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Abstract 

 Historically and currently virus diseases have caused significant loss to agricultural 

stakeholders in HI (HI) and worldwide. Pineapple was one of HI’s most important agricultural 

crops for many years though recently production has declined. Mealybug wilt of pineapple 

(MWP) is one of the most destructive diseases of pineapple worldwide and the causal agents are 

single-stranded RNA (ssRNA) viruses know as Pineapple mealybug wilt-associated viruses 

(PMWaVs) of the Ampelovirus genus of the Closteroviridae family. Though the disease etiology 

of MWP is not completely understood much of the genomes of the various PMWaVs have been 

characterized previously; this study furthers the characterization of several PMWaVs. To clarify 

the mysterious etiology of MWP it is important that the function of the genes of the various 

PMWaVs are well understood, underlying the importance of genome characterization.  

The genomes of PMWaV-1, PMWaV-2 and PMWaV-3 were first characterized in HI 

prior to this study, but only PMWaV-1 has been completely characterized. Two putative 

PMWaV member species: PMWaV-4 and PMWaV-5 had been reported from HI and Australia 

respectively. The putative PMWaV-4 was first reported in 2005. The PMWaV-4 heat shock 

protein 70 (HSP70) was the only gene reported. Prior to 2011, the criteria for species 

demarcation in the Ampelovirus genus was based off a 10% divergence of the amino acid (aa) 

sequence of the HSP70, RNA dependent RNA polymerase (RdRp) and coat protein (CP) genes; 

in 2011, the criteria was changed to a 25% divergence of the same three genes. In this study we 

characterize the remainder of the PMWaV-4 genome. Total RNA was used as the template for 

cDNA library construction and subjected to high-throughput sequencing (HTS), on an Illumina 

TruSeq 500 platform, multiple assembly pipelines were utilized for contig assembly and a 

13,150 nucleotide (nt) scaffold was assembled that shares a high level of sequence homology 

with the 13,070 nt PMWaV-1 reference genome (AF414119). The aa similarity of the three 

species demarcation genes of PMWaV-4 compared to PMWaV-1 is 89, 87 and 85% for the 

RdRp, HSP70 and CP respectively. Based off the sequence similarity to PMWaV-1 we have 

determined PMWaV-4 to be a strain of PMWaV-1 rather than a distinct species. Additionally, 

HTS assemblies of PMWaV-1, PMWaV-2 and PMWaV -3 genomes shared a 99, 99 and 97%, 

respectively, nt similarity to their originally published genomes and supplemented the 
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preexisting PMWaV-2 and PMWaV-3 sequences with 166 and 641 nt, respectively, in the 5’ 

termini of the viruses.  

The potyvirus Banana bract mosaic virus (BBrMV) and badnavirus Canna yellow mottle 

virus (CaYMV) were previously identified infecting Alpinia purpurata (flowering ginger) in HI. 

Recently, farmers growing flowering ginger have reported severe virus-like disease symptoms 

from multiple farms on Oahu, HI. Surveys were conducted in September 2016 and April 2018 

molecular and serological techniques were used to assay symptomatic flowering ginger for the 

presence of the previously identified viruses. CaYMV was found to be widespread at all but one 

location however no BBrMV was detected in any samples from either survey. Characteristic 

symptoms of CaYMV and BBrMV were not observed, however streaking symptoms in CaYMV 

and BBrMV negative leaves, stems and bracts were observed. The lack of conclusive evidence 

linking CaYMV or BBrMV infection with the symptomatic flowering ginger assayed during this 

study may indicate the presence of another pathogen’s involvement. Further study is necessary to 

conclude the casual organism of the disease found on flowering ginger. 

Honolulu, HI is home to many community gardens which function to provide many urban 

dwellers the privilege of access to land for growing of edible and horticultural plants. 

Unfortunately, these areas are often ‘hotbeds’ of disease and pathogen dispersal. Recently, we 

identified several different plants infected with viruses from diverse crop and horticultural 

species. Potyvirus-specific ELISA detected potyviruses in symptomatic Passiflora spp. 

(passionfruit) and Phaseolus lunatus (lima bean). RT-PCR assay using degenerate potyvirus-

specific primers then confirmed the ELISA results. Amplicons from the RT-PCR assay were 

cloned and sequenced using Sanger sequencing. Sequencing results revealed the potyviruses to 

be Watermelon mosaic virus (WMV) and Bean common mosaic virus (BCMV) infecting and 

passionfruit and lima bean respectively. WMV had previously been reported infecting 

passionfruit in HI. This was the first report of BCMV in HI and the sequence homology showed 

a high degree, 92% nt and 100% aa similarity to a BCMV isolate from China. A BCMV-specific 

ELISA was used to reconfirm the sequencing results. The unusually diverse amount of plants 

grown in a community garden as well as the high volume of individuals with access to the area 

provide the ideal circumstances for dissemination of plant pathogens. 

  



iv 

Table of Contents 

Acknowledgements .......................................................................................................................... i 

Abstract ........................................................................................................................................... ii 

Table of Contents ........................................................................................................................... iv 

List of Tables ................................................................................................................................. vi 

List of Figures ............................................................................................................................... vii 

List of Abbreviations ................................................................................................................... viii 

Chapter 1: Literature Review .......................................................................................................... 1 

1.1 History of Mealybug Wilt of Pineapple ................................................................... 1 

1.2 Viruses, Vector and Etiology of MWP Disease ....................................................... 1 

1.3 Detection of PMWaV ............................................................................................... 2 

1.4 Distribution of PMWaV ........................................................................................... 2 

Chapter 2: Further Genome Characterization of PMWaVs ............................................................ 5 

2.1 Abstract .................................................................................................................... 5 

2.2 Introduction .............................................................................................................. 6 

2.3 Materials and Methods ........................................................................................... 10 

2.3.1 Plant Material ......................................................................................................... 10 

2.3.2 Total Nucleic Acid Isolation .................................................................................. 10 

2.3.4 RT-PCR and Sanger Sequencing ........................................................................... 10 

2.3.5 Illumina Sequencing ............................................................................................... 11 

2.3.6 De Novo Assembly and Mapping .......................................................................... 11 

2.3.7 Multi-loci Phylogenetic Analysis ........................................................................... 12 

2.3.8 Tissue Blot Immunoassay ...................................................................................... 12 

2.4 Results .................................................................................................................... 14 

2.4.1 RT-PCR .................................................................................................................. 14 

2.4.2 Further Genome Characterization of PMWaV-4 ................................................... 15 

2.4.3 Further Genome Characterization of PMWaV-1 ................................................... 28 

2.4.4 Further Genome Characterization of PMWaV-2 ................................................... 28 

2.4.5 Further Genome Characterization of PMWaV-3 ................................................... 28 

2.4.6 Tissue Blot Immunoassay ...................................................................................... 33 

2.5 Discussion .............................................................................................................. 33 

Chapter 3: Detection of Viruses from Symptomatic Ginger in Hawaii ........................................ 38 

3.1 Abstract .................................................................................................................. 38 

3.2 Introduction ............................................................................................................ 39 

3.3 Materials and Methods ........................................................................................... 40 

3.3.1 DNA Isolation ........................................................................................................ 40 

3.3.2 PCR of CaYMV ..................................................................................................... 40 

3.3.3 RNA Isolation ......................................................................................................... 40 

3.3.4 cDNA Synthesis ..................................................................................................... 40 

3.3.5 RT-PCR Assay ....................................................................................................... 41 

3.3.6 BBrMV ELISA ....................................................................................................... 41 

3.4 Results .................................................................................................................... 44 

3.4.1 BBrMV ELISA ....................................................................................................... 44 



v 

3.4.2 PCR Assay of CaYMV ........................................................................................... 44 

3.4.3 RT-PCR Assay of Potyviruses ............................................................................... 44 

3.5 Discussion .............................................................................................................. 48 

Chapter 4: Identification of New Plant Hosts/Viruses in Hawaii ................................................. 50 

4.1 Abstract .................................................................................................................. 50 

4.2 Introduction ............................................................................................................ 51 

4.3 Materials and Methods ........................................................................................... 51 

4.3.1 Potyvirus ELISA .................................................................................................... 51 

4.3.2 RNA Isolation ......................................................................................................... 51 

4.3.3 cDNA Synthesis ..................................................................................................... 51 

4.3.4 RT-PCR Assay ....................................................................................................... 52 

4.3.5 Sanger Sequencing ................................................................................................. 52 

4.3.6 BCMV ELISA ........................................................................................................ 52 

4.4 Results .................................................................................................................... 54 

4.4.1 Potyvirus-specific ELISA ....................................................................................... 54 

4.4.2 RT-PCR and Sanger Sequencing ........................................................................... 54 

4.4.3 BCMV ELISA ........................................................................................................ 54 

4.5 Discussion .............................................................................................................. 57 

Chapter 5 ....................................................................................................................................... 59 

References ..................................................................................................................................... 62 

  



vi 

List of Tables 

Table 2.1 Primers used to amplify the PMWaVs ......................................................................... 13 

Table 2.2 PMWaV-4 contigs assembled from HTS dataset 1 ...................................................... 18 

Table 2.3 PMWaV-4 HTS assembly similarity to PMWaV-1 (AF414119) ................................. 19 

Table 2.4 PMWaV-4 contigs assembled from HTS dataset 2 ...................................................... 22 

Table 2.5 Amino acid similarity of ampeloviruses to PMWaV-4 ................................................ 26 

Table 2.6 PMWaV-1 contigs assembled from HTS dataset 1 ...................................................... 30 

Table 2.7 PMWaV-2 contigs assembled from HTS dataset 1 ...................................................... 30 

Table 2.8 PMWaV-3 contigs assembled from HTS dataset 1 ...................................................... 30 

Table 2.9 PMWaV-5 amino acid similarity to PMWaV-1 and PMWaV-3 .................................. 36 

Table 3.1 Primers used to detect viruses in flowering ginger ....................................................... 43 

Table 3.2 Surveys of BBrMV and CaYMV in flowering ginger .................................................. 46 

Table 4.1 Primers used to detect potyviruses................................................................................ 53 

Table 4.2 Virus infection in symptomatic plants .......................................................................... 56 

 

  



vii 

List of Figures 

Figure 1.1 Mealybug vectors, virus particles and etiology of MWP disease ................................. 3 

Figure 2.1 Genome organization of PMWaVs prior to this study .................................................. 9 

Figure 2.2 RT-PCR of PMWaVs HSP70 ...................................................................................... 14 

Figure 2.3 PMWaV-4 HTS assembly similarity to PMWaV-1 .................................................... 17 

Figure 2.4 RT-PCR with PMWaV-4 HTS assembly specific primers ......................................... 21 

Figure 2.5 PMWaV-4 sequences throughout the stages of HTS genome assembly ..................... 25 

