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ABSTRACT 

The main objectives of this thesis research were to examine Oscheius nematodes for its 1) 

associated bacteria (to be identified), 2) associated bacteria pathogenicity on insects, and 3) status 

as entomopathogenic nematodes. Nematodes are unsegmented pseudocoelomic roundworms that 

exist in all environments and occupy all trophic levels including of bacterial-feeders, predators, 

and parasites. Oscheius spp. are clearly bacterial-feeding nematodes but some isolates have 

behaviors with entomopathogenicity. A series of tests were conducted to isolate, identify, and 

determine insect toxicity of bacteria associated with several Hawaii isolates of Oscheius sp. 

Bacteria were isolated from Oscheius isolates BI 1a, BI 12a, OJ 4a, OJ 5b and compared with that 

of a well-recognized entomopathogenic nematode, Steinernema feltiae MG14. Eleven bacterial 

isolates were identified and isolated from four different Oscheius populations through DNA 

sequencing. Enterobacter genus was most commonly isolated followed by Pseudomonas and 

Enterococcus. Pathogenicity of Serratia sp., Enterococcus sp., and Pseudomonas sp. isolated were 

evaluated on mealworm (Tenebrio molitor) larvae using two assays: 1) feeding assay on a bacteria-

inoculated diet, or 2) directly assay by injecting the bacteria into the hemolymph. All assays 

showed that these three bacteria isolates were pathogenic to the mealworms within 48 hour after 

the feeding or injection. Among the three bacteria isolates tested, Pseudomonas was more lethal 

to mealworms than Serratia or Enterococcus in both assays. Injection the bacteria at 108 cfu/ml 

increased their pathogenicity compared to 102-106 cfu/ml regardless of the bacteria species. The 

association between the entomotoxic bacteria and the nematode confirms the entomopathogenic 

nature of these isolates of Oscheius from Hawaii. The implication of the findings from this study 

showed that Oscheius indigenous to Hawaii can offer effective biological control against some 
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insects without having to go through importation regulation and would be a good alternatives to 

conventional insecticides that are harmful to the environment. 
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 CHAPTER 1 

ENTOMOPATHOGENIC NEMATODES 

INTRODUCTION 

Nematodes are unsegmented roundworms found in all the environments (Ingham, 

usda.gov). Nematodes occupy all trophic levels including that of parasites (first trophic level), 

fungal and bacterial-feeders (second trophic level), and predators (higher trophic levels) (Ruan et 

al., 2013). Some nematode species cause life-threatening diseases of plants and animals (Lapage, 

1938; Zuckerman et al., 1971). According to Koenning et al. (1999), plant-parasitic nematodes 

alone cause over $US100 billion in damage worldwide to the agricultural industry. The most 

affected areas include subsistence farming, forestry, field and truck crops, ornamentals, and turf 

or an annual 12.3% reduction in yield (Sasser and Freckman, 1987; Koenning et al., 1999). 

However, not all parasitic nematodes are undesirable; some, such as insect parasitic nematodes, 

effectively serve as biological pest control agents (Grewal et al., 2005). Insect parasitic nematodes 

kill, sterilize, or seriously interfere with the insect host’s development (Poiner, 1979). 

Entomopathogenic nematodes (EPNs) are one group of insect parasitic nematodes of 

particular interest. According to Lacey and Georgis (2012), the word entomopathogenic is derived 

from the Greek entomon meaning insect and pathogenic meaning disease. EPN are obligate or 

facultative parasites on insects associated with mutualistic bacteria. EPN infect the hemocoel 

system of the host insect and eventually kill the insect (Kaya and Gaugler, 1993).EPNs occur in 

several different nematode families – but are predominately found in the Heterorhabditidae and 

the Steinernematidae (Poiner, 1979). Even though both of these families belong to the same order, 

Rhabditida, the families are not closely related. This significant observable distinction suggests 
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that the mutualistic insect parasitism arose independently on at least two occasions (Van Megan et 

al., 2009). 

Morales et al. (2016) states that Steinernematids were the first EPNs to be discovered. 

Steiner described Steinernema kraussei in 1923 and placed it in the family Steinernematidae. 

Currently, 95 species of Steinernema are recognized (Steiner, 1923; Morales et al., 2016). The 

species are differentiated morphologically based on characteristics of the male tail, the infective 

stage juveniles (IJ), and through a biological species approach (Poinar and Veremtschuk, 

1970; Poinar, 1986, 1990). Steinernematids generally reproduce sexually (Grewal et al., 2005). A 

mutualistic association exists between all Steinernema and the bacteria Xenorhabdus spp. The 

bacteria symbiont is attached to the IJ, and upon IJ entry into the insect, the bacteria proceed to 

cause septicemia in the insects (Akhurst and Boemare, 1990; Boemare, 2002). The EPNs feed on 

both the bacterial tissues and the insect hemolymph. The infected insect cadavers become brown 

or tan due to the effects of the toxin secreted by Xenorhabdus (Kaya and Gaugler, 1993). 

The second family of EPN, however, was not discovered until a quarter century after 

Steinernema. In 1975, Poinar reported on a new EPN family infecting Heliothis 

punctigera (Australian bollworm) in South Australia (Poinar, 1975). Poinar named this new family 

Heterorhabditidae. Moreover, Poinar identified the symbiotic bacterium of Heterorhabditis as 

Photorhabdus (Boemare et al., 1993). Today, Heterorhabditis includes 18 species (Morales et al., 

2016). Heterorhabditis has a unique dorsal “hook” on the tip of the head. This structure allows the 

nematode to penetrate the insect body through the outer integument, through the trachea, and 

through the gut wall (Bedding and Molyneux, 1982; Poinar and Georgis, 1990). Heterorhabditis 

nematodes are hermaphroditic in general (Grewal et al., 2005). In insects killed by Heterorhabditis 

sp., the cadaver becomes red (Kaya and Gaugler, 1993). Photorhabdus can fluoresce to such an 
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extent that the entire insect cadaver glows in the dark (Poinar et al., 1980).Several studies have 

produced findings that aid in better understanding of nematode parasites of insects. Nematodes 

have undergone evolutionary changes to enhance their survival involving insects (Shapiro-Ilan et 

al., 2006). The evolutionary stages consist of phases such as free-living, phoresy, necromeny, 

parasitism, and entomopathogeny (Gulcu et al., 2012). The free-living stage is where 

microbotrophic nematodes only associate transiently with insects, such as Rhabditis orbitalis on 

muroid rodents (Schulte and Poinar, 1991). Phoresy is the relationship where nematodes adapt to 

using insects as means of dispersal and/or shelter; examples include the plant parasite 

