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Abstract	

Marine	microbial	communities	influence	global	biogeochemical	cycles	by	coupling	

the	transduction	of	free	energy	to	the	transformation	of	Earth’s	essential	bio-

elements:	H,	C,	N,	O,	P,	and	S.	The	web	of	interactions	between	these	processes	is	

extraordinarily	complex,	though	fundamental	physical	and	thermodynamic	

principles	should	describe	its	dynamics.	In	this	collection	of	5	studies,	aspects	of	the	

complexity	of	marine	microbial	metabolism	and	physiology	were	investigated	as	

they	interact	with	biogeochemical	cycles	and	direct	the	flow	of	energy	within	the	

Station	ALOHA	surface	layer	microbial	community.	In	Chapter	1,	and	at	the	broadest	

level	of	complexity	discussed,	a	method	to	relate	cell	size	to	metabolic	activity	was	

developed	to	evaluate	allometric	power	laws	at	fine	scales	within	picoplankton	

populations.	Although	size	was	predictive	of	metabolic	rates,	within-population	

power	laws	deviated	from	the	broader	size	spectrum,	suggesting	metabolic	diversity	

as	a	key	determinant	of	microbial	activity.	In	Chapter	2,	a	set	of	guidelines	was	

proposed	by	which	organic	substrates	are	selected	and	utilized	by	the	heterotrophic	

community	based	on	their	nitrogen	content,	carbon	content,	and	energy	content.	A	

hierarchical	experimental	design	suggested	that	the	heterotrophic	microbial	

community	prefers	high	nitrogen	content	but	low	energy	density	substrates,	while	

carbon	content	was	not	important.	In	Chapter	3,	a	closer	look	at	the	light-dependent	

dynamics	of	growth	on	a	single	organic	substrate,	glycolate,	suggested	that	growth	

yields	were	improved	by	photoheterotrophy.	The	remaining	chapters	were	based	

on	the	development	of	a	genome-scale	metabolic	network	reconstruction	of	the	

cyanobacterium	Prochlorococcus	to	probe	its	metabolic	capabilities	and	quantify	
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metabolic	fluxes.	Findings	described	in	Chapter	4	pointed	to	evolution	of	the	

Prochlorococcus	metabolic	network	to	optimize	growth	at	low	phosphate	

concentrations.	Finally,	in	Chapter	5	and	at	the	finest	scale	of	complexity,	a	method	

was	developed	to	predict	hourly	changes	in	both	physiology	and	metabolic	fluxes	in	

Prochlorococcus	by	incorporating	gene	expression	time-series	data	within	the	

metabolic	network	model.	Growth	rates	predicted	by	this	method	more	closely	

matched	experimental	data,	and	diel	changes	in	elemental	composition	and	the	

energy	content	of	biomass	were	predicted.	Collectively,	these	studies	identify	and	

quantify	the	potential	impact	of	variations	in	metabolic	and	physiological	traits	on	

the	mêlée	of	microbial	community	interactions.						
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Background	and	motivation	

Microbial	control	of	the	Earth	system	

Earth	teems	with	microbial	life.	From	the	hot	basement	fluids	deep	within	

the	oceanic	crust	(Jungbluth	et	al.,	2013)	to	the	frigid	air	currents	of	the	upper	

stratosphere	(Shivaji	et	al.,	2006),	microbes	thrive	in	almost	any	space,	no	matter	

how	seemingly	inhospitable,	between	the	mantle	and	the	mesosphere.	Wherever	a	

redox	potential	is	found,	microbes	have	designed	an	energy	transduction	‘machine’	

to	flourish.	Of	course,	construction	of	such	a	machine	requires	access	to	basic	

elemental	resources	–	H,	C,	N,	O,	P,	S,	as	well	as	a	selection	of	transition	metals.	As	

with	any	machine,	its	construction	also	requires	instructions	–	the	genetic	code	–	

and	assembly	and	repair	–	the	thousands	of	intermediate	biochemical	reactions	

collectively	known	as	metabolism.	Driven	by	the	second	law	of	thermodynamics,	

microbial	dissipation	of	these	redox	potentials	in	turn	drives	Earth’s	biogeochemical	

cycles	for	these	bio-elements.	Indeed,	microbes	are	both	the	architects	and	the	

engineers	of	the	chemistry	of	Earth’s	crust.	

Earth	is	approximately	a	thermodynamically	closed	system;	that	is,	its	

boundaries	exchange	heat	and	energy	but	not	mass	(to	any	appreciable	extent	in	the	

modern	geological	past).	As	such,	the	redox	gradients	and	free	energy	which	sustain	

life	are	ultimately	fueled	by	absorption	of	solar	radiative	energy	(although	‘boutique	

metabolisms’	reducing	radionuclides	exist;	Lovely	et	al.,	1991),	maintaining	the	

Earth	system	away	from	the	cataclysmic	evenness	of	thermodynamic	equilibrium.	

Within	the	Earth	system,	however,	exists	an	interconnected	web	of	open	systems;	

the	land,	atmosphere,	and	oceans	exchange	both	mass	and	energy,	and	as	such	their	
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microbial	inhabitants	grow	proximally	on	free	energy	sources	and	bio-elements	

generated	both	locally	and	from	system	boundaries.	In	the	global	oceans,	organic	

matter,	gasses,	minerals	and	nutrients	are	deposited	from	the	atmosphere,	

transported	from	coastlines,	and	ventilated	from	the	seabed.	This	material,	given	the	

availability	of	a	suitable	redox	pairing,	can	supply	the	chemical	potential	energy	to	

support	microbial	growth,	as	is	observed	at	the	coastal	margins,	in	hydrothermal	

vent	systems,	and	near	the	sediment	water	interface.	In	the	vast	central	regions	of	

the	major	oceanic	basins,	however,	the	absorption	of	photons	by	light-harvesting	

microbes	within	the	upper	2%	of	the	water	column	supplies	the	overwhelming	

majority	of	free	energy	for	the	microbial	community,	and	the	rest	of	the	food	web.		

