 

detectors were used to scan the data for fin and sei whale signals for comparison with labor-

intensive manual analysis.  

3.2 Methods 

3.2.1 Field Recordings 
Acoustic recordings were made on bottom-moored Ecological Acoustic Recorders 

(EARs). The EAR is a self-contained microprocessor-based autonomous recorder that samples 

the ambient sound field on a programmable duty cycle (Lammers et al. 2008). The EARs were 

initially deployed at five sites around the island of Kauai, Hawaii (Figure 3.1) at depths ranging 

from 395 m to 710 m. Each EAR was paired with an acoustic release and custom syntactic 

foam collar for recovery and refurbishment. The first deployment at all five sites was February 

2009 and the refurbishment cycle was aimed to recover and redeploy each recorder every six 

months over the project span of two years (EAR locations, recording sampling rate, and 

recording durations are depicted in Table 3.1). Due to the remote nature of most of the 

deployment sites, and challenges associated with circumnavigating the island during calm 

weather conditions, the EAR recording parameters were set with a 10 percent duty cycle (30s 

recordings every 5 min). The first two deployments recorded with a sampling rate of 64 kHz 

(effective bandwidth of 32 kHz) and the final two deployments had an increased sampling rate 

of 80 kHz (effective bandwidth of 40 kHz). The sampling rate settings would not impact the 

lower frequencies and the system limitations had a low-frequency limit for signals below 20 Hz. 

Technical problems corrupted the data at two sites (see Chapter 2), so the final data set is 

based on the three sites described in Table 3.1 
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Figure 3.1: Map of Kauai indicating the location for each of the EAR deployments. The depths 
for each deployment are indicated by the site name. 

 



 

30 

Table 3.1: EAR deployment information for the site location, deployment waypoint, unit depth, recording sampling rate (SR), and the 
recording durations for each unit on each deployment used for the analysis.  

    Deployment 1 Deployment 2 Deployment 3 Deployment 4 

Site 
Latitude 

(N) 
Longitude 

(W) 
Depth 

(m) 
SR 

(kHz) 
Start 

Recording 
End 

Recording 
SR 

(kHz) 
Start 

Recording 
End 

Recording 
SR 

(kHz) 
Start 

Recording 
End 

Recording 
SR 

(kHz) 
Start 

Recording 
End 

Recording 

SE 21 51.577  159 21.542  696 64 10-Feb-2009 6-Mar-2009 64 10-Jun-2009 25-Sep-2009 80 26-Jan-2010 4-May-2010 80 13-Jun-2010 19-Sep-2010 

NW 21 11.221  159 50.298  609 64 10-Feb-2009 24-May-2009 64 9-Jun-2009 22-Sep-2009 80 25-Jan-2010 5-May-2010 80 14-Jun-2010 20-Sep-2010 

NE 22 08.954  159 14.702  710 64 10-Feb-2009 19-May-2009 64 9-Jun-2009 29-Sep-2009 80 25-Jan-2010 5-May-2010 80 13-Jun-2010 19-Sep-2010 
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3.2.2 Manual Data Analysis 
Once the EARs were recovered, the raw acoustic data (.BIN files) were converted to 

.EWAV files, a variant of WAV files to be used within Triton, a MATLAB™ based analysis tool 

developed at Scripps Institute of Oceanography (Wiggins 2003). All data were decimated to 

8 kHz for low frequency analysis of baleen whale calls. Long-term spectral averages (LTSA) 

were created for each EAR deployment. LTSAs allow for viewing longer durations of 

spectrographic data to more easily assess periods that may contain energy in the frequency 

bands of interest. After a cursory analysis, and determination that the low-frequency signals of 

interest (blue, fin, sei, and Bryde’s whales) were not reliably and distinctly identifiable when 

viewing the LTSAs, all data were examined manually on a file by file basis. Trained analysts 

scrolled through each 30 second file and limited the frequency display to a range of 0 – 400 Hz 

to maximize their ability to identify low-frequency baleen whale signals. Individual calls were 

logged, as were the total encounter durations (defined as call bouts that had a minimum of two 

hours between two files containing logged calls). When calls were found, Triton was used to log 

the file location, duration, and frequency characteristics. In addition to export the call metrics to 

a spreadsheet, analysts also created sound and image files to be used for quality control.  

3.2.3 Automated Data Analysis 

Baleen 5 Detector 

Baleen 5 is a MATLABTM algorithm developed by Dr. Helen Ou at the University of 

Hawaii. The detector scans datasets for five baleen whale species: humpback (Megaptera 

novaengliae), minke (Balaenoptera acutorostrata), blue (B. musculus), fin, and sei whales. The 

detector for each species functions by searching for spectral peaks within a defined frequency 

band and duration. The full bandwidth raw .BIN files are used as the data input and baleen 5 

decimates the data to an effective sampling rate of 1 kHz. The next step was to analyze the 

data using bandpass filters to obtain the signals in the desired frequency ranges for each 
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species (Table 3.2). Next, an envelope detector was applied to determine the mean ambient 

noise level in order to identify signals that had a higher intensity above the background levels (a 

minimum of 3 dB difference). Finally, a spectrogram template was used to calculate the 

beginning and ending frequencies as well as the slope of each identified signal. The output is a 

Microsoft Excel file identifying the file with each detection, the data, the detection type, the start 

time, end time, signal duration, the signal to noise value (in dB), the beginning and ending 

frequency, and the slope of the downswept signal (in Hz/s).  

Table 3.2: The criteria used by Baleen 5 for fin and sei whale detections. 

Species Duration Frequency 

Fin Whale 0.5-1.0 sec 60-18 Hz Downsweep 

Sei Whale 0.5-1.0 sec 100-40 Hz Downsweep 

 

Since only fin and sei whales were identified in the manual analysis of the data, these 

were the only two species selected for the baleen 5 automated detection. The frequency and 

duration criteria used to define fin and sei whales is presented in Table 3.2. The results 

produced by baleen 5 were then validated against the manually scanned data to determine the 

number of correct classifications, the number of missed detections, and the number of false 

detections. 

Raven Detector 

Raven is a sound analysis software tool developed by the Bioacoustic Research 

Program at the Cornell Lab of Ornithology (Cornell University). The software package is a 

versatile suite of tools for recording, visualizing, and conducting detailed analyses of acoustic 

data. Large datasets can be imported into Raven and a number of customized detection 

algorithms can be applied to located signals of interest. For this analysis, I collaborated with 

researchers at Cornell University to run their pre-defined fin whale detector on the EAR data 
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collected in Hawaii. The detector used a spectrogram template and correlation function to scan 

for fin whale pulses (20 Hz and 40 Hz downsweeps). The thresholds for detection were 

deliberately set low in order to minimize any missed detections. The default threshold for the fin 

detector is 0.2 on a 0-1 scale. Each detection is assigned a correlation “score” and this can be 

used to further assess the likelihood of correct classification when being reviewed manually. 

While the score is a somewhat subjective tool and does not empirically define correct vs. 

incorrect classifications, in generally the false positives (incorrect classification) increase 

substantially once the score is below 0.6.  

Since the output annotates files in the original input dataset, all detections can be quickly 

recalled in the Raven software to allow for efficient manual validation of all signals. Once the 

detectors were run on all of the EAR datasets, I was able to review each fin whale call to 

determine the number of correct classifications, false positives, and missed detections.  

Detector Performance 

In order to assess the performance of automated detectors against manually verified 

data, one can use the metrics for precision, recall, and F-scores. Precision is a measure of 

exactness. For example, a value of .95 indicates that 95 percent of the detectors classifications 

are in fact actual and true detections. Recall is a measure of completeness where the higher the 

value indicates the ability for the detector to classify all of the possible calls. For example, a 

recall score of 0.75 means that the detector was able to classify 75 percent of the total possible 

calls for a given species. However, it is important to note that the recall metric does not reflect 

the number of false detections (incorrect classifications). Since neither the precision nor recall 

can accurately assess the overall performance of the detector, they do need to be evaluated 

together. The F-score takes into account the precision and recall performance and ranges from 

0 to 1. The higher the F-score, the “better” the detector is performing.  
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Precision is calculated as: 

Equation 1:                                 𝑃𝑃 = # 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃
#𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃+#𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹 𝑃𝑃𝑃𝑃𝑃𝑃𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖

 

Recall is calculated as: 

Equation 2:                             𝑅𝑅 = # 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃
#𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃+#𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷

 

F-score is calculated as: 

Equation 3:                                                𝐹𝐹 = 2 ∗ 𝑃𝑃∗𝑅𝑅
𝑃𝑃+𝑅𝑅

 

3.3 Results 

Due to the large volume of acoustic data collected at three sites over four deployments, 

the pragmatic approach to efficiently analyze the data might have been to employ automated 

detection algorithms to look for signals of interest. While automated detection algorithms were 

not expected to detect and classify every call, validation of signal subsets and/or the ability to 

locate instances where calls may have been present, would still be valuable and save a 

substantial amount of time and effort over manual analysis techniques. The Baleen 5 detector 

was initially run on a few datasets; however, after cursory examination, there was a significant 

amount of false positive (incorrect) detections and no ability to reliably locate low-frequency, 

non-humpback or minke, baleen whale signals in the data, or even narrow down instances in 

the data where it would be fruitful to focus manual searching. False positive detections and 

classifications were commonly triggered by low-frequency sounds extending below 150 Hz 

produced by humpback whales. These signals, often downswept, would occur in the same band 

needed to distinguish sei whales. Additionally, there was a tremendous amount of both 

broadband and tonal noise in the frequency bands where short duration signals would be found. 