Bursaphelenchus associates of burying beetles (Nicrophorus spp.) (Richter, 1993). The phoresy 

phase does not exhibit any nutritional relationship between the nematodes and insects. The third 

evolutionary phase is known as necromeny, the point where nematodes are morphologically 

adapted to feed saprophytically on the insect cadaver. An example of a necromenic nematode is 

Pristionchus on beetles. Necromenic nematodes do not the cause insect death. The final phase in 

the evolution entails advanced levels of necromeny – parasitism and entomopathogeny (Shapiro-

Ilan et al., 2006). In parasitism, the nematode infects and derives nutrients from the insect while 

the insect lives. The parasitic nematode may kill or simply injure the insect without causing its 

death. The ultimate result of nematode parasitism on insects depends on the virulence of the 

nematode towards the insect host. Entomopathogeny is the most advanced evolutionary stage. In 

entomopathogenicity, the nematode, specifically the infective juveniles, invade and rapidly kill the 

insect with the aid of bacteria (Gulcu et al., 2012). 

EPNs share similar life cycles. The free-living stage is the third-stage juvenile (J3), a dauer 

stage, also called the infective juvenile. The IJ invades the host insect through the spiracles, mouth, 

excretory system, or intersegmental membranes of the cuticle, and then moves into the hemocoel 
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(Bedding and Molyneux, 1982). A mutualistic bacterium is associated with a particular species of 

EPN. The bacteria are released from the IJ into the insect hemocoel. In the insect hemolymph, the 

bacteria multiply and cause septicemia within 24 to 72 hours (Smart, 1995). The nematodes feed 

on both the bacteria and host tissues. Nematode development continues to maturity and 

reproduction ensues. The availability of resources from the insect cadaver controls the number of 

EPN generations. Usually, 1 to 3 generations take place within the insect host cadaver after which 

the J3 enter into the dauer IJ and leave the insect cadaver to locate another insect (Kaya and 

Gaugler, 1993; Gulcu et al., 2012). 

Two symbiotic bacteria are associated with Heterorhabditis and Steinernema, 

Photorhabdus and Xenorhabdus, respectively. These bacteria are phylogenetically related 

gammaproteobacteria (Akhurst and Boemare, 1990). Both bacteria infect a comparable range of 

insect hosts, however, each bacteria partner with an EPN from a different family. The bacteria 

provide advantageous commitments to the nematode by initiating disease in the insects, 

safeguarding the insect cadaver from predators and secondary invaders, and serving as food for 

the nematode (Goodrich-Blair and Clarke, 2007). The cooperation amongst EPNs and their 

bacterial microbes is mutualistic and symbiotic. The EPN bacteria produce antibiotics that prevent 

the reproduction of other pathogenic microorganisms on the insect cadaver and the nematode 

ensures that the bacteria find new hosts (Dillman et al., 2012). 

In the last 5 years, nematode species in the genus Oscheius, belonging to the Rhabditidae, 

have been recognized as having EPN characteristic (Dillman et al., 2012). Oscheius has been 

considered a bacterial feeding nematode with necromantic behavior. The necromantic behavior, 

for which Oscheius is historically known, is now viewed as in a transition stage from a free-living 

stage with bacterial feeding behavior to an entomopathogenic behavior (Dillman et al., 2012). 
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Oscheius chongmingensis and O. carolinensis have been classified as EPNs (Zhang et al., 2008; 

Ye et al., 2010; Torres-Barragan et al., 2011; Dillman et al., 2012). 

Aside from the behavior of an Oscheius sp. found during EPN surveys in Hawaii, Myers 

and Bisel also confirm the same characteristic of an EPN (Myers et al., 2015; Bisel, 2016). The 

Oscheius isolated in Hawaii was verified to behave like an EPN through Koch’s Postulates. 

Oscheius infected mealworm (Tenebrio molitor) larvae. The insect cadavers turn dark brown and 

remain moist. The cadavers are full of lipids while retaining their original shape. These phenomena 

are similar to characteristics induced by other EPN mutualistic bacteria. Thus, Myers and Bisel 

concluded that this Hawaiian isolate of Oscheius is likely entomopathogenic (Myers et al., 2015; 

Bisel, 2016). 

EPNs are appropriate for IPM programs (Integrated pest management) because EPNs are 

specific to their target pest(s), beneficial as a biological control agent, and can be applied using 

standard spray equipment (Shapiro-Ilan et al., 2006). Over 200 species of insects from several 

orders can be infected by steinernematid and heterorhabditid (Georgis and Manweiler, 1994).  

Therefore, the addition of a third family of EPNs holds promise of increasing the number of insect 

species susceptible to EPN as well as providing an additional tool for IPM. 

 

OBJECTIVES 

The knowledge gap of Oscheius from Hawaii is the understanding of its associated symbiotic 

bacteria. The specific objectives of this research were to: 

1. Identify the symbiotic bacteria from Oscheius isolates from Hawaii; and 

2. Determine the pathogenicity of the bacteria to insect larvae. 
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CHAPTER 2 

IDENTIFICATION OF BACTERIA ASSOCIATED WITH OSCHEIUS 

INTRODUCTION 

Intimate relationships between microbes and eukaryotes exists in almost all ecological 

niches. Such a spectrum of interactions varies in complexity. Some associations exhibit a high 

level of obligatory symbioses whereas others are loosely held (Dillman et al., 2012). Microbial 

symbiotic relationships are naturally part of ecosystems. Researchers have, therefore, developed 

interest of gaining insights into the fundamental processes and the role of symbiosis, especially 

the association between the eukaryotes and prokaryotes (Yedid, 2016). The diversity of symbioses 

between nematodes and bacteria, makes an outstanding model for understanding the critical 

aspects of such feeding relationships. 

