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ABSTRACT 

A large focus of coral reef research to-date has been documenting the frequency, causes, and 

consequences of reefs shifting from dominance by corals to macroalgae, but further 

consideration of important components of the ecosystem, such as fishes and other benthic 

organisms, is needed to fully capture reef dynamics. This research investigated patterns of coral 

reef community composition based on both fish and benthic assemblages in Hawai‘i and the 

Caribbean to provide a broadened perspective on coral reef structure and indicators of change. 

Data were synthesized in both regions from existing sources and novel methods were developed 

for creating a unified database framework, which facilitated analysis of fish and benthic data 

from disparate sources. The status of Caribbean coral reefs varied greatly, with a 12-fold 

difference in biomass of fishes across 36 locations. Greater biomass and larger sizes of predators 

and scrapers were associated with greater coral cover and lower macroalgal cover. The state of 

reefs in Hawai‘i was assessed based on the composition of fish and benthic functional groups, 

revealing five distinct reef regimes that varied ecologically. A degraded regime with low coral 

and low fish biomass was identified, as well as four other novel regimes that varied significantly 

in their ecology, including three that were previously considered a single coral-dominated 

regime. Analyses of time series data reflected complex system dynamics, with multiple 

transitions among regimes. Finally, metrics of fish and benthic communities that relate to our 

understanding of resilience on coral reefs were compared between Hawai‘i and the Caribbean. 

Patterns of coral and macroalgal dominance, functional and response diversity, and the 

relationships between herbivore abundance and benthic state all varied between regions, 

revealing important differences in what underpins resilience in relatively species-poor 



viii viii 

geographies. This dissertation provides patterns and metrics of reefs in Hawai‘i and the 

Caribbean that can be used for monitoring and managing ecosystem changes on coral reefs in 

light of increasing human impacts and global environmental change.
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CHAPTER 1 INTRODUCTION 
 

Beyond coral and macroalgae 

A key concept foundational to this research is resilience, which can be defined and measured in 

different ways. Resilience can be defined as the capacity of an ecosystem to withstand 

disturbance without changing its overall identity in terms of structure and function (Holling 

1973; Gunderson 2000; Nyström et al. 2008). This is often referred to as ecological resilience 

and includes the concept of tipping points and changes in feedbacks leading to abrupt transitions 

between multiple ecosystem states (Scheffer et al. 2001). Another proposed view of resilience 

focuses on stability, termed engineering resilience, which can be measured as the speed of 

recovery, or return to equilibrium, following a disturbance (Holling and Meffe 1996). This is in 

contrast to ecological resilience, where the measures are focused on movements is away from 

equilibrium, and can be measured as the magnitude of disturbance that can be absorbed by the 

system without changing its structure and function (Gunderson 2000). Debate around resilience 

concepts is in part a result of the difficultly of measuring resilience, since the ideas are often 

grounded in theory, and few empirical examples exist. Thus, differences in definitions of 

resilience can cause confusion over what is being measured and what the outcome will be (Brand 

and Jax 2007; Thrush et al. 2009). Likewise, measuring resilience will depend on the spatial and 

temporal context of the investigation, making generalizations difficult to achieve (Levin 2000). 

 

This evolution of ideas regarding resilience form a theme in investigations of changes in coral 

reefs in response to human influences (Mumby et al. 2007; Mumby and Steneck 2008; Nyström 

et al. 2008; Hughes et al. 2010). Prior to large-scale human influences, coral reefs were thought 
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to represent successional communities that reached a climax state in the absence of discrete 

disturbances such as hurricanes (Goreau 1959; Loya 1976; Pearson 1981; Woodley et al. 1981). 

More frequent disturbances were thought to lead to sub-climax communities (Connell 1978), and 

recovery could be prolonged depending on the successional state before the disturbance (Grigg 

and Maragos 1974). This view conforms to engineering resilience, where recovery was 

considered in terms of a return to equilibrium (Holling 1973). However, this view is limited in 

that it does not consider the possibility of ‘ecological surprises’ or rapid, non-linear shifts to 

alternative states captured in ecological resilience (Holling and Meffe 1996).  

 

The concept of a single equilibrium state was challenged for coral reefs (Done 1992; Knowlton 

1992; Hughes 1994), following observations such as the mass mortality of the urchin Diadema 

antillarum across the Caribbean in 1983 (Lessios et al. 1984). In Jamaica, coral cover was 

reduced by 92% and macroalgal cover increased by 96% following the loss of Diadema 

compounded with the occurrence of two hurricanes, providing evidence of a large scale coral 

reef regime shift (Hughes 1994). Evidence for regime shifts from coral to macroalgae were 

subsequently documented by many other coral reef researchers, forming a central area of 

research for several decades (McCook 1999; Nyström et al. 2000; Jackson et al. 2001, 2014; 

Bellwood et al. 2004; Hughes et al. 2007, 2010; Ledlie et al. 2007; Mumby et al. 2007), 

including documenting the negative consequences for human societies (Knowlton 2001; Cinner 

et al. 2009; Kittinger et al. 2012; Graham et al. 2013).  

 



3 

Building on the idea of alternative states, there has been increasing recognition that coral reef 

systems can have multiple alternative states beyond just coral or macroalgae. Norström et al. 

(2009) reviewed examples of regime shifts from coral to corallimorpharia, soft corals, sponges, 

and sea urchin barrens, suggesting that our understanding of how coral reefs respond to 

disturbance may be more nuanced than previously thought. Likewise, the concept of novel 

systems, where it may be increasingly less likely to return to historic conditions, has also been 

proposed for coral reefs (Graham et al. 2014).  

 

Despite these proposals for considering alternate reef states, discussions have been largely 

focused around the evidence for and against the existence of coral and macroalgal stable states 

(Bruno et al. 2009; Mumby 2009; Dudgeon et al. 2010; Zychaluk et al. 2012; Mumby et al. 

2013b). This debate is confounded by the context of the discussion, with little consensus over 

whether the focus is on engineering or ecological resilience. In addition, discussions are clouded 

by poor assumptions, such as using models uniformed by empirical data, or field data alone that 

come from short time series or that do not capture the full variability of the external driver 

(Mumby et al. 2013b). Thus, by focusing on whether coral dominated states are a stable 

equilibrium, key concepts of ecological resilience are ignored. Particularly, the idea that systems 

are “moving targets,” and states away from equilibrium are those that are subject to abrupt shifts, 

so measuring more than equilibrium coral cover would be needed to understand the system 

(Nyström et al. 2008). If the ecosystem is dynamic, then focusing on one ecological variable can 

also cause misinterpretation of the signs and causes of resilience. Such was the case in the 

Caribbean before 1984, when high coral cover was mistaken for high resilience, and declines in 
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the overall status of the system came as a surprise following the massive die-off of Diadema in 

1984 (Hughes et al. 2010). 

 

In order to embrace resilience from a perspective of dynamic systems that are subject to 

ecological surprises we need to broaden our perspective. For coral reefs, this means moving 

away from the focus of coral-macroalgal phase shifts, and considering the system as a whole. For 

example, how does a reef with low coral and low macroalgae fit into the coral-macroalgal 

paradigm? Perhaps, if fishes or other components of the benthos were considered (e.g., coralline 

algae, sponges, etc.), then a clearer picture of the ecosystem state would be possible. In fact, in 

the absence of fishing, large gradients in reef fish biomass occur across uninhabited locations in 

the Pacific, which highlights the importance of differences in habitat and productivity across the 

gradient (Williams et al. 2015b). In Hawaii, distinct fish assemblages can be found in locations 

with different wave exposures, which also likely correlate with the structure of benthic 

assemblages (Friedlander et al. 2003). Therefore, there is a need to characterize coral reef 

communities based on more than just-coral or just-fishes and describe the dynamics of whole 

ecosystems in the context of resilience theory.  

 

This dissertation addresses questions about the structure and function of coral reef ecosystems by 

investigating patterns in fish and benthic assemblages in both the Caribbean and Hawaii. A 

unifying theme throughout is moving beyond the coral-macroalgal paradigm of coral reef 

ecosystem structure to address multiple components of the ecosystem in a unified synthesis. This 

research addresses the following goals: 
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1) Develop comprehensive databases with a unified framework for fish and benthic 

communities in the Caribbean and Hawaii; 

2) Quantify patterns of fish assemblage structure across the Caribbean and relate 

those patterns to benthic communities [Chapter 2]; 

3) Apply an ecosystem-based approach to quantifying and understanding coral reef 

regimes in Hawaii [Chapter 3]; and, 

4) Compare the ecologies of Hawaiian and Caribbean coral reefs to assess how they 

relate to metrics of resilience [Chapter 4]. 

 

To achieve these goals at broad spatial scales across Hawaii and the Caribbean, data were 

synthesized from existing sources in both regions. 

 

Synthesizing data on coral reef ecosystems from multiple sources 

The need for answering ecological questions at broad scales is increasingly important in an era of 

global environmental change, and examples of ‘big data’ in ecology, where data are combined 

from multiple sources, are becoming increasingly prevalent (Hampton et al. 2013). With the 

broadening of ideas comes a growing challenge in handling complexities associated with 

disparate data structures, and rigorous database and statistical approaches are needed (Michener 

and Jones 2012; Hampton et al. 2013). One approach to scaling up ecological analyses of 

existing data is to synthesize primary data and apply advanced statistical approaches that build 

on traditional meta-analyses (Mengersen et al. 2013). Meta-analyses based on primary data are 
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relatively rare in both ecology and evolutionary biology (Mengersen et al. 2013), and medicine 

(Simmonds et al. 2005), but the method holds great promise. 

 

There have been several recent attempts to synthesize data from individual studies and long-term 

monitoring on coral reefs (Gardner et al. 2003; Côté et al. 2005; Bruno and Selig 2007; Paddack 

et al. 2009; De’ath et al. 2012; Jackson et al. 2014; MacNeil et al. 2015). However, these studies 

focused on either fish or coral, but not both, have largely been based on traditional meta-analysis, 

and suffered numerous analytical challenges. For example, systematic long-term data are only 

available in a few locations, and often started after changes had already occurred; so, without 

harnessing the full breadth of information available in the primary data, signals from early 

changes were missed. Likewise, relying on one or a few datasets that cover large geographies 

and ignoring vast amounts of individual observations limits spatial and temporal scales for 

inference. So, there still remains great opportunity for understanding coral reef ecology by 

harnessing primary data from existing sources at broad scales (Hughes et al. 2010). 

 

A major challenge limiting the use of primary data in synthesis of coral reef status and trends is 

disparate and unstructured data storage that largely consists of individual researchers storing 

individual datasets with no central repository. Thus, data gathered from multiple sources often 

comes in multiple formats, raising a number of data curation challenges (Michener and Jones 

2012). In addition, data from observational studies can contain a variety of sources of error (e.g., 

such as observer level differences and site selection bias), and the research questions and goals of 
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the synthesis project were often different from the question the data were collected for originally. 

All of these factors need to be accounted for in both the database structure and statistical design. 

 

I addressed these challenges in two ways. First, I created a database template that allows for 

inconsistent data structures to be formatted in a common framework while retaining important 

metadata that is needed for analysis. Second, I analyzed the data using hierarchical models that 

allowed for testing hypotheses using the primary data while accounting for variation within and 

among datasets. 

 

Hierarchical models 

Meta-analysis of primary data allows for flexibility in hypothesis formation since the same 

questions can be asked across all datasets. This can be achieved through an extension to 

traditional meta-analysis that relies on study means and variances (Koricheva et al. 2013), where 

the primary data are included in a hierarchical model (Mengersen et al. 2013). The lowest level 

of the model is made up of study-specific estimates, and those are combined to form a 

distribution of estimates around the global mean. Thus, the data are simultaneously modeled at 

multiple levels to achieve an analysis of the primary data that incorporates uncertainty at all 

levels (Figure 1.1). 

 

For example, if the goal was to estimate a global mean from multiple datasets, the model could 

take the form:  

𝑦" = 𝜇% " + 𝜀" 
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𝜇% = 𝛽 + 𝜂 

where i is each observation in dataset j, 𝜇% "  is each dataset level effect, 𝛽 is the global mean, 

and 𝜀" and 𝜂  are error terms. This form was used throughout this dissertation through 

implementation as mixed-models with the lmer function in the package lme4 (Pinheiro and Bates 

2000; Bates et al. 2010; Skaug et al. 2013), implemented in the R environment for statistical 

computing version 3.3.0 (R Development Core Team (2016)). In this framework, the dataset 

level effect is termed a ‘random effect’, and models are fit using maximum likelihood, where the 

parameters were estimated with the likelihood of the parameters given the data 𝐿 𝜇% " , 𝛽|𝑦"  

(Bates et al. 2010).  

 

Datasets 

Existing data from underwater visual censuses were synthesized for both Hawaii and the 

Caribbean. In both regions, datasets include large-scale monitoring programs, monitoring at 

specific sites, and one-off surveys by individual researchers. In total, for Hawaii, the database 

consisted of 20,986 transects from 4,782 sites with data on fish assemblages and 11,937 transects 

from 3,972 sites with data on benthic cover. These data come from 20 different datasets 

contributed by nine different collaborators. In total, for the Caribbean, the database consisted of 

more than 35,000 surveys of corals, macroalgae, and reef fishes distributed among 90 reef 

locations in 34 countries, states, or territories. These data come from 287 different datasets 

contributed by 96 different collaborators. Further detail about the individual datasets and 

synthesis methods are included in the respective chapters where they are analyzed.  
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Figure 1.1 Directed acyclic graphic (DAG) of hierarchical model made up of dataset-specific 
estimates, combined to form a distribution of estimates around the global mean. Rectangles 
represent data and circles represent estimated parameters.  
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CHAPTER 2 Fish assemblage structure explains disparities in ecosystem state in the 
Caribbean 

 

Abstract 

Tight feedbacks exist between fish and benthic assemblages, and certain fishes provide critical 

ecosystem functions, such as removal of algae by herbivores. Previous studies have documented 

large scale differences in fish assemblage structure across the Caribbean, but how these patterns 

relate to large scale variation in benthic cover are less well understood. Therefore, we 

hypothesized that the biomass and size of fish functional groups across a spatial gradient in the 

Caribbean would be related to variation in coral and macroalgal cover. Data on fish and benthic 

assemblages were compiled from existing primary data sources across the Caribbean and 

compared to estimates of fish and benthic metrics using methods that account for data from 

disparate sources. Different patterns were found across fish functional groups, but in general, 

greater biomass and size of fishes was associated with greater coral cover and lower macroalgal 

cover. Predator and scraper biomass and size were particularly important indicators, as they were 

consistently associated with differences in benthic cover. The large spatial scale of this study 

provides context for finer scale observations that relate fish and benthic dynamics on reefs, and 

the results support previous work that suggests large predators and scraping parrotfishes are 

important determinants of benthic structure. The results support the use of fish functional groups 

as indicators of reef status, and can be used to set ecosystem-based targets for managing coral 

reefs broadly. 
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Introduction 

Fishes are important determinants of coral reef benthic community structure and perform critical 

ecosystem functions that are believed to be essential components of coral reef resilience 

(Bellwood et al. 2004; Mumby and Steneck 2008; Hughes et al. 2010). Well known examples 

include top down controls on community composition by predators (McClanahan and Muthiga 

1988; Hixon 1991), and the consumption of algae by herbivorous scrapers and grazers (Mumby 

et al. 2006; Burkepile and Hay 2008). The effectiveness of these different functional groups is 

also strongly dependent of fish size and biomass (DeMartini et al. 2008; Nash et al. 2013). For 

example, herbivory rates by parrotfishes are highly non-linear with body size, increasing rapidly 

above 15-20 cm (Bruggemann et al. 1994; Bonaldo and Bellwood 2008; Adam et al. 2015). 

Differences in size structure can also be a useful indicator of ecosystem status given direct and 

indirect size-based fishing effects (Graham et al. 2005; Vallès and Oxenford 2014; Zgliczynski 

and Sandin 2016). Therefore, the loss or absence of key functional groups or key size classes 

could help explain geographic variation in the coral and macroalgal cover throughout the 

Caribbean. 

 

Several previous studies did not find a clear link between fish abundance and the benthos 

(Newman et al. 2006; Burkepile et al. 2013; Russ et al. 2015; Suchley et al. 2016), despite clear 

mechanistic links between the two. Indeed, behavioral observations and experiments have shown 

that the relationship between fishes and the benthos is inconsistent and complex, and involves 

feedbacks at different spatial and temporal scales (Mumby and Steneck 2008; Burkepile and Hay 

2011; Brandl and Bellwood 2014; Chong-Seng et al. 2014; Adam et al. 2015). For example, 
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different species may be important in different contexts, such as preventing ecosystem changes 

or allowing recovery of ecosystem function after a disturbance (Burkepile and Hay 2010; Chong-

Seng et al. 2014). Moreover, most previous studies have been carried out over short intervals at a 

limited set of locations, so it is difficult to evaluate the significance of results from different 

studies (Levin 1992).  

 

To address this, we compiled a synthesis database of fish and benthic underwater visual surveys 

from the entire Caribbean region to conduct a comprehensive analysis of fish-benthic 

relationships at a regional scale. Specifically, we investigated how biomass and size of fishes 

overall and across functional groups explained variation in coral and macroalgal cover across the 

Caribbean. The results strongly affirm the importance of fishes across functional groups for 

maintaining the balance between coral and macroalgal cover on Caribbean reefs. 

 

Materials and methods 

Data were collated from existing surveys of underwater visual censuses of fishes from several 

sources across the Caribbean (Table A.1). Data were transformed into a consistent format that 

accounts for the hierarchical structure of the data (e.g., transects within sites), and underwent 

quality assessments with particular documentation of methodological differences that may have 

an effect on estimates of fish abundance and biomass. Datasets with obvious errors, vastly 

different methods than the majority of other surveys, incompatible species lists, and small 

sample sizes were removed (full data sources are listed in Jackson et al. 2014). Because broad-

scale changes in Caribbean coral reefs occurred prior to the late-1990s (Jackson et al. 2014), and 
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because a majority of data were after this time, only data from after 1997 were included in 

analyses. Also, to standardize habitat to the extent possible, depths less than 20 meters were 

retained in the final dataset, and analyses were restricted to the Orbicella reef zone following 

published methods (Mumby and Harborne 1999; Chollett and Mumby 2012; Williams et al. 

2015). All analyses were limited to one habitat, the Orbicella zone, because previous work has 

shown that functional relationships between fish and benthic communities can vary by habitat 

(Mumby 2014; Williams et al. 2015). Specifically, the probability that a given location was in 

Orbicella zone was calculated given a prediction from a binomial model with wave exposure as 

a predictor (Chollett and Mumby 2012). Wave exposure values were obtained from Chollett & 

Mumby (2012) at a scale of 1 km spatial resolution. This method has been shown to be relatively 

accurate for Belize (81%) with a 50 m spatial resolution (Chollett and Mumby 2012), and for the 

Caribbean basin (77%) with 1 km spatial resolution (Williams et al. 2015). To combine data at a 

common spatial scale, data were post-stratified into locations that were defined as a geographic 

cluster of survey coordinates and further defined by prevailing oceanographic conditions 

(windward or leeward, inshore or offshore, etc.) and political boundaries following Jackson et al. 

(2014) (Figure 2.1). 