The masking of signals below 50 Hz would obscure fin whale pulses with lower signal to noise 

ratios.  
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As a result of the inconsistent and unreliable results produced by automated detection 

algorithms, the method was abandoned and manual analyses was conducted on 12 of the 

datasets recorded around Kauai. Blue whale call classification is an option in Baleen 5; 

however, their A and B calls were not searched for in the EAR data due to the length of their 

signals (often in excess of 20 seconds) and the short duration of the recordings with the duty-

cycled used (30 seconds). While variable Type D calls have been detected in Hawaiian waters 

at Station ALOHA, humpback production of abundant low-frequency downsweeps occurring 

below 250 Hz precluded the ability to identify the blue whale calls with any confidence, 

particularly since they were both variable in nature.  

The exhaustive manual searching for fin and sei whale signals (previous chapter) 

amongst the 327,649 acoustic files yielded only 100 files contained signals of fin or sei whales 

(Table 3.3). The total number of manually annotated fin whale calls was 132 (18 total 

encounters) and 45 (9 total encounters) for sei whales.  

Table 3.3: Results from manual analyses of the 12 EAR datasets collected around Kauai Island.  

   Fin Detections Sei Detections 

Total Files 
with Calls Site Deployment 

Files 
Analyzed Encounters Calls Encounters Calls 

Kauai NE 1 28,159 2 3 0 0 2 
Kauai NW 1 29,639 3 29 0 0 28 
Kauai SE 1 6,938 1 18 1 3 11 
Kauai NE 2 32,059 0 0 0 0 0 
Kauai NW 2 30,179 0 0 1 6 3 
Kauai SE 2 30,659 0 0 0 0 0 
Kauai NE 3 28,330 4 13 1 1 10 
Kauai NW 3 28,330 3 7 4 25 14 
Kauai SE 3 28,329 5 62 2 10 32 
Kauai NE 4 28,370 0 0 0 0 0 
Kauai NW 4 28,330 1 2 0 0 0 
Kauai SE 4 28,327 0 0 0 0 0 

 Totals 327,649 18 132 9 45 100 
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The Baleen 5 fin whale detector made a total of 2,253 fin whale detections compared to 

the 132 true positives that were found manually in the same files (Table 3.4). Surprisingly, only 

5 of the detections were correct (example in Figure 3.2) and the 127 missed detections were of 

signals that met the criteria for fin whale 20 Hz pulses in the detector. The incorrect 

classifications were triggered by the unknown low-frequency noise around 20 Hz (Figure 3.3). 

The unidentified noise was often continuous and would mask low signal-to-noise calls produced 

by fin whales, particularly if the downswept portions were also masked. The precision, recall, 

and F-scores of the Baleen 5 detections of fin whales were very low and could not be calculated 

in the absence of true positives or false negatives. The overall performance across all datasets 

was low, with an F-Score of .0004.  

The Baleen 5 sei whale detector classified a total of 74 calls (Table 3.5). Of the 

detections, 17 were true positives (example in Figure 3.4) and 57 were false positives. The false 

positives occurred when components of humpback signals were downswept below 150 Hz 

(Figure 3.5). These false detections were validated by examining the acoustic file with a larger 

bandwidth and reviewing both visually and aurally to confirm that the lower frequency 

components were in fact part of the higher frequency call components confirmed to be from 

humpback whales.  

The performance metrics for sei whales were the highest for the three detectors used. 

For the dataset with the highest number of actual sei whale calls present (Kauai NW3), out of 25 

manual detections, Baleen 5 had 12 true positives with only 4 false positives. This produced a 

precision value of 0.75 but due to the 13 missed calls, the recall value was only 0.48 and this 

lowered the F-Score to 0.585. However, for the Kauai NW2 dataset, there were 6 manually 

identified sei whale calls, none of which were logged by Baleen 5. The detector picked up 4 

calls but each of those were false positives. The overall performance of the detector produced 

an F-Score of 0.286 which is very low if one were to rely on this detector for locating sei whales 

reliably.  
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Table 3.4. Results from the Baleen 5 fin whale detector. The number of true positives (correct), false positives (incorrect), and missed 
detections. The values represent the number of individual calls and not encounters nor number of files that contain fin whale signals. 
The blanks indicate where no detections were made as well as instances when the performance statistics could not be calculated.  

  Baleen 5 - Fin Whales 

Site Deployment Manual 
Detections 

Automated 
Detections 

True 
Positives 

False 
Positives Missed Precision Recall F-Score 

Kauai NE 1 3 146 2 144 1 0.014 0.667 0.027 

Kauai NW 1 29 291 0 291 29 0.000 0.000 0.000 

Kauai SE 1 18 86 1 85 17 0.012 0.056 0.019 

Kauai NE 2 0 0 - - - - - - 

Kauai NW 2 0 10 - 10 - - - - 

Kauai SE 2 0 2 - 2 - - - - 

Kauai NE 3 13 81 0 81 13 0.000 0.000 0.000 

Kauai NW 3 7 351 0 351 7 0.000 0.000 0.000 

Kauai SE 3 62 1,278 2 1,276 60 0.002 0.032 0.003 

Kauai NE 4 0 3 - 3 - - - - 

Kauai NW 4 0 5 - 5 - - - - 

Kauai SE 4 0 0 - - - - - - 

 Totals 132 2,253 5 2,248 127 0.002 0.038 0.004 
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Figure 3.2: Example of fin whale 20 Hz pulse calls detected by Baleen 5. 

 
Figure 3.3: Example of low signal-to-noise ratio of fin whale calls masked by unknown low-
frequency noise.  
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Table 3.5: Results from the Baleen 5 sei whale detector. The number of true positives (correct), false positives (incorrect), and 
missed detections. The values represent the number of individual calls and not encounters nor number of files that contain fin whale 
signals. The blanks indicate where no detections were made as well as instances when the performance statistics could not be 
calculated.  

  Baleen 5 - Sei Whales 

Site Deployment Manual 
Detections 

Automated 
Detections 

True 
Positives  

False 
Positives Missed Precision Recall F-Score 

Kauai NE 1 0 0 - - - - - - 

Kauai NW 1 0 6 - 6 - - - - 

Kauai SE 1 3 1 0 1 3 0.000 0.000 0.000 

Kauai NE 2 0 0 - - - - - - 

Kauai NW 2 6 4 0 4 6 0.000 0.000 0.000 

Kauai SE 2 0 0 - - - - - - 

Kauai NE 3 1 0 0 0 1 0.000 0.000 0.000 

Kauai NW 3 25 16 12 4 13 0.750 0.480 0.585 

Kauai SE 3 10 47 5 42 5 0.106 0.500 0.175 

Kauai NE 4 0 0 - - - - - - 

Kauai NW 4 0 0 - - - - - - 

Kauai SE 4 0 0 - - - - - - 

 Totals 45 74 17 57 28 0.230 0.378 0.286 

 



 

40 

 
Figure 3.4: Example of sei whale downsweep calls detected by Baleen 5. 

 
Figure 3.5: Example of false positive sei whale calls triggered by low-frequency components of 
humpback whale calls below 150 Hz.  
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The fin whale detector in Raven incorporated a very liberal threshold for detections and 

this was evident in the total number of detections made (24,883). The intent of the lowered 

threshold was to capture more possible fin whale signals and rule them out and not emphasize 

the accuracy of the detections as a performance measure. Of the actual 132 fin whale calls 

located manually, Raven was able to correctly classify 114 (Table 3.6). There were a total of 18 

missed calls and 24,769 false positives. Many of the false positives from the Raven detector 

appeared to trigger from short duration broadband signals in addition to the unknown low-

frequency noise.  

Due to the high number of detections, the likelihood of classifying more calls increased 

while intentionally increasing the false positive rate as a result. This can be reflected in the 

precision and recall values of 0.005 and 0.864, respectively. The low value of precision 

indicates that only 0.5 percent of classified calls were in fact fin whales. The 0.864 value for 

recall shows that 86.4 percent of the true positives were detected by Raven. However, when 

examining the overall performance of the detector, the F-Score of 0.009 is very low, skewed by 

the poor precision. 