Entomopathogenic nematodes such as Steinernema and Heterorhabditis typically have 

mutual relationships with a particular strain of bacteria that facilitates successful infection of the 

host (Heve et al., 2016). Ulug et al. (2015) explain that symbiotic bacteria are carried by infective 

juveniles (IJ), the stage of EPNs that survive in the external environment without feeding for an 

extended period. The bacteria acquire protection and shelter in the body of the IJ during the time 

the IJs are outside an insect. After gaining entry into the insect body, the IJs release symbiotic 

bacteria into the insect hemocoel (Gulcu et al., 2012). The bacteria then undergo rapid 

multiplication and release toxins and hydrolytic enzymes which in turn damages the systems of 

the insect and kills the insect within 24 hour (Ulug et al., 2015). The IJs molt to a fourth-stage 

juvenile (J4) and feed on the damaged tissues of the cadaver and bacteria. This normal life cycle 

continues until cues trigger the development of IJ (Laznik and Trdan, 2015). Subsequently, IJ and 

bacteria re-associate (Laznik and Trdan, 2015).  
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The Heterorhabditidae and Steinernematidae exhibit a symbiotic relationship with the 

bacterial genera Xenorhabdus and Photorhabdus respectively (Laznik and Trdan, 2015). By 2013, 

25 species and 85 bacterial strains of Xenorhabdus had been identified. At the same time, three 

species (P. luminescens, P. temperate, and P. asymbiotica) and 58 strains of bacteria in the genus 

Photorhabdus have been associated with Heterorhabditis (Yedid, 2016).  

Nematodes in the Oscheius genus are parasitic nematodes that prey on insects and slugs 

(Ye et al., 2010). Agricultural experts have viewed Oscheius as possible biological control agents. 

Oscheius belongs to the Rhabditidae family. The phylogenetic trees based on the sequence of the 

internal transcribed spacer (ITS) and rDNA breakdown the Oscheius nematodes into three groups 

– the Dolichura, the Insectivore, and the Heterorhabditidoides groups (Serepa and Gray, 2014). 

According to Huang et al. (2015), some pathogenic nematodes can be found in the Insectivore 

group of Oscheius. These Oscheius are found in the soil and exhibit parasitic nutritional 

dependence on insects. The objective of this research was to identify the bacteria associated with 

an Oscheius species commonly isolated from Hawaii. 

MATERIALS AND METHODS 

Oscheius cultures. Cultures of Oscheius isolates BI 1a, BI 12a, OJ 4a, and OJ 5b were 

maintained in the lab which they were isolated from a statewide EPN survey near the coast lines 

of all the islands in Hawaii (Myers et al., 2015; Bisel, 2016). Cultures were renewed weekly. 

Oscheius were inoculated onto Whatman #1 filter paper placed in 100-mm petri dishes. Ten 

mealworm larvae (Tenebrio molitor) were placed on top of the filter paper and the dish was 

covered. Forty-eight hours later, dead larvae were collect and placed on modified White traps 

(Kaya and Stock, 1997). Infective nematodes were collected 5-4 days later, counted, adjusted to 

2000 nematodes/ml water, and stored in 100-mm petri plates sealed with parafilm. Cultures were 
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maintained in an incubator at 15℃. Cultures of Steinernema feltiae MG14 were maintained 

following similar procedures.  

Tenebrio molitor. Mealworm was used as a test organism due to its susceptibility to most 

of EPN, ease of culture, wide availability, and ability to provide high EPN yields (Blinova and 

Ivanova, 1987; Shapiro-Ilan et al., 2002). Larvae were purchased from pet stores and held at 

15±2°C at 60±5% humidity in the dark until used in experiments. The larvae were provided a diet 

of Weetabix®, rolled oats, and apple slices.     

Bacteria isolation from nematodes. An aliquot of 100 nematodes from freshly harvested 

cultures of Oscheius and S. feltiae were washed three times with sterile distilled water. A 10 µl 

drop of water that contain two to three nematodes was pipetted onto a clean glass microscope slide. 

Nematodes were fragmented by using a Roboz surgical micro 45° angle tool (model number RS-

9421-06) with the aid of a dissecting microscope (Wild Heerbrugg, Heerbrugg, Switzerland). 

Water drops containing the fragmented nematodes were plated on TZC agar (Tripheny tetrazolium 

chloride) (Kelman, 1954), one agar plate for each one of the four Oscheius isolates and one S. 

feltiae. The plates were incubated in a BOD incubator at 28±2°C for 24 h. After 24 h, bacteria 

colonies were taken and subcultured repeatedly every 24 h on TZC medium until pure cultures or 

individual colonies were obtained. 

Bacteria isolation from mealworm hemolymph. Larvae of T. molitor were individually 

infected with Oscheius isolates BI 1a, BI 12a, OJ 4a, OJ 5b, and S. feltiae MG14. Five larvae were 

placed into a sterilized petri plate (100 mm × 15 mm) containing a Whatman #1 filter paper on the 

top and bottom moistened with 50 µl of nematode suspension (about 1000 IJs or nematodes) and 

3 ml of distilled water for each isolate individually (Mohammed et al., 2012). The petri dishes 

were incubated at 25°C in the dark and observed every 24 h for insect mortality. The filter paper 

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3578468/#B24
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3578468/#B24
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3578468/#B139
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was rehydrated as needed. The larvae were identified as dead or live by macroscopic examination. 

Larval cadavers were surface sterilized with a dip in 70% ethanol, rinsed three times in sterile 

distilled water, and placed in sterile dish in a laminar air flow chamber to dry. Thereafter, each 

cadaver from each EPN isolate was placed into a sterilized 1.5 ml tube and crushed with a sterile 

pestle (Iskender et al., 2017). Each suspension was diluted from 10-1 to 10-8 and streaked on petri 

plates containing TZC. Plates were placed in a BOD incubator at 28 ± 2°C for 24 h. Bacterial 

colonies were subcultured repeatedly until pure cultures were obtained.   

Extraction and sequencing of bacterial DNA. Bacterial isolates were plated onto TZC 

medium and the plates incubated for 18 h at 30oC before DNA extraction. Bacterial cells were 

collected from the culture medium with a sterile loop. A DNA extraction kit (Promega, Madison, 

WI) was used to isolate the DNA according to the manufacturer’s protocols. The DNA was 

quantified with a NanoDropTM 2000 (Thermo Fisher Scientific, Waltham, MA, USA). The forward 

primer fD1 (5′AGAGTTTGATCCTGGCTCAG3′) and the reverse primer rP2 

(5′CGGCTACCTTGTTACGACTT3′) were used to amplify the 16S rRNA genes of the bacteria 

(Weisburg et al., 1991). The PCR conditions were (T100™ Thermal Cycler, Bio-Rad, Hercules, 

CA, USA) 5 min initial denaturation at 94oC; 35 cycles of denaturation (20 s at 94oC), annealing 

(30 s at 85oC) and extension (1 min at 72oC) and a final extension at 72oC for 3 min. After 

amplification, a 10 μl aliquot of the PCR product was loaded onto a 1.5% agarose gel containing 

5 μl ethidium bromide, electrophoresed at 60 volts for 45 min, and then visualized under ultraviolet 

light. The remaining 25 μl of each PCR product was purified with ExoSAP-ITR (USB Products 