Figure 2.6 Multi-loci phylogenetic analysis of PMWaV-4 similarity to ampeloviruses .............. 27 

Figure 2.7 PMWaV-1, -2 & -3 HTS assembly comparisons ........................................................ 31 

Figure 2.8 Genome organization of PMWaV HTS assemblies .................................................... 32 

Figure 3.1 Symptoms of flowering ginger infected with BBrMV & CaYMV ............................. 42 

Figure 3.2 PCR of CaYMV .......................................................................................................... 45 

Figure 3.3 ‘Streaking’ and ‘dieback’ symptoms on flowering ginger .......................................... 47 

Figure 4.1 Symptomatic plants from a community garden in Honolulu, HI ................................ 55 

 

  



viii 

List of Abbreviations 

Acronym    Definition 

BBrMV Banana bract mosaic virus 

BCMV Bean common mosaic virus 

CaYMV Canna yellow mottle virus 

MWP Mealybug wilt of pineapple 

PMWaVs Pineapple mealy bug wilt associated viruses 

PMWaV-1 Pineapple mealy bug wilt associate virus-1 

PMWaV-1 HN Pineapple mealy bug wilt associate virus-1 isolate Hainan 

PMWaV-2 Pineapple mealy bug wilt associate virus-2 

PMWaV-3 Pineapple mealy bug wilt associate virus-3 

PC or PCV Pineapple Closterovirus 

GLRaV-1 Grapevine leaf roll-associated virus-1 

GLRaV-3 Grapevine leaf roll-associated virus-3 

GLRaV-4 Grapevine leaf roll-associated virus-4 

LChV-2 Little cherry virus-2 

PBNSPaV Pea bark necrosis stem pitting-associated virus 

WMV Watermelon mosaic virus 

RNA ribonucleic acid 

DNA deoxyribonucleic acid 

ssRNA single-stranded RNA 

dsRNA double-stranded RNA 

cDNA complementary DNA 

aa amino acid 

nt nucleotide 

CP coat protein 

CPd coat protein duplicate 

HEL helicase 

MET methyltransferase 

HSP heat shock protein 

RdRp RNA dependent RNA polymerase 

SHP small hydrophobic protein 

ORF open reading frame  

PCR polymerase chain reaction 

RT-PCR reverse transcriptase PCR 

qPCR quantitative PCR 

STDP-PCR single tube dual primer PCR 

IMC-RT-PCR immunomagnetic capture RT-PCR 

ELISA enzyme linked immunosorbent assay 

ISEM immunosorbent electron microscopy 

TBIA tissue blot immunoassay 

MAb monoclonal antibody 

USDA-ARS United State Department of Agriculture -Agricultural Research Service 

NCGR National Clonal Germplasm Repository 

PBARC Pacific Basin Agricultural Research Center 

NCBI  National Center for Biotechnology Information 

BLAST Basic Local Alignment Search Tool 

HTS high-throughput sequencing 

contig contiguous consensus sequence 

mM millimolar 

µl microliter 

ng nanogram  



ix 

This page is intentionally left blank.



1 

Chapter 1 

Literature Review 

 

1.1 History of Mealybug Wilt of Pineapple 

Mealybug wilt of pineapple (MWP) disease was first described in Hawaii (HI) in 19101. 

The unusual disease etiology that involves the association of wilt, ants and mealybugs was first 

reported in 1925 when a relationship between ants, which protect the mealybugs and the 

reduction of disease incidence was noticed2-5. Studies revealed a direct relationship between 

mealybugs and MWP disease6. Observations that mealybug exposure did not always lead to 

symptoms and mealybugs transferred from symptomatic plants to healthy plants causing 

symptoms to developed suggested a transmissible factor was involved in MWP etiology)7, 8. 

Based on these findings a hypothesis was put forth that MWP involved a virus that was involved 

in the disease etiology; possibly transmitted by mealybugs9, 10. 

 

1.2 Viruses, Vector and Etiology of MWP Disease 

Virus particles were isolated from MWP symptomatic plants in HI, Australia and Cuba 

confirming the virus hypothesis11-15. The pineapple virus was originally referred to as pineapple 

closterovirus (PC or PCV) because of its inclusion in the Closteroviridae family but was later 

renamed as Pineapple mealybug wilt associated virus (PMWaV) and classified as a member 

species of the Ampelovirus genus of the Closteroviridae family16-18. The virions of PMWaVs are 

flexuous rods are about 1200 nm in length, 10x12 nm in diameter (Figure 1.1), and have linear, 

positive single stranded RNA (ssRNA) genomes range from between 13 to 15 kb in size. 

PMWaVs are systemic, phloem limited viruses found throughout the plant in the roots, leaves, 

stems, fruits, crowns and ratoons of pineapple17. The genome of PMWaV-2 was characterized in 

HI19 and was the first PMWaV genome to be characterized, followed by PMWaV-120 and 

PMWaV-321. Interestingly, only pineapple plants subjected to the mealybug vectors: 

Dysmicoccus brevipes or D. neobrevipes (Figure 1.1) presence and infected with PMWaV-2 
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exhibit MWP symptoms (Figure 1.1); pineapple plants with the presence or absence of 

mealybugs and infections of PMWaV-1 or PMWaV-3 were not correlated with MWP symptom 

development18, 22-25. Two other pineapple viruses have been reported and proposed as tentative 

PMWaV type members: PMWaV-4 and PMWaV-5 reported in HI and Australia respectively26, 

27. 

 

1.3 Detection of PMWaV 

Monoclonal antibodies (MAbs) for PMWaV-1 and PMWaV-2 were developed and used 

in tissue blot immunoassays (TBIAs) and immunosorbent electron microscopy (ISEM)17, 23. 

Later, development of a reliable reverse-transcription PCR (RT-PCR) assays provided more 

reliable detection of PMWaVs23, 26. An immunomagnetic capture-reverse transcriptase-PCR 

(IMC-RT-PCR) assay was developed for the detection of PMWaV-1, -2 and -328. A reliable, 

rapid and sensitive real-time RT-PCR (qRT-PCR) assay was developed to detect and quantify 

PMWaV-229. A highly sensitive single-tube nested PCR assay was developed for detection of 

PMWaV-230. 

 

1.4 Distribution of PMWaV  

PMWaV-1 has been reported in Australia, Brazil, China, Costa Rica, Cuba, Guyana, 

Honduras, India, Indonesia, Kenya, Martinique, Philippines, Sri Lanka, Taiwan Thailand and 

HI21, 23, 27, 31. PMWaV-2 has been reported in Australia, Brazil, Costa Rica, Cuba, Honduras, 

Indonesia, Kenya, Malaysia, Philippines, Sri Lanka, Taiwan and HI21, 23, 31, 32. PMWaV-3 has 

been reported in Australia, Cuba, Taiwan and HI21, 25, 31, 33, 34. PMWaV-4 has only been reported 

in HI26. PMWaV-5 has only been reported in Australia27.  
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Figure 1.1 Mealybug vectors, virus particles and etiology of MWP disease 

In Hawaii, the complex etiology of MWP disease includes: (a) Pineapple mealybug wilt-

associated virus-2 (PMWaV-2) and mealybug vectors, either (b) Dysmicoccus brevipes or (c) D. 

neobrevipes. For MWP disease symptom development the presence of PMWaV-2 and 

mealybugs is required as shown in (d): from left to right: mealybug and PMWaV-2 free 

pineapple; mealybug free, PMWaV-2 infected pineapple; mealybug infected, PMWaV-2 free 

pineapple; mealybug and PMWaV-2 infected pineapple with symptoms of MWP disease  
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Chapter 2 

Further Genome Characterization of Pineapple mealybug 

wilt-associated viruses 

 

2.1 Abstract 

 The genomes of Pineapple mealybug wilt associated-virus-1 (PMWaV-1), 

PMWaV-2 and PMWaV-3 were first characterized in Hawaii (HI) prior to this study, but only 

PMWaV-1 has been completely characterized. Two putative PMWaV member species, 

PMWaV-4 and PMWaV-5, have also been reported from HI and Australia respectively. The 

putative PMWaV-4 was first reported in 2005. The PMWaV-4 heat shock protein 70 (HSP70) 

was the only gene reported. Prior to 2011, the criteria for species demarcation in the Ampelovirus 

genus was based off a 10% divergence of the amino acid (aa) sequence of the RNA dependent 

RNA polymerase (RdRp), HSP70 and coat protein (CP) genes; in 2011, the criteria was changed 

to a 25% divergence of the same three genes. In this study we characterize the remainder of the 

PMWaV-4 genome. Total RNA was used as the template for cDNA library construction and 

subjected to high-throughput sequencing (HTS), on an Illumina TruSeq 500 platform, multiple 

assembly pipelines were utilized for contig assembly and a 13,150 nucleotide (nt) scaffold was 

assembled that shares a high level of sequence homology with the 13,070 nt PMWaV-1 

(AF414119) reference genome. The aa similarity of the three species demarcation genes of 

PMWaV-4 compared to PMWaV-1 is 89, 87 and 85% for the RdRp, HSP70 and CP respectively. 

Based off the sequence similarity to PMWaV-1 we have determined PMWaV-4 to be a strain of 

PMWaV-1 rather than a distinct species. Additionally, HTS assemblies of PMWaV-1, PMWaV-

2 and PMWaV -3 genomes shared a 99, 99 and 97%, respectively, nt similarity to their originally 

published genomes and supplemented the preexisting PMWaV-2 and PMWaV-3 sequences with 

166 and 641 nt, respectively, in the 5’ termini of the viruses.  
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2.2 Introduction 

Pineapple mealybug wilt-associated virus-1 (PMWaV-1), PMWaV-2 and PMWaV-3 are 

recognized member species of the Ampelovirus genus of the Closteroviridae family. The 

Ampelovirus genus is split into two subgroups based on genome length and organization, 

subgroup I and subgroup II. Subgroup I is comprised of viral species with large and complex 

genomes greater than 17,000 nucleotide (nt) with nine to twelve open reading frames (ORFs). 

Subgroup II is comprised of viral species with smaller less complex genomes about 13,000–

14,000 nt in length with six ORFs35. It is important to note that PMWaV-2 belongs to subgroup I 

while PMWaV-1 and PMWaV-3 belong to subgroup II. In 2011, the International Committee on 

Taxonomy of Viruses (ICTV) recognized updated inclusion criteria for member species 

demarcation of ampeloviruses to require a divergence of at least 25% (previously 10%) of the 

amino acid (aa) sequence for three taxonomically relevant genes: RNA-dependent RNA 

polymerase (RdRp), heat shock protein 70 (HSP70) and coat protein (CP) genes35. 