 

Datasets varied in terms of the number of species recorded during surveys, where some datasets 

had restricted species lists. Species lists were therefore compared across surveys and all datasets 

were restricted to a common species list of 105 species (Table B.1). The biomass of individual 

fishes was estimated using the allometric length-weight conversion: W=aTLb, where parameters 

a and b are species-specific constants, TL is total length (cm), and W is weight (g). Length-
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weight fitting parameters were obtained from FishBase (Froese & Pauly 2011). Extreme 

observations in fish counts can have high leverage on biomass estimates, so they were identified 

and accounted for using the following procedure. Extreme observations in fish counts were 

defined by calculating the upper 99.9% of all individual observations (e.g. one species, size and 

count on an individual transect), resulting in 51 observations out of over 0.5 million, comprised 

of 16 species. The distribution of individual counts in the entire database for those 16 species 

was then used to identify observations that fell above the 99.0% quantile of counts for each 

species individually. These observations were adjusted to the 99.0% quantile for analysis. 

 

The fish assemblage was characterized into functional groups based on feeding ecology into 

predators, secondary consumers, and three groups of herbivores: browsers, grazers and scrapers 

(Table B.1). The herbivore functional groups have been suggested as important indicators of 

resilience on coral reefs given differences in their roles in removing, maintaining, and promoting 

algal assemblages (Bellwood et al. 2004; Burkepile and Hay 2008; Green and Bellwood 2009a; 

Heenan and Williams 2013; Rasher et al. 2013; Adam et al. 2015b). Browsers were defined as 

herbivores that reduce macroalgal cover by feeding directly on macroalgae and associated 

epiphytic material. Grazers were defined as herbivores that can prevent macroalgal growth and 

feed mostly on algal turfs. Scrapers were defined as herbivores that also feed on algal turfs but 

are also important for opening space for coral recruitment by clearing substratum. 

 

Data on coral and macroalgal cover used the same sources as Jackson et al. (2014), and similar to 

the fish data, were limited to observations after 1997 and from depths less than 20 meters. 
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Analyses were based on a hierarchal structuring of the data and were summarized based on 

means of replicates within individual datasets for each location. To account for differences in 

sampling, methodologies, and spatial and temporal structures across the datasets, general linear 

mixed effects models were used to estimate means by location for each dependent variable with 

the lmer function in the R package lme4 (Pinheiro and Bates 2000; Bates et al. 2010; Skaug et al. 

2013). Dependent variables were transformed where necessary to meet assumptions of linear 

modeling. A random effect of dataset was included in the models to account for differences in 

methodologies and sampling designs across datasets. Model fits were assessed by visual 

inspection of residuals and restricted maximum likelihood was used to fit the models (Bolker et 

al. 2009). Confidence intervals were generated for estimates using the predictInterval function in 

the merTools package in R (Knowles and Frederickm 2016). Intervals were calculated by 

estimating the fitted values based on 10,000 random draws from a sampling distribution for the 

random and fixed effects and then defining the upper and lower 0.025% of the returned values 

(Gelman and Hill 2007).  

 

Ordinary regression and generalized additive models (GAMs) were used to test for relationships 

between independent variables and coral and macroalgal cover, and the log ratio of coral to 

macroalgal cover. GAMs were fit with the mgcv package in R (Wood 2011). For each 

relationship, both models were fit and model fits were assessed by visual inspection of residuals. 

The assumption of constant error variance was further checked with a Breusch-Pagan test using 

the ncvTest in the package car in R (Fox and Weisberg 2011). In cases were error variance was 
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not constant the response variable was square root transformed and refit. Linear and additive 

models were compared using Akaike Information Criterion (AIC) and Akaike weights with the 

MuMIn package in R (Bartón 2016). In cases where the relationships were significant based on α 

≤ 0.05, but certain points had high leverage on the analysis based on Cook’s distance > 0.05, 

those points were removed and the models were refit. 

 

Patterns were further explored with multivariate techniques for testing how similarities among 

locations were related to coral and macroalgal cover. Data were centered, and standardized 

before analyses so as to be on the same scale. Redundancy analysis was used to test for 

multidimensional relationships between response variables and coral and macroalgal cover. 

Redundancy analysis is a constrained ordination method that relates linear combinations of the 

response variables (coral, and macroalgal cover) to explanatory variables (fish functional groups) 

(Legendre and Legendre 2012). Permutation tests were used to test the overall significance of the 

model, and of the constrained axes using the anova.cca function in R. All multivariate methods 

were conducted in the vegan package in R (Oksanen et al. 2015). 

 

All analyses were conducted in the R environment for statistical computing version 3.3.0 (R 

Development Core Team (2016)). 

 

Results 

The final dataset consisted of 5,478 replicates of underwater visual fish censuses from 36 

locations (Figure 2.1, Table C.1). Overall biomass ranged 12-fold, from 7.0 g m-2 (95% C.I. 6.5 - 
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7.5) at Jamaica North Central to 83.0 g m-2 (95% C.I. 78.5 - 88.4) at Jardines de la Reina in Cuba 

(Figure 2.2). All five of the locations with the greatest biomass were either fully or partly in no-

take marine reserves (Figure 2.2). Interestingly, the location with the lowest biomass was also in 

a no-take marine reserve (Port Honduras Marine Reserve, Figure 2.2). The biomass of functional 

groups also varied greatly, especially predator biomass, which had a 68-fold range (Figure 2.2, 

Table E.1). All groups were positively correlated with each other (Figure H.1). In particular, the 

biomass of predators and secondary consumers were most closely correlated with overall 

biomass (ρ = 0.84 and 0.88, respectively) and were also well correlated with each other (ρ = 

0.82).  

 

The biomass of certain fish functional groups was significantly positively related to coral cover, 

negatively related to macroalgal cover, and positively related to the log-ratio of coral and 

macroalgal cover (Table 2.1, Figure 2.3). Total biomass significantly positively explained coral 

cover, negatively explained macroalgal cover, and positively explained the log-ratio between 

coral and macroalgae. Coral cover was also positively related to biomass of predators, and 

scrapers. Secondary consumer biomass had the strongest relationship with coral cover, and also 

the explained the largest variance (R2 = 0.28). Macroalgal cover was negatively related to total 

biomass, and scraper biomass. Similarly, the log-ratio of coral and macroalgal cover was 

positively related to total biomass, and scraper biomass. 

 

Mean size of the overall fish assemblage, and of certain functional groups was also positively 

related to coral cover, negatively related to macroalgal cover, and positively related to the log-
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ratio of coral and macroalgal cover (Table 2.2, Figure 2.4). Mean size of the overall fish 

assemblage was significantly positively related to coral cover, and the log-ratio of coral and 

macroalgal cover, but not to macroalgal cover. Similarly, mean size of the secondary consumers 

was significantly positively related to coral cover, and the log-ratio of coral and macroalgal 

cover, but not to macroalgal cover. Mean size of predators was negatively related to macroalgal 

cover, and positively related to the log-ratio of coral and macroalgal cover, but not to coral 

cover. Mean size of both browsers and scrapers was positively related to coral cover, and the log-

ratio of coral and macroalgal cover. No significant relationships were found between the mean 

size of grazers and any of the benthic metrics (Table 2.2).  

 

Redundancy analyses (RDA) revealed how all of the fish functional groups together were related 

to coral and macroalgal cover (Table 2.3, Figure 2.5). An RDA based on functional group 

biomass significantly explained 29% of the variation in coral and macroalgal cover (F = 2.89, p 

= 0.01). The first RDA axis explained 42% of variation in the fish functional group-benthic 

cover relationship, while the second RDA axis explained only 3% (Table 2.3, Figure 2.5A). An 

RDA based on mean size significantly explained 30% of the variation in coral and macroalgal 

cover (F = 2.68, p = 0.02). The first RDA again explained the most of the benthic cover-

functional group relationship with 35% explained, and the second axis explained 12% (Table 2.3, 

Figure 2.5B). Both ordinations were similar with all fish functional groups increasing in the same 

direction as coral cover and in the opposite direction of macroalgal cover (Figure 2.5). 

Interestingly, coral and macroalgal cover were orthogonal, so they were uncorrelated. When the 

significance of the constrained axes (fish functional groups) was tested, predators was significant 
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in both models (p = 0.03 and p = 0.01 for biomass and size based models, respectively), and in 

both cases, was strongly positively correlated with coral cover (Figure 2.5). Scraper biomass was 

also significant in the biomass model (p < 0.01) and was strongly negatively correlated with 

macroalgal cover and was positively correlated with coral cover, but to a lesser extent than 

predators (Figure 2.5A). The mean size of secondary consumers was also strongly positively 

correlated with coral cover (p < 0.01). 

 

Discussion 

This study documented large-scale variation in the state of Caribbean reefs and found important 

relationships between biomass and size of the fish assemblage and coral and macroalgal cover. 

Locations with greater overall biomass of fishes, and greater biomass and mean size of particular 

fish functional groups, had greater coral cover and lower macroalgal cover. Scrapers (i.e., large 

parrotfishes) have been previously cited for their significance in maintaining important 

ecosystem processes, such as coral recruitment (Williams and Polunin 2001; Bellwood et al. 

2004; Mumby et al. 2006; Mumby and Steneck 2008), and both biomass and mean size of 

scrapers were important for explaining variation in coral and macroalgal cover (Figure 2.4, 

Figure 2.5). Biomass and mean size of predators were also important in explaining differences in 

ecosystem state. This could be related to top-down effects on community structure (Hixon 1991), 

and reflect important gradients in human impacts, such as fishing (Jackson et al. 2001; 

Friedlander and DeMartini 2002; Newman et al. 2006; Karr et al. 2015). The importance of 

predators and scrapers were significant when analyzed individually, and were also important in 
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multivariate analyses of all variables together (Figure 2.5), implying these groups are particularly 

important indicators of differences in ecosystem state on Caribbean coral reefs. 

 

Herbivore functional groups varied in their relationships with coral and macroalgal cover. 

Scraper size and biomass significantly predicted greater coral and lower macroalgal cover, which 

supports previous findings that parrotfishes are important for coral reef resilience (Bellwood et 

al. 2004; Mumby et al. 2006; Mumby and Steneck 2008). Further, these patterns support 

previous studies that emphasize that large scrapers, which include large Scarus species and 

Sparisoma viride, are particularly important for structuring benthic cover in the Caribbean 

(Burkepile and Hay 2010, 2011; Adam et al. 2015). Grazers (surgeonfishes) were not significant 

in any of the relationships examined. There are few grazing species in the Caribbean and their 

abundance is quite variable, which could make patterns hard to detect. While we limited our 

analysis to Orbicella/forereef habitats, it is also possible that the relationship between grazers 

and benthic cover is more specific. For example, a previous study conducted at a fine depth 

range (10-12 m) in specific habitats in the Caribbean found a strong negative relationship 

between grazer biomass and macroalgal cover (Williams and Polunin 2001). Also, in the Pacific, 

grazer biomass was better predicted by oceanographic conditions than benthic cover, further 

suggesting context dependence (Heenan et al. 2016). The size of browsers was positively 

correlated with coral cover and the ratio of coral and macroalgae, but browser biomass was not a 

significant predictor of benthic state. This is important because many small individuals or few 

large individuals could equate to the same biomass, and given the importance of size, biomass 

alone was a poor indicator of the ecological role of browsers on Caribbean reefs. 
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Predator size and biomass were also positively associated with benthic cover. In particular, mean 

size of predators was strongly negatively associated with macroalgal (Figure 2.4), and was the 

most important variable in explaining coral and macroalgal cover together (Figure 2.5). 

Associations between predators and benthic cover could reflect ecosystem impacts of fishing. 

Fishing can reduce mean size of target species that are often predators (Pauly et al. 1998), and 

size has been shown to be particularly useful fishing indicator on coral reefs (Zgliczynski and 

Sandin 2016; Robinson et al. 2017). The correlation between predators and benthic cover may 

also imply that top-down effects are related to ecological resilience, but the mechanisms remain 

enigmatic (Sandin et al. 2008; Sandin and Zgliczynski 2015). For example, increased predation 

could increase prey turnover rates, leading to optimized biomass production and associated 

differences in ecological processes that maintain coral cover (Ruttenberg et al. 2011), or greater 

refuge availability from increased coral cover could lead to stabilizing of predator-prey systems 

allowing predator biomass to be optimized (Sandin and Zgliczynski 2015). 

 

Previous studies from the Caribbean found similar gradients in fish abundance (Newman et al. 

2006; Paddack et al. 2009), but how fish functional group biomass and size relate to the benthos 

has not been previously explored for the entire Caribbean basin. What is clear from our analysis 

is that the ideal scale to study fish-benthic relationships is unknown; however, summarizing to 

the extent we did revealed important fish-benthic patterns that can often be characterized by 

noise, especially at fine scales. This matches expectations that multiple processes interact across 

scales on coral reefs (Mumby and Steneck 2008; Nyström et al. 2008); thus, uncovering 
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emergent patterns may only be possible at large spatial or temporal scales (MacNeil and 

Connolly 2015). Future studies can build upon this idea to investigate how patterns change 

across multiple scales with hierarchical sampling and statistics (MacNeil et al. 2009; MacNeil 

and Connolly 2015). Patterns identified at large scales such as the entire Caribbean basin also 

provide the opportunity to discuss how regional context can determine local outcomes for 

conservation. However, direct comparisons of biomass to other studies should be done with 

caution given that a restricted species list was used in our analysis, for example sharks were not 

included in biomass estimates. Also, there is opportunity for confounding effects of geography 

and time that could affect the results in large-scale studies such as this. We found no significant 

correlations between fish biomass and size across latitudes and longitudes (APPENDIX I), 

except scraper biomass had a weak correlation with longitude, but this relationship was driven by 

one location. Further work is necessary to combine the results from this study with information 

on physical and human drivers of coral reefs to untangle these effects on the observed patterns. 

Also, correlations between metrics of fish and benthic assemblages do not imply causation. 

Some have argued that fish are drivers of the benthos and others that the benthos drives the 

fishes (Russ et al. 2015). 	Future work could inform mechanistic links between the fish 

functional groups and their relation to ecosystem state by combining the patterns from this study 

with behavior and experimental data that can be scaled up to relate biomass and size to 

ecosystem process and function. 

 

The results from this study provide useful metrics for managing fish assemblages and for 

quantifying and monitoring coral reef status and trends. Importantly, fish functional groups have 
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been proposed as indicators of coral reef resilience (Green and Bellwood 2009). Quantifying 

fish-benthic relationships based on fish functional group biomass and size was effective, and 

therefore has utility for use broadly in monitoring and management. For example, these variables 

can be used as ecosystem indicators of ecosystem state that can be used to set targets or limits for 

human impacts on reefs. For example, previous work has suggested that fish biomass may be a 

useful indicator of regime-shifts on coral reefs following reductions in biomass from fishing 

(McClanahan et al. 2011; Karr et al. 2015; MacNeil et al. 2015), which can be used to define a 

‘safe operating space’ for reef fish biomass between 25-50 g m-2 (Norström et al. 2016). This 

‘safe operating space’ fell within our estimates (Figure 2.3), and corresponds with a rapid 

increase in macroalgae below those values, suggesting that there is additional support for these 

indicators. Future work is needed to define ‘safe operating space’ for fish functional groups in 

the Caribbean for ecosystem-based conservation targets. In summary, greater biomass and size of 

fish functional groups, especially predators and scrapers, was associated with higher coral cover 

and lower macroalgal cover at the scale of the Caribbean.  
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Table 2.1 Results of linear models or general additive models (GAM) between biomass of fish 
functional groups and coral cover, macroalgal cover, and the log-ratio of coral and macroalgal 
cover. GAMs are indicated where with s(Slope), and coefficients and statistics are in labeled in 
parentheses for those lines where appropriate. 

Dependent 
variable 

Independe
nt variable 
(Biomass g 

m-2) Term 
Beta (or 

EDF) 

Std Err 
(or 

Ref.df) t p F df (n) R2 

Coral cover Total  
Intercept 20.01 3.16 6.32 0.00    
Slope 0.25 0.08 3.06 0.00 9.37 36 0.21 

Coral cover Predators 
Intercept 28.26 1.61 17.54 0.00    
s(Slope) 1.63 1.86  0.01 7.51 38 0.27 

Coral cover Sec. Cons. 
Intercept 18.87 2.75 6.87 0.00    
Slope 1.29 0.31 4.15 0.00 17.23 35 0.33 

Coral cover Grazers 
Intercept 25.81 3.07 8.41 0.00    
Slope 1.08 1.08 1.00 0.33 0.99 36 0.03 

Coral cover Browsers 
Intercept 5.03 0.33 15.40 0.00    
Slope 0.07 0.12 0.62 0.54 0.39 36 0.01 

Coral cover Scrapers 
Intercept 21.40 2.82 7.58 0.00    
Slope 0.88 0.34 2.61 0.01 6.84 35 0.16 

Macroalgal 
cover Total  

Intercept 37.20 3.34 11.14 0.00    
s(Slope) 1.60 1.84  0.02 6.11 28 0.29 

Macroalgal 
cover Predators 

Intercept 6.40 0.47 13.73 0.00    
Slope -0.09 0.05 -1.86 0.07 3.44 26 0.12 

Macroalgal 
cover Sec. Cons. 

Intercept 45.25 5.72 7.91 0.00    
Slope -0.86 0.47 -1.84 0.08 3.37 26 0.11 

Macroalgal 
cover Grazers 

Intercept 43.78 6.50 6.74 0.00    
Slope -3.06 2.46 -1.25 0.22 1.56 26 0.06 

Macroalgal 
cover Browsers 

Intercept 43.55 7.02 6.20 0.00    
Slope -2.69 2.49 -1.08 0.29 1.16 26 0.04 

Macroalgal 
cover Scrapers 

Intercept 53.71 6.57 8.18 0.00    
Slope -2.42 0.80 -3.01 0.01 9.08 25 0.27 

log(Coral/ 
Macroalgae) Total  

Intercept -1.02 0.32 -3.20 0.00    
Slope 0.02 0.01 2.99 0.01 8.94 25 0.26 

log(Coral/ 
Macroalgae) Predators 

Intercept -0.48 0.25 -1.92 0.07    
Slope 0.04 0.03 1.62 0.12 2.61 25 0.09 

log(Coral/ 
Macroalgae) Sec. Cons. 

Intercept -0.58 0.28 -2.05 0.05    
Slope 0.04 0.03 1.73 0.10 2.99 25 0.11 

log(Coral/ 
Macroalgae) Grazers 

Intercept -0.54 0.32 -1.66 0.11    
Slope 0.15 0.12 1.25 0.22 1.57 25 0.06 

log(Coral/ 
Macroalgae) Browsers 

Intercept -0.60 0.33 -1.80 0.08    
Slope 0.17 0.12 1.43 0.17 2.04 25 0.08 

log(Coral/ 
Macroalgae) Scrapers 

Intercept -1.06 0.28 -3.77 0.00    
Slope 0.12 0.03 3.65 0.00 13.31 25 0.35 
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Table 2.2 Results of linear models or general additive models (GAM) between mean size of fish 
functional groups and coral cover, macroalgal cover, and the log-ratio of coral and macroalgal 
cover. GAMs are indicated where with s(Slope), and coefficients and statistics are in labeled in 
parentheses for those lines where appropriate. 