Microbial	transduction	of	radiative	energy	to	chemical	potential	energy	

functions	by	charge	separation	across	a	membrane.	Either	through	the	water	

reducing	reactions	of	oxidative	photosynthesis	or	through	chromophore	

photoreduction	and	subsequent	ion	translocation,	an	electrochemical	chemiosmotic	

gradient	is	established.	The	resulting	kinetic	force,	often	in	the	form	of	a	proton	

motive	force,	is	exerted	on	specialized	proteins	embedded	in	intracellular	

membranes	which	store	a	portion	of	that	kinetic	energy	in	the	phosphoanhydride	

bonds	of	the	universal	energy	carrier,	adenosine	triphosphate	(ATP).	ATP	is	

ultimately	the	energy	‘currency’	for	all	cellular	activities,	distributing	chemical	

potential	energy	for	the	synthesis	of	macromolecular	structures,	or	to	activate	non-

spontaneous	biochemical	reactions.	Some	of	this	material	can	then	be	oxidized	by	

other	microbes	to	synthesize	ATP,	thus	feeding	the	ocean	food	web,	though	the	
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ultimate	fate	of	the	chemical	potential	energy	is	heat	radiated	back	to	the	emptiness	

of	space.		

	

Biogeochemical	cycles	in	the	global	oceans	

	 All	six	of	the	major	bio-elements,	H,	C,	N,	O,	P,	and	S,	undergo	microbially-

mediated	but	thermodynamically	constrained	redox	reactions,	though	P	was	only	

recently	recognized	to	belong	to	that	list	(Karl,	2014).	Within	the	global	oceans,	all	

six	major	bio-elements	and	the	transition	metals	Fe	and	Co	can	limit	microbial	

growth	rates	or	yields,	though	H	limitation	is	uncommon	(c.f.,	Nishihara	et	al.,	2001).	

Each	of	the	bio-elements	is	present	in	a	variety	of	forms	in	the	oceans;	as	inorganic	

monomers,	complexed	with	minerals,	or	bound	within	the	organic	molecules	of	both	

living	cells	and	in	extracellular	medium.	The	dissolved	organic	matter	pool,	the	

extracellular	conduit	which	links	microbial	community	metabolism,	is	composed	of	

thousands	of	chemically	distinct	species	(Mopper	et	al.,	2007).	These	various	forms	

are	produced,	consumed	and	transformed	by	microbes,	photochemical	processes	

and	other	abiotic	equilibrium	reactions.	Furthermore,	each	form	is	unevenly	

distributed	in	both	space	and	time.	Spatially,	net	biological	production	and	

consumption	processes,	transport	by	ocean	currents,	sinking	or	floating	particles,	

and	diffusive	processes	drive	their	distribution.	Temporally,	preferential	use	and	

production	by	microbes	and	differences	in	molecular	stability	and	solubility	(due	to	

e.g.,	temperature,	light,	salinity)	result	in	molecular	half-lives	spanning	the	order	of	

minutes	to	millennia.	Thus	it	is	unsurprising	that	the	details	of	such	an	

interconnected	web	of	elemental	cycles	are	not	completely	understood.		
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	 The	central	gyres	of	the	major	ocean	basins,	due	in	part	to	their	isolation	

from	coastal	runoff,	and	in	part	to	the	depth	of	the	permanent	thermocline,	are	

relatively	depleted	of	the	bio-elements	N,	P,	Fe,	and	Co.	In	the	North	Pacific	

Subtropical	Gyre	(NPSG),	Earth’s	largest	contiguous	biome,	vertical	exchange	from	

the	nutrient-rich	ocean	interior	to	the	nutrient-poor	surface	layer	is	largely	

insulated	by	thermal	stratification	resulting	from	a	strong	atmospherically	forced	

temperature	gradient	which	prevents	winter	mixing	depths	in	excess	of	the	top	of	

the	thermocline.	Thus,	the	input	of	“new”	boundary	supplied	bio-elements	in	the	

surface	layer	of	the	oligotrophic	regions	is	small	relative	to	thermal	wind	driven	

upwelling	regions,	coastal	margins,	and	higher	latitudes	where	seasonal	forcing	

drives	convective	winter	mixing	to	form	a	seasonal	thermocline	(Dutkiewicz	et	al.,	

2005;	Falkowski	et	al.,	1998).	Instead,	new	nutrients	are	supplied	by	episodic	

entrainment	from	mesoscale	features	like	eddies	(Johnson	et	al.,	2010)	and	sub-

mesoscale	features	like	filaments	and	fronts	(Guidi	et	al.,	2012;	Ascani	et	al.,	2013).	

