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Abstract 

A survey of plant-parasitic nematodes associated with breadfruit in Hawai‘i was conducted 

on 25 sites with breadfruit trees. Soil and breadfruit roots yielded seven genera of plant-parasitic 

nematodes (Helicotylenchus, Meloidogyne, Mesocriconema, Paratylenchus, Pratylenchus, 

Rotylenchulus, Tylenchorhynchus) and one Heteroderid. Morphometric and molecular techniques 

identified a root-lesion nematode found parasitizing breadfruit as Pratylenchus coffeae. Host 

ranges and pathogenicity of Meloidogyne javanica, Pratylenchus coffeae, and Rotylenchulus 

reniformis were tested on breadfruit cultivar ‘Ma‘afala’ in two experiments.  In experiment 1, P. 

coffeae reproduced 17-fold, while M. javanica and R. reniformis did not replace the inoculum 

concentration. At termination, no visible symptoms were present on host plants, but a greater root 

weight of breadfruit inoculated with P. coffeae was measured. Experiment 2 showed similar trends 

despite higher greenhouse temperatures and pot-bound breadfruit trees. Reproductive factor results 

indicate breadfruit is a good host to P. coffeae and a poor host to M. javanica and R. reniformis. 

 

Key Words: Hawaii, Helicotylenchus dihystera, host range, identification, Kauaʻi, Ma‘afala, 

Maui, Meloidogyne javanica, lesion, Ma‘afala, molecular, morphometric, morphology, Oʻahu, 

Paratylenchus, pathogenicity test, Pratylenchus coffeae, Rotylenchulus reniformis, survey, ‘ulu. 
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Chapter 1: Breadfruit and Plant-parasitic Nematodes in Hawai‘i: A Review 

1.1 Introduction 

“If a man should in the course of his lifetime plant ten such trees, he would as completely fulfill his 

duty to his own and future generations…” 

- Remarks on breadfruit from explorer and naturalist Sir Joseph Banks, 1769 

 

 Breadfruit (Artocarpus altilis Parkinson (Fosberg)) is a traditional crop cultivated 

throughout Oceania for its starchy fruit (Zerega et al., 2004) that is becoming increasingly popular 

as an orchard tree in Hawaiʻi and throughout the world. Although reported as relatively free of 

disease (Ragone, 1997, 2006; Taylor and Tuia, 2007), limited research has been conducted in 

regard to the plant and plant-parasitic nematodes. Plant-parasitic nematodes on non-major crops 

are often overlooked when it comes to assessing plant health issues because the nematodes are 

microscopic and symptoms of nematode infection are often indistinct, making their presence 

difficult to diagnose without soil assays. To date, no information is available on the association of 

different nematode pathogens with breadfruit plants or their relationship with tree decline in 

Hawaiʻi.  Thus, the goal of this research was to investigate plant-parasitic nematodes associated 

with breadfruit in Hawaiʻi. 

Transported vegetatively as root shoots, breadfruit was one of the plants that Polynesian 

voyagers transported over long ocean distances when they first inhabited the Hawaiian Islands. 

The breadfruit tree, with an important cultural role in the history of the Pacific, is referenced in 

Polynesian, Micronesian, and Melanesian mythology. From a utilitarian perspective, every part of 

the tree yielded useful resources. Most importantly, fruits from the tree were likened to freshly 

baked bread by European sailors (Ragone, 1997), carbohydrate-rich and providing an important 

source of minerals and vitamins (Graham and Bravo, 1981; Jones et al., 2011, 2013). Breadfruit 
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trees are best known for abundant yields of fruit with minimal input. Trees can be observed 

producing bountiful harvests by residences, commercial areas, schools, parks, and botanical 

gardens and are present on all of the main Hawaiian Islands (Miller, 1976; Ragone et al., 2016).  

With the most widespread cultivation and use of breadfruit in the Pacific, Ragone (1997) 

noted a decline of cultivation and use in many regions that traditionally utilized resources the tree 

offers. Changes in food preferences favoring ease of storage and convenience over heritage and 

tradition have led to a downturn in cultivation, proficiency of harvesting, and consumption of 

breadfruit in younger generations (Taylor et al., 2008). Globally, however, knowledge of 

breadfruit is broadening. In Fiji, breadfruit's popularity as an export commodity resulted in 6 

tonnes exported to Australia, New Zealand, and Canada in 2006 (Taylor and Tuia, 2007). 

Breadfruit is also gaining popularity as a cash crop in Pohnpei (Englberger et al., 2007), Trinidad 

and Tobago (Roberts-Nkrumah and Legall, 2013), Seychelles (Moustache and Moustache, 2007), 

and the Marshall Islands (Englberger et al., 2007).  Food security, agricultural sustainability, and 

expanding local biodiversity are being examined as major components in combating global hunger 

with neglected and underutilized crops like breadfruit being brought to the forefront of solutions 

(Jones et al., 2012). 

       Breadfruit is a tropical tree that grows to 15-21 m with a trunk up to 2 m in diameter 

(Ragone and Paull, 2008). Like other members of the family Moraceae, lactifers which produce 

milky sap are present in breadfruit trees. Trees grow best at a temperature range between 15° to 

40°C, a yearly precipitation of 150 to 300 cm, and altitudes from 0-1,500 m (Ragone, 1997). A 

crop yield of 6 tonnes/ ha–1 has earned breadfruit the reputation as “the most productive orchard 

crop in the world” (Fownes and Raynor, 1993; Sauerborn, 2002). Average yield for a single 

breadfruit tree is 269 fruits per year, each with an average weight of 1.2 kg (Liu et al., 2014), or 
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322.8 kg of fruit per tree per year.  World hunger and food security are concerns in tropical regions, 

where problems of poverty, disease, and lower agricultural productivity are amplified. Breadfruit 

could be one solution to alleviate hunger and increase food security in these regions (Jones et al., 

2012).  

Despite its multipurpose utility and huge potential towards agricultural sustainability, 

breadfruit is considered an underutilized crop and given little attention for the purposes of large 

scale commercial cultivation, in part due to limited knowledge on agronomic practices, processing 

and preservation, and planting materials (Roberts-Nkrumah, 2007). These challenges continue to 

be addressed by researchers from many different disciplines. Preliminary information on 

fertilization regimes, pruning, and planting density for modern breadfruit orchard production is 

now available (Lebegin et al., 2007; Goebel, 2007). Processing and preservation studies (Nochera 

and Caldwell, 1992; Nochera and Moore, 2001; Oduro et al., 2007; Akanbi et al., 2011) have 

allowed diverse products to be developed to please international and interspecies palates including: 

breadfruit biscuits (Olaoye et al., 2007, Omobuwajo, 2003; Bakare et al., 2014), infant food 

(Mayaki et al., 2003; Nelson-Quartey et al., 2007), breadfruit energy bars (Nochera and Ragone, 

2016), breadfruit noodles (Adebowale et al., 2017), and meal for broiler chickens (Oladunjoye et 

al., 2010) and weaned pigs (Ortiz, 2013). In addition, studies on arbuscular mycorrhizal fungi 

found an abundance of taxa on older breadfruit trees, mostly of the genus Rhizophagus, whereas 

younger trees were dominated by species of Glomus (Hart et al., 2014). Since 2008, methods 

established by Shi et al. (2007) and Murch et al. (2008) improved in vitro propagation, enabling 

propagules to be commercially produced, making quantities and select breadfruit cultivars much 

easier to obtain than in the past (www.globalbreadfruit.com).  

http://www.globalbreadfruit.com/
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As a result of this continual stream of knowledge and innovation, breadfruit plantings have 

steadily increased and breadfruit orchards have been established internationally. Since 2009, Trees 

That Feed Foundation has disseminated 120,000 breadfruit trees to farmers and co-ops in Jamaica, 

Haiti, Costa Rica, Barbados, Ghana, and other countries (T. Candler, personal communication, 30 

March 2017). In Hawaiʻi, the National Tropical Botanical Garden Breadfruit Institute’s “Plant a 

Tree of Life-Grow ʻUlu” project dispersed over 12,000 breadfruit trees since 2012 (Ragone et al., 

2016). As breadfruit orchards become more common, monocropping of agricultural crops has been 

cited to increase risk of total crop failure due to pest problems and plant pathogens (Bridge, 1996). 

Because many seedless breadfruit cultivars are genetically identical to one another although very 

distinct morphologically and from different geographic areas in the Pacific (Zerega et al., 2004), 

most trees are likely genetically identical in response to pathogens. Accordingly, infestation by 

pathogens in a breadfruit monoculture could spread rapidly throughout an orchard, yielding 

potentially devastating effects. 

Plant pathogens can decrease production, reduce tree vigor, and lead to early mortality in 

breadfruit trees.  Uredo artocarpi, present on Artocarpus spp. in India and the Philippines and on 

islands of the South Pacific, was first reported from Hawaiʻi in 1991 (Gardner, 1991). Recorded 

bacterial and fungal diseases of breadfruit include: anthracnose (Colletotrichum gloeosporioides) 

(Ragone, 2006; Stice et al., 2007), Diplodia collar rot (Sangchote et al., 2003), fruit, stem, and 

root rot caused by Phytophthora spp. (Cerqueira et al., 2006;),  pink disease (Erthricium 

salmonicolor) (Sangchote et al., 2003), Rhizopus rot (Rhizopus spp.) (Sangchote et al., 2003; 

Ragone and Paull, 2008), and Pingelap disease which caused an epidemic decline of trees in the 

Pacific (Zaiger and Zentmyer, 1966) but was later determined to be caused by environmental 

factors. Coates-Beckford and Pereira (1992) reported Pseudomonas sp. and Fusarium sp. to be 
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most common on declining and non-declining breadfruit trees in Jamaica. Brown set/root rot 

(Phellinus noxius) (Ragone and Paull, 2008; Stice et al., 2007) and fruit rot (Phytophthora 

palmivora) (Redfern, 2010) can also be problems to breadfruit in tropical areas.  Like other crops 

of Oceania, lack of genetic diversity often results in a build-up of pathogen populations responsible 

for deterioration of their agronomic performance (Lebot, 1992).  