Dependent 
variable 

Independe
nt variable 
(mean size 

(cm) Term 
Beta (or 

EDF) 

Std Err 
(or 

Ref.df) t p F df (n) R2 

Coral cover Overall 
Intercept 4.89 8.37 0.58 0.56    
Slope 1.65 0.60 2.74 0.01 7.49 30 0.20 

Coral cover Predators 
Intercept 20.51 9.46 2.17 0.04    
s(Slope) 0.35 0.48 0.73 0.47 0.53 30 0.02 

Coral cover Sec. Cons. 
Intercept 27.22 1.88 14.51 0.00    
Slope 1.64 2.04  0.05 3.34 32 0.21 

Coral cover Grazers 
Intercept 10.92 9.55 1.14 0.26    
Slope 1.33 0.76 1.74 0.09 3.04 30 0.09 

Coral cover Browsers 
Intercept -1.98 10.34 -0.19 0.85    
Slope 1.85 0.64 2.89 0.01 8.35 29 0.22 

Coral cover Scrapers 
Intercept 5.27 7.84 0.67 0.51    
Slope 1.59 0.55 2.88 0.01 8.31 30 0.22 

Macroalgal 
cover Overall 

Intercept 54.98 20.12 2.73 0.01    
s(Slope) -1.32 1.43 -0.92 0.37 0.85 19 0.04 

Macroalgal 
cover Predators 

Intercept 98.49 20.67 4.77 0.00    
Slope -3.37 1.10 -3.06 0.01 9.36 18 0.34 

Macroalgal 
cover Sec. Cons. 

Intercept 46.38 20.77 2.23 0.04    
Slope -0.70 1.49 -0.47 0.65 0.22 19 0.01 

Macroalgal 
cover Grazers 

Intercept 64.01 21.48 2.98 0.01    
Slope -2.12 1.65 -1.29 0.21 1.66 19 0.08 

Macroalgal 
cover Browsers 

Intercept 60.84 24.82 2.45 0.02    
Slope -1.49 1.52 -0.98 0.34 0.96 19 0.05 

Macroalgal 
cover Scrapers 

Intercept 55.58 18.25 3.05 0.01    
Slope -1.34 1.27 -1.06 0.30 1.11 19 0.06 

log(Coral/ 
Macroalgae) Overall 

Intercept -2.45 0.88 -2.80 0.01    
Slope 0.17 0.06 2.66 0.02 7.07 19 0.27 

log(Coral/ 
Macroalgae) Predators 

Intercept -2.77 1.11 -2.49 0.02    
Slope 0.14 0.06 2.37 0.03 5.60 18 0.24 

log(Coral/ 
Macroalgae) Sec. Cons. 

Intercept -2.27 0.92 -2.47 0.02    
Slope 0.15 0.07 2.33 0.03 5.42 19 0.22 

log(Coral/ 
Macroalgae) Grazers 

Intercept -1.88 1.04 -1.80 0.09    
Slope 0.13 0.08 1.65 0.11 2.74 19 0.13 

log(Coral/ 
Macroalgae) Browsers 

Intercept -2.62 1.13 -2.31 0.03    
Slope 0.15 0.07 2.18 0.04 4.77 19 0.20 

log(Coral/ 
Macroalgae) Scrapers 

Intercept -2.37 0.78 -3.03 0.01    
Slope 0.16 0.05 2.89 0.01 8.33 19 0.30 
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Table 2.3 Results of redundancy analysis of coral and macroalgal cover and biomass and mean 
size, and results of permutation tests of the model significance.  

  
RDA1 RDA2 PCA1 PCA2 

 
 df Var F p R2 

Biomass 
(g m-2) 

Eigenvalue 0.05 0.01 0.05 0.04 
 

Model 5 0.05 2.49 0.02 0.22 

Proportion explained 0.33 0.04 0.38 0.25 
 

Residual 21 0.09    
Cumulative proportion 0.33 0.37 0.75 1.00 

 
      

      
 

      

Size (cm) 

Eigenvalue 0.07 0.02 0.07 0.03 
 

Model 5 0.09 2.71 0.02 0.30 

Proportion explained 0.36 0.12 0.38 0.15 
 

Residual 15 0.10    
Cumulative proportion 0.36 0.47 0.85 1.00 
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Figure 2.1 Locations with data on fish biomass and coral and macroalgal cover that were used in 
analyses.  
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Figure 2.2 Barplot of biomass by functional group for 36 locations in the Caribbean. Locations 
are arranged from low to high by the summed biomass across functional groups. Black dots 
above bars are locations where all surveys were inside a no-take marine reserve, and white 
diamonds above bars are locations with a majority of surveys inside marine reserves. 
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Figure 2.3 Relationships between biomass of fish functional groups and coral cover, macroalgal 
cover, and the log-ratio of coral and macroalgal cover. Black lines are fitted functions from 
either a linear or general additive model where the relationships were significant, and grey 
polygons are 95% confidence intervals around the fitted function. Red circles around points 
indicate outliers that were removed prior to fitting models.  
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Figure 2.4 Relationships between mean size of fish functional groups and coral cover, 
macroalgal cover, and the log-ratio of coral and macroalgal cover. Black lines are fitted functions 
from either a linear or general additive model where the relationships were significant, and grey 
polygons are 95% confidence intervals around the fitted function. Red circles around points 
indicate outliers that were removed prior to fitting models. 
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Figure 2.5 Redundancy analysis of linear combinations of the response variables (coral, 
macroalgal cover), plotted as blue vectors, to explanatory variables (fish functional groups), 
plotted as red vectors across locations (grey dots), for A) biomass, and B) mean size. Variables 
are perfectly correlated if the vectors are oriented in exactly the same or opposite directions, and 
thus uncorrelated if the difference in the angles between the two vectors is 90˚. Thus, all fish 
functional groups were positively correlated with coral and negatively correlated with 
macroalgae for both biomass and size.  
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CHAPTER 3 Integrating fish and benthic assemblages provides a more nuanced 
understanding of coral reef regimes 

 

Abstract 

Coral reefs worldwide face an uncertain future with many reefs transitioning from being 

dominated by hard corals to fleshy algae. This binary view of coral reefs is limited in that 

multiple ecological configurations, or regimes, are likely given the complexity and diversity of 

the ecosystem. Reef regimes are most often characterized by their benthic components; however, 

complex dynamics are associated with losses and gains in both fish and benthic assemblages. To 

capture this complexity, this study synthesized and analyzed a large database of 3,345 surveys 

from the Hawaiian Islands to define coral reef regimes in terms of both fish and benthic 

assemblages. Model-based clustering revealed five distinct regimes that varied ecologically, and 

showed spatial heterogeneity by island, depth and wave exposure. We identified a regime that 

was classified by low coral cover and low macroalgal cover but high fish biomass, as well as 

three other novel regimes that varied significantly in their ecology but were previously 

considered a single coral dominated regime. Analyses of time series data reflected complex 

system dynamics, with multiple transitions among regimes, and certain transitions were more 

common than others. By recognizing the coupling of fish and benthic assemblages, we quantified 

subtle but significant ecological differences among reef regimes, information that holds promise 

for monitoring ecosystem change and guiding ecosystem-based management of coral reefs. 
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Main text 

Paradigms of how coral reef systems respond to disturbance have changed substantially over the 

past four decades, while over this same time period coral reefs globally have declined in 

response to increasing human impacts (Jackson et al. 2001, 2014; Pandolfi et al. 2003; Bellwood 

et al. 2004). Previous views that regarded reefs as robust and predictable (Goreau 1959; Loya 

1976; Woodley et al. 1981) have given way to the  recognition that in response to cumulative 

impacts coral reefs can undergo a shift from coral to macroalgal dominance (Nyström et al. 

2000; Bellwood et al. 2004; Hughes et al. 2010). Although alternative benthic regime shifts have 

been proposed (Norström et al. 2009), coral and macroalgae are widely used as indicators of reef 

responses to human disturbances, but often the proximate causes of changes in these measures 

are variable (Gardner et al. 2003; Bruno and Selig 2007; Schutte et al. 2010; Jackson et al. 2014; 

Williams et al. 2015a). Detecting regime shifts can be difficult given that complex systems 

involve multiple feedbacks that can often go unrecognized (Levin 1998), and therefore focusing 

on one ecological variable, such as coral cover, can cause misinterpretation of the signs and 

causes of regime shifts (Hughes et al. 2010).  

 

Thus, there is a need to gain new insights on ecological functioning of coral reefs from a 

broadened perspective on coral reef community structure. For example, large-scale studies across 

the Pacific highlight the variable cover of coral, crustose coralline algae and macroalgae 

regardless of human population status (Williams et al. 2015) and that inhabited and uninhabited 

islands are better differentiated by the cumulative cover of fleshy versus calcifying benthic 

organisms (Smith et al. 2016). Similarly, in Hawaii when multiple components of the benthos, 
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such as turf and coralline algae, were considered three distinct coral reef regimes were identified 

(Jouffray et al. 2015). While these studies represent ways forward in defining reefs based on 

more than coral and macroalgae, they either excluded fishes or considered fish as drivers behind 

the observed benthic patterns. Defining reef regimes by both benthic and fish assemblages is a 

necessary next step because positive and negative feedbacks exist between fishes and the benthos 

that cannot be captured by the benthos alone (Mumby and Steneck 2008; Nyström et al. 2012).  

 

The recognition that regime shifts are complex and encompass multiple components of the 

ecosystem has been routinely embedded in regime-shift analysis in other ecosystems, such as the 

open ocean (Conversi et al. 2015). Work on pelagic marine ecosystems, for example, has shown 

how multiple fish and plankton communities exhibit persistent jumps in time series as a response 

to changes in fishing pressure and other drivers (Daskalov et al. 2007). To capture the complex 

dynamics of coral reefs, we used a novel approach that defines regimes based on both fish and 

benthic variables. We used a spatially high-resolution biological dataset for coral reefs in the 

main Hawaiian Islands to define regimes, describe spatial and temporal variation in regimes, and 

describe ecological patterns across regimes. We also investigated variation within sites to 

explore the diversity of transitional pathways among regimes over time. 

 

Results 

Model-based cluster analysis of 10 variables, representing fish and benthic functional groups, 

from a total of 3,345 reef surveys across the Hawaiian archipelago (based on final model 

selection, Figure N.1), revealed five distinct coral reef regimes. Non-metric multidimensional 
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scaling separated the variables in multivariate space (Figure 3.1); with the biomass of each fish 

functional group inversely correlated with turf and macroalgal cover (Figure 3.1C).  

 

The five identified regimes varied significantly in the composition of the fish and benthic 

functional groups, reflecting differences in ecological structure and function (Table 3.1, Figure 

3.2-Figure 3.3). Regime 1 was characteristic of a degraded state with overall low coral cover and 

low fish biomass (especially predators), and a benthos dominated by turf algae, macroalgae, and 

other substrate (defined as no noticeable cover of any benthic functional group examined here). 

Regime 2 had the highest fish biomass overall, with exceptionally high biomass of browsers, and 

a benthos dominated by turf algae. Coral cover in this regime was higher than in regime 1, but 

lower than all other regimes. Regime 3 had moderately high fish biomass across all functional 

groups, and high coral and turf cover and a complete absence of macroalgae. Regime 4 also had 

moderately high fish biomass across all functional groups, and a benthos with high coral cover 

and a mixture of macroalgae, turf algae, and other substrate. Regime 5 had moderate fish 

biomass across all functional groups, in particular lower predator biomass when compared with 

regimes 3 and 4, and the highest mean coral cover across all regimes, high crustose coralline 

algae cover and comparatively low turf algae cover. Overall, multivariate variance (dispersion) 

differed across regimes (p < 0.01), with similar variability in regimes 1 and 2. Regime 4 was the 

most variable, and regime 5 was the least variable (Table 3.1).  

 

All regimes were present on all 8 islands, except for Kahoolawe, which only contained regimes 3 

and 4. The majority of sites on Niihau were regime 2 (67%), and more than half of the sites on 
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Oahu (54%) were regime 1, and Hawaii Island was dominated by regime 5 (39%) (Figure 3.4). 

We also found regimes were distributed differently according to the dominant cardinal direction 

of the coastline (north, south, east, west). Regime 1 and 4 were predominantly distributed across 

east (21% and 23%, respectively), south (39% and 33%), and west (28% and 34%) shores, while 

regime 2, 3, and 5 were found more often on coastlines with a particular direction; regime 2 was 

found on north facing shores 46% of the time, and regimes 3 and 5 were both found on west 

facing shores 83% of the time. Further, some of the regimes correlated with depth and habitat 

complexity: regime 1 occurred in shallow low complexity habitat (e.g. pavement) (Tukey 

multiple comparison of means: p ≤ 0.02), while regime 2 occurred in deep rugose habitat (e.g. 

large basalt boulders) (p < 0.01). There were no significant differences in depth or complexity 

for the other regimes.  

 

To understand how ecological attributes varied across regimes, we investigated patterns of 

species composition and richness for corals and fishes. There was no significant difference in the 

number of coral species across regimes (F4,142=1.68, p=0.16); however, the composition of the 4 

most common coral species was variable. Porites lobata, a stress tolerant species, occurred 

frequently across all regimes, but often dominated in regimes 3 and 5. Pocillopora meandrina, a 

competitive species, occurred most frequently in regime 2, while Porites compressa, a weedy 

species, occurred most frequently in regimes 4 and 5, and Montipora capitata, also a 

competitively dominant species, occurred in relatively low frequencies across all regimes. Fish 

species richness varied across regimes (F4,2798=30.33, p < 0.01), with regime 2 having a 

significantly greater number of species (mean 28.2 ± 0.61 S.E.; p < 0.01) and regime 1 having a 
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significantly lower number compared with the other regimes (mean 17.1 m-2 ± 0.60 S.E.; p < 

0.01). The composition of the fish assemblages, based on the most abundant species, was also 

different across regimes (PERMANOVA: p < 0.01). Regimes 1 and 4 had the most variable fish 

assemblage composition (pairwise comparisons, p ≤ 0.01), and regime 3 had the least variable 

fish assemblage composition (pairwise comparisons, p < 0.01).  

 

At 65 sites, data were available across at least three years between 2000 and 2012, allowing us to 

examine the frequency of changes among regimes at a given site over time (Figure O.1). A total 

of 116 regime transitions among years were observed in the dataset, and we analyzed the 

frequency of occurrence for a given switch for each combination of regimes (Figure 3.5). 

Regime 1, the degraded regime, most often remained unchanged (52%), and otherwise switched 

to regime 2 (29%), or to a lesser extent to regime 4 (14%) or regime 5 (5%). Regime 2 was most 

frequently observed remaining the same (76%), making this pattern the most frequently observed 

overall. Regime 3, while not well represented in the time series, never remained the same, and 

otherwise switched to regime 4 or regime 5. Regime 4 also frequently remained the same (44%), 

and otherwise switched to every other regime. Regime 5, also poorly represented in the time 

series, most often remained the same (50%), and rarely switched to regime 1. Overall patterns 

were similar when compared to calculations from the subset of sites that are from permanent 

monitoring sites that have at least four or six years of data, with overlapping confidence intervals 

in all cases (Figure O.3). 
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We also plotted the observations in multivariate space for 8 time series with at least four years of 

data spanning from 2000 to 2012 (Figure O.2). Honolua Bay, located in northwest Maui, showed 

a trajectory of decline in coral cover, starting in regime 5 and ending in regime 1, over the 12-

year period. Two nearby bays instead remained the same regimes; Honokahua Bay remained in 

regime 1 across the 4 years of data, and Napili-Honokowai remained in regime 4. Kahekili, also 

on Maui, showed a pattern of recovery, switching to regime 1 after 2 years in regime 4 and then 

switching back to regime 5. Kalaupapa on the north coast of Molokai remained in regime 2, and 

observations were highly concordant across years. Molokini, a small islet off the south coast of 

Maui, remained in regime 4 across 8 years of data, but sites were not tightly clustered, revealing 

more variation compared to Kalaupapa. Pupukea on the north shore of Oahu also showed a 

pattern of recovery from regime 1 to regime 2.  

 

Discussion 

The current perceived dichotomy of reefs as being coral- or macroalgal- dominated is too 

simplistic (Norström et al. 2009), and we have shown that by incorporating fish and benthic 

functional groups multiple reef regimes may exist and follow different pathways. By taking this 

broadened perspective, we identified a regime that does not fit into the coral-macroalgal 

paradigm with low coral and macroalgal cover but high fish biomass. We also found evidence 

suggesting that what was previously considered one coral regime, could potentially be divided 

into three distinct regimes that vary in their ecological composition. Multiple transitions were 

identified among regimes, supporting the concept that one ecological transition from coral to 
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macroalgae is not sufficient, and the results provide new insights into possible routes for both 

decline and recovery dynamics on coral reefs.  

 

Species composition varied among regimes, with potential implications for how regimes respond 

to disturbance. Coral composition followed a pattern described by Jokiel (2004), where high 

wave energy communities are dominated by Pocillopora meandrina (e.g. regime 2 on north 

facing shores), Porites compressa reefs occur in calmer environments (e.g. regimes 4, 5), and 

Porites lobata reefs occur in moderate environments (e.g. regime 3). Importantly, these coral 

species also have different tolerances to extreme heating events both in terms of their 

susceptibility to bleaching mortality and their ability to recruit and regrow post-disturbance 

(Darling et al. 2012). Consequently, the regimes may respond differently to bleaching events, 

where for example, regime 2 may be particularly predisposed given dominance by P. meandrina, 

which is often one of the most susceptible species to bleaching in Hawaii (Ritson-Williams in 

prep). This is especially important given that in 2014 and 2015, the Hawaiian Archipelago 

suffered extreme coral bleaching with an estimated 20-50% coral mortality in some areas. Also, 

overall species richness and composition of the fish assemblage varied across regimes, indicating 

likely differences in their ecological resilience via response diversity and functional redundancy 

(Elmqvist et al. 2003; Nash et al. 2016). For example, regime 1, with low coral cover and low 

fish biomass, also had the lowest fish species richness. This regime could therefore represent a 

system with missing functional responses like grazing and browsing, with consequently a 

diminished ability to bounce back from disturbance. In contrast, regime 3, with high coral cover 
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and high fish biomass, had high fish species richness and consistent fish assemblage 

composition, so potentially represents a system that has high resilience to disturbance. 

 

Quantification of regimes based on multiple components of the community enabled a finer 

examination of reef transitions, which provide important context for understanding responses to 

disturbance. For example, Honolua Bay in northwest Maui has followed a classic trajectory of 

decline from coral to algal dominance, largely as a result of sedimentation (Dollar and Grigg 

2004). However, the trajectory was not a single transition, as it began as regime 5 (high coral and 

high fish biomass), and transitioned to regime 4 and then regime 2 before ending in regime 1 

(degraded) (Figure O.2). This multi-transitional trajectory provides an example of how the 

progression between regimes could be used to monitor subtle changes before a reef transitions to 

a degraded regime. Other time series in our dataset contradicted the expectation that degraded 

reefs are stable (Done 1992) by transitioning from regime 1 (low coral and fish biomass) to 

regimes 2, 4 and 5 (Figure 3.5). For example, Kahekili is a marine managed area where fishing 

of herbivores was restricted in 2009 and changes in both fish and benthic assemblages occurred 

following this closure (Williams et al. 2016). During this time, Kahekili transitioned from regime 

4 to regime 1 and recovered to regime 5 after fish biomass increased (Figure O.2), suggesting 

specific harvest regulations can precipitate coral reef recovery assuming other stressors do not 

change. At several other sites coral reef regimes remained unchanged across time, particularly 

regime 2 and regime 4, bringing to question the common ecological mechanisms and 

management approaches that result in these patterns.  
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The coral-macroalgal paradigm posits that trajectories between reef regimes are the result of 

ecological feedbacks including herbivory, and coral recruitment mechanisms, so future work is 

needed to understand the feedback mechanisms that may be related to reefs that undergo multiple 

transitions (Mumby et al. 2007; Mumby and Steneck 2008; Nyström et al. 2008). In past studies, 

fishes have been considered as drivers of benthic reef regimes (Williams and Polunin 2001; 

Jouffray et al. 2015), but positive and negative feedbacks exist between fish and the benthos 

(Mumby and Steneck 2008; Nyström et al. 2012), so by considering the fish and benthos 

together we provide a more detailed understanding of the patterns of coral reef regimes. It is 

important to recognize that our identification of five regimes is context dependent, and 

contingent on the choice and number of variables included in the analysis (Anderson et al. 2005). 