The ampelovirus subgroup I member, PMWaV-2 (AF283103) genome was first 

characterized in Hawaii (HI), published in 2001,19 (Figure 2.1) and only lacks characterization 

of its 5’ terminus. PMWaV-2 is comprised of 10 open reading frames (ORFs) flanked by 

untranslated regions (UTR) on its 5’ and 3’ termini (though the 5’ UTR has yet to be 

characterized)19. From the 5’ terminus of PMWaV-2 ORFs include: ORF1a encodes the protease 

(PRO), methyltransferase (MTR) and helicase (HEL); ORF1b encodes the RdRp; ORF2 encodes 

p5, a small hydrophobic protein (SHP); ORF3 encodes the HSP70, ORF4 encodes p46, a protein 

of unknown function; ORF5 encodes the CP; ORF6 encodes a coat protein duplicate (CPd); 

ORF7 encodes p20, a silencing suppressor; ORF8 encodes p22 a silencing suppressor; ORF9 

encodes p6, a protein of unknown function19.  

The complete genome of PMWaV-1 (AF414119) was published in 200820 and the partial 

genome of PMWaV-3 (DQ399259) in 200921 (lacking characterization of the 5’ end); both of 

these ampeloviruses are members of subgroup II and their genomes were also first characterized 

in HI (Figure 2.1). PMWaV-1 and PMWaV-3 are similar compared to PMWaV-2 and share a 

similar genomic organization to each other, distinct from PMWaV-2. From the 5’ end of 

PMWaV-1 and PMWaV-3, following a UTR (though the UTR of PMWaV-3 remains 

uncharacterized), ORFs include: ORF1a encodes MTR and HEL; ORF1b encodes a RdRp, 
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ORF2 encodes a SHP (p6); ORF3 encodes a HSP70; ORF4 encodes p61, a protein of unknown 

function; ORF5 encodes a CP; ORF6 encodes p24, a protein of unknown function19, 21. 

The putative PMWaV-4 (EU372003) reported in 200526 in HI (Figure 2.1). Prior to this 

study, only a 1,599 nt sequence of the HSP70 gene of PMWaV-4 was characterized ; the 

PMWaV-4 HSP70 gene shared a 74% nt and 87% aa similarity to PMWaV-1 (AF414119) 

indicating the potential of a new ampelovirus member species based off of the species 

demarcation criteria at the time26. Interestingly, it was reported in China that the PMWaV-1 

isolate Hainan (PMWaV-1 HN) has an additional 72 bp in the 3’ of the HSP70 gene compared to 

other PMWaV-1 isolates36. The additional sequence on PMWaV-1 HN encodes the aa residue: 

“ETGLLTLGRQQREIIYKRHGFESN” and interestingly has a 65% similarity to that of the 3’ 

end the PMWaV-4 (EU372003) HSP70 gene which has the same increased length of coding 

region36. The putative PMWaV-5 (EF488753) was reported in 200833 in Australia (Figure 2.1). 

PMWaV-5 has partial sequences for the HEL, RdRp, p6 and HSP70 genes characterized33. What 

little sequence is available for PMWaV-4 and PMWaV-5 shares greater similarity to PMWaV-1 

and PMWaV-3 than to PMWaV-2. However, the ICTV does not consider PMWaV-4 or 

PMWaV-5 official type members of the Ampelovirus genus of the Closteroviridae family 

because of the lack of characterization of the three taxonomically relevant genes to 

ampeloviruses and therefore unknown similarity to existing member species. 

The purpose of this study is to use high-throughput sequencing (HTS) tools to further 

characterization the genomes of the PMWaVs in HI. The lack of a clearly understood etiology of 

MWP disease could potentially be due to genome length and organization differences of the 

ampelovirus subgroups to which the various PMWaV are divided. The longer, more complex 

genome of PMWaV-2 which has been shown to encode RNA silencing suppressors37 which 

could be factors in PMWaV-2’s exclusive ability, albeit in concert with mealybugs, to develop 

symptoms of MWP disease in infected plants in HI. Further complicating this PMWaV-2 was 

found not clearly associated with development of disease symptoms in Australia33, Ecuador38 or 

Cuba31. Clarity in genomic organization and gene function of all type members of the PMWaV 

complex is necessary to unravel the poorly understood etiology of MWP disease. In this study 

we use HTS tools to assemble the genomes of PMWaVs for the first time and characterize the 

genome of the putative PMWaV-4. The additional data generated from this study indicated the 

putative PMWaV-4 is a distinct strain of PMWaV-1, but not a separate ampelovirus species. In 
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the future, as more PMWaV species and/or strains are identified, it may be prudent to follow the 

same nomenclature adopted to clarify different strains of Grapevine leafroll-associated virus-4 

(GLRaV-4), where GLRaV-5, GLRaV-6 and GLRaV-9 were renamed GLRaV-4 strain 5, 6 or 

939; therefore, the designation of PMWaV-4 suggested is PMWaV-1 strain 4. However, as to not 

confuse the reader, we will refer to PMWaV-1 strain 4 as PMWaV-4 throughout the course of 

this manuscript. 
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Figure 2.1 Genome organization of PMWaVs prior to this study 

Genome organization and length (prior to this study) of Pineapple mealybug wilt-associated virus-1 (PMWaV-1, AF414119), 

PMWaV-2 (AF283103), PMWaV-3 (DQ399259) and the putative PMWaV-4, EU372003) and putative PMWaV-5 (EF467920, 

EF467921, EF467922, EF488753) 
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2.3 Materials and Methods 

2.3.1 Plant Material 

 In 2017, small leaf tissue from the crowns of pineapple fruit still attached to the mother 

plant were collected from the United States Department of Agriculture Agricultural Research 

Service National Clonal Germplasm Repository (USDA-ARS NCGR) Daniel K Inouye U.S. 

Pacific Basin Agricultural Research Center (PBARC) in Hilo HI, USA and mailed on ice for 

analysis at the Plant Virology Lab, Plant and Environmental Protection Sciences Department 

(PEPS), College of Tropical Agriculture and Human Resources (CTAHR), University of HI at 

Manoa (UHM) on Oahu, HI, USA. USDA-ARS NCGR PBARC maintains germplasm 

repositories for many important agricultural crops. Pineapple accessions previously identified to 

be infected with PMWaVs were chosen for source material for total RNA extraction and 

subsequent downstream applications. 

 

2.3.2 Total Nucleic Acid Isolation 

Approximately 0.1g of pineapple basal leaf tissue was used per total nucleic acid (TNA) 

extraction. The RNeasy Plant Mini Kit (QIAGEN, Redwood City, CA, USA) or Spectrum Plant 

Total RNA Kit (Sigma Aldrich, Milwaukee, Wis., USA) were used following the manufacturers 

protocols for the extraction of TNA. TNA extractions were immediately stored at -80°C 

following isolation. TNA extractions were not treated with DNase underlying the classification 

as TNA as samples contain both RNA and DNA. 

 

2.3.4 RT-PCR and Sanger Sequencing 

For complementary DNA (cDNA) synthesis: 2 μl of RNA extract and 1 μl of random 

primers (50 ng/μl, Promega, WI, USA) were heated at 70°C for 5 min before immediately 

quenching on ice; then 5 μl M-MLV 5X reaction buffer (Promega. USA), 5 μl dNTP’s (2.5 μM), 

0.5 μl recombinant RNasin ribonuclease inhibitor (40 U/μl, Promega, USA) and 1.0 μl M-MLV 

reverse transcriptase (200 U/μl. Promega, USA) were added and the reaction was brought to a 

final volume of 20μl with nanopure H2O and incubated for 60 min at 37°C. The PCR reagents 

used were:10 μl 2X GoTaq Green master mix (Promega, USA), 1 μl forward/reverse primers (10 
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μM; Table 2.1), 1.0 μl DNA, 7 μl nanopure H2O and 1 μl cDNA for a total volume of 20 μl. The 

cycle conditions used were: 94°C for 4min; 30 cycles at 94°C for 1min, 54°C for 1min, 72°C for 

1min; and then 72°C for 10 min. PCR amplicons were cloned into the pGEM-T Easy vector 

(Promega, Madison, WI, USA), heat shock transformed in E. coli DH5α, red/white screened 

using MacConkey agar and sequenced using Sanger sequencing. 

 

2.3.5 Illumina Sequencing 

TNA extractions from the pineapple accessions Hana 158, 160 and 187 were mailed on 

dry ice to the University of California at Davis (UC-Davis) Plant Foundation Services (PFS) for 

Illumina sequencing. Aliquots of the TNA samples were subjected to ribosomal RNA (rRNA) 

depletion and cDNA library construction using the TruSeq Stranded Total RNA with Ribo-Zero 

Plant kit (Illumina, San Diego, CA, USA). Sequencing was performed on the Illumina NextSeq 

500 platform and yielded approximately 37 million raw HTS reads per pineapple accession 

(Hana 158, 160 and 187) sequenced. 

 

2.3.6 De Novo Assembly and Mapping 

PFS Pipeline 

Illumina reads were adapter trimmed and subsequently de novo assembled into 

contiguous consensus sequences (contigs) of at least 200 nt in length using CLC Bio Genomic 

Workstation v8.5.1 (Qiagen, Hilden Germany)40. Assembled contigs were compared against the 

database of viruses using the Basic Local Alignment Search Tool (BLAST)41.  

Galaxy Pipeline 

Illumina reads were also uploaded onto the online Galaxy platform (usegalaxy.org)42 in 

fastq.gz format. For a quality control check reads were analyzed with the FastQC tool43. Reads 

were next de novo assembled using the Trinity tool44; the reads from the Hana 160 pineapple 

accession assembled into 94,561 contigs from the ~37 million reads. The 94,561 contigs were 

downloaded from the Galaxy platform in fasta format and imported into Geneious v7.145 and 

contigs were mapped against the reference genome of PMWaV-1 (AF414119). 
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2.3.7 Multi-loci Phylogenetic Analysis 

 The multi-loci analysis resulted in a phylogenetic tree constructed using the Maximum 

Likelihood method based on the Le Gascuel model46. The tree with the highest log likelihood (-

25491.91) is shown. The percentage of trees in which the associated taxa clustered together is 

shown next to the branches. Initial trees for the heuristic search were obtained automatically by 

applying the Neighbor-Join and BioNJ algorithms to a matrix of pairwise distances estimated 

using a JTT model, and then selecting the topology with superior log likelihood value. A discrete 

Gamma distribution was used to model evolutionary rate differences among sites (+G, parameter 

= 1.8850). The rate variation model allowed for some sites to be evolutionarily invariable ([+I], 

9.16% sites). The tree is drawn to scale, with branch lengths measured in the number of 

substitutions per site. The analysis included concatenated amino acid sequences of the RdRp, 

HSP70 and CP genes (in the order of their genomic organization) of 10 ampeloviruses, the 

PMWaV-4 HTS genome assembly from this study and the Beet yellows virus (BYV) the 

closterovirus type member as an outgroup (12 sequences total). All positions with less than 95% 

site coverage were eliminated, that is, fewer than 5% alignment gaps, missing data, and 

ambiguous bases were allowed at any position. There were a total of 1159 positions in the final 

dataset. Analyses were conducted in MEGA747. 