Plant-parasitic nematodes are obligate roundworms belonging to the phylum Nematoda 

that feed on plant tissues (Sasser and Freckman, 1987). Symptoms of host plant infection include: 

reduced foliage, chlorosis or leaf-yellowing, stunted growth, curling and twisting of leaves and 

stems, loss of leaves, premature or delayed maturity, poor fruit/seed production, wilt, and early 

senescence or death of plants (Williamson and Hussey, 1996). Often pathogenic nematodes do not 

directly kill plants, rather they reduce the vigor of the host and make it more likely to be harmed 

by other factors. Certain nematode taxa can transmit viruses between plants while feeding. As 

nematodes access nutrients within host plants, they increase the plant's susceptibility to bacterial 

pathogens (Powell, 1971; Williamson and Hussey, 1996), creating a secondary detrimental effect 

on the plant.  

Starting from eggs, nematodes undergo four juvenile stages prior to reaching the adult 

stage.  Many undergo their first molt in the egg and enter the plant as a second stage juvenile. 

Under ideal soil conditions, nematodes develop into egg-laying adults within a month, however 

some species take as little as 2 weeks, while others require a full year. All plant-parasitic nematodes 

have a protrusible, hollow stylet to penetrate host plants during feeding (Hussey, 1989; Davis et 

al., 2000) and most species are soil-dwelling and parasitize on roots (Sijmons et al., 1994; Hussey 

and Grundler, 1998). Their stylet combined with other morphological characteristics allows for 

their classification to genera. Commonly, parasitic nematodes are named for morphological 
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characteristics or for damage they induce on their hosts. Some plant-parasitic nematodes present 

in Hawaiʻi include: cyst (Heterodera spp.), foliar (Aphelenchoides spp.), lesion (Pratylenchus 

spp.), pin (Paratylenchus spp.), reniform (Rotylenchulus spp.), ring (Mesocriconema spp.), root-

knot (Meloidogyne spp.), spiral (Helicotylenchus spp.), and stunt (Tylenchorhynchus spp.) 

nematodes. Besides specific morphology, each nematode has its own characteristics including 

adaptation to temperature ranges, soil, host crops and egg laying quantities, and survival strategies. 

Globally, crop loss from plant-parasitic nematodes averages 8-15% with a cost of $78-118 billion 

USD/year (Sasser and Freckman, 1987). 

Having subtle symptoms and infecting from beneath the soil line, nematode pathogens are 

difficult to detect even for the trained eye, but have potential to cause great damage.  Although 

ubiquitous and pathogenic to a wide range of crops, research into these pests in the tropics has 

been concentrated on commodity crops. Examples of plant-parasitic nematodes on breadfruit have 

been the subject of little research compared with other major crop staples. A few examples can be 

found that cite parasitic nematodes associated with breadfruit globally, including in Jamaica 

(Coates-Beckford and Periera, 1992), Brazil (Sharma, 1976), Malaysia (Razak, 1978), and New 

Caledonia (Grandison et al., 2009). However, the majority of literature on pathogenic nematodes 

associated with breadfruit is in the form of regional reports (Kirby et al., 1980; Grandison, 1990, 

1996) and conference proceedings (Hutton, 1976).  Studies specific to nematode pathogens 

pertaining to breadfruit in Hawaiʻi are not available.  In Hawaiʻi, small-scale farmers are often 

unaware of the nature and harmfulness of nematode infestations and do not seriously consider the 

destructive effect of nematode pests on their crops. Thus, increasing interest in the development 

of breadfruit as a crop for production in Hawaiʻi requires that consideration be given to pest and 

pathogen systems. 
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With substantial crop yields, a potential for low input, suitability in sustainable production 

systems, a reputation as pest free, and capability to thrive in the wet tropics unsuitable for 

conventional staple grains, breadfruit orchards are being established across the Hawaiian Islands. 

In-depth research on plant-parasitic nematodes associated with breadfruit trees in Hawaiʻi will add 

to the body of research on breadfruit and be helpful to local breadfruit growers, integrated pest 

managers, and researchers aiming to improve tree health and productivity.   

1.2 Objectives 

The objectives of this research were to determine which plant-parasitic nematodes are 

associated with breadfruit in Hawaiʻi and which plant-parasitic nematodes are pathogenic to 

breadfruit trees in Hawaiʻi. Specific objectives were to: (i) determine the incidence of plant-

parasitic nematodes associated breadfruit on the islands of Kauaʻi, Maui, and Oʻahu, (ii) identify 

Pratylenchus found on breadfruit species level, and (iii) determine pathogenicity and virulence of 

Meloidogyne javanica, Pratylenchus sp., and Rotylenchulus reniformis on breadfruit tree growth 

under greenhouse conditions.   

1.3 Literature cited 
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starch-wheat flour noodles: Preparation, proximate compositions and culinary 

properties.  International Food Research Journal 18: 1283–1287.  
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Chapter 2: Survey of Plant-parasitic Nematodes Associated with Breadfruit, Artocarpus 

altilis Parkinson (Fosberg), in Hawaiʻi 

2.1 Abstract 

Twenty-five breadfruit plantings on the islands of Kauaʻi, Maui, and Oʻahu were surveyed 

for incidence of plant-parasitic nematodes. Soil and breadfruit root samples were collected from 

plantings in residences, parks, schools, botanical gardens, and breadfruit orchards.  Soil samples 

were processed by elutriation and centrifugation for nematode extraction. Roots were subjected to 

mist chamber extraction for seven days.  Seven genera of plant-parasitic nematodes 

(Helicotylenchus, Meloidogyne, Mesocriconema, Paratylenchus, Pratylenchus, Rotylenchulus, 

and Tylenchorhynchus) and one unidentified taxon in Heteroderidae were found.  Helicotylenchus 

dihystera, R. reniformis, Paratylenchus sp., Pratylenchus coffeae, Meloidogyne spp., and a 

Heteroderid were found on all islands.  Helicotylenchus dihystera was the most frequent species 

encountered, occurring at 68% of sites and was the most widespread plant-parasitic nematode of 

breadfruit on Kauaʻi. On Maui, H. dihystera, R. reniformis and P.coffeae were found in 40% of 

the samples collected.  Paratylenchus was the most common plant-parasitic nematode to the island 

of Oʻahu, detected in 86% of samples. Meloidogyne spp. were found in 43% of breadfruit sites on 

Oahʻu, and 23% and 20% of that on Kauaʻi and Maui, respectively, but in low abundance on all 

islands. Soil samples yielded Mesocriconema at sites on Kauaʻi and Oʻahu, and Tylenchorhynchus 

on Oʻahu. Plant-parasitic nematodes were absent from 12% of the locations surveyed.  An 

unidentified genus in Heteroderidae was detected in samples from each island, all from botanical 

gardens.  
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2.2 Introduction 

For early Hawaiians, breadfruit or ‘ʻUlu’ (Artocarpus altilis Parkinson (Fosberg)), was 

central to culture and sustenance. The breadfruit tree is a high yielding, low input starch crop for 

tropical and subtropical areas with hundreds of named varieties (Ragone, 1997). Transported in 

voyaging canoes when the first inhabitants arrived in the Hawaiian Islands, only one cultivar of 

breadfruit was known in the Hawaiian archipelago up until the early 20th century (Rock, 1974). 

Traditionally, seedless breadfruit was cultivated from vegetative shoots from roots. However, in 

vitro propagation methods established by Shi et al. (2007) and Murch et al. (2008) allowed for 

mass cloning, making commercial distribution of breadfruit propagules much more feasible than 

in the past. Global concerns over food security with a focus on traditional underutilized crops have 

increased cultivation of cloned breadfruit trees as an orchard crop. Breadfruit plantings have 

steadily increased over the past 8 years in Hawaiʻi, featured in private residences, parks, 

community centers, botanical gardens, and most recently in orchards. Between 2010-2016, more 

than 12,000 ‘Maʻafala’ cultivar trees were planted in Hawaiʻi, including more than 10,000 trees 

distributed through the through the National Tropical Botanical Garden Breadfruit Institute’s 

“Plant a Tree of Life - Grow ʻUlu” project (Ragone et al, 2016).  

Breadfruit trees have enjoyed the status of being a win-win plant: productive, low-input, 

and mostly free of pests and disease (Ragone, 1997; Taylor and Tuia, 2007). While it may be true 

that breadfruit is often little affected by pests or pathogens in cases of single specimen trees, 

intensive cultivation of breadfruit crops may exacerbate pathogen problems and amplify pathogen 

damage. For greater efficiency of harvesting, marketing, and maintenance, typically only a single 

cultivar is planted in a given orchard making a grove that is not only a monocrop, but genetically 

identical throughout. The lack of genetic diversity of traditional crops of Oceania has allowed for 
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a build-up of pathogen populations responsible for deterioration of crop agronomic performance 

(Lebot, 1992). As stands of breadfruit orchards become more common in Hawaiʻi, incorporating 

mixed plantings of breadfruit cultivars and diverse species may help mitigate disease problems. 

While information is available on insect pests and plant pathogens that affect the breadfruit 

crown and fruit, below-ground pathogens are not as well understood. Information on plant-

parasitic nematodes associated with breadfruit is lacking. Surveys of plant-parasitic nematodes 

associated with breadfruit are limited to Jamaica (Coates-Beckford and Periera, 1992), Brazil 

(Sharma, 1976), and New Caledonia (Grandison et al., 2009), with regional reports of pathogenic 

nematodes in Malaysia (Razak, 1978) and select areas of the Pacific (Kirby et al., 1980; Orton 

Williams, 1980; Grandison, 1990, 1996). Aphelenchoides sp., Helicotylenchus dihystera, H. 

multicinctus, Hemicriconemoides cocophilus, Meloidogyne sp., Paratylenchus sp. and Xiphinema 

brevicolle were present on the roots and rhizosphere of breadfruit trees found in Fiji, Kiribati, 

Niue, Western Samoa, Tonga, and the Cook Islands (Orton Williams, 1980; Grandison, 1990). 

Kirby et al. (1980), Grandison (1996), and Grandison et al. (2009) reported Achlysiella williamsi, 

Aphelenchoides bicaudatus, Criconemella denoudeni, C. onoensis, Ditylenchus sp., Gracilacus 

sp., Helicotylenchus dihystera, H.erythrinae, H. indicus, H. microcephalus, H. pseudorobustus, 

Helicotylenchus spp., Hemicriconemoides mangiferae, Heterodera sp., Meloidogyne incognita, 

Pratylenchus coffeae, P. loosi, Pratylenchus sp., Sphaeronema sp., and Xiphinema sp. on 

breadfruit from islands of the Pacific including New Caledonia.  