Patterns of multiple transitions might also be related to the idea of slow transitions, where regime 

shifts to degraded states unfold slowly and can go unnoticed until it is too late (Hughes et al. 

2013). We observed 3 regimes with high coral cover (3, 4 and 5), with frequent transitions 

among them. So, further research is needed to understand whether boundaries exist between 

these regimes, and if this could be informed by additional ecosystem components such as urchins 

or microbes.  

 

We offer a nuanced understanding of coral reef ecosystem regimes that moves beyond the binary 

coral-macroalgal paradigm, and provides a new perspective for understanding and measuring 

reef change. Understanding the spatial distribution of the regimes and their possible transitions 

can also help managers understand and prioritize management actions. For example, if a 

management goal is to restore a location to the set of coral regimes that rely heavily on 
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herbivory, this information could be used to inform a spatial approach that closely manages 

herbivore populations. Likewise, if the management goal is to maintain coral cover, it is 

important to consider that reefs can occur along a spectrum of coral cover, and that a low coral 

cover reef such as regime 2 is not necessarily a negative outcome of human pressures, but could 

instead can reflect natural bounds set by the surrounding abiotic environment (Williams et al. 

2015a). By highlighting nuances in both the composition of regimes, and transitions among 

regimes, we identify new insights into the ecological complexity of coral reefs. Future work can 

tease apart the ecological mechanisms that underpin the different regimes, and investigate how 

human and natural drivers determine their structure and function.  

 

Methods 

Existing data from underwater visual surveys of fish and benthic assemblages were collated from 

multiple monitoring programs for the main Hawaiian Islands. Each dataset was transformed into 

a consistent format, and checked for errors. Data were only included in the analysis if benthic 

and fish surveys were co-located at a unique latitude and longitude, and were from forereef 

habitats, including depths 0 to 30 meters. The majority of the data (98%) were from 2000-2013. 

A total of 3,345 unique sites, defined as a survey location with a unique latitude and longitude, 

were used in the analyses. To account for spatial autocorrelation, means were taken for surveys 

within a defined distance of 300 meters (Appendix L), resulting in an overall sample size of 

1,027. A mean was used for sites with data across multiple years. Data sources, survey methods, 

and other meta-data are provided in Appendix K. 

 



43 

 

To account for differences in survey method, fish data were standardized to the NOAA 

Biogeography Program belt transect using calibration factors (Friedlander et al. in review). 

Calibration factors were developed using an automated software program that utilizes general 

linear models and Monte Carlo simulations (Nadon 2014). Calibrations were calculated by 

species where possible based on the following decision rules: 1) a minimum of 10 paired 

observations were available within an island, 2) observations were not dominated by zeros – if 

they were, a delta model was run in which occurrences were modeled separately from non-

occurrences, 3) residuals were normally distributed – if not data were log-transformed and the 

model was rerun and checked again. If a species did not pass this series of rules a calibration 

factor for each combination of family and trophic level (e.g. zooplanktivorous wrasses) was 

calculated. If a calibration factor could not be calculated at the family+trophic level, then a 

global calibration for the entire method was used. For all subsequent analyses, density estimates 

were based on calibrated densities of raw data. Benthic surveys were not calibrated as previous 

results found no large bias associated with percent cover among the methods used (Jokiel et al. 

2005).  

 

The biomass of individual fishes were estimated using the allometric length-weight conversion: 

W=aTLb, where parameters a and b are species-specific constants, TL is total length (cm), and W 

is weight (g). Length-weight fitting parameters were obtained from a comprehensive assessment 

of Hawaii specific parameters (Donovan et al., unpublished) and FishBase (Froese & Pauly 

2011). Several fish species were removed from fish biomass calculations if aspects of their life 
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history led to inaccurate counts with visual surveys, such as cryptic benthic species, nocturnal 

species, and pelagic schooling species. Likewise, manta rays were excluded, as their size is 

difficult to visually estimate and they have high biomass but are encountered infrequently. A 

procedure was developed for dealing with outliers in the fish data to account for differences that 

can result in exaggerated counts of schooling species. Extreme observations in the database were 

defined by calculating the upper 99.9% of all individual observations (e.g. one species, size and 

count on an individual transect), resulting in 26 observations out of over 0.5 million, comprised 

of 11 species. The distribution of individual counts in the entire database for those 11 species 

was then used to identify observations that fell above the 99.0% quantile of counts for each 

species individually. These observations were adjusted to the 99.0% quantile for analysis. 

 

Fish and benthic assemblages were analyzed primarily at the level of functional groups. Benthic 

assemblages were broken into major functional groups including: coral, macroalgae, turf algae, 

crustose-coralline algae, and other substrate (e.g. sand, basalt rock, and recently dead coral). 

Other substrate was not broken down further due to limitations from incorporating data from 

different methods. The fish assemblage was characterized into three trophic groups, including 

herbivores, secondary consumers, and predators (Appendix M). Herbivores were further 

subdivided based on their feeding mode into browsers, grazers and scrapers following Edwards 

et al. (2014), which have been suggested as important indicators of resilience on coral reefs 

(Bellwood et al. 2004; Green and Bellwood 2009a; Heenan and Williams 2013). Browsers were 

defined as those herbivores that feed on macroalgae and associated epiphytic material and are 

important for reducing cover of competing macroalgae. Likewise, grazers were considered those 
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fishes that feed largely on algal turfs, which can limit the establishment of macroalgae, and 

scrapers those that also feed on algal turfs but can also remove the reef substratum, opening 

space for coral recruitment.  

 

The multivariate benthic and fish data were visualized with a non-metric multidimensional 

scaling plot using the metaMDS function in the vegan package in R (Oksanen et al. 2015). A 

Bray-Curtis distance matrix was created with 2 dimensions and a maximum of 50 random starts 

to search for a stable solution and avoid getting trapped in a local optima (Legendre and 

Legendre 2012). Before analysis, all data were fourth root transformed and centered to meet the 

assumptions of linear models and all variables were standardized to the same scale. 

 

Regimes were identified using model-based clustering with the mclust package in R (Fraley et al. 

2012). The cluster analysis is based on a probability model where each cluster is a mixture of 

multivariate normal distributions composed of the densities of each component, and each 

observation is assigned to a cluster based on the probability of membership given the 

observation. The mclust function uses three strategies for defining clusters: 1) initialization of the 

model with model-based hierarchical clustering, 2) maximum likelihood estimation with the 

expectation-maximization algorithm, and 3) model selection and the number of clusters that are 

approximated with Bayes factors and Bayesian Information Criterion (Fraley and Raftery 2002) 

(Appendix N). Multivariate dispersion was calculated for each regime and tested with an analysis 

of multivariate homogeneity of group dispersions with the betadispr function in the vegan 

package. 



46 

 

Ecological patterns across regimes were explored in multiple ways. Patterns of species richness 

and coral composition were examined across regimes with an Analysis of Variance, and 

contrasts and confidence intervals were calculated with Tukey’s honest significant differences. 

The species composition of corals was examined by calculating the proportional cover of the 

four most abundant species within each regime. A trait-based approach to classifying coral 

species into competitive, stress-tolerant, generalist or weedy species following Darling et al. 

(2012), with additional species specific information on bleaching tolerance, was compared across 

regimes. The composition of the fish assemblage was compared across regimes with a 

Permutational Analysis of Variance (PERMANOVA) with the adonis function and an analysis of 

multivariate homogeneity of group dispersions with the betadispr in the vegan package in R. 

Only fish species that occurred in the top quantile of overall frequency of occurrence were used.  

 

Spatial patterns across regimes were examined by comparing the proportion of each regime at 

each island, and by comparing the proportion of sites within a regime that was located on north, 

south, east, and west facing shores across islands. Additionally, depth and habitat complexity, 

measured as slope of slope, were calculated for each point from LiDAR derived bathymetry 

within a 60m radius of each survey location (Pittman et al. 2009), and were compared across 

regimes with an Analysis of Variance and post-hoc Tukey multiple comparisons.  

 

Temporal transitions between regimes were assessed by predicting the regime for each year at 

each site individually with the function predict.Mclust in R. Sites were retained if there was at 
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least a 95% probability of the regime prediction being correct, and when predictions were 

available for at least 3 years between 2000 and 2012. A total of 65 sites were included in the 

final data set, and patterns of regime transitions were compared by calculating the frequency of a 

given transition as a proportion of the total number of possible transitions (n=116). We tested the 

sensitivity of analysing data from all 65 sites compared with only analysing those with longer 

time series (≥ 4 or 6 years) by calculating binomial confidence intervals for each transition in 

each case (Figure O.3). These sites also tended to represent permanent monitoring stations, so 

this was also to test for the sensitivity to using observations from locations that may shift from 

year to year. Binomial confidence intervals were produced with the binconf function in the 

Hmisc package in R (Harrell 2016) using the Wilson interval.  

 

All analyses were conducted in the R environment for statistical computing version 3.3.0 (R 

Development Core Team (2016)). 
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Table 3.1 Summary of variables used to identify regimes, including mean and standard error by 
regime (in parentheses), total number of sites classified into each regime, and multivariate 
dispersion based on an analysis of multivariate homogeneity of group dispersions. Benthic 
variables are % cover and fish variables are g m-2. 

  

 

REGIME (mean (SE)) 

 

1 2 3 4 5 

Coral 5.8 (0.5) 9.8 (0.5) 26 (1.4) 23.5 (1.6) 31.1 (1) 

Macroalgae 10.3 (0.9) 10.4 (0.6) 0 (0) 13 (1.5) 6.2 (0.4) 

Other Substrate 13 (1) 5.4 (0.4) 5.5 (0.7) 22.6 (1.8) 9.6 (0.6) 

Turf 65.6 (1.4) 64.7 (0.9) 60.3 (1.6) 31.9 (1.9) 43 (1) 

Coralline Algae 3.5 (0.4) 7.2 (0.4) 6.5 (0.5) 5 (0.7) 8.1 (0.4) 

Browsers 1 (0.2) 20.5 (3.4) 5.2 (1) 3.1 (0.7) 3.9 (0.3) 

Grazers 5.1 (0.7) 25.4 (2.1) 16.5 (1.9) 12.2 (1.6) 11.7 (0.7) 

Scrapers 1.1 (0.2) 15.1 (1.5) 11.8 (1.4) 12.6 (1.7) 10.6 (0.7) 

Predators 0 (0) 9.7 (1.5) 8.7 (1.5) 8.3 (1.1) 4.1 (0.3) 

Secondary Consumers 7.5 (0.5) 27 (1.8) 23.4 (1.5) 28.9 (3.8) 19.3 (0.7) 

Total number of sites 205 250 158 200 214 

Multivariate dispersion 1.702 1.847 1.675 2.479 1.082 
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Figure 3.1 Non-metric multidimensional scaling plot of all data used in analysis of reef regimes, 
the size of points correspond to goodness of fit to the nMDS to aid visualization (stress = 0.20), 
and are colored by the regime as classified by model based clustering (A), ellipses drawn around 
50% of the data within each regime overlaid on points from A (B), and ellipses with vectors 
corresponding to variables used in the analysis (C). 
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Figure 3.2 Kernel density of each fish and benthic variable for each regime with arrows 
corresponding to mean values for each variable for each regime. Note, x-axis transformed to 
same scaling as used in cluster analysis. 
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Figure 3.3 Photos representing each regime. Regime 1 has low fish biomass, low coral cover, 
high algal cover, and is often associated with flat bottoms. Regime 2 has moderate to high fish 
biomass, low to moderate coral cover, and is often associated with rugose habitats such as the 
boulder habitat shown. Regime 3 has high fish biomass, high coral cover, and zero macroalgal 
cover. Regime 4 is highly variable and has moderate to high fish biomass and moderate to high 
coral cover. Regime 5 is the least variable and has moderate to high fish biomass, moderate to 
high coral cover, and moderate algal cover. Photo credits: 1 – NOAA Coral Reef Ecosystem 
Program, 2 – L. Kramer/NPS, and 3-5 – Catlin Seaview. 
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Figure 3.4 Distribution of sampling with locations colored by regime. 
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Figure 3.5 Summary of transitions between regimes with darker red corresponding to greater 
frequency of observation from 65 sites and 116 observed transitions. Numbers in each cell are 
the total number of transitions observed for that combination of regimes. 
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CHAPTER 4 Empirical patterns underlying resilience of coral reefs in Hawaii and the 
Caribbean: a comparison  

 

Abstract 

Diversity of corals and fishes in Hawaii and the Caribbean represent the lower bounds of 

diversity on coral reefs worldwide, bringing into question the underlying mechanisms that confer 

resilience in both locations. Much of what we know about coral reef resilience comes from 

studies in the Caribbean, and resilience has been posited to be greater in the Pacific than the 

Caribbean. Using comprehensive syntheses of available underwater survey data from both 

locations, this study compared patterns in fish and benthic communities in Hawaii and the 

Caribbean that relate to our understanding of resilience on coral reefs. Specifically, patterns of 

coral and macroalgal dominance, functional and response diversity, and the relationship between 

herbivore abundance and benthic state were compared. This study contributes to our 

understanding of what ecological patterns underpin resilience in relatively species-poor 

geographies, and highlights patterns that are not consistent in Hawaii compared to what is known 

in the rest of the Pacific. Important similarities in patterns underlying hypotheses of what confers 

resilience on coral reefs were also identified, such as the positive relationship between parrotfish 

biomass and coral cover. Further, important indicators that can be used for monitoring and 

management included functional richness and the biomass of herbivores, which were both 

positively related to coral cover in both Hawaii and the Caribbean. Therefore, parrotfish and 

herbivore biomass, and functional richness, should be considered when designing resilience-

based management strategies for coral reefs. 
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Introduction 

Understanding the resilience of coral reef ecosystems is of great importance given the 

susceptibility of the system to external drivers, such as climate change and overfishing (Hughes 

et al. 2010). Resilience can be defined as the capacity of an ecosystem to withstand disturbance 

without changing its overall identity in terms of structure and function (Holling 1973; Gunderson 

2000). This is often referred to as ecological resilience and includes the concept of tipping 

points, and changes in feedbacks leading to abrupt transitions between multiple ecosystem states 

(Scheffer et al. 2001). Coral reefs are an example of a complex system that can exhibit non-linear 

changes to drivers resulting in regime shifts from coral to macroalgae, and have been a focus of 

resilience studies for decades (Done 1992; Knowlton 1992; Hughes 1994; Bellwood et al. 2004; 

Nyström et al. 2008). A notable example of a loss of resilience was when sharp declines in coral 

cover across the Caribbean occurred after the sudden collapse of Diadema antillarum 

populations in 1983. Caribbean reefs were then left susceptible to overgrowth by algae, since 

herbivory by fishes had been removed by historical overfishing (Hughes 1994; Jackson et al. 

2014). 

 

A majority of studies on coral reef resilience have occurred in the Caribbean, leaving some to 

question the transferability of conclusions to the Pacific, where a lower proportion of macroalgal 

dominance has been observed (Bellwood et al. 2004; Bruno and Selig 2007; Roff and Mumby 

2012). Roff and Mumby (2012) outlined a number of hypotheses to explain why resilience may 

vary between the Caribbean and Indo-Pacific Basins, but only a few examples of regional 
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comparisons based on empirical data could be made. Likewise, the Indo-Pacific has a large 

geographic area, leaving uncertainty about how patterns might vary within the Pacific basin.  

For example, Hawaii is an example of why generalizing the entire Pacific basin may be difficult. 

Hawaii is the most isolated archipelago on earth, has high levels of endemism, and generally low 

species richness compared to the central and south Pacific (Randall 2007; Briggs and Bowen 

2012; Kulbicki et al. 2013).  

 

Coral reefs in Hawaii suffer from many of the same human impacts that threaten reefs worldwide 

(Halpern et al. 2008b), yet large gradients exist across the archipelago with relatively less 

impacted areas in remote locations of the main Hawaiian Islands and the Northwestern Hawaiian 

Islands (Friedlander & DeMartini 2002, Williams et al. 2008). Coral to macroalgal phase shifts 

are not unknown to Hawaii where several reefs have transitioned to an algal state in locations 

such as Waikiki and Maunalua Bay on Oahu and southwest Maui (Smith et al. 2002; Jokiel et al. 

2004; Friedlander et al. 2007; Stimson and Conklin 2008). How coral and macroalgal cover 

varies across the main Hawaiian Islands, and how factors related to coral reef resilience in 

Hawaii compares to the hypotheses addressed by Roff & Mumby (2012) have not been well 

documented.  

 

To address questions about the ecological underpinnings of coral reef resilience in Hawaii 

compared to the Caribbean, this study utilized data from large synthesis efforts in each region 

(Figure 4.1) to test 3 hypotheses outlined by Roff and Mumby (2012). 
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1) Phase shifts from coral to macroalgal cover will be less extreme in Hawaii compared to the 

Caribbean. 

Evidence for regime shifts from coral to macroalgae comes from multiple geographies; however, 

instances in the Caribbean have been documented at twice the rate of the Indo-Pacific (Roff and 

Mumby 2012). Given this, the generality of regime shifts have been questioned (Aronson and 

Precht 2006; Bruno et al. 2009; Dudgeon et al. 2010). Several studies have documented 

differences in the distribution of coral and macroalgae in the Caribbean compared to the Indo-

Pacific, with more severe phase shifts in the Caribbean (Connell 1997; Mumby et al. 2007; 

Bruno et al. 2009; Hughes et al. 2010; Roff and Mumby 2012). Despite few examples of phase 

shifts in Hawaii, the overall frequency of coral and macroalgal dominance across the Hawaiian 

archipelago is less well known than in other parts of the world (but see Jouffray et al. 2015). If 

processes underlying phase-shifts in the Pacific are operating in Hawaii then the expectation 

would be a skewed frequency towards coral in Hawaii (Roff and Mumby 2012). To test this, I 

compared the density of observations of coral to macroalgae from the datasets discussed in 

Chapters 2 and 3 (Figure 4.2). 

 

2) Functional diversity of fishes will be positively related to coral cover in both regions. 

Hawaii and the Caribbean are both underrepresented across functional groups of corals and 

fishes, with less species both across and within functional groups compared to the Great Barrier 

Reef (Figure 4.3) (Bellwood et al. 2004). This brings to question how Hawaii fits into the overall 

picture of coral reef resilience, and whether it is more similar to the Caribbean than the rest of 

the Pacific. Diversity has been cited as a critical underpinning of ecological resilience (Peterson 
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et al. 1998), where species support critical functions and therefore more species may provide 

redundancy for those functions (Hooper et al. 2005). By extension, it is important to consider the 

diversity of responses within functional groups to variations in disturbance, since species loss is 

often non-random and the loss of key groups can lead to drastic ecosystem shifts (Elmqvist et al. 

2003). For example, the loss of functional diversity and response diversity in corals from large-

scale disturbances have been observed in the Caribbean, where White-Band Disease led to mass 

mortality of branching Acorpora species in the 1970s (Gladfelter 1982; Porter and Meier 1992; 

Aronson and Precht 2001; Jackson et al. 2001; Cramer and Jackson 2012). The loss of habitat 

formed by the two Acropora species marginalized the coral communities that remained, resulting 

in lower functional and response diversity overall (Bellwood et al. 2004; Nyström 2006).  