Affymetrix, Cleveland, OH). The sequence of the PCR products were obtained from GENEWIZ 

Laboratory (La Jolla, CA). The sequences were aligned using Genious (Biomatters Auckland, New 

Zealand), and compared with sequences from the National Center for Biotechnology Information 

https://www.google.com/search?rlz=1C1GGRV_enUS755US755&q=Waltham+Massachusetts&stick=H4sIAAAAAAAAAOPgE-LSz9U3MCooMTBJU-IAsTOqjE21tLKTrfTzi9IT8zKrEksy8_NQOFYZqYkphaWJRSWpRcUAAxikqkQAAAA&sa=X&ved=0ahUKEwjjkt7qwt7bAhUzMn0KHTmCAYcQmxMI1AEoATAT
https://link.springer.com/article/10.1007/s13205-015-0326-1#CR50
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(NCBI) GenBank database by using the Basic Local Alignment Search Tool (BLAST) for 

determining the identity of the isolates.  Isolation of bacteria for the nematode and sequencing of 

the isolated bacteria were conducted twice. 

RESULTS 

All T. molitor larvae inoculated were infected by the nematode isolate inoculated. Morbid 

T. molitor larvae were moist, retained their original shape and were filled with lipids. T. molitor 

larvae underwent a color change to dark brown or black. 

Bacteria isolation from nematodes. Bacteria isolated from the nematodes differed by color 

and morphology. Based on color and morphology, 13 bacteria colonies were isolated from 

different nematodes. In BI 1a, three different colonies were isolated (BI1a-1, BI1a-2, and BI1a-3). 

In BI 12a, two colonies were isolated (BI12a-1, and BI12a-2). Six colonies were isolated from OJ 

4a (OJ4a-1, OJ4a-2, OJ4a-3, OJ4a-4, OJ4a-5, and OJ4a-6). Only a single colony type was isolated 

from OJ 5b (OJ5b-1) and MG14 (Table 1.1) (Figure 1.1).  

 

Figure1.1 Different colors of bacterial colonies isolated from Oscheius on TZC medium: 

(A) White, (B) Off-white, (C) Red, and (D) Yellow. 
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Bacteria isolation from mealworm hemolymph. Based on color and morphology, 16 

different isolates were collected from mealworm hemolymph. Insects killed by BI 1a produced 

three colonies (BI1a-1h, BI1a-2h, and BI1a-3h). Four colonies were isolated from BI 12a infected 

larvae (BI12a-1h, BI12a-2h, BI12a-3h, and BI12a-4h). Seven different isolates were found in OJ 

4a (OJ4a-1h, OJ4a-2h, OJ4a-3h, OJ4a-4h, OJ4a-5h, OJ4a-6h, and OJ4a-7h). Larvae killed by OJ 

5b (OJ5b-1h) and MG14 produced only a single colony each (Table 1.1). 

Sequencing of bacterial DNA.  Twenty nine different bacterial isolates were found and 

sequenced. Twelve different bacterial species were identified from the 29 isolates sequenced. 

Based on 16S rDNA sequencing and BLAST, the identity of all bacterial species were 99% or 

90% when compared to the GenBank database, and the query coverage in all isolates were ≥99% 

(Table 1.2). 

From the insect hemolymph, Pseudomonas sp. was identified in isolates BI1a-1h, BI12a-

2h and OJ5b-1h. Bacteria isolated from BI1a-2h, OJ4a-3h, OJ4a-5h, OJ4a-6h, BI12a-3h and 

BI12a-4h were identified as Enterobacter sp. Bacterial isolates OJ4a-4h, OJ4a-7h, and BI12a-1h 

carried an Enterococcus sp. A Citrobacter sp. was identified from hemolymph isolates OJ4a-1h 

and OJ4a-2h.  

Several bacterial species were isolated from nematode. Nematode isolate BI1a-1 was the 

only nematode to be associated with a Bacillus sp. OJ4a-1 was the only nematode associated with 

Delftia sp.  A Chryseobacterium sp. was identified associated with OJ4a-3 and an Elizabethkingia 

sp. associated with OJ4a-4. The BI12a-1 was associated with Enterococcus sp. Ochrobactrum sp. 

was identified in BI1a-2 and BI12a-2. A Stenotrophomonas sp. was found in association with 

OJ4a-2 and OJ4a-6. Both OJ5b-1 and OJ4a-5 were identified as Pseudomonas sp.

https://www-sciencedirect-com.eres.library.manoa.hawaii.edu/topics/agricultural-and-biological-sciences/sequencing
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The isolate BI 1a from both the nematodes ( BI1a-3) and insect hemolymph ( BI1a-3h) was 

associated with the bacteria Serratia sp. MG14 isolate identified as expected which is 

Xenorhabdus sp. from both the nematodes and insect hemolymph. The greatest number of 

Oscheius isolates from Hawaii were associated with Enterobacter sp. followed by Pseudomonas 

sp. and Enterococcus sp.  

DISCUSSION 

Several species of bacteria were associated with the isolates of Oscheius from Hawaii. The 

presence of the EPNs in mealworm larval cadavers is an indication of the association of the bacteria 

with Oscheius. The T. molitor cadavers were moist and retained their original shape, an indication 

of the presence of bacteria and Oscheius (Blinova and Ivanova, 1987). Additionally, the change in 

cadaver color from tan to dark brown and black suggests the presence of bacteria. Twelve different 

bacterial species were associated with the different isolates. Studies have shown that the symbiotic 

bacteria associated with EPNs produce colonies of varied colors, such as greenish to blue green 

(Kaya and Stock 1997), bright red (Ortega-Estrada et al., 2012), bioluminescent (Babic et al., 

2000) and red (Zhang et al., 2009) when grown on TZC media. 

Our research has shown that different bacterial genera can be associated with Oscheius sp. 

Sangeetha et al. (2016) state that a close association exists between EPNs in Steinernematidae, 

Heterorhabditidae, and Rhabditidae and the bacteria that are isolated from Oscheius species. The 

association of bacteria outside the Enterobacteriaceae with Oscheius has been previously reported. 