A detailed examination of the types of signals and reasons for false detections was not 

conducted due to the extremely small sample size of true positive detections in the manual 

analyses. Due to the variability and overall poor performance of the automated detectors, the 

benefit of quantifying the false detections was not deemed practical or worthwhile. The cause of 

false detections was qualitative based on the familiarity with the acoustic data having examined 

all of the files manually and understanding what the confounding issues would be for each of the 

detectors. 
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Table 3.6. Results from the Raven fin whale detector. The number of true positives (correct), false positives (incorrect), and missed 
detections. The values represent the number of individual calls and not encounters nor number of files that contain fin whale signals. 
The blanks indicate where no detections were made as well as instances when the performance statistics could not be calculated.  

  Raven - Fin Whales 

Site Deployment Manual 
Detections 

Automated 
Detections 

True 
Positives 

False 
Positives Missed Precision Recall F-Score 

Kauai NE 1 3 61 2 59 1 0.033 0.667 0.063 

Kauai NE 1 29 954 29 925 0 0.030 1.000 0.059 

Kauai NE 1 18 148 8 140 10 0.054 0.444 0.096 

Kauai NE 2 0 16 - 16 - - - - 

Kauai NE 2 0 642 - 642 - - - - 

Kauai NE 2 0 138 - 138 - - - - 

Kauai NE 3 13 623 9 614 4 0.014 0.692 0.028 

Kauai NE 3 7 4,443 7 4,436 0 0.002 1.000 0.003 

Kauai NE 3 62 14,438 59 14,379 3 0.004 0.952 0.008 

Kauai NE 4 0 1,607 - 1,607 - - - - 

Kauai NE 4 0 1,741 - 1,741 - - - - 

Kauai NE 4 0 72 - 72 - - - - 

 Totals  132 24,883 114 24,769 18 0.005 0.864 0.009 
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3.4 Discussion 
The volume of passive acoustic monitoring data around the globe continues to grow. 

The advancement of technology to collect longer duration recordings in more remote locations 

necessitates the ability to productively and efficiently analyze the data for signals of interest. It is 

very difficult to justify the labor required to manually examine the data for target signals and it is 

not feasible for producing results in a timely manner.  

Choosing the appropriate algorithms and methods for processing large acoustic datasets 

is essential to success. Even after employing different automated techniques, it is imperative to 

apply a modicum of scrutiny and not just take the results at face value. For the vast majority of 

datasets, for each algorithm used, there will need to be a balance for accepting a certain 

amount of false positive detections in combination with a number of missed detections. Ideally a 

balance can be struck such that caveats can be applied and researchers can reliably determine 

the occurrence of the target signals. Perhaps not all of the sounds recorded are identified in a 

given encounter, but the aim is to confidently detect the majority of signals in each encounter 

and not incorrectly identify an encounter that is false. For soniferous marine mammals, this 

becomes a difficult scenario when animals are not calling regularly within a given area (i.e., 

singing humpback whales), when animals are primarily transiting an area, for solitary animals 

that may not be calling at all, or for areas where particular species occurrence is rare or 

relatively unknown. Fin and sei whales have both been seen and recorded in Hawaiian waters; 

however, their residency patterns, movement among the islands, and group sizes are largely 

unknown in the tropical Pacific. They are very rarely observed and the EAR data recorded 

around Kauai Island was an ideal source to determine if acoustics can reveal a different pattern 

of occurrence than the historic visual data collected during large ship surveys in the Hawaiian 

Islands.  

Two suites of detectors were run on 12 different deployments (3 sites with 4 

deployments each) around the island of Kauai. Baleen 5 scanned for both fin and sei whales 
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and Raven’s built in fin detector was used for comparison with a different template matching 

technique. In order to assess the performance of these detectors, the Kauai data had previously 

been examined manually, file by file spectrogram scanning. Only 132 fin whale calls and 45 sei 

whale calls were found despite recording around two different winter seasons when these 

species would have been expected to occur in the region.  

For fin whales, Raven identified 24,769 possible calls. Raven allowed for a higher false 

positive rate in order to maximize the likelihood that all calls will be located in the data, as 

evidenced by the extremely high number of detections. Neither of the detectors would be 

considered to have performed well; however, the overall recall statistic for Raven was 0.864, 

meaning that 86 percent of the actual fin whale calls were detected. The recall statistics for 

individual deployments ranged from 0.4 to 1.0 (for two datasets); however, the precision 

statistics never exceeded 0.05 (meaning that only 5 percent of detections were actually fin 

whale calls). The overall precision score for Raven was .005 and the F-Score, or the metric for 

detector performance taking into account both precision and recall, was .009. That F-Score is 

extremely low but that may not be the best indicator of the utility of Raven for automated 

scanning for fin whale calls. Raven is a sound analysis software package and when annotating 

calls, it provides streamlined and user friendly tools for reviewing each detection. Additionally, 

each detection is assigned a correlation score to help users locate calls with a higher likelihood 

of being true positives. Being an inclusive analysis tool, it is a practical strategy to lower the 

detection threshold knowing the many of them can be easily and quickly validated, with or 

without additional filtering based on the correlations score. This approach is why the number of 

total detections were so high, which in turn, increased the recall statistic. This tactic casts a wide 

net and sacrifices precision. After reviewing all of the detections, the false positives seemed to 

occur primarily with short duration broadband signals. This does makes some sense because 

the spectrogram template will identify the matched signal within a broadband sound and will not 

discard it due to failing to meet signal-to-noise criteria. Imagine as if you were to look through a 
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keyhole in a street-facing door and search for vehicles passing by on the road. You would be 

much more likely to detect any vehicle from mopeds to tractor trailers since they will occupy the 

viewing space without having to discern a specific size or type. This is not a precise measure 

but you will likely be able to see the vast majority crossing your field of view.  

The Baleen 5 algorithm applied a more conservative approach for identifying fin whale 

calls. By first applying a bandpass filter and using a signal-to-noise ratio threshold for template 

matched calls, some of the weaker signals will be missed. For fin whales, Baleen 5 identified 

2,253 possible calls. Unlike Raven, the very troubling issue is that of the 132 possible fin whale 

calls, 127 were missed by Baleen 5. The recall statistics reflect this with a range from 0.0 to a 

high of 0.67. However, the recall of 0.67 is also a bit misleading as there were three total calls in 

the dataset for which only two were detected. The precision scores were also extremely low with 

a range of 0.0 to 0.014. The overall performance for Baleen 5 fin whale detections was very low 

with values of 0.002, 0.038, and 0.004 for precision, recall, and F-Score, respectively. The exact 

reason for the poor performance is unknown. The vast majority of the fin whale detections, all 

but 20, were during wintertime deployments when sympatric humpbacks were very common 

and calling continuously. It is possible that low-frequency humpback components triggered 

Baleen 5 and also, based on reviewing the data, there were a tremendous number of false 

positives due to the long-durations of unknown low-frequency tonal sounds around 20 Hz. 

These nearly flat signals were prevalent in the majority of the data; however, they also occurred 

during summer months and only 20 false positives were identified in these datasets.  

The Baleen 5 sei whale detector performed much better than the two fin whale 

detectors, relatively speaking. Of the 45 possible calls, Baleen 5 had 17 true positive detections 

and 28 missed detections. Six of the possible nine sei whale encounters occurred during the 

third deployment. This wintertime deployment contained 36 of the 45 sei whale calls and the 27 

correct classifications (true positives) were identified in the Kauai NW and Kauai SE datasets. 

As a result, these were the only two instances that performance statistics could be evaluated. 
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Kauai NW had a precision value of 0.75, a recall score of 0.48, and an F-Score of 0.59. The 

overall performance statistics were 0.23, 0.38, and 0.29 for precision, recall, and F-Score, 

respectively. In general, there were very few sei whales found in the data and, when assessing 

their occurrence during the manual analysis, the encounters were brief and very loud signals 

were recorded likely as the animal(s) transited the EAR deployment sites. Faint sei signals were 

discovered manually during the first summertime deployment from Kauai NW. There were four 

Baleen 5 detections however none of them were true positives. With the absence of humpbacks 

during the summer, automated detections without the masking of humpback signals in the same 

frequency band were expected; however, this was not the case. In general, the scarcity of sei 

whale signals around the island of Kauai is likely the reason for the improved performance of 

the detector. When detected, they were very loud and easily distinguished spectrographically 

from the humpback whale calls that also existed in the same frequencies. When comparing the 

sei calls and that false positive detections in Figures 3.2 and 3.3, perhaps one level of additional 

filtering could include the inter-call minimum threshold. However, since the detections are few 

and far between, and the fact that Baleen 5 did not have an overwhelming number of detections 

for verification, the current algorithms do not necessarily need to be modified. Still, the major 

concern is the high number of missed detections (28 of 45), in particular during the summer 

seasons when humpbacks are not present.  