 

Coral reef fishes are extremely important for reef ecosystem function and they are also very 

diverse, though with regional differences. For example, Caribbean reefs commonly have 10-15 

herbivorous fish species and the reefs of Great Barrier Reef in Australia can have over 30 species 

(Bellwood et al. 2004; Bonaldo et al. 2014). The importance of fish functional diversity includes 

buffering impacts of global climate change with stabilizing effects on biomass (Duffy et al. 

2016). Limited functional redundancy has also been cited as a critical descriptor of coral reefs, 

where an ecosystem process such as bioerosion can be limited to one species of parrotfish 

(Bellwood et al. 2003). How differences in functional diversity translate to differences in 

ecosystem state (e.g., coral cover) is less well understood. To test this, I compared multiple 

metrics of functional diversity for fishes in Hawaii and the Caribbean and related them to coral 

cover in each region (Table 4.1, Figure 4.4). 
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3) Herbivores will be more abundant in Hawaii than the Caribbean within and across 

functional groups and have a different functional relationship to benthic cover. 

Herbivorous fishes have great potential for facilitating resilience on coral reefs as consumers of 

benthic algae and mediators of bioerosion (Bellwood et al. 2004, 2006; Hughes et al. 2007; 

Burkepile and Hay 2008; Nyström et al. 2008; Green and Bellwood 2009b; Hoey and Bellwood 

2009; Cheal et al. 2013). Within the herbivore guild, three groups play complementary functional 

roles on reefs, the grazers, scrapers and browsers, representing the broad functional diversity of 

the group. Likewise, response diversity among herbivorous fishes has been shown to relate to 

ecosystem recovery (Graham et al. 2015; Nash et al. 2016). Both Hawaii and the Caribbean have 

lower species richness within and across the herbivore functional groups, and herbivores 

constitute different proportions of the total species pool compared to the Great Barrier Reef 

(Figure 4.3) (Bellwood et al. 2004; Roff and Mumby 2012). For example, the roving grazers are 

all surgeonfishes from the family Acanthuridae, which is represented in the Caribbean by only 

four species from a single genus (Acanthurus) compared to 13 species from two genera in 

Hawaii (Acanthurus, Zebrasoma). Thus, the presence of one or few species may be filling 

important functional roles in both regions. 

 

Beyond the composition of the herbivore guild, it has also been proposed that the overall 

abundance, and therefore herbivory capacity, on reefs in the Pacific are greater than in the 

Caribbean (Roff and Mumby 2012; Edwards et al. 2014). Edwards et al. (2014) found that the 

Caribbean had low biomass of herbivores compared to anywhere on the globe, including lower 



60 

mean biomass than most locations in Hawaii. The overall biomass of particular species groups is 

also generally thought to be lower in the Caribbean (Roff and Mumby 2012). To test this, I 

compared biomass by herbivore functional groups between the Caribbean and Hawaii (Figure 

4.5). 

 

Differences in the composition and abundance of herbivores among regions also brings into 

question whether there are differences in the relationships to benthic cover. Strong negative 

linear relationships between Acanthurid and Scarid biomass and macroalgal cover have been 

found in the Caribbean (Williams and Polunin 2001), however multiple studies in Hawaii and 

elsewhere in the Pacific have found no relationship or nonlinear relationships (Friedlander et al. 

2007; Wismer et al. 2009; Roff and Mumby 2012; Heenan and Williams 2013; Mumby et al. 

2013a; Russ et al. 2015). To test this, I compared the relationships identified in Chapter 2 with 

similar relationships for Hawaii (Table 4.2, Figure 4.6-Figure 4.7). 

 

Methods 

Data were collated from existing surveys of underwater visual censuses of fishes from several 

sources across the Caribbean (Table A.1). Data were formatted into a standardized template, and 

underwent quality assessments that included accounting for differences in methodologies, 

habitats, and outliers (see methods in Chapters 2 & 3). Data in the Caribbean were restricted to 

Orbicella reefs in depths 0 to 20 meters from 1998-2013. Similarly, Hawaii data were from 

forereef habitats, including depths 0 to 30 meters, and the majority of the data (98%) were from 

2000-2013. In the Caribbean, data were summarized for each location (Figure 2.1). In Hawaii, 
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data were summarized to a similar spatial extent using moku for stratification. Moku are 

traditional spatial boundaries that were used for customary marine management, with specific 

fisheries regulations in each moku (Titcomb 1972; Kirch 1989). This spatial scale was used 

because it provides an intermediate scale between watersheds and islands, and because it has 

been used previously to understand variation in fish biomass across the main Hawaiian Islands 

(Friedlander et al. 2016). Sites were assigned to moku using the Island Breath organization’s 

maps (www.islandbreath.org), and attributing to the nearest moku land division (Figure 4.1). 

As in Chapter 2, analyses were based on a hierarchal structuring of the data and were 

summarized based on means of replicates within individual datasets for each location or moku. 

To account for differences in sampling, methodologies, and spatial and temporal structures 

across the datasets, general linear mixed effects models were used to estimate means by location 

or moku for each response variable with the lmer function in the R package lme4 (Pinheiro and 

Bates 2000; Bates et al. 2010; Skaug et al. 2013). Response variables were transformed where 

necessary to meet assumptions of linear modeling. A random effect of dataset was included in 

the models to account for differences in methodologies and sampling designs across datasets. 

Model fits were assessed by visual inspection of residuals and restricted maximum likelihood 

was used to fit the models (Bolker et al. 2009). Confidence intervals were generated for 

estimates using the predictInterval function in the merTools package in R (Knowles and 

Frederickm 2016). Intervals were derived by estimating the fitted values based on 10,000 

random draws from a sampling distribution for the random and fixed effects and then defining 

the upper and lower 0.05% of the returned values. 
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The distribution of coral and macroalgae in each region were plotted in 2 dimensions, and 

visualized based on the 2-dimensional kernel density of observations in R with the heatscatter 

function in the LSD package (Schwalb et al. 2015).  

 

Functional diversity can be defined in terms of the number and types of functions that exist 

within a community that relate to ecosystem processes and functioning (Tilman 2001). This can 

be measured in multiple ways, for example, functional richness is the number of functions 

present in the community and is the most common metric in the literature (Hillebrand and 

Matthiessen 2009). Other important measures include functional evenness and distinctness that 

can provide insight into how function is distributed within the community. Two communities 

may have the same richness, but one species could dominate a particular function, and functional 

evenness would be low (Mouillot et al. 2005). Likewise, functional distinctness will be low if 

functional abundance is clustered in certain functions, but not necessarily at different abundances 

(Villéger et al. 2008).  

 

I defined functional entities as the combination of trophic levels and size classes in the fish 

assemblage, based on the assumption that function changes with size. Nash et al. (2016) 

proposed this method as an approach to studying how cross-scale diversity relates to ecological 

resilience for coral reefs. Fish functional diversity was investigated using multiple methods 

based on the presence and absence of functional entities, which were defined as the combination 

of functional group and size class. Functional groups were defined in the same way as Chapters 2 

and 3, and were based on feeding ecology into predators, secondary consumers, and three groups 
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of herbivores: browsers, grazers and scrapers (Table B.1, Table M.1). All fish functional groups 

were divided into the following size classes from 0-15 cm, 15-30 cm, 30-45 cm, 45-60 cm, and 

greater than 60 cm, except for grazers and browsers, where all individuals greater than 45 cm 

were lumped with the third size bin since they did not occur frequently. This resulted in 21 

functional entities with 5 groups each for predators, secondary consumers, and scrapers, and 3 

groups each for browsers and grazers. Functional richness was measured as the sum of the 

presence of each functional group at each location or moku, and estimated with Simpon’s index 

since it is less sensitive to rare species and sampling effects than other measures of richness (Hill 

1973). Functional evenness and functional distinctness were estimated using the dbFD function 

in the FD package in R (Villéger et al. 2008), that account for relative abundance, following the 

same methods as Nash et al. (2016).  Functional evenness is measured as the convex hull volume 

in multivariate space, and describes the distribution of biomass across functional entities. 

Functional distinctness was estimated by the average distance to the centroid of each entity 

weighted by biomass, measured with a species matrix based on Euclidean distance, and describes 

whether biomass is dispersed among functional entities (Anderson 2006). 

 

Results 

Distribution of coral and macroalgae 

Similar to previous studies, Caribbean reefs occurred along a spectrum of macroalgal cover with 

generally lower coral cover. In contrast, Hawaii reefs occurred across a range of coral cover, but 

generally low macroalgal cover, reflected as a highly skewed 2-dimensional distribution of cover 

(Figure 4.2). 
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Fish functional diversity relationship to coral cover 

In line with the prediction that larger functional diversity would be related to higher coral cover, 

coral cover increased with functional richness, measured as Simpson’s Index, for both Hawaii 

(LM: F1,26 = 6.49, p = 0.02, R2 = 0.17) and the Caribbean (LM: F1,34 = 7.56, p = 0.01, R2 = 0.16). 

Interestingly, results were quite different among regions for functional evenness and functional 

distinctness, the latter combines richness with abundance. In Hawaii, coral cover increased with 

functional evenness (GAM: p = 0.03, R2 = 0.24), and coral cover declined with functional 

evenness in the Caribbean (LM: F1,35 = 11.2, p < 0.01, R2 = 0.22). So, in Hawaii, locations with 

high coral cover had fish abundance that was distributed evenly across functional entities. In the 

Caribbean, in locations where coral cover was high the abundance of fishes was high within few 

functional entities. Similarly, functional distinctness was negatively related to coral cover in the 

Caribbean (LM: F1,36 = 6.1, p = 0.01, R2 = 0.12), and unrelated to coral cover in Hawaii (LM: 

F1,26 = 0.01, p = 0.90). 

 

Herbivorous fish abundance and relationship to benthic cover 

Hawaii had a greater mean biomass of grazers (LM: F1,65 = 34.1, p < 0.01), but the biomass of 

browsers was not significantly different (LM: F1,65 = 0.14, p = 0.72). Interestingly, mean biomass 

of scrapers was greater in the Caribbean compared to Hawaii (LM: F1,65 = 6.1, p = 0.02).   

 

In both regions, there were no significant relationships between coral or macroalgal cover and 

grazer or browser biomass. In both regions, however, there was a significant positive relationship 

between scraper biomass and coral cover (Caribbean: F1,35 = 6.84, p = 0.01, R2 = 0.16; Hawaii: 

F1,24 = 13.1, p < 0.01, R2 = 0.33), and a significant negative relationship between scraper biomass 
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and macroalgal cover (Caribbean: F1,26 = 9.08, p = 0.01, R2 = 0.27; Hawaii: F1,26 = 5.0, p = 0.03, 

R2 = 0.13). 

 

Discussion 

The skewed relationship toward coral cover, rather than macroalgal cover, was unsurprising 

given that many of Hawaii’s reefs can be characterized as turf-dominated (Vermeij et al. 2010; 

Jouffray et al. 2015, Chapter 3), and that proliferations of macroalgae have been largely limited 

to sheltered embayments such as Kaneohe Bay (Bahr et al. 2015). Interestingly, recovery to a 

coral state has also occurred in Kaneohe Bay, where nutrient loading from sewage outfalls 

caused a decline in coral and a rise in a macroalgae (Dictyosphaeria cavernosa) in the 1970s, 

and following a diversion of the sewage offshore, macroalgal cover decreased and coral 

recovered to pre-sewage levels (Hunter and Evans 1995; Stimson and Conklin 2008; Bahr et al. 

2015). Given the different trajectories across Hawai‘i and the Caribbean, it is expected that 

factors underlying resilience in each region would be different, such as the role of fish functional 

diversity and the strength of herbivory (Elmqvist et al. 2003; Hughes et al. 2010; Roff and 

Mumby 2012). 

 

Differences in measures of functional diversity could reflect differences in the consequences of 

biodiversity loss in Hawai‘i and the Caribbean. Positive relationships between richness and coral 

cover in both regions mean that loss of richness could have measurable effects on ecosystem 

state. But, differences in the relationship between evenness and distinctness could mean that the 

Caribbean is more susceptible to biodiversity loss since abundance of particular functional 
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entities were important. However, metrics that rely on abundance are more sensitive to sampling 

effects so these results should be interpreted with caution. Studying functional evenness implies 

that abundance is linked to ecosystem processes, which may not be reflective if critical functions 

are being filled by relatively less abundant species or functional groups. Also, trophic levels may 

not be appropriate classifiers of function in an ecosystem given that interactions across trophic 

levels can affect ecosystem processes, and therefore a finer level of classification may be 

necessary (Petchey and Gaston 2006). I further delineated by size, but this proxy of function 

assumes that those size groups provide different functions, which has not been studied rigorously 

for all coral reef fishes. However, this type of information is becoming better understood through 

experimental and observation studies of species-specific behaviors, especially for herbivores 

(Burkepile and Hay 2008; Rasher et al. 2011; Adam et al. 2015a).  

 

Differences in the distribution of herbivore functional groups between Hawai‘i and the 

Caribbean could be related to differences in the importance of herbivory by certain groups in 

each region, where for example, grazing by surgeonfishes has been posited to be much more 

important in the Indo-Pacific than the Caribbean (Roff and Mumby 2012). Multiple alternative 

hypotheses could explain why scrapers were significant and browsers and grazers were not 

significantly related to benthic cover. Evidence suggests that individual herbivore species may 

play different roles in ecosystem function (Bellwood et al. 2006; Burkepile and Hay 2008, 2010; 

Hoey and Bellwood 2009; Adam et al. 2015a), and therefore the functional groups as defined in 

this study may not be capturing how those roles translate to differences in ecosystem state. For 

example, ‘grazers’ is a general term which also includes species that largely eat detritus and 
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therefore may not remove algae but rather brush it (Marshell and Mumby 2012). Further, even 

within functional groups, species appear to play both complementary and redundant roles 

depending on what species of algae they eat, how far they move, and where on a reef they 

actually feed (Burkepile and Hay 2008; Rasher et al. 2013; Adam et al. 2015b). Thus, the 

relationship between herbivore diversity and coral reef ecosystem function is likely complex and 

underappreciated.   

 

The relationships identified in this study between scraper biomass and benthic cover are 

significant given contrasting results from previous studies (Bellwood et al. 2004; Mumby et al. 

2006; Newman et al. 2006; Burkepile and Hay 2010; Burkepile et al. 2013; Bonaldo et al. 2014; 

Adam et al. 2015b; Russ et al. 2015; Suchley et al. 2016). A significant relationship was found in 

two very different biogeographic regions using large datasets that encompass the full range of 

variability in benthic cover and fish biomass. This is important given that a study with a smaller 

geographic scope may not be able to capture the full extent of variation across variables and 

therefore may not be able to detect the same signal. For example, a recent study evaluated how 

change in herbivore abundance was related to changes in macroalgal cover on the Mesoamerican 

reef and did not find a significant negative relationship (Suchley et al. 2016). However, the range 

of biomass in their study was only half of the range in biomass observed in the Caribbean dataset 

analyzed here. Also, the spatial scale at which the analyses were undertaken may be important 

and results could vary depending on what scale the individual observations were summarized. 

Further work is needed to understand how these relationships vary with scale, and what the 

implications are for our understanding of herbivore-benthic cover relationships on reefs. Finally, 
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the relationships identified in this study are correlational, and it is not possible to make any 

conclusions about mechanisms. Further work is needed to scale up from behavioral studies and 

experiments at fine scales to link mechanism to ecosystem function at large scales.  

 

Conclusion 

This work contributes to our understanding of how ecological patterns related to coral reef 

resilience vary in relatively low diversity systems. By comparing metrics calculated using similar 

methods in Hawaii and the Caribbean, the ubiquity of lessons learned from the Caribbean for 

managing reefs in the Pacific could be evaluated. Hawaii and the Caribbean are very different in 

a number of important ways that could relate to how mechanisms of coral reef resilience may be 

different in each region. Hawaii is an isolated archipelago that spans over 2,400 km across 

tropical and subtropical latitudes and large wave events are a common element of the 

climatology (Gove et al. 2013). These physical features play an important role in structuring the 

near shore assemblages of the Hawaiian Islands (Dollar 1982; Grigg 1998; Friedlander et al. 

2003). For example, naturally low coral cover reefs occur in areas of high wave exposure 

(Chapter 3), and this translates to differences in coral reef community structure (Friedlander et al. 

2003; Franklin et al. 2013). The geologic and evolutionary history of the Hawaiian archipelago is 

also quite different from the Caribbean, so reef formation and origins of diversity are different in 

each region.  

 

Commonalities were also identified across regions that are important for monitoring and 

management of coral reefs. Ecological patterns of functional richness and scraper biomass in 
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relation to coral cover were similar, and therefore provide valuable indicators for monitoring and 

management. This study supports the idea that protecting parrotfish populations in both the 

Caribbean and Hawaii could prevent or reverse coral-macroalgal phase shifts given the strong 

links between scraper biomass and coral and macroalgal cover (Figure 4.6, Figure 4.7) 

(Bellwood et al. 2004; Hughes et al. 2010). In addition, functional richness should be considered 

when designing resilience-based management given the strong positive relationship to coral 

cover in both Hawaii and the Caribbean. Further work could tease apart how specific aspects of 

functional diversity translate to ecological resilience to inform this approach. This study 

highlighted how aspects of coral reef ecology in Hawaii and the Caribbean are both similar and 

different, and provides a more thorough examination of hypotheses related to coral reef 

resilience based on empirical data than has been possible before. 
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Table 4.1 Results of linear models or general additive models (GAM) between metrics of 
functional diversity and coral cover. GAMs are indicated where with s(Slope), and coefficients 
and statistics are in labeled in parentheses for those lines where appropriate. 

 
Independent 
variable Term 

Beta 
(or 
EDF) 

Std Err 
(beta) 
(or 
Ref.df) t p F 

df 
(n) R2 

C
ar

ib
be

an
 

Simpson 
diversity 

Intercept -27.93 20.09 -1.39 0.17    
Slope 80.09 29.14 2.75 0.01 7.55 34 0.1

8 

Functional 
Evenness 

Intercept 44.57 5.25 8.49 0.00    
Slope -39.20 11.71 -3.35 0.00 11.2

0 35 0.2
4 

Functional 
Distinctness 

Intercept 58.78 12.47 4.71 0.00    
Slope -69.77 28.30 -2.47 0.02 6.08 36 0.1

4 

H
aw

ai
i 

Simpson 
diversity 

Intercept -12.21 9.81 -1.24 0.22    
Slope 52.22 20.50 2.55 0.02 6.49 26 0.2

0 

Functional 
Evenness 

Intercept 12.43 1.55 8.00 0.00    
s(Slope) 1.99 2.49  0.03 3.93 28 0.3

0 

Functional 
Distinctness 

Intercept 16.76 35.21 0.48 0.64    
Slope -7.90 64.16 -0.12 0.90 0.02 26 0.0

0 
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Table 4.2 Results of linear models or general additive models (GAM) between metrics of 
biomass of herbivore functional groups and coral and macroalgal cover. GAMs are indicated 
where with s(Slope), and coefficients and statistics are in labeled in parentheses for those lines 
where appropriate. 