In the Sangeetha study, sequence analysis identified 18 different bacteria associates – Enterobacter 

sp., Proteus mirabilis, Providencia sp., Pseudomonas sp., Stenotrophomonas maltophilia (class γ-

proteobacteria), Alcaligenes faecalis (class β-proteobacteria), and Bacillus cereus, Enterococcus 

faecalis, Lysinibacillus sphaeriscus (class Bacilli). Bacillus cereus was associated with Oscheius 
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in work reported by Kumar et al. (2013). Kumar et al. (2014) also found Comamonas testosteroni 

associated with Oscheius. Serepa-Dlamini and Gray (2018) isolated both Enterococcus and 

Acinetobacter from Oscheius. Twelve different symbiotic bacteria have been isolated from 

Oscheius spp. belonging to the genera Serratia, Acinetobacter, Bacillus, Comamonas, 

Stenotrophomonas, Achromobacter, Klebsiella and Brucellaceae (Deepa et al., 2011). Eighty 

percent of the bacterial isolates identified in the Hawaiian isolates of Oscheius belong to the 

Enterobacteriaceae, the same family as Xenorhabdus and Photorhabdus (Williams et al., 2010). 

The high frequency of Pseudomonas sp. associated with the isolates and the bacteria’s 

toxicity to insects suggests the association is important in the nematode-bacteria-insect interaction 

(Ulug and Hazir, 2015). Different species of Pseudomonas have been reported to carry toxin genes 

against insects (Chen et al., 2014; Péchy‐Tarr et al., 2008; Vodovar et al., 2006). It is possible that 

the Pseudomonas sp. associated with the Hawaii isolates of Oscheius do also. Similarly, 

Enterobacter sp. occurred in high frequency and was toxic to insects. The association of 

Pseudomonas sp. and Enterococcus sp. with Oscheius suggests a useful pest control combination.  

During the infection and colonization process of EPN attack, there is a cellular and 

molecular interface between the bacteria, the nematode, and the insect host that results in the 

nematode-bacterium relationships. A set of common DNA exists such as toxins, transcriptional 

regulators, proteases, putative membrane transporters, and genes encoding lipopolysaccharide 

production that kill the insect, protect the insect cadaver from other saprophytic organisms, and 

provide nutrition to the nematode. The process is important in ensuring a stable mutual relationship 

between the bacteria. Deepa et al. (2011) molecularly characterized EPN through the novel 

isolation and characterization of bacteria. Their findings are consistent with the results from the 

present study that confirms the existence of the bacteria in Oscheius from Hawaii. Moreover, the 
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study shows that there is a relatively lower similarity (90%) among the bacterial species an 

indication of the presence of different bacteria. According to Poretsky et al. (2014) the similarity 

or identity of bacterial isolates is effected by the limitation of the databases used for sequence 

comparisons. Deepa et al. (2011) proposed three major EPN clades from the isolation process. 

These EPN clades include the bacteriophora-argentinensis-hepialius group (Clade I), the baujardi-

sonorensis-amazonensis group (Clade II), and the indica-brevicaudis-hawaiiensis group (Clade 

III). A similar scheme could be used to group isolates of Oscheius in the future. 
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CHAPTER 3 

  PATHOGENICITY OF BACTERIA ASSOCIATED WITH OSCHEIUS 

INTRODUCTION 

Various and unique pathogenic bacteria are associated with the nematodes that kill insects. 

The lethality of these nematode-associated bacteria determines whether the nematodes are 

classified as entomopathogenic nematodes (EPNs) or not. EPNs exhibit a symbiotic relationship 

with specific bacteria as the nematodes infect an insect host (Laznik and Trdan, 2015). The 

relationship between EPNs and the strain of bacteria is often specific in Steinernema and 

Heterorhabditis. However, the molecular characterization of EPB (EntomoPathogenic Bacteria) 

showed 18 bacterial isolates associated with Oscheius including Enterobacter sp., Pseudomonas 

sp., Providencia sp., Proteus mirabilis, Alcaligenes faecalis, Stenotrophomonas maltophilia, 

and  Bacillus cereus (Yedid, 2016).  

Ye et al. (2010) argue that a myriad of well-researched species of Oscheius have the 

characteristics of a necromenic lifestyle. For example, Oscheius myrophila and O. colombiana are 

clearly necromenic in their feeding behavior. However, related species, like O. carolinensis, 

exhibit a facultative entomopathogenic feeding behavior. Oscheius carolinensis can access the 

insect body and kill the insect with the assistance of the bacteria Serratia marcescens (Serepa and 

Gray, 2014). These bacteria, after multiplying within the insect hemolymph, secrete enzymes such 

as proteases and lipases that contribute to the death of the infected insect. Contrary to the internally 

symbiotic bacteria of the Heterorhabditid and Steinernematid EPNs, S. marcescens only has an 

external association with O. carolinensis (Zhou et al., 2017). The fact that entomophilic nematodes 

can cooperate with pathogenic bacteria is an indication that entomopathogenicity may advance 

from non-parasitic to parasitic nematodes through an initial intervention of bacteria. 
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Furthermore, some recent studies have emphasized the point that species of Oscheius use 

bacterial pathogens to parasitize insect hosts. According to Huang et al. (2015), O. carolinensis 

and O. chongmingensis have potential as entomopathogens that attack insects in the soil. 

Contemporary studies also confirm that species of Oscheius associate with Serratia. More 

specifically, Oscheius species partner with S. marcescens to gain access to the target insect. 

Oscheius chongmingensis is reported to have the ability to associate with other bacteria in addition 

to S. marcescens (Ye et al., 2010). The objective of these experiments was to determine the 

pathogenicity of bacteria associated with Hawaiian isolates of Oscheius against mealworm larvae. 

MATERIALS AND METHODS 

Bacterial isolates. Isolates of Serratia sp., Enterococcus sp., and Pseudomonas sp., 

originally isolated from nematodes and insect hemolymph BI 1a, OJ 4a, and OJ 5b were tested for 

insect pathogenicity. After isolation and purification from nematodes or insects, the bacteria were 

stored at −80°C in glycerol stocks before use. Bacterial isolates were grown on TZC medium for 

4 days in a BOD incubator at 30°C before being used (Kelman, 1954; Harding et al., 2013). A 

bacterial loop full of cells of each isolate was individually transferred into a 100 ml tube filled with 

liquid TZC medium and incubated on a rotary shaker (180 rpm) at 24°C for 24 hours before use 

in the experiments (Flury et al., 2016). In preparation for insect exposure, bacterial cells were 

washed in sterile 0.9% NaCl and the absorbance (OD600) was measured at 0.1 nm. The cultures 

were adjusted with NaCl to a concentration of 108 colony forming units (CFU) per ml. Cell 

suspensions were diluted to the desired concentrations. 