 

2.3.8 Tissue Blot Immunoassay 

 Pineapple leaves of accessions Hana 158, Hana 160 and Hana 187 previously confirmed 

through molecular testing to be infected with PMWaV-2, PMWaV-4 and PMWaV-1 

respectively, from USDA-ARS NCGR PBARC were collected and used for a TBIA. The same 

protocol reported in 17, 18 was used for this assay. 
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Table 2.1 Primers used to amplify the PMWaVs 

Virus Primer Sequence (5’→3’) Amplicon (nt) Target Gene 

PMWaV-1 
225 ACAGGAAGGACAACACTCAC 

600 HSP70 
226 CGCACAAACTTCAAGCAATC 

PMWaV-2 
223 CATACGAACTAGACTCATACG 

600 HSP70 
224 CCATCCACCAATTTTACTAC 

PMWaV-3 
263 AGTTCACTGTAGATTTCGGA 

495 HSP70 
264 ATTGATGGATGTGTATCG 

PMWaV-4 
267 GGTACAGGCCGGATAAA 

450 HSP70 
268 AACTTGGGCGTCGTA 

PMWaV-4 
1932 AAGTCCGCCACAAACTTGGA 

474 ORF1a 
1933 TTCCCTGCCGAAACAAGGTT 

PMWaV-4 
1934 GAGTTTTTCCCGCGGTCCTA 

460 ORF1a 
1935 TGTGATTCAAGGCGGGAGAC 

PMWaV-4 
1936 TTGTCTGCGATCGCCTTCTT 

629 ORF1a 
1937 TCCCGGAAAGTCTTCCTCCA 

PMWaV-4 
1944 TCGAGGAAACTGAAAAGTTCCG 

949 RdRp 
1945 CAAATCTGTGGACGCGCAAG 

PMWaV-4 
1946 TCGGGTAAAGGTAATTGGTCGT 

1627 HSP70 
1947 ACCGACACTGAGCAAAGAACA 

PMWaV-4 
1948 AGCGCAGATAACAATGAAGATCA 

725 CP 
1949 AGGAGTTCGCCGATCAGTTG 

PMWaV-4 
1951 TCTTCCGTGGAGGATGGG 

750 RdRp 
1952 CACATATGGCGCGTTCATGG 

PMWaV-4 
1953 TGAATGGTTAGACCGTGAAGGA 

1500 ORF1a 
1954 GCTTTGCAATTCAGACTGGCT 

Degenerate 

ampelovirus 

249 GGARGTNGGNWWHGAMTTYGGNACNAC 
650 

HSP70 

250 GANVHRTCRAAMGTSCCTCCNCCRAARTC  
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2.4 Results 

2.4.1 RT-PCR 

RT-PCR was used to identify candidate starting material for HTS. We assayed pineapple 

accessions from the USDA-ARS NCGR PBARC for presence of PMWaVs. Virus infected 

pineapple accessions were identified for the four PMWaVs found in HI. Pineapple accession 

Hana 187 was positive for PMWaV-1, accession Hana 158 for PMWaV-2 and PMWaV-3, 

accession Hana 160 for PMWaV-4 (Figure 2.2). 

 

 

Figure 2.2 RT-PCR of PMWaVs HSP70 

RT-PCR of accessions from USDA-ARS NCGR PBARC: Hana 45, 157, 158, 160, 163, 187 and 

235. Pineapple mealybug wilt-associated virus-1 (PMWaV-1), 600 nt expected product size (top 

left); PMWaV-2, 600 nt expected product size (top right); PMWaV-3, 495 nt expected product 

size (bottom left); and PMWaV-4, 450 nt expected product size (bottom right); primer sets used 

(Table 2.1) amplify a partial HSP70 gene  
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2.4.2 Further Genome Characterization of PMWaV-4 

HTS Dataset 1 PFS Pipeline 

TNA extractions from pineapple accession Hana 160 were sent to UC-Davis PFS, for 

sequencing. UC-Davis PFS returned HTS dataset that contained two contigs from Hana 160 

(Table 2.2). The BLAST tool was used to analyze the contigs assembled by the PFS pipeline. 

Consistent with expectations, BLASTx results for the 5,325 nt contig (Table 2.2) returned a 99% 

aa similarity to the HSP70 gene of PMWaV-4 (EU372003) as the only PMWaV-4 sequence 

reported to GenBank prior to this study was from the HSP70 gene26. The initial characterization 

of PMWaV-4 (EU372003) was limited to a 1,599 nt sequence, the complete CDS of the HSP70 

gene26. 

PMWaV-1 (AF414119) shares the highest sequence similarity to PMWaV-4, so we 

aligned the 5,325 nt contig to PMWaV-1 as only the HSP70 sequence26 of PMWaV-4 was 

available for alignment48; the contig aligned to the PMWaV-1 HSP70 ORF from positions 8,271-

9,804 and extended 1,089 nt (positions 7,182-8,270) towards the 5’ terminus and 2,710 nt 

(position 9,805 to 12,515) towards to 3’ terminus. The HSP70 gene of PMWaV-1 is flanked by 

p6 and RdRp genes on the 5’ end and p46, CP and p24 genes on the 3’ end; we therefore 

assumed PMWaV-4 sequences aligned to positions 7,182-8,270 and 9,805-12,515 of PMWaV-1 

would contain the other typical ampelovirus genes. To confirm our hypothesis, we used the ORF 

Finder tool48 and identified RdRp, HSP70, p46, CP and p24 ORFs in the 5,325 nt contig. The 

5,325 nt contig aa and nt similarity to PMWaV-1 (AF414119) was very high (Figure 2.3, Table 

2.3) suggesting the putative PMWaV-4 is not a distinct PMWaV species. We designed PMWaV-

4 specific primer pairs (Table 2.1) using the 5,325 nt contig sequence from HTS dataset 1, PFS 

pipeline and the Primer-BLAST tool49 to amplify the RdRp, HSP70 and CP genes of PMWaV-4. 



16 

The PMWaV-4 RdRp, HSP70 and CP primers amplified the expected product size (

 

Figure 2.4), and Sanger sequencing results validated the HTS dataset 1, PFS pipeline 

assembly sequence of the 5,325 nt contig.  

  



17 

 

 

 

 

Figure 2.3 PMWaV-4 HTS assembly similarity to PMWaV-1 

PMWaV-4 HTS dataset 1 PFS pipeline assembly contigs amino acid sequence similarity to PMWaV-1 (AF414119)  
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Table 2.2 PMWaV-4 contigs assembled from HTS dataset 1 

Pineapple Accession Most Similar BLAST hit Contig Length (nt) Dataset Assembly Pipeline 

Hana 160 PMWaV-1 (AF414119) 1522 1 PFS 

Hana 160 PMWaV-4 (EU372003) 5325 1 PFS 

Hana 160 PMWaV-1 (AF414119) 11244 1 Galaxy 

Hana 160 PMWaV-1 (AF414119) 6592 1 Galaxy 

Hana 160 PMWaV-1 (AF414119) 6116 1 Galaxy 

Hana 160 PMWaV-1 (AF414119) 4332 1 Galaxy 

Hana 160 PMWaV-1 (AF414119) 3112 1 Galaxy 

Hana 160 PMWaV-1 (AF414119) 2242 1 Galaxy 

Hana 160 PMWaV-1 (AF414119) 1027 1 Galaxy 

Hana 160 PMWaV-1 (AF414119) 899 1 Galaxy 

Hana 160 PMWaV-1 (AF414119) 660 1 Galaxy 

Hana 160 PMWaV-1 (AF414119) 583 1 Galaxy 

Hana 160 PMWaV-1 (AF414119) 556 1 Galaxy 

Hana 160 PMWaV-1 (AF414119) 541 1 Galaxy 

Hana 160 PMWaV-1 (AF414119) 524 1 Galaxy 

Hana 160 PMWaV-1 (AF414119) 481 1 Galaxy 

Hana 160 PMWaV-1 (AF414119) 274 1 Galaxy 

Hana 160 PMWaV-1 (AF414119) 265 1 Galaxy 

Hana 160 PMWaV-1 (AF414119) 253 1 Galaxy 

Hana 160 PMWaV-1 (AF414119) 238 1 Galaxy 
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Table 2.3 PMWaV-4 HTS assembly similarity to PMWaV-1 (AF414119) 

Gene Amino Acid Nucleotide 

RdRp 89% 78% 

p6 68% 71% 

HSP70 87% 76% 

p46 82% 74% 

CP 85% 78% 

p24 81% 78% 

 

The BLAST tool41 returned a 55% aa similarity (Figure 2.3) of a 1,522 nt contig (Table 

2.2) sequence to ORF1a, the polyprotein encoding the MTR and HEL genes of PMWaV-1 

(AF414119). The 5’ end of PMWaV-1 is mostly comprised of one large polyprotein, ORF1a 

(Error! Reference source not found.). The 5’ end, or ORF1a, of ampeloviruses, with exception of 

the MTR and HEL domains, is not highly conserved compared to the ORFs of the 3’ end. To 

validate the 1,522 nt contig assembly we designed three pairs of PMWaV-4 specific primers 

using the 1,522 nt contig sequence from HTS dataset 1, PFS pipeline and the Primer-BLAST 

tool49 to amplify different regions of ORF1a of PMWaV-4; we then cloned the PCR amplicons 

and sequenced with Sanger sequencing. Each of the 3 PMWaV-4 ORF1a specific primer pairs 
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amplified the expected product size (

 

Figure 2.4) and Sanger sequencing results validated the HTS dataset 1, PFS pipeline 

assembly sequence of the 1,522 nt contig. 

With Sanger sequencing results validating our HTS sequence we were confident that our 

HTS dataset was reliable, however, because our two contigs aligned to opposite termini of 

PMWaV-1 there was a substantial gap (Figure 2.3) between the two contigs. Due to the gap 

(Figure 2.3) we were unable to assume that both contigs represented sequences from the same 

virus. The pineapple accession Hana 160 from which the 1,522 and 5,325 nt contigs originated 

returned negative results when assayed with RT-PCR for PMWaV-1, PMWaV-2 and PMWaV-3 

(Figure 2.2), but it was still possible that pineapple accession Hana 160 might harbor another yet 

uncharacterized virus in addition to PMWaV-4. To confirm the pineapple accession Hana 160 

was only infected with one ampelovirus, PMWaV-4, we employed a degenerate primer set 

(Table 2.1) designed to amplify the HSP70 gene of ampeloviruses. The expected PCR product 
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was amplified, cloned and 29 clones were sequenced using Sanger sequencing. All 29 clones 

sequenced returned 99% nt and aa identity to the HSP70 gene of PMWaV-4 (EU372003) 

indicating that Hana 160 was probably only infected with one ampelovirus: PMWaV-4. 

