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ABSTRACT 

Investigations of multisensory integration have demonstrated that under certain 

conditions, one modality is more likely to show dominance over the other, with strong 

evidence over the past few decades suggesting that the visual modality is more dominant. 

However, this visual prepotency effect can be reversed to show auditory dominance in 

certain tasks. The experimentation conducted within investigated two stimulus 

characteristics that have been hypothesized to potentially modulate sensory dominance 

using an oddball detection paradigm.  

It was hypothesized that when manipulating stimulus transience (by changing the 

relative duration of either the auditory or visual stimulus in a bimodal stimulus stream), 

participants would show dominance for the modality with the shorter duration, as 

theoretically attention would be drawn to the more transient modality. Participants 

showed auditory dominance in the 1-button condition irrespective of manipulation to 

duration. In the 3-button condition participants showed auditory dominance when looking 

at their response times, but also simultaneously demonstrated visual dominance when 

using a more traditional measure of sensory dominance (i.e., making a higher proportion 

of visually based errors to bimodal trials). Furthermore duration did not modulate these 

errors.  

The second experiment addressed the hypothesis that a stimulus that is presented 

earlier will be processed first and therefore contribute to sensory dominance. Stimulus 

order was manipulated such that the visual or auditory stimulus was presented prior to 

one another. It was hypothesized that dominance would be observed for the stimulus 
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(auditory or visual) that occurred first. Participants, in the 1-button  and 3-button 

conditions, were more likely to show auditory dominance with simultaneous 

presentations, and under all conditions where the auditory stimulus preceded the visual 

stimulus, however auditory dominance was eliminated when the visual stimulus occurred 

slightly before the auditory stimulus, only demonstrating visual dominance when the 

visual stimulus preceded the auditory stimulus by 200 ms. Errors in the 3-button task 

provided evidence for visual dominance which was modulated when presenting auditory 

stimuli prior to visual stimuli. Overall these results affirm that auditory dominance effects 

are more pronounced early in processing, whereas visual dominance effects are more 

pronounced later in processing. Theoretical implications of these results are discussed. 
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1. General Introduction 

 Understanding how the mind creates stable and complete percepts out of 

seemingly distinct sensory experiences is an important scientific undertaking. Typically, 

the discussion of this capability focuses on the relative timing and behavioral outcomes 

of both unisensory and multisensory processing, with the assumption being that 

unisensory processing is at first separate given the existence of modality specific sensory 

pathways responsible for the transduction of sensory information; after which unisensory 

information arriving from multiple modalities can be combined into a unitary percept 

(multisensory integration) via multisensory processing (Tang, Wu, & Shen, 2015). 

However, this simplistic view of sensory processing is wrought with difficulties as 

research has shown that, multisensory processing can occur fairly early in neurological 

systems seemingly dedicated to a particular sensory modality (Ghazanfar & Schroder, 

2006), various factors influence whether sensory events belong to the same unitary 

percept (Shimojo & Shams, 2001; Tang et al., 2015), and that in some situations 

information arriving at separate senses can compete for resources leading to one event 

being processed/perceived at the expense of another not being perceived (Colavita, 1974; 

McGurk & MacDonald, 1976). The research conducted for this dissertation focuses on 

this final point and furthers our understanding of the underpinning mechanisms that lead 

to situations when one sense dominates another.   

In order to fully understand the reasons why sensory dominance occurs, it is 

critical to explore what circumstances lead to certain sensations dominating processing, 

and as a result behavior. Although a multitude of investigations have attempted to 

disentangle these factors in several different multimodal situations, the vast majority of 
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research has focused on audition and vision (although, see Hartcher-O’Brien, Gallace, 

Krings, Koppen, & Spence, 2008 and Hecht & Reiner, 2009 for visuotactile and auditory 

tactile examples, respectively). To preview the current state of the literature, overall, 

studies demonstrate that under some circumstances when a bimodal (auditory and visual) 

event occurs, vision tends to dominate processing and as a result dominates observable 

behavior as well (Spence, Parise, & Chen, 2012), however, in other situations audition 

appears to dominate vision (Robinson, Chandra, & Sinnett, 2016; Robinson & Sloutsky, 

2013). The studies in this doctoral dissertation further examine auditory and visual 

dominance in adults to better understand what situations and stimuli characteristics lead 

to different sensory dominances (i.e., visual or auditory dominance). Given the quantity 

and breadth of research on sensory dominance, an introduction to important issues, 

theories, and findings is necessary in order to best understand the motivations for the 

research conducted in this dissertation. Importantly, this introduction will focus on 

multisensory integration first and then expand on key issues in sensory dominance.  

1. 1.  Multisensory Integration 

 Multisensory integration can be thought of as the joining of two or more 

unisensory events (which are, importantly, processed by different senses at first) that 

coincide in space and/or time, leading to some meaningful and integrated percept (Alais 

& Burr, 2004; Ernst & Banks, 2002; Körding, Beierholm, Ma, Quartz, Tenenbaum, & 

Shams, 2007; Rohe & Noppeney, 2015; Welch & Warren, 1980; for a review, see 

Spence, 2007). Outwardly, the idea of multisensory integration seems basic; however, 

multiple elements have been shown to influence the extent with which sensory events are 
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combined, including stimulus features, locations, timing, attention, and more recently 

expectation (Gau & Noppeney, 2016; Spence, 2007; Tang et al., 2015). As a result, 

multisensory integration has been shown to have multiple effects on behavioral 

responses. For example, in some situations multisensory integration has been shown to 

improve a person’s ability to do certain tasks (Raab, 1962) while at times multisensory 

integration “gone wrong” has been shown to influence responses by creating potent 

illusions (e.g., McGurk & MacDonald, 1976).  

1. 2. Influences on Multisensory Integration 

Typically, studies of multisensory integration support the unity assumption – 

which purports that to the extent that unimodal sensory events are consistent with one 

another, the more likely they are to be viewed as a single unit (Welch & Warren, 1980). 

For instance, when viewing a video or newscast where the video and audio tracks are not 

synchronous, the seemingly automatically integrated speech signal now appears as two 

separate signals (a similar example can be seen when watching a dubbed film). Spence 

(2007) expands on the unity assumption by specifying which factors can influence the 

“consistency” of sensory events. In particular, he identifies two primary classes of factors 

that guide multisensory integration (or the binding of two unisensory events, one auditory 

and the other visual in nature, into one audiovisual event). First are factors that are 

stimulus-driven or bottom-up factors. These bottom-up factors are numerous, but of 

particular importance are spatiotemporal correspondence (i.e., the extent with which an 

audiovisual event’s timing and relative locations correspond with one another; Bermant 

& Welch, 1976; Hairston, Wallace, Vaughan, Stein, Norrris, & Schirillo, 2003; Jackson, 
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1953), temporal patterning (i.e., the correlation between an auditory and visual items’ 

occurrence, this can also be thought of the extent with which the duration of the stimuli 

are similar; Jones & Jarick, 2006; Radeau & Bertelson, 1987), and stimulus motion (i.e.,  

the extent to which auditory and visual signals appear to be moving in the same general 

direction; Soto-Faraco, Lyson, Gazzaniga, Spence, & Kingstone, 2002). Therefore, the 

more that an individual believes that multisensory stimuli have high spatiotemporal 

correspondence, consistent temporal patterning, and similar motion, the greater the 

likelihood that these events will be linked into a unitary percept.  

 In addition to these stimulus-driven factors, top-down or cognitive factors are also 

believed to be a crucial part of whether or not multiple unimodal sensory events are 

viewed as a singular sensory event. In particular, Spence (2007) identifies semantic 

congruency, or the extent with which an auditory and visual event are semantically 

consistent with one another, as one of these important factors. For example, a researcher 

could present a (semantically consistent) picture of a dog and an auditory file of a bark, 

or (a semantically inconsistent) picture of a dog and an auditory file of a meow. The 

semantically consistent pair will be more likely to be considered a whole, as 

demonstrated by more efficient responses to the congruent pair when compared to the 

incongruent pair (Molholm, Martinez, Ritter, Javitt, & Foxe, 2004). 

 An additional top-down factor that has been shown to influence multisensory 

integration is task instructions. Instructions have been shown to influence an observer’s 

belief about an audiovisual event in such a way that they are either viewed or not viewed 

as a unitary sensory experience (Arnold, Johnston, & Nishida, 2005; Spence, 2007; 
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Windmann, 2004). For example, Arnold et al. (2005) investigated the possibility that 

some sort of perceptual compensation1 must occur to address the fact that sound travels 

more slowly than light and thus hearing and seeing are inherently mistimed. The 

researchers employed the “bounce illusion” to test their theory (see also Berenthal, 

Banton, & Bradbury, 1993 and Sekuler, Sekuler, & Lau, 1997). In this illusion, two dots 

presented on a screen are shown to be moving towards one another until they are 

superimposed. If a tone is presented at the timing of superimposition, the dots appear to 

bounce; whereas in the absence of a tone the dots appear to move through one another. 

Arnold and colleagues were able to modulate how participants perceived the bounce 

illusion by asking the participants to imagine the tone originating from a different source.  

Arnold et al. (2005) hypothesized that if perceptual compensation were occurring 

it would be evident in the timing of the perceived bounce. In particular, when the screen 

is far away and the sound is presented via headphones, participants should perceive the 

tone as occurring too early for the bounce illusion to manifest itself. Their experiment 

demonstrated that as viewing distance increased in the loudspeaker condition, the earlier 

the tone would have to occur for the bounce illusion to occur, suggesting that no 

perceptual compensation was occurring: in order for audiovisual events to be bound 

together they must enter sense receptors at approximately the same time. In regard to the 

question of whether task instructions can modulate this effect, in one experiment 

                                                
 
 
 
1 Perceptual compensation, in this context, can be thought of as processing that occurs to align an auditory 
and visual event even if they occur asynchronously.  



6 
 
 
 
 

(Experiment 3), participants were instructed to imagine that the origin of the sound was 

the visual display (rather than the headphones or loudspeakers that were being used to 

emit the sound). Under these instructions perceptual compensation occurred such that the 

earlier tones were no longer needed for the bounce illusion to be perceived, 

demonstrating that top-down factors such as task instructions can bias an observer to 

view perceptual events as whole.  

 

 

Figure 1-1. Conceptualization of Multisensory Integration. A depiction of how exogenous and 
endogenous attention are proposed to affect multisensory integration according to Tang, Wu, and Shen 
(2015).  
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In addition to task instructions, other aspects of attention2 have also been shown 

to have an effect on multisensory integration. Tang et al. (2015) argue that multisensory 

integration is mediated by both exogenous (i.e., stimulus-driven; when the properties of a 

stimulus capture attention reflexively) and endogenous (i.e., goal-driven; or when an 

individual volitionally directs attention towards something) attention. These researchers, 

in their review, claim that the interplay between attention, multisensory processing, and 

subsequently multisensory integration is complex. As pictured in Figure 1-1, unimodal 

stimuli are first processed in parallel, after which endogenous attention affects 

multisensory processing via attentional selectivity. That is, for example, when 

participants are instructed to pay attention (i.e., their endogenous, goal-driven attention is 

engaged) to audiovisual stimuli at particular spatial locations on a display it has been 

observed that audiovisual processing is enhanced regardless of whether they are asked to 

selectively attend to one modality or attend to both modalities when compared to not 

cueing endogenous attention to a particular spatial location (Busse, Roberts, Crist, 

Weissman, & Woldorff, 2005; Santangelo, Fagioli, & Macaluso, 2010; Senkowski, 

Talsma, Herrmann, & Woldorff, 2005; Wu, Yang, Gao, & Kimura, 2012). Furthermore, 

                                                
 
 
 
2 Importantly, the model discussed herein focuses on the exploration of this issue as discussed by Tang et 
al. (2015). More contemporary research on sensory processing has demonstrated that an important and oft 
miscategorized contributor to multisensory integration is expectation. Expectation differs from attention in 
that it is a top-down factor embodied by prior knowledge about sensory events. Summerfield and Egner 
(2016) use the example of a familiar room to explain the effect of expectation on sensory experiences. In 
particular, one enters a familiar room with knowledge beforehand about the room, and as a result much 
information from that room is (a) processed less deeply because it is arguably redundant and (b) gives 
contextual clues about objects that may appear in the room, for vision in particular. For additional 
discussions on how expectation affects multisensory processing see also Gau & Noppeney (2016) and Ten 
Oever, Romei, van Atteveldt, Soto-Faraco, Murray, & Maustz (2016). 
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multisensory interactions are thought to affect exogenous attention by way of attentional 

capture: when participants are under heavy perceptual loads, multimodal cues capture 

attention involuntarily more often than unimodal cues (Santangelo et al., 2008; 

Santengelo & Spence, 2007) whereas under low cognitive loads, unimodal and 

multimodal cues can both capture attention involuntarily (Santangelo et al., 2008). In this 

model, after multisensory integration has occurred, multisensory integration in turn 

affects both endogenous and exogenous attention (see Figure 1-1) in a cyclical manner. 

Multisensory signals can then be stored as integrated templates3 that can influence both 

kinds of attention in a top-down manner, and given that integrated cues have been 

theorized to be more salient (i.e., they capture attention more readily), this in turn affects 

both endogenous and exogenous attention. For example, Matusz and Eimer (2013) 

demonstrated the effect that integrated cues can have on attentional capture. These 

researchers found that when pairing a task-irrelevant tone with a target during a stimulus 

detection task, participants were able to locate targets more quickly in search arrays.      

In sum, the model described by Tang et al. (2015) attempts to provide a complete 

picture of the nature of attention’s effect on multisensory integration, the important point 

being that both kinds of attention (endogenous and exogenous) work to influence both 

multisensory processing and integration and, as can be expected, the interplay between 

these processes and attention is complicated, much more so than the simplistic unisensory 

                                                
 
 
 
3 Attentional templates are task-relevant representations stored in working memory that influence attention 
(Matusz & Eimer, 2013).  
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processing à multisensory processing à multisensory integration model discussed 

earlier. The model highlights that multisensory integration is an active and ongoing 

process that acts dynamically on multisensory stimuli.   

1. 3. Multisensory Illusions 

 Interestingly, under some conditions multisensory integration can result in 

intriguing multisensory illusions, in which conflicting information from different 

modalities results in the perception of something that did not objectively occur. One of 

the most compelling examples of this is what is commonly termed the McGurk effect 

(McGurk & MacDonald, 1976). In this effect it is possible to create a speech illusion by 

presenting an individual with an auditory stream that has an incongruent visual speech 

signal. The most widely used example of this comes from when the auditory stream 

contains “ba” and the visual stream contains a face articulating “ga”. Under these 

conditions an individual is very likely to misperceive “da”, an item that is completely 

different than either of the unisensory signals that composed the integrated percept. The 

McGurk effect arguably demonstrates that auditory and visual information, at some point 

in processing, become conjunctively coded to create a single unitary audiovisual percept.  

Multisensory illusions are not limited to the McGurk effect. Additional examples 

include the ventriloquism effect which occurs when the spatial location of a visual 

stimulus influences where an auditory stimulus is believed to be coming from (Bertelson, 

1999; Bertelson, Vroomen, & De Gelder, 2000; Hairston, Wallace, Vaughn, Stein, 

Norris, & Schirillo, 2003; Howard & Templeton, 1966), the sound induced flash illusion 

whereupon presenting multiple auditory stimuli causes participants to misperceive one 
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light flash as two (Shams, Kamitani, & Shimojo, 2000), and the freezing effect where, 

during a rapidly presented visual stream, the interjection of an auditory stimulus can 

cause the visual stream to appear to freeze momentarily (Vroomen & De Gelder, 2004). 

What each of these examples of audiovisual integration demonstrates is that once 

unisensory information is processed and multisensory processing occurs, the outcome of 

multisensory integration is at times not a “true” representation of what has occurred. As 

such, these illusions provide compelling evidence that the outcome of multisensory 

integration is a new sensory experience that could be disembodied from the unisensory 

events that created them.  

1. 4. Multisensory Response Enhancement 

Multisensory integration causes other interesting behavioral responses other than 

just those observed in multisensory illusions; the integration of multiple modalities has 

been shown to improve response performance in certain tasks. A particularly relevant 

example of this would be the redundant target effect (RTE), in which targets in detection 

tasks are more quickly identified (via reaction time measures) when the targets are 

bimodal (i.e., a corresponding image and sound4) than when targets are unimodal (Raab, 

1962). This reaction time advantage for bimodal stimuli is greater than expected by the 

probability summation of the RT distributions of the responses to the unimodal signals 

(i.e., on the basis of the race model; see Colonius & Diederich, 2006; Miller, 1982). For 

                                                
 
 
 
4 RTE has been demonstrated in various modality combinations, including visual-tactile presentations 
(Forster, Cavina-Pratesi, Aglioti, & Berlucchi, 2002). 
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example, Van der Stoep, Spence, Nijboer, and Van de Stigchel (2015) were able to 

demonstrate that the high temporal consistency of an audiovisual event contributes to 

multisensory response enhancement via multisensory integration. Thus, the fate of 

multisensory information is variable, although at times multisensory integration can yield 

powerful illusions, it can help individuals more quickly perceive bimodal events. The 

third potential outcome of multisensory integration is of particular interest to the 

proposed set of studies and warrants a more detailed discussion.  
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2. Sensory Dominance 

In some conditions, unisensory signals compete for processing resources, leading 

to one sensory modality dominating another. Arguably, some of the instances of 

multisensory illusions cited earlier are also examples of the phenomenon of sensory 

dominance. For example, Tiippana (2014) noted that in her work examining the unimodal 

streams in the McGurk effect, visual “ga” is often times mistaken for “da” in isolation of 

any auditory information. As a result, the visual articulation of “ga” may bias an 

individual to perceive “da” in the McGurk effect, therefore the McGurk effect may, in a 

few circumstances, be an example of visual dominance (although, note that there are 

several other stimulus combinations that lead to the McGurk effect). Overall, modality 

dominance has been an active area of investigation for a significant amount of time now 

and much is known about the situations that lead to one sense dominating over another in 

a number of modalities; however, for the purposes of this dissertation the focus will be on 

auditory and visual dominance in particular.  

2. 1. Visual Dominance 

 Seminal research on visual dominance in humans comes from the work of 

Colavita (1974). In Colavita’s original work, participants were given a speeded task in 

which unimodal auditory, unimodal visual, or bimodal audiovisual targets were 

presented. Participants responded to each of the unimodal target types with different 

keys, and with both keys for bimodal trials. Interestingly, in bimodal trials, participants 

frequently failed to respond to the auditory stimulus, and in fact, nearly exclusively 

responded to only the visual component of the bimodal signals (e.g., 98% of responses to 
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bimodal trials were visual only in Experiment 1). Accordingly, the failure to respond to a 

stimulus in a modality other than the visual modality during bimodal trials has been 

termed the Colavita effect. This visual prepotency occurs across a wide range of stimulus 

manipulations including differences in stimulus intensity (Colavita, 1974), various 

stimulus modalities including the tactile modality (Hartcher-O’Brien,et al., 2008; Hetcht 

& Reiner, 2009), simple and complex stimulus types (Sinnett, Soto-Faraco, & Spence, 

2008; Sinnett, Spence, & Soto-Faraco, 2007), and when the spatial origin of the stimuli is 

varied (Colavita, 1974, 1982) amongst many others (for a detailed review of the factors 

that have been investigated to affect the Colavita effect, please see Spence et al., 2012). 