Dependent 
variable 

Inde-
pendent 
variable Term 

Beta (or 
EDF) 

Std Err 
(beta) 

(or 
Ref.df) t p F df (n) R2 

C
ar

ib
be

an
 

Coral Grazers Intercept 25.81 3.07 8.41 0.00    

  
Slope 1.08 1.08 1.00 0.33 0.99 36 0.03 

Coral Browsers Intercept 5.03 0.33 15.40 0.00    

  
Slope 0.07 0.12 0.62 0.54 0.39 36 0.01 

Coral Scrapers Intercept 21.40 2.82 7.58 0.00    

  
Slope 0.88 0.34 2.61 0.01 6.84 35 0.16 

H
aw

ai
i 

Coral Grazers Intercept 15.07 3.73 4.04 0.00    

  
Slope -0.22 0.43 -0.51 0.62 0.26 26 0.01 

Coral Browsers Intercept 15.87 3.17 5.01 0.00    

  
Slope -1.13 1.15 -0.99 0.33 0.97 26 0.04 

Coral Scrapers Intercept 2.20 0.42 5.28 0.00    

  
Slope 0.35 0.10 3.62 0.00 13.10 24 0.35 

C
ar

ib
be

an
 

Macroalgae Grazers Intercept 43.78 6.50 6.74 0.00    

  
Slope -3.06 2.46 -1.25 0.22 1.56 26 0.06 

Macroalgae Browsers Intercept 43.55 7.02 6.20 0.00    

  
Slope -2.69 2.49 -1.08 0.29 1.16 26 0.04 

Macroalgae Scrapers Intercept 53.71 6.57 8.18 0.00    

  
Slope -2.42 0.80 -3.01 0.01 9.08 25 0.27 

H
aw

ai
i 

Macroalgae Grazers Intercept 9.52 1.67 5.70 0.00    

  
Slope -0.18 0.19 -0.95 0.35 0.89 26 0.03 

Macroalgae Browsers Intercept 8.61 1.46 5.92 0.00    

  
Slope -0.19 0.53 -0.36 0.72 0.13 26 0.01 

Macroalgae Scrapers Intercept 3.15 0.24 13.06 0.00    

  
Slope -0.10 0.04 -2.23 0.03 4.96 26 0.16 
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Figure 4.1 Distribution of sampling in Hawaii (left) and the Caribbean (right), black dots are 
individual replicates within each region for databases described in Chapter 2 and 3. Grey lines in 
Hawaiian Islands delineate moku boundaries as defined by the Island Breath organization 
(http://www.islandbreath.org/mokupuni/mokupuni.html). 
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Figure 4.2 Distribution of coral and macroalgae in the Caribbean (n = 5327) and Hawaii (n = 
2776). Colors correspond to the 2-dimensional kernel density of observations, with higher 
density in yellow-red plotted in R with the heatscatter function in the LSD package (Schwalb et 
al. 2015).  
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Figure 4.3 Comparison of species richness across functional groups of fishes and corals in the 
Great Barrier Reef (GBR), Hawaii and the Caribbean. Re-formatted from Bellwood et al. (2004) 
with data added for Hawaii from database described in Chapter 3. 
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Figure 4.4 Relationships between metrics of functional diversity and coral cover in the Caribbean 
and Hawaii. Black lines are fitted functions from either a linear or general additive model where 
the relationships were significant, and grey polygons are 95% confidence intervals around the 
fitted function. Red circles around points indicate outliers that were removed prior to fitting 
models.  
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Figure 4.5 Boxplots comparing biomass by herbivore functional group between the Caribbean 
and Hawaii, the stars indicate significant differences between the two regions.  
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Figure 4.6 Relationships between biomass of herbivore functional groups and coral cover in the 
Caribbean and Hawaii (top panel re-drawn from Chapter 2). Black lines are fitted functions from 
either a linear or general additive model where the relationships were significant, and grey 
polygons are 95% confidence intervals around the fitted function. Red circles around points 
indicate outliers that were removed prior to fitting models. 
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Figure 4.7 Relationships between biomass of herbivore functional groups and macroalgal cover 
in the Caribbean and Hawaii (top panel re-drawn from Chapter 2). Black lines are fitted 
functions from either a linear or general additive model where the relationships were significant, 
and grey polygons are 95% confidence intervals around the fitted function. Red circles around 
points indicate outliers that were removed prior to fitting models. Note difference in y-axis 
extent on top and bottom panels. 
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CHAPTER 5 CONCLUSION 
 

Moving beyond simplistic dichotomies for coral reef monitoring and management 

Coral reefs are among the most diverse ecosystems on earth and provide numerous benefits and 

services to society, including coastal protection, fisheries, medicine, tourism, and recreation 

(Moberg and Folke 1999). But these benefits are at risk due to increasing threats to coral reefs at 

local and global scales (Jackson et al. 2001; Hughes et al. 2003; Pandolfi et al. 2003; Bellwood et 

al. 2004). Central to mitigating threats and preserving ecosystem services is understanding how 

ecosystems are structured, and being able to monitor both the status of the ecosystem and the 

effects of management on the system. For coral reefs, past research has largely been focused on 

documenting regime shifts from coral to macroalgae as indicators of reef change (Hughes 1994; 

Mumby et al. 2007, 2013b; Bruno et al. 2009; Mumby 2009; Hughes et al. 2010; Schutte et al. 

2010; Jackson et al. 2014). But, this approach ignores other important components of the 

ecosystem, such as fishes, and a more holistic approach is needed. 

 

The recognition that regime shifts are complex has gained traction in other ecosystems such as 

the open ocean, where regime shifts have been defined as “dramatic, abrupt changes in 

community structure that are persistent in time, encompass multiple variables, and include key 

structural species” (Conversi et al. 2015). This definition emphasizes the need to include 

multiple components of the ecosystem when trying to understand ecosystem change, and for 

embracing concepts of dynamic systems that are subject to tipping points (Selkoe et al. 2015). 

Dynamic systems with tipping points exist because of feedbacks between components of the 

ecosystem, and capturing these complexities in evaluating and quantifying ecosystems is 
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necessary (Folke 2006). Strong feedbacks exist between coral reef fishes and the benthos 

(Mumby and Steneck 2008). For example, declines in herbivore abundance on coral reefs could 

result in less bare space available for coral recruitment and therefore less coral cover over time 

(Bellwood et al. 2004). Thus, relying on patterns of the benthos without considering the fish 

assemblage limits our understanding of regime shifts on coral reefs. 

 

This dissertation quantified fish and benthic communities together in a synthesis of community 

structure in the Caribbean (Chapter 2), and Hawaii (Chapter 3). Relationships were identified 

between multiple components of the fish community and coral and macroalgal cover in the 

Caribbean, which has not been done previously at such a large spatial scale. In Hawaii, I 

employed novel methods for quantifying reef regimes that include both fish and benthic 

components of the ecosystem. These regimes varied geographically, and had different relative 

frequencies across time. Finally, I identified common patterns in functional richness and scraper 

biomass with coral cover in both Hawaii and the Caribbean, which can be used as indicators of 

reef state given common results across such large and different biogeographic regions. Together, 

these results emphasize the need to consider how fish and benthic communities covary at large 

geographic scales to inform monitoring and management of coral reefs. 

 

Data synthesis allowed for a new understanding of reefs 

The ability to answer ecological questions at large scales was not possible until recently with the 

advent of ‘big data’ and ‘big science’ where large data streams are synthesized from multiple 

data sources (Hampton et al. 2013). As with other ecological disciplines, early studies suffered 
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from the “quadrat” perspective, and abilities to scale up from field data were limited (Wiens 

1989). Small-scale studies are also unlikely to reveal cross-scale dynamics, where processes 

occur within and across scales and therefore cannot be measured at one scale alone (Holling and 

Meffe 1996). Thus, data syntheses can provide opportunities to address questions that couldn’t 

be answered by one study alone, and present a new foundation for thinking about ecological 

questions (Peters et al. 2014). For example, studies that can analyze variation across large spatial 

and temporal scales are crucial for expanding the context of individual ecological studies that 

might be limited to sampling within a small range of environmental variables. 

 

This dissertation was based on syntheses of primary data from two large biogeographic regions 

to understand patterns of coral reef fish and benthic assemblages. This approach allowed for a 

number of important advances that would not have been possible otherwise. In particular, the 

power of the method is that results from individual studies may have had contrasting results on 

their own, but together a synthesis emerges. Also, bringing together data from a range of 

locations makes it possible to assess variation along the full spectrum possible for a given 

variable. Both of the syntheses from this research are one of few that have used primary data to 

move beyond traditional meta-analysis. Additionally, no synthesis for coral reefs to date has 

analyzed fish and benthic data together at large geographic scales, so a comprehensive 

understanding of how coral reefs are structured emerged for both Hawaii and the Caribbean. 

Moreover, a comparison between the two regions revealed common patterns that may be 

emergent for coral reefs, and thus have applicability worldwide. 
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Summary 

This dissertation investigated patterns of coral reef community composition based on both fish 

and benthic assemblages in the Caribbean (Chapter 2) and Hawai‘i (Chapter 3) to provide a 

broadened perspective of coral reef structure and indicators of change. By quantifying patterns of 

both fish and benthic assemblages together with large datasets at large spatial scales, new 

insights into how coral reefs are structured were identified. Additionally, metrics specific to 

hypotheses of coral reef resilience were compared across the two regions (Chapter 4). Common 

patterns were identified that could be emergent properties of coral reef systems given their broad 

applicability to two very different biogeographic regions. Finally, this dissertation relied on data 

synthesis that allowed for both testing the full range of variability in metrics across large 

geographic scales and for combining fish and benthic data at those large scales. By moving 

beyond quantifying the fish and benthos separately, and considering them together in a synthesis 

of coral reef structure, this dissertation identified important indicators of coral reefs that can be 

used for monitoring and management.  
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APPENDIX A CARIBBEAN FISH DATA SOURCES 
 

Table A.1 Data sources and metadata for fish data used in Chapter 2 

Data source Location(s) Method Year(s) 
Number 

replicates 
Replicate 

level 
Alan Friedlander, Jim 
Beets, Jeff Miller, US 
National Park Service 

St. John, USVI Stationary count, 
7.5 m radius  1998 - 2011 1008 Transects 

Alan Friedlander San Andrés, Colombia 25 x 4 m transect 2000 7 Sites 
NOAA Biogeography 
Program La Parguera, Puerto Rico 25 x 4 m transect 2000 - 2011 294 Transects 

NOAA Biogeography 
Branch USVI 25 x 4 m transect 2001 - 2011 756 Transects 

USVI Coral Reef 
Monitoring Program USVI 30 x 2 m transect 2003 - 2009 99 Transects 

Peter Mumby, Alastair 
Harborne Bahamas 

30 x 2m, 30 x 4m, 
& 50 x 4 m 

transects 
2002-2007 19 Sites 

Marah Hardt Cuba, Jamaica, Mexico 50 x 5 m transect 2004 84 Sites 

AGRRA 

Antigua, Bahamas, 
Belize, British Virgin 
Islands, Cayman Islands, 
Cuba, Dominican 
Republic, Dutch Antilles, 
Grenadines, Honduras, 
Jamaica, Mexico, Puerto 
Rico, St. Kitts, Turks & 
Caicos 

30 x 2 m transect 1998 - 2011 3155 Transects 

Ben Ruttenberg, Waitt 
Foundation Barbuda Stationary count, 

7.5 m radius 2013 35 Sites 

NOAA Southwest 
Fisheries Science 
Center 

Florida Keys Stationary count, 
7.5 m radius 1998 - 2012 21 Sites 

  Total 1998 - 2012 5531  
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APPENDIX B CARIBBEAN FISH SPECIES 
 
Table B.1 List of fish species included in analyses of Caribbean fishes in Chapter 2 

Predators Secondary Consumers 
 Carangoides ruber  Aluterus scriptus Melichthys niger 
 Cephalopholis cruentata  Anisotremus surinamensis Microspathodon chrysurus 
 Cephalopholis fulva  Anisotremus virginicus Monacanthus tuckeri 
 Epinephelus itajara  Balistes vetula Ocyurus chrysurus 
 Epinephelus morio  Bodianus rufus Pomacanthus arcuatus 
 Epinephelus striatus  Calamus bajonado Pomacanthus paru 
 Lutjanus analis  Calamus calamus Prognathodes aculeatus 
 Lutjanus apodus  Calamus penna Sphoeroides spengleri 
 Lutjanus cyanopterus  Calamus pennatula Trachinotus falcatus 
 Lutjanus griseus  Cantherhines macrocerus Xanthichthys ringens 
 Lutjanus jocu  Cantherhines pullus  
 Lutjanus mahogoni  Canthidermis sufflamen  
 Lutjanus synagris  Chaetodon aculeatus  
 Mycteroperca acutirostris  Chaetodon capistratus  
 Mycteroperca bonaci  Chaetodon ocellatus  
 Mycteroperca interstitialis  Chaetodon sedentarius  
 Mycteroperca tigris  Chaetodon striatus  
 Mycteroperca venenosa  Diodon holocanthus  
 Pterois volitans  Diodon hystrix  
 Sphyraena barracuda  Epinephelus adscensionis  
Browsers  Epinephelus guttatus  
 Kyphosus sectator  Haemulon album  
 Sparisoma chrysopterum  Haemulon aurolineatum  
 Sparisoma radians  Haemulon carbonarium  
 Sparisoma rubripinne  Haemulon chrysargyreum  
Grazers  Haemulon flavolineatum  
 Acanthurus bahianus  Haemulon macrostomum  
 Acanthurus chirurgus  Haemulon melanurum  
 Acanthurus coeruleus  Haemulon parra  
 Centropyge argi  Haemulon plumierii  
Scrapers  Haemulon sciurus  
 Scarus coelestinus  Haemulon striatum  
 Scarus coeruleus  Halichoeres bivittatus  
 Scarus guacamaia  Halichoeres garnoti  
 Scarus iseri  Halichoeres radiatus  
 Scarus taeniopterus  Holacanthus bermudensis  
 Scarus vetula  Holacanthus ciliaris  
 Sparisoma atomarium  Holacanthus tricolor  
 Sparisoma viride  Lachnolaimus maximus  

  
 Lactophrys bicaudalis  
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APPENDIX C CARIBBEAN LOCATIONS 
 
Table C.1 Locations from Figure 2.1 and information on data available 

Location 
Number of 

datasets 
Number of 
replicates 

Size 
data? 

Coral 
data? 

Macroalgae 
data? 

Antigua 1 40 Yes Yes No 
Barbuda 1 35 Yes Yes Yes 
Bahamas Exuma 1 6 No No Yes 
Bahamas other 2 341 Yes Yes Yes 
Bahamas Remote 1 7 No Yes Yes 
Belize Atoll Leeward 1 190 Yes Yes Yes 
Belize Central Barrier 1 188 Yes Yes Yes 
Belize Gulf Honduras 1 87 Yes Yes No 
Belize Inner Barrier 1 319 Yes Yes Yes 
Belize Southern Barrier 1 20 Yes Yes Yes 
British Virgin Islands (BVI) 1 10 Yes Yes Yes 
Grand Cayman 1 21 Yes Yes No 
Little Cayman 1 136 Yes Yes No 
Colombia San Andrés 1 7 No Yes Yes 
Cuba Jardines de la Reina 2 480 Yes Yes Yes 
Cuba North 1 39 Yes Yes No 
Cuba Southeast 1 294 Yes Yes Yes 
Curacao Northwest 1 10 Yes Yes Yes 
Dominican Republic North 1 15 Yes Yes No 
Dominican Republic South 1 73 Yes Yes Yes 
Florida Lower Keys 1 21 Yes Yes Yes 
Honduras Bay Islands 1 104 Yes Yes Yes 
Honduras Nearshore 1 99 Yes Yes No 
Jamaica Montego Bay 2 100 Yes Yes Yes 
Jamaica North Central 1 29 Yes Yes Yes 
Jamaica West 1 122 Yes Yes Yes 
Mexico Cozumel 1 29 No Yes Yes 
Mexico NE Yucatan 1 24 Yes Yes No 
Mexico SE Yucatan 1 3 Yes Yes No 
Puerto Rico La Paguera 1 294 Yes Yes No 
Puerto Rico Vieques 1 114 Yes Yes Yes 
St Kitts & Nevis 1 147 Yes Yes Yes 
Grenadines 1 78 Yes Yes No 
Turks & Caicos 2 133 Yes Yes Yes 
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  USVI St. John 2 1764 Yes Yes Yes 
USVI St. Thomas 1 99 Yes Yes Yes 

Total 
 

5478    
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APPENDIX D CARIBBEAN CORAL AND MACROALGAL ESTIMATES 
 
Table D.1 Estimates of coral and macroalgal cover by location from general linear mixed effects 
models with a random effect of dataset, with 95% confidence intervals in brackets generated 
from random draws of the fixed and random effects. Cells are blank where data was not 
available. 

Location Coral cover (%) Macroalgal cover (%) 

Antigua 17.4 [16.5-18.4] 
 Bahamas Exuma 

 
5.9 [5.1-6.8] 

Bahamas other 19.2 [18.4-20.1] 29.8 [28.1-31.8] 
Bahamas Remote 21.7 [20.8-22.6] 47.7 [45.1-50.6] 
Barbuda 8.4 [7.9-9] 20.5 [18.9-22.2] 
Belize Atoll Leeward 30.7 [29.6-31.9] 66.9 [61.9-72] 
Belize C Barrier 33.9 [32.6-35.2] 47.8 [45-50.9] 
Belize Gulf Honduras 12.7 [12.1-13.3] 

 Belize Inner Barrier 24.1 [23.1-25] 6.1 [5.5-6.8] 
Belize S Barrier 11 [10.5-11.6] 49.5 [46.5-52.7] 
BVI 41.1 [39.5-42.6] 13.7 [12.6-14.9] 
Colombia San Andres 37.5 [35.9-39] 52.6 [49.6-55.5] 
Cuba Jardines 34.5 [33.2-35.9] 43 [40.8-45.5] 
Cuba North 56.8 [54.8-58.7] 

 Cuba Southeast 41.1 [39.5-42.5] 33.6 [31.5-35.8] 
Curacao Northwest 40.3 [39-41.6] 7.7 [7-8.4] 
DR North 45.6 [43.7-47.6] 

 DR South 35.3 [33.9-36.9] 25.4 [23.4-27.8] 
Florida Lower Keys 6.9 [6.4-7.4] 45.8 [43-49] 
Grand Cayman 23.9 [23-24.8] 

 Grenadines 38.7 [37.1-40.3] 
 Honduras Bay Islands 37 [35.6-38.6] 46.6 [43.6-49.4] 

Honduras Nearshore 21.9 [20.9-22.8] 
 Jamaica MB 23.1 [22.1-24] 63.8 [59.9-67.8] 

Jamaica W 19.8 [18.9-20.7] 67.6 [63.2-72.1] 
Jamica NC 19.3 [18.4-20.2] 79.4 [73.7-85.4] 
Little Cayman 27.3 [26.1-28.5] 

 Mexico Cozumel 30.2 [29-31.6] 26.5 [24.9-28.3] 
Mexico NE Yucatan 14.4 [13.7-15.1] 

 Mexico SE Yucatan 25.6 [24.5-26.8] 
 Puerto Rico La Paguera 31.3 [30.1-32.5] 
 Puerto Rico Vieques 33.8 [32.4-35.2] 4.1 [3.6-4.6] 

St Kitts & Nevis 21.6 [20.6-22.7] 51.7 [48.5-54.9] 
Turks & Caicos 37.4 [36-39] 18.3 [16.6-20.2] 
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USVI St John 18.3 [17.6-19.1] 32.5 [30.9-34.7] 
USVI St. Thomas 21 [20.1-22] 23.2 [21.6-24.8] 
Antigua 17.4 [16.5-18.4] 

 Bahamas Exuma 
 

5.9 [5.1-6.8] 
Bahamas other 19.2 [18.4-20.1] 29.8 [28.1-31.8] 
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APPENDIX E CARIBBEAN BIOMASS ESTIMATES 
 
Table E.1 Estimates of biomass by trophic levels by location from general linear mixed effects 
models with a random effect of dataset, with 95% confidence intervals in brackets generated 
from random draws of the fixed and random effects. 