 

 
Figure 2.4 RT-PCR with PMWaV-4 HTS assembly specific primers  

RT-PCR of PMWaV-4 using six pairs of HTS assembly specific primers from (a) a 5,325 nt 

contig for the RdRp, HSP70 and CP genes and (b) a 1,522 nt contig for three regions of ORF1a 
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Table 2.4 PMWaV-4 contigs assembled from HTS dataset 2 

Pineapple Accession Most similar BLAST hit Contig Length (nt) Dataset Assembly Pipeline 

Hana 160 PMWaV-4 (EU372003) 5325 2 PFS 

Hana 160 PMWaV-1 (AF414119) 2268 2 PFS 

Hana 160 PMWaV-1 (AF414119) 1988 2 PFS 

Hana 160 PMWaV-1 (AF414119) 1395 2 PFS 

Hana 160 PMWaV-1 (AF414119) 1239 2 PFS 

Hana 160 PMWaV-1 (AF414119) 609 2 PFS 

Hana 160 PMWaV-1 (AF414119) 372 2 PFS 

Hana 160 PMWaV-1 (AF414119) 789 2 Galaxy 

Hana 160 PMWaV-1 (AF414119) 817 2 Galaxy 

Hana 160 PMWaV-1 (AF414119) 433 2 Galaxy 

Hana 160 PMWaV-1 (AF414119) 2145 2 Galaxy 
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HTS Dataset 1 PFS + Galaxy Pipeline 

We suspected that additional sequence information might be available in the Illumina 

TruSeq 500 raw reads data file of HTS dataset 1, so we requested the raw reads data file from 

UC-Davis PFS. Galaxy pipeline assembly is explained in section 2.3.6 De Novo Assembly and 

Mapping. Further bioinformatic analysis of the reads using the Galaxy pipeline resulted in an 

additional 18 contigs (Table 2.2). Mapping of the contigs from the PFS and Galaxy pipelines to 

the PMWaV-1 reference genome resulted in the assembly of a three large scaffolds, that if 

assumed to belong to the same virus, would represent approximately 11 kb or nearly the entire 

genome of PMWaV-4. When these scaffolds were mapped together to PMWaV-1 as a reference 

genome a gap of approximately 2,000 nt in the ORF1a and a gap of approximately 500 nt in the 

5’ end of the RdRp gene remained (Figure 2.5). 

 

HTS Dataset 1 PFS + Galaxy and HTS Dataset 2 PFS Pipelines 

We suspected further sequencing might fill the remaining gaps in our data set and 

additional TNA extractions from pineapple accession Hana 160 were sent to UC-Davis PFS, for 

sequencing. UC-Davis PFS returned the HTS dataset 2 that contained seven additional contigs 

(Table 2.4); the PFS pipeline assembly is explained earlier in section 2.3.6 De Novo Assembly 

and Mapping. The contigs from the HTS dataset 1 PFS and Galaxy pipelines as well as the 

contigs from the HTS dataset 2 PFS pipeline were all mapped to the PMWaV-1 reference 

genome. The resulting two scaffolds still contained an approximately 2,000 nt gap in ORF1a, but 

the approximately 500 nt gap in the 5’ end of the RdRp gene was eliminated completing the CDS 

of the RdRp gene of PMWaV-4 (Figure 2.5). 

 

HTS Dataset 1 PFS + Galaxy and HTS Dataset 2 PFS + Galaxy Pipelines 

We again suspected that additional sequence information might be available in the 

Illumina TruSeq 500 raw reads data file of the HTS dataset from UC-Davis PFS, so we requested 

the HTS dataset 2 raw reads data file from UC-Davis PFS. Galaxy pipeline assembly is 

explained in section 2.3.6 De Novo Assembly and Mapping. Further bioinformatic analysis of 

the reads using the Galaxy pipeline resulted in an additional 4 contigs (Table 2.4). Mapping of 
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the contigs from the HTS datasets 1 and 2 - PFS and Galaxy pipelines to the PMWaV-1 

reference genome resulted in the assembly of the entire genome of PMWaV-4 (Figure 2.5).  

Amino acid Sequence Similarity and Multi-loci Analysis 

The PMWaV-4 HTS genome assembly showed the expected high similarity to PMWaV-

1 (AF414119, Table 2.3, Table 2.5). Multi-loci analysis of the aa sequence of concatenated 

RdRp, HSP70 and CP genes of Pineapple mealybug wilt-associated virus-4 (PMWaV-4) in 

relation to those of the recognized Ampelovirus genus member species. The multi-loci analysis 

resulted in a phylogenetic tree (Figure 2.6) constructed using the Maximum Likelihood method 

based on the Le Gascuel model46. PMWaV-4 clustered together with PMWaV-1 (AF414119), as 

expected, and other subgroup II ampeloviruses including: Pea bark necrosis stem pitting-

associated virus (PBNSPaV, EF546442), Grapevine leafroll-associated virus-4 (GLRaV-4, 

ACS44657) and PMWaV-3 (DQ399259). PMWaV-4 showed expected low similarity to the 

subgroup II ampeloviruses including: Blackberry vein banding-associated virus (BVBaV, 

KC904540), (GLRaV-1, JQ023131), GLRaV-3 (AF037268), GLRaV-13 (LC052212), Little 

cherry virus 2 (LChV-2, AF531505) and PMWaV-2 (AF283103). The closterovirus type 

member Beet yellow virus (BYV, AAF14300) was used as the outgroup. 
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Figure 2.5 PMWaV-4 sequences throughout the stages of HTS genome assembly 

PMWaV-4 sequences throughout the stages of genome characterization, including the initial characterization of the HSP70 gene (prior 

this this study) and the various stages of genome assembly as additional HTS datasets and assembly pipelines were incorporated. 

Dotted lines represent gaps  



26 

 

 

 

Table 2.5 Amino acid similarity of ampeloviruses to PMWaV-4 

Virus RdRp HSP70 CP 

Subgroup I 

PMWaV-2 (AF283103) 33% 33% 26% 

GLRaV-3 (AF037268) 32% 37% 29% 

GLRaV-1 (JQ023131) 33% 34% 26% 

LChV-2 (AF531505) 33% 32% 26% 

Subgroup II 

PBNSPaV (EF546442) 37% 44% 36% 

GLRaV-4 (ACS44657) 59% 59% 60% 

PMWaV-1 (AF414119) 88% 87% 85% 

PMWaV-3 (DQ399259) 69% 73% 65% 
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Figure 2.6 Multi-loci phylogenetic analysis of PMWaV-4 similarity to ampeloviruses 

Multi-loci analysis using a concatenated amino acid sequence of RdRp, HSP70 and CP genes. 

The tree shows Pineapple mealybug wilt-associated virus-4 (PMWaV-4) in relation to those of 

the recognized Ampelovirus member species. The multi-loci analysis resulted in a phylogenetic 

tree constructed using the Maximum Likelihood method based on the Le Gascuel model. The 

tree is drawn to scale. Branch lengths were measured in the number of substitutions per site. 

There were a total of 1159 positions in the final dataset. The sequences of the following viruses 

were retrieved from GenBank and included in the analysis: Blackberry vein banding-associated 

virus (KC904540), Grapevine leafroll-associated virus-1 (GLRaV-1, JQ023131), GLRaV-3 

(AF037268), GLRaV-4 (ACS44657), GLRaV-13 (LC052212), Little cherry virus 2 (LChV-2, 

AF531505), Pea bark necrosis stem pitting-associated virus (PBNSPaV, EF546442), PMWaV-1 

(AF414119), (AF283103), PMWaV-3 (DQ399259) and the closterovirus type member Beet 

yellow virus (BYV, AAF14300) was used as the out group. PMWaV-4 clustered with its sister 

taxa PMWaV-1, and other ampelovirus subgroup II members as expected  
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2.4.3 Further Genome Characterization of PMWaV-1 

PMWaV-1 is an Ampelovirus subgroup II member with a 13,071 nt genome first 

characterized by our lab, in HI, in 200820. HTS data from our first round of sequencing, using the 

PFS assembly pipeline, included a 6,186 nt contig of the 5’ terminus of PMWaV-1 from 

pineapple accession Hana 158 (Table 2.6). HTS data from our first round of sequencing, 

subjected to our Galaxy assembly pipeline resulted in the complete 13,071 nt genome. The PFS 

pipeline assembly of 6,186 nt and Galaxy pipeline assembly of 13,071 nt both showed an overall 

comparison of 99% nt similarity to the PMWaV-1 (AF414119) reference genome first 

characterized about 10 years ago (Figure 2.7, Figure 2.8) 

 

2.4.4 Further Genome Characterization of PMWaV-2 

 PMWaV-2 is an Ampelovirus subgroup I member with a 14,861 bp of its genome first 

characterized by our lab, in HI, in 200119. HTS data from our first round of sequencing, using the 

PFS assembly pipeline, included a 7,653 nt contig of the 3’ end of PMWaV-2 from pineapple 

accession Hana 158 as well as a 14,684 nt contig (nearly the complete genome) lacking only 

several hundred bp of the 3’ terminus from pineapple accession Hana 187 (Table 2.7). HTS data 

from our first round of sequencing, subjected to our Galaxy assembly pipeline resulted in a more 

complete 15,027 nt genome assembly that contained an additional 166 nt on the 5’ end of the 

virus extending ORF1a. Although it has been nearly 20 years since the first genome 

characterization of PMWaV-2 was published the 15,027 nt Galaxy pipeline genome assembly 

and both contigs from the PFS pipeline show an overall comparison of 99% nt similarity to the 

PMWaV-2 (AF283103) reference genome (Figure 2.7, Figure 2.8). 