As can be clearly seen, explaining the Colavita effect and what aspects influence it has 

become a priority amongst perception researchers. 

2. 1. 1. Stimulus Complexity and the Colavita Effect. Sinnett et al. (2007) provided 

evidence that visual dominance effects can occur even when utilizing more complex 

stimuli (i.e., in contrast to the simple stimuli typically used in the traditional Colavita 

effect). In these experiments, visual stimuli consisted of common objects from the 

Snodgrass and Vanderwart (1980) database (e.g., an airplane, glove, etc.) instead of light 

flashes, while auditory stimuli consisted of common sounds (e.g., a doorbell, phone ring, 

etc.) instead of simple tones. Participants were asked to monitor the screen for unimodal 

auditory, unimodal visual, and bimodal audiovisual stimuli and utilized different keys in 

response to each of these targets (Experiment 1). Overall, Sinnett et al. replicated the 

findings of Colavita (1974), observing the Colavita effect even with complex visual and 

auditory stimuli. In Experiment 2, participants were presented with an audiovisual 
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stimulus stream and assigned specific unimodal targets to search for, or the bimodal 

presentation of both assigned unimodal targets. For example, participants may be asked 

to look for a picture of a stop sign and listen for the sound of a cat meowing. They were 

then asked to press a button if they heard the sound of the cat (unimodal auditory), a 

different button if they saw the stop sign (unimodal visual), and a third button if they both 

heard the cat and saw the stop sign (bimodal). Once again, Sinnett et al. observed the 

Colavita effect, with participants more frequently erroneously responding with the 

unimodal visual button to bimodal trials.  

 In this same work Sinnett et al. (2007) also explored situations where participants’ 

attention was biased towards a particular modality. In Experiments 5 and 6 participants 

were given the same instructions as Experiment 2, however the proportion of trials was 

manipulated such that either unimodal auditory or unimodal visual trials were presented 

more frequently, thus biasing attention towards a particular sensory modality 

(Experiment 5). In the final condition (Experiment 6) the number of distracting stimuli 

was reduced in the auditory biased and visual biased conditions, allowing for more 

attentional resources to be directed at either the auditory or visual streams. The findings 

suggested that an attentional bias was capable of modulating the Colavita effect, such that 

a reduction in the visual dominance effect was observed when biasing attention towards 

the auditory modality (i.e., a reduction in the amount of erroneous visual only responses 

to bimodal trials), although they were unable to completely reverse the effects of the 

Colavita visual dominance effect to demonstrate auditory dominance.  
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2. 1. 2. Stimulus Timing and the Colavita Effect. Koppen and Spence (2007) 

investigated the idea that differences in stimulus onset times could modulate the Colavita 

visual dominance effect. The underlying motivation for their investigation was to explore 

the possibility that if auditory and visual events were presented further apart from one 

another, then at some point the Colavita visual dominance effect should be eliminated as 

the visual stimuli would be less likely to interfere with the auditory stimuli. Participants 

were given a temporal order judgement (TOJ) task with auditory and visual stimuli and a 

manipulation of the Colavita (1979) task in which stimulus onset asynchronies (SOAs) 

were manipulated. Once the results of each study were correlated, it was revealed that the 

Colavita visual dominance effect diminished at the point where participants were able to 

reliably judge that the auditory stimulus occurred prior to the visual stimulus, and vice 

versa. This test of the visual prepotency effect is important as it demonstrates the 

possibility that sensory dominance effects may be susceptible to the “law of prior entry” 

(Spence, Shore, & Klein, 2001; Titchner, 1908), which states that sensory experiences 

that are being attended to are perceived more rapidly. In the case of Koppen and Spence, 

visual stimuli in their task may have captured attention first, thus leading to the Colavita 

effect when both visual and auditory signals were presented at the same time. However, 

once it becomes clear that the visual stimuli are clearly presented after the auditory 

stimuli, a reduction in the Colavita effect can be observed. Importantly, the Colavita 

effect was not reversed in this case (i.e., auditory dominance is not observed), thereby 

demonstrating the robustness of the Colavita visual dominance effect. They go on to 

argue that the unity assumption, which states that when two unimodal events are 
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consistent with one another they are assumed to be a unitary bimodal event, drives the 

Colavita visual dominance effect: once an individual can reliably separate the bimodal 

audiovisual event into two unimodal events the Colavita effect disappears.  

2. 1. 3. Explanations of Visual Dominance. Various explanations have been offered to 

account for visual dominance effects. One such early and oft cited account of visual 

dominance was proposed by Posner, Nissen, and Klein (1976), who argued that what may 

be driving visual dominance in adults is the poor alerting ability of the visual modality. 

Posner et al. (1976) claimed that the visual modality requires more attentional resources 

because effort must be exuded to perpetually monitor a visual stream for important 

changes and occurrences. In contrast, the auditory modality can capture attention more 

readily; for example, if a person were to approach you from behind the auditory modality 

has the ability to alert you to that person’s presence (i.e., one could hear their footsteps) 

more readily than the visual modality (i.e., one would have to check over their shoulder 

often to see if someone was behind them). Furthermore, Posner et al. (1976) argue that 

allocating resources to the visual modality inhibits processing in the auditory modality. 

Thus, within this framework there is a fundamental imbalance of attentional resources, 

which might lead to visual dominance, at least as measured in these tasks.  

Another especially compelling argument for why visual dominance and the 

Colavita effect is observed in a diverse number of experimental manipulations of both 

visual and auditory stimuli comes from Spence et al. (2012), who draw inspiration from 

the work of Desimone and Duncan (1995; Duncan, 1996). They hypothesized that 

attention is an emergent phenomenon that occurs as a result of one stimulus modality 
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winning the competition for the activation of neural representations. More specifically, in 

the case of the Colavita effect, visual representations could be more likely to be activated 

and consequently inhibit the influence of auditory representations, a standpoint which is 

shared by Posner et al. (1976), because the competition naturally favors visual 

information. Although evidence for this viewpoint may still yet be sparse, Spence et al. 

(2012) view the fact that a fairly large proportion of the cortex is dedicated to processing 

visual information (Serano, Dale, Reppas, Kwong, Belliveau, Brady, et al., 1995) 

represents a promising clue that such a theory may be validated. As such, the neural 

underpinnings of the Colavita effect represent an important area of open inquiry in the 

study of sensory dominance.  

2. 2. Auditory Dominance 

 Given the breadth of research that demonstrates visual dominance in adults and 

the fact that it does not reverse to auditory dominance even when biasing attention 

towards auditory stimuli (e.g., Sinnett et al., 2007), the Colavita visual dominance effect 

seems fairly robust. Thus far one of the few situations discussed here where visual 

dominance was diminished required researchers to essentially make it appear as if there 

were two unimodal events, rather than one bimodal sensory event, by having the auditory 

event be clearly presented before the visual event (see Koppen & Spence, 2007). 

Therefore, it may seem that auditory dominance is simply not possible to demonstrate in 

adults unless precise and extreme experimental conditions are met.  

 However, Ngo, Cadieux, Sinnett, Soto-Faraco, and Spence (2011) incorporated a 

task manipulation that led to auditory dominance: an n-1 repetition detection task using a 
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bimodal stimulus stream. In this work Ngo et al. first hypothesized that, although iconic 

and echoic memory are by definition transient, research shows that iconic memory has a 

shorter timespan than echoic memory (e.g., Cowan, 1984; Sperling, 1960); therefore, 

auditory dominance might arise in a situation where the auditory component of a bimodal 

target is still being held in the echoic memory buffer, while the visual component would 

not be accessible due to the limits of iconic memory (up to a second, see Cowan, 1984). 

Essentially, participants may be superior at recognizing n-1 auditory repetitions5 because 

echoic memory will store the representation of the auditory stimulus longer. The results 

of their first experiment did in fact demonstrate this, but upon further investigation and 

subsequent testing, it appeared that the presence of an intervening stimulus between n-1 

repetitions was really driving the reversal of the Colavita visual dominance effect. In the 

case of the auditory stream, the auditory stimulus presented between the n-1 repetitions 

had no effect on accuracy. In contrast, the visual stimulus that occurred between the n-1 

repetitions did impact participant responses as the intervening stimulus served as a mask 

disrupting the memory for the n-1 item. Therefore, the auditory dominance observed in 

these experiments is more likely driven by the differential effect masking stimuli has on 

processing across sensory modalities. More specifically, the processing of visual stimuli 

                                                
 
 
 
5 Ngo, et al. (2010) modified the task to require participants to detect either auditory, visual, or bimodal 
repetitions in an attempt to assess the modality appropriateness hypothesis (Welch & Warren, 1980). Visual 
dominance was observed despite the inherent advantage audition should have in tasks that are reliant on 
temporal information. 
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is more susceptible to the interference of semantically relevant visual masks whereas 

auditory stimuli are not.  

Robinson and Sloutsky (2013) have also observed auditory dominance in adults, 

albeit with a very different task than has traditionally been used in research exploring 

sensory dominance (see Colavita, 1974; Egeth & Sager, 1977; Ngo et al., 2010, 2011; 

Sinnett et al., 2007, 2008; Spence, 2007). Robinson and Sloutsky required adults to 

participate in unimodal and bimodal statistical learning tasks. Participants were presented 

with streams of spoken syllables and visually presented shapes presented in triplets (i.e., 

bimodal condition), spoken syllables in isolation (i.e., unimodal auditory), or shapes in 

isolation (i.e., unimodal visual), and asked to respond to repetitions in the stream. The 

streams could be either random (i.e., triplets may contain any 3 items) or the structured 3-

item triplets seen in Figure 2-1. Furthermore, participants in the bimodal condition could 

have a correlated audiovisual stream where each modality had structured triplets, or non-

correlated audiovisual streams where one modality had a stimulus stream that was 

random. Afterwards, participants were tested on their recall for triplets that occurred 

during the stream.  
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Figure 2-1. Training Stimuli. Examples of the structured triplets from 
Robinson and Sloutsky (2013). 

 

The results of the study show that in each unimodal condition participants were 

able to identify the triplets that been previously presented at rates that were better than 

chance. However, the critical finding of this study was the differences observed in the 

correlated and non-correlated bimodal streams. In these streams participants were best at 

recalling the triplets that occurred in the correlated stream, and in the non-correlated 

stream random auditory triplets attenuated visual statistical learning, but random visual 

triplets had no effect on auditory statistical learning. The researchers concluded that the 

results of the study do not necessarily mean that the auditory modality is better able to 

engage in statistical learning, but that the auditory modality delays processing and thus 

attenuates the visual modality during multisensory processing. The reason that auditory 

dominance is observed here despite so much evidence suggesting that adults are visually 

dominant is still as of yet unknown, but the fact that auditory dominance is observed 

caused Robinson and Sloutsky (2013) to hypothesize that different processes may lay at 

the heart of visual and auditory dominance. For example, one possibility is that in 
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implicit tasks auditory dominance may be more likely to be observed, since the vast 

majority of visual dominance tasks require participants to make explicit responses. 
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3. Contemporary Theorizing on Sensory Dominance and Current Directions 

As discussed, studies of sensory dominance typically demonstrate that adults are 

visually dominant (Spence et al., 2012). However, findings with children tend to show 

the opposite. That is, in certain tasks children often demonstrate auditory dominance 

(Napalitano & Sloutsky, 2004; Nava & Pavani, 2013; Robinson & Sloutsky, 2004; 

Lewkowicz, 1988a, 1988b). Therefore, it is largely believed that sensory dominance 

shifts throughout an individual’s lifespan from auditory to visual dominance (Robinson & 

Sloutsky, 2013; Sloutsky & Napolitano, 2003). Shifting from one sensory dominance 

type to another throughout development demonstrates that the processes that are involved 

in phenomena like the Colavita effect are not necessarily present or functioning in the 

same manner in childhood as they are in adulthood. The fact that auditory dominance in 

children has been demonstrated as robustly as visual dominance in adults provides an 

interesting clue about the development of sensory processing across modalities6.  

 Robinson and Sloutsky (2010) have considered this special issue recently when 

they theorized about the nature of sensory dominance and the role that attention may play 

in it. In particular, they argue that two features of processing have an effect on sensory 

dominance: how quickly an individual orients attention to a particular modality, and the 

speed of processing within that modality, and that these two factors may undergo 

                                                
 
 
 
6 The developmental underpinnings of multisensory processing across the lifespan is an important issue, but 
beyond the scope of this dissertation. For additional discussion about the development of multisensory 
processing in children see Ernst (2008) and Nardini, Jones, Bedford, and Braddick (2008). A recent 
example of work with children and older adults in this area by Parker and Robinson (in press) is especially 
interesting. 
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developmental changes. Furthermore, individual sensory modalities “race” to win a 

shared (and limited) pool of attentional resources early in processing, with the modality 

that engages attention quicker being the modality in which dominance will be observed. 

As a result, Robinson and Sloutsky (2010) believe that modality dominance effects will 

be more pronounced at earlier processing stages, because eventually attentional resources 

will be released to the non-winning modality for crossmodal processing to occur (see also 

Spence et al., 2012).  

 In regard to development, auditory dominance may occur because auditory 

stimuli are more transient than visual stimuli and thus require attentional resources early, 

otherwise the information may be lost (see Robinson & Sloutsky, 2013 and Sloutsky & 

Napolitano, 2003 for similar arguments). Furthermore, auditory stimuli are dynamic 

which may give auditory input an early advantage in processing since visual stimuli can 

be dynamic but are more often static. Finally, Robinson and Sloutsky (2010) argue that 

adults are quicker to process auditory stimuli than visual stimuli (see also Green & von 

Gierke, 1984), and as a result, in conjunction with the transient and dynamic nature of 

auditory stimuli, children may be further pushed to favor the auditory modality.  

 These insights from the developmental shift from auditory dominance to visual 

dominance from childhood to adulthood, wherein children 12 and younger tend to favor 

auditory stimuli (Nava & Pavani, 2013), inspired a recent investigation of sensory 

dominance that identified some conditions where auditory dominance is more likely to 

occur. Robinson, Chandra, and Sinnett (2016) investigated the Colavita effect in the 

context of an oddball identification task. This task was selected for this study because 
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Event Related Potential (ERP) evidence in a passive version of this same task 

demonstrated slower P3007 components for visual oddballs and faster P300 components 

for auditory oddballs, a finding argued to be consistent with auditory dominance 

(Robinson, Ahmar, & Sloutsky, 2010). As such, investigating auditory dominance in the 

context of this passive task, and aligning it with other investigations for sensory 

dominance that require explicit responses from participants would be an important and 

logical next step in understanding the possibility of situational auditory dominance in 

adults.  

 
Figure 3-1. Stimuli Timing from Robinson et al. (2016). In the stimulus stream 
participants are presented with a standard bimodal stimulus and asked to press a key any 
time they see a visual oddball (i.e., only the image chages), an auditory oddball (i.e., only 
the sound changes), or a double oddball (i.e., both the sound and the image change).  

                                                
 
 
 
7 The P300 wave is indicative of oddity detection (Sutton, Braren, Zubin, & John, 1965).  
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In the study conducted by Robinson and colleagues (2016), participants were 

instructed to monitor a stimulus stream in which bimodal (auditory and visual) stimulus 

combinations were presented and participants were asked to press a key in response to 

any deviations from a standard (see Figure 3-1). Participants completed this basic oddball 

detection task under a variety of response manipulations. For example, in the 1-button 

task participants were asked to press a key if they detected a unimodal auditory oddball, 

unimodal visual oddball, or a bimodal oddball (Experiment 1). In the 3-button version of 

this task, participants were required to press separate keys for each oddball (Experiment 

2), and in the final manipulation (Experiment 3) of the 1-button task participants were to 

press the same key in response to single oddballs (i.e., an auditory or a visual stimulus 

change in isolation) and refrain from responding to double oddballs (i.e., when the 

auditory and visual stimulus both changed). The 3-button version of the task (Experiment 

2) was developed to align the study with other investigations of modality dominance: it 

afforded the researchers the ability to look at unimodal response errors (e.g., the 

proportion of times participants pressed the “visual” key to bimodal oddballs). The 

second 1-button task (Experiment 3) was done to test the hypothesis that response biases 

or cognitive load could modulate sensory dominance effects. It was hypothesized that 

asking participants to choose amongst multiple response buttons requires an individual to 

employ additional motor and decision-making processes that occur later in processing, 

where it is theorized that visual dominance effects are more profound because auditory 

processing may be disrupted by visual processing at this stage (Robinson et al., 2016).     
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 Interestingly, clear evidence of auditory dominance was demonstrated in both 

versions of the 1-button task, while visual dominance was observed in the 3-button 

version of the task. Robinson et al. (2016) theorized that multiple factors could have led 

to the observed pattern of results. For one, they argue that what drives auditory and visual 

dominance may be two separate underlying mechanisms, further postulating that auditory 

dominance is more likely to occur earlier in processing during stimulus encoding, and 

that visual dominance arises later in stimulus processing, subsequently interrupting 

auditory processing leading to visual dominance effects becoming more pronounced 

when an individual is making a response and/or a decision.  

3. 1. Aims of this dissertation 

 The reversal of dominance types in adults when participants perform the 1-button 

condition of the Robinson et al. (2016) and the 3-button task (from auditory to visual 

dominance), provides an ideal point from which to further investigate the factors thought 

to influence sensory dominance. Accordingly, the purpose of the research conducted for 

this dissertation was to further examine auditory and visual dominance within the context 

of the oddball paradigm utilized by Robinson et al. (2016) by systematically 

manipulating the auditory and visual stimuli in the crossmodal version of the experiment 

in order to assess three primary factors that seem to influence whether or not auditory or 

visual dominance occurs.  

 First, given that it has been hypothesized that transience is an inherent 

characteristic of auditory stimuli, auditory dominance might be observed in adults 

because the attentional system preferentially weights auditory processing in an attempt to 
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capture an important stimulus that will quickly disappear (Shimojo & Shams, 2001). One 

way to assess the effect of transience on sensory dominance would be to systematically 

manipulate stimulus durations during the oddball task in order to see how differing 

exposure lengths between each modality potentially modulate sensory dominance. 

Accordingly, it was hypothesized that when stimuli are made to be more transient (by 

reducing their presentation lengths in relation to one another: for example, a 50 ms 

auditory stimulus presented concurrently with a 200 ms visual stimulus), the more 

transient (i.e., shorter) stimulus will be the one to show greater evidence of modality 

dominance. 

Second, the literature on sensory dominance has also suggested that sensory 

modalities may “race” for attentional resources (Robinson et al., 2016). Therefore, the 

experiments conducted here also manipulate stimulus onset times for both auditory and 

visual stimuli. If auditory or visual stimuli are presented earlier than one another, then 

differences in behavioral responses may be observed (i.e., the stimuli may be subject to 

the effects of prior entry; see Spence and Parise, 2010 for a detailed review). Therefore, it 

was hypothesized that the stimulus (either auditory or visual) presented earlier would be 

more likely to demonstrate modality dominance. 