Injection assay. A 10 μl wash of bacterial cells was adjusted to concentrations of 0, 102, 

104, 106, and 108 cfu/ml using 0.9% sterile NaCl buffer (Péchy-Tarr et al., 2008). Using a sterile 

3-ml syringe with a 31‐gauge needle (EXELINT, Redondo Beach, CA), the bacterial suspensions 

https://www.nature.com/ismej/journal/v10/n10/full/ismej20165a.html#bib61
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were injected into the hemolymph of mealworm larvae (Flury et al., 2017). Injected larvae were 

placed in 10-cm petri plates and held in a dark incubator at 27°C. Larvae were observed daily for 

death. Mortality was described as the failure of larvae to move or react to poking. The experiment 

consist of four replicates of 10 larvae per bacterial concentration for each of the three bacterial 

isolates (Serratia, Enterococcus, and Pseudomonas). As a control, mealworm larvae were injected 

with an empty needle and water and NaCl. The experiment was repeated twice.  

Feeding assay. A feeding assay was conducted with slight modifications as described by 

Ruffner et al. (2013). Whatman #1 filter paper was moistened and placed into the bottom of a 100-

mm petri plate onto which a modified insect diet pellet was placed. The pellet consisted of 100 ml 

sterile ddH2O containing 100 ml glycerin, 100 ml honey, 5 ml baby vitamins (Enfamil, Evansville, 

IN), and 50 g of baby cereal (GERBER® cereals, Florham Park, NJ). The ingredients were mixed 

and a 10 μl of suspension of washed bacterial cells at concentrations of 0, 102, 104, 106, and 108 

cfu/ ml was placed on each pellet (Gupta et al., 2005; Ruffner et al., 2013). Sterile distilled water 

served as control. Ten mealworm larvae were introduced into each plate containing one food pellet. 

The plates were placed in a 27°C incubator in the dark. Plates were observed 24, 48, 72, and 96 

hours later for insect mortality. When the larvae of T. molitor did not respond to poking, they were 

considered dead. The experiment consist of four replicates of 10 larvae per bacterial concentration 

for each of the bacterial isolates. The experiment was repeated two times.  

Statistics. Data were subjected to ANOVA using SAS (SAS Inc, Cary, NC) for the effect 

of time, bacterial isolate, concentration and their interactions on mortality rates. The lethal 

concentrations (LC50 and LC90) were calculated at 24, 48, 72, and 96 hours for each isolate by 

using regressions analysis. 
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RESULTS 

Injection assay. All the three bacteria isolates tested kill 100% of mealworms at 48 hours after 

injection at 108 cfu/ml (Table 2.1). However, Pseudomonas sp. was more lethal to mealworms 

than Enteroccocus sp. or Serratia sp. based on mealworm mortality at 24 hours after injection 

(Table 2.1, Fig. 2.1). Pseudomonas sp. achieved LC50 and LC90 at 102 cfu/ml within 48 and 72 

hours after bacteria injection, respectively (Table 2.1). In addition, Enteroccocus and Serratia 

achieved LC50 and LC90 at 104 cfu/ml within 48 and 72 hours, respectively (Table 2.1). 

Pseudomonas was significantly more lethal to mealworm larvae than Enteroccocus or Serratia 

(P ≤ 0.01). 
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Figure 2.1 Average mortality (%) of mealworm injected with 102, 104, 106, and 108 cfu/ml of 

Pseudomonas (Pse), Enteroccocus (Ent) and Serratia (Ser) after 24 hours. Bars with the same 

letter are not different. 
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Table 2.1 Mortality of mealworms affected by bacteria associated with isolate of Oscheius from 

Hawaii at different concentrations over time after bacteria injection.  

 Enteroccocus   Pseudomonas   Serratia 

Cfu/ml Mean (%)   Mean (%)   Mean (%) 

--------------------------------------------------------0 hr----------------------------------------------------- 

100 0.0±0.0z A  0.0±0.0 A  0.0±0.0 A 

102 0.0±0.0  A  0.0±0.0 A  0.0±0.0 A 

104 0.0±0.0  A  0.0±0.0 A  0.0±0.0 A 

106 0.0±0.0  A  0.0±0.0 A  0.0±0.0 A 

108 0.0±0.0  A  0.0±0.0 A  0.0±0.0 A 

--------------------------------------------------------24 hr---------------------------------------------------- 

100 0.0±0.0   E  0.0±0.0   E  0.0±0.0   E 

102 12.5±2.5 D  37.5±2.5 D  12.5±2.5 D 

104 32.5±2.5 C  52.5±2.5 C  27.5±2.5 C 

106 42.5±2.5 B  65.0±2.9 B  45.0±2.9 B 

108 90.0±0.0 A  92.5±2.5 A  90.0±0.0 A 

--------------------------------------------------------48 hr---------------------------------------------------- 

100 0.0±0.0      E  0.0±0.0    D  0.0±0.0    D 

102 40.0±4.1    D  62.5±2.5  C  32.5±2.5  C 

104 67.50±2.5  C  75.0±5.0  B  60.0±4.1  B 

106 85.00±2.9  B  92.5±4.8  A  95.0±2.9  A 

108 100.00±0.0A  100.0±0.0A  100.0±0.0A 
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 --------------------------------------------------------72 hr---------------------------------------------------- 

100 0.00±0.0    C  0.00±0.0    C  0.00±0.0    C 

102 65.00±2.9  B  90.00±0.0  B  72.50±2.5  B 

104 97.50±2.5  A  100.00±0.0A  97.50±2.5  A 

106 100.00±0.0A  100.00±0.0A  100.00±0.0A 

108 100.00±0.0A  100.00±0.0A  100.00±0.0A 

--------------------------------------------------------96 hr---------------------------------------------------- 

100 0.0±0.0    B  0.00±0.0  B  0.00±0.0  B 

102 100.0±0.0A  100.0±0.0A  100.0±0.0A 

104 100.0±0.0A  100.0±0.0A  100.0±0.0A 

106 100.0±0.0A  100.0±0.0A  100.0±0.0A 

108 100.0±0.0A  100.0±0.0A  100.0±0.0A 

 

zMeans (n = 4) in a column at each time followed by the same letter are not different 

based on Waller-Duncan k-ratio (k=100) t-test. 
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Table 2.2 Lethal concentration of Enteroccocus, Pseudomonas and Serratia achieving LC50 and 

LC90 on mealworms in a bacterial injection experiment.   

Z Value of X 

 

 

 

 

Trails I and II shared homogeneity of variance, so the data were combined. Based 

on the linear regression, the LC50 and LC90 were calculated. The LC50 for Pseudomonas 

was at 104 cfu/ml and the LC90 was at 108 cfu/ml at 24 hr (Fig. 2.2). For Enteroccocus and 

Serratia, the LC50 was achieved at 105 cfu/ml and the LC90 was at 109 cfu/ml at 24 hr (Fig. 