New	nitrogen	is	also	supplied	by	nitrogen	fixation	(Dugdale	et	al.,	1961),	although	

this	was	considered	a	negligible	source	(Dugdale	and	Goering,	1967)	until	recently	

(summarized	in	Karl	et	al.,	2008).	Supply	of	new	nutrients	by	horizontal	advection,	

zooplankton	vertical	migration,	negatively	buoyant	particles,	precipitation	and	

atmospheric	deposition	are	all	potentially	important	sources,	though	their	relative	

contributions	are	poorly	constrained.	Collectively,	these	boundary-supplied	sources	

of	new	nutrients	support	net	biological	stock	size	increases,	however	the	majority	of	

microbial	growth	demands	are	met	by	the	highly	efficient	recycling	of	energy	and	

bio-elements	within	a	microbial	loop	(Azam	et	al.,	1983),	described	in	more	detail	in	
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the	next	section.	Processes	which	decouple	the	stoichiometry	of	the	bio-elements,	

including	variations	in	biomass	composition,	production	rates,	and	consumption	

rates,	cause	imbalance	in	availability	and	effect	the	functioning	of	the	microbial	loop.			

Undersampling	remains	a	challenge	to	ocean	biogeochemistry	and	microbial	

oceanography;	while	increasingly	detailed	molecular	methods	have	been	adopted,	

environmental	sensors	and	the	proliferation	of	unmanned	sample	collection	

vehicles	have	not	kept	pace.	As	it	has	been	since	the	Challenger	Expedition	of	the	

mid	1800’s,	microbial	processes	are	conducted	at	sea,	thus	limiting	the	scope	of	

observations	to	Eulerian	time-series	sites	and	surveys.	Station	ALOHA	(A	Long-term	

Oligotrophic	Habitat	Assessment)	and	the	Bermuda	Atlantic	Time-series	Study	site	

were	chosen	during	the	J-GOFS	era	(Joint	Global	Ocean	Flux	Study)	as	approximately	

representative	of	broad	central	regions	of	the	NPSG	and	North	Atlantic	Subtropical	

Gyre,	respectively.	Station	ALOHA,	home	to	the	Hawaii	Ocean	Time-series	program,	

has	been	visited	at	approximately	monthly	intervals	for	nearly	three	decades	to	

regularly	characterize	a	suite	of	‘core’	physical,	chemical,	and	biological	processes,	

and	to	contextualize	numerous	experiments	and	observations.	Insights	gleaned	

from	the	BATS	and	HOT	programs	have	fundamentally	transformed	understanding	

of	the	role	of	the	oceans	in	the	Earth	system	(Steinberg	et	al.,	2001;	Karl	and	Church,	

2014).	Perhaps	as	new	sensors	and	autonomous	platforms	are	developed,	

resolution	of	processes	occurring	at	frequencies	and	spatial	resolutions	beyond	the	

capabilities	of	research	vessels	will	become	accessible.			
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Microbial	engineers	in	the	NPSG	

	 Fueled	by	solar	energy	capture	and	an	often	fleeting	supply	of	essential	bio-

elements,	the	microbial	loop	consists	of	more	than	37,000	microbial	species	

(Sunagawa	et	al.,	2015)	from	all	three	domains	of	life	–	bacteria,	archaea,	and	

eukaryota.	In	the	classical	view	(Azam	et	al.,	1983),	small	oxygenic	

photosynthesizers	release	dissolved	organic	carbon	which	is	subsequently	

consumed	by	oxidative	respiration	from	heterotrophic	bacteria,	with	inorganic	ions	

like	ammonium	and	phosphate	as	byproducts.	These	inorganic	nutrients	in	turn	

support	the	growth	requirements	of	the	photosynthesizers.	Population	sizes	of	both	

groups	are	tightly	regulated	by	nanoflagellate	grazing,	effectively	reducing	the	

transfer	of	carbon	to	higher	trophic	levels.	Additionally,	since	the	particle	size	

spectrum	is	small,	sinking	velocities	are	low	and	only	a	small	fraction	of	the	primary	

production	is	exported	to	the	mesopelagic.	Although	original	microbial	loop	concept	

remains	approximately	valid,	the	contemporary	view	is	complicated	by	the	

prevalence	of	mixed	metabolisms	like	photoheterotrophs	and	mixotrophic	

nanoflagellates.	Furthermore,	the	‘viral	shunt’	and	other	processes	leading	to	cell	

lysis	(e.g.,	programmed	cell	death),	and	even	the	lines	of	communication	within	and	

between	microbial	populations	affect	the	retention	of	the	bio-elements	within	the	

microbial	loop.	As	understanding	of	the	interactions	of	marine	microbiomes,	

biogeochemical	cycles,	and	the	flow	of	energy	evolves,	so	too	must	the	models	which	

describe	them.	A	move	beyond	coarse	allometric	models	and	NPZ	(nutrient,	

phytoplankton,	zooplankton)	models	is	needed,	but	formalizing	the	many	

interactions	mathematically	is	a	daunting	task.		
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Motivation	

The	motivation	for	my	dissertation	was	to	investigate	several	aspects	of	the	

complexity	of	marine	microbial	metabolism	and	physiology	as	they	interact	with	

biogeochemical	cycles	and	direct	the	flow	of	energy	within	the	Station	ALOHA	

surface	layer	microbial	community.	The	order	of	the	chapters	was	chosen	to	

progressively	look	deeper	into	the	complexity	of	metabolism,	beginning	with	the	

broadest	scale	–	allometry.	In	Chapter	1,	we	develop	a	method	coupling	high-

resolution	size	fractionation	to	flow	cytometrically	derived	cell	carbon	quotas	and	

radioisotope	tracer	incubations	to	determine,	at	fine	scale,	the	relationship	between	

cell	size	and	metabolic	activity,	within	populations	of	picoplankton	at	Station	

ALOHA.	Next,	in	Chapter	2,	we	develop	a	set	of	guidelines	by	which	heterotrophic	

microbial	populations	select	organic	substrates	from	the	dissolved	organic	matter	

pool.	In	Chapter	3,	we	focus	on	the	dynamics	of	one	substrate,	glycolate,	and	the	role	

of	light	in	its	metabolism.	In	the	remaining	two	chapters	we	take	one	final	step	

closer,	focusing	in	on	the	metabolism	of	one	particular	organism,	Prochlorococcus.	In	