 

2.4.5 Further Genome Characterization of PMWaV-3 

 PMWaV-3 is an Ampelovirus subgroup II member with 11,872 nt of its genome first 

characterized by our lab, in HI, in 200921. HTS data from our first round of sequencing, using the 

PFS assembly pipeline, included a 6,036 nt contig of the 5’ end of PMWaV-3 from pineapple 

accession Hana 187 (Table 2.8). HTS data from our first round of sequencing, subjected to our 

Galaxy assembly pipeline resulted in a more complete 12,502 nt genome assembly that contained 
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an additional 641 nt on the 5’ end of the virus extending ORF1a. HTS data from our first round 

of sequencing using both the PFS and Galaxy pipelines show an overall comparison of 97% nt 

similarity to the PMWaV-3 (DQ399252) reference genome first characterized nearly 10 years 

ago (Figure 2.7, Figure 2.8). 
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Table 2.6 PMWaV-1 contigs assembled from HTS dataset 1 

Pineapple Accession Most Similar BLAST Hit Contig Length (nt) Dataset Assembly Pipeline 

Hana 187 PMWaV-1 (AF414119) 6186 1 PFS 

Hana 187 PMWaV-1 (AF414119) 13071 1 Galaxy 

 

 

Table 2.7 PMWaV-2 contigs assembled from HTS dataset 1 

Pineapple Accession Most Similar BLAST Hit Contig Length (nt) Dataset Assembly Pipeline 

Hana 158 PMWaV-2 (AF283103) 7653 1 PFS 

Hana 187 PMWaV-2 (AF283103) 14684 1 PFS 

Hana 158+187 PMWaV-2 (AF283103) 15027 1 Galaxy 

 

 

Table 2.8 PMWaV-3 contigs assembled from HTS dataset 1 

Pineapple Accession Most Similar BLAST Hit Contig Length (nt) Dataset Assembly Pipeline 

Hana 158 PMWaV-3 (DQ399259) 6036 1 PFS 

Hana 158 PMWaV-3 (DQ399259) 12502 1 Galaxy 
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Figure 2.7 PMWaV-1, -2 & -3 HTS assembly comparisons 

HTS assembly comparison of genome organization and nucleotide (nt) similarity to the previously published genomes of (a) 

Pineapple mealybug wilt-associated virus-1 (PMWaV-1, AF41411) reference genome from 2008 publication compared to (b) 

PMWaV-1 (2018) HTS assembly share 99% nt similarity; (c) PMWaV-2 (AF283103) reference genome from 2001 publication 

compared to (d) PMWaV-2 (2018) HTS assembly share 99% nt similarity; (e) PMWaV-3 (DQ399259) reference genome from 2009 

publication compared to (f) PMWaV-3 (2018) HTS assembly share 97% nt similarity 
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Figure 2.8 Genome organization of PMWaV HTS assemblies 

HTS assembly genome organization of Pineapple mealybug wilt-associated virus-1 (PMWaV-1), PMWaV-2, PMWaV-3, PMWaV-4 

and the available sequences of PMWaV-5 (EF488753, EF467920, EF467921, EF467922, EF488753) 
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2.4.6 Tissue Blot Immunoassay 

Previously, antibodies were developed for a TBIA17, 18 to detect PMWaV-1 and PMWaV-

2. We used a TBIA with pineapple accessions Hana 158, 160 and 187 to determine if the 

antibody developed to detect PMWaV-1 can also detect the PMWaV-4 strain. We used leaf 

tissue from the same pineapple accessions previously assayed by RT-PCR for PMWaV presence. 

RT-PCR assay showed Hana 158 infected with PMWaV-2 and PMWaV-3, Hana 160 infected 

with PMWaV-4 and Hana 187 infected with PMWaV-1. The pineapple accession Hana 187 that 

was confirmed to be infected with RT-PCR returned positive results for PMWaV-1 with the 

TBIA. The pineapple accessions Hana 158 and 160 returned negative results for PMWaV-4 with 

the TBIA indicating the MAb developed to detect PMWaV-1 is not able to detect the PMWaV-4 

strain of PMWaV-1. 

 

2.5 Discussion 

In the past, our lab employed a TBIA17, 18, 23 using mAbs specific to PMWaV-1 or 

PMWaV-2 for pineapple virus surveys; if the pineapple TBIA result was negative for PMWaV-1 

or PMWaV-2 then ampelovirus degenerate HSP70 primers (Table 2.1) were used to investigate 

the potential of novel PMWaV infections underlying the discovery of PMWaV-321, PMWaV-426 

and PMWaV-533. The HSP70 gene of putative PMWaV-4 (EU372003) has a 74% nt and 87% aa 

similarity to PMWaV-1 (AF414119)26. However, at the time, the criteria for Ampelovirus species 

demarcation was a 10% divergence of aa sequence of the RdRp, HSP70 and CP genes indicating 

the possibility of a new species of PMWaV. Further, it was reported in China that the PMWaV-1 

isolate Hainan (PMWaV-1 HN) has an additional 72 bp in the 3’ of the HSP70 gene compared to 

other PMWaV-1 isolates36. The additional sequence on PMWaV-1 HN encodes the aa residue: 

“ETGLLTLGRQQREIIYKRHGFESN” and interestingly has a 65% similarity to that of the 3’ 

end the PMWaV-4 (EU372003) HSP70 gene which has the same increased length of coding 

region36. The PMWaV-4 HTS assembly aa sequence similarity to PMWaV-1 (AF414119) is 89, 

87 and 85% for the RdRp, HSP70 and CP respectively. With the additional data generated from 

this study we now propose that putative PMWaV-4 is a strain of PMWaV-1 and not a separate 

species. In the future, we suggest using the same nomenclature adopted to clarify different strains 
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of Grapevine leafroll-associated virus-4 (GLRaV-4), where GLRaV-5, GLRaV-6 and GLRaV-9 

were renamed GLRaV-4 strain 5, 6 or 939; therefore, the designation of PMWaV-4 suggested is 

PMWaV-1 strain 4. In this way, PMWaV-1 strain 4 will be considered a strain of PMWaV-1 but 

is a distinct strain based on sequence comparisons and serology relationships with PMWaV-1.  

In Australia, a putative PMWaV-5 was reported in 200833 prior to the revised 

Ampelovirus species demarcation criteria35. PMWaV-5 was detected in 42 separate plants from 4 

separate locations in symptomless and symptomatic plants33. Four putative PMWaV-5 sequences 

were reported33 encoding partial CDS of HEL, RdRp and HSP70 genes, complete CDS of  the p6 

(SHP) gene and share low aa similarity to PMWaV-1 and PMWaV-3 (Table 2.9). The low aa 

similarity of the PMWaV-5 RdRp and HSP70 genes to PMWaV-1 and PMWaV-3 indicates, 

PMWaV-5 could potentially be a distinct subgroup II ampelovirus, but due to the incomplete 

sequence of the RdRp, HSP70 and the lack of CP sequence and genome characterization of 

PMWaV-5 there is insufficient evidence to yet propose the putative PMWaV-5 is indeed a 

distinct ampelovirus species. 

The complex etiology of PMWaV involving a complex of ants, mealybugs, virus 

particles and pineapple might be further explained in part by the distinction between the two 

ampelovirus subgroups. The lack of a clearly understood etiology of MWP disease might 

potentially be due to the differing genomic organization and length of the ampelovirus 

subgroups. The longer, more complex genome of PMWaV-2 which has been shown to encode 

RNA silencing suppressors37 which might be considered as factors supporting PMWaV-2’s 

ability, in concert with mealybugs, to develop symptoms of MWP disease in HI. Further 

complicating this PMWaV-2 was not clearly associated with development of disease symptoms 

in Australia33, Ecuador38 or Cuba31. Clarity in genomic organization and gene function of all type 

members of the PMWaV complex is necessary to unravel the poorly understood etiology of 

MWP disease. It may be that symptomatic plants testing positive for PMWaV-1 or 3 but testing 

negative for PMWaV-2 are infected with another virus from subgroup I that, while similar to 

PMWaV-2 is distinct enough to inhibit molecular detection by the existing RT-PCR primer pairs 

or serological detection by the existing MAb for PMWaV-2. This possibility indicates the 

importance of using the HSP70 degenerate primer set and sequencing of many clones to confirm 
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the identities of PMWaVs in mixed population infections and subsequent symptom development 

resulting from mixed populations. 

In the future, it would be interesting to use HTS to study PMWaV populations in healthy 

asymptomatic pineapple plants and pineapple plants with typical MWP symptoms. The complex 

of factors involved including the virus particles from the varying PMWaVs, mealybugs should 

be studied further. After identifying the population (if any) of PMWaVs in both asymptomatic 

and symptomatic pineapple plants TNA could be used to construct cDNA libraries and Illumina 

HTS used to determine the differing factors between the many possible combinations of mixed 

populations and presence or absence of mealybugs. With the advent of new HTS technologies 

like those used in this study it would be prudent to pursue transcriptomic and/or proteomic 

studies in order to clarify the etiology of the poorly understood MWP disease. RNAseq 

transcriptome analysis to determine differing amounts of gene expression in symptomatic and 

asymptomatic pineapple plants exposed to and in the absence of PMWaVs and mealybugs 

individually and in each possible combination to determine the molecular factors necessary for 

symptom development in order to identify the causal agent of MWP disease as well as identify 

possible avenues towards developing resistant cultivars in breeding programs. 
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Table 2.9 PMWaV-5 amino acid similarity to PMWaV-1 and PMWaV-3 

Virus PMWaV-5 (EF467920) PMWaV-5 (EF467921) PMWaV-5 (EF467922) PMWaV-5 (EF488753) 

Gene RdRp p5 HSP70 HEL HEL RdRp HSP70 

PMWaV-1 (AF414119) 69% 57% 69% 55% 64% 72% 72% 

PMWaV-3 (DQ399259) 65% 57% 63% 53% 71% 67% 67% 
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Chapter 3 

Detection of Viruses from Symptomatic Ginger in Hawaii 

 

3.1 Abstract 

 Banana bract mosaic virus (BBrMV) and Canna yellow mottle virus (CaYMV) were 

previously identified infecting Alpinia purpurata (flowering ginger) in Hawaii (HI). Recently, 

farmers growing flowering ginger have reported severe disease symptoms from multiple farms 

on Oahu, HI. Symptomatic flowering ginger leaves and bracts were used as starting material for 

molecular and serological assays to detect the presence of the previously identified viruses in 

flowering ginger. Symptoms corresponding with those previously characterized as CaYMV were 

observed, such as streaking on the bracts, yet PCR detection failed to correlate the presence of 

symptoms with CaYMV infection. BBrMV symptoms were not observed, and BBrMV was not 

detected from any of the plants assayed. The lack of conclusive evidence linking virus presence 

with the symptomatic flowering ginger assayed during this study may indicate the presence of 

another pathogens involvement in the development of disease on flowering ginger. Further study 

is necessary to conclude the casual organism of the disease found on flowering ginger. 
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3.2 Introduction 

Banana bract mosaic virus (BBrMV) is a member of the Potyvirus genus of the family 

Potyviridae and was first reported in Musa spp. (banana) from the Philippines in 197950. BBrMV 

has since been detected in many parts of the world including India, Samoa, Sri Lanka, Thailand, 

Vietnam, Colombia, Ecuador and Hawaii (HI)51, 52. BBrMV can spread quickly and causes 

significant economic losses worldwide. BBrMV was first reported in HI in 2010 in a new host, 

Alpinia purpurata (flowering ginger), but has not yet been found infecting banana in HI53. 