In Brazil, H. dihystera and Tylenchus leptosoma were associated with the roots of the 

breadfruit tree (Sharma, 1976).  In Malaysia, Meloidogyne spp. caused galling and inhibited root 

development of feeder roots and elongation, causing “retarded growth, reduced trunk diameter, 

sparse branching, and general yellowing of the leaves and in extreme cases, plant mortality” 
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(Razak, 1978).  Meloidogyne spp. was also reported on breadfruit in a survey conducted in Jamaica 

in the late 1950s (Hutton, 1976). In later surveys in Jamaica, Coates-Beckford and Periera (1992) 

sampled declining and non-declining breadfruit trees and confirmed previous findings of plant-

parasitic nematodes from other countries associated with breadfruit trees including: P. coffeae, 

Pratylenchus spp., Helicotylencus erthrinae, H. multicinctus, and Meloidogyne sp. The causal 

agent of slow decline disease in Jamaica, which causes decline and reduces production of mature 

breadfruit trees, was reported to be P. coffeae (Coates-Beckford and Periera, 1992).  To date, 

research on plant-parasitic nematodes found associated with breadfruit trees in Hawaiʻi is 

unavailable.  

2.3 Objective 

The objective of this survey was to determine the incidence and abundance of plant-

parasitic nematode fauna associated with the roots and soils of breadfruit trees on the islands of 

Kauaʻi, Maui, and Oʻahu.  

2.4 Materials and methods 

Surveys of plant-parasitic nematodes associated with breadfruit were conducted from May 

2013 to July 2015. A total of 25 soil and root samples were collected using a stratified random 

method from the islands of Kauaʻ i, Maui, and Oʻahu (Fig. 2.1). Three types of breadfruit 

production systems were targeted for sampling: commercial plantings, breadfruit growing near 

homesteads, and specimen trees in botanical gardens.  Beneath the breadfruit canopy, soil and root 

samples were collected at four locations at a depth of 15 cm along the drip line.  
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Figure 2.1: Breadfruit root and soil sampling sites in Hawai‘i, on Kauaʻi (13 sites), Oʻahu (7 sites), 

and Maui (5 sites). 
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With the exception of a few commercial plantings, most survey locations had single tree 

plantings. In commercial plantings, soil from multiple trees was composited into a single sample 

to represent the entire orchard. Roots and soils were collected in a zig-zag pattern from 10 trees 

encompassing no more than 1ha. Collected soil and root samples were gently mixed before 400 

cm3 of soil and 50 g of roots were subsampled and placed into plastic bags and placed in a 

temperature-controlled vessel for transport to the laboratory at the University of Hawaiʻi at Mānoa. 

Breadfruit roots, identified by their red color, were separated from soil, cut into 2-cm long pieces 

and a 20g sample was used for nematode extraction in a mist chamber (Seinhorst, 1956).  

Nematodes were collected from the mist chamber after 7 days. Soils were screened through a 4-

mm mesh screen. Nematodes were then extracted from a 200 cm2 subsample using a semi-

automatic elutriator (Byrd et al., 1976). All plant-parasitic nematodes were identified to the genus 

level using a Leica DMIRB inverted microscope.  Nematode counts were adjusted to 250 ml soil 

and 20 g root dry weight for comparisons. Mean, range, and “% frequency occurrence” of plant-

parasitic nematodes by species were calculated (Table 2.1). To calculate “% frequency 

occurrence,” positive sites were divided by the total number of sites surveyed. 

2.5 Results and Discussion 

The plant-parasitic nematodes associated with breadfruit in Hawaiʻi are consistent with 

previous studies (Sharma, 1976; Hutton, 1976; Orton Williams, 1980; Grandison, 1990, 1996; 

Grandison et al., 2009; Kirby et al., 1980; Coates-Beckford and Periera, 1992). Plant-parasitic 

nematodes found in soils associated with breadfruit on Kauaʻi, Maui, and Oʻahu included 

Mesocriconema, Helicotylenchus dihystera, Meloidogyne, Paratylenchus, Pratylenchus coffeae, 

Rotylenchulus reniformis, Tylenchorhynchus, and an unidentified taxon of Heteroderidae.  
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Occurring at 68% of sites, Helicotylenchus was the most frequently encountered plant-

parasitic nematode genus. Paratylenchus was the most frequently observed plant-parasitic 

nematode on breadfruit on Oʻahu, occurring at 86% of sites surveyed. On the other hand, H. 

dihystera, R. reniformis, and P. coffeae were the most prevalent nematode genera found on Maui, 

present in 40% of locations surveyed. Meloidogyne was detected less frequently on breadfruit 

compared to the other plant-parasitic nematodes among the three islands surveyed, occurring on 

Oʻahu at 43%, Kauaʻi at 23%, and Maui at 20% of the locations (Fig. 2.2). The most diverse 

occurrence of plant-parasitic nematodes genera was collected at Waimea Arboretum, Oʻahu, where 

six different nematode genera were detected and Pratylenchus were the dominant species.  

Pratylenchus were mainly found in the roots of breadfruit trees surveyed. Root extraction 

from the mist chamber yielded as much as 2,942 Pratylenchus nematodes per 20g of roots on a 

site on Oʻahu, whereas elutriation of 200 ml of soil yielded only 36 Pratylenchus nematodes from 

the same site. Results of Pratylenchus from root and soil extraction from Maui were similar. Since 

Coates-Beckford and Periera (1992) cited P. coffeae as the cause of slow decline disease of 

breadfruit in Jamaica. The lesion nematodes found during our survey were found to bc P. coffeae 

also (Lau, Chapter 3). Whether P. coffeae is as devastating to breadfruit in Hawaiʻi as it is in 

Jamaica remains unknown.  Future studies should examine pathogenicity of P. coffeae on 

breadfruit cultivars commonly grown in Hawaiʻi and interactions of P. coffeae with other 

pathogenic fungi and phytoparasitic bacteria to correlate with declining breadfruit (Coates-

Beckford and Periera, 1992). Nonetheless, these findings suggest that breadfruit farmers should 

not accept breadfruit plants grown from root shoots or root cuttings as nematode contamination 

may be a potential risk.   
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Detection of Meloidogyne was considerably less frequent in our survey, at just 28% of 

surveyed locations, compared to other surveys. Most of the breadfruit cultivars surveyed in this 

project were either ‘Maʻafala’ or Hawaiian “Ulu’. Low occurrence and abundance of Meloidogyne 

may have been the result of these specific cultivars being poor hosts to Meloidogyne. A 

pathogenicity test for Meloidogyne spp. and other species of plant-parasitic nematodes on popular 

breadfruit cultivars could help determine breadfruit’s host range and potential damage to breadfruit 

trees by pathogenic nematodes.  

Furthermore, reniform nematode was first described in Hawaiʻi and has a wide host range 

(Linford and Oliveira, 1940; Linford and Yap, 1940). Thus it was no surprise that Rotylenchulus 

had a high incidence in the soils associated with breadfruit on all islands. As with Meloidogyne, 

the cultivars grown in Hawai‘i might be poor hosts to the reniform nematode. 

An unidentified species of nematode in the Heteroderidae was detected at one site on each 

island, all of which were sampled from botanical gardens. Cyst nematodes are not common in 

Hawaiʻi. Traditional propagation from root shoots combined with Heterodera presence specific 

only to botanical gardens could be indicative of the diversity of propagules of various plant species 

collected from different locales planted in these gardens and the sharing of root cuttings.  

Several genera of plant-parasitic nematodes were commonly recovered by at low 

population densities. Helicotylenchus and Paratylenchus were found from many locations on all 

the islands. Since both Paratylenchus andH. dihystera were found primarily in soils, and are not 

major plant pathogens of tree crops, it is not likely that these nematodes are problematic to 

breadfruit. Mesocriconema was less prevalent in samples, only observed at one location each on 

Kauaʻi, Maui, and Oʻahu. Tylenchorhynchus was found at one location on Oʻahu. Plant-parasitic 
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nematodes were absent from 12% of locations surveyed, including one site on Kauaʻi and two on 

Maui.  

Plant-parasitic nematodes were found to be prevalent in breadfruit roots and associated soil 

in some locations. However association is not proof of feeding nor an indicator of pathogen 

problems. Pathogenicity tests are needed to identify the level of virulence and damage of the 

specific nematodes commonly detected in this survey. Sourcing new plants from root shoots or 

root cuttings can spread endoparasitic nematodes to new planting areas, thus use of in vitro 

breadfruit propagation material free of nematodes should be recommended to farmers. The 

occurrence and abundance of specific nematode genera associated with breadfruit will aid in 

developing specific nematode management approaches appropriate to successfully growing 

breadfruit in Hawaiʻi.  
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Chapter 3: Identification of Pratylenchus species Associated with Breadfruit 

3.1 Abstract 

An unknown Pratylenchus parasitizing breadfruit in Hawaiʻi was identified as P. coffeae 

using morphometric and molecular techniques. A population was collected on breadfruit roots 

from the University of Hawaiʻi at Mānoa Botany Garden. The population consisted of females, 

males and juveniles. The population was identified both morphometrically and molecularly. The 

molecular analysis was conducted with primers targeting the D2-D3 expansion region of the 28S 

rDNA.  Nucleotide-nucleotide BLAST searches revealed a mean sequence identity of 93.9% and 

a mean query coverage of 99.1% to Pratylenchus coffeae in the GenBank sequence database. The 

next closest species match was to Pratylenchus speijeri, with a mean sequence identity of 93.4% 

and a 99.0% mean query cover. To resolve molecular identification similarities between P. coffeae 

and P. speijeri, measured morphometrics were revisited.  Pratylenchus coffeae parameters shared 

body length (L), V%, and tail length with mean measurements from the breadfruit population of 

Pratylenchus, whereas P. speijeri had only T% and c-ratio in common with the unknown 

Pratylenchus.  