The EARs located around Kauai had a surprisingly low number of fin and sei whale 

detections. The visual sightings around the island are scant and irregular and the acoustic data 

corroborate this. Conversely, the Station ALOHA Cabled Observatory, located 100 kilometers 

north of Oahu, is a bottom-mounted oceanographic study site that records continuous acoustic 

data. Oswald et al. (2016), noted that fin whales were recorded year-round and that sei whales 

were seasonally present. The hydrophone at Station ALOHA is near the seafloor at a depth of 

approximately 4,700 meters. Unlike the coastally located EAR hydrophones around Kauai, 

Station ALOHA is in deep ocean water without land boundaries to hinder sound propagation. 
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While sound propagations properties near Station ALOHA may indicate that calling animals are 

within a convergence zone (±30 kilometers), longer distance signal propagation is more 

probable, particularly during certain times of the year when the Sound Fixing and Ranging 

(SOFAR) channel is present.  

Oswald et al. (2016) also used automated detectors to determine the presence of baleen 

whales in continuous recordings at Station ALOHA. They were able to reliably detect blue, fin, 

sei, minke, and humpback whales in the data. Baleen 5 was used to for each of these species; 

however, it is important to note that the algorithms were trained using testing datasets from 

Station ALOHA recordings. Each detector was fine-tuned until it worked extremely well for each 

of the test datasets and ground-truth validation demonstrated correct classification rates of 98 

percent and 97 percent for fin and sei whales, respectively.  

The performance difference between Station ALOHA and the EARs in this study could 

be attributed to a number of differences. In addition to the signal propagation characteristics 

between the two habitats, humpback whales migrate to the Hawaiian Islands for breeding 

opportunities and males tend to sing primarily in shallow coastal habitats. While they produce 

song in deeper water while transiting between islands and during their migration (Matilla et al. 

1987, McSweeney et al. 1989, Clapham and Matilla 1990, Clark and Clapham 2004), they are 

ubiquitous around Kauai throughout the winter and their sounds can impact not only the 

masking of specific calls but they also alter the ambient noise levels and possibly the 

detectability of signals. Detector performance varies significantly with different ambient noise 

conditions (Munger et al. 2005, Miksis-Old 2013, Clark et al. 2009) and, in contrast to Station 

ALOHA, the vessel activity and contribution of underwater noise from U.S. Navy training around 

the Pacific Missile Range Facility (PMRF) will impact the performance of detectors.  

For this study, a total of 327,649 30-second audio files (2,730.41 total hours of data) 

were examined by two automated detectors and compared to a manual analysis of the same 

files. The results from this effort demonstrate that there is no easy solution to capably and 



 

48 

reliably scan large volumes of acoustic data (especially in high noise environments) to detect 

species occurrence without further evaluation. Both detectors functioned similarly as matched 

filters but employed different approaches and thresholds. Their findings were not consistent with 

each other and as neither of them performed relatively well, my assessment is that the Raven 

spectrogram correlation performed better and would be recommended for fin whale detection. 

While the precision was very poor, the recall was acceptable with a correct classification rate of 

86 percent. Coupled with the ability to review and validate calls easily and efficiently in the 

Raven software package, users are able to identify bouts of calling with a high level of 

confidence that the majority of the calls will be located within the dataset. However, a few 

caveats need to be recognized. There was only 132 manually identified fin whale calls in the 

entire dataset, an extremely low encounter rate. The raven results yielded 24,769 possible fin 

whale calls in the same dataset. If the Raven detector was run on recordings where fin whales 

are known to occur and produce calls regularly, the number of detections needing validation and 

review could easily become unwieldy and there could be diminishing returns with regards to the 

amount of effort needed to confidently generate meaningful results. Additionally, if the noise 

characteristics were different for the recordings, the results could vary wildly as well.  

The performance of these detectors should not be evaluated simply from the results of 

this study. Adjusting the thresholds, settings, or detector parameters for either fin or sei whale 

detectors in Baleen 5 or Raven could improve the performance significantly.  

This manually validated dataset could be a useful resource for tuning the detectors but 

with so few calls from either species, the lack of variability in the ambient conditions, unknown 

signal propagation characteristics, and unknown occurrence of the species are confounding 

concerns for improving detector performance. These duty-cycled EAR data may also not be 

ideal in that recordings made for 30 seconds every 5 minutes may be missing calls, particularly 

when the encounters appear to be short as animals are likely transiting past the recorders. The 

sampling rate, hydrophone sensitivity, other hardware configurations could also impact the 
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ability to record low-frequency whale sounds in different ambient conditions. A subset of 

recordings from EARs or other instruments deployed in more densely populated regions would 

be preferable for testing the efficacy of these detector modifications.  

Ideally any detector algorithms will produce results with relatively high levels of precision 

and recall. If not, high scores for either precision or recall may also be acceptable depending on 

the aims of the investigation. With all automated techniques, scrutiny of the results is essential. 

For each dataset, one algorithm may perform better than another; however, that may not be the 

case for another dataset or another target species. The refinement of automated techniques will 

no doubt continue and perhaps in the future, methods may become available that will be able to 

perform consistently well by striking a balance between the false detection rates and number of 

missed calls. In the meantime, the results produced by detection algorithms will need to be 

closely inspected and not be reported without validation metrics. 
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CHAPTER 4:  
SOUNDSCAPE AND NOISE CHARACTERISTICS AROUND 

KAUAI, HAWAII 

4.1 Introduction 
Simply stated, the ocean is a noisy place and, notably quoted, one person’s signal is 

another’s noise. The previous chapters were aimed at detecting low-frequency baleen whale 

sounds from recordings around the island of Kauai. Knowing that humpback whales (Megaptera 

novaengliae) are seasonally abundant and other large baleen whales are detected acoustically 

at the Station ALOHA research site (100 kilometers north of Oahu, HI), it stands to reason that 

they would also inhabit areas closer to the Main Hawaiian Islands (MHI). However, after 

rigorous manual analysis and additional automated detection techniques applied to recordings 

around the island of Kauai, fin (Balaenoptera physalus), Bryde’s (Balaenoptera edeni), and sei 

(Balaenoptera borealis) whales were very rarely detected near shore. 

The results from the passive acoustic monitoring (PAM) efforts around Kauai indicate an 

extremely low density of non-humpback and non-minke whale (Balaenoptera acutorostrata) 

baleen whales in coastal MHI waters and corroborate the paucity of visual sightings. It is 

possible that background noise in the ocean from a combination of naturally occurring ambient 

sources as well as anthropogenic activities could obscure the ability to detect whale signals, 

particularly if they have a low signal-to-noise ratios (SNR). Noise was prevalent in the Kauai 

PAM data and if automated techniques were used exclusively to search for low-frequency whale 

sounds, further investigation on the impact of noise on signal detection would be necessary. In 

this case, the thorough manual analyses of the data (examining files individually) confirmed the 

scarcity of fin, sei, and Bryde’s whales within a few miles of the Kauai coast. Their sounds, even 

in the presence of masking noise in the same frequency bands, could still be identified and 

annotated even with low SNR as the components could be detected visually in the 
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spectrograms. This, however, does not mean that examining the soundscape and ambient 

levels around the MHI is not without tremendous value.  

Noise in the ocean is ubiquitous and naturally occurring sources include weather events 

(particularly wind and rain), geophysical processes, and biological activity. The seminal work by 

Wenz (1962) summarized the contribution of different sources to ocean noise and resulted in 

one of the most cited publications and figures (the Wenz Curve; Figure 4.1), in ocean acoustics. 

In the lower frequencies (400 Hz and lower, as it pertains to the frequency bands examined for 

whale signals in the previous chapters) the noise is most significantly impacted by shipping, 

earthquakes, underwater detonations, heavy precipitation, and wind driven noise. All of them 

are naturally occurring with the exception of vessels, shipping traffic, and explosions. Since the 

naturally occurring noise sources have always been prevalent in ocean habitats whales have 

been able to evolve functionally such that these sounds do not impede their ability to navigate, 

locate food, and/or maintain interspecific communication for group cohesion, mating 

opportunities, or other behavioral needs (Boyd et al. 2011). Environmental noise is not constant. 

Steadier state noise like weather events are ephemeral and somewhat stochastic; thus would 

not be expected to impact localized whale distribution long term. Earthquakes are even more 

randomly occurring and shorter duration and these too would not likely deter baleen whale 

presence, particularly when they are inhabiting certain waters for either foraging or, in the case 

of lower latitude waters around Hawaii, breeding opportunities (as speculated following the 

model of humpback whale migration during the winter months).  