Lastly, decision-making (or at least the complexity of the decision) seems to also 

have a mediating effect on whether or not auditory or visual dominance is observed 

(Robinson et al., 2016). Previously, researchers addressed this issue by providing either a 

1-button or 3-button version of the oddball paradigm. Therefore, for this research, 

manipulations pertaining to transience and stimulus onsets will also be examined under 
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the lens of decision making by employing both 1-button and 3-button version of this task. 

This final manipulation is important as the strict control of the number of responses keys, 

and thus the complexity of decision making, enables one to precisely look at the relative 

influence that stimulus transience and temporal asynchrony has on sensory dominance. 

For a detailed breakdown of the expected dominances based upon these factors for each 

of the Experiments in this research, see Table 3-1 below. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



29 
 
 
 
 

 

Table 3-1. A summary of all predicted dominances  

Experiment Condition Dominance Prediction 

Experiment 1a 
(Single 

response) 

Long Auditory/ Long Visual Auditory Dominance, condition is identical to 
Robinson et al. 2016 

Short Auditory/ Short Visual Control for unknown effects of shortening the 
stimuli 

Long Auditory/ Short Visual Visual Dominance 

Short Auditory/ Long Visual  Auditory Dominance 

Experiment 1b 
(Multiple 
responses) 

Long Auditory/ Long Visual Visual Dominance, condition is identical to 
Robinson et al. 2016 

Short Auditory/ Short Visual Control for unknown effects of shortening the 
stimuli 

Long Auditory/ Short Visual Visual Dominance if decision making overwrites 
the influence of transience 

Short Auditory/ Long Visual  Visual Dominance if decision making overwrites 
the influence of transience 

Experiment 2a 
(Single 

response) 

+200 ms Auditory  Auditory Dominance 
+100 ms Auditory  Auditory Dominance 

Simultaneous presentation Auditory Dominance, condition is identical to 
Robinson et al. 2016 

+200 ms Visual  Visual Dominance 
+100 ms Visual  Visual Dominance 

Experiment 2b 
(Multiple 
responses) 

+200 ms Auditory  Visual Dominance if decision making overwrites 
the influence of early processing 

+100 ms Auditory  Visual Dominance if decision making overwrites 
the influence of early processing 

Simultaneous presentation Visual Dominance, condition is identical to 
Robinson et al. 2016 

+200 ms Visual  Visual Dominance 
+100 ms Visual  Visual Dominance 
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4. Experiment 1: Stimulus Duration Manipulation 

 The primary aim of Experiment 1 was to address the effect that stimulus 

transience has on sensory dominance. Recall, that previous work has suggested that 

auditory stimuli are special in that they are argued to be more often transient in 

comparison to visual stimuli (Shimojo & Shams, 2001). Therefore, it was hypothesized 

that making manipulations to the relative durations of signals composing a bimodal 

stimulus would affect observed dominances. More specifically, it was expected that when 

the auditory stimulus has a shorter duration relative to the visual stimulus, auditory 

dominance should be observed as the attentional system should preferentially process the 

stimulus that was presented for a shorter time in order to accurately process the transient 

stimulus (i.e., an unavailable item). In contrast, it was expected that when the visual 

stimulus has a shorter duration than the auditory stimulus, visual dominance should be 

observed. When the stimuli for both modalities are the same length it is expected that in 

the 1-button condition auditory dominance should be observed and in the 3-button 

condition visual dominance should be observed (as was the case in the work of Robinson 

et al., 2016). 
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4. 1. Experiment 1a: Stimulus Duration Manipulation in the 1-Button Oddball Task 

4. 1. 1. Participants. Twenty-Eight University of Hawaii at Manoa undergraduate 

students were recruited to participate in this experiment in exchange for course credit8. 

However, four participants were removed from the sample due to failure to consistently 

follow instructions throughout all 4 trial blocks, reflected by an overall accuracy of less  

than 60%. In theory, participants could achieve an accuracy of 77% by never making any 

responses to oddballs during the experiment, due to the fact that 77% of trials are 

standard trials in which participants make no responses. Therefore, a 60% overall 

accuracy is a conservative benchmark with which to assess whether participants 

accurately performed the task, or if instead were possibly pushing the response button 

more frequently in an attempt to shorten the experiment. The remaining participants (N = 

24; N = 16 female participants; age: M = 22.41, SD = 5.44) were predominately right-

handed and reported having normal or corrected-to-normal vision and hearing. All 

experimental procedures conformed with the guidelines set forth by the University of 

Hawaii at Manoa’s Center on Human Studies (CHS), see Appendix A. 

4. 1. 2. Stimuli. Stimuli for this experiment consisted of tones and pictures utilized 

previously in an oddball detection task by Robinson et al. (2016). The visual stimuli 

included 5 novel shapes, each of which were 400 x 400 pixel bitmap images (v1-v5) that 

                                                
 
 
 
8 While not representative of the general population, undergraduate students are typically used in this kind 
of research (Robinson et al., 2016). The age range used here is ideal as sensory dominance is thought to 
clearly manifest itself after the age of 12 (e.g., Nava & Pavani, 2013). 
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were monochromatic and created in Microsoft Word (see Figure 4-1). Auditory stimuli 

were 5 pure tones that ranged from 200 Hz to 1000 Hz (a1-a5) and were created in 

CoolEdit 2000 and presented as 200 ms wav files (see also Robinson et al., 2016). In 

order to manipulate stimulus durations, the pure tone files were further edited to create a 

second set of auditory stimuli with a duration of 50 ms. Crossmodal stimuli were created 

by overlapping the auditory and visual stimuli such that each possible stimulus duration 

combination was made: 200 ms auditory stimuli with 200 ms visual stimuli (Long 

Auditory/Long Visual), 50 ms auditory stimuli with 50 ms visual stimuli (Short 

Auditory/Short Visual),  200 ms auditory stimuli with 50 ms visual stimuli (Long 

Auditory/Short Visual), and 50 ms auditory stimuli with 200 ms visual stimuli (Short 

Auditory/Long Visual)). Note, the Long Auditory/Long Visual condition is essentially a 

replication of Robinson et al. (2016). From these auditory and visual items, a stimulus 

stream was constructed such that each stimulus had an interstimulus interval (ISI) of 

approximately 1000 ms. The ISI was computed using a 15% jitter with a range of +/- 150 

ms (i.e., a jitter range of 850 ms to 1150 ms, see Wodka, Simmonds, Mahone, & 

Mostofsky, 2009 for a discussion of optimal jitter durations; see Figure 4-2 for additional 

information about stimuli presentation timing). Stimuli were presented to participants on 

an Apple iMac OSX desktop computer with a monitor refresh rate of 60 hz. Auditory 

stimuli were heard through Logitech USB H390 headsets at a participant-controlled 

volume (i.e., participants were asked to adjust the volume to one that is comfortable for 

them). 
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Figure 4-1. Visual stimuli used in all experiments. Images v1-v5 that were used, with one selected as the 
visual standard and the remaining utilized as visual oddballs.   
 
  

 

 
Figure 4-2. Stimulus timing for Experiment 1. Both auditory and visual stimuli begin together at the 
same time at 0 ms, however they differ in their duration of presentation: (a) Short Auditory/Short 
Visual, (b) Long Auditory/Short Visual, (c) Short Auditory/Long Visual, (d)Long Auditory/Long 
Visual. 

 

 

For each participant one visual stimulus and one auditory stimulus was chosen as 

the standard (or target) for the oddball task. The experiment was created such that each 

tone and picture served as the standard at least once, while all other stimuli were utilized 

to create single oddballs (i.e., an auditory stimulus change from the standard or a visual 

stimulus change from the standard) and double oddball trials (i.e., both the auditory and 

visual stimulus change from the standard). The proportion of standard trials, single 

oddball trials, and double oddball trials were calculated in accordance with Robinson et 
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al. (2016), such that standard trials consisted of approximately 77% of all trials, while 

single oddball trials consisted of approximately 19% of all trials, and double oddball 

trials approximately 4% of all trials. In sum, each participant was presented with an 

auditory and visual stimulus on every trial, with the vast majority including both standard 

stimuli, and a smaller proportion of trials including either a visual, auditory, or bimodal 

oddball. The four stimulus presentation duration combinations were presented in a 

blocked format, with the blocks being randomly presented. In different blocks the stimuli 

varied in their duration of presentation. The experiment lasted approximately 30 minutes. 

4. 1. 3. Procedure. Stimuli pairings were pseudo-randomly selected and 5 versions of the 

experiment were made to ensure that each stimulus was used as the standard at least once 

(see Appendix B, Table B-1 for a complete list of stimulus pairings). Participants were 

randomly assigned to one of the 5 versions of the experiment. Each version of the 

experiment contained 4 blocks of trials, with each block of trials varying in their stimulus 

duration times. Therefore, each participant received 1 block of trials where the auditory 

stimuli lasted 200 ms and the visual stimuli lasted 200 ms, another block where the 

auditory stimuli lasted 50 ms and the visual stimuli lasted 200 ms, another where the 

auditory stimuli lasted 200 ms and the visual stimuli lasted 50 ms, and finally a block 

where the auditory stimuli lasted 50 ms and the visual stimuli lasted 50 ms. For each of 

these blocks a different standard was selected and the order of presentation of blocks was 

randomized for all participants. Blocking the experiment based on presentation length 

ensures that participants were not influenced by relative changes in the duration of the 

stimuli (i.e., to ensure that it is clear to the participants what the oddball is). Essentially, 
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when deciding whether or not an auditory stimulus is the “same” or “different” from the 

standard the participant could interpret this in two ways: either looking for a duration 

change or a tone change. Therefore, telling participants to respond to a “change in sound” 

may be too ambiguous, and instructing participants to pay attention to the tone alone may 

complicate the task further, or inadvertently bias attention towards the auditory modality.    

Participants were shown a standard pairing briefly on the screen and were 

instructed that the standard pair of auditory and visual stimuli would co-occur frequently 

throughout the experiment. In the 1-button task participants were instructed to press the 

spacebar on the keyboard if they saw either the auditory or visual stimulus change, or to 

press the spacebar if both the auditory and visual stimuli change and to avoid responding 

when the standard is on the screen9. Each block lasted approximately 5 minutes and 

contained 188 trials (140 standard trials, 20 single (unimodal) auditory oddball trials, 20 

single (unimodal) visual oddball trials, and 8 double (bimodal) oddball trials). After each 

block participants were prompted with a screen to allow them a brief rest and at the 

beginning of the next block new instructions appeared for the new standard pair.  

4. 1. 4. Results. For all participants mean reaction times (for correct responses) were 

calculated for auditory (single) oddball trials and visual (single) oddball trials from the 

                                                
 
 
 
9 The 1-button task utilized in this experiment closely resembles that of Robinson et al.’s (2016) 
Experiment 3 rather than the 1-button task utilized in their first experiment. Overall, this version of the task 
was chosen for this study as it was the more stringent test for auditory dominance in the original research. 
In their first experiment participants only had to respond to oddballs (auditory, visual, or crossmodal) with 
the same button, therefore it was not certain if participants were really attending to each stimulus stream 
separately or not. The requirement for participants to withhold from responding for double oddballs ensures 
that participants actively monitor each stimulus stream for relevant changes.   
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time of stimulus onset in each of the four conditions. Due to the fact that participants 

withheld responses to bimodal (double) oddballs, reaction time data cannot be analyzed 

for double oddballs in the 1-button version of the experiment. Detection accuracy for 

each oddball type was calculated by dividing the number of hits (i.e., successful button 

presses in response to unimodal oddball trials) by the number of each respective trial 

type, yielding a hit rate for each oddball type (auditory or visual) across each of the four 

conditions. A summary of the mean reaction times and accuracies for all four conditions 

can be found in Table 4-1. 

Table 4-1. One-Button Duration Manipulation Descriptive Statistics 

 Auditory Oddball Visual Oddball 
Condition Mean RT Mean Acc.  Mean RT Mean Acc.  

Long Auditory/Long Visual 610 .92 619 .95 

Short Auditory/Short Visual 608 .91 605 .92 

Long Auditory/Short Visual 611 .88 597 .91 

Short Auditory/Long Visual 632 .89 616 .93 

 

 As previously discussed, it was hypothesized that the stimulus that is presented 

for a shorter duration should be preferred, and therefore sensory dominance should sway 

in the direction the more transient modality (see pages 26-28 and Table 3-1). To 

determine if this was the case, a 2 x 2 x 2 repeated measures ANOVA was conducted 

with Oddball type (Auditory or Visual), Auditory duration (Long or Short), and Visual 

duration (Long or Short) as factors on participant RTs. Insignificant main effects were 

observed for Oddball (F(1, 23)  = .44, p = .52), Auditory duration (F(1, 23) = .20, p = 

.66), and Visual duration (F(1, 23)  = 1.86, p = .19). Furthermore, insignificant 

interactions were observed for all two-way interactions; Oddball type and Auditory 
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duration (F(1, 23) = .82, p = .37), Oddball type and Visual duration (F(1, 23) = .21, p = 

.65), and Auditory duration and Visual duration (F(1, 23) = .04, p = .84). Finally, the 

three-way interaction between Oddball type, Auditory duration, and Visual duration also 

failed to reach statistical significance (F(1, 23) = 2.22, p = .15), demonstrating overall 

that participants’ RTs were not affected by manipulations to the duration of stimuli nor 

oddball type, see Figure 4-3. 

In the case of accuracy, this same Oddball x Auditory duration x Visual duration 

ANOVA was conducted. The main effects of Oddball type (F(1, 23) = 3.19, p = .09),  

Auditory duration (F(1, 23) = .007, p = .93), and Visual duration (F(1, 23) = .59, p = .45) 

were insignificant. The two-way interactions between Oddball type and Auditory 

duration (F(1, 23) = .15, p = .70), Oddball type and Visual duration (F(1, 23) = .66, p = 

.43), and Auditory duration and Visual duration (F(1, 23) = 1.93, p = .18) also failed to 

reach significance. The three-way interaction between Oddball type, Auditory duration, 

and Visual duration was insignificant as well (F(1,23) = .22, p = .64), see Figure 4-4. 
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Figure  4-3. One-button Duration manipulation RTs (ms). Mean RTs for participants across all 
four conditions (LA/LV: Long Auditory/Long Visual condition, SA/SV: Short Auditory/Short 
Visual condition, LA/SV: Long Auditory/Short Visual condition, SA/LV: Short Auditory/Long 
Visual condition) in the duration manipulation grouped by oddball type (auditory or visual). 

 

 

Figure 4-4. One-button Duration manipulation accuracy. Mean percentage correct for participants 
across all four conditions (LA/LV: Long Auditory//Long Visual condition, SA/SV: Short 
Auditory/Short Visual condition, LA/SV: Long Auditory/Short Visual condition, SA/LV: Short 
Auditory/Long Visual condition) in the duration manipulation grouped by oddball type (auditory 
or visual). 
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4. 1. 5. Discussion. The original hypothesis for the experiment was that sensory 

dominance would shift in accordance with changes to the duration of stimuli, such that 

when participants encountered a relatively shortened auditory or visual stimulus, 

dominance would be more likely to be observed in the that particular modality. This was 

expected as the transience of the stimuli should, at least based on previous literature, 

differentially affect how attention is distributed to each sensory signal (Shimojo & 

Shams, 2001). However, the findings thus far fail to indicate any support for this 

hypothesis.  

The accuracy data in the 1-button duration manipulation cannot address the 

question of which dominance is being displayed, due to the fact that meaningful error 

data cannot be collected here (i.e., it is not possible to differentiate errors during bimodal 

oddballs as being an “auditory” or “visual” response, as can be done when using multiple 

response keys; notably, this is how dominance was assessed in Colavita’s (1974) work). 

However, the accuracy data does at least demonstrate that participants were able to 

complete the task, despite the manipulation not having any effect. It should be noted that 

the main effect of oddball type did approach significance (p = .09) with a trend in these 

data for participants to make more errors to auditory oddballs (participants were incorrect 

on 10% of trials overall) when compared to visual oddballs (participants were incorrect 

on 7% of trials overall), perhaps suggestive of visual dominance.  

While the findings thus far would seemingly indicate a lack of a shift in expected 

dominances, and furthermore, a failure to replicate the results of Robinson et al. (2016) 

(i.e., in the Long Auditory/Long Visual condition), a key aspect of how sensory 
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dominance was previously measured has yet to be addressed. Previously, Robinson et al. 

operationalized sensory dominance as the modality that is affected less by the presence of 

the other modality in the bimodal stimulus stream. This was assessed by measuring how 

participants’ reaction times to oddballs were differentially affected when responding to 

an oddball presented alone (unimodal), or in the presence of the standard from the other 

modality (bimodal). When this experiment was initially conceptualized the unimodal 

comparison condition was neglected because of experimental concerns that a particularly 

long experiment (i.e., completing all potential conditions would have resulted in an 

excessively long experiment) would result in participant fatigue.  

Given this shortcoming, additional unimodal control data were collected with a 

new set of participants and a between-subjects analysis was conducted in order to better 

assess the effect of stimulus transience on dominance by establishing a baseline response 

time to unimodally presented auditory and visual oddballs (i.e., to be analogous with 

Robinson et al., 2016). It is important to note that conclusions from the following 

analysis should be considered carefully as this type of cross-experiment analysis is far 

from ideal, and that a fully within-subjects design would be optimal. Having said that, the 

decision to collect these control data was not a posteriori, and much of it was collected at 

the same time that Experiments 1a and 1b were conducted. This was due to the need to 

have unimodal controls for the variable stimulus durations. These unimodal control 

participants (N = 84) were assigned either to an auditory or visual unimodal oddball 
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detection condition with either a short or long (i.e., 50 ms or 200 ms)10 presentation 

duration and were required to respond with 1 button (i.e., analogous to the way unimodal 

data were collected in Robinson et al., 2016). For additional details on how the unimodal 

data utilized in the subsequent analysis were obtained, please see Appendix C.  

4. 1. 6. Results:  Dominance as assessed by relative processing slowdown rates. 

The following analysis was conducted in order to examine the effect that the 

standard auditory or visual stimuli had on response times to visual or auditory oddballs, 

specifically comparing relative slowdowns in bimodal when compared to unimodal 

conditions. This allows for a clear measure of which dominances were present in each 

condition, and whether stimulus transience does indeed modulate sensory dominance. In 

short, evidence for auditory dominance would be reflected by a smaller difference 

between reaction times in the unimodal and bimodal presentation when detecting 

oddballs in the auditory modality when compared with the visual modality (i.e., the 

presentation of the visual standard affected processing for the auditory oddball to a lesser 

extent than the auditory standard had on the visual oddball). Whereas, visual dominance 

would be observed if the opposite were to be demonstrated, that is, a smaller difference 

between reaction times in the unimodal and bimodal presentation when detecting 

oddballs in the visual modality when compared with the auditory modality (i.e., the 

presentation of the auditory standard affected processing for the visual oddball to a lesser 

                                                
 
 
 
10 N = 22 participated in the Long Auditory condition, N = 24 participated in the Long Visual condition, N 
= 19 participated in the Short Auditory condition, and N = 19 participated in the Short Visual condition.  
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extent than the visual standard had on auditory oddballs). Accordingly, participants’ 

relative slow down rates in reaction times were calculated by comparing the oddballs that 

were presented simultaneously with unimodal standards were compared to the response 

latencies to unimodal oddballs that were presented amongst unimodal standards. 