3.2 Introduction 

Pratylenchus were found in abundance during surveys of plant-parasitic nematodes 

parasitizing breadfruit roots in Hawai‘i on the islands of Oʻahu and Maui. Pratylenchus is linked 

to slow decline disease of breadfruit. In Jamaica, P. coffeae was cited as responsible for “premature 

fruit drop, leaf chlorosis and abscission, general unthriftiness, and branch dieback” and identified 

as the cause of slow decline disease of breadfruit, especially on trees older than 20 years and when 

paired with Fusarium spp. and Pseudomonas spp. (Coates-Beckford and Pereira, 1992).  Similar 
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symptoms were noted in the 1950s to 1960s in the Pacific Basin without a causal agent identified 

(Zaiger and Zentmyer, 1966).   

Nematodes of the genus Pratylenchus Flipjev, commonly called lesion nemaotdes, are 

economically important pests of agricultural, horticultural, and industrial crops (Oliviera et al. 

1999; Seinhorst, 1998; Smiley et al. 2005). Lesion nematodes ranked third in the world for having 

the greatest economic impact on crops behind root knot and cyst nematodes. Lesion nematodes 

are ubiquitous in their distribution in almost every cool, temperate, and tropical environment, and 

have a wide host range of some 400 different crop plant species (Sasser and Freckman, 1987).  

While feeding, Pratylenchus spp. produce characteristic necrotic lesions on infected roots and 

deprive host plants of essential nutrients (Castillo and Volvas, 2007).  

Pratylenchus are distinguished by a flat head, strong cephalic framework, and short, thick 

stylet with prominent basal knobs (Dropkin, 1980).  Esophogeal glands usually overlap the 

intestine ventrally (Sher, 1973) and tails are cylindrical to conoid, two to three anal body widths 

(Dropkin, 1980). A long overlap, or small degree of overlap in the pharynx, is a distinguishing 

component when paired with other characteristics of Pratylenchus species (Al-Banna et al., 1997). 

In females, the vulva is located at 70-80% of the body length. In males, a distinct bursa reaches 

the tail tip (Evans et al., 1993).   

While it is straightforward to differentiate members from other genera, Pratylenchus 

species are very similar to each other making morphological identification within the genus 

difficult (De Luca et al., 2012).  Luc (1987) called Pratylenchus “a stenomorphic genus," meaning 

that limited morphological characters are present to diagnose a species. Because of intraspecific 

variabilities (Powers, 2004), like head and tail shape, high sample numbers are necessary to reduce 

likelihood of misidentification (Anderson and Townshend, 1980; Donald and Clark, 1983; Luc, 
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1987). Al-Banna et al. (2004) reported morphometric discrepancies amongst original descriptions 

of Pratylenchus spec even though these species are known to display a pronounced 

heteromorphism (Tarte and Mai, 1976; Tarjan and Frederick, 1978). Doucet et al. (2001) and 

Townshend (1991) found intraspecific variation a result of temperature differences and 

geographical locale, respectively. Because of these challenges in visual identification, advances in 

genetic identification and expansion of species-specific primers for root lesion nematode are 

replacing traditional morphological identification as primary characters for species identification 

of the genus Pratylenchus. In previous studies, little connection has been found between 

morphology and the evolution of rDNA, however analysis of genetic data have provided good 

phylogenetic resolution of Pratylenchus species (Nadler, 1992; Heise et al., 1995). To differentiate 

between two species of Pratylenchus, Uehara et al. (1998) used DNA amplification with species-

specific primer sets to distinguish between P. loosi and P. coffeae. Al-Banna et al. (2004) found 

success with species-specific primers from the internal variable portion of the D3 expansion region 

of the 26S rDNA to distinguish between species of P. neglectus, P. penetrans, P. scribneri, P. 

thornei, and P. vulnus.  Duncan et al. (2007) and Inserra et al. (2007) later found that addition of 

the D2 expansion segment to the D3 expansion region improves resolution, especially for diverse 

P. coffeae isolates when compared to closely related species (Duncan et al., 1999; Inserra et al., 

2007).   

Although sequence data to discriminate among Pratylenchus species has advantages 

including faster training and reduced sample numbers, DNA-based data should not be seen as a 

substitute for understanding and studying whole organisms when determining identities (Will and 

Rubinoff, 2004). In concurrence with Baldwin and Perry (2004), nematode morphology in the 21st 
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century should be an integration of diagnostic molecular approaches paired with traditional 

morphology. 

3.3 Objective 

The objective of this study was to identify the Pratylenchus species associated with 

breadfruit in Hawaiʻi using morphometric and molecular techniques.  

3.4 Materials and methods 

Collection.  Breadfruit roots were procured from Kauaʻi, Oʻahu, and Maui. Kauaʻi and 

Oʻahu survey sites where Pratylenchus was detected during breadfruit survey. Kauaʻi Community 

College, University of Hawaiʻi at Mānoa Botany Garden, and Waimea Arboretum were revisited 

in July 2015 to collect additional specimen. Root samples collected from Kahanu Garden of the 

National Tropical Botanical Garden on Maui during September 2014 were stored and used for 

extraction.  Breadfruit roots were surface sterilized in a 10% NaOCl solution, cut into 2-cm pieces, 

and set in the mist chamber to collect nematodes. Nematodes were collected after 7 days. Only the 

University of Hawaiʻi at Mānoa Botany Garden yielded a sufficient quantity of Pratylenchus for 

species identification. Other sites where Pratylenchus had been found during breadfruit surveys 

had less than 10 specimen per sample and were not used in the morphological and molecular 

analysis.  

Morphological analysis. During the morphological and morphometric analysis, living 

adult nematodes were used. Live specimens were immobilized with gentle heat and mounted on a 

slide for measurement and photographs (Esser, 1986).  A Leica DMLB compound light 

microscope was used to record body length (L), body width, stylet length, tail length for females, 

position of vulva (V%) or spicule (T%) on body, body relative thickness (a) and tail relative length 

(c), presence/absence of males, and tail shape. Tails from relaxed specimens were described, then 
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photographed and compared to illustrated tail shapes of Pratylenchus spp. Illustrations were made 

transparent in Adobe Photoshop  and then overlaid on photographs to compare to the unknown 

Pratylenchus to known species. 

Measurements were made according to Hooper (1970), where specimens were fixed with 

heat then mounted for analysis. Specimen measurements were determined with an ocular 

micrometer. Ten females and 10 males were compared against original characterizations and 

diagnostic keys (Roman and Hirschmann, 1969; Frederick and Tarjan, 1989; Handoo and Golden, 

1989, De Luca et al., 2012) in order to identify Pratylenchus to a species level.  

Molecular analysis. Ten samples, five containing the DNA of one nematode and five with 

the DNA of two nematodes, were used for molecular identification. Nested PCR using species-

specific primers was performed (Al-Banna et al., 2004). Primers for Pratylenchus species 

differentiation targeted the D2-D3 expansion region of the 28S rDNA (Al-Banna et al., 1997). 

Forward primer sequences were selected for compatibility with the annealing temperature of the 

common reverse primer.  The forward D2A (5’ -ACAAGTACCGTGAGGGAAAGTTG-3’) and 

reverse D3B (5'- TCGGAAGGAACCAGCTACTA-3') primers submitted by Subbotin et al. 

(2006) were used for amplification and sequencing of expansion regions of the 28S rRNA. 

Denaturation, amplification, and primer extension was completed on an Applied Biosystems 2720 

Thermal Cycler at the University of Hawaiʻi at Mānoa Nematology Laboratory in Honolulu, HI, 

USA. Pratylenchus male, female, and juvenile specimens were handpicked from mist chamber 

sample collections then placed singly in a 15 μl drop of sterile H20 on a glass microscope slide.  

Using a Roboz surgical micro 45° tool (model number RS-9421-06) under a Leica Wild 

MZ8 dissecting microscope, each nematode specimen was cut transversely, then pipetted into a 50 

μl tube and stored over ice in preparation for PCR in 35 μl reactions (Cabos et al., 2013). The 
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solution was kept in a bench chiller until ready for use. Per PCR tube, 24.5 μl of PCR reagent 

master mix was added. Readied tubes were placed into the PCR machine at 95°C for 2 minutes, 

95°C for 45 seconds, 54°C for 30 seconds, then 72°C for 20 seconds. The cycle was repeated 39 

times and then run at 72°C for 5 minutes before being reduced to 4°C for storage.   

When loading the gel, 1xTAE buffer solution was added to the gel box to cover a 10% 

agarose gel. A 10 μl drop of marker ladder was added to the first and middle wells. PCR products 

were sequentially pipetted into each of the individual lanes. The gel was run at 90V for 54-60 

minutes or until the dye marker was 5 cm from the end of the gel. The gel was photographed using 

a transilluminator UV box to indicate the presence of DNA. Selected samples that detected 

fluorescent DNA-binding dye with clear, bright bands were selected for submission to the 

University of Hawaiʻi at Mānoa Sequencing Lab. The returned nucleotide-nucleotide BLAST 

search was compared against the GenBank sequence database for sequence similarities. The 

species analysis was considered alongside morphological characteristics for a final species 

determination. 

3.5 Results 

Morphological observations.  Females: Photographs of the unknown female Pratylenchus 

species are presented in Fig. 3.1. Body vermiform, almost straight to open C-shaped, slender in 

young females and thicker in older ones, tapering towards both ends. Body width increased from 

lip region to the level of the median bulb and then decreased from the level of the vulva towards 

the tail tip. Cuticular annulations were visible. Lip region was slightly set off from the rest of the 

body. The stylet was strong with round basal knobs. The overlap was long and occurred 
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ventrally, slightly lateral. Vulva was distinct and occurred roughly at 75-80% of body length. Tails 

tapered ending in a broad flattened tail tip. The tail tip was smooth, blunt, and curved ventrally 

when relaxed.  

Males: Photographs of unknown male Pratylenchus species are presented in Fig. 3.1. Males 

were common within the population and slightly less abundant than females, making up 38% of 

adult population. Males were morphologically similar to females, but smaller in body length and 

more slender. Spicules were ventrally curved. Bursa was conspicuous, extending before top of 

spicule to the tip of tail. Tail bent ventrally and ended in a pointed tip. 