Weather related noise impacts global and localized soundscapes substantially. Wind 

and rain are significant contributors to ambient noise levels. Wind driven noise is created when 

the surface waters get turned up and the crashing waves create bubble cavitation; the stronger 

the winds the louder the noise generated (Knudsen et al. 1948, Wenz 1962, Ma et al. 2005, 

Hildebrand 2009). The spectral characteristics of sounds generated by wind is also dependent 

on wind speed but generally loudest between 5 kHz and 8 kHz (Farmer and Lemon 1984,  
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Figure 4.1: Wenz curves describing spectra levels of ambient noise sources from weather, 
geologic activity, and shipping (adapted from Wenz 1962). 
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Ma et al. 2005). While wind noise is a major constituent of ambient levels, underwater 

measurements are only possible when it is not raining. As rain drops get larger and rainfall 

increases, the sound characteristics change proportionately. When drops become large enough, 

bubbles form as they hit the ocean surface. Like wind, bubble cavitation is the major source of 

noise and can be very distinctive. The spectral characteristics differ from wind generated 

bubbles and rain produces a broad spectral peak around 15 kHz with varying amplitudes 

depending on the amount of rainfall (Nysteun 1986, Nystuen et al. 1993, Ma et al. 2005, Ma and 

Nystuen 2005). Fortunately the distinctive nature of weather events, particularly for wind and 

rain, are well studied and integral to any assessment of ambient levels.  

Unlike naturally occurring environmental noise, anthropogenic sources are relatively 

recent, and have increased exponentially over the last century. Human introduced sounds are 

very diverse and in addition to those noted in the Wenz Curve, oil exploration, construction 

sounds, offshore energy activity, and underwater detonations, and commercial shipping are now 

prolific globally. When considering anthropogenic sounds, some are short duration and 

inconsistently produced regionally. For instance, construction noises (pile driving [vibratory or 

impact hammering]) are generally relegated to coastal areas with localized populations of 

coastal species. However, for activities like oil exploration and seismic exploration, surveys use 

large arrays (12 to 48) air guns to produce broadband sound pulses in order to penetrate the 

sea floor for return echo signatures that may indicate oil and gas deposits. It is estimated that 

there are over 90 seismic vessels available worldwide and 20 percent of them may be 

operational at any given time (Schmidt 2004). The sounds emitted from these vessels are very 

loud (source levels up to 260 dB rms re 1µPA at 1 meter) and while their impact may be more 

localized to animals occurring in proximity at a given time, the acoustic disturbance can span 

hundreds of kilometers and the detrimental effects could be injurious to nearby animals and 

cause significant behavioral disturbances at larger distances. Overall, the cumulative effects of 
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these introduced sounds are a major component of increased ambient noise levels globally 

(Hildebrand 2009).  

In recent decades, there has been more public concern over the impact of global 

shipping and how the constant din of vessels has increased ambient noise levels as much as 3 

dB per decade (Andrew et al. 2002, McDonald et al. 2006). While a small portion of noise 

produced by ships is intentional, depth sounders for navigational purposes, the vast majority of 

radiated sounds are incidental from propulsion systems that are constantly running (Southall et 

al. 2017). While the acoustic signature of each vessel will vary based on many properties 

including size, speed, and propulsion type, the main concern is the overall cumulative 

contribution since shipping is an essential component of trade and the global economy (Lloyd’s 

Register 2013). With larger ships producing lower frequency sounds that propagate great 

distance, in many areas of the ocean there is a constant din and elevation of the ambient noise 

floor. Overall, the ambient levels of ocean noise has steadily increased (Andrew et al. 2002, 

Ross 2005, McDonald et al. 2006, Hildebrand 2009). 

Honolulu is on the list of the 25 busiest ports in the United States (U.S.) and has over 

4,000 cargo vessel calls to Honolulu Harbor annually (U.S. Department of Transportation 

Bureau of Transportation Statistics). Large cargo vessels predominantly port in Honolulu while 

the outer islands (Kauai, Maui, and Hawaii) are mainly supplied by tug and barge cargo. As 

such, the majority of the shipping traffic is centered on the southern side of Oahu (Figure 4.2). 

The shipping density maps are generated by tracking vessels that contain an Automatic 

Identification System (AIS), legally required for commercially operated ships over 300 gross 

tons and all passenger vessels. Since not all vessels have AIS (including the military, privately 

owned ships, and small watercraft) the overall assessment of vessel activity is not fully 

accounted for. Kauai Island has a lower population size and the marine traffic, recorded by 

vessels using AIS, is mainly in and out of the largest port located in Lihue, Nawiliwili Harbor. 

The predominant commercial activity is from inter-island tug companies as well as commercial 
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Figure 4.2: Annual shipping density around the Main Hawaiian Islands for 2016. The color intensity is based 155,453 vessels 
equipped with Automatic Identification Systems (AIS) and does not all include small pleasure craft or military vessels 
(marritimetraffic.com).  
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cruise lines and the majority of the vessels operating around the island are locally owned fishing 

charters and pleasure craft.  

The U.S. Navy has active sites on the island, the biggest being the Pacific Missile Range 

Facility (PMRF). There are no large harbors or mooring areas for navy vessels and the base is 

primarily an airfield with various radar installations. PMRF is also an instrumented range with a 

large network of underwater hydrophones on the northwest side of the island towards Niihau 

and extending approximately 100 km to the north. Because of the network of hydrophones and 

its remote location relative to the major population centers in the state, PMRF is very suitable for 

a variety of Navy training and testing exercises. Some of these include submarine commander’s 

training courses involving the use of multiple surface ships employing active sonar (primary 

tactical mid-frequency), multi-nation training operations (RIM of the Pacific RIMPAC]), and 

surface and underwater detonations. These events occur year-round; however, they are limited 

in duration and are not constant, generally lasting only a week or two at a time, with the 

exception of RIMPAC spanning over a month every second year. 

In general, while there may be cumulative effects of increased noise around Kauai, the 

majority of the concern about marine mammals directed towards the risk of injury and mortality 

on and near the range. Navy activities are often blamed for detrimental activities, particularly 

after mass stranding events. While stranding events in Hawaii are not common, they do occur 

and this chapter will not delve into the potential causality associated with U.S. Navy activates. 

However, due to the location of this active training range, it is essential to discuss the possible 

impact that the military may have on the soundscape of the island.  

This chapter will examine the noise characteristics around the Kauai at five different 

recording sites as well as an additional site each in the remote Northwest Hawaiian Islands and 

off of Oahu with a relatively close proximity to Honolulu Harbor, the primary commercial 
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shipping port for the state. My hope is that this noise profile will contribute to better management 

of marine mammals and other marine resources in Hawaii. 

4.2 Methods 

4.2.1 Field Recordings 
Acoustic recordings were made on bottom-moored Ecological Acoustic Recorders 

(EARs). The EAR is a self-contained microprocessor-based autonomous recorder that samples 

the ambient sound field on a programmable duty cycle (Lammers et al. 2008). The EARs were 

deployed at seven different sites around the islands of Kauai, Oahu, and Nihoa, Hawaii 

(Figure 4.3) at depths ranging from 395 m to 710 m. Each EAR was paired with an acoustic 

release and custom syntactic foam collar for recovery and refurbishment. The first deployment 

at all five sites was February 2009 and the refurbishment cycle was aimed to recover and 

redeploy each recorder every six months over the project span of two years (EAR locations, 

recording sampling rate, and recording durations are depicted in Table 4.1). Due to the remote 

nature of most of the deployment sites, and challenges associated with circumnavigating the 

island during calm weather conditions, the EAR recording parameters around Kauai and Oahu 

were set with a 10 percent duty cycle (30s recordings every 5 min). The first two Kauai 

deployments recorded with a sampling rate of 64 kHz (effective bandwidth of 32 kHz) and the 

final two deployments had an increased sampling rate of 80 kHz (effective bandwidth of 40 

kHz). The Ohau EAR recorded at 64 kHz for all deployments and the Nihoa EAR sampled at 

50 kHz with a 3 percent duty cycle (30 seconds on every 900 seconds). The sampling rate 

settings would not impact the lower frequencies and the system limitations had a low-frequency 

limit for signals below 20 Hz. The EAR uses a Sensor Technology SQ26-01 hydrophone with a 

sensitivity of -193.5 dB that is flat (±1.5 dB) from 1 Hz to 28 kHz.  

The EARs were deployed with the intent of monitoring for marine mammal presence and 

other biological activity around the MHI. Noise measurements were not the primary driver for the 

research so no dedicated calibrations were made prior to, or after, each deployment. However, 
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Figure 4.3: Annual shipping density around Oahu, Kauai, Niihau, and Nihoa for 2016. The color intensity is based on 155,541 vessels 
equipped with Automatic Identification Systems (AIS) and does not include all small pleasure craft or military vessels 
(marritimetraffic.com). The black dots indicate the locations of the EAR deployments. 
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Table 4.1: EAR deployment information for the site location, deployment waypoint, unit depth, recording sampling rate, and the 
recording durations for each unit on each deployment used for the noise analyses.  