Chapter	4,	we	explore	the	evolution	of	a	Prochlorococcus	metabolic	network	and	its	

adaptations	to	growth	at	low	phosphate	concentrations.	Finally,	in	Chapter	5,	we	

incorporate	gene	expression	time-series	data	into	our	Prochlorococcus	metabolic	

model	to	predict	physiological	changes	and	metabolic	fluxes	at	diel	time	scales.		
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Chapter	1	

Size	dependence	of	physiology	and	metabolism	within	marine	picoplankton	

populations	
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Abstract	

	 Cell	size	is	increasingly	applied	as	a	convenient	parameterization	of	

ecosystem	models,	and	is	widely	applicable	to	constraining	the	activity	of	organisms	

spanning	large	size	intervals.	However,	the	size	structure	of	the	majority	of	the	

marine	picoplankton	assemblage	is	narrow	and	at	the	lower	limit	of	the	empirical	

allometric	relationships	established	so	far.	We	applied	a	fine-resolution	size	

fractionation	method	to	estimate	the	photophysiological	attributes	of	North	Pacific	

Subtropical	Gyre	microbial	assemblages.	Group-specific	carbon	retained	on	each	

filter	was	quantified	by	flow	cytometric	conversion	of	light	scatter	to	cellular	carbon	

quotas.	Median	carbon	quotas	were	31.5,	36.2,	and	9.8	fg	C	cell-1	for	surface	

populations	of	Prochlorococcus,	high-scatter	bacteria,	and	low-scatter	bacteria,	

respectively.	Carbon-specific	rates	of	primary	production,	using	the	14C	method,	and	

phosphate	transport,	using	32P	radiotracers,	as	a	function	of	cell	size	resulted	in	

negative	power	scalings	(b)	within	populations	of	the	picocyanobacterium	

Prochlorococcus	and	non-pigmented	bacteria	of	b	=	–1.3	and	b	=	–1.1,	respectively.	

These	findings	are	in	contrast	to	the	positive	empirical	power	scaling	comprising	

the	broader	prokaryote	category	(b	=	0.3),	and	point	to	intricate	and	dynamic	

variability	in	cell	physiology	and	metabolism	within	these	important	microbial	

groups.											
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1.1	Introduction	

The	empirical	scaling	of	metabolic	rates	to	body	size,	in	the	form	Y	=	Y0Mb,	

has	been	carefully	studied	for	nearly	two	centuries	(Sarrus	and	Rameaux,	1839;	

Robiquet	and	Tillaye,	circa	1839	in	Klieber,	1932).	When	organisms	spanning	more	

than	20	orders	of	magnitude	in	body	size	are	compared,	an	organism-specific	

scaling	exponent	borg	of	3/4	quite	accurately	predicts	metabolic	rates.	This	

allometric	scaling	‘law’	has	been	explained	by	the	fractal	nature	of	vascular	

transport	abridging	surface	area-dependent	(proportional	to	borg	=	2/3)	and	

volume-dependent	(proportional	to	an	isometric	borg)	rates	(West	et	al.,	1997).	More	

recently,	other	scaling	exponents	which	better	describe	prokaryotes	(borg	>	1)	and	

protists	(borg	=	1)	have	been	added,	citing	genome	size	and	endosymbiotic	surface	

area	as	constraints	(DeLong	et	al.,	2010).	Convenient	as	it	is	in	reducing	the	

dimensionality	of	ecosystem	models,	the	allometric	scalings	are	a	lynchpin	of	the	so-

called	Metabolic	Theory	of	Ecology	(MTE;	Brown	et	al.,	2004a)	and	are	leveraged	for	

maximum	intrinsic	growth	rates	and	substrate	transport	rates	(Aksnes	and	Egge,	

1991;	Litchman	et	al.,	2007;	Finkel	et	al.,	2010;	Edwards	et	al.,	2012),	assimilation	

numbers	(Finkel,	2001),	and	elemental	stoichiometry	(Finkel	et	al.,	2010;	Marañon	

et	al.,	2013)	by	‘trait-based’	ocean	ecosystem	models	(Follows	and	Dutkiewicz,	

2011).	An	extensive	review	of	allometric	relationships	in	microbial	oceanography	is	

found	elsewhere	(Marañon,	2015).		

As	Brown	and	co-authors	of	the	original	MTE	paper	(Brown	et	al.,	2004a)	

responded	to	a	very	active	forum	on	the	topic	(Brown	et	al.,	2004b),	“When	body	

mass	differs	by	only	two-	or	threefold,	or	temperature	varies	by	only	a	degree	or	
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two,	other	factors	can	assume	equal	or	greater	importance.”	At	Station	ALOHA,	a	site	

quite	similar	to	vast	regions	of	the	worlds	oceans,	microbial	particle	size	

distributions	within	the	range	0.2	–	1.0	μm	comprise	most	of	the	biomass	and	

photosynthesis	(Rii	et	al.,	2016),	and	temperatures	vary	seasonally	by	roughly	3	°C.	

Accordingly,	it	should	be	established	if	these	‘other	factors,’	namely	metabolism,	

physiology,	and	community	interactions,	are	indeed	important.		