Morphometric observations.  Females: Morphometrics of the females of the Pratylenchus 

spp. population collected off breadfruit roots from the University of Hawaiʻi at Mānoa Botany 

Garden on the island of Oʻahu are presented in Table 3.1. The body length of females from the 

population ranged from 499.1 to 777.5 µm (mean: 654.2 µm). The average body width of the 

female population was 31.1 µm. The a-ratio of females ranged from 18.7 to 30.5 (mean: 21.2). The 

c-ratio ranged from 15.5 to 20.1 (mean: 18.09). Tail length of measured females ranged from 30.8 

to 44.6 µm. The V-value of the populations ranged from 74.0 to 80.0% (mean: 76.8%). The stylet 

length of the females ranged from 14.5 to 17.6 µm (mean: 16.2 µm). Males: Morphometrics from 

males are presented in Table 3.2. The body length of males ranged from 413.1 to 557.2 µm (mean: 

486.9 µm). The average body width of the male population was 22.2 µm. The a-ratio of the males 

ranged from 18.7 to 24.3 (mean: 22.0). The T-value ranged from 49.0 to 62.0% (mean: 55.6%). 

Stylet length of males ranged from 16.1 to 23.6 µm (mean: 19.8 µm). 

Molecular analysis. The comparison of the sequences of the D2/D3 28S rDNA expansion 

segments of the unknown Pratylenchus yielded an amplicon ranging from 700 to 789 bp (mean:  



 

36 

 

 



 

37 

 

 

 

 

 

Table 3.2: Morphometric measurements and ranges (in bold) of male Pratylenchus 

species from Hawai‘i (in second column) followed by published values of P. coffeae 

males from Roman and Hirschmann, 1969 and P. speijeri males from De Luca et 

al., 2012. 

 

  P. coffeae  P. speijeri 

 

Hawai‘i 

population 

Roman and 

Hirschmann, 

1969 

 

De Luca et 

al., 2012 

n 10 ----  10 

Sex M M  M 

Body length (L) 

(µm) 

486.9 

(413.1-557.2) 

516.81 

(430.7-600.0) 

 489 

(446-550) 

Body width (µm) 

22.2  

(18.6-25.6) 

18.64 

(16.0-22.8) 

 16.5 

(15.5-18.5) 

Stylet length (µm) 

16.3  

(14.0-19.1) 

14.35 

(13.8-15.6) 

 15.2 

(14.5-16.5) 

T (%) 

55.6  

(49.0-62.0 ) 

51.36  

(36.0-68.0) 

 35.0  

(28-45) 

a 

22.0  

(18.7-24.3) 

27.82  

(23.5-32.2) 

 29.7  

(27.1-33.0) 
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752 bp) in length depending on the sample studied. Of ten samples, nine provided sufficient DNA 

for analysis in NCBI Blast. Matches with mean sequence identity of 93.9% (range: 93-95%) and 

a mean query coverage of 99.1% (range: 98-100%) were found with Pratylenchus coffeae. The 

next closest species match was to Pratylenchus speijeri, with a mean sequence identity of 93.4% 

(range: 92-95%) and a 99.0% (range: 98-100%) mean query cover.  

3.6 Discussion 

Many authors have suggested that identification of Pratylenchus requires multiple adult 

female specimens for reliable diagnosis (Al-Banna et al., 1997). According to Fortuner (1984) at 

least 20 specimens must be morphometrically analyzed before naming Pratylenchus to species. 

Loof (1991) called the family "not very homogeneous" and argued the number of specimens 

examined to be least 25 adult females per sample, while Roman and Hirschmann (1969) found it 

necessary to examine 20 aspects from each 25 females and 25 males before characterization. More 

nematodes do provide better resolution, however no sampling process has unlimited resources, 

thus 10 females and 10 males underwent morphometric examination during our study for 

comparison and were supplemented with a molecular analysis of 15 nematodes. 

Morphometric observations were in concurrence with previously published descriptions 

overlapping at P. coffeae measurements. Mean measurements of the unknown species, including 

body length (L), stylet length, V%, and a- and c ratios were compared with published parameters 

from Roman and Hirschmann (1969), Frederick and Tarjan (1989), Handoo and Golden (1989), 

and De Luca et al. (2012) (Table 3.1). Body width, T%, tail length, and absence/presence of males 

were also compared when information was available. According to observations of 64 

Pratylenchus spp. taken by Handoo and Golden (1989), P. coffeae and P. penetrans were the only 

species whose ranges corresponded with the means of the measured nematode for all available 
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criteria, including: L, stylet length, V%, a- and c ratios, and where males were “present, common.”  

The next closest species, P. gibbicaudatus, P. kasari, and P. morettoi, matched the stylet length, 

V%, and a- and c ratios of the unknown species, but our measured L mean did not fall within the 

range of that published, and males were cited as “present” rather than “present, common” by 

Handoo and Golden (1989). 

Comparing mean observations to published ranges for L, stylet length, V%, and a-, and c 

ratios characterized by Frederick and Tarjan (1989) for 49 Pratylenchus species, no species met 

all five criteria. Five nematodes met four of the five measurement criteria compared by Frederick 

and Tarjan including: P. coffeae, P. delattrei, P. flakkensi, P. kasari, and P. morettoi.  Pratylenchus 

coffeae, P. delattrei and P. flakkensi had a shorter range for L, and P. kasari and P. morettoi had 

a larger a-ratio than the unknown Pratylenchus. The other 44 Pratylenchus species matched three 

criteria or less. Descriptions by Roman and Hirschmann (1969) affirmed P. coffeae as a match for 

the unknown species from breadfruit. Mean measurements of L, width, tail length, stylet length, 

V%, a-, and c ratios were considered, with P. coffeae matching six of the seven measured means 

of the unknown nematode from our collection. The remaining Pratylenchus species matched three 

or less of the seven criteria compared.  

De Luca et al. (2012) outlined parameters for Pratylenchus speijeri, a new species of 

nematode with its closest related species being P. coffeae. According to De Luca et al. (2012), 

“morphological characterization did not result in an unambiguous separation” from P. coffeae 

based on range overlaps for P. coffeae and P. speijeri. Pratylenchus speijeri had been tentatively 

identified during a survey of corn in Hawai‘i (Khaitong and Sipes, unpublished).However, 

comparing measured means of the Pratylenchus spp. from Hawai‘i breadfruit to ranges of P. 

coffeae and P. speijeri, P. coffeae matched more criteria than P. speijeri. In all, seven criteria were 
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available to compare to the female nematodes including: body length (L), body width, tail length, 

stylet length, V%, and a- and c ratios. Based on comparative measurements provided by De Luca 

et al. (2012) for females and De Luca et al. (2012) and Roman and Hirschmann (1969) for males, 

P. coffeae encompassed the range of the unknown nematode for L, V%, and tail length for females 

and body length, body width, and T% for males, while P. speijeri only overlapped at c-ratio for 

females, and body length and stylet length for males. 

Several Pratylenchus species shared our female tail description of bluntly flattened with a 

smooth terminus.  Of Roman and Hirschmann’s (1969) illustrated tail shapes and descriptions, the 

broadly rounded tip was shared by P. coffeae, variations of P. penetrans, and P. scribneri (Fig. 

3.2). Only the tail tips of P. coffeae and P. scribneri bend ventrally when relaxed, whereas the tail 

of P. penetrans bends dorsally above the vulva then straightens towards the tip of the tail, not 

matching the curvature of the unknown species. De Luca et al. (2012) illustrated closely related 

Pratylenchus species including P. auracensis, P. coffeae, P. floridensis, P. jaehni, P. loosi, P. 

parafloridensis, and 10 tail variations from P. speijeri. All six of these tail shapes visually matched 

a tail variation of our unknown nematode (Fig. 3.3). Included in the De Luca et al. (2012) 

examination of P. speijeri were 10 variations of tail shape (Fig 3.4) with special emphasis given 

to the tail terminus indentation, a common feature of P. speijeri. No such indentation was found 

in the unknown Pratylenchus. Frederick and Tarjan (1989), in describing 49 Pratylenchus spp., 

included a written tail type descriptor during species characterization. However, only a general 

key outlining fifteen different variables but without illustration were included to represent each 

species. Accordingly, P. coffeae, P. penetrans, and P. scribneri shared the same tail describers: 

blunty pointed and smooth tipped, but P.coffeae and P. penetrans are described as hemispherical 
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Figure 3.2: Tail tip shapes of P. coffeae (left), P. 

penetrans (middle), and P. scribneri (right) illustrated by 

Roman and Hirschmann (1969) match the unknown 

Pratylenchus spp. in Hawai‘i.
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Figure 3.3: Tail shapes of nematodes 

closely related to Pratylenchus coffeae 

(P.c.) including P. speijeri (P.s.), P. 

parafloridensis (P.p.), P. floridensis (P.f.), 

P. loosi (P.l.), P. jaehni (P.j.), and P. 

auracensis (P.a.) (De Luca et al., 2012) 

with variations in tail shape matching a 

population from Hawai‘i. 
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while P. scribneri is described as semi-hemispherical. Also matching  Frederick and Tarjan’s 

(1989) tail classification “blunty pointed and smooth tipped” included: P. bolivianus, P. crassi, P. 

delattrei, P. fallax, P. flakkensis, P. impar, P. kralli, P. microstylus, P. neglectus, P. pratensis, P. 

pratensisobrinus, P. typicus, P. mulchandi, and P. zeae.  Based on tail shape alone, a species 

conclusion could not be made with available material.   

Molecular analysis confirmed the morphometric species identification of P. coffeae, but 

put into question the possibility of a species identification of P. speijeri.  Pratylenchus coffeae and 

P. speijeri populations obtained from GenBank shared a range of 98.0-100% for query coverage, 

while the range for sequence identity encompassed a 1% difference (Table 3.3). The average length 

of our amplicon of 752 bp was closer to the published length of P. coffeae at 758 bp for the D2/D3 

28s rRNA region, than the same region of P. speijeri which ranged from 780 to 795 bp in length. 