 Site Kauai SE Kauai NW Kauai NE Kauai N Kauai SW Oahu Nihoa 
 Latitude  21 51.577 N 21 11.221 N 22 08.954 N 21 18.007 N 21 55.986 N 21 13.658 N 23 04.474 N 
 Longitude 159 21.542 W 159 50.298 W 159 14.702 W 159 32.298 W 159 47.529 W 158 05.391 W 162 04.967 W 

  Depth 696 m 609 m 710 m 394 m 675 m 576 m 405 m 

Deployment 
1 

Sampling Rate 64 kHz 64 kHz 64 kHz 64 kHz 64 kHz 64 kHz - 

Start Recording 10-Feb-2009 10-Feb-2009 10-Feb-2009 10-Feb-2009 10-Feb-2009 7-Feb-2009 - 

End Recording 6-Mar-2009 24-May-2009 19-May-2009 6-Jun-2009 28-May-2009 15-Mar-2009 - 

Deployment 
2 

Sampling Rate 64 kHz 64 kHz 64 kHz 64 kHz - 64 kHz - 

Start Recording 10-Jun-2009 9-Jun-2009 9-Jun-2009 9-Jun-2009 - 11-Jun-2009 - 

End Recording 25-Sep-2009 22-Sep-2009 29-Sep-2009 24-Sep-2009 - 12-Dec-2009 - 

Deployment 
3 

Sampling Rate 80 kHz 80 kHz 80 kHz - 80 kHz 64 kHz - 

Start Recording 26-Jan-2010 25-Jan-2010 25-Jan-2010 - 26-Jan-2010 9-Feb-2010 - 

End Recording 4-May-2010 5-May-2010 5-May-2010 - 4-May-2010 2-Jun-2010 - 

Deployment 
4 

Sampling Rate 80 kHz 80 kHz 80 kHz - 80 kHz 64 kHz 50 kHz 

Start Recording 13-Jun-2010 14-Jun-2010 13-Jun-2010 - 14-Jun-2010 3-Sep-2010 3-Jun-2010 

End Recording 19-Sep-2010 20-Sep-2010 19-Sep-2010 - 20-Sep-2010 21-Dec-2010 1-Sep-2011 

Deployment 
5 

Sampling Rate 80 kHz - 80 kHz - 80 kHz 64 kHz - 

Start Recording 20-Oct-2010 - 20-Oct-2010 - 20-Oct-2010 2-Sep-2010 - 

End Recording 27-Jan-2011 - 26-Jan-2011 - 20-Jan-2011 21-Dec-2010 - 
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each instrument was built, programmed, and deployed with the same specifications and 

hardware settings for gain and/or any additional data conditioning or filtering (e.g., detection 

thresholds).  

Noise levels were calculated using custom written MATLABTM algorithms. For each 30 

second acoustic data file an average power spectrum density level (dB re 1 µPa^2/Hz) was 

calculated using the following equation: 

Equation 1:                              𝐼𝐼(𝑖𝑖) =  𝑘𝑘 𝐹𝐹𝐹𝐹𝐹𝐹(𝑝𝑝2(𝑖𝑖)) 

where k is a conversion constant,  ∆f = 1/(N ∆t), ∆t being the same size of the digitalization 

process, or 1/sample rate of the EARs. In addition, band levels (dB re 1 µPa) were calculated 

for the frequency range 20 Hz and 25 kHz to maintain consistency among and between 

deployments (Nihoa had the lowest sampling rate at 50 kHz). The band level calculations were 

done using the following equation: 

Equation 2:                            𝑝𝑝𝑟𝑟𝑟𝑟𝑟𝑟 =  �1
𝑁𝑁
∑ 𝑝𝑝2(𝑖𝑖)𝑁𝑁
𝑖𝑖=1  

where i = 1 to N and N is equal to the number of points per file (p(i) is the instantaneous 

pressure, in µPa, at each sample that has been processed through a bandpass filter with a 

lower cutoff frequency of 20 Hz and a high cutoff frequency of 25 kHz).  

The mean band levels were calculated as follows, where x = median levels for each 

deployment and n is the number of deployments per site: 

Equation 3:                     𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 = 20 𝐿𝐿𝐿𝐿𝐿𝐿10 1
𝑛𝑛
∑ �10�

𝑥𝑥
20��𝑛𝑛

𝑖𝑖=1  

Spectral probability density plots were created following the methods described by 

Merchant et al. 2013. 
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4.3 Results 
Broadband ambient noise levels varied at each site (Table 4.2 and Figure 4.4). The band 

level measurements all exceeded 96 dB (re 1µPa throughout unless otherwise specified). The 

deployment with the highest band level measurements was Oahu 3 at 140.28 dB. The loudest 

overall site was Kauai SE with a mean band level of 104.1 dB. The quietest site was Kauai SW 

with a mean level of 100.2 dB.  

Broadband measurements are useful for noticing trends in the data, if they exist, but 

examining the data in different frequency bands is useful for determining the potential 

contribution of different natural and anthropogenic sources. Figures 4.5 through 4.11 show the 

frequency plots for spectrum levels measured at 500 Hz, 5 kHz, and 15 kHz. Multiple 

deployments for the same site are included in each plot and the areas with no measurements 

indicate when the EARS were not recording either due to malfunction or when refurbishments 

were not able to be conducted due to weather and/or logistical issues. 

Spectral probability density plots do not take into account the temporal nature of the 

recordings and is a statistical representation of the probability of the spectrum levels in each 1 

Hz bin for the entire deployment. The spectral probability density (SPD) plot for the Nihoa 

dataset does not contain too many distinguishable peaks (Figures 4.12). This deployment 

spanned a period over a year and there is a lack of prominent peaks in any specific frequency 

bands. The Oahu sites (Figures 4.13 and 4.14) show a clear presence of low-frequency noise in 

both winter and summer months. The plots in Figures 4.15 through 4.24 are for alternate 

seasons at each Kauai EAR site. The increased spectral levels below 1 kHz in the winter 

months are the due to the present of humpback whales. The summer deployments do not show 

the same spectral peaks in the frequency bands of chorusing humpback whales. 
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Table 4.2: The 10th percentile, 90th percentile, median, and quarter percentile values for the 
band level measurements from each deployment. The band level measurements are between 
20 Hz and 25 kHz averaged for each day. All data are dB re 1µPa. 