	 In	the	surface	layer	at	Station	ALOHA,	the	majority	of	cells	within	the	0.2	–	

1.0	μm	size	interval	belong	to	the	cyanobacterial	genus	Prochlorococcus	and	the	

alphaproteobacterial	orders	Pelagibaterales	(SAR11	clade)	and	Rhodobacterales	

(Roseobacter	clade;	Ottesen	et	al.,	2014).	We	asked	if	allometric	relationships	could	

be	used	to	predict	within-species	metabolic	rates	for	Prochlorococcus	and	small	

bacteria,	and	whether	these	relationships	are	consistent	within	the	broader	

prokaryote	size	interval.	We	used	0.05	μm	size	fractionation	of	radioisotope	tracer	

incubations	and	subsequent	flow	cytometric	analysis	of	cellular	carbon	spectra	

retained	on	filters	in	the	interval	0.10	–	1.00	μm	to	calculate	carbon-specific	

metabolic	rates	as	a	function	of	body	size.	Our	results	indicate	a	negative	power	law	

relating	carbon-specific	rates	of	primary	production	and	phosphate	uptake	to	body	

size	within	populations,	in	contrast	to	a	positive	power	law	found	at	broader	

prokaryote	body	size	scales.		
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1.2	Methods	

1.2.1	Study	site	and	sample	collection	

	 Field	experiments	were	conducted	on	several	expeditions	(Cruise	1	-	

September	2013,	Cruise	2	-	December	2013,	Cruise	3	-	May	2015)	at	Station	ALOHA,	

a	site	due	North	of	Kahuku	Point,	O’ahu	(22°	45’	N,	158°	00’	W).	Water	samples	were	

collected	using	a	rosette	of	PVC	Bullister	bottles	mounted	on	a	frame	equipped	with	

dual	conductivity	sensors,	temperature	sensors,	pressure	sensors,	oxygen	optodes,	

transmissometers,	and	triplet	fluorometers	(SBE	911plus,	Sea-Bird	Electronics,	

Inc.).	Fast	repetition	rate	fluorometry	measurements	and	experiments	designed	to	

compare	the	effectiveness	of	different	filtration	methods	were	conducted	on	Cruise	

1.	14C-PP	and	32P-PO43-	experiments	were	conducted	on	Cruise	3.		

	

1.2.2	Optical	measurement	of	photosynthetic	parameters	

The	cross	sectional	area	of	photosystem	II	(σPSII)	and	the	ratio	of	variable	

fluorescence	to	maximal	fluorescence	emission	(FV/FM)	were	measured	by	fast	

repetition	rate	fluorometry	(FRRF;	Kolber	et	al.,	1998)	using	a	spectrally	resolved	

bench-top	FRRF	with	excitation	at	445±20,	470±25,	503±30,	and	530±35	nm	bands	

(described	in	detail	in	Wilson	et	al.,	2012).	Cell	suspensions	of	in-line	filtration	

isolated	fractions	were	dark	adapted	for	30	minutes	prior	to	analysis.	FV/FM	is	

calculated	by	FRRF	as	the	ratio	of	the	variable	multispectral	fluorescence	(the	

difference	between	maximum	and	dark	adapted	fluorescence	yields)	and	the	

maximum	fluorescence,	when	all	available	photosystem	II	reaction	centers	are	

reduced.	σPSII	values	are	reported	for	470/40	nm	excitation	only.			
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1.2.3	14C-primary	production	measurements		

Rates	of	inorganic	carbon	assimilation	were	measured	by	the	H14CO3-	tracer	method	

according	to	standard	Hawaii	Ocean	Time-series	protocols	(Karl	and	Dore,	2001;	

http://hahana.soest.hawaii.edu/hot/methods/results.html).	500	ml	seawater	

samples	collected	in	triplicate	from	15	m	were	inoculated	with	10	μCi	H14CO3-	and	

incubated	for	12	hours	beginning	prior	to	sunrise	and	terminated	after	sunset.	

Deckboard	polycarbonate	incubators,	shaded	to	approximately	the	blue	light	

attenuation	at	15	m,	were	flushed	with	surface	seawater	to	maintain	in	situ	

temperatures.	Incubations	were	terminated	by	filtration	(details	below).	A	100	μl	

specific	activity	sample	was	collected	from	each	incubation	and	added	to	a	20	ml	

scintillation	vial	containing	2	ml	β-phenethylamine,	a	CO2	trap.	Filters	were	placed	

in	20	ml	scintillation	vials,	acidified	to	0.1	N	hydrochloric	acid	and	allowed	to	vent	

for	24	hours	prior	to	liquid	scintillation	counting.	This	measurement	approximates	a	

rate	between	net	and	gross	primary	production	(Marra,	2002).	

	

1.2.4	32P-PO43-	uptake	measurements	

Phosphate	assimilation	rates	were	measured	using	the	radioisotope	tracer	32P-PO43-	

(Bjorkman	and	Karl,	2003).	500	ml	seawater	samples	were	collected	in	triplicate	

from	15	m	and	inoculated	with	10	μCi	carrier-free	32P-PO43-,	which	was	

approximately	0.002	%	of	the	ambient	soluble	reactive	phosphorus	concentration.	

Incubations	were	conducted	for	4.5	h	as	described	above,	from	0900-1330	local	
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time.	Incubations	were	again	terminated	by	filtration	(details	below)	and	processed	

similarly	to	14C-PP	filters.		