Symptoms of BBrMV on flowering ginger include: mosaic, streaking, severe cupping of leaves, 

browning of flowers, reduction in size & shelf life (Figure 3.1). BBrMV, has flexuous, 

filamentous rods 720 to 850 nm long and 12 to 15 nm in diameter and ssRNA genome54, 55. 

Three characterized genomes of BBrMV have been reported from the Philippines56, India57 and 

HI58. Enzyme linked immunosorbent assay (ELISA), RT-PCR, immunocapture RT-PCR and 

Reverse transcription-loop-mediated isothermal amplification (RT-LAMP) assays are available 

for detection of BBrMV55, 56, 58, 59. 

Canna yellow mottle virus (CaYMV), a member of the Badnavirus genus of the 

Caulimoviridae family was first reported infecting Canna spp. in Japan60. Later, CaYMV was 

reported in the United States, Italy, the Netherlands, India and Kenya60-64. CaYMV was reported 

infecting a new host, flowering ginger, in HI65. Symptoms of flowering ginger infected with 

CaYMV include: yellow mottling & necrosis of the leaves, vein streaking & stunting (Error! 

Reference source not found.). The episomal form of CaYMV was found to be associated with 

severe symptoms on flowering ginger in HI65. CaYMV is a member of the badnavirus genus, 

badnaviruses are known to integrate their genome sequence into the host’s genome known as 

endogenous pararetroviruses (EPRV)66-69. PCR, RT-PCR and rolling circle amplification (RCA) 

assays are available for the detection of CaYMV65. Diagnostic testing of symptomatic ginger is 

necessary to establish if the current disease threatening ginger farmers is related to BBrMV 

and/or CaYMV infection. Molecular assays for detecting CaYMV and BBrMV are available as 

previously reported53, 58 and serological assays are also available using the potyvirus or BBrMV-

specific ELISA kit’s from Agdia.  



40 

3.3 Materials and Methods 

3.3.1 DNA Isolation 

Ginger leaf samples were obtained from three Kahalu’u farms, Iolani School and 

University of HI at Manoa on the island of Oahu, HI. Approximately 0.1 g of symptomatic leaf 

tissue per sample per nucleic acid extraction was used for total genomic DNA extraction. The 

DNeasy Plant Mini Kit (QIAGEN, Redwood City, CA, USA) was used following the 

manufacturer’s instructions. 

 

3.3.2 PCR of CaYMV 

The PCR Reagents used were: 10 μl 2X GoTaq Green master mix (Promega, USA), 0.5 

μl forward/reverse primers (10 μM, Table 3.1), 1.0 μl DNA and 8 μl nanopure H2O. The cycle 

conditions used were: 95°C for 5min; 30 cycles at 95°C for 30s, 55°C for 30s, 72°C for 1min; 

and then 72°C for 10 min. 

 

3.3.3 RNA Isolation 

Approximately 0.1 g of symptomatic leaf tissue per sample per nucleic acid extraction 

was used for total RNA extraction. The RNeasy Plant Mini Kit (QIAGEN, Redwood City, CA, 

USA) was used following the manufacturers protocols to isolate total RNA for cDNA synthesis. 

 

3.3.4 cDNA Synthesis 

For cDNA synthesis: 2 μl of RNA and 1.0 μl of random primers (50 ng/μl, Promega, WI, 

USA), heated at 70°C for 5 min, and then quenched on ice immediately. Then 5 μl M-MLV 5X 

reaction buffer (Promega. USA), 5 μl dNTP’s (2.5 μM), 0.5 μl recombinant RNasin ribonuclease 

inhibitor (40 U/μl, Promega. USA), 1.0 μl M-MLV reverse transcriptase (200 U/μl. Promega. 

USA) were mixed before bringing the reaction to a final volume of 25μl with nanopure H2O. 

Finally, both reactions were added together and incubated for 60 min at 37°C. 
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3.3.5 RT-PCR Assay 

For RT-PCR of BBrMV a set of degenerate potyvirus primers70 amplifying a partial 

nuclear inclusion B (NIb) gene were used (Table 3.1). The PCR reagents used were:10 μl 2X 

GoTaq Green master mix (Promega, USA), 0.5 μl forward/reverse primers (10 μM), 1.0 μl 

cDNA and 8 μl nanopure H2O. The cycle conditions used were: 95°C for 5 min; 35 cycles at 

95°C for 30 s, 55°C for 30 s, 72°C for 1 min; and then 72°C for 10 min. 

 

3.3.6 BBrMV ELISA 

 A BBrMV-specific ELISA kit (Agdia, Elkhart, IN, USA) was used according to the 

manufacturer’s instructions. 
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Figure 3.1 Symptoms of flowering ginger infected with BBrMV & CaYMV 

Symptomatic flowering ginger: (a) BBrMV positive (b) CaYMV positive; (c) CaYMV and BBrMV positive 
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Table 3.1 Primers used to detect viruses in flowering ginger 

Target Virus Primer Sequence (5’ → 3’) Amplicon Size (nt) Target Gene 

CaYMV 
1503 TGCTGGAACACTGGCTTTCA 

667 ORF3 
1504 CCTCTTCATCCCCCACCA 

Degenerate Potyvirus 
1130 GTITGYGTIGAYGAYTTYAAYAA 

350 NIb 
1131 TCIACIACIGTIGAIGGYTGNCC 
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3.4 Results 

Symptomatic ginger leaves and bracts were assayed for the presence of viruses from 

several locations on Oahu including three farms in Kahalu’u and Iolani School in September of 

2016 and April 2018. 

 

3.4.1 BBrMV ELISA 

 Ginger leaf samples collected in September 2016 were assayed with the BBrMV-specific 

ELISA kit according to the manufacturer’s instructions, no samples from any of the locations 

surveyed reported positive (Table 3.2). 

 

3.4.2 PCR Assay of CaYMV  

In September 2016 ginger leaves from 4 different locations in Oahu, HI were collected 

and assayed for the presence of CaYMV using a PCR assay. Samples from two of the three 

Kahalu’u farms and Iolani School tested positive for CaYMV; the K1 location has no positive 

samples for CaYMV (Table 3.2). In April 2018 the three Kahalu’u farms were revisited and all 

of the samples collected from two of the three Kahalu’u farms tested positive for CaYMV 

(Table 3.2). The results from September 2016 and April 2018 were consistent in that the same 

farm (K1) did not have any samples test positive for CaYMV (Figure 3.2). 

 

3.4.3 RT-PCR Assay of Potyviruses 

Ginger leaf samples collected in April 2018 were tested for potyviral infection with RT-

PCR using degenerate potyvirus primers70 (Table 3.1), no samples reported positive (Table 3.2). 
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Figure 3.2 PCR of CaYMV 

(a) PCR of CaYMV September 2016 survey samples with K1 location (K1.1-K1.3) only location with no CaYMV positive samples 

and (b) PCR of CaYMV April 2018 survey samples, again, K1 (11-17) only location with no CaYMV positive samples  
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Table 3.2 Surveys of BBrMV and CaYMV in flowering ginger  

Sample # BBrMV ELISA CaYMV PCR  Sample # Potyvirus RT-PCR CaYMV PCR 

September 2016    April 2018   

K1.1 - -  11 - - 

K1.2 - -  14 - - 

K1.3 - -  15 - - 

K2.1 - +  16 - - 

K2.2 - -  17 - - 

K2.5 - +  22 - + 

K2.6 - +  23 - + 

K3.1 - +  24 - + 

K3.2 - +  27 - + 

I4.1 - +  28 - + 

I4.2 - +  33 - + 

I4.3 - +  34 - + 

I4.4 - +  35 - + 
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Figure 3.3 ‘Streaking’ and ‘dieback’ symptoms on flowering ginger 

Streaking symptoms present on (a) leaves, (b) stems and (c) bracts of flowering ginger from the K1 location that tested negative for 

CaYMV and BBrMV and (d) dieback symptoms from the K2 location  
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3.5 Discussion 

Flowering ginger infected with CaYMV was found at different locations around Oahu, 

HI; symptoms were not consistent with previous reports (Figure 3.1). None of the samples 

assayed tested positive for BBrMV by either BBrMV-specific ELISA or potyvirus-specific RT-

PCR. The new ‘streaking’ and ‘dieback’ symptoms (Figure 3.3) seen in the samples positive for 

CaYMV were also observed in samples that tested negative for CaYMV and BBrMV. Severe 

‘dieback’ symptoms were present at the K2 location where CaYMV was prevalent (Figure 3.3). 

The ‘streaking’ symptoms in flowering ginger (Figure 3.3) have been associated with virus 

infection in previous studies, but bracts exhibiting the streak symptoms assayed for virus 

presence in this study returned negative results. These results might suggest the presence of 

another or multiple virus co-infections. It is possible these symptoms which are seemingly 

unrelated to CaYMV may be caused by another badnavirus; use of degenerate badnavirus 

primers to detect other badnaviruses infecting flowering ginger is warranted. Another member of 

the lab pursued this avenue and identified the Banana streak virus (BSV) a member of the 

Badnavirus genus of the Caulimoviridae family from the K1 location, where streaking symptoms 

were observed (Figure 3.3) and no CaYMV was detected. As the investigation of BSV and its 

role in disease of flowering ginger continues by other, future members of the lab it may be 

warranted to utilize HTS tools as a diagnostic for characterization of the BSV strain found in HI 

and any other potential viruses that might play a role in this disease of flowering ginger that have 

yet to be identified. In the field, this yet uncharacterized disease causes devastating loss of 

production and is has the potential to become extremely harmful to local growers of flowering 

ginger and the cut flower industry. 
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Chapter 4 

Identification of New Plant Hosts/Viruses in Hawaii  

 

4.1 Abstract 

 Oahu, Hawaii (HI) is home to many community gardens which function to provide many 

urban dwellers the privilege of access to land for growing of edible and horticultural plants. 