Deployment 
Site 

Start 
Recording 

End 
Recording 

10th 

Percentile 
25th 

Percentile Median 75th 
Percentile 

90th 
Percentile 

Mean of 
Band 
Level 

Medians  

Nihoa Jun-10 Sep-11 90.07 101.27 103.36 105.02 106.96 103.36 

Oahu 1 Feb-09 Mar-09 99.37 101.01 102.56 104.00 106.46 

101.90 

Oahu 2 Jun-09 Sep-09 99.82 100.88 101.90 103.31 106.12 

Oahu 3 Sep-09 Dec-09 98.44 99.71 101.22 102.99 105.68 

Oahu 4 Feb-10 Jun-10 99.46 100.84 102.19 103.75 106.26 

Oahu 5 Sep-10 Dec-10 98.75 99.94 101.58 103.27 105.84 

Kauai N 1 Feb-09 Jun-09 97.76 100.03 103.70 106.10 108.06 
102.78 

Kauai N 2 Jun-09 Sep-09 99.13 100.65 101.74 102.61 103.44 

Kauai NE 1 Feb-09 May-09 101.97 103.00 104.61 105.72 107.34 

102.96 

Kauai NE 2 Jun-09 Sep-09 102.03 102.75 103.35 103.93 104.63 

Kauai NE 3 Jan-10 May-10 102.22 103.15 104.24 105.24 106.08 

Kauai NE 4 Jun-10 Sep-10 99.43 100.24 101.11 101.98 102.89 

Kauai NE 5 Oct-10 Jan-11 97.74 98.84 100.79 102.29 103.47 

Kauai NW 1 Feb-09 May-09 97.27 99.78 103.21 105.26 106.66 

102.69 
Kauai NW 2 Jun-09 Sep-09 97.17 99.63 101.60 102.82 103.82 

Kauai NW 3 Jan-10 May-10 99.96 102.06 103.86 105.42 106.74 

Kauai NW 4 Jun-10 Sep-10 98.55 100.59 101.87 102.98 105.54 

Kauai SE 1 Feb-09 Mar-09 103.07 104.25 105.48 106.66 108.10 

104.13 

Kauai SE 2 Jun-09 Sep-09 100.80 101.82 102.75 103.52 104.31 

Kauai SE 3 Jan-10 May-10 100.36 102.10 103.90 105.61 107.12 

Kauai SE 4 Jun-10 Sep-10 103.30 103.80 104.40 104.96 105.54 

Kauai SE 5 Oct-10 Jan-11 102.13 102.85 103.91 105.00 105.93 

Kauai SW 1 Feb-09 May-09 97.20 98.67 100.88 102.90 104.92 

100.17 
Kauai SW 3 Jan-10 May-10 98.06 99.16 100.92 102.90 104.75 

Kauai SW 4 Jun-10 Sep-10 97.05 97.83 99.13 100.48 101.80 

Kauai SW 5 Oct-10 Jan-11 96.79 97.82 99.60 101.42 103.39 
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Figure 4.4: Box plots of band level noise measurements from 20 Hz to 25 kHz for each EAR deployment. The shaded areas indicate 
the quartile (Q1 and Q3) levels around the median and the vertical lines extend to the 10th and 90th percentile, respectively.    
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Figure 4.5: Spectrum level measurements for recordings made at the Nihoa site. The blue levels are band levels at 500 Hz, the red 
levels are for measurements of 5 kHz, and the green levels are for 15 kHz.  
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Figure 4.6: Spectrum level measurements for recordings made at the Oahu site. The blue levels are band levels at 500 Hz, the red 
levels are for measurements of 5 kHz, and the green levels are for 15 kHz.  
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Figure 4.7: Spectrum level measurements for recordings made at the Kauai N site. The blue levels are band levels at 500 Hz, the red 
levels are for measurements of 5 kHz, and the green levels are for 15 kHz.  
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Figure 4.8: Spectrum level measurements for recordings made at the Kauai NE site. The blue levels are band levels at 500 Hz, the 
red levels are for measurements of 5 kHz, and the green levels are for 15 kHz. The EARs on the final two deployments had 
equipment issues and the 500 Hz measurements were not able to be calculated. 
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Figure 4.9: Spectrum level measurements for recordings made at the Kauai NW site. The blue levels are band levels at 500 Hz, the 
red levels are for measurements of 5 kHz, and the green levels are for 15 kHz.  
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Figure 4.10: Spectrum level measurements for recordings made at the Kauai SE site. The blue levels are band levels at 500 Hz, the 
red levels are for measurements of 5 kHz, and the green levels are for 15 kHz. The EARs on the final two deployments had 
equipment issues and the 500 Hz measurements were not able to be calculated. 
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Figure 4.11: Spectrum level measurements for recordings made at the Kauai SW site. The blue levels are band levels at 500 Hz, the 
red levels are for measurements of 5 kHz, and the green levels are for 15 kHz.  
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Figure 4.12: Spectral probability density plot for the Nihoa EAR deployment from June 2010 through September 2011. The color bar 
indicates the empirical probability density. 
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Figure 4.13: Spectral probability density plot for the Oahu 1 EAR deployment from February through March 2009. The color bar 
indicates the empirical probability density. 
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Figure 4.14: Spectral probability density plot for the Oahu 2 EAR deployment from June through September 2009. The color bar 
indicates the empirical probability density. 
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Figure 4.15: Spectral probability density plot for the Kauai N 1 EAR deployment from February through June 2009. The color bar 
indicates the empirical probability density. 
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Figure 4.16: Spectral probability density plot for the Kauai N 2 EAR deployment from June through September 2009. The color bar 
indicates the empirical probability density. 
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Figure 4.17: Spectral probability density plot for the Kauai NE 1 EAR deployment from February through May 2009. The color bar 
indicates the empirical probability density. 
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Figure 4.18: Spectral probability density plot for the Kauai NE 2 EAR deployment from June through September 2009. The color bar 
indicates the empirical probability density. 
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Figure 4.19: Spectral probability density plot for the Kauai NW 1 EAR deployment from February through May 2009. The color bar 
indicates the empirical probability density. 
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Figure 4.20: Spectral probability density plot for the Kauai NW 2 EAR deployment from June through September 2009. The color bar 
indicates the empirical probability density. 
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Figure 4.21: Spectral probability density plot for the Kauai SE 1 EAR deployment from February through March 2009. The color bar 
indicates the empirical probability density. 
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Figure 4.22: Spectral probability density plot for the Kauai SE 2 EAR deployment from June through September 2009. The color bar 
indicates the empirical probability density. 
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Figure 4.23: Spectral probability density plot for the Kauai SW 1 EAR deployment from February through May 2009. The color bar 
indicates the empirical probability density. 
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Figure 4.24: Spectral probability density plot for the Kauai SW 4 EAR deployment from June through September 2010. The color bar 
indicates the empirical probability density. 
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4.4 Discussion 
The sound levels recorded at each of the EAR sites are consistent with recently 

published data from sites around the MHI as well as around the Pacific Ocean. Širović et al. 

(2013) conducted low-frequency noise analyses recorded at seven locations including Kauai 

(near the EAR NW site) and Kona (Hawaii Island). The aim of the study was to look at the 

impact of shipping and other noise sources below 1 kHz. The spectra level measurements that 

they made ranged between 55 and 67 dB re 1µPa2/Hz at 500 Hz. The levels obtained from the 

EAR data in this study ranged from 51 to 76 dB re 1µPa2/Hz. These measurements have lower 

levels than those recorded from other study sites in the Pacific (Andrew et al. 2002, McDonald 

et al. 2006) which had ranges between 66 and 68 dB re 1µPa2/Hz. There are many things that 

could account for the differences in the reported noise measurements including deployment 

depth, bathymetric characteristics at each site, and instrument recording characteristics. The 

EARs were more shallow and located closer to the sea floor as well as the coast of Kauai and 

Oahu. While sound propagation studies were out of scope for this project, it can be assumed 

that the EAR placement will impact the received characteristics of low-frequency sound. If this 

project was intended to monitor for low-frequency noise, the deployment sites would have been 

selected with different criteria.  

The general processes and influences on the soundscapes of the MHI are pretty well 

understood and the data analyzed in this study produced results that were more or less 

expected. The data recorded at Nihoa were used as a reference location outside of the MHI that 

is not subjected to the same volume of vessel traffic and is not known to be a significant 

breeding ground for wintering humpback whales. The band level noise from Nihoa were 

comparable to the EAR deployment sites around Kauai and Oahu. The island of Nihoa is only 

63 acres and much smaller than both Kauai and Oahu. Without a predominant lee, it is not 

expected that the noise levels recorded on the EAR would differ had the deployment been 

located on the eastern side of the island. Plotting the three frequencies in Figure 4.5 shows that 
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the levels at 5 kHz are higher than those at 15 kHz. This is to be expected since the wind 

generated noise is expected to be more persistent than more ephemeral rain events. While rain 

events may be louder at any given time, the band level measurements are averaged over a 

24-hour period and the rain signals are more likely to be washed out, no pun intended. When 

looking at the broadband levels around Nihoa, there are no strong seasonal trends evident in 

the data and the noise levels are varied. Figure 4.25 shows band noise levels (20 Hz to 25 kHz) 

for the entire Nihoa deployment. The top figures are archived wind data from Weather 

Underground (wunderground.com) from the Lihue Airport weather station (the closest available 

to Nihoa). The majority of the wind is easterly, as would be expected with the predominant trade 

winds in the Eastern Tropical Pacific. It is interesting to note, however, that when the winds shift 

to the north, the band level noise is lower. It is unclear why this is the case at this particular 

location. From this figure, even without statistical correlation, it is clear that the noise levels are 

very much influenced by the predominant wind conditions more than any other factor.  

With regards to biological contributions to the soundscape, Figure 4.5 shows that during 

the winter there is an increase in the 500 Hz noise, indicating the presence of humpback 

whales. The whales are definitely present in the winter but do not appear to use the waters 

around Nihoa as a primary habitat for song chorusing and are likely transiting through the area 

during the winter months. The spectral level noise (Figure 4.12) shows that there is a 

distribution of noise throughout the recorded frequency range. There are no discernable spectral 

peaks that would correlate to particular noise sources in specific frequency bands and the 

majority of the noise at the Nihoa EAR site is broadband in nature. If the humpback whales had 

a strong seasonal preference for this site, one would expect peaks similar to those observed 

with the Kauai EARs.  

The Oahu EAR was located near the primary shipping lanes for Hawaii (Figure 4.3). As 

expected, vessel noise was pervasive in the lower frequencies of the recordings. While 

humpback whales occur in high densities around Oahu, they are primarily found in waters less  
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Figure 4.25: Band level noise (20 Hz to 25 kHz) at the Nihoa EAR site. The top two panels are 
weather data observed at the Lihue Airport weather station for the corresponding deployment 
time period.  

than 100 fathoms, where the majority of song chorusing occurs (Herman and Antinoja 1977). 

Despite this habitat preference, the whales move around the islands and continue to produce 

songs even in deeper water (Mate et al. 1998, Clapham and Mattila 1990). However, the near 

constant presence of vessels in the data make it difficult to discern humpback song. The 500 Hz 

bands plotted in Figure 4.6 do not show any seasonal difference between deployments. 