	

1.2.5	Culture	H14CO3-	assimilation	experiment	

Prochlorococcus	strain	MIT9301	was	acclimated	for	several	generations	to	growth	

in	PRO99	medium	(Moore	et	al.,	2007)	at	24	°C	in	a	sinusoidal	14	h	light	:	10	h	dark	

cycle	reaching	a	maximum	irradiance	of	20	μmol	quanta	m-2	s-1	blue	light.	1	ml	

aliquots	of	culture	suspension	were	inoculated	with	10	μCi	H14CO3-	for	1	h	and	

terminated	by	0.5	%	paraformaldehyde	fixation	in	the	dark	at	4	°C	for	30	minutes.	

Fixed	samples	were	diluted	to	100	ml	0.2	μm	filtered	seawater	prior	to	filtration	

(details	below).	Filters	were	processed	identically	to	the	above	description	for	

natural	assemblages.	This	shorter	interval	incubation	more	closely	approximates	

gross	primary	production,	and	therefore	cannot	be	compared	directly	to	12	h	14C-PP	

field	measurements.				

	

1.2.6	Custom	membranes	

A	series	of	“Plastics-Irradiated-Etched”	(PIE;	Karl,	2007)	47	mm	diameter	

polycarbonate	membrane	filters	spanning	the	pore-size	range	0.10	–	1.00	μm	at	0.05	

μm	intervals	were	custom	fabricated	(Sterlitech	Corp.)	to	finely	size	fractionate	

particles.	To	validate	manufacturer	stated	pore	sizes,	filter	surfaces	(shiny	side)	

were	imaged	by	scanning	electron	microscopy	(SEM;	Hitachi	S-4800	field	emission	

scanning	electron	microscope;	Hitachi)	fitted	with	a	silicon	drift	detector	(Oxford	

INCA	X-Act	energy	dispersive	spectroscope;	Oxford).	Images	were	analyzed	by	
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automated	detection	of	pore	edges	and	measuring	diameter	of	at	least	20	pores	per	

filter	using	embedded	scale	bars	(Fiji,	Schindelin	et	al.,	2012).		

	

1.2.7	Filtration	

Several	filtration	methods	were	employed,	as	follows:	

In-line	filtration	–	This	approach	was	designed	not	for	quantitative	sample	recovery,	

but	rather	to	concentrate	filter	fractions	with	as	narrow	a	size	spectrum	as	possible.	

A	series	of	10	47	mm	diameter	polycarbonate	filter	holders	(Nalgene,	Thermo	

Fisher	Scientific	Inc.),	equipped	with	Luer	bleed	ports,	were	plumbed	to	the	spigot	

of	a	10	L	carboy	containing	the	seawater	sample	at	the	inlet	end	and	dispensed	by	

peristaltic	pumping	to	the	mouth	of	a	10	L	carboy	receptacle	at	the	outlet	end	

(Figure	1.1).	Filter	holders	were	housed	in	a	custom-built	rack	mounted	to	lab	

Unistrut.	Filter	pore	sizes	were	arranged	from	largest	(1.00	μm)	to	smallest	(0.10	

μm),	again	at	0.05	μm	intervals.	The	entire	set	of	19	pore	sizes	could	not	practically	

be	joined	together,	so	two	intervals	(1.00	μm	to	0.55	μm,	0.55	μm	to	0.10	μm)	were	

filtered	separately.	A	technique	to	improve	the	retention	of	only	particles	with	

diameters	within	each	pore	size	interval	was	as	follows:	following	sample	filtration,	

particles	were	resuspended	by	repeated	purging	of	the	hold-up	volume	of	the	filter	

holder	using	a	syringe	attached	to	the	bleed	ports.	Filters	were	then	back-flushed	by	

reversing	the	flow	direction	and	drawing	from	a	10	L	carboy	of	0.2	μm	filtered	

seawater.	This	procedure	was	repeated	three	times	before	sampling.	

Sequential	filtration	–	This	approach	was	designed	for	quantitative	sample	recovery,	

for	analyses	sensitive	enough	to	detect	filtered	fractions	with	very	little	retained	
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biomass.	A	500	ml	sample	was	filtered	by	gentle	vacuum	(<	70	mBar	differential)	

using	a	self-contained	filter	holder	and	receiver.	The	collected	filtrate	was	then	

filtered	with	the	next	smaller	pore	size	filter	using	a	separate	filter	holder,	and	this	

process	repeated	until	all	fractions	were	collected.		

Parallel	filtration	–	This	approach	was	designed	for	less	sensitive	analyses,	but	

provides	only	semi-quantitative	recovery.	Although	the	filtration	setup	is	identical	

to	the	sequential	filtration	method,	unfiltered	sample	is	instead	split	into	500	ml	

volumes	and	filtered	separately.		

	

1.2.8	Flow	cytometry	

Samples	for	flow	cytometry	were	collected	from	whole	seawater	samples	and	from	

filtrate	fractions.	For	the	in-line	filtration	method,	samples	were	collected	from	the	

filter	holder	dead	volume	using	a	syringe	attached	to	the	bleed	port	after	

resuspension.	In	sequential	or	parallel	filtration,	samples	were	collected	by	pipeting	

from	the	receiver.	1	ml	samples	were	fixed	with	paraformaldehyde	(0.2	μm	syringe	

filtered;	0.5	%	final	concentration)	in	the	dark	at	4	°C	for	30	minutes	prior	to	flash	

freezing	in	liquid	nitrogen	and	storage	at	-80	°C.	Samples	were	analyzed	using	a	jet-

in-air	Influx	Cell	Sorter	(BD	Biosciences,	Inc.)	equipped	with	a	small	particle	

detector	(100X	magnification	objective	in	the	forward-angle	light	scatter	path)	and	