Location Predators Sec. Cons. Grazers Browsers Scrapers 
Antigua 3.3 [2.9-3.8] 11.6 [10.7-12.5] 7.5 [6.9-8.1] 4.1 [3.8-4.4] 7.9 [7.3-8.6] 

Bahamas Exuma 27 [24.6-29.5] 27.9 [25.6-30.4] 0.3 [0.2-0.4] 2.3 [2.1-2.6] 6.8 [6.3-7.5] 

Bahamas other 1.6 [1.3-1.8] 6.5 [6-7.1] 3.2 [2.9-3.4] 2.7 [2.5-3] 10.7 [9.9-11.5] 

Bahamas Remote 5 [4.5-5.6] 2.4 [2.1-2.7] 0.8 [0.7-0.9] 1.1 [0.9-1.2] 6.3 [5.7-6.8] 

Barbuda 3.1 [2.8-3.6] 2 [1.8-2.3] 4 [3.7-4.4] 2.5 [2.3-2.8] 6.1 [5.6-6.6] 
Belize Atoll 
Leeward 2 [1.8-2.3] 5 [4.5-5.5] 1.5 [1.3-1.6] 1.1 [1-1.3] 4.3 [3.9-4.7] 

Belize C Barrier 1.7 [1.5-2] 6.7 [6.2-7.3] 1.4 [1.3-1.6] 1.2 [1.1-1.4] 5.2 [4.8-5.6] 
Belize Gulf 
Honduras 0.9 [0.7-1.1] 2.5 [2.3-2.8] 0.1 [0-0.2] 0.3 [0.2-0.4] 2.3 [2.1-2.5] 

Belize Inner Barrier 2.5 [2.2-2.9] 7.5 [6.9-8.2] 0.6 [0.5-0.7] 1.4 [1.2-1.5] 4.9 [4.5-5.4] 

Belize S Barrier 0.4 [0.3-0.5] 0.8 [0.7-1] 2.9 [2.6-3.2] 1.1 [1-1.3] 1.6 [1.4-1.8] 

BVI 10.7 [9.6-12.1] 6.4 [5.9-7] 4.6 [4.2-4.9] 2.5 [2.3-2.8] 14.2 [13.1-15.3] 
Colombia San 
Andres 7.2 [6.4-8.1] 10.2 [9.4-11.2] 3.7 [3.4-4.1] 2.2 [2-2.4] 4 [3.6-4.4] 

Cuba Jardines 23.4 [21.3-25.6] 19.3 [17.9-21.1] 4.2 [3.9-4.6] 3.2 [3-3.5] 12.8 [11.8-13.8] 

Cuba North 13.3 [12.2-14.5] 16.4 [15.2-17.8] 3.8 [3.5-4.1] 1.2 [1-1.3] 4.4 [4.1-4.9] 

Cuba Southeast 23.4 [21.3-25.4] 15.9 [14.7-17.3] 2.1 [2-2.3] 2.4 [2.2-2.6] 11.6 [10.7-12.4] 

Curacao Northwest 16.9 [15.4-18.8] 14.3 [13.3-15.6] 4.3 [3.9-4.6] 1.5 [1.3-1.7] 19.4 [18.1-21] 

DR North 1.6 [1.3-1.8] 1.7 [1.5-2] 4.1 [3.7-4.4] 1.6 [1.4-1.8] 3.8 [3.5-4.2] 

DR South 1.2 [1-1.4] 1.9 [1.7-2.1] 0 [-0.1-0.1] 2.2 [2-2.5] 5.9 [5.4-6.4] 

Florida Lower Keys 5.7 [5-6.4] 5.9 [5.4-6.4] 0.8 [0.7-0.9] 0.6 [0.5-0.7] 0.6 [0.5-0.8] 

Grand Cayman 6.6 [5.9-7.3] 8.9 [8.2-9.7] 0.9 [0.8-1] 4.4 [4.1-4.8] 16.8 [15.5-18.2] 

Grenadines 4.5 [4-5] 5.4 [4.9-5.9] 1.2 [1.1-1.4] 1.7 [1.5-1.8] 3.5 [3.2-3.8] 
Honduras Bay 
Islands 1.4 [1.2-1.7] 12.6 [11.5-13.6] 4.2 [3.8-4.5] 1.5 [1.3-1.7] 9.5 [8.8-10.3] 

Honduras Nearshore 1.8 [1.5-2] 5.2 [4.7-5.7] 1.7 [1.5-1.9] 1 [0.8-1.1] 5.3 [4.9-5.7] 

Jamaica MB 1.3 [1.2-1.6] 2.2 [2-2.5] 0.3 [0.2-0.4] 1.4 [1.3-1.6] 2.9 [2.6-3.2] 

Jamaica W 2.9 [2.6-3.3] 2.1 [1.9-2.4] 0.8 [0.7-0.9] 4.5 [4.2-4.9] 4.6 [4.2-5] 

Jamica NC 1.2 [1-1.4] 1.6 [1.4-1.9] 0.2 [0.2-0.3] 1.9 [1.7-2.1] 1.4 [1.3-1.6] 

Little Cayman 6.1 [5.5-6.8] 6.6 [6.1-7.2] 2.3 [2-2.5] 3.9 [3.5-4.2] 9.7 [8.9-10.5] 

Mexico Cozumel 18 [16.2-20.1] 35.3 [32.6-38.1] 2 [1.8-2.2] 8 [7.5-8.7] 3.5 [3.2-3.9] 

Mexico NE Yucatan 0.8 [0.6-0.9] 3 [2.7-3.4] 1.6 [1.5-1.8] 0.4 [0.3-0.5] 1 [0.9-1.1] 

Mexico SE Yucatan 0.7 [0.5-0.9] 2.8 [2.5-3.2] 1.2 [1.1-1.4] 1.7 [1.5-1.9] 3.9 [3.5-4.4] 
Puerto Rico La 
Paguera 1.3 [1.1-1.5] 4.1 [3.7-4.5] 1.4 [1.3-1.6] 1.6 [1.4-1.7] 3.7 [3.4-4] 
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Puerto Rico Vieques 1.5 [1.2-1.7] 6.3 [5.8-6.8] 2.9 [2.7-3.2] 5.6 [5.2-6.1] 12.3 [11.4-13.3] 

St Kitts & Nevis 1.9 [1.7-2.3] 4 [3.7-4.4] 2.2 [2-2.4] 2.1 [1.9-2.4] 8.1 [7.4-8.9] 

Turks & Caicos 7.1 [6.5-7.8] 9.1 [8.4-10] 0.6 [0.5-0.7] 0.9 [0.8-1.1] 5.1 [4.7-5.5] 

USVI St John 2.9 [2.5-3.2] 4.7 [4.3-5.2] 1.4 [1.2-1.5] 1.4 [1.3-1.5] 3.8 [3.5-4.1] 

USVI St. Thomas 2.4 [2.1-2.8] 8.9 [8.2-9.8] 4.7 [4.3-5.1] 3 [2.7-3.3] 6.9 [6.4-7.5] 

Antigua 3.3 [2.9-3.8] 11.6 [10.7-12.5] 7.5 [6.9-8.1] 4.1 [3.8-4.4] 7.9 [7.3-8.6] 

Bahamas Exuma 27 [24.6-29.5] 27.9 [25.6-30.4] 0.3 [0.2-0.4] 2.3 [2.1-2.6] 6.8 [6.3-7.5] 

Bahamas other 1.6 [1.3-1.8] 6.5 [6-7.1] 3.2 [2.9-3.4] 2.7 [2.5-3] 10.7 [9.9-11.5] 
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APPENDIX F CARIBBEAN SIZE ESTIMATES 
 

Table F.1 Estimates of mean size overall and by trophic levels by location from general linear 
mixed effects models with a random effect of dataset, with 95% confidence intervals in brackets 
generated from random draws of the fixed and random effects. 

Location Overall Predators Sec. Cons. Grazers Browsers Scrapers 

Antigua 14.6 [14.1-15.1] 23.3 [22.6-24.1] 19 [18.3-19.7] 12.6 [12.2-13] 13.3 [12.8-13.9] 12.5 [12-12.9] 

Bahamas other 13.1 [12.6-13.6] 21.4 [20.8-22.1] 14 [13.5-14.7] 13.1 [12.7-13.5] 12.9 [12.5-13.3] 11.5 [11.1-11.9] 

Barbuda 11.4 [11-11.8] 27.2 [26.3-28] 9 [8.7-9.3] 13.4 [12.9-13.8] 16.5 [16-17.1] 11 [10.6-11.4] 
Belize Atoll 
Leeward 13.8 [13.3-14.3] 16 [15.6-16.5] 13.6 [13-14.1] 12.2 [11.9-12.6] 15.5 [14.9-16.1] 14.4 [13.9-14.9] 

Belize C Barrier 13.8 [13.4-14.3] 16.7 [16.3-17.3] 13.6 [13.1-14.1] 12.5 [12.1-13] 16.3 [15.7-16.9] 14 [13.5-14.6] 
Belize Gulf 
Honduras 14.1 [13.6-14.6] 14.8 [14.4-15.3] 15.5 [14.9-16.1] 14.1 [13.6-14.6] 18.2 [17.4-18.9] 12.9 [12.5-13.4] 

Belize Inner Barrier 14 [13.5-14.5] 16.3 [15.8-16.7] 13.6 [13.1-14.2] 11 [10.7-11.4] 16.1 [15.5-16.7] 14.7 [14.1-15.2] 

Belize S Barrier 13.4 [12.9-13.9] 17.5 [16.9-18.1] 15.2 [14.7-15.8] 11.6 [11.2-12] 16.3 [15.8-17] 15.5 [14.9-16.1] 

BVI 19.1 [18.4-19.8] 21.3 [20.7-22] 18.5 [17.8-19.3] 16.9 [16.3-17.4] 19.6 [18.9-20.4] 20.4 [19.6-21.1] 

Cuba Jardines 17.2 [16.6-17.7] 21.7 [21.1-22.4] 17.3 [16.6-17.9] 15.6 [15.1-16.1] 21.4 [20.6-22.4] 16.9 [16.2-17.5] 

Cuba North 14.8 [14.4-15.4] 17.5 [17-18] 15 [14.5-15.6] 14 [13.6-14.5] 19.5 [18.8-20.3] 13.6 [13.1-14.2] 

Cuba Southeast 16.5 [15.9-17.1] 21.6 [21-22.3] 16.3 [15.7-16.9] 16 [15.5-16.6] 18.5 [17.8-19.2] 16.1 [15.5-16.7] 

Curacao Northwest 17.2 [16.6-17.8] 24.5 [23.8-25.2] 14.9 [14.4-15.5] 16.6 [16.1-17.2] 17.5 [16.9-18.1] 17.6 [17-18.2] 

DR North 10.4 [10.1-10.7] 17.2 [16.7-17.8] 15.6 [14.9-16.2] 8.2 [8-8.5] 15.4 [14.8-16] 11.3 [11-11.8] 

DR South 13.7 [13.2-14.2] 17 [16.5-17.5] 14.4 [13.9-14.9] 8.6 [8.4-8.9] 14.2 [13.7-14.8] 13.3 [12.8-13.9] 

Florida Lower Keys 7.3 [7.1-7.6] 12 [11.7-12.4] 6.5 [6.2-6.7] 10 [9.6-10.3] 9.4 [9-9.8] 5.4 [5.2-5.6] 

Grand Cayman 16.4 [15.9-17] 24.3 [23.5-25] 21.9 [21.1-22.8] 11.5 [11.2-11.9] 15.4 [14.8-16] 15 [14.5-15.6] 

Grenadines 12.7 [12.2-13.2] 14.9 [14.5-15.3] 12.9 [12.4-13.5] 9.9 [9.6-10.2] 13.4 [13-13.9] 12.8 [12.4-13.2] 
Honduras Bay 
Islands 20.2 [19.5-21] 27 [26.1-27.9] 19.3 [18.5-20] 19 [18.3-19.7] 22.1 [21.3-23] 21.9 [21.1-22.7] 

Honduras Nearshore 16.1 [15.5-16.7] 28.2 [27.2-29] 16.8 [16.3-17.5] 10.3 [10-10.6] 27.8 [26.9-28.9] 18.5 [17.8-19.1] 

Jamaica MB 11.9 [11.5-12.3] 11.8 [11.4-12.1] 12.8 [12.3-13.3] 9.5 [9.2-9.8] 12.8 [12.3-13.3] 12 [11.6-12.5] 

Jamaica W 12.3 [11.9-12.8] 16 [15.5-16.4] 13.6 [13.1-14.2] 9.2 [9-9.5] 15 [14.4-15.6] 12 [11.5-12.4] 

Jamica NC 12.2 [11.8-12.6] 15.8 [15.3-16.3] 12.9 [12.4-13.4] 9.1 [8.9-9.4] 14.4 [13.9-15] 11.8 [11.4-12.3] 

Little Cayman 15.9 [15.3-16.5] 24.3 [23.6-25] 17 [16.3-17.7] 11.5 [11.2-11.9] 15.7 [15.1-16.3] 15.6 [15-16.1] 

Mexico NE Yucatan 11.4 [10.9-11.8] 15.9 [15.4-16.4] 11.6 [11.2-12] 10.2 [9.8-10.5] 14.9 [14.4-15.5] 13 [12.5-13.5] 

Mexico SE Yucatan 12.6 [12.2-13] 17.6 [16.9-18.4] 11.8 [11.3-12.3] 9.9 [9.5-10.2] 19.7 [18.8-20.6] 15.9 [15.4-16.6] 
Puerto Rico La 
Paguera 7.8 [7.6-8.1] 16.7 [16.2-17.3] 8.2 [7.9-8.5] 12.9 [12.4-13.3] 11 [10.6-11.4] 8.7 [8.4-9] 

Puerto Rico Vieques 15.3 [14.7-15.9] 22 [21.4-22.7] 16.3 [15.7-16.9] 12.5 [12.1-12.9] 17.5 [16.9-18.2] 15.2 [14.7-15.8] 

St Kitts & Nevis 14.4 [13.9-14.9] 17.1 [16.6-17.7] 13.3 [12.7-13.8] 15.9 [15.4-16.4] 16.8 [16.1-17.4] 13.1 [12.7-13.5] 

Turks & Caicos 15.1 [14.5-15.6] 17.7 [17.2-18.3] 14.8 [14.2-15.4] 11.7 [11.4-12.1] 18.2 [17.5-18.9] 17.2 [16.7-17.8] 

USVI St John 6.4 [6.1-6.6] 17.4 [16.9-17.9] 7.4 [7.2-7.7] 10.5 [10.2-10.8] 10 [9.7-10.4] 8.5 [8.2-8.8] 

USVI St. Thomas 9.3 [8.9-9.6] 16.5 [16.1-17] 8.4 [8.1-8.7] 11.9 [11.5-12.3] 14.4 [13.9-15] 9.1 [8.8-9.4] 
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APPENDIX G RANDOM EFFECTS CARIBBEAN BIOMASS 
 

Figure G.1 Distribution of residuals for random effect of dataset for each fish variable. Numbers 
along bottom are associated with DatasetID that is included in accompanying dataset. 
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APPENDIX H CARIBBEAN BIOMASS CORRELATIONS 
 

Figure H.1 Correlations for each combination of total and functional group biomass (g m-2); 
bolded numbers in upper left corner are Pearson's product-moment correlations and only 
significant correlations are shown. 
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APPENDIX I CARIBBEAN LATITUDE CORRELATIONS 
 

Figure I.1 Correlations for latitude and longitude compared to total and functional group biomass 
(g m-2) (left) and mean size (right); bolded numbers in upper left corner are Pearson's product-
moment correlations and only significant correlations are shown. 
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APPENDIX J CARIBBEAN RESIDUALS VERSUS TIME 
 

Figure J.1 Residuals from general linear mixed effects models of total and functional group 
biomass compared with year, and lowess smoother (red line) showing no trend across time. 
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APPENDIX K HAWAII DATASET DETAILS 
 

Data from multiple sources were compiled into a standardized format from large scale 

monitoring programs in the Main Hawaiian Islands (Table K.1).  

Table K.1 Description of datasets used in analyses of reef regimes. SPC is stationary point count 
method, and LPI is line-point-intercept method.  

Dataset 
Fish 

method 
Benthic 
method N Year range 

Depth 
range (m) 

Coral Reef Assessment and Monitoring Program - University of Hawaii 

 
Belt video 52 1999 - 2002 1.0 - 13.0 

  
photo-quad 46 2003 - 2012 1.0 - 13.0 

NOAA Coral Reef Ecosystem Program* 

 
Belt 

LPI or photo-
quad 117 2005 - 2008 7.5 - 17.0 

 
SPC photo-quad 708 2008 - 2013 0.0 - 30.0 

Division of Aquatic Resources 

 
Belt photo-quad 512 2004 - 2012 0.0 - 15.2 

 
WHAP Belt photo-quad 122 2003 - 2013 1.5 - 15.0 

Fisheries Ecology Research Lab - University of Hawaii 

 
Belt 

quadrat or 
photo-quad 242 1993 - 2013 0.0 - 16.7 

NOAA Fish Habitat Utilization Study 

 
Belt quadrat 766 2002 - 2008 0.5 - 32.0 

National Park Service 

 
Belt photo-quad 174 2004 - 2013 11.0 - 21.4 

The Nature Conservancy Hawaii Marine Program 

 
Belt photo-quad 606 2009 - 2013 1.0 - 20.7 

   
3345 1993 - 2013 0.0 - 30.0 

 

* Coral Reef Ecosystem Program; Pacific Islands Fisheries Science Center (2013). National 
Coral Reef Monitoring Program: Stratified Random surveys (StRS) of Reef Fish, including 
Benthic Estimate Data of the U.S. Pacific Reefs since 2007. NOAA National Centers for 
Environmental Information. Unpublished Dataset. 
https://inport.nmfs.noaa.gov/inport/item/24447 
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APPENDIX L HAWAII SPATIAL SCALE ANALYSIS 
 

Before conducting analyses of reef regimes, semivariance and lacunarity analyses were used to 

assess the appropriate spatial scale to conduct the analysis. The goal was both to avoid violating 

assumptions of statistical independence, and to optimize our ability to detect patterns in 

community level data (Turner et al. 2001).  

 

Semivariance 

We analysed semivariance to determine the spatial scale at which spatial dependence in the raw 

data could be detected (Meisel and Turner 1998). In geostatisical analysis, spatial variance, 

which follows the theoretical form: 

𝛾 ℎ =
1

2𝑛(ℎ) 𝑥" − 𝑧 𝑥" + ℎ 7
8

"9:

 

where 𝑥" is the value of the observed variable at observation i and 𝑛(ℎ) is the number of 

observations located within ℎ distance for each other, is plotted against lag distance ℎ to 

construct a spatial variogram (Dale and Fortin 2014). The empirical variogram can be 

constructed from the sampled data and compared to the theoretical form to estimate the distance 

at which spatial structure is detected. The distance where the semivariance asymptotes is referred 

to as the ‘sill’ and the corresponding value of ℎ represents the ‘practical range’ where the 

variable of interest is no longer spatially autocorrelated (Dale and Fortin 2014).  