A comparison of morphometric data to compare to molecular analysis found that P. coffeae 

matched more criteria than P. speijeri. Combining molecular and classical methods to diagnose 

Pratylenchus to species demonstrates the utility of both to greatly improve identification 

capabilities or improve certainty of identification within the complex of lesion nematodes.  
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Chapter 4: Nematode pathogenicity on breadfruit 

4.1 Abstract 

Host status of Meloidogyne javanica, Pratylenchus coffeae, and Rotylenchulus reniformis 

on breadfruit, Artocarpus altilis cultivar ‘Ma‘afala’ were determined. Two experiments were 

conducted with four replicates of M. javanica, P. coffeae, and R. reniformis on breadfruit. After 

180 days or 360 days post-transplanting breadfruit plugs in 4-L paper-pulp pots, 1000 eggs of 

M.  javanica or R. reniformis or 900 mixed vermiform stages of P. coffeae, or the water equivalent 

was administered to each plant.  Nematode reproduction was recorded 180 days post-inoculation 

from soil and roots of the breadfruit.Plant measurements were recorded for trunk diameter, plant 

height, total plant weight, dry root weight, dry stem weight, and leaf chlorophyll content. Only P. 

coffeae reproduced and increased in population density. In experiment 2, P. coffeae was the only 

vermiform plant-parasitic nematode recovered. Reproductive factor of P. coffeae on breadfruit in 

experiment 1 showed a 17-fold growth and suggested that breadfruit is a good host to P. coffeae. 

In experiment 2, a trend of vermiform nematodes across two treatments indicated more successful 

reproduction of P. coffeae than M. javanica or R. reniformis.  Meloidogyne javanica and R. 

reniformis were able to reproduce but population growth was not great enough to replace inocula 

concentrations indicating that breadfruit is a poor host to M. javanica and R. reniformis. Nematode 

infection had little impact on breadfruit growth with insignificant differences between inoculated 

and uninoculated plants, except for root weight in experiment 1. Breadfruit infected with P. coffeae 

had the greatest root weight (p=0.0323).  Differences in nematode viability between experiment 1 

and 2 may be accounted for by a combination of seasonal differences, pot environment, inoculation 

concentration, and tree age.  
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4.2 Introduction 

One consideration that growers evaluate when selecting a crop is susceptibility to plant 

disease.  Ragone (2006) and Taylor and Tuia (2007) reported that breadfruit trees are reputed to 

be relatively free of pests and disease. This may be true in cases of single specimen trees, but 

intensive cultivation of breadfruit crops may exacerbate pathogen problems and amplify pathogen 

damage. To meet a demand for breadfruit trees, a horticultural industry for mass propagation and 

distribution was established (www.globalbreadfruit.com). In 2011, over 5,000 breadfruit trees 

were distributed in the state of Hawaiʻi for planting (Elevitch and Ragone, 2014), and 12,000 

breadfruit trees, primarily the ‘Ma’afala’ cultivar were distributed through the National Tropical 

Botanical Garden Breadfruit Institute’s “Plant a Tree of Life - Grow ʻUlu” project by 2016 

(Ragone et al., 2016).  A 4-ha breadfruit orchard incubator at Mililani Ag Park on Oahʻu planted 

in 2012, and a 1-ha ʻUlutopia breadfruit orchard planted in 2014 on Kauaʻi are some of the most 

recent large scale plantings. This is not only the trend on Kauaʻi and Oʻahu; breadfruit trees are 

becoming increasingly popular statewide. Current breadfruit projects include: Hoʻoulu ka ʻUlu, 

Breadfruit Harvest for Hunger, Breadfruit Phenology Project, Talking Trees: Learning from 

breadfruit in Hawaiʻi, Hawai'i ʻUlu Producers Cooperative, and Breadfruit vs. Potato. Annual 

Breadfruit Festivals held on Kauaʻi, Maui, Oʻahu, and the island of Hawaiʻi continue to strengthen 

knowledge, cultivation, utilization, and consumption of breadfruit in Hawaiʻi (Ragone et al. 2016). 

Much needed is better understanding of pathogens and diseases of breadfruit.  

While information is available on fungal and bacterial diseases that affect the breadfruit 

tree crown and fruit, below-ground pathogens are not as well understood. Information on 

pathogenic nematodes associated with breadfruit is limited, but can be found in the form of 

nematological surveys of breadfruit and regional reports. Surveys are an accepted starting point to 



 

53 

 

study pathogens that cause damage to plants and are important in evaluating which nematode 

species could be pathogenic and virulent to breadfruit. In Hawaiʻi, a survey of plant-parasitic 

nematodes associated with breadfruit found Pratylenchus coffeae, Rotylenchulus reniformis, and 

Meloidogyne sp. Nematode presence in soil and roots of a breadfruit tree can serve as an indicator 

for potential damage from pathogens but does not define pathogenicity or virulence to the tree, nor 

does it prove that associated pathogenic nematodes are definitively damaging. Thus, as breadfruit 

production systems are expanding, it is essential that potential pathogenicity caused by nematode 

fauna on breadfruit trees be formally assessed. As breadfruit production systems expand 

throughout the state, an infectivity test to determine which nematode fauna are able to reproduce 

and affect breadfruit trees is lacking. 

4.3 Objectives 

The objectives of this study were to determine if Meloidogyne javanica, Pratylenchus 

coffeae, and Rotylenchulus reniformis could successfully reproduce on breadfruit trees and if an 

observable impact on tree health was measurable 6 months after inoculation.  

4.4 Materials and methods 

Nematode inoculum.  The nematode inocula consisted of populations of Meloidogyne 

javanica, Pratylenchus coffeae, and Rotylenchulus reniformis. Pure cultures of R. reniformis and 

M. javanica were established from the eggs and juveniles of infected plants at University of 

Hawaiʻi at Mānoa Magoon Research Station on O‘ahu. Meloidogyne javanica cultures were 

maintained on Solanum lycopersicum ‘Orange Pixie’ bush tomato. The nematode inoculum was 

separated from infected plants by shaking the S. lycopersicum roots in a 10% NaOCl solution in a 

sealed Erlenmeyer flask for 2 minutes, then pouring the solution over nested 250, 149, 44, and 20 

µm-mesh  sieves. Eggs and juveniles were collected on the bottom and rinsed with tap water. The 
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inoculum was adjusted to suspend 250 egg/ml and plants were inoculated 1000 eggs of M. 

javanica. Rotylenchulus reniformis stock cultures were maintained on cowpea (Vigna unguiculata) 

plants at the University of Hawaiʻi at Mānoa Magoon Research Station.  To remove R. reniformis 

from plants, V. unguiculata roots were shaken for 2 minutes in a 10% NaOCl solution contained 

within a sealed Erlenmeyer flask. Nematodes and eggs were rinsed in a 20-µm-pore sieve with tap 

water before being counted and adjusted to a suspension of 200 eggs/ml. Each plant was inoculated 

with 1000 eggs of R. reniformis per breadfruit plant.   

Efforts to culture P. coffeae from specimens collected during the survey failed on a 

modified carrot disk method were unsuccessful (Moody, 1973). Therefore, vermiform P. coffeae 

were collected from breadfruit roots found in University of Hawaiʻi at Mānoa Botany Garden and 

extracted via the Baermann funnel method. In order to obtain pure inocula, collected roots were 

surface sterilized in a 10% NaOCl and cut into 2-cm pieces and placed on a Baermann funnel filled 

with sterile water (Baermann, 1917; Walker and Wilson, 1960). After 24 hours at room 

temperature, 10 ml of solution was collected each day for 7 days and screened for P. coffeae. Using 

a Leica Wild MZ8 dissecting microscope, P. coffeae were consolidated on the counting dish and 

other nematode species were removed with a pick. The nematodes were adjusted to a concentration 

of 150 nematodes/ml and 900 vermiform nematodes were inoculated onto each breadfruit plant. 

Plant material. Starter plugs of breadfruit cultivar‘Maʻafala’ were obtained from Global 

Breadfruit, San Diego, CA. Soil free planting materials were certified nematode-free by the United 

States Department of Agriculture and Florida Department of Agriculture and Consumer Services. 

Upon arrival, breadfruit starters were transplanted into 4-L pressed paper-pulp pots filled with a 

water steam-sterilized silty clay soil and sand substrate mixture (1:1 soil:sand).  Breadfruit plants 
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were placed on greenhouse benches and acclimatized for 180 (Experiment 1) or 360 (Experiment 

2) days prior to inoculation.  

Inoculation. Six or 12 months after transplanting, breadfruit plants were inoculated in the 

late evening by pipetting the nematode inoculume suspension into four 2-cm deep holes located 8 

cm from the base of the plant in each pot. Similarly, control plants received distilled water. Plants 

were grouped by replication spaced at 60 cm between replicates and randomly within replications 

with100 cm between treatments to avoid cross contamination. 

Plant measurements. Breadfruit measurements were recorded 2-5 days prior to infecting 

plants and 180 days after inoculation. Plant growth parameters taken prior to inoculation included: 

(i) stem diameter, (ii) plant height, (iii) plant weight, (iv) leaf size, and (v) chlorophyll levels. Pots 

were hand-watered twice daily and fertilized with an aqueous solution of Miracle-Gro Water 

Soluble All Purpose Plant Food (24-8-16) twice monthly. At the end of 180 days, the experiment 

was terminated, and stem diameter, plant height, plant weight, root weight, leaf weight, stem 

weight, and leaf chlorophyll levels were recorded. Fresh and dry weights were logged for roots, 

leaves, and stem.  

Nematode reproduction. M. javanica, P. coffeae, and R. reniformis population density in 

the soil (Pf) was assessed at 180 days post inoculation.  Nematodes were extracted using three 

methods: a root shake technique to disperse egg masses and nematodes from the host root surface, 

a modified Baermann funnel method to account for nematodes within roots, and an automated 

elutriator for nematodes present in the soil. Extraction of eggs and nematodes from infected 

breadfruit roots was completed from a modified protocol developed by Hussey and Barker (1973). 

Within a sealed Erlenmeyer flask, 30 g of chopped roots were submersed in a 10% NaOCl and 

shaken for 2 minutes. The liquid was then rinsed over nested 250, 149, 20-µm pore sieves. 
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Collected eggs and vermiform nematodes were subjected to sugar flotation and centrifugation 

(Jenkins, 1964) to clarify samples for counting. A Leica Wild MZ8 dissecting scope was used to 

count nematodes present. Motile nematodes were extracted using a modified Baermann funnel 

technique (Seinhorst, 1956). A fine mist was sprayed in 2-minute intervals over 10 g of chopped 

breadfruit roots placed in Kimwipe tissues and set in an unlined basket atop the funnel for 7 days. 