Additionally, to ensure the effects of stimulus duration (i.e., 50 ms and 200 ms stimuli 

durations) in Experiment 1a were controlled for, stimulus duration was the same for all 

comparisons (i.e., the relative slowdown for response times to oddballs in bimodal 

presentations when compared to unimodal presentations always compared the same 

oddball duration). The mean RTs11 and accuracy for each unimodal condition can be 

found in Table 4-2, all means are calculated from stimulus onset.   

 

Table 4-2. Unimodal Control Descriptive Statistics 

Condition Mean RT Mean Acc. 
Long Auditory 452 .98 
Short Auditory 443 .98 
Long Visual 407 .99 
Short Visual 403 .98 

 

  

                                                
 
 
 
11 Interestingly, the Long Auditory (M = 452, SD = 65.22) and Short Auditory (M = 443, SD = 54.02 
conditions did not statistically differ in their mean RTs (t(37) = .45, p = .65), this was also the case for the 
Long Visual (M = 407, SD = 74.62) and Short Visual (M = 403, SD = 37.70; t(31) = .21, p = .84) 
conditions. The auditory unimodal conditions (M = 448, SD = 59.70) and the visual unimodal conditions 
together (M = 406, SD = 59.76) were statistically different from one another (t(76) = 1.67, p = .002).  
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To examine the effect of interference on participants responses to auditory and 

visual oddballs, difference scores were computed (e.g., bimodal – unimodal oddball 

RTs), essentially creating a measure of dominance that can be easily and directly 

compared across conditions. For example, the mean RT for auditory oddballs in the Long 

Auditory/Long Visual condition was 610 ms while the mean RT for visual oddballs in 

this condition was 619 ms; while respective means in the unimodal controls were 452 ms 

(auditory) and 407 ms (visual). These scores were used to calculate the relative 

slowdowns (i.e., 610-452 = 158 ms slowdown for auditory oddballs and 619-407 = 212 

ms slowdown for visual oddballs) between the bimodal and unimodal condition so that 

the effect of Duration could be assessed, see Figure 4-5.  

 

Figure 4-5. One-button Duration manipulation response time differences. Participants mean 
response differences between unimodal auditory and bimodal auditory conditions and mean response 
differences between unimodal visual and bimodal visual conditions in the 1-button duration 
manipulation. 
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These scores were then modeled in a 2 x 2 x 2 repeated measures ANOVA that 

compared Oddball type, Auditory duration, and Visual duration. This analysis revealed a 

significant main effect for Oddball type (F(1, 23) = 15.71, p = .001). However, the main 

effects for Auditory duration (F(1, 23) = .59, p = .45) and Visual duration were not 

significant (F(1, 23) = 1.36, p =  .25). When examining the two-way interactions, there 

was no significant interaction between Oddball type and Visual duration (F(1,23) = .02, p 

= .89), nor was there an interaction between Auditory duration and Visual duration (F(1, 

23) = .04, p = .84). However, a statistically significant interaction was observed between 

Oddball type and Auditory duration (F(1, 23) = 4.52, p = .05). Paired samples t-tests 

revealed that participants experienced greater slowdown to the detection of visual 

oddballs (M = 203, SD = 100.43) when compared to auditory oddballs (M = 159, SD = 

88.67) when the auditory stimuli were 200 ms long (t(23) = 5.11, p < .001), and a greater 

slowdown to detecting visual oddballs (M = 205, SD = 80.08) compared to auditory 

oddballs (M = 176, SD = 85.08) when auditory stimuli were 50 ms long (t(23) = 2.62, p = 

.02). Finally, the three-way interaction between Oddball type, Auditory duration, and 

Visual duration was not statistically significant (F(1, 23) = 2.22, p = .15). This pattern of 

results is indicative of auditory dominance across all manipulations to duration in this 

experiment.  

4. 1. 7. Discussion. It was hypothesized that the attentional system would prioritize the 

more transient stimulus, leading to dominance effects in that direction. For example, if 

the auditory stimulus was comparatively shorter than the visual stimulus in the bimodal 

presentation, then auditory dominance should be observed while, if the visual stimulus 
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was comparatively shorter to the auditory stimulus, then visual dominance should be 

observed.    

Utilizing the work of Robinson et al. (2016) as a reference, analyses of the 

relative slowdown related to the addition of the standard when detecting auditory and 

visual oddballs were conducted. It was expected that Auditory and Visual Slowdown 

scores may add additional insight into what dominances were being observed and how 

they might vary as a result of stimulus transience. When considering the effect discovered 

in the unimodal comparison (i.e., that participants are affected by the presence of stimuli 

in a separate modality when detecting an oddball in the other modality), it was found that 

after collapsing these data across all four manipulations to duration, participants overall 

showed strong auditory dominance, as evidenced by the main effect for Oddball type in 

this analysis. That is, participants were slowed down to a greater degree when responding 

to visual oddballs, suggesting that the auditory standard interfered with processing to a 

greater extent than the visual standard (i.e., auditory dominance, as defined by Robinson 

et al., 2016). 

 The findings from this experiment do not support the hypothesis that 

manipulating the duration of stimuli such that one is more transient than another should 

affect observed dominances. While clearly a deeper exploration into the question is 

needed, it is possible that the auditory dominance observed in the 1-button oddball 

detection task is robust to these types of manipulations. This could be taken as evidence 

that auditory dominance arises earlier in processing and is impervious to attentional 

manipulation. Regardless of the underpinning mechanism, it is important to note that the 
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auditory dominance observed here replicates the findings of Robinson et al. (2016) and 

provides corroborating evidence of auditory dominance with the previous studies 

conducted with this paradigm (see also Robinson et al., 2010).  

4. 2. Experiment 1b: Stimulus Duration Manipulation in the 3-Button Oddball Task 

 In order to address what effect decision making (if any) has on the manipulations 

to the relative duration of stimuli, a 3-button version of the task in which participants are 

asking to identify auditory, visual, and double oddballs with unique keys was conducted. 

This manipulation also allows for the ability to analyze error data in a meaningful way; 

recall that in previous examples of dominance (e.g., Colavita, 1974), dominance was 

assessed by the number of errors a participant made during bimodal trials (i.e., how often 

a “visual” response during a bimodal trial is given relative to “auditory” only responses). 

The following is an attempt to look at sensory dominance in this manner while also 

considering the effect that decision making has on modulating the effect of duration.  

4. 2. 1. Participants. Twenty-Eight University of Hawaii at Manoa undergraduate 

students were recruited to participate in this experiment in the same manner as 

Experiment 1a. Three participants were, again, removed from the sample due to failure to 

consistently follow instructions using the same criteria discussed in Experiment 1a. The 

remaining sample consisted of N = 25 participants; N = 16 female participants; age: M = 

20.36, SD = 3.21. 

4. 2. 2. Stimuli and Procedure. The same stimulus configurations discussed for 

Experiment 1a were utilized for this experiment. The key procedural difference between 

Experiment 1a and Experiment 1b was the response buttons participants were instructed 
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to use during the task. Rather than only a single response button, participants were 

instructed to press a different key in response to single (unimodal) visual oddballs, single 

(unimodal) auditory oddballs, and double (bimodal) oddballs. Response keys (the ‘1’, ‘2’, 

or ‘3’ key on the keyboard number pad) were randomly assigned to each oddball type, 

but stayed consistent across blocks. That is, someone who was randomly assigned ‘1’ for 

double oddballs, ‘2’ for single auditory oddballs, and ‘3’ for single visual oddballs  

continued to press those keys for those oddball types for the duration of the experiment.  

 4. 2. 3. Results. Similarly to Experiment 1a, mean reaction times (calculated from 

stimulus onset and only for trials where participants made correct responses) and 

accuracies were calculated for each oddball type (auditory and visual) in the manner 

described above (see Table 4-3 for these descriptive statistics). Again, 2 x 2 x 2 repeated 

measures ANOVAs were conducted to assess the effect of Oddball type (Auditory or 

Visual), Auditory duration (Short or Long), and Visual duration (Short or Long) on both 

RTs and accuracy. With regard to RTs, the main effects for Oddball type (F(1, 24) = .40, 

p = .53), Auditory duration (F(1, 24) = 1.04, p = .32), and Visual duration (F(1, 24) = .49, 

p = .49) were all insignificant. There was also no significant interaction between Oddball 

type and Auditory duration (F(1, 24) = .07, p = .79), or Auditory duration and Visual 

duration (F(1, 24) = 1.38, p = .25). However, a significant two-way interaction was 

observed between Oddball type and Visual duration (F(1, 24) = 4.39, p = . 05). Paired 

samples t-tests were conducted to reveal the relationship in this interaction. Overall, 

participants had faster RTs for detecting auditory oddballs (M = 740, SD = 126.68) than 

visual oddballs (M = 786, SD = 109.59) when the visual stimuli were long, although this 
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failed to reach statistical significance: t(24) = 1.95, p = .06. In contrast, participants were 

faster to detect visual oddballs (M = 738, SD = 147.03) than auditory oddballs (M = 762, 

SD = 91.60) when the visual stimuli were short, although once again this failed to reach 

statistical significance: t(24) = .95, p = .35. Finally, the three-way interaction between 

Oddball type, Auditory duration, and Visual duration also failed to reach statistical 

significance (F(1, 24) = .65, p = .43), see Figure 4-6.  

 

 

 

 

 Figure 4-6. Three-button Duration mainpulation RTs (ms). Mean RTs for participants across all 
four conditions in the duration manipulation grouped by oddball type (auditory or visual). 
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Table 4-3. Three-Button Duration Manipulation Descriptive Statistics 
 Auditory Oddball Visual Oddball 

Condition Mean RT Mean Acc.  Mean RT Mean Acc.  
Long Auditory/Long Visual 755 .76 797 .72 

Short Auditory/Short Visual 766 .77 733 .73 

Long Auditory/Short Visual 757 .84 743 .76 

Short Auditory/Long Visual 725 .76 775 .76 
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Figure 4-7. Three-button Duration manipualtion accuracy. Mean percentage correct for 
participants across all four conditions in the duration manipulation grouped by oddball type 
(auditory or visual). 
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two-way interactions were observed for Oddball type and Auditory duration (F(1, 24) = 

1.87, p = .18), Oddball type and Visual duration (F(1, 24) = 3.01, p = . 10), or Auditory 

duration and Visual Duration F(1, 24) = 1.10, p = .31). Finally, the three-way interaction 

between Oddball type, Auditory duration, and Visual duration failed to reach statistical 

significance (F(1, 24) = .00, p = 1), see Figure 4-7.  

In the 3-button manipulation it is possible to analyze errors in a more detailed 

fashion because participants were required to respond to each type of oddball (auditory, 

visual, or bimodal, “double”). Therefore, the proportion of visual only and auditory only 
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errors made to double oddball trials was calculated for each unimodal response type 

(auditory or visual) by dividing the total number of auditory responses to double oddball 

trials by the total number of errors made for each participant across all oddball trials (i.e., 

yielding the proportion of errors that were auditory) and dividing the total number of 

visual responses by the total number of errors made (to get the proportion of errors that 

were visual), see Table 4-4 for a breakdown of the mean proportion of these errors across 

all participants by oddball type in each condition.  

Table 4-4. Three-Button Duration Manipulation Errors 

Condition Auditory Errors Visual Errors 

Long Auditory/Long Visual .33 .51 

Short Auditory/Short Visual .33 .47 

Long Auditory/Short Visual .18 .62 

Short Auditory/Long Visual .27 .57 

 

An Error type (Auditory or Visual) by Auditory duration (Short or Long) by 

Visual duration (Short or Long) repeated measures ANOVA was conducted on the 

proportion of errors made. A significant main effect for Error type was observed (F(1, 

24) = 13.51  p = .001). However, main effects for Auditory (F(1, 24) = .00, p = 1) or 

Visual duration (F(1, 24) = .32, p = .57) were not observed. None of the two-way 

interactions reached significance; Error type and Auditory duration (F(1, 24) = .51, p = 

.48), Error type and Visual duration (F(1, 24) = .05, p = . 82), and Auditory duration and 

Visual duration (F(1, 24) = .00, p = 1). Finally, the three-way interaction between these 

factors also failed to reach statistical significance (F(1, 24) = 2.33, p = . 14). In response 
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to the significant main effect for Error type, paired samples t-test were conducted on the 

pooled average of participants’ auditory and visual errors across all four conditions, to 

determine if during bimodal trials auditory or visual errors were more likely. There was a 

significant difference between the proportion of error types (t(24) = 3.68, p = .001) for 

auditory (M = .28, SD = .18) and visual (M = .54, SD = .25) errors. Overall, visual errors 

occurred more than auditory errors, indicative of evidence for visual dominance.   

It is important to assess the effect that decision making has on the accuracy and 

RTs of participants when identifying oddballs. Therefore, an Oddball type by Auditory 

duration by Visual duration repeated measures ANOVA with response type (either 1 or 3 

buttons) as a between-subjects factor was conducted for both RTs and accuracy. A 

significant between-subjects main effect of response type on both RTs (F(1, 47) = 48.67, 

p < .001) and accuracy (F(1, 47) = 12.27, p = .001) was observed, while no other main 

effects or interactions were significant. Independent sample t-tests showed that RTs were 

faster in the 1 button condition (M = 614, SD = 75.8) than in the 3 button condition (M = 

774 SD = 85.5; t(47) = 6.976, p < .001) and that participants were more accurate in the 1 

button condition (M = .89, SD = .12) than in the 3 button condition (M = .78, SD = .10; 

t(47) = 3.503, p = .001). 

4. 2. 4. Discussion. Experiment 1b was conducted in order to address a number of critical 

issues that were directly relevant to the hypotheses of this dissertation. In particular, it 

was important to address what differences in sensory dominance might arise when 

duration and number of responses (i.e., 1- vs. 3-keys) are manipulated. Although 

Experiment 1a (i.e., the 1-button manipulation) failed to show an effect for manipulations 
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to duration, it is possible that when processing was taxed further by the fact that 

participants had to make a decision (i.e., Experiment 1b), the effect of duration may have 

emerged. It was hypothesized, again, that duration would modulate observed dominances 

and that overall visual dominance would be observed in the 3-button task.  

 The initial results of this study showed that there were no main effects for the 

duration of the auditory stimulus, the visual stimulus, or Oddball type, however an 

interaction was observed between Visual duration and Oddball type. In an attempt to 

assess this interaction simple main effects were analyzed. When comparing participants 

RTs for auditory oddballs and visual oddballs when the visual stimuli were relatively 

short or long, participants were faster at responding to the auditory oddball when the 

visual stimulus was long, and faster at responding to the visual oddball when the visual 

stimulus was short (although this difference was not statistically significant when directly 

compared, p = .06 and p = .35, respectively). These results provide some evidence that 

manipulation to duration may influence dominance types, however as overall interactions 

failed to reach conventional levels of significance, this interpretation should be 

considered carefully.  

 Another important feature of the 3-button manipulation, is the ability to assess the 

kinds of errors made to bimodal trials. Importantly, the main effect for Oddball type was 

significant with respect to the proportion of errors made by participants, suggesting that 

across all four manipulations to duration, participants were more likely to make a visual 

error (i.e., make a ‘visual’ keypress when a double oddball was being displayed) than an 

auditory error, when they should have in fact responded with the bimodal response key. 
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These findings align well with seminal work in the field by Colavita (1974), who also 

found that participants made more visually based errors than auditory based errors when 

responding to bimodal trials (see also Koppen & Spence, 2007; Ngo et al., 2010, 2011; 

Sinnett et al., 2007, 2008). 

 Finally, another key aim of this study was to consider what effect manipulating 

the number of required responses would have on sensory dominance. Interestingly, 

participants were quicker and more accurate at identifying oddballs in the 1-button 

condition. This expected effect would presumably be due to the added challenge of 

deciding between multiple response options in the 3-button response task. However, 

when directly analyzing the type of observed dominance, there were no difference 

between conditions. 

Contrary to the hypothesized outcome, manipulating the relative length of the 

auditory or visual stimulus did not modulate the type of sensory dominance that was 

observed. That is, although visual dominance was observed when looking at errors, 

varying the relative length of the auditory or visual stimulus in the bimodal stimulus 

stream failed to modulate sensory dominance in any significant direction. Although, a 

marginally significant interaction was present suggesting that varying dominance types 

only seemed to occur clearly in two small cases and only when comparing oddballs 

within one modality.  

 As previously discussed, the error rate in this paradigm is one way to assess 

dominance types, with another way being to gauge the extent to which response times to 

visual and auditory oddballs are slowed by the presence of the irrelevant standard in 
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bimodal trials when compared with responses times to these same oddballs when they are 

presented alone. For Experiment 1a unimodal control data were utilized to make this 

assessment, similarly, the same unimodal baselines were then utilized in the following 

analysis (see Appendix C for information on how this unimodal control was conducted). 

4. 2. 5. Results: Dominance as assessed by relative processing slowdown rates. A 

similar set of analyses was conducted using the unimodal controls for the reaction times 

of participants in the bimodal 3-button duration manipulation (see Table 4-2. for 

unimodal control mean RTs). In order to clarify which dominance may be present during 

the 3-button condition, and to better assess the effect of manipulations to duration, as in 

Experiment 1a,  slowdown rates for auditory and visual oddballs were calculated using 

the means of the unimodal controls’ RTs for auditory oddballs and visual oddballs by 

computing a difference score for each participant (i.e., the bimodal condition’s auditory 

oddball detection RT - the unimodal controls’ mean  RT for auditory oddballs; the 

bimodal condition’s visual oddball detection RT - the unimodal controls’ mean RT for 

visual oddballs). This yields a difference score for both auditory and visual oddballs for 

each participant such that an Auditory Slowdown score and Visual Slowdown score can 

be calculated. These scores were then used in a 2 x 2 x 2 repeated measures ANOVA 

with Oddball type (Auditory or Visual), Auditory duration (Short or Long), and Visual 

duration (Short or Long) as within-subjects factors. The ANOVA revealed a significant 

main effect for Oddball type (F(1, 24) = 9.35, p = .005), but no significant main effect for 

Auditory duration (F(1, 24) = .48, p = .50) or Visual duration (F(1, 24) = .35, p = .56). 

Overall, participants experienced less slow down for the auditory oddballs (M = 303, SD 
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= 98.34) than for the visual oddballs (M = 356, SD = 108.10; t(24) = 3.06, p = .005), 

indicative of overall auditory dominance. The two-way interactions for Oddball type and 

Auditory duration (F(1, 24) = .45, p = .51), Oddball type and Visual duration (F(1, 24) = 

3.89, p = .06), and Auditory duration and Visual duration (F(1, 24) = 1.38, p = .25) were 

all statistically insignificant. With respect to the three-way interaction between these 

factors, statistical significance was also not observed (F(1, 24) = .65, p = .43).  