200	mW	457	nm	and	488	nm	lasers	(Coherent,	Inc.)	aligned	through	the	same	

pinhole.	Analog	pulse	height	signals	from	530/20	nm,	580/30	nm,	and	692/40	nm	

bandpass	filters	were	log	amplified	from	photomultiplier	tube	detectors	

(Hamamatsu,	Inc.)	and	data	were	collected	in	listmode	files	using	the	operating	



	 21	

software	Spigot	(BD	Biosciences,	Inc.).	Particles	were	quantified	and	discriminated	

based	on	their	autofluorescence	and	light	scattering	properties	(Casey	et	al.,	2013),	

as	well	as	their	fluorescence	of	the	nucleic	acid	stain	SYBR	Green	I	(Invitrogen).	0.53	

μm	polystyrene	calibration	particles	impregnated	with	Nile	Red	dye	(Spherotech,	

Inc)	were	used	for	optical	and	fluidic	alignment	and	as	an	internal	scattering	

standard.	Approximately	300	μl	of	unstained	and	SYBR	Green	I	stained	sample	was	

acquired	to	ensure	a	sufficient	number	of	events	were	recorded.	Concentrations	

were	determined	using	the	gravimetric	method	(Casey	et	al.,	2013).		

			

1.2.9	Data	analysis	

A	method	for	quantifying	population-specific	carbon	retained	on	each	filter	was	

developed	and	is	available	as	a	Matlab	toolbox	(Supplementary	File	1).	The	method	

converts	forward-angle	light	scatter	(FSC)	signals	to	cellular	carbon	content	using	a	

previously	determined	calibration	curve	(Casey	et	al.,	2013).	FSC	data	of	gated	

populations	and	internal	standard	particles	are	used	to	generate	normalized	FSC	

histograms.	To	minimize	spurious	events	at	the	distribution	extremes	(which	can	be	

important	for	large,	rare	particles),	distributions	were	smoothed	using	a	normal	

kernel	function	with	bin	widths	scaled	to	the	coefficient	of	variation	of	the	internal	

standard	particles,	and	the	number	of	bins	set	equal	to	the	number	of	FSC	channels	

spanning	95%	of	the	distribution.	After	applying	the	carbon-FSC	calibration,	the	

carbon	transformed	scale	is	then	used	to	generate	cellular	carbon	spectra	for	each	

filtrate	sample.	The	carbon	spectrum	of	each	filtrate	is	then	subtracted	from	the	next	
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largest	filtrate	spectrum	and	the	residual	spectrum	is	integrated	to	calculate	total	

particulate	carbon	caught	on	each	filter.		

	

1.3	Results	

1.3.1	Comparison	of	filtration	approaches	 	

SEM	imaging	was	used	to	quantify	the	distribution	of	pore	sizes	of	a	

representative	filter	from	each	batch	of	each	pore	size	filter	used	in	this	study.	Filter	

pore	sizes	were	on	average	within	12	–	16%	of	manufacturer	specifications	in	the	

0.10	–	0.35	μm	interval	and	3	–	7	%	in	the	0.40	–	1.00	μm	interval.	Model	I	least	

squares	regression	of	median	pore	sizes	as	a	function	of	manufacturer	specified	

pore	sizes	was	not	significantly	different	from	unity	(p	=	0.81;	Figure	1.2)	and	no	

residuals	trend	was	apparent.	Three	filtration	techniques	–	in-line,	parallel,	and	

sequential	(see	Methods	for	a	description	of	these	designs)	–	were	tested	for	

separation	effectiveness	and	recovery.	The	in-line	filtration	approach,	especially	

with	resuspension	of	particles	from	the	filter	and	recursive	backflushing,	was	

necessary	to	adequately	isolate	size	fractions,	with	the	third	moment	of	FSC	(0.41	±	

0.19)	significantly	lower	than	parallel	(1.8	±	0.9)	or	sequential	filtration	(1.2	±	0.6)	

techniques	(Mann-Whitney	Test;	p	=	7e-5	and	p	=	2e-4,	respectively).	The	positive	

(right)	skewness	of	the	sequential	filtration	technique	is	important,	and	indicates	

that	particles	smaller	than	the	filter	pore	size	are	caught	on	polycarbonate	

membranes	(Figure	1.3).	Membrane	filtration	is	instead	best	suited	to	capturing	

particles	larger	than	the	pore	size,	though	overlapping	pores	were	frequent	(2	–	8	%	
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of	total	pores	imaged)	in	our	electron	micrographs.	These	particles	are	

contaminants	in	any	size	fractionation	experiment	using	this	filtration	technique.				

	

1.3.2	Separation	of	picoplankton	populations	

	 A	coarse	resolution	depth	profile	(surface,	150	m,	and	500	m)	collected	

during	Cruise	1	was	size	fractionated	to	test	whether	the	major	picoplankton	

populations	at	Station	ALOHA	(Prochlorococcus	and	non-autofluorescent	bacteria	

and	archaea;	for	brevity	we	will	refer	to	this	population	as	“bacteria”	herein)	could	

be	discretely	separated	by	size.	At	the	surface,	these	populations	overlapped	in	size	

spectra	almost	identically,	with	a	small	fraction	(3	%)	of	bacteria	present	in	the	0.30	

–	0.35	μm	fraction	where	Prochlorococcus	was	absent	(Figure	1.4).	The	bimodal	size	

spectra	of	Prochlorococcus	and	bacteria	is	a	striking	feature,	with	peaks	at	0.55	μm	

and	0.40	μm	in	both	populations.	For	Prochlorococcus,	this	distribution	is	likely	due	

to	the	cell	cycle	stage	distribution,	(this	interval	corresponds	to	a	1.8	–	2.6	fold	

change	in	cell	volume),	and	Prochlorococcus	is	known	to	exhibit	synchronous	

division	just	after	sunset	(Zinser	et	al.,	2009;	Waldbauer	et	al.,	2012;	Ribalet	et	al.,	

2015),	however	physiological	differences	between	strains	have	not	been	excluded.	