This time period allowed for hatching and exiting of nematodes from root pieces. Nematodes were 

collected daily and identified to genus on a Leica DMLB compound light microscope. Roots after 

mist chamber extraction or NaOCl extraction were then oven dried and weighed. Vermiform 

nematodes from the mist chamber were counted. Subsamples of 250 cm3 soil from each 

experimental pot was utilized to extract nematodes using a semiautomatic elutriator (Barker et al., 

1975) and centrifugation (Jenkins, 1964). The nematodes were counted and recorded. Total 

population of nematodes in a pot was calculated by adding the nematodes recovered from three 

extractions. The total population was then divided by the inoculation level to determine a 

Reproductive Factor (Rf). 

Experimental design. Two experiments consisting of 4 treatments (nematodes and 

uninoculated) with 4 replicates per treatment were established in summer 2016 and winter 2016. 

Plants were maintained in the Magoon Research Station. 

Data Analysis. Nematode and plant growth data were subjected to one way analysis of 

variance (ANOVA) using the general linear method (GLM) procedure in Statistical Analysis 

System (SAS Institute, Cary, NC). Changes in mean nematode population density and 

reproduction were separated using Tukey's test at P < 0.05 [SAS version 7 (TSP1)]. The 

differences between breadfruit plant growth parameters of inoculated and uninoculated plants were 
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determined using Tukey’s test at P < 0.05.  All data were tested for normality prior to ANOVA. 

Nematode numbers were log (x+1) transformed for ANOVA. 

4.5 Results 

Experiment 1 

Only P. coffeae reproduced on the plants in the greenhouse. More P. coffeae were 

recovered from the roots than any of other nematodes (Fig. 4.1). Pratylenchus coffeae also had the 

highest population in the soil by R. reniformis and M. javanica, respectively. Nematode eggs were 

recovered from the roots of all treatments in experiment 1, with more eggs removed in those plants 

inoculated with R. reniformis than M. javanica or P. coffeae (Fig 4.2). The uninoculated plants 

also had a few eggs but these were likely from free-living nematodes. The Rf was significantly 

higher for P. coffeae in experiment 1, with inocula increasing 17-fold after 180 days (Table 4.1).  

Meloidogyne javanica and R. reniformis were able to reproduce, but not in numbers great enough 

to replace initial populations.  

No visible symptoms were present at the termination of the experiment. Root galls and 

lesions, characteristic of infection by nematode pathogens were not present on breadfruit roots. 

Plant measurements from experiment 1 were not different between inoculated and uninoculated 

plants with the exception of root weight, but some trends could be seen (Figs. 4.3 and 4.4). 

Pratylenchus coffeae infected plants had the greatest root weight (p=0.0323) (Fig. 4.5).  Breadfruit 

infected with P. coffeae had the first and second greatest dry leaf weight, dry stem weight, 

chlorophyll, height, and the third largest trunk diameter. Plants infected with R. reniformis plants 

had the second and third greatest values. Breadfruit infected with M. javanica had the lowest values 

except for height, for which it scored the highest value. The uninoculated plants had the greatest 
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Figure 4.1: Egg and vermiform nematodes extracted from 30g of breadfruit roots inoculated with 

water (C), 1000 eggs of Meloidogyne javanica (M), 900 Pratylenchus coffeae (P), or 1000 eggs of 

Rotylenchulus reniformis (R) from experiment 1 (left) and experiment 2 (right) at 180 days post-

inoculation. Analysis of variance was used to determine treatment significance, and treatment 

means were separated by the Waller-Duncan k-ratio t-test.  

 

 

 

 

Figure 4.2: Vermiform nematodes extracted in mist chamber from 10 g of breadfruit roots 

inoculated with water (C), 1000 eggs of Meloidogyne javanica (M), 900 Pratylenchus coffeae (P), 

or 1000 eggs of Rotylenchulus reniformis (R) from experiment 1 (left) and experiment 2 (right) at 

180 days post-inoculation. Analysis of variance was used to determine treatment significance, and 

treatment means were separated by the Waller-Duncan k-ratio t-test.  
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Table 4.1: Nematode population growth (Pf/Pi) on breadfruit 180 days 

after inoculation. Data are means of four replications. Means within a 

column followed by same letter(s) are not different according to Least 

Significant Difference (LSD) (P <0.05). 

 

  Experiment 1  Experiment 2 

Meloidogyne javanica 0.40a  0.01a 

Pratylenchus coffeae 17.83b  0.28a 

Rotylenchus reniformis 0.34a  0.02a 
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Figure 4.3: Dry leaf weights of breadfruit plants inoculated with water (C), Meloidogyne javanica 

(M), Pratylenchus coffeae (P), or Rotylenchulus reniformis (R) from experiment 1 (left) and 

experiment 2 (right) at 180 days post-inoculation. Means were separated using Tukey’s test (P< 

0.05). 

 
 

 

 

 

 

 

 
 

Figure 4.4: Dry stem weights of breadfruit plants inoculated with water (C), Meloidogyne javanica 

(M), Pratylenchus coffeae (P), or Rotylenchulus reniformis (R) from experiment 1 (left) and 

experiment 2 (right) at 180 days post-inoculation. Means were separated using Tukey’s 

test (P <0.05).
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Figure 4.5: Dry root weights of breadfruit plants inoculated with water (C), Meloidogyne javanica 

(M), Pratylenchus coffeae (P), or Rotylenchulus reniformis (R) from experiment 1 (left) and 

experiment 2 (right) at 180 days post-inoculation. Means were separated using Tukey’s test (P < 

0.05). 
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range of values with the shortest heights, the largest trunk diameters and greatest dry leaf weights. 

The stem weight and chlorophyll content were in the middle compared to inoculated plants.  

Experiment 2 

Nematode reproduction differed between experiment 1 and experiment 2. Very few plant-

parasitic nematodes were recovered in the second experiment (Fig 4.2). Contamination by free-

living nematodes was more pronounced in experiment 2. None of the nematodes had a Rf greater 

than one (Table 4.1). Despite low Rf values, the trend indicating P. coffeae was the most capable 

of reproducing on breadfruit when compared to R. reniformis and M. javanica was consistent.  

No root galls or root lesions were observed on breadfruit roots when the experiment was 

terminated. Plant measurements from experiment 2 lacked significant differences, but like 

experiment 1, a trend towards a higher root mass was visible (Fig. 4.5). Measurements including 

dry leaf weight (Fig. 4.3), dry stem weight (Fig. 4.4), chlorophyll, height, and trunk diameter had 

differing values for all of the treatments, however the control had the lowest measurements for 

height, total weight, dry root weight, and dry stem weight and R. reniformis had the highest values 

for height, dry stem weight, and chlorophyll.  

4.6 Discussion 

Despite low frequency and modest abundance of Meloidogyne on surveys and lack of 

symptoms in Hawai‘i, we found it warranted to test if Meloidogyne javanica could reproduce and 

damage breadfruit based on reports from Jamaica (Coates-Beckford and Pereira, 1992), Samoa 

(Grandison, 1996) and galls produced on breadfruit in Venezuela (Crozzoli, 2009). Heavy galling 

by Meloidogyne along the tap, lateral, and feeder roots averaging 15mm in size was cited by Razak 

(1978) on breadfruit, but was not apparent on breadfruit roots sampled in Hawai‘i.  Based on 
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pathogenity results, M. javanica is not virulent to breadfruit. Breadfruit is a poor host to M. 

javanica.  

Rotylenchulus reniformis has been associated with breadfruit in American Samoa 

(Grandison, 1996) and Jamaica (Coates-Beckford and Periera, 1992). With its wide distribution 

and broad host range (Robinson et al., 1997), it is not surprising that it was also found associated 

but breadfruit in Hawai‘i in low abundance (Chapter 2). Low levels of infection by R. reniformis 

was consistent in experiment 1.  Rotylenchulus reniformis appears capable of reproducing on 

breadfruit at low levels, but breadfruit cultivar Ma‘afala is a poor host to R. reniformis. 

The results confirm previous reports by Coates-Beckford and Periera (1992) indicating 

breadfruit was a good host to P. coffeae.  However, the lack of significant plant data, with the 

exception of root weight where P. coffeae had a higher root weight, did not fall in line with 

symptoms reported from trees infested with P. coffeae (Coates-Beckford and Periera, 1992). In 

reviewing the work of Coates-Beckford and Periera (1992), tree age greater than 20 years was a 

significant factor in slow decline disease. Interestingly, the two sites with the highest populations 

of Pratylenchus on O‘ahu and Maui were from established trees in botanical gardens. Trees were 

likely greater than 20 years old. However, because collection methods aggregated multiple trees 

on a given site together, it is uncertain specifically from which of the trees that the nematodes were 

extracted. Nonetheless, any evidence of pests or pathogens present on breadfruit trees were duly 

noted including chlorosis, mid-day wilting, spider mites, scale, or mealy bugs, and no pests or 

symptoms were noted for these two Pratylenchus-concentrated locations.   

Although pathogenic nematodes generally cause reduced plant growth, several researchers 

found low populations of pathogenic nematodes can enhance host growth (Lownsbery and Peters, 

1955; Olthof and Potter, 1973) and were implicated in enhanced growth of root systems parasitized 
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(Chitwood and Buhrer, 1946). This stimulatory effect was often short-lived, but may have 

accounted for the higher dry root weights of P. coffeae inoculated breadfruit trees. Also likely was 

that a 180-day incubation period was not adequate to exhibit symptoms of slow decline disease. 

Lack of other significant differences in plant measurements could have been because nematodes 

did not occur in populations high enough to cause damage or that host plants were tolerant to 

nematodes tested.  

Suppression of nematode growth in experiment 2 was likely limited by the greenhouse 

temperature, pot environment, and tree age. These elements may have characterized lower 

nematode reproduction between experiment 1 and 2.  The greenhouse temperature may have been 

a factor in reduced nematode reproduction. Radewald et al. (1971) and Yokoo and Kudoka (1966) 

observed differences in the reproduction of various nematode species feeding in different crops 

when exposed to variations in temperature. Other studies found the duration of the lifecycles of 

nematodes to be temperature dependent and that heat up to 30ºC allowed tropical species to more 

quickly complete their lifecycle (Moens et al., 2005; Tuyet et al., 2013), while temperatures greater 

than 35ºC inhibited reproduction (Slack and Hamblen, 1961; Rebois et al., 1970). An upper 

temperature limit for life cycle completion was between 31 and 34.7°C on Meloidogyne incognita 

and M. javanica (Trudgill, 1995; Ploeg and Maris, 1999). Additionally, Pratylenchus penetrans 

hatched more at 20°C than at 25°C (Pudasaini et al., 2008). The day/night temperature at Magoon 

Research was 28/22°C measured at experiment 1 completion in December, and 31/24°C at 

experiment 2 completion in May. 