 
Figure 4-8. Response time differences in the 3-button Duration manipulation. Participants mean 
response differences between unimodal auditory and bimodal auditory conditions and mean 
response differences between unimodal visual and bimodal visual conditions in the 3-button 
duration manipulation.  
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occurring in the 3-button duration manipulation, a 1-way repeated measures ANOVA 

was conducted on the difference scores (i.e., the overall difference between the Auditory 

Slowdown score and the Visual Slowdown score) across the four manipulations to 

duration. The ANOVA was not significant (F(3, 72) = 2.47, p =.07). Lastly, the effect of 
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difference scores. Accordingly, a one-way repeated measures ANOVA on Duration 

(Short Auditory/Short Visual, Long Auditory/Long Visual, Long Auditory/Short Visual, 

Short Visual/ Long Auditory), with Response type (1- or 3-buttons) being a between-

subjects factor was conducted. The main effect for Duration was not significant (F(3,141) 

= 2.32, p =.09). and the main effect for Condition also failed to reach significance (F(1, 

47) = .73, p = .40). Additionally, the interaction between Duration and Condition also 

failed to reach conventional levels of significance (F(3, 141) = 2.20, p = .10). Therefore, 

participants’ Auditory dominance scores were not affected by the duration of the stimuli 

nor the number of responses (either the 1-button or 3-button condition). 

4. 2. 6. Discussion.  

In the analysis of the Auditory and Visual Slowdown scores in the 3-button task, a 

pattern of auditory dominance was observed. Participants showed auditory dominance (as 

evidenced by the auditory standard having a stronger influence when responding to visual 

oddballs when compared with the influence the visual standard had on auditory oddball 

responses) across all conditions. This aligns with the findings of Robinson et al. (2016), 

given that the longer duration times in the Long Auditory/Long Visual condition 

represent a replication of their earlier work.  

The tendency for participants to demonstrate auditory dominance overall in the 3-

button condition is puzzling, in part because previous research conducted by Robinson et 

al. (2016) showed a pattern of visual dominance in a nearly identical task. However, it is 

important to note that several methodological differences exist between this replication of 

the previous work and the work conducted by Robinson and colleagues that may have 
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potentially contributed to these findings. In particular, Robinson et al. (2016) had four 

times as many trials as those given to participants in the Long Auditory/Long Visual 

condition conducted for this experiment (756 and 188 trials, respectively). Furthermore, 

unimodal control data were collected for this experiment with participants making a 

keypress with the spacebar, however Robinson et al. (2016) collected their unimodal 

control data within-subjects and as a result participants used either the ‘1’, ‘2’, or ‘3’ key 

to respond to oddballs in the unimodal condition (i.e., depending on key assignment). 

Additionally, another key methodological difference was that participants’ unimodal data 

were collected within-subjects, whereas they were collected between-subjects for this 

experiment. Importantly, if the number of trials and which keys are being used to respond 

to oddballs affects the observed sensory dominance, then the visual dominance observed 

in the 3-button condition conducted by Robinson and colleagues warrant additional 

scrutiny.  

When reflecting on the error data in the 3-button condition, participants overall 

showed clear signs of visual dominance regardless of the manipulation to duration: 

participants were far more likely to make a visual than an auditory error (i.e., responding 

with the visual oddball key only rather than the bimodal key.  Indeed, the propensity to 

make visual errors was not modulated by stimulus duration. Taken together with the 

pattern of results observed when looking at the effects that the standards had on slowing 

down responses to bimodal oddballs, a mix of dominance types was demonstrated. With 

regard to Slowdowns, participants show overall auditory dominance, whereas visual 

dominance was observed when looking at participant error data.   
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5. Experiment 2: Stimulus Onset Asynchrony (SOA) Manipulation 

 Recall that Robinson et al. (2016) suggested that modalities must compete for 

processing resources, and those who engage attention (and thus processing) earlier are 

more likely to show modality dominance, and as a result modality dominance should be 

more prominent earlier in processing. In order to address this question, stimulus onsets 

were manipulated such that either the auditory or the visual stimulus was presented prior 

to the other. This experiment also addresses another important goal of this dissertation by 

addressing the question of the effect of decision making by testing what effect 1- and 3-

button responses has on modality dominances.  

5. 1. Experiment 2a. SOA Manipulation in the 1-Button Oddball Task 

5. 1. 1. Participants.  Twenty-Seven University of Hawaii at Manoa undergraduate 

students participated in exchange for course credit. One participant was omitted from the 

analysis due to their failure to achieve 60% in overall accuracy (i.e., the same criteria as 

Experiment 1) resulting in final sample size twenty-six participants (N = 18 female 

participants; age: M = 20.3, SD = 3.31). The experiment was conducted in accordance 

with the procedures specified by CHS (See Appendix A).  

5. 1. 2. Stimuli. The same auditory and visual stimuli used in Experiment 1a and 1b were 

utilized in this experiment. The primary difference in stimulus preparation was in the 

stimulus streams. In this experiment, the auditory or visual stimulus occurred either 100 

ms or 200 ms before the other in each trial, or at the same time (i.e., the control 

condition). Therefore, in some circumstances the auditory stimulus was presented 100 ms 

before the visual stimulus (for a total of 300 ms of stimulus presentation during a trial), 
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the auditory stimulus 200 ms before the visual stimulus (for a total of 400 ms of stimulus 

presentation during a trial), the visual stimulus 100 ms before the audio stimulus (for a 

total of 300 ms of stimulus presentation during a trial), or the visual stimulus presented 

200 ms before the audition stimulus (for a total of 400 ms of stimulus presentation during 

a trial), see Figure 5-1 for depiction of the stimulus onset times in each condition and 

Appendix B, Table B-2 for stimulus configurations.   
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Figure 5-1. Stimulus timing for Experiment 2. Stimulus presentation timing for stimulus 
onset manipulation experiments, in some circumstances the auditory stimulus preceded 
the visual stimulus and in others the visual stimulus preceded the auditory stimulus: (a) 
+200 Auditory condition, (b)+100 Auditory condition, (c) +200 Visual condition, (d) 
+100 Visual condition. 
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5. 1. 3. Procedure. Stimulus presentation mirrored Experiments 1a and 1b. Participants 

were given a standard to compare each trial, which dictated what button they pressed in 

response to the stimulus. In this case, participants were instructed to press the spacebar on 

the computer keyboard every time they detected a change in either the visual or the 

auditory stream. However, in the case that they detected a change in both streams they 

were asked not to respond. Each condition was presented to every research participant 

across 5 blocks: +100 ms Visual, +200 ms Visual, +100 Auditory, +200 Auditory, and a 

control condition in which no there was no stimulus onset asynchrony (i.e., simultaneous 

presentation). Block order was randomized for each participant and each block featured a 

different standard12.    

5. 1. 4. Results. In a similar manner to that of Experiment 1, mean reaction times (for 

correct responses) were calculated for auditory (single) oddball trials and visual (single) 

oddball trials in each of the five conditions. Due to the fact that bimodal (double) 

oddballs were identified by a non-response, reaction time data cannot be analyzed for the 

1-button version of this experiment. Additionally, detection accuracy for each oddball 

type was calculated by dividing the number of hits (i.e., successful button presses in 

response to unimodal trials) by the number of each respective trial type, yielding a 

proportion correct for each oddball type (auditory or visual) across each of the five 

                                                
 
 
 
12 Once again, this was done to control for the possibility that participants may misinterpret instructions 
since a change in sound could either mean a change in a sound’s duration or tone.  
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conditions. A summary of the mean reaction times and accuracies for all five conditions 

can be found in Table 5-1 RTs were computed from the onset of the first stimulus. 

Table 5-1. One-Button SOA Manipulation Descriptive Statistics 
 Auditory Oddball Visual Oddball 

Condition Mean RT Mean Acc.  Mean RT Mean Acc.  
+200 Auditory 712 .94 824 .93 
+100 Auditory 652 .96 722 .95 
Simultaneous 622 .93 637 .94 
+100 Visual 686 .92 654 .97 
+200 Visual 825 .95 698 .90 

 

In order to assess the effect that Stimulus Onset Asynchrony (SOA) (simultaneous 

presentation, +100 Auditory, +200 Auditory, +100 Visual, +200 Visual) and Oddball 

type (either auditory or visual) had on RTs and accuracy, separate two-way repeated 

measures ANOVAs were conducted. For the reaction time data, this analysis revealed a 

significant main effect for SOA (F(4, 100) = 22.59, p < .001) and an insignificant main 

effect for Oddball type (F(1, 100) = .98, p = .33). For response latencies, there was a 

significant interaction between SOA and Oddball type (F(4, 100) = 55.06, p < .001). 

Paired sample t-tests showed that participants were faster to detect the auditory oddball 

(M = 652, SD = 83.50) than the visual oddball (M = 722, SD = 75.57) in the +100 

Auditory condition; t(25) = 5.73, p < .001, while this was not statistically significant 

when the visual stimulus preceded the auditory stimulus by 100 ms (i.e., +100 Visual 

condition) (M = 654, SD = 128.12 for the visual oddball and M = 686, SD = 117.01 for 

the auditory oddball; t(25) = 2.011, p = .06. When the auditory stimuli preceded the 

visual stimuli by 200 ms (i.e., +200 Visual condition), participants were faster to detect 

the auditory oddball (M = 712, SD = 96.68) when compared with the visual oddball (M = 
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824, SD = 97.98; t(25) = 9.228, p < .001). The reverse was true when the visual stimuli 

preceded the auditory stimuli by 200 ms (i.e., +200 Visual condition) (M = 698, SD = 

118.12 vs. M = 825, SD = 72.80, respectively; t(25) = 8.35, p < .001). There was no 

statistical difference in response time in the control condition (i.e., simultaneous 

presentation), with visual oddball responses not being different from auditory oddball 

responses (M = 637, SD = 102.07 vs. M = 622, SD = 94.73, respectively; t(25) = 1.16, p = 

.26), see Figure 5-2.  

 

With respect to accuracy between the five conditions, a two-way repeated 

measures ANOVA revealed no significant main effects for Oddball type (F(1, 100) =  

.05, p = .83) or SOA (F(4, 100) = .68, p = .61), nor was a significant interaction observed 

(F(4, 100) = 2.41, p = .10), see Figure 5-3.  

 

Figure 5-2. One-button SOA manipulation RTs (ms). Mean reaction time of participants in the 1-Button 
SOA manipulation across all 5 SOA manipulations by oddball type (auditory or visual). 
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Figure 5-3. 1-button SOA manipulation accuracy. Mean percentage correct for participants in the 1-
Button SOA manipulation across all 5 manipulations, by oddball type (auditory or visual) 

 

   

 

Figure 5-4. One-button SOA manipulation response time differences. Participants mean response 
differences between unimodal auditory and bimodal auditory conditions and mean response differences 
between unimodal visual and bimodal visual condition.  
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 In order to further follow up on the effect that SOA had on the varying dominance 

types observed, participants’ Auditory and Visual Slowdown scores were calculated by 

subtracting the mean of the unimodal auditory and visual response latencies to oddballs 

(452 ms and 407 ms, respectively) from their reaction times to auditory and visual 

oddballs that were accompanied by the standard (bimodal presentations) in each of the 5 

bimodal SOA manipulations (simultaneous presentation, +100 Auditory, +100 Visual, 

+200 Auditory, +200 Visual), yielding a slowdown score by oddball type for each 

condition. A two-way (SOA x Oddball type) repeated measures ANOVA was then 

conducted on these scores, which demonstrated a main effect for SOA (F(4, 100) = 

22.59, p < .001) as well as a main effect for Oddball type (F(1, 100) = 45.09, p < .001). 

Additionally, a significant interaction was observed (F(4, 100) = 55.06, p <.001). Paired 

t-tests revealed auditory dominance in the simultaneous presentation condition, reflected 

by a greater slowdown when responding to visual oddballs that were presented 

simultaneously with the auditory standard (M = 230, SD = 102.07), when compared to 

auditory oddball response times, (M = 170, SD = 94.72; t(26) = 4.79, p < .001). When 

presenting the auditory stimulus 100 ms before the visual stimulus, participants were 

slowed to a greater degree when detecting the visual oddball (M = 315, SD = 75.57) than 

the auditory oddball (M = 200, SD = 83.50; t(26) = 9.34, p < .001), thereby reflecting 

auditory dominance. In the +100 Visual condition no difference was observed in relative 

slowdown rates for the auditory (M = 234, SD = 117.02) and visual (M = 247, SD = 

128.12) oddballs (t(26) = .82, p = .42). Lastly, in the +200 auditory SOA condition, 

participants experienced a greater slowdown when detecting the visual oddball (M = 417, 
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SD = 97.98) than when detecting the auditory oddball (M = 260, SD = 96.68), indicating 

auditory dominance, while the reverse was the case in the +200 visual SOA condition 

(t(26) = 12.92, p < .001), as participants experienced a greater slowdown when detecting 

auditory oddballs (M = 373, SD = 72.80) than visual oddballs (M = 291, SD = 118.12; 

t(26) = 5.39, p <.001).  

 A difference score was then calculated by subtracting the visual slowdowns in 

each condition from the auditory slowdown. In this case smaller (and more negative 

values) are indicative of greater Auditory dominance. A one-way repeated measures 

ANOVA was conducted to determine if dominance types were significantly different 

from one another at different SOAs. This ANOVA was strongly significant (F(4, 100) = 

55.06, p < .001), see Figure 5-4. Pairwise comparisons revealed that, when compared to 

the control condition (i.e., simultaneous presentation, M = -59, SD = 62.92), increased 

auditory dominance was observed in the +100 auditory SOA condition (M = -116, SD = 

63.10; t(25) = 3.33, p = .003), while auditory dominance was decreased in the +100 

visual SOA condition (M = -13, SD = 80.72; t(25) = 2.35, p = .03), and in fact could be 

considered to have been eliminated as this -13 ms effect was not significant. An increased 

amount of auditory dominance was observed in the +200 auditory SOA condition when 

compared with the simultaneous control condition (M = -157, SD = 61.95; t(25) = 5.62, p 

< .001), with dominance being reversed in the in the +200 visual SOA condition (M = 82, 

SD = 77.23; t(25) = 6.73, p < .001). Furthermore, when examining the relationship 

between earlier auditory SOAs, in the +100 auditory SOA condition, participants showed 

an increased amount of Auditory dominance when compared to the +100 visual SOA 
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condition (t(25) = 6.42, p < .001) and the +200 visual SOA condition (t(25) = 9.27, p < 

.001), but less auditory dominance when compared to the +200 auditory SOA condition 

(t(25) = 3.64, p = .001). When the visual stimuli preceded the auditory stimuli by 100 ms 

(i.e., the +100 visual SOA condition) participants showed more auditory dominance 

when compared to the +200 visual SOA condition (t(25) = 5.53, p < .001) and less 

Auditory dominance when compared to the +200 auditory SOA condition (t(25) = 10.00, 

p < .001). Finally, the most drastic difference in Auditory dominance is observed when 

comparing the +200 visual SOA condition with the +200 auditory SOA condition (t(25) = 

12.26, p < .001).  

 

 

 Figure 5-5. Effect of SOA in the one-button SOA manipulation. Mean Auditory Dominance Scores 
across the four manipulations to SOA. Values that are negative reflect greater amounts of auditory 
dominance, whereas values that are more positive reflect greater amounts of visual dominance. 
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both stimuli are presented at the same time, with less auditory dominance being observed 

when the visual stimulus precedes the auditory stimulus. When presenting the visual 

stimulus clearly before the auditory (i.e., the +200 ms visual condition), auditory 

dominance was reversed and visual dominance was instead observed (although, no 

evidence for dominance in either direction was observed when the visual stimulus 

preceded the auditory stimulus by 100 ms).  

5. 1. 5. Discussion. Thus far, it has been hypothesized that sensory modalities, with 

respect to multisensory processing, compete for available, and limited, processing 

resources. Therefore, it was expected that when manipulating stimulus onset 

asynchronies (SOAs), dominance for whichever stimulus enters processing earlier should 

be observed. When analyzing response times, a pattern begins to emerge with regard to 

auditory and visual dominance. That is, faster response times are observed for the 

stimulus (either auditory or visual) that is presented first. More specifically, in the +100 

Auditory and +200 Auditory conditions participants had faster reaction times to auditory 

oddballs when compared to the +100 Visual and +200 Visual conditions, where 

participants had faster response times to the visual oddballs. Overall, this seems to 

demonstrate support for the hypothesis that early entry into processing may cause 

processing resources to preferentially be allocated to the stimulus that occurs first (see 

Spence & Parise, 2010). At the very least, it demonstrates that the manipulation did lead 

to preferential processing for the stimulus that was present first. However, it is important 

to consider the different effects that may occur due to baseline differences in unimodal 

auditory and unimodal visual processing.   
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Previously, Robinson et al. (2016) defined dominance as the modality that 

experiences less of a slowdown during bimodal processing when compared with 

unimodal processing. When analyzing these data in the present experiment in accordance 

with this definition, the analysis showed that participants experienced greater slowdown 

in the +100 Auditory and +200 Auditory condition to the visual oddballs and a greater 

slowdown in the +200 Visual condition to the auditory oddballs. Furthermore, no 

difference in slowdown scores was observed in the +100 Visual condition. As such, it 

would appear that auditory dominance is present when the auditory modality precedes the 

visual modality, and also for the simultaneous presentation, with a reversal in dominance 

only being observed when presenting the visual stimulus clearly in front of the auditory 

stimulus. As indicated previously, it is important to note that the simultaneous condition 

lead to auditory dominance, which replicates the findings of Robinson et al. (2016). 

Another important result from these analyses is the lack of a demonstrable 

dominance in the +100 Visual condition even when looking at Auditory and Visual 

slowdown scores. This pattern of results could occur due to the possibility that, when 

considering the effects of SOA, the visual modality may need increased lead time to 

show a reversal of auditory to visual dominance in the 1-button version of this task, given 

that previous work has demonstrated that the auditory modality is favored in this task 

(i.e., Robinson et al., 2016; Robinson et al., 2010). That said, auditory dominance washes 

away in the +100 Visual condition, suggesting that presenting the visual stimulus 100 ms 

in advance did have an effect, although not strong enough to completely reverse 

dominance type.  
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Finally, when combining the Auditory and Visual Slowdown scores into a 

singular Auditory Dominance score, it is possible to statistically compare these 

qualitatively described dominance changes. The findings showed that with respect to the 

control condition, more auditory dominance was observed in the situations where the 

auditory stimulus precedes the visual stimulus (i.e., the +100 Auditory and +200 

Auditory condition) and that less Auditory dominance was observed when the visual 

stimulus precedes the auditory stimulus (i.e., the +100 Visual and +200 Visual 

conditions), where visual dominance was instead observed. The relative amount of 

dominance appeared to increase when presenting auditory stimuli progressively more in 

front of the visual stimulus, with +200 Auditory condition leading to greater amounts of 

auditory dominance when compared with the +100 Auditory condition, the +100 Visual 

condition, and the +200 Visual condition. This can be compared to the +200 Visual 

condition, where more auditory dominance was observed in the +100 Visual condition, 

but less than the +200 Auditory and +100 Auditory conditions. Again, reinforcing the 

patterns observed thus far, that dominance shifts as a result of manipulation to SOA 

overall.  