2.2). In both trials, Pseudomonas required 10 fold less bacteria to achieve the LC50 than 

Enteroccocus or Serratia (Table 2.2). Pseudomonas also required 10 fold fewer cfu/ml to 

achieve the LC90 compared to Enteroccocus and Serratia at 24 hour after bacteria 

injection.  

 

  

Time (hr) 

Enteroccocus   Pseudomonas  Serratia 

LC 50 LC 90   LC 50 LC 90  LC 50 LC 90 

 ------------------------------------------10X cfu/ml of suspension------------------------------------- 

0 0 0   0 0  0 0 

24 5.00Z 9.00   4.00 8.00  5.00 9.00 

48 3.00 6.00   2.00 6.00  3.00 6.00 

72 2.00 5.00   1.00 5.00  2.00 5.00 

96 1.00 5.00   1.00 5.00  1.00 5.00 
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Figure 2.2 Effect of three bacterial isolates: A) Enteroccocus. B) Pseudomonas. C) 

Serratia on mortality rates of mealworm larvae, over time after injection bioassay.  

Z Value of X 

  

Z Z 
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Feeding assay. Similar to the results from the injection test, Pseudomonas was more lethal 

to the T. molitor larvae compared to Enteroccocus and Serratia (Fig. 2.3). Table 2.3 

showed that Pseudomonas had higher mealworm mortality within 24 hrs than 

Enteroccocus or Serratia. The interaction between time, bacterial isolate, and 

concentration was significant (P ≤ 0.01). The general trend appeared to be that percent of 

mealworm mortality was directly proportional to bacterial concentration (Table 2.3). 

Mealworm mortality was significantly greater than 104 cfu/ml for all isolates on 24 and 48 

hrs after feeding an inoculated food pellet to T. molitor larvae (P ≤ 0.01). Although 

Pseudomonas achieved LC50 at 104 and 106 cfu/ml in 24 hr, all isolates reached LC90 

within 24 hours at 108 cfu/ml (Table 2.3). At 72 and 96 hr, mealworm mortality at 102 

cfu/ml became significantly higher than the no bacteria control (P ≤ 0.01).   
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Figure 2.3 Average mortality (%) of mealworm fed on modified insect diet with 102, 104, 

106, and 108 cfu/ml of Pseudomonas (Pse), Enteroccocus (Ent) and Serratia (Ser) after 24 

hours. Bars with the same letter are not different. 
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Table 2.3 Mortality of mealworms feeding on food pellets with different concentrations of 

bacteria associated with Oscheius isolate from Hawaii over time.  

 Enteroccocus   Pseudomonas   Serratia 

Cfu/ml Mean (%)   Mean (%)   Mean (%) 

--------------------------------------------------------0 hr----------------------------------------------------- 

100 0.0±0.0z A  0.0±0.0 A  0.0±0.0 A 

102 0.0±0.0  A  0.0±0.0 A  0.0±0.0 A 

104 0.0±0.0  A  0.0±0.0 A  0.0±0.0 A 

106 0.0±0.0  A  0.0±0.0 A  0.0±0.0 A 

108 0.0±0.0  A  0.0±0.0 A  0.0±0.0 A 

--------------------------------------------------------24 hr---------------------------------------------------- 

100 0.0±0.0   D  0.0±0.0   D  0.0±0.0   D 

102 0.0±0.0   D  0.0±0.0   D  0.0±0.0   D 

104 32.5±2.5 C  52.5±2.5 C  27.5±2.5 C 

106 42.5±2.5 B  65.0±2.9 B  45.0±2.9 B 

108 90.0±0.0 A  92.5±2.5 A  90.0±0.0 A 

--------------------------------------------------------48 hr---------------------------------------------------- 

100 0.0±0.0      D  0.0±0.0    C  0.0±0.0    C 

102 5.0±2.9      D  2.5±2.5    C  5.0±2.9    C 

104 67.50±2.5  C  75.0±5.0  B  60.0±4.1  B 

106 85.00±2.9  B  92.5±4.8  A  95.0±2.9  A 

108 100.00±0.0A  100.0±0.0A  100.0±0.0A 
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  --------------------------------------------------------72 hr---------------------------------------------------- 

100 0.00±0.0    C  0.00±0.0    C  0.00±0.0    C 

102 25.00±5.0  B  27.50±0.0  B  30.00±2.5  B 

104 97.50±2.5  A  100.00±0.0A  97.50±2.5  A 

106 100.00±0.0A  100.00±0.0A  100.00±0.0A 

108 100.00±0.0A  100.00±0.0A  100.00±0.0A 

--------------------------------------------------------96 hr---------------------------------------------------- 

100 0.0±0.0    C  0.00±0.0  C  0.00±0.0  C 

102 52.50±4.8B  52.50±2.5B  60.0±5.8  B 

104 100.0±0.0A  100.0±0.0A  100.0±0.0A 

106 100.0±0.0A  100.0±0.0A  100.0±0.0A 

108 100.0±0.0A  100.0±0.0A  100.0±0.0A 

 

zMeans (n = 4) in a column at each time point followed by the same letter are not different 

based on Waller-Duncan k-ratio (k=100) t-test. 
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Table 2.4 Lethal concentration (LC50 and LC90) of Enteroccocus, Pseudomonas and Serratia to 

mealworms in a bacterial feeding experiment.  

Z Value of X 

 

 

 

The LC50 and LC90 values for Pseudomonas were estimated to be 104 and 108 cfu/ml, 

respectively at 24 hour (Table 2.4). The LC50 and LC90 for Enteroccocus and Serratia were 

estimated via regression analysis at 105 and 109 cfu/ml on 24 hours. No difference was detected 

between the LC50 and LC90 values for Pseudomonas, Enteroccocus and Serratia at 48, 72, and 96 

hours (Table 2.4) (Fig. 2.4). 

 

  

  

Time (hr) 

Enteroccocus  Pseudomonas  Serratia 

LC 50 LC 90  LC 50 LC 90  LC 50 LC 90 

------------------------------------------10X cfu/ml of suspension------------------------------------------ 

0 0 0  0 0  0 0 

24 5.00Z 9.00  4.00 8.00  5.00 9.00 

48 4.00 6.00  3.00 6.00  4.00 6.00 

72 2.00 5.00  2.00 5.00  2.00 5.00 

96 2.00 5.00  2.00 5.00  2.00 5.00 



38 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

Figure 2.4 Effect of three bacterial isolates: A) Enteroccocus. B) Pseudomonas. C) 

Serratia on mortality rates of mealworm larvae, over time after feeding bioassay. 