Additionally, the SPD plots (Figures 4.13 and 4.14) have no spectral peaks between 500 Hz and 
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1 kHz as would be expected if humpback sounds were detected above the increased 

background levels caused by the present of low-frequency vessel noise. For this study, the 

occurrence of humpbacks in the data were not analyzed either manually or using automated 

algorithms. However, while scanning the data humpbacks can be detected amongst the vessel 

noise during the winter months. The constant din of vessels would be problematic for automated 

techniques and any results produced by these methods would need additional levels of scrutiny 

to test for underrepresentation of occurrence when the signal to noise ratios are low enough for 

masking to occur. It is uncertain if humpback whales would avoid this noisy habitat due to an 

impact on their effective communication range. Future investigations could examine the 

detectability of humpback whales in this area and perhaps telemetry data could demonstrate if 

the whales avoid spending time near the shipping lanes and prefer more suitable acoustic 

habitat for their acoustic displays.  

The mean broadband noise levels (101.90 dB) at the Oahu EAR site are surprisingly not 

much louder than other sites without as much nearby shipping. Figure 4.6 shows that the noise 

is consistently variable among the three different frequencies plotted. Figure 4.26 further shows 

that the broadband levels do not vary much between different deployments. The high peak 

observed in the Oahu 2 deployment is the result of a very loud boat that was present over the 

course of 1.5 days, resulting in the maximum band level measurement of 111.70 dB. Similar to 

the Nihoa site, the broadband levels are greatly influenced by the prevailing wind conditions.  

Similar to the Nihoa site, the broadband levels are greatly influenced by the prevailing 

wind conditions. The top two panels in Figure 4.27 show the wind data recorded at the Honolulu 

Airport. The EAR and the airport are both located on the leeward side of the island and the 

prevailing wind conditions are from the easterly trade winds. The broadband levels are variable 

but the loudest periods observed during this deployment (early March and early April) 

correspond somewhat to increased wind speeds.  
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Figure 4.26: Band level noise (20 Hz to 25 kHz) at the Oahu EAR site for all deployments. The 
x-axis is time and not all deployments were the same duration so date ranges have been 
omitted. 

The EAR deployments around Kauai are likely to show more noise variation depending 

on seasonality as well as site location. Sounds from shipping activities are prevalent and the 

occurrence of humpback whales is well documented in winter months, despite lower overall 

densities compared to other island breeding habitats (Mobley et al. 1999).  

The Kauai N site was the shallowest EAR deployment around the island (394 m). 

Unfortunately on the third deployment the instrument remained stuck on the seafloor and data 

were only obtained for the first two. The near continuous recordings show that the humpbacks 

were present during the winter months and in the summer the noise levels at 500 Hz decreased 

(Figure 4.7). Their presence in the two datasets is also evident in the SPD plots (Figures 4.15 

and 4.16). The spectral humps seen below 1 kHz are due to the presence of humpback song in 

the data. There are also spectral peaks the very low frequencies of the SPD plots but the low  
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Figure 4.27: Band level noise (20 Hz to 25 kHz) at the Oahu EAR site (deployment 4). The top 
two panels are weather data observed at the Honolulu Airport weather station for the 
corresponding deployment time period.  

end cutoff for EAR recordings is 20 Hz and those peaks are the result of system generated 

noise. 

Aside from the Kauai NE site, the same overall patterns of humpback occurrence, based 

on the relative levels of noise at 500 Hz, is evident at each of the other Kauai locations. The 

Kauai NE EAR is located on the windward side of the island and similar to Oahu, and a lesser 
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extent Nihoa, humpback whales are not easily detected when looking only at the 500 Hz 

frequency band (Figure 4.8). There is a slight decrease in the band level noise during the 

second deployment but the presence of whales is really only detectable when examining the 

SPD plots (Figures 4.17 and 4.18). The mean broadband noise level at the Kauai NE site is 

second loudest to those recorded at the Kauai SE site, 102.96 dB and 104.13 dB, respectively. 

The windward sides of the islands will experience stronger and more persistent wind conditions 

and the overall noise levels correspond accordingly. Figures 4.28 through 4.32 show the 

broadband noise levels and corresponding wind data for each of the deployment periods. In 

Figure 4.29, the Kauai NW site had periods that were much quieter than the other locations. 

This site was leeward these periods follow the same wind trends but are more exacerbated due 

to the reduced wind speeds based on the easterly winds that prevailed during this summertime 

deployment period. 

The ambient noise levels around Kauai are correlated to their exposure to the easterly 

trade winds. The loudest sites are Kauai SE, Kauai NE, and Kauai N. The quietest site is Kauai 

SW (mean broadband level of 100.17 dB) is in the lee of the island as well as located closer to 

the shoreline. It is evident in Figures 4.28, 4.30, 4.31, and 4.32 that the broadband noise at the 

Kauai SW site do not follow the wind trends nor the patterns of noise observed at the other four 

sites. For each of the deployments, the wind is the predominant cause of ambient levels and the 

contribution from humpback whales and rain do not impact the overall soundscape as 

dramatically. 

The Kauai NW site is located closely to the Navy’s PMRF training area. If the Navy used 

this site consistently and extensively, we would expect to see noticeable differences in the 

broadband levels as well as in the 500 Hz low-frequency band. Vessel activity was recorded on 

the Kauai NW EARs but it was not consistent. Additionally, very loud detonations, presumably 

from U.S. Navy testing, were also infrequently observed (Figure 4.33). Unfortunately, the 

amplitude of the detonation could not be determined due to clipping of the recording system but 



 

91 

 

 

Figure 4.28: Band level noise (20 Hz to 25 kHz) for the Kauai 1 deployments. The top two 
panels are weather data observed at the Lihue Airport weather station for the corresponding 
deployment time period.  

95

97

99

101

103

105

107

109

111

So
un

d 
Pr

es
su

re
 L

ev
el

 re
 1

µP
a

Kauai 1 Band Level Measurements

North Northeast Northwest Southeast Southwest



 

92 

 

 

Figure 4.29: Band level noise (20 Hz to 25 kHz) for the Kauai 2 deployments. The top two 
panels are weather data observed at the Lihue Airport weather station for the corresponding 
deployment time period.  
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Figure 4.30: Band level noise (20 Hz to 25 kHz) for the Kauai 3 deployments. The top two 
panels are weather data observed at the Lihue Airport weather station for the corresponding 
deployment time period.  
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Figure 4.31: Band level noise (20 Hz to 25 kHz) for the Kauai 4 deployments. The top two 
panels are weather data observed at the Lihue Airport weather station for the corresponding 
deployment time period.  
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Figure 4.32: Band level noise (20 Hz to 25 kHz) for the Kauai 5 deployments. The top two 
panels are weather data observed at the Lihue Airport weather station for the corresponding 
deployment time period.  
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Figure 4.33: Example of an underwater detonation recorded on the Kauai NW EAR, presumably 
from a U.S. Navy training exercise.  

if the detonations were more regular and consistent, it would be reasonable to expect that the 

broadband levels would reflect the noise contribution of these very loud events. 

Overall, the ambient levels and recorded sounds around each of the EAR sites were 

consistent with what was expected by comparing these sites to one another. Nihoa was 

selected due to its remoteness compared with the busier MHI and demonstrated that it is not a 

primary chorusing site for humpback whales nor subject to a heavy shipping activities. The 

variability in the noise, and the lack of seasonality reveals that the influences on the soundscape 

are weather related, particularly the wind.  

The noise levels around the island of Kauai show that weather, particularly wind, has the 

greatest impact on the soundscape. There is some commercial shipping (tug and barge) out of 

Nawilili Harbor but if the impact was significant, the low-frequency noise would be evident in the 

500 Hz plot as well as the spectral probability densities. Seasonal humpback whales are easily 

identifiable in the three frequency and SPD plots and easily detectable in deeper water despite 

their habitat preference for singing in shallower waters less than 100 fathoms. From these data 

it could not be determined if they were singing while transiting between shallow coastal areas or 
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if they also seek mating opportunities in deep water off of Kauai. As the population increases, 

and more whales occur farther from shore during breeding months, future studies could 

determine the signing behavior of individuals in deep water is a product of their moving between 

sites or possibly using this habitat for additional breeding opportunities. 

Oahu was not the loudest overall site, although it did have the loudest deployment, but it 

was drastically impacted by vessel activities near Honolulu Harbor, the major commercial port 

for the entire state. The low-frequency noise did affect the detection of seasonal humpback 

whale song within each dataset but when exploring the data during winter periods, their sounds 

could be identified spectrographically. The MHI are very isolated relative to the expansive North 

Pacific and humpback migratory behavior is very well documented. Future investigations could 

be useful to determine if masking from the shipping activity impacts the detectability of 

humpback whales to conspecifics or if the whales actively avoid spending time in habitats 

surrounding this busy port.  
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