In sum, in addition to the replication of Robinson et al. (2016), this experiment 

addressed the second aim of this dissertation, which was to explore how presentation 

order could modulate sensory dominance. The findings largely align with the 

hypothesized result and demonstrate a strong effect of presentation order. In general, 

when participants were faced with situations where the auditory or visual stimuli were 

presented earlier, oddball detection showed that dominance shifted towards the modality 
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that was presented first. Combined, these patterns of results support the hypotheses set 

forth by Robinson and colleagues (Robinson et al., 2016; Robinson & Sloutsky, 2013), 

that sensory dominance is more pronounced earlier in processing, and further supports 

the idea that sensory dominance effects may be a result of a race for processing resources, 

therefore giving a particular modality access to those resources first appear to allow for a 

greater chance for dominance for that modality to occur.  

5. 2. Experiment 2b. SOA Manipulation in the 3-Button Oddball Task 

 In keeping with the particular aims of this dissertation, an investigation of the 

effects of decision making on sensory dominance was done for the SOA manipulation as 

well. It has been hypothesized that decision making and later processing appears to favor 

the visual modality, thus making visual dominance more likely. Previously, Robinson et 

al. (2016) demonstrated that when participants made separate keypresses to identify each 

of the three potential oddball types, modality dominance shifted from auditory dominance 

in the one button condition to visual dominance in the three-button condition. Therefore, 

the purpose of this manipulation was to see what modulating effects SOA has on the 

observed dominances, and how the use of multiple response keys would affect the pattern 

of observed sensory dominance. It was hypothesized that if decision making and later 

processing affect observed dominance greater, than the three-button manipulation should 

be accompanied with a shift back towards visual dominance, whereas if early processing 

has the greater effect on dominance, then auditory dominance should still be observed in 

this manipulation.  
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5. 2. 1. Participants. University of Hawaii at Manoa undergraduates (N = 29) were 

recruited to participate in this experiment. However, five participants were omitted, in 

accordance to the standards discussed earlier, from the final data analysis due to failure to 

follow instructions across all 5 blocks of the experiment resulting in a final sample of N = 

24 participants (N = 15 female participants, age: M = 20.7, SD = 3.34). 

5. 2. 2. Stimuli and Procedure. Participants were randomly assigned to one of 5 versions 

of the experiment (see Appendix B for stimulus pairings for all experiments) and blocks 

within each experiment version were randomized. The key difference between this and 

the previous stimulus onset manipulation (Experiment 2a), was that participants were 

instructed to press either the ‘1’, ‘2’, or ‘3’ key on the keyboard number pad in response 

to changes in the stimulus stream. For example, the ‘1’ key may have been pressed for an 

auditory (single) oddball, the ‘2’ key may have been pressed for a visual (single) oddball, 

and the ‘3’ key may have been pressed for an auditory/visual (double) oddball stimulus 

pair. Key assignments were counterbalanced across participants. 

5. 2. 3. Results. Once again, mean reaction times and accuracies were calculated the 

same way as described in the previous experiment, with participants’ RTs (calculated 

from the onset of the first stimulus and only for correct responses to the auditory or visual 

oddball) and accuracies being broken down by oddball type, see Table 5-2 for a summary 

of these means.  

 

 

 



73 
 
 
 
 

Table 5-2. Three-Button SOA Manipulation Descriptive Statistics 
 Auditory Oddball Visual Oddball 
   

Condition Mean RT Mean Acc.  Mean RT Mean Acc.  
+200 Auditory 847 .80 930 .80 

+100 Auditory 776 .85 826 .81 

Simultaneous 725 .77 766 .76 

+100 Visual 822 .83 799 .82 

+200 Visual 971 .82 837 .89 

 

Similar to the 1-Button SOA condition, of particular interest is the effect that 

SOA (simultaneous presentation, + 100 Auditory, +200 Auditory, +100 Visual, and +200 

Visual) and Oddball type (Auditory or Visual) have on both RTs and accuracy. A two-

way repeated measures ANOVA conducted with the within participants factors of SOA 

and Oddball type and revealed a significant interaction (F(4, 92) = 22.87, p < .001) for 

reaction times. Paired sample t-tests showed that participants were faster to detect 

auditory oddballs (M = 725 , SD = 77.98) in the control condition (visual oddball: M = 

766, SD = 88.79; t(23) = 2.86, p = .001), faster to detect auditory oddballs (M = 847, SD 

= 101.85) in the +200 auditory condition (visual oddball: M = 930, SD = 86.82; t(23) = 

3.994, p < .001), and faster to detect visual oddballs (M = 837, SD = 98.99) in the +200 

visual condition (auditory oddball: M = 971, SD = 112.13; t(23) = 5.63, p < .001). 

However, no significant difference in RTs between auditory and visual oddballs was 

observed in the +100 visual condition (auditory oddball: M =  822, SD = 80.42; visual 

oddball: M = 799, SD = 80.57; t(23) = 1.37, p = .18), additionally the difference between 

response latencies to auditory oddballs (M = 776, SD = 80.74) and visual oddballs (M = 

826, SD = 145) in the +100 auditory condition was also insignificant (t(23) = 1.92, p = 
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.07), see Figure 5-6. With regard to participants’ accuracies for identifying the auditory 

and visual oddballs the two-way repeated measures ANOVA revealed no main effect for 

SOA (F(4, 92) = 1.53, p = .20), or Oddball type (F(1, 92) = .001, p = .97), and no 

interaction between SOA and Oddball type (F(4, 92) = 1.93, p = .11), see Figure 5-7.  

 

Figure 5-6. Three-button SOA manipulation RTs (ms). Mean reaction time of participants in the 
3-Button SOA manipulation across all 5 SOA manipulations by oddball type (auditory or visual). 
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Figure 5-7. Three-button SOA manipulation accuracy. Mean accuracies of participants in the 3-
Button SOA manipulation across all 5 SOA manipulations by oddball type (auditory or visual). 
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proportion of errors as the DV. The main effects of Oddball Error type (F(1, 92) = 28.71, 

p < .001) and SOA (F(4, 92) = 2.76, p = .03) were both significant. Additionally, a 

statistically significant interaction was observed (F(4, 92) = 4.36, p = .003). Paired 

sample t-tests were then conducted to see if the there were differences in the number of 

auditory or visual errors, see Table 5-3. Overall, participants were just as likely to make 
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visual errors during double oddball trials in the +100 (M = .52, SD = .41) and +200 (M = 

.34, SD = .42) auditory conditions when compared to the auditory errors for the +100 (M 

= .35, SD = .39) and the +200 (M = .41, SD = .44) auditory conditions respectively (t(25) 

= 1.13, p =.28; t(25) = .47, p = .65, respectively). However, in the +100 visual (t(25) = 

4.03, p < .001; visual M = .53, SD = .46; auditory M = .10, SD = .21), +200 visual (t(25) 

= 4.16, p < .001; visual M = .63, SD = .45; auditory M = .12, SD = .27), and control 

conditions (t(25) = 4.70, p < 001; visual M = .77, SD = .34; auditory M = .18, SD = .30) 

participants were more likely to make visual errors in comparison to auditory errors.  

Table 5-3. Three-Button SOA Manipulation Errors 
Condition Auditory Errors Visual Errors 

+200 Auditory .41 .34 
+100 Auditory .35 .52 
Simultaneous .18 .77 
+100 Visual .10 .53 
+200 Visual .12 .63 

 

 In order to fully address the significant interaction and better understand the effect 

that SOA had on these errors, difference scores were calculated by subtracting the 

proportion of visual errors made from the number of auditory errors made. In this case, 

lower scores would be indicative of more visual errors, whereas higher scores would be 

indicative of more auditory errors. These scores were then used in a one-way repeated 

measures ANOVA, as expected (due to the significant main effect of SOA already 

presented), this ANOVA was statistically significant (F(4, 92) = 4.36, p = .003). 

 Pairwise comparisons on the difference scores with respect to the simultaneous 

presentation condition (M = -.59, SD = .61), revealed that participants made 
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proportionally more visual errors in the control condition compared to the +100 Auditory 

condition (M = -.17, SD = .72; t(23) = 2.51, p =.02) and the +200 Auditory condition (M 

= .07, SD = .73l,  t(23) = 3.11, p = .005). In contrast, participants made just as many 

visual errors in the simultaneous presentation condition when compared to the +100 

Visual (M = -.43, SD = .53; t(23) = .47, p = .64) and the +200 Visual (M = -.51, SD = .60; 

t(23) = .97, p = .34) conditions. With regard to the +100 Auditory condition, participants 

made approximately the same proportion of visual errors when compared to the +200 

Auditory condition (t(23) = 1.05, p =.30). When compared to the +200 Visual condition, 

participants did not make more visual errors in the +200 Visual condition compared to 

the +100 Auditory condition (t(23) = 1.96, p = .06), similarly for the comparison of the 

+100 Auditory condition and the +100 Visual condition, t(23) = 1.72, p = .10. When 

comparing the +200 Auditory condition with the +200 Visual condition, participants 

made proportionally more visual errors in the +200 Visual condition (t(23) = 2.84, p 

=.009), and more visual errors when compared to the +100 Visual condition (t(23) = 

2.41, p = .02). Finally, participants were no different in the proportion of visual errors 

made when comparing the +200 Visual condition with +100 Visual condition (t(23) = 

.53, p = .60), see Figure 5-8.  
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Figure 5-8. Error rate differences in the three-button SOA manipulation. Error rate differences 
calculated by subtracting the percentage of visually based errors from auditorially based errors, 
therefore values that are more negative are indicative of proportionally more visually-based errors.  

 

 In summary, the error data seems to suggest that when stimuli are presented 

simultaneously, visual dominance is observed, as more visually based errors are made 

when compared with auditory based errors to bimodal trials. When presenting the visual 

stimulus before the auditory stimulus (by either 100 or 200 ms), visual dominance 

continues to be observed. However, when presenting the auditory stimulus first, the 

visual dominance that was previously observed disappeared, with a statistically equal 

amount of visually or auditorily based errors to bimodal oddballs being made (at both 

SOAs). This was confirmed when directly comparing difference scores (i.e., measures of 

dominance) between the conditions when the auditory stimuli were presented prior to the 

visual stimuli with all other conditions (i.e., simultaneous and visual first conditions)  

5. 2. 4. Discussion. As previously discussed, it has been hypothesized that dominance 

may shift in accordance with whichever stimulus (either auditory or visual) engages 
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attention and thus processing first. In order to assess this, SOAs were manipulated in this 

experiment such that at times the visual stimulus occurred before the auditory stimulus, 

and vice versa, in a bimodal stimulus stream. Participants were required to use separate 

response buttons for each type of oddball (i.e., single auditory, single visual, or double 

oddball. It could be expected that, as previously found in Robinson et al. (2016) 

participants would show a greater inclination towards visual dominance due to the effects 

of later processing. Therefore, two potential patterns could be predicted: if the effects of 

early processing were weighted more heavily in regard to dominance, SOA should 

modulate sensory dominance irrespective of the number responses, conversely, if later 

processing (i.e., decision-making) affects participants’ demonstrated dominance to a 

greater degree, visual dominance should be observed throughout.  

 Participants demonstrated faster RTs for the stimulus that occurred first in all 

conditions except the +100 Visual SOA condition, in which no difference was observed. 

Participants in the simultaneous presentation condition showed faster reaction times for 

the auditory oddball. Overall, this would seem to suggest that dominances may vary as a 

result of manipulation to SOA, warranting additional analysis (see the comparison to 

unimodal controls below). Furthermore, when considering the results of the accuracy 

data, no differences in overall accuracy were observed.  This finding is important, 

because it demonstrates that although the task was more difficult than the one button task 

(as evidenced by the generally lower accuracies), participants did not find identifying 

oddballs more difficult when the visual or auditory stimuli preceded the other modality. 



80 
 
 
 
 

Finally, the error data presented an intriguing and important pattern of results. 

Despite faster response times for auditory oddballs in the +200 Auditory and +100 

Auditory SOA conditions, there were no differences between the type of errors made to 

double oddball trials (i.e., participants were equally likely to make an auditory or visually 

based error). Additionally, when the visual stimulus preceded the auditory stimulus in the 

+200 Visual and +100 Visual SOA conditions, participants were much more likely to 

make visual based errors. This was also the case in the simultaneous presentation 

condition. These findings are important for several reasons. First, this shows that 

dominance, as conceptualized by Colavita (1974) in his work, shifted, depending on 

whether one stimulus was presented prior to another. That is, when the auditory stimulus 

occurred before the visual stimulus, visual dominance was eliminated. Surprisingly, the 

control condition shows evidence of two kinds of potential dominances, with visual 

dominance being evident in participants responses and auditory dominance being 

potentially demonstrated by the RT data. 

Thus far, the analysis herein seems to suggest fairly clearly that, when using error 

data as a proxy for visual dominance, a prepotency for visual stimuli is observed in the 

simultaneous (+0 SOA) and visual first (+100/+200 Visual SOA) conditions. However, 

visual dominance disappears when presenting the auditory stimulus first, although it 

should be noted that auditory dominance never emerges, arguably demonstrating the 

robustness of visual dominance in this case. With respect to the reaction time data 

discussed, participants appeared to be faster at detecting auditory oddballs when the 

auditory stimuli preceded the visual stimuli and faster at detecting visual oddballs when 
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the visual stimuli preceded the auditory stimuli, suggesting that some shifts in dominance 

types may be occurring. 

 In order to further address the question of what dominance types are being 

observed across the SOA conditions the unimodal control data (see Appendix C) was 

used to make direct comparisons to the work of Robinson et al. (2016) and make stronger 

claims about the way that stimulus order can modulate sensory dominance. While the 

error data clearly indicates that visual dominance can be eliminated by presenting the 

auditory stimuli first, it is important to also look at how response latencies can be 

modulated. Recall that Robinson et al. (2016) theorized that in the oddball paradigm used 

here, modality dominance can be measured by determining which modality is affected 

less by the presence of the standards in the other modality, which would ultimately be 

reflected in the differences in reaction times for auditory and visual oddballs in the 

unimodal and bimodal stimulus streams.  

5. 2. 5. Results: Dominance as assessed by relative processing slowdown rates. For 

Experiment 2b, in order to clarify which dominance type was observed and to better 

assess the effect of SOA on dominance, a difference score was calculated by subtracting 

the means observed in the unimodal control conditions from the respective RTs for the 

auditory and visual oddballs in each of the five SOA conditions, resulting in Auditory 

and Visual Slowdown scores. These Slowdown scores were then used to conduct a two-

way repeated measures ANOVA with Oddball type and SOA as factors on Slowdown 

scores. The main effect for SOA was significant (F(4, 92) = 287.68, p < .001) as was the 

main effect for Oddball type (F(1, 92) = 13.61, p = .001). Additionally, a statistically 
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significant interaction was observed between SOA and Oddball type (F(4, 92) = 22.87, p 

< .001). Paired-samples t-tests revealed that participants experienced a greater slowdown 

for visual oddballs (M = 359, SD = 88.79) than for auditory oddballs (M = 273, SD = 

77.98) demonstrating auditory dominance in the simultaneous bimodal manipulation 

(t(23) = 6.03, p < .001). In the +100 Auditory condition, participants experienced a 

greater slowdown for visual oddballs (M = 419, SD = 114.97) than for auditory oddballs 

(M = 327, SD = 80.74; t(23) = 3.65, p = .001). The slowdown was equitable for auditory 

(M = 370, SD = 80.42) and visual oddballs (M = 392, SD = 80.47) in the +100 Visual 

condition (t(23) = 1.38, p = .18). In the +200 Auditory SOA condition participants 

experienced, again, a greater slowdown to the detection of visual oddballs (M = 523, SD 

= 86.82) compared to auditory oddballs (M = 395, SD = 101.85; t(23) = 6.16, p < .001) 

and conversely, a significant difference was observed in the +200 Visual SOA condition, 

with a greater slowdown to the detection of auditory oddballs (M = 519, SD = 112.13) 

compared to that of visual oddballs (M = 430, SD = 98.99; t(23) = 3.75, p =.001),  

see Figure 5-9.  
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  Table 5-4. Significance Tests for Pairwise Comparisons 
 +200 Auditory +100 Auditory Simultaneous +100 Visual 

+100 Auditory 1.2    

Simultaneous 1.96 0.32   

+100 Visual 5.07*** 2.33* 3.49**  

+200 Visual 8.39*** 5.76*** 9.23*** 4.65*** 
* Denotes significance at the .05 level, ** significance at the .01 level, and               
*** significance at the .001 level, values are t-values, significance assessed with a df 
of 23. 

 

 Finally, in order to clarify which dominance type was observed and how SOA, in 

particular, modulated dominance across the five conditions, a difference score reflecting 

dominance type was calculated to determine if presentation timing would affect sensory 

dominance. This was done by subtracting the Slowdown score for the Visual oddballs 

from the Slowdown score of the Auditory oddballs yielding a single score for dominance, 

such that smaller and more negative values represent greater degrees of auditory 

 

Figure 5-9. Response time differences in the 3-button SOA manipulation. Mean reaction time differences 
in the 3-Button SOA manipulation when compared to unimodal controls.  
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dominance. These scores were used in a one-way repeated measures ANOVA; this 

ANOVA was statistically significant (F(4, 92) = 22.87, p < .001). Pairwise comparisons 

revealed, that with respect to the simultaneous bimodal condition (M = -85, SD = 69.13), 

participants were no different in their Auditory dominance scores when compared to the 

+100 Auditory condition (M = -94, SD = 126.98; t(23) = .32, p = .75). When compared to 

the +100 Visual condition (M = -22, SD = 79.70), participants exhibited greater Auditory 

dominance in the simultaneous presentation condition (t(23) = 3.49, p = .002). The 

difference between the simultaneous presentation condition and the +200 Auditory 

condition was also significant (M = -127, SD = 101.18; t(23) = 1.96, p = .06). Participants 

exhibited greater Auditory dominance in the control condition when compared to the 

+200 Visual condition (M = 89, SD = 116.56; t(23) = 9.23, p < .001). When comparing 

the +100 Auditory condition to the +100 Visual condition, participants were significantly 

different, with participants exhibiting greater auditory dominance in the +100 Auditory 

condition (t(23) = 2.33, p = .03). However, participants’ Auditory dominance scores in 

the +100 Auditory condition were no different than their scores in the +200 Auditory 

condition (t(23) = 1.20, p = .24). Finally, participants’ Auditory dominance scores in the 

+200 Visual condition were different from the +100 Auditory condition (t(23) = 5.76, p < 

.001); Auditory dominance was greater in the +100 Auditory condition. When focusing 

on the +100 Visual condition, participants’ Auditory dominance scores were greater in 

the +200 Auditory condition (t(23) = 5.07, p < .001) and less Auditory dominance was 

observed when compared to the +200 Visual condition (t(23) = 4.65, p <.001). When 

considering the two most extreme comparisons, the +200 Visual condition and the +200 
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Auditory condition, participants were more Auditorily dominant in the +200 Auditory 

condition (t(23) = 8.39, p < .001), see Table 5-4 for a summary of these pairwise 

comparisons; see Figure 5-10 for a graphical representation of the shift of dominances 

across experimental conditions.  