 

For each variable used in the analysis, empirical semivariograms were constructed with the 

variog function in the geoR package in R (Diggle and Ribeiro Jr 2007) with 25 meter lag 
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distances and a maximum distance of 1000 meters. This lag distance was chosen as the common 

length of the individual transects used in the analysis, and the maximum distance was used 

because the focus of the analysis was on observations that are close together and since spatial 

variance is greatest at short distances. Semivariance assumes that data are stationary, with no 

apparent spatial gradient, and are normally distributed. To meet this assumption of normality all 

variables were fourth-root transformed. Distances were calculated by converting geographic 

coordinates to xy coordinates based on an Albers Equal Area projection customized for the 

Hawaiian Archipelago with a central meridian of 167º and standard parallels of 26.86 minus the 

latitude and 20.5 minus the longitude where the latitude origin was set to 20º. Theoretical 

semivariograms were estimated with the variofit function in the geoR package, and assumed a 

spherical model with the following form: 

𝛾 ℎ = 	1 − 1.5
ℎ
𝜙 + 0.5

ℎ
𝜙

@

 

where 𝜙 is the range parameter, and is only defined when ℎ > 𝜙. Other bounded theoretical 

forms were also fit and spherical model was retained based on visual inspection of the fit. From 

the fitted variogram the practical range was estimated as the distance where semivariance was 

equal to 95% of the sill (Ribeiro Jr and Diggle 2001). 

 

For all fish variables no levelling off of semivariance was found, and therefore no spatial 

dependence was observed. Benthic variables had a range of estimated spatial dependence 

ranging from 83 to 242 meters (Figure L.1). 
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Lacunarity 

To further determine the appropriate spatial scale to investigate reef regimes, we also considered 

how the distribution of spatial patterning in the data changed with spatial scale. Lacunarity is a 

scale dependent estimate describing the distribution of deviation from translational invariance 

(Plotnick et al. 1993). In other words, it is a measure of how variable the texture of a geometric 

object is, and can be used to describe structure in spatial data. Lacunarity was quantified as: 

𝐿 𝑠 = 	1 +
𝑣𝑎𝑟(𝜇 𝑠 )

𝑚𝑒𝑎𝑛(𝜇 𝑠 7) 

where a sequence of mean values for each variable, 𝜇 𝑠 , was calculated for each window size s, 

which ranged from 25 to 2000 by 10 meter bins.  

 

Lacunarity was plotted against distance (meters) for each variable and the distance at which the 

first derivative of lacunarity crossed zero was inspected. If spatial pattern is evident, we expect 

that lacunarity would increase before levelling off at the scale that maximizes the ratio of mean 

and variance. Thus, we calculated the distance at which the first derivative crossed zero. For all 

variables except coral cover we did not observe an initial increase in lacunarity. For coral cover, 

lacunarity reached an asymptote at 140 meters (Figure L.2). 

 

Summarizing data by spatial grouping 

Based on the maximum distance for which we detected spatial autocorrelation to be a concern 

we determined a minimum distance between transects (242 meters), and calculated means for 

groups of points. In ArcGIS we added the point layer to a topology with a spatial cluster 

tolerance of 70 meters. This uses a 70 meter by 70 meter moving window to snap point locations 
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together, where the maximum distance a coordinate could move to the centroid of a cluster is √2 

* 70m. In practice, this results in varying sizes of clusters: the maximum distance between any 

two points in a cluster was 300 meters, and the minimum distance between any two cluster 

centers was 130 meters.  
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Figure L.1 Semivariograms for benthic variables. Open circles and black lines are empirical 
semivariograms at 25 meter lag distances. Red lines are theoretical semivariograms based on a 
spherical model, and the vertical dashed lines corresponds to the estimated practical range in 
meters where the semivariance is 95% of the sill.  
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Figure L.2 Lacunarity as a function of distance (meters) (A), and first derivative of lacunarity as 
a function of distance (B) for coral cover. 
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APPENDIX M HAWAII FISH SPECIES BY FUNCTIONAL GROUP 
 

Table M.1 Fish species used in analysis of Hawaiian reef regimes in Chapter 3 

Predators Browsers Secondary Consumers 
 Antennarius commersoni  Calotomus carolinus  Abudefduf abdominalis 
 Aphareus furca  Calotomus zonarchus  Abudefduf sordidus 
 Aprion virescens  Kyphosus bigibbus  Abudefduf vaigiensis 
 Aulostomus chinensis  Kyphosus cinerascens  Acanthurus thompsoni 
 Carangoides orthogrammus  Kyphosus hawaiiensis  Albula glossodonta 
 Caranx ignobilis  Kyphosus vaigiensis  Aluterus scriptus 
 Caranx lugubris  Naso lituratus  Amblycirrhitus bimacula 
 Caranx melampygus  Naso unicornis  Anampses chrysocephalus 
 Caranx sexfasciatus Grazers  Anampses cuvier 
 Carcharhinus amblyrhynchos  Acanthurus achilles  Apogon erythrinus 
 Carcharhinus galapagensis  Acanthurus blochii  Apogon kallopterus 
 Cephalopholis argus  Acanthurus dussumieri  Apogon maculiferus 
 Epinephelus quernus  Acanthurus guttatus  Apolemichthys arcuatus 
 Fistularia commersonii  Acanthurus leucopareius  Arothron hispidus 
 Oxycheilinus unifasciatus  Acanthurus lineatus  Arothron meleagris 
 Pseudocaranx cheilio  Acanthurus maculiceps  Asterropteryx semipunctatus 
 Saurida flamma  Acanthurus nigricans  Atherinomorus insularum 
 Saurida gracilis  Acanthurus nigrofuscus  Balistes polylepis 
 Scomberoides lysan  Acanthurus nigroris  Blenniella gibbifrons 
 Seriola dumerili  Acanthurus olivaceus  Bodianus albotaeniatus 
 Seriola rivoliana  Acanthurus triostegus  Bothus mancus 
 Sphyraena barracuda  Acanthurus xanthopterus  Bothus pantherinus 
 Sphyraena helleri  Zebrasoma flavescens  Brotula multibarbata 
 Synodus binotatus  Zebrasoma veliferum  Callionymus comptus 
 Synodus dermatogenys Scrapers  Cantherhines dumerilii 
 Synodus ulae  Chlorurus perspicillatus  Cantherhines sandwichiensis 
 Synodus variegatus  Chlorurus spilurus  Cantherhines verecundus 
 Triaenodon obesus  Scarus dubius  Canthidermis maculatus 
 Tylosurus crocodilus  Scarus psittacus  Canthigaster amboinensis 
   Scarus rubroviolaceus  Canthigaster coronata 
  

  
 Canthigaster epilampra 

 
   

 Canthigaster jactator 
 

   
 Canthigaster solandri 

 
   

 Caracanthus typicus 

    
 Carangoides ferdau 

    
 Centropyge fisheri 

    
 Centropyge flavissima 

    
 Centropyge interrupta 
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Centropyge loriculus Echeneis naucrates 
Centropyge potteri Enneapterygius atriceps 
Chaetodon auriga Entomacrodus marmoratus 
Chaetodon citrinellus Epibulus insidiator 
Chaetodon ephippium Eviota epiphanes 
Chaetodon fremblii Evistias acutirostris 
Chaetodon kleinii Exallias brevis 
Chaetodon lineolatus Foa brachygramma 
Chaetodon lunula Forcipiger flavissimus 
Chaetodon lunulatus Forcipiger longirostris 
Chaetodon miliaris Genicanthus personatus 
Chaetodon multicinctus Gnathanodon speciosus 
Chaetodon ornatissimus Gnatholepis anjerensis 
Chaetodon quadrimaculatus Gnatholepis caurensis hawaiiensis 
Chaetodon reticulatus Gomphosus varius 
Chaetodon tinkeri Goniistius vittatus 
Chaetodon trifascialis Gunnellichthys curiosus 
Chaetodon unimaculatus Halichoeres ornatissimus 
Cheilio inermis Hemiramphus depauperatus 
Chromis acares Hemitaurichthys polylepis 
Chromis agilis Hemitaurichthys thompsoni 
Chromis hanui Heniochus diphreutes 
Chromis leucura Heteropriacanthus cruentatus 
Chromis ovalis Hippocampus fisheri 
Chromis vanderbilti Hippocampus kuda 
Chromis verater Iniistius aneitensis 
Cirrhilabrus jordani Iniistius pavo 
Cirrhitops fasciatus Iniistius umbrilatus 
Cirrhitus pinnulatus Istiblennius zebra 
Cirripectes obscurus Kuhlia sandvicensis 
Cirripectes vanderbilti Labroides phthirophagus 
Coris ballieui Lactoria fornasini 
Coris flavovittata Lutjanus fulvus 
Coris gaimard Lutjanus kasmira 
Coris venusta Macropharyngodon geoffroy 
Coryphopterus duospilus Malacanthus brevirostris 
Ctenochaetus hawaiiensis Melichthys niger 
Ctenochaetus strigosus Melichthys vidua 
Cymolutes lecluse Microcanthus strigatus 
Cymolutes praetextatus Monotaxis grandoculis 
Dascyllus albisella Mugil cephalus 
Dendrochirus barberi Mulloidichthys flavolineatus 
Diodon holocanthus Mulloidichthys mimicus 
Diodon hystrix Mulloidichthys pflugeri 
Doryrhamphus excisus Mulloidichthys vanicolensis 
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Myripristis amaena Pristiapogon kallopterus 
Myripristis berndti Pristiapogon taeniopterus 
Myripristis chryseres Pristilepis oligolepis 
Myripristis kuntee Pseudanthias bicolor 
Myripristis vittata Pseudanthias hawaiiensis 
Naso annulatus Pseudanthias thompsoni 
Naso brevirostris Pseudocheilinus evanidus 
Naso caesius Pseudocheilinus octotaenia 
Naso hexacanthus Pseudocheilinus tetrataenia 
Naso maculatus Pseudojuloides cerasinus 
Nemateleotris magnifica Psilogobius mainlandi 
Neomyxus leuciscus Ptereleotris heteroptera 
Neoniphon aurolineatus Pterois sphex 
Neoniphon sammara Rhinecanthus aculeatus 
Novaculichthys taeniourus Rhinecanthus rectangulus 
Omobranchus rotundiceps Sargocentron diadema 
Oplegnathus fasciatus Sargocentron ensifer 
Oplegnathus punctatus Sargocentron punctatissimum 
Opua nephodes Sargocentron spiniferum 
Ostorhinchus maculiferus Sargocentron tiere 
Ostracion meleagris Sargocentron xantherythrum 
Ostracion whitleyi Scorpaenodes kelloggi 
Oxycheilinus bimaculatus Scorpaenodes parvipinnis 
Oxycirrhites typus Scorpaenopsis brevifrons 
Parablennius thysanius Scorpaenopsis cacopsis 
Paracirrhites arcatus Scorpaenopsis diabolus 
Paracirrhites forsteri Sebastapistes ballieui 
Parapercis schauinslandi Sebastapistes coniorta 
Parupeneus chrysonemus Stegastes marginatus 
Parupeneus cyclostomus Stethojulis balteata 
Parupeneus insularis Sufflamen bursa 
Parupeneus multifasciatus Sufflamen fraenatus 
Parupeneus pleurostigma Taenianotus triacanthus 
Parupeneus porphyreus Thalassoma ballieui 
Pervagor aspricaudus Thalassoma duperrey 
Pervagor spilosoma Thalassoma lutescens 
Plagiotremus ewaensis Thalassoma purpureum 
Plagiotremus goslinei Thalassoma quinquevittatum 
Platybelone argalus Thalassoma trilobatum 
Plectroglyphidodon imparipennis Trimma taylori 
Plectroglyphidodon johnstonianus Upeneus arge 
Pleurosicya micheli Wetmorella albofasciata 
Priacanthus meeki Xanthichthys auromarginatus 
Priolepis aureoviridis Xanthichthys mento 
Priolepis eugenius Zanclus cornutus 
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APPENDIX N MODEL-BASED CLUSTER ANALYSIS MODEL SELECTION 
 

To identify regimes, model-based cluster analysis using the mclust package in R was performed 

(Fraley et al. 2012). Variables were modeled as Gaussian mixture models, and parameters were 

found with the expectation-maximization algorithm. The corresponding densities are ellipsoidal 

and can take different shapes based on geometric features (shape, volume and orientation), which 

are also parameterized in mclust (Figure N.1) (Fraley and Raftery 2002; Fraley et al. 2012). 

Model-based cluster analysis of the 10 fish and benthic variables revealed 5 distinct regimes 

based on a model selection of models with varying shapes, the final model was ellipsoidal, with 

varying volume, shape, and orientation (logL = 6450.6, n=1027, df=329, BIC=10610.7) 
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Figure N.1 Plot of Bayesian Information Criterion (BIC) for cluster analysis model selection 
based on models with equal or variable geometric features and different numbers of clusters.  

The best model has the highest BIC (VVV, 5 components). Model parameterizations are: EII – 
equal volume, equal shape, VII – variable volume, equal shape, EEI – equal volume, equal 
shape, coordinate axes orientation, VEI – variable volume, equal shape, coordinate axes 
orientation, EVI – equal volume, variable shape, coordinate axes orientation, VVI – variable 
volume, variable shape, equal axes orientation, EEE – equal volume, equal shape, equal 
orientation, EEV – equal volume, equal shape, variable orientation, VEV – variable shape, equal 
volume, variable orientation, and VVV – variable volume, variable shape, variable orientation. 
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APPENDIX O TIME SERIES DETAILS 
 

Temporal patterns across regimes were assessed for a total of 65 sites that were located 

throughout the study area (Figure O.1). These sites were located across 14 reef tracts, so some 

sites were spatially clustered because they occur in areas that tend to be more frequently 

monitored. Overall, 112 transitions were observed (Table O.1). At each site for each year the 

regime was predicted from the observed values of the 10 functional groups, and observations 

were retained for only those with at least a 95% probability of occurring in the predicted regime. 

We also plotted the observations in multivariate space for 8 time series with at least four years of 

data between 2000 and 2012 (Figure O.2). 

 

We tested the sensitivity of analysing data from all 65 sites compared with only analysing those 

with longer time series (≥ 5 years) by calculating binomial confidence intervals for each 

transition in each case (Figure O.3). Binomial confidence intervals were produced with the 

binconf function in the Hmisc package in R (Harrell 2016) using the Wilson interval. Overall 

patterns were similar with overlapping confidence intervals in all cases. 
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Figure O.1 Distribution of study sites with time series data used to investigate temporal patterns 
across regimes. 
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Figure O.2 Examples from sites with at least 4 years of observations plotted on top of ellipses 
from Figure 1, colored dots and points correspond to regime (black dots used for Regime 5), and 
timeline on each panel. Note that some sites do not move much (e.g. Kalaupapa), while others 
transition through a number of defined regimes (e.g. Kahekili). 
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Table O.1 Predicted regime by year for 65 sites where data were available for at least three years. 

   Regime 
General area Latitude Longitude 00 02 03 04 05 06 07 08 09 10 11 12 
Honolua 21.0146 -156.6395  5    5 5 4 2    
Molokini 20.6324 -156.4970 4   4 4 4 4  4 4  4 
Kalaupapa 21.1865 -157.0135      2 2 2  2 2  
Kalaupapa 21.1987 -156.9872      2 2     2 
Kalaupapa 21.1939 -156.9864      2 2 2 2  2 2 
Kalaupapa 21.2068 -156.9845      2 2  2  2 2 
Kalaupapa 21.2087 -156.9826       2 4 1 2 2 1 
Kalaupapa 21.2109 -156.9808      2 2 2 2 2  2 
Kalaupapa 21.2145 -156.9681      2 2 2  2 2 2 
Kalaupapa 21.2138 -156.9652      2 2 2 2 2 2 2 
Kalaupapa 21.2006 -156.9552      2 2 4  2  2 
Kalaupapa 21.1914 -156.9488      2 2 2 2 2  2 
Kalaupapa 21.1885 -156.9478      2 2 2 2 2 2 2 
Kalaupapa 21.1827 -156.9473      1 2 2 2 2 2 2 
Kalaupapa 21.1718 -156.9212      2 2  4 4 2 4 
Kalaupapa 21.1716 -156.9165       2 2 4 4 1 4 
Kanahena 20.6014 -156.4380      4 4 2 4 4  4 
Kalaupapa 21.2085 -156.9594      2 2  2 2  2 
Kahekili 20.9459 -156.6953        4 4  5 5 
Kahekili 20.9485 -156.6943        5 4 5 5 2 
Kahekili 20.9427 -156.6945         4  5 5 
Kahekili 20.9454 -156.6939        5 4  5 1 
Kahekili 20.9507 -156.6932        4 4 5 5 2 
Kahekili 20.9382 -156.6937        5 4 1   
Kahekili 20.9397 -156.6935         4  5 5 
Kahekili 20.9409 -156.6930        1 4   1 
Pupukea-Waimea 21.6468 -158.0658 4     1 2      
Kahekili 20.9470 -156.6942        4 4 1 5  
Kahekili 20.9365 -156.6934         4 5 5  
Napili 21.0031 -156.6734  4    4 4     4 
Napili 21.0025 -156.6710  1    4 4   4   
Napili 21.0059 -156.6680  1    1 1      
Honokaua 21.0085 -156.6498  1    1 1     1 
Honokaua 21.0123 -156.6482  1    1 1     1 
Hanalei 22.2109 -159.5120 4  1 2         
Pupukea-Waimea 21.6482 -158.0643   2   5    2   
Pupukea-Waimea 21.6576 -158.0609   1   1 1      
Pupukea-Waimea 21.6613 -158.0582   1   1 1   2   
Hanauma 21.2684 -157.6938 4   4        4 
Kalaupapa 21.1873 -157.0247        2  2 2  
Kalaupapa 21.1828 -157.0039         4 2  2 
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Kalaupapa 21.2031 -156.9868         2  2 2 
Kalaupapa 21.2146 -156.9759       2 2   2  
Kalaupapa 21.1964 -156.9525      2  2  2   
Kalaupapa 21.1804 -156.9463          1 2 2 
Kalaupapa 20.7342 -156.9214  3    4  4     
Manele Bay 20.7415 -156.8758      4  4    1 
Napili 21.0047 -156.6729  4    4 4      
Oneloa 21.0062 -156.6575  1    1 1      
Honokaua 21.0093 -156.6512  1    1 1      
Honokaua 21.0129 -156.6421  4    4 2      
Kapulehu 19.8440 -155.9807       5    5 3 
Kealakekua-
Honaunau 19.4822 -155.9314    3  4 4      
Kealakekua-
Honaunau 19.4634 -155.9246    4  4 5      
Kealakekua-
Honaunau 19.4709 -155.9238    5  5 5      
Kealakekua-
Honaunau 19.4742 -155.9208    4  4 3      
Kealakekua-
Honaunau 19.4728 -155.9201    4  4 4      
Kealakekua-
Honaunau 20.0810 -155.8680       5   3 5  
Kealakekua-
Honaunau 19.4232 -155.9124    5  5 5      
Pupukea-Waimea 21.6295 -158.0796   1   1 1      
Pupukea-Waimea 21.6262 -158.0777   1   1 1      
Pupukea-Waimea 21.6341 -158.0751   1   1 1      
Pupukea-Waimea 21.6361 -158.0703   2   2 2      
Pupukea-Waimea 21.6539 -158.0639   4   4    2   
Pupukea-Waimea 21.6676 -158.0545   1   1 1      
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Figure O.3 Comparison of binomial probabilities for each transition with 95% confidence 
intervals, with all 65 sites in black, 27 sites with at least 4 years of data in red, and 12 sites with 
at least 6 years of data in blue. 

 