Unfortunately, these areas are often ‘hotbeds’ of disease and pathogen dispersal. Recently, we 

identified several different plants infected with viruses from diverse crop and horticultural 

species including Bean common mosaic virus (BCMV) infecting Phaseolus lunatus (lima bean) 

in one community garden in Honolulu, HI. Symptomatic lima bean leaves were assayed for the 

presence of member species of the Potyvirus genus of the Potyviridae family using a potyvirus-

specific ELISA, positives were confirmed with a degenerate potyvirus RT-PCR assay, PCR 

amplicons were cloned and sequenced using Sanger sequencing. The sequence homology of the 

HI BCMV isolate showed a high degree (92% nucleotide and 100% amino acid of similarity to a 

BCMV isolate from China. A BCMV-specific ELISA assay was used to reconfirm the 

sequencing results. The unusually diverse amount of plants grown in a community garden as 

well as the high volume of individuals with access to the area provide the ideal circumstances for 

dissemination of plant pathogens.  
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4.2 Introduction 

The Potyvirus genus of the Potyviridae family is one of the largest virus genera that 

includes over a hundred recognized member species, several dozen tentative species noted by the 

ICTV and several new species reported annually71. In response to the great abundance of 

potyviruses several sets of degenerate primers have previously been developed for reliable and 

efficient identification of potyvirus infection in plants. Among these, notably, the potyvirid 2 

degenerate primer pair72 targeting the nuclear inclusion protein b (NIb) gene, the CN48 

degenerate primers73 targeting the coat protein gene and the NIb2F and NIb3R degenerate 

primers70 targeting the NIb gene have been widely used.  Our lab has used the NIb2F and NIb3R 

primer set primarily to detect a wide number of potyviruses previously and use this potyvirus 

specific RT-PCR assay regularly to screen plants exhibiting virus-like symptoms. Many virus-

like symptoms were observed in community gardens in Honolulu, HI (Figure 4.). We collected 

samples from many ornamental and crop plants to test with molecular and serological potyvirus 

detection assays. 

 

4.3 Materials and Methods 

4.3.1 Potyvirus ELISA 

Symptomatic leaf tissue collected from the community garden in Honolulu, HI was used 

for the potyvirus-specific ELISA (Agdia, Elkhart, IN, USA) following the manufacturer’s 

instructions. 

 

4.3.2 RNA Isolation 

Approximately 0.1 g of symptomatic leaf tissue per sample per nucleic acid extraction 

was used for total RNA extraction. The RNeasy Plant Mini Kit (QIAGEN, Redwood City, CA, 

USA) was used following the manufacturers protocols to isolate total RNA for cDNA synthesis. 

 

4.3.3 cDNA Synthesis 

For cDNA synthesis: 2 μl of RNA and 1.0 μl of random primers (50 ng/μl, Promega, WI, 

USA), heated at 70°C for 5 min, and then quenched on ice immediately. Then 5 μl M-MLV 5X 
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reaction buffer (Promega. USA), 5 μl dNTP’s (2.5 μM), 0.5 μl recombinant RNasin ribonuclease 

inhibitor (40 U/μl, Promega. USA), 1.0 μl M-MLV reverse transcriptase (200 U/μl. Promega. 

USA) were mixed before bringing the reaction to a final volume of 25μl with nanopure H2O. 

Finally, both reactions were added together and incubated for 60 min at 37°C. 

 

4.3.4 RT-PCR Assay 

For RT-PCR a set of degenerate potyvirus primers70 amplifying the partial NIb gene were 

used (Table 4.1). The PCR reagents used were:10 μl 2X GoTaq Green master mix (Promega, 

USA), 0.5 μl forward/reverse primers (10 μM), 1.0 μl cDNA and 8 μl nanopure H2O. The cycle 

conditions used were: 95°C for 5 min; 35 cycles at 95°C for 30 s, 55°C for 30 s, 72°C for 1 min; 

and then 72°C for 10 min. 

 

4.3.5 Sanger Sequencing 

PCR products amplified from infected leaf tissue were cloned into pGEM-T Easy vector 

(Promega, Madison, WI, USA), heat shock transformed in E. coli DH5α, red/white screened 

using MacConkey agar and sequenced using Sanger sequencing.  

 

4.3.6 BCMV ELISA 

A BCMV-specific ELISA (Agdia, Elkhart, IN, USA) was used following the 

manufacturer’s instructions.   
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Table 4.1 Primers used to detect potyviruses 

Target Virus Primer Sequence (5’→3’) Amplicon Size (nt) Target Gene 

Degenerate 

potyvirus 

NIb2F GTITGYGTIGAYGAYTTYAAYAA 
350 NIb 

NIb3R TCIACIACIGTIGAIGGYTGNCC 
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4.4 Results 

Ornamental and crop plants exhibiting virus like symptoms were collected from the Ala 

Wai community garden in Honolulu, HI (Figure 4.). Among the plants collected were: 

Phaseolus lunatus (lima bean), Araceae spp., Colocasia esculenta, Cordyline fruticosa, Crinium 

spp., Heliconia spp., Passiflora spp. (passionfruit), Polyscias spp. and Syngonium podophyllum. 

 

4.4.1 Potyvirus-specific ELISA 

Leaf tissue from the collected plants were assayed for the presence of potyviruses using a 

potyvirus-specific ELISA according to the manufacturer’s instructions with Carica papaya 

(papaya) infected with Papaya ringspot virus (PRSV) a member of the Potyvirus genus of the 

Potyviridae family was used as a positive control. ELISA detected potyvirus antigen in the lima 

bean, passionfruit and papaya samples (Table 4.2). 

 

4.4.2 RT-PCR and Sanger Sequencing 

To confirm the potyvirus-specific ELISA results with molecular detection a RT-PCR 

potyvirus detection assay was used with a degenerate potyvirus primer pair70 (Table 4.1) and 

both samples returned the expected 350-bp amplicon. The sanger results from the Passiflora spp. 

returned the expected high similarity to Watermelon mosaic virus (WMV), a member of the 

Potyvirus genus of the Closteroviridae family was previously reported infecting Passiflora spp. 

in HI74.  Lima bean sequencing results (KY473075) revealed a 92% nt sequence identity and 

100% aa sequence identity to the NIb gene of a BCMV isolate from China. 

 

4.4.3 BCMV ELISA 

 To further confirm the potyvirus-specific ELISA and RT-PCR results seven symptomatic 

lima bean samples collected from the same community garden in Honolulu, HI as well as seven 

lima bean samples collected from another location in Honolulu, HI for a BCMV-specific ELISA 

assay. All seven samples from the community garden and one of seven from the second location 

tested positive for BCMV. 
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Figure 4.1 Symptomatic plants from a community garden in Honolulu, HI 

(a) Passiflora spp. (b) Phaseolus lunatus (c) Heliconia spp. (d) Syngonium podophyllum (e), Araceae spp. and (f) Crinium asiaticum  
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Table 4.2 Virus infection in symptomatic plants  

Plants Potyvirus RT-PCR Potyvirus ELISA BCMV ELISA 

Syngonium podophyllum - - - 

Polyscias spp. - - - 

Araceae spp. - - - 

Phaseolus lunatus +BCMV +BCMV +BCMV 

Colocasia esculenta  - - - 

Passiflora spp. +WMV +WMV - 

Heliconia spp. - - - 

Cordyline fruticosa  - - - 

Crinum asiaticum  - - - 

Carica papaya (+C) +PRSV +PRSV - 
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4.5 Discussion 

 Of the plants collected only two returned positive results from molecular and serological 

potyvirus assays; lima bean infected with BCMV and passion fruit infected with WMV 

previously reported74. Interestingly, the symptomatic heliconia were found to be infected with 

Banana bunchy top virus (BBTV), a member of the Babuvirus genus of the Nanoviridae family, 

by another member of the lab group75. While heliconia is in the same order, Zingiberales, as 

bananas (Musa spp.) this is the first report of BBTV infecting a host other than bananas and may 

have serious implications for management of BBTV by farmers and backyard growers. The 

remaining plants assayed exhibited severe virus symptoms but did not return positive results 

from either molecular or serological potyvirus assays. It is possible that these symptomatic plants 

were infected with other viruses. 

The use of more powerful tools like HTS might be prudent to identify any possible virus 

infections in symptomatic plants. It is possible to pool nucleic acid content for sequencing runs 

to minimize the overhead of using HTS as a diagnostic tool. After HTS and data analysis, nucleic 

acid isolated from the individual plants prior to pooling can be assayed to determine the source 

of any potential viruses identified through sequencing. It is important to note that all the viruses 

discussed in this chapter were identified from a single location, a community garden in 

Honolulu, HI. These community gardens, while providing a niche service for amateur 

agriculturists and horticulturalists in urban areas represent ‘hot beds’ of infection for many plant 

pathogens and should be closely monitored by resident plant pathologists to curb the influx and 

subsequent escape of any potentially devastating plant diseases. 
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Chapter 5 

Discussion and Conclusion 

 

Currently and historically viruses have had a severe impact upon agricultural 

stakeholders in HI and many severe virus diseases represent serious challenges and threaten the 

livelihood of agricultural stakeholders throughout the islands. PRSV is of serious economic 

concern to papaya growers, fortunately the successful application of transgenics has allowed the 

once threatened papaya industry to recover after resistant varieties were developed76. Impact of 

agricultural viruses is further evidenced by the recent closure of HI's largest banana producer 

Hamakua Springs, which shut down its operations, citing losses due to BBTV as the primary 

reason for ceasing production.  

CaYMV and BBrMV are viruses found infecting flowering ginger in HI. The lack of a 

clear association between symptoms observed and virus positive plants indicates the disease 

ginger farmers are facing may be caused by another pathogen, perhaps another virus like BSV 

recently identified in flowering ginger. The use of HTS technologies represents a powerful tool 

capable of identifying any virus infections present in plants. It is possible to pool nucleic acid 

content for sequencing runs to minimize the overhead of using HTS as a diagnostic tool and 

prudent to do so to detect any other potential viruses infecting ginger. After HTS and data 

analysis, nucleic acid isolated from the individual plants prior to pooling can be assayed to 

determine the source of any potential viruses identified through sequencing 

MWP is a limiting factor in pineapple production resulting in reduction of yields 

representing a threat to pineapple growers. The unusual and mysterious etiology involving 

PMWaV-2 and mealybugs causing disease symptoms in HI, but elsewhere in the world, 

Australia, Cuba and Ecuador, a similar correlation is not found. With the advent of new HTS 

technologies like those used in this study it is possible and would be prudent to pursue 

transcriptomic and/or proteomic studies in order to elucidate the etiology of the rather unique 

nature of mealybug wilt of pineapple disease. The complex of factors involved including the 

virus particles from the varying PMWaVs, mealybugs and should be studied further. RNAseq 
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transcriptome analysis to determine differing amounts of gene expression in symptomatic and 

asymptomatic pineapple plants exposed to and in the absence of virus particles and mealybugs 

individually and in each possible combination to determine the molecular factors necessary for 

symptom development as well as identify possible avenues towards developing resistant 

cultivars in breeding programs. 

Community gardens and in general urban areas are ‘hot beds’ of infection for many plant 

pathogens and should be closely monitored by resident plant pathologists to curb the influx and 

subsequent escape of any potentially devastating plant diseases. It is important to note that all the 

viruses discussed in Chapter 4 were identified from a single location, a community garden in 

Honolulu, HI. These community gardens, while providing a niche service for amateur 

agriculturists and horticulturalists in urban areas represent transmission and dispersal ‘highways’ 

for plant pathogens. The use of powerful tools like HTS as a diagnostic tool might be prudent to 

identify any possible virus infections in symptomatic plants.   
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