                    Z Value of X 

 

 

 

Z 

 

Z 

Z 



39 

 

DISCUSSION 

The Oscheius-associated bacteria Enterococcus, Pseudomonas, and Serratia are toxic to 

mealworms. From the current study results, it is evident that all the three bacteria isolates are able 

to kill insects without the nematode. The findings are consistent with the former studies that the 

entomopathogenic bacteria associated with entomopathogenic Oscheius are able to kill the insect 

without the nematode (Al-Own, 2013; Hameed et al., 2014; Li et al., 2017; Ruiu, 2015). Direct 

injection of the bacteria increased their effectiveness as entomopathogen than insect exposure 

through feeding. The extreme lethality of Pseudomonas compared to Enterococcus and Serratia 

in killing the mealworms from this research is consistent with the findings of Al-Own (2013). 

Mona and Aly (2015) showed that EPB Enterococcus, Pseudomonas, and Serratia have been 

widely used by nematodes to kill insects. This finding confirmed that isolates of Oscheius in 

Hawaii have developed symbiotic relationship with entomopathogenic bacteria.  

It may be possible to formulate these entomopathogenic bacteria as biological control 

agents, independent of the nematode host. The use of pathogenic bacteria such as Enterococcus, 

Pseudomonas, and Serratia have been widely pursued by different scholars and government 

agencies as alternative to pest control and management. Mahmoud (2016) in a study of the use of 

entomopathogenic bacteria for insect pest biocontrol argue that there has been a growing crusade 

for environmentally safe chemicals, with limited impact on the non-target organisms, low toxicity 

to human, and short-term persistence in the field. Enterococcus, Pseudomonas, and Serratia 

present such characteristics and are therefore suitable for the use in pest control in different 

settings. Mahmoud (2016) also recognizes the differences in the strength of each of the pathogenic 

bacteria in the pest control and management. For instance, according to this study, there is an 

evidence that Pseudomonas is most effective in killing the mealworms and possibly other insect 
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pests. In most civilizations, there is a growing concern over the use of insecticides due to the public 

health, environmental pollution, rising costs, and resistance of pests associated with pest control 

(Lacey et al., 2015). This creates the need to explore the biological alternatives that are efficient 

and environmentally friendly to manage the target pests. The use of Enterococcus, Pseudomonas, 

and Serratia evaluated in this study offer opportunities to be explored for their biocontrol potential. 

The widespread testing of EPB has yielded success in most areas with a fast response to 

the control of pests compared to the traditional approaches (Hashem et al., 2015). Unlike the 

other alternatives, the biological alternatives do not have a negative effect on the crops. In a 

separate study, Lauzon et al. (2013) illustrate the effectiveness of the EPB, specifically Serratia 

marcescens and Pseudomonas sp. in the biological pest control of healthy apple maggot flies in 

the lab trial. From the findings, the EPB were effective in the elimination of the pests within 24 

hours. With an increase in the concentration of 4.7 × 104 cfu/ ml, there is a shorter period to the 

elimination of the pests unlike when a lower concentration of the EPB is used in the experiment 

(Hameed et al., 2014). We have clearly established that the isolates of Oscheius tested in Hawaii 

are entomopathogenic in nature and have the potential to be developed into biological control 

agents. 
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CONCLUSION  

The study on entomopathogenic nematodes (EPNs) has attracted various interests from 

researchers as an option for environmental friendly, classical, or conservation biological controls. 

The growing interests are associated with the improvement in mass production of EPB for pest 

control (Li et al., 2017). 

Lacey and Georgis (2012) in a study of using the EPNs to control the insect pests above 

and below ground summarized that there has been a significant technological improvement in the 

developments of EPNs for pest control that has reduced the use of pesticides and insecticides in 

pest control (Batalla-Carrera et al., 2010). The growth has supported an increase in the 

development and commercial application of the EPNs in pest control. Furthermore, the 

commercially produced EPNs have been widely used in the control of scarab larvae and fungus 

gnats (Shapiro-Ilan et al., 2012). According to Dillman et al. (2012), there is a diverse insect-

parasitic nematodes effective in management of insect pests. As the EPNs infect the hemocoel 

system of the host insect, the bacteria associated with them kill the insect hosts (Batalla-Carrera et 

al., 2010). Entomopathogenic bacteria might be effective than insecticides due to less negative 

impact on the environment and less likely for the insect pests to develop resistance as in the case 

of many pesticides (Ye et al., 2010).  

Ruiu (2015) in a study of the insect of pathogenic bacteria in pest management recognizes 

the development and existence of varied bacteria that helps in the pest control. Some of the species 

according to the study include Pseudomonas entomophila, Serratia species, Betaproteobacteria 

species Burkholderia spp. and Chromobacterium spp. (Ruiu, 2015). The pathogenicity of bacteria 

associated with Oscheius varies across the nematodes. The differences in their pathogenicity 

explain the effectiveness difference in pest control. The infection of the insect hots makes the EPNs 
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application in the pest management (Park et al., 2011). The enzymes proteases and lipases 

contribute to the deaths of insects. Other species such as O. carolinensis and O. chongmingensis 

have potential as entomopathogens that attack insects, making them an ideal option for biological 

pest control (Vijayakumari et al., 2013). Additionally, the association of Oscheius chongmingensis 

with other bacteria explains the pathogenicity of the bacteria that acts against the mealworm larvae 

in this study. Base on the current experiments, the Pseudomonas is more lethal against insect 

compared to Enterococcus and Serratia. 

Shapiro-Ilan et al. (2012) provide an elaborate review of the concepts and technological 

applications on the mass production of EPNs. This technology is a key element in the success of 

EPNs for pest control (Torres-Barragan et al., 2011). The mixing of EPNs with polymers, 

sprayable gels, or surfactants are some of the recent developments that have been recorded in the 

EPN formulations for the above ground applications (Shapiro-Ilan et al., 2012). The in vitro culture 

technology has been established to be an appropriate mechanism for the production of the EPNs. 

Shapiro-Ilan et al. (2012) further suggests that the efficacy in EPN applications can be enhanced 

by utilizing better delivery mechanisms. For instance, the optimization of delivery equipment or 

the cadaver applications. Future work should explore formulating entomopathogenic strains of 

Oscheius sp. isolated in Hawaii as biological control agent for local use in Hawaii as currently 

quarantine restriction against importation of foreign commercial EPNs are prohibited. 
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