Breadfruit growth may have varied between experiments with height differences between 

pre- and post inoculation more amplified in experiment 1 as a result of pot size. In experiment 2, 

root bound breadfruit trees had less differences in growth over the course of the experiment. 
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Despite a continuous supply of nutrients, it has been noted that pot-bound plants experience 

substantially restricted growth which affects shoot and root growth (Krizek et al., 1985; Poorter, 

2012). An additional 180 days of growth in the original pots (360 days after planting) in experiment 

2 may have accounted for growth differences between experiment 1 and 2. Impeded root growth, 

a result of being rootbound, disfavors nematodes that rely on root tips by reducing availability of 

feeding sites. Biological constraints of more roots and less soil per pot may have further 

contributed to the lack of nematode activity observed in experiment 2.  

Breadfruit growth variations between experiments may have been partly attributable to 

differences in greenhouse temperatures at different times of the year in addition to duration after 

planting breadfruit tree plugs in soil (180d, 360d). Last, it should be mentioned that contamination 

by free-living nematodes was evident in experiment 2, as vermiform free-living nematodes were 

present in soil and roots from the control. Eggs of free-living and plant-parasitic nematodes were 

not differentiated. Thus, uninoculated host plants from experiment 2 yielded the highest number 

of eggs from the root shake, even though only vermiform P. coffeae were recovered from P. 

coffeae inoculated plants across all treatments.  
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Chapter 5: The Future of Breadfruit 

5.1 Concluding remarks 

Plant-parasitic nematodes associated with breadfruit in Hawai‘i were consistent with 

previous in other breadfruit growing areas (Sharma, 1976; Hutton, 1976; Orton Williams, 1980; 

Grandison, 1990, 1996; Grandison et al., 2009; Kirby et al., 1980; Coates-Beckford and Periera, 

1992). Commonly occurring plant-parasitic nematodes include Helicotylenchus,  Meloidogyne, 

Pratylenchus, and Rotylenchulus in Hawai‘i. Identifying which nematode genera and species are 

associated with breadfruit through surveys is a first step towards establishing pathogenicity of 

specific nematodes to breadfruit.  

An efficient host supports a higher population of parasitic nematodes than the population 

of parasitic nematodes supported by a poor host. Conversely, a non-host plant is a very poor host 

where nematodes fail to live, multiply, or face early death (Seinhorst, 1967). Nusbaum and Barker 

(2012) characterized host plants by “their relative suitability as a substrate for the parasite and 

relative vulnerability to damage,” a definition which seems subject to interpretation rather than 

having a hard and fast definition. According to Khan (2005), the concept of host status is greatly 

variable. During pathogenicity studies, we considered nematode pathogens that had a reproductive 

factor (Pf/Pi) greater than one as hosts, while nematodes reproductive factor values less than one 

but not zero were poor hosts.  

Breadfruit was a host to Pratylenchus coffeae in greenhouse studies. Anecdotally, because 

Pratylenchus coffeae was the only nematode recovered from the roots at University of Hawaiʻi at 

Mānoa Botany Garden after surface sterilization during root collections over a period of ten 

months for inoculum preparation for pathogenicity tests, a 17-fold reproduction replacement rate 

was not unexpected from a seemingly unfailing supplier of P. coffeae. Surveys of nematodes on 
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breadfruit in Jamaica (Coates-Beckford and Periera, 1992) and Brazil (Sharma, 1976) and regional 

reports from Samoa (Grandison, 1996) and Venezuela (Crozzoli, 2009) that identified 

Pratylenchus spp. associated with breadfruit reinforce the importance of surveys as a first step in 

determining nematode pathogenicity. Despite their importance in determining which plant-

parasitic nematodes can infect breadfruit, surveys are no substitute for pathogenicity tests.   

In the case of M. javanica and R. reniformis on breadfruit, reproductive factors for each 

species was just over a third, despite being discovered on breadfruit surveys in Samoa (Grandison, 

1996) and Jamaica (Coates-Beckford and Periera, 1992), and breadfruit called “very susceptible 

to Meloidogyne attack” (Razak, 1978). In spite of a low reproductive factor, nematode recovery 

was uniform across all treatments in experiment 1 allowing a conclusion to be made that breadfruit 

is a poor host to M. javanica and R. reniformis. 

The appearance of plant roots was normal at the end of the experiments. Symptoms of 

fewer and smaller leaves, leaf chlorosis, reduced fruit production, premature fruit drop, dieback of 

branches, and tree death were observed in Jamaica (Coates-Beckford and Periera, 1992). Coates-

Beckford and Periera (1992) cited tree maturity as a significant factor of infection by P. coffeae, 

with breadfruit trees older than 20 years as most heavily infected. Although not symptomatic, the 

two locations with the highest concentration of Pratylenchus spp. were of the oldest trees surveyed, 

both at botanical gardens. In hindsight, a 180-day inoculation period may not be enough time to 

exhibit host symptoms of slow decline.  

Damage by nematodes invariably remains hidden by many other factors especially the 

presence of multiple biotic and abiotic stress factors operating simultaneously on the crop.  Plant-

parasitic nematodes are easily and often misdiagnosed, thus it is not unexpected that nematodes 

are rarely considered as major limiting factors to crop production and frequently neglected (Bridge, 
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1996). When we are lucky enough to find information on pathogens in non-major crops such as 

breadfruit, plant nematodes are rarely mentioned (Raabe, 1981). That breadfruit is a confirmed 

host of an endoparasite should raise quarantine concerns, based on a history of movement of 

tropical and temperate plant-parasitic nematode species into new uninfested areas. Dissemination 

of burrowing nematode (Radopholus similis) and root lesion nematodes (Pratylenchus spp.) to 

nearly all areas where banana crops are grown is the result of lack of quarantine guidelines that 

address sharing of pathogens globally (Gowen, et al., 2005). Fortunately, the advent of 

micropropagation using mature axillary shoot buds (Murch et al, 2008) solves nematode 

quarantine issues on breadfruit, as most parasitic nematodes reside in or on roots.  

However, practicality often outweighs prudence in Hawai‘i, and all too often breadfruit 

growers continue to opt for root shoots or root cuttings to avoid mass orders, shipping costs, and 

agricultural regulations for plant importation connected with the purchase of breadfruit propagules 

from out-of-state. Sourcing new plants from root shoots or root cuttings can transmit plant-

parasitic nematodes to new planting areas, thus it is emphasized that in vitro breadfruit propagation 

material free of nematodes be transplanted when feasible. Despite results during these studies that 

might suggest that specific pathogenic nematodes do not cause damage to breadfruit, it is 

recommended that growers exploit different breadfruit cultivars and practice intercropping with 

non-host plants in breadfruit orchards. Solarization prior to planting and after planting has also 

proved successful in breadfruit orchard settings (Coates-Beckford and Periera, 1994).  

Last, it should be mentioned that a small amount of white latex sap was often visible during 

root collection of woody breadfruit roots larger than 1 cm in diameter. Although milky sap was 

not visible in smaller roots, those that were woody released an imperceptible amount of sap which 

left a distinct gluey film on pruning shears and fingers during root processing. Sap and associated 
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stickiness was absent from fleshy feeder roots. In studying lactifers on breadfruit, Harvey (1999) 

noted that younger tissue from breadfruit had a higher liquid:congealant ratio in latex, and the 

rather clear liquid component was tacky. Laticifers are a type of elongated secretory cell that 

produce latex and rubber as secondary metabolites (Mahlberg and Sabharwal, 1968) and are 

present in all plants belonging to the family Moraceae including breadfruit. Milky sap is present 

in all parenchymatous tissues of the tree, including plant roots. According to Mahlberg (1993) 

laticifers are harder to see in the roots than other parts of plants that contain them. One of the 

evolutionary functions of specialized cells in laticifers is for the defense of plants against pests. 

Numerous studies have linked plant latex and associated metabolites of laticifers with defense 

against insect herbivores (Konno et al., 2004; Ramos et al., 2007; Helmus and Dussourd, 2005; 

Hagel et al., 2008). Studies by Langenheim (2003) and Pickard (2008) postulate that glue-like 

exudates produced by lactifers are a plant defense mechanism that works by coating the mouthparts 

of foraging herbivores and sealing offplant wounds from pathogens. Studies are not available on 

interactions or effects of laticiferous roots with below-ground pathogens.  

It would be of interest to determine if plant latex and associated metabolites of laticiferous 

breadfruit roots secreted during root damage reduce host desirability to pathogenic nematodes.  

Increased research on interactions of P. coffeae with pathogenic fungi and phytoparasitic bacteria 

correlated with declining breadfruit as outlined by Coates-Beckford and Periera (1992) might also 

provide a more holistic approach to the disease complexes that affect breadfruit. Furthermore, an 

investigation into how breadfruit-specific arbuscular mycorrhizae mentioned by Hart et al. (2014) 

affect nematode populations could broaden our understanding of how underground communities 

affect breadfruit trees above. Human migration based on DNA fingerprinting of plant-parasitic 

nematodes is yet another unexplored area. Since breadfruit dispersal throughout the Pacific was 

https://en.wikipedia.org/wiki/Sap
https://en.wikipedia.org/wiki/Ground_tissue#Parenchyma
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human-mediated though root cuttings, divergence of nematode isolates that occur in roots and 

rhizosphere of breadfruit trees could prove useful in supporting evidence about human migration 

paths through Oceania as phytonematodes on breadfruit trees were relocated during colonization. 

Future studies are also recommended to test pathogenicity of Meloidogyne spp., Pratylenchus spp. 

and Rotylenchulus reniformis to Ma’afala cultivars in different time intervals and examine the host 

ranges of popular cultivars like the Hawaiian “Ulu’, ‘Otea’ and ‘Ulu Fiti.’ 
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