 

 
Figure 5-10. Effect of SOA in the three-button SOA manipulation. Mean Auditory Dominance Scores 
across the four manipulations to SOA. Values that are negative reflect greater amounts of auditory 
dominance, whereas values that are more positive reflect greater amounts of visual dominance. 

 

 The final comparison that was made was to examine the effects of the 1-button 

and 3-button manipulations with these Auditory dominance scores (i.e., the difference 

between the Auditory Slowdown and the Visual Slowdown with respect to the observed 

response to unimodal auditory and unimodal visual oddballs). It has been shown that 

decision making appears to have an effect on dominance, with participants showing 

greater amounts of Auditory dominance in the 1-button condition in comparison to the 3-
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dominance scores with Condition (1 or 3 buttons) as a between-subjects factor was 

conducted. The main effect for Condition was not significant (F(1, 48) = .09, p = .76), 

however the main effect for SOA was significant (F(4, 192) = 67.49, p < .001), which 

would be expected given that both the 1- and 3-button manipulations showed a similar 

pattern of results across manipulations to SOA. Finaly,  the interaction with Condition 

and SOA was not significant (F(4, 192) = 1.10, p = .36).  

5. 2. 6. Discussion. Similar to the analyses for previous experiments, unimodal control 

data were utilized to further explore the effects of the experimental manipulation (in this 

case, SOA) on demonstrated dominances. Participants in the simultaneous presentation 

condition showed auditory dominance, that is when the auditory stimuli preceded the 

visual stimuli in both the +100 auditory and +200 Auditory conditions, participants 

showed evidence of auditory dominance. Finally, visual dominance only clearly occurred 

in the +200 Visual condition, while the +100 Visual condition showed no evidence of 

dominance at all. 

 Importantly, when examining the effect that SOA had on dominance more closely 

with pairwise comparisons, dominances shifted, with participants’ level of auditory 

dominance seemingly holding steady across the simultaneous presentation, +100 

Auditory condition, and +200 Auditory condition. Participants’ dominance shifted more 

drastically in the +100 Visual condition and +200 Visual condition, with less and less 

auditory dominance being observed (as evidenced by the only positive Auditory 

Dominance scores in the +200 Visual condition, i.e., visual dominance). Therefore, the 

amount of Auditory dominance observed when the auditory stimuli occurred first did not 
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change with respect to the amount of lead time given to the auditory stimulus, however 

presenting the visual stimuli ahead of the auditory stimuli in the bimodal stimulus stream 

allowed for greater amounts of visual dominance to occur. This finding is critical, as it 

demonstrates that auditory stimuli may not benefit in a noticeable way from additional 

lead time into processing, this is especially important given that it provides some support 

for theoretical claims that audition may dominate early processing in general, and as a 

result it could be expected that differences in the amount of auditory dominance 

occurring would happen irrespective to manipulation to SOA, at least in the situation 

where participants responded to stimuli with three buttons and processing resources were 

additionally taxed. Therefore, it is possible to conclude that allowing visual stimuli early 

access to processing resources creates opportunities for visual dominance to occur and 

that those processing resources are relinquished by the auditory modality if the lead time 

before an auditory stimulus is available is sufficient. 

 Finally, another aim of this dissertation was to assess the effect that multiple 

responses had on sensory dominance compared to a single response. Surprisingly, the 

exact same pattern of dominances observed in the 1-button condition were also present in 

the 3-button condition, unlike what was predicted from the results of Robinson et al. 

(2016). In their experiment, visual dominance was observed in an experiment that was 

functionally equivalent to the simultaneous presentation condition in this experiment. 

More specifically, in the 3-button version of the oddball detection paradigm, as 

administered by Robinson et al., participants demonstrated greater slowdown to the 

auditory oddballs when processing the bimodal stimulus stream, whereas here a greater 
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slowdown to the visual oddballs was observed. Again, this finding of a general trend 

towards auditory dominance as reflected by response latencies across Experiments 2a and 

2b was unexpected, but could be due to a number of issues previously discussed 

including sampling error and key methodological differences between the simultaneous 

presentation condition and the bimodal condition in Robinson et al. (2016). More 

specifically differences in exposure (i.e., the number of trials participants experienced), 

differences in the responses participants were asked to provide (i.e., utilizing the spacebar 

in unimodal controls vs. the ‘1’, ‘2’, and ‘3’ keys), and the within rather than between-

subjects design for unimodal controls.  

  Auditory dominance appeared to occur in the 1-button version of the experiment 

(i.e., Experiment 2a) in the simultaneous condition as well. Furthermore, the amount of 

auditory dominance appeared to be similar across the manipulations to SOA, given that 

the between-subjects comparison of the 1- and 3-button conditions failed to reach 

significance. But note, there was a main effect for SOA across both Experiments 2a and 

2b, with participants being more likely to show auditory dominance when the auditory 

stimuli occurred before the visual stimuli, whereas participants were more likely to show 

visual dominance when the visual stimuli preceded the auditory stimuli by 200 ms in the 

3-button condition.   

When considering the error data presented for Experiment 2a, a mix of dominance 

types does appear to be occurring. With decision making errors (i.e., the selection of 

incorrect oddball types) showing clear signs of visual dominance in the simultaneous 

presentation, +100 Visual, and +200 Visual conditions. More specifically, participants 
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were more likely to make visual errors than auditory errors in these conditions. However, 

in the +100 Auditory and +200 Auditory conditions, participants were just as likely to 

make auditory and visual errors. This pattern of results is indicative of an elimination of 

visual dominance. Therefore, the results of Experiment 2b complement one another, with 

the RT data showing auditory dominance holding steady when the auditory stimuli occur 

before the visual stimuli and the error data showing an elimination of sensory dominance 

in these conditions. In contrast, when visual stimuli precede auditory stimuli, RT data 

show clear signs of visual dominance in the +200 Visual condition, whereas no 

dominance was observed in the +100 Visual condition. However, when looking at the 

types of errors that participants made when responding to bimodal oddballs, visual 

dominance was observed in the simultaneous, +100 Visual, and +200 Visual conditions. 

These results reveal that manipulating SOA in the 3-button condition modulates sensory 

dominance at both a processing and decision-making level.  
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6. General Discussion 

Colavita’s (1974) finding that participants, when faced with a bimodal 

audiovisual stimulus, are more likely to respond to only the visual item while being 

seemingly unaware of the presence of the auditory stimulus, has inspired much research 

investigating sensory dominance in general. The typical findings amongst the subsequent 

studies were that visual dominance is robustly demonstrated, with very few studies 

showing an elimination of visual dominance, and even fewer showing a reversal of visual 

dominance to auditory dominance (Spence et al., 2012; Sinnett et al., 2007, 2008). The 

purpose of the studies herein were to take a paradigm known to demonstrate differential 

dominance types in adults (i.e., Robinson et al., 2016) and assess what stimulus factors 

contribute to shifts in dominance. In particular, it has been hypothesized that the auditory 

modality is special in that auditory stimuli in the environment are transient, and this 

fleeting nature drives early processing to prioritize this modality (Robinson & Sloutsky, 

2013; Sloutsky & Napolitano, 2003). Furthermore, dominance effects are thought to be 

more pronounced earlier in processing, and since processing resources are arguably 

shared amongst the modalities, this race for processing resources favors the modality who 

engages processing first (Robinson & Sloutsky, 2010).  

In this dissertation, participants completed a series of manipulations to attempt to 

better understand if these two factors (i.e., stimulus transience and early entry into 

processing) could in fact affect sensory dominance as evidenced by reaction times (in 

both the 1- and 3-button versions of each task) and by errors during bimodal “oddball” 

trials (in only the 3-button version of these task). Overall, the results of these studies 
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showed that stimulus transience had little effect on dominance in either the 1- or 3-button 

version of the task and that in the manipulation of early entry into processing variable 

dominance types were observed. In order to better discuss the results of the experiments 

presented thus far, a short summary of the primary hypotheses and key findings will be 

presented for each experiment. Afterwards, the important experimental considerations 

and limitations of the research conducted for this dissertation will be discussed as well as 

potential recommendations for future investigations. 

6. 1. Experiment 1a: Purpose and key findings 

 Experiment 1a attempted to address the hypothesis that stimulus transience, 

thought to be in part a feature more frequently observed in auditory stimuli (Robinson & 

Sloutsky, 2013), can affect sensory dominance. More specifically, the more transient the 

stimulus is, the more likely one should be able to observe dominance for that modality. 

Experiment 1a attempted to address this issue by manipulating the relative lengths of the 

stimuli, such that one item in the bimodal stream would be long and the other would be 

short, the hope being that the presence of the shorter stimulus with the longer stimulus 

would push processing resources to favor the modality of the more transient item. A 1-

button version of an oddball detection task that has previously demonstrated overall 

auditory dominance when stimulus durations were the same was utilized (i.e., Robinson 

et al., 2016). Therefore, it was expected that if observed sensory dominance could be 

manipulated by stimulus transience in this way, in situations where the visual stimulus 

was comparatively shorter (i.e., the Long Auditory/Short Visual condition), visual 
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dominance should be observed, while auditory dominance would be expected to be 

preserved throughout the other manipulations.  

 The findings of this experiment showed that participants’ auditory dominance was 

fairly robust throughout Experiment 1a (i.e., overall participants were slowed down to a 

greater degree for visually presented oddballs during the bimodal stimulus streams) and 

that the manipulation to the relative durations of the stimuli had no effect on participants’ 

auditory dominance. It is important to reiterate though, that these results are somewhat 

expected given the 1-button task’s demonstrated ability to show auditory dominance in 

previous studies (Robinson et al., 2016; Robinson et al., 2010). A summary of these 

results can be found in Table 6-1.  

 

Table 6-1. A summary of demonstrated dominances for Experiments 1a 
 Dominance Observed by Category 

Condition Slowdown Scores13 Error Data 
Long Auditory/ Long Visual Auditory Dominance N/A 
Short Auditory/ Short Visual Auditory Dominance N/A 
Long Auditory/ Short Visual Auditory Dominance N/A 
Short Auditory/ Long Visual Auditory Dominance N/A 
   

 

                                                
 
 
 
13 The evidence of auditory dominance comes from the significant main effect for Oddball type in the 
Auditory and Visual Slowdown score analysis (see pages 44-45), and not for the individual analyses within 
each condition.  
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6. 2. Experiment 1b: Purpose and key findings 

 In Experiment 1b, the effect of stimulus transience was further investigated within 

the realm of the 3-button version of the oddball detection task. Previous research with 

this task has shown that participants tend to show visual dominance (i.e., participants 

show greater slowdown to processing in the auditory modality during the identification of 

auditory oddballs during the bimodal stimulus stream, whereas they experience less slow 

down to processing when identifying visual oddballs during the bimodal stimulus 

stream). Therefore, it was expected that participants should exhibit predominantly visual 

dominance with more evidence of auditory dominance in the Short Auditory/Long visual 

condition and more visual dominance in the Long Auditory/Short Visual condition, in 

particular. Surprisingly, when looking at response latencies, auditory dominance was 

once again demonstrated throughout this paradigm, in clear contrast to the expected 

findings based upon previous research with this task (Robinson et al., 2016). Some 

marginal differences were observed in specific pairwise comparisons as well. That is, 

participants showed slightly more auditory dominance in the Long Auditory/Long Visual 

condition and slightly more auditory dominance in the Short Auditory/Long Visual 

condition. However, as stated, with respect to dominance, overall auditory dominance 

was demonstrated throughout.  

 Interestingly, error data a different pattern of sensory dominance. When analyzing 

the proportions of visually based errors made (i.e., the proportion of times a participant 

incorrectly pressed the “visual” key in the 3-button paradigm to a bimodal “double” 

oddball), participants demonstrated clear evidence of visual dominance. Regardless of 
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manipulation to duration (i.e., stimulus transience), participants were far more likely to 

make visually based errors. Notably, this result does replicate the error data finding in 

Robinson et al. (2016), where participants also made more visually based errors to double 

oddballs in the 3-button condition. A summary of these results can be found in Table 6-2.  

 

 Table 6-2. A summary of demonstrated dominances for Experiments 1b 
 Dominance Observed by Category 

Condition Slowdown Scores14 Error Data 
Long Auditory/ Long Visual Auditory Dominance Visual Dominance 
Short Auditory/ Short Visual Auditory Dominance Visual Dominance 
Long Auditory/ Short Visual Auditory Dominance Visual Dominance 
Short Auditory/ Long Visual Auditory Dominance Visual Dominance 
   

6. 3. Experiment 1: General Discussion and Theoretical Implications     

 Finally, Experiments 1a and 1b together were used to assess the effect that 

decision-making (as measured by the number of responses: single response or multiple 

responses) might have on these manipulations to duration. However, the number of 

response keys did not modulate observed dominances. Across both conditions, auditory 

dominance was robustly demonstrated, the only key difference observed from the 

analysis of the differences between the 1- and 3-button versions of the task were that 

participants were overall less accurate and slower in the 3-button version of the task. This 

pattern of results is likely due to the increased task difficulty (i.e., asking participants to 

                                                
 
 
 
14 The evidence of auditory dominance comes from the significant main effect for Oddball type in the 
Auditory and Visual Slowdown score analysis (see pages 57-58), and not for the individual analyses within 
each condition. 
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identify each individual oddball type with a particular key on the keyboard was 

observably more difficult than responding to the auditory and visual oddball with the 

same key).  

When considering Experiment 1 together as a whole, participants in the 1-button 

manipulation showed an overall trend towards auditory dominance with respect to their 

response latencies. However, participants did not identify auditory or visual oddballs with 

multiple keypresses, therefore making it impossible to look at any kind of systematic 

error type. The 3-button manipulation allows for this, and signs of differing dominance 

types began to emerge, however the reaction time data demonstrated more auditory 

dominance. Nonetheless, when considering the error data, participants were in general 

much more likely to make a visual error (i.e., pressing the “visual” key in response to a 

double oddball) than an auditory error. As discussed, this pattern of results is important 

because it demonstrates that, depending on how one defines and measures dominance, 

functionally different dominance types can be demonstrated in the same task. The 

implication of this finding is important for future research on sensory dominance in 

particular because it demonstrates that care must be taken when designing experiments, 

in order to ensure that it is clear at what timepoint in processing an experiment is meant 

to examine, as there is some evidence here that early processing may still favor the 

auditory modality while later processing (i.e., decision-making) may favor the visual 

modality.   

 Despite the fact that the effects of stimulus transience were not clearly observed 

in Experiment 1, one must not hastily remove stimulus transience from consideration 
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when evaluating key stimulus features that may affect sensory dominance. For example, 

it is possible that in this manipulation stimulus transience is not pushed far enough to see 

an effect. Importantly, participants were presented with some combination of 50 ms and 

200 ms auditory and visual stimuli and asked to respond as quickly and accurately as 

possible. Typical characterizations of echoic and iconic memory estimate their memory 

store to last approximately 2000 ms and 1000 ms respectively (Cowan, 1984; Sperling, 

1960), therefore both the auditory and visual stimuli are arguably still represented in 

echoic and iconic memory, potentially confounding the results. In order to better address 

this issue, the variable lengths to the stimuli could be manipulated as they are here (or 

arguably could be shortened to a greater degree), with the addition of a delay between 

presentation and response such that neither the auditory nor visual stimulus are accessible 

by sensory memory. 

6. 4. Experiment 2a: Purpose and key findings 

 Experiment 2a was designed to investigate the claim that the effects of sensory 

dominance are more pronounced in early processing (Shimojo & Shams, 2001) and that, 

due to limited processing resources, sensory dominance may shift in accordance to 

whichever modality engages those processing resources first (Robinson & Sloutsky, 

2010). In this experiment the 1-button version of the oddball detection task, which has 

been used to show auditory dominance was utilized. In each of the conditions stimulus 

onsets were manipulated, such that the auditory stimulus might appear before the visual 

stimulus (i.e., the +100 Auditory and +200 Auditory conditions) or that the visual 

stimulus might appear before auditory stimulus (i.e., the +100 Visual and +200 Visual 
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conditions). It was expected that sensory dominance would shift in accordance to 

whichever stimulus was presented first, therefore it was hypothesized that auditory 

dominance would be observed in the +100 Auditory condition and +200 Auditory 

condition, that auditory dominance should be observed in the simultaneous presentation 

condition, and that visual dominance should be observed in the +100 Visual and +200 

Visual conditions.  

 Overall, the hypothesized effect of presentation order was supported. In 

Experiment 2a, participants showed evidence of Auditory dominance in the simultaneous 

presentation, +100 Auditory, and +200 Auditory conditions, whereas no dominance was 

observed in the +100 Visual condition, and visual dominance was observed in the +200 

Visual condition. Furthermore, the effect of presentation order resulted in greater 

amounts of auditory dominance the earlier the lead time of the auditory stimuli, while the 

visual modality only clearly demonstrated dominance when given a 200 ms lead on the 

auditory stimuli. Again, a key finding of this study is that auditory dominance was 

essentially eliminated in the +100 Visual condition. This result is especially important 

because it shows the strength of auditory dominance in this case, with its elimination only 

occurring when presenting the visual stimulus 100 ms prior, and its reversal to visual 

dominance only when presenting the visual stimulus well in advance (i.e., + 200 ms 

Visual). A summary of the results of Experiment 2a can be found in Table 6-3.  
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Table 6-3. A summary of demonstrated dominances for Experiments 2a 
 Dominance Observed by Category 

Condition Slowdown Scores Error Data 
+200 Auditory Auditory Dominance N/A 
+100 Auditory Auditory Dominance N/A 
Simultaneous presentation Auditory Dominance N/A 
+100 Visual  No Dominance N/A 
+200 Visual Visual Dominance N/A 
   

 

6. 5. Experiment 2b: Purpose and key findings 

 In Experiment 2b, the effect of presentation order was further assessed in the 3-

button version of the oddball detection task. It was hypothesized, in this case, that 

participants would again, demonstrate auditory dominance when the auditory stimuli 

preceded the visual stimuli (i.e., +100 Auditory and +200 Auditory conditions), however, 

visual dominance would be observed in the simultaneous presentation condition (as was 

predicted based upon the results of the 3-button manipulation in Robinson et al., 2016), 

and visual dominance in the case where the visual stimuli preceded the auditory stimuli 

(i.e., +100 Visual and +200 Visual conditions).  

 The general pattern of results partially supported these predictions. Indeed, when 

the auditory stimulus preceded the visual stimulus, when comparing the relative 

slowdowns, participants were affected to a lesser degree by the presence of the visual 

stimulus in the +200 Auditory and +100 Auditory conditions. Surprisingly, and in 

contrast to the results of previous experiments that have utilized this paradigm, auditory 

dominance in the simultaneous presentation condition was observed. Furthermore, no 
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observable dominance was demonstrated in the +100 Visual condition, and finally visual 

dominance was clearly demonstrated in the +200 Visual condition. Further analysis 

revealed that the relative amount of auditory dominance observed in the +200 Auditory, 

+100 Auditory, and simultaneous presentation conditions were the same, whereas the 

+100 Visual condition showed no dominance and +200 visual condition showed clear 

evidence of visual dominance. These findings, as previously discussed are important in 

that they demonstrate that, at least in the 3-button condition, an equivalent amount of 

auditory dominance was observed between the simultaneous condition and the two 

conditions where the auditory stimulus preceded the visual stimulus. Thus, the amount of 

lead time afforded to the auditory stimuli does not appear to affect the amount of auditory 

dominance observed, which could potentially be a result of processing resources being 

further taxed by the necessity of participants to identify their oddballs with a particular 

key.  

 Finally, Experiment 2b allows for an assessment of the errors made by 

participants during double oddball trials (i.e., by looking at the proportion of visual and 

auditory only responses made to double oddballs). When the auditory stimuli preceded 

the visual stimuli, there was no difference in the proportion of auditory or visual only 

based errors, indicative of an elimination of visual dominance. Furthermore, when the 

visual stimulus preceded the auditory stimulus and during the simultaneous presentation, 

visual dominance was observed. These findings are interesting in that they, to a certain 

degree, are analogous to the difference scores for response latencies in this experiment, 

when auditory stimuli preceded visual stimuli. That is, when measuring response times, 
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auditory dominance was observed when auditory stimuli preceded visual stimuli, and for 

simultaneous presentations, and then eliminated when visual stimuli preceded auditory 

stimuli, whereas an identical trend was observed when looking at the types of errors, with 

visual dominance being observed when visual stimuli preceded auditory stimuli, and for 

simultaneous presentations, and then eliminated when auditory stimuli preceded visual 

stimuli. However, interpreting the results of the simultaneous presentation condition 

becomes somewhat trickier in Experiment 2b, as participants actively demonstrate 

differing dominance types based upon how dominance is being measured. See Table 6-4 

for a summary of these results.  

 

Table 6-4. A summary of demonstrated dominances for Experiments 2b 
 Dominance Observed by Category 

Condition Slowdown Scores Error Data 
+200 Auditory Auditory Dominance No Dominance 
+100 Auditory Auditory Dominance No Dominance 
Simultaneous presentation Auditory Dominance Visual Dominance 
+100 Visual  No Dominance Visual Dominance 
+200 Visual Visual Dominance Visual Dominance 
   

 

6. 6. Experiment 2: General Discussion and Theoretical Implications 

 The final goal of Experiment 2 was to compare the results of Experiment 2a and 

2b and make an assessment of the effect of number of responses (i.e., single response or 

multiple responses) had on patterns of sensory dominance when manipulating stimulus 

timing. Importantly, this analysis showed no difference between the 1-button and 3-

button versions of the task. The same observed patterns of dominance, as assessed by 
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relative slowdown to the auditory and visual modality during the bimodal stimulus 

streams, were preserved across both versions of this experiment.  

The results of Experiment 2 (in contrast to those of Experiment 1) demonstrate a 

pattern that supports the hypothesized effect that early entry into processing might 

modulate sensory dominance, namely that whichever modality enters processing first is 

the de facto winner of the race for processing resources, and as a result modulating 

sensory dominance. More specifically, in both the 1-button and 3-button versions of the 

SOA manipulation, participants modality dominance demonstrated a pattern where 

auditory dominance was robustly demonstrated in the RT data in the +200 Auditory, 

+100 Auditory, and simultaneous presentation condition, with no dominance type being 

demonstrated in the +100 Visual condition, and visual dominance being demonstrated in 

the +200 Visual condition.  

 As discussed earlier, these patterns of results are interesting in part because the 

degree to which auditory dominance was demonstrated did not vary as a function of 

greater lead times for the auditory modality in the 3-button condition. That is, there was 

no demonstrable difference in the amount of auditory dominance observed in the +200 

Auditory, +100 Auditory, and simultaneous presentation conditions, in contrast the 

amount of lead time needed for the visual stimuli to begin to show patterns of visual 

dominance did matter. However, this was not the case in the 1-button condition. In that 

condition, the greater the lead on the auditory stimuli greater amounts of auditory 

dominance were observed. With respect to the +100 Visual condition participants saw no 

dominance in particular being demonstrated in either version of the experiment. It is 
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possible to take this result as meaning that the prepotency of auditory dominance in this 

experiment and in this paradigm necessitates a 100 ms lead on the visual stimulus before 

processing resources are equally distributed to both modalities, this would support the 

general characterization of auditory stimuli having special prioritization in early 

processing, to such a degree that this lead is necessary to negate these inherent processing 

biases. However, when given the lead time of 200 ms visual dominance becomes more 

apparent in both versions of this experiment.  

 Although this pattern of results seems to clearly paint a picture of shifting 

dominances during both the 1-button and 3-button SOA manipulations, it is again 

important to highlight the results of the error data in the 3-button condition (i.e., 

Experiment 2b), which demonstrates clear evidence of visual dominance in the +100 

Visual and simultaneous presentation conditions. As discussed previously with respect to 

Experiment 1, this pattern of results is unique and interesting in that it again demonstrates 

that participants are potentially affected differentially by auditory and visual dominances. 

In effect, it can be interpreted in two meaningful ways: that early processing favors the 

auditory modality and later processing favors the visual modality; or that there is a 

behavioral pre-potency to make motor responses to visually presented stimuli over 

auditorily presented stimuli. In either case, additional research with this paradigm is 

needed to disentangle which of these two interpretations is more likely.  

 Finally, it has been argued in this dissertation that processing resources are 

actively shared across both the auditory and visual modality, and as a result this finite 

resource is taxed such that allowing a modality to engage those resources first results in 
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dominance for that modality. One could argue that multisensory processing resources are 

not engaged until both modalities have received sensory information with which to 

process. One key assumption of this argument would be that in order for multisensory 

processing resources to be engaged, the unisensory components of the bimodal signal 

must be presented simultaneously, and to a degree, researchers have argued that this is an 

important feature of multisensory integration (i.e., whether or not two unisensory events 

are associated with one another for them to be integrated). From a strict perspective under 

this account, it would be difficult for manipulations to SOA to lead to insights about 

stimulus features in multisensory processing. However, research on the window of 

multisensory integration conservatively sets the timing offset with which MSI still occurs 

at around 300 ms (Dixon & Spitz, 1980; Fujisaki, Shimojo, Kashino, & Nishida, 2004) – 

100 ms longer than any of the SOA manipulations made here – and some research shows 

this window can be as long as 1000 ms (Navarra, Vatakis, Zampini, Soto-Faraco, 

Humphreys, & Spence, 2005). However, there is still some concern that perhaps 

participants were not truly integrating the stimuli when presentation offsets occurred.  

 Perhaps one way to ensure that participants are in fact treating the bimodal 

stimulus stream as consisting of distinct bimodal events consisting of one auditory 

stimulus and one visual stimulus rather as two separate unimodal streams (one auditory 

and one visual), would be survey participants after their final block to see if they noticed 

anything in particular about the stimulus block they just experienced. If participants are 

able to verbally report that they noticed a difference in the presentation order in the 
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streams, that may be indicative of participants not truly engaging in multisensory 

processing during the SOA experiment.  

6. 7. Theoretical Implications of Experiments 1 and 2 

 When examining the results of Experiments 1 and 2 overall, the strong likelihood 

of participants responding auditorily in the 3-button condition is an important issue. This 

failure to replicate the results of Robinson et al. (2016) across two distinct attempts at 

replication calls into question the proposed finding that visual dominance, as evidenced 

by the amount of interference caused by presenting stimulus streams bimodally, occurs as 

a result of decision making. It is difficult to determine whether these diverging findings 

are a result of sampling error, or instead due to methodological differences described 

earlier (e.g., the greater number of trials, key assignments, or the between-subjects/within 

subjects way in which the experiments were conducted).    

 When considering the results of Experiments 1 and 2, it is also important to 

consider the 3-button condition in greater detail, especially since a replication of 

Robinson et al. (2016) was not demonstrated. Two methodological issues occur that 

warrant potential future intervention. First, is that in Robinson et al. (2016) participants in 

the 3-button condition completed unimodal control trials where they only made 1 

response but made multiple responses to the bimodal stimulus stream. Whereas, the 1-

button condition compares single response unimodal controls to single responses during 

the bimodal stimulus streams. It is possible that this inequality may influence observed 

dominance types if dominance types are measured by relative slowdowns between 

unimodal and bimodal reaction times. Therefore, better controls for the 3-button oddball 
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detection task should be considered. Secondly, as was discussed briefly, it is important 

that participants view the bimodal stimulus streams as a single unitary percept if we are 

to say that sensory dominance is being examined, and as of now the paradigm does not 

have a check to ensure that this is occurring. This issue may be exacerbated in the 3-

button condition, in that participants are monitoring each stimulus stream and making a 

different response for the oddballs in the auditory and visual streams. Therefore, it is 

possible that multisensory integration may not be occurring as deeply as it does in the 1-

button condition.  

6. 8. Limitations of the current work 

 Looking critically at the way these experiments were conducted is important for 

guiding future research on sensory dominance. In particular, one possible weakness of 

this research is the fact that unimodal controls were obtained between-subjects rather than 

within-subjects (as had been the case with Robinson et al., 2016). This design choice was 

made due to concerns about the length of the study and participant fatigue, however, it 

became clear that such unimodal controls are a necessary component in that it allows for 

additional ways to look at sensory dominance (i.e., via relative slowdown rates for the 

bimodally presented auditory and visual stimuli). Therefore, a fully within-subjects 

designs with participants partaking in unimodal controls is an important future step in this 

research. This will allow for the claims made about the differences in processing times 

much more strongly than the ones discussed in this dissertation, and importantly is 

presently being done to strengthen the arguments made herein. 
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 Another important issue that warrants further discussion is the timing of when 

data were collected for the various manipulations. In this case, participants from 

Experiment 1a and 1b were collected sequentially in one academic semester, whereas 

participants form Experiments 2a and 2b were collected sequentially during the 

subsequent academic semester. However, statistical comparisons were made across 1a 

and 1b as well as 2a and 2b. Therefore, participants were not randomly assigned to the 1- 

or 3- button conditions. Although these results were null in this analysis (i.e., no 

differences were observed in the 1- and 3- button data other than overall increased 

reaction times and decreased accuracy, with regard to the 3-button condition), 

improvement could be made by fully randomizing experimental order. This is presently 

being controlled for by random assignment in these data that are being collected 

presently, again to strengthen the claims made in this dissertation.  

6. 9. Suggestions for future research and concluding remarks 

 The results of the experiments presented raise additional questions about the 

nature of sensory dominance that warrant continued investigation. First, although 

duration of stimuli did not seem to affect sensory dominance in any kind of systematic 

way, future research should still consider the effect of stimulus transience on sensory 

dominance, as suggested earlier by potentially make additional modifications: this could 

include further shortening the relative duration of stimuli or by making participants wait 

for short periods of time such that auditory and visual stimuli are no longer represented in 

echoic and iconic memory.  
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 Next, with regard to the robust auditory dominance demonstrated in every control 

version of the task, additional research must be done to (a) verify the findings of the 3-

button oddball detection task and (b) to potentially investigate what variables may have 

affected the results of these data collected for this dissertation such that auditory 

dominance was demonstrated in the 3-button manipulation. Therefore, it is recommended 

that a simple replication of Robinson et al. (2016) be conducted with additional 

demographic variables collected to potentially parse out where the strong bias towards 

the auditory modality in the 3-button version of the task originates from.   

 Overall, the aim of this dissertation was to assess the effect that stimulus 

transience and early entry into processing has on sensory dominance. It was found that 

while stimulus transience did not reveal any strong effects on sensory dominance, further 

research that pushes the limit of stimulus transience could still show some support for the 

idea that this is an important stimulus feature that can drive sensory dominance. In 

contrast, manipulations to SOA indicative of early entry into processing did show a 

strong effect. Participants were overall very likely to show shifts in dominance in 

accordance to which stimulus occurred first, however the visual stimuli needed to occur 

earlier for the effects to manifest itself. The findings of this dissertation verify the claims 

made by others that early entry into processing affects sensory dominance, and that the 

auditory modality may be favored especially during these early stages. While no effect on 

stimulus transience were observed, much follow up is necessary to completely rule it out 

as important factor that affects sensory dominance.  
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THE UNIVERSITY OF HAWAII AT MANOA 
 

  Department of Psychology 
University of Hawaii 

Phone: 808.956.6272 
 

Version 1:  October 6, 2016  1/2 

 
 
 

Consent Form 
Sensory interactions 

 
Principal Investigator:   Dr. Scott Sinnett, Department of Psychology, University of Hawaii at 

Manoa. Phone: (808) 956-6272, Email: ssinnett@hawaii.edu. 
 
 
Introduction and Purpose 
This study aims to gain a deeper understanding of how humans direct attention and perceive auditory 
and visual stimuli in our environments. One of the goals of this project is to assess how our ability to 
attend to and perceive stimuli is altered through the combination of two or more sensory experiences of 
various stimuli when compared to experiencing those stimuli with just one of our senses. We hope to 
develop broader knowledge of the factors that influence the perception of auditory and visual stimuli in 
an effort to contribute to an area of science that has many open questions. Developing our knowledge 
of how our attention and perception changes under certain circumstances can help us better understand 
how we perceive the environment.  
 
Consent 
Your participation in this study is entirely voluntary and you may refuse to participate or withdraw 
from the study at any time without prejudice or loss of compensation. Please feel free to ask the 
experimenter any additional questions you may have about the study. 
 
Study Procedures 
If you agree to participate, the experiment will take about 30-60 minutes of your time. You will spend 
most of this time seated in front of a computer monitor. You will be presented with a visual stream of 
objects originating from the screen and/or auditory sounds or spoken words originating from the 
speakers placed beside the screen or a pair of headphones. You will be able to adjust the volume of the 
auditory sounds to a level of your comfort. You will be required to respond to specific targets that 
occur in the auditory or visual stream by pressing different keys on the keyboard, or a button box. 
Before beginning the experiment, you will receive ample instruction and training on the task. If you are 
not sure about any instructions, or wish to have more practice, do not hesitate to ask. Throughout the 
experiment, you will be given ample opportunity to take breaks, should you wish, and may discontinue 
your participation at any time without loss of compensation of penalty.  
 
Risks 
This study presents minimum risk to you as a participant. The minimum risk includes feelings of mild 
exhaustion, dizziness or disorientation from viewing the images presented to you on the screen. To 
minimize these risks we will give you ample opportunity to take breaks throughout your participation 
for the amount of time you feel it is necessary to be able to continue.  You will be continuously 
monitored during your participation and if at any time you begin to exhibit any signs of discomfort we 
will discontinue the experiment immediately.  Termination of the experiment as a result of any 
discomfort you might experience will in no way effect your compensation. 
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THE UNIVERSITY OF HAWAII AT MANOA 
 

  Department of Psychology 
University of Hawaii 

Phone: 808.956.6272 
 

Version 1:  October 6, 2016  2/2 

Benefits 
There are no direct benefits to you, however your participation will contribute to the enhancement of 
our understanding of human cognition. The information gathered form this research may be used to 
enhance our knowledge of how we perceive auditory and visual stimuli in the environment. 
  
Pre-existing conditions 
If you suffer form any pre-existing conditions or risk factors (epilepsy for example) that you feel 
would prevent you from safely participating in this study, please do not participate.  You non-
participation as a result of a pre-existing condition or risk factor will in no way effect your 
compensation. 
 
 
Confidentiality 
Your identity will be kept strictly confidential. All documents will be identified only by a subject code 
number and kept in a locked filing cabinet. You will not be identified by name in any reports of the 
completed study. Data that will be kept on a computer hard disk will also be identified only by your 
subject code number and will be password protected so that only the principle investigator, Dr. Scott 
Sinnett, his graduate students, and research assistants will have access to it. Following the completion 
of the study, the data will be transferred to a CD and stored in a locked filing cabinet.  Note, the results 
of this study will be used to write a scientific report. 
 
Contact for information about the study 
This study is being conducted by Dr. Sinnett, the principal investigator. Please call him if you have any 
questions about this study. Dr. Sinnett may be reached at (808) 956-6272 or ssinnett@hawaii.edu. 
 
Contact for concerns about the rights of research subjects 
If you have any concerns about your treatment or rights as a research subject, you may contact the IRB 
Committee on Human Studies at (808) 956-5007. 
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Appendix B: Stimulus Configurations Experiments 1-4 
 

Table B-1. Stimulus Configuration in the Duration Manipulation 
  Targets by Block 

  
Long 
Audio/Short 
Visual 

Short 
Audio/Short 
Visual 

Short 
Audio/Long 
Visual 

Long Audio/Long 
Visual (Control) 

 

Program 
Version 

Version 1 a1, v1 a3, v4 a4, v2 a5, v3  

Version 2 a2, v5 a1, v1 a3, v4 a4, v2  

Version 3 a5, v3 a2, v5 a1, v1 a3, v4  

Version 4 a4, v2 a5, v3 a2, v5 a1, v1  

Version 5 a3, v4 a4, v2 a5, v3 a2, v5  

 
 
 
 

Table B-2. Stimulus Configuration in the SOA Manipulation 
  Targets by Block 
  +100 ms 

Audio 
+200 ms 
Audio 

+100 ms 
Visual 

+200 ms 
Visual Control 

Program 
Version 

Version 1 a1, v1 a3, v4 a4, v2 a5, v3 a2, v5 

Version 2 a2, v5 a1, v1 a3, v4 a4, v2 a5, v3 

Version 3 a5, v3 a2, v5 a1, v1 a3, v4 a4, v2 

Version 4 a4, v2 a5, v3 a2, v5 a1, v1 a3, v4 

Version 5 a3, v4 a4, v2 a5, v3 a2, v5 a1, v1 
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Appendix C: Unimodal Control Methodology 

Recall that Robinson et al. (2016) theorized that modality dominance is 

demonstrated in these oddball tasks by whichever modality is affected less by the 

presence of the other in the bimodal stimulus stream, and this would ultimately be 

reflected in the differences in reaction times for auditory and visual oddballs in the 

unimodal and bimodal stimulus streams. As a result, instead of re-running Experiments 1 

and 2 in their entirety, a sample of participants were assigned to various unimodal control 

conditions and their reaction times were utilized as a baseline for calculating dominance 

scores in each experiment. Herein is a description of the methodology utilized to conduct 

these unimodal controls.  

Participants 

Participants consisted of 84 University of Hawaii at Manoa undergraduate 

students recruited in exchange for course credit. The sample was predominantly female 

(N = 53) with a mean age of 20.5 years old. All participants reported normal or corrected 

to normal vision and hearing and were collected in adherence to the procedures outlined 

by CHS. 

Stimuli and Procedure 

 Stimuli consisted of the same. 5 visual stimuli and 5 auditory stimuli used in 

Experiments 1 and 2. Participants were assigned to one of four possible conditions, a 

short auditory condition, a long auditory condition, a short visual condition, and a long 

visual condition. Each of the streams were unimodal, such that a participant only saw 

images or listened to audio. Participants were randomly assigned a standard (one of the 
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five auditory stimuli if they were in an auditory condition or one of the five visual stimuli 

if they were in a visual condition). The stimuli streams consisted of 360 trials in total, and 

of which 80 (20%) were unimodal oddballs (i.e., 20 of each non-standard visual 

stimulus). Participants were instructed to press the spacebar on the computer every time 

the either saw an image or heard a sound that was different from their standard. 

Participants reaction times and responses were recorded.  
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