Synchronicity	in	natural	non-pigmented	bacterial	population	cell	division	has	not	

previously	been	reported.	At	150	m,	just	beneath	the	deep	chlorophyll	maximum	

depth	(approximately	125	m	during	Cruise	1),	Prochlorococcus	and	bacteria	were	

clearly	separated	unimodal	populations	with	only	10	%	of	Prochlorococcus	within	

the	0.25	–	0.50	μm	bacteria	fraction	and	7	%	of	bacteria	within	the	0.50	–	0.85	μm	

Prochlorococcus	fraction,	indicating	the	utility	of	this	method	for	e.g.,	down-stream	
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isotopic	or	physiological	measurements	at	this	depth.	At	500	m,	no	Prochlorococcus	

cells	were	detected,	but	a	bimodal	population	of	bacteria	(and	likely	archaea;	Karner	

et	al.,	2001)	was	detected.		

	

1.3.3	Size	spectrum	of	Prochlorococcus	photophysiology	

	 Fast	repetition	rate	fluorometry	of	in-line	filtration	isolated	picoplankton	

size	fractions	revealed	a	bimodal	distribution	of	maximum	photochemical	efficiency	

(FV/FM),	coincident	with	the	distribution	of	Prochlorococcus	cells,	despite	a	constant	

effective	cross	sectional	area	of	photosystem	II	(σPSII;	Figure	1.5).	σPSII	values	in	the	

Prochlorococcus	size	interval	0.35	–	0.85	μm	(503	±	27	A2).	FV/FM	values	spanned	

the	range	0.12	–	0.49	over	the	constant	σPSII	interval	of	0.35	–	0.85	μm,	which	

accounted	for	88	%	of	the	Prochlorococcus	population.	Both	σPSII	and	FV/FM	values	

were	consistent	with	previously	reported	results	from	nitrogen	replete	and	nitrogen	

deprived	Prochlorococcus	isolates	(σPSII	range	430	–	600	A2;	FV/FM	range	0.2	–	0.6;	

Steglich	et	al.,	2001).		

	

1.3.4	Size	spectrum	of	picoplankton	carbon	

	 Based	on	samples	from	25	m	during	Cruise	3,	cellular	carbon	content	

comprised	the	range	4	–	125	fg	C	cell-1	over	the	0.10	–	1.00	μm	pore	size	interval.	

The	resulting	carbon	density	of	cells	in	this	range	was	240	fg	C	μm3,	similar	to	

previously	reported	values	(references	compiled	in	Casey	et	al.,	2013)	which	range	

from	190	–	470	fg	C	μm3	with	a	median	value	of	228	fg	C	μm3	based	on	12	studies.	

Cell	carbon	quotas	were	log-normally	distributed,	and	centered	about	the	median	
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values	31.5,	36.2,	and	9.8	fg	C	cell-1	for	Prochlorococcus,	high-scatter	bacteria,	and	

low-scatter	bacteria,	respectively	(Table	1.1).	These	two	bacterial	populations	are	

often	referred	to	as	high	and	low	nucleic	acid	bacteria,	however	many	

configurations	are	possible,	and	we	unambiguously	refer	to	the	populations	by	their	

scattering	amplitude.	The	sum	of	carbon	retained	on	filters,	as	calculated	by	the	

histogram	subtraction	method	(described	in	Methods;	Figure	1.6	and	Figure	1.7),	

recovered	107	±	8	%	of	the	initial	picoplankton	carbon.	The	discrepancy	in	summed	

fractions	from	the	total	is	due	to	the	necessary	smoothing	function	applied	to	

forward-angle	light	scatter	distributions.	Prochlorococcus	contributed	68	±	2	%	(748	

±	18	nmol	C	L-1),	while	bacteria	and	Synechococcus	contributed	the	remainder	(23	±	

1	%	and	8	±	0	%,	respectively)	of	the	total	picoplankton	carbon	(1101	±	21	nmol	C	L-

1).	Exponentially	growing	Prochlorococcus	MIT9301	cells	were	markedly	larger	

(0.65	–	0.80	μm)	than	the	natural	population,	with	an	average	carbon	quota	of	57	fg	

C	cell-1.			

	

1.3.5	Size	spectrum	of	picoplankton	metabolic	rates	

	 Again	based	on	samples	from	25m	during	Cruise	3,	14C-PP	varied	by	roughly	

an	order	of	magnitude	over	the	Prochlorococcus	size	interval	(0.35	–	0.65	μm),	with	

maxima	coinciding	with	cell	number	and	carbon	retained	on	the	0.55	μm	filter	

(Figure	1.8).	Radioactivity	was	detectable	at	low	levels	in	the	0.15	–	0.35	μm	

interval,	where	few	(<	0.1	%)	or	no	Prochlorococcus	cells	could	be	detected,	likely	an	

indication	of	bacterial	uptake	of	recently	fixed	photosynthate	or	anapleurotic	

carbon	fixation.	Low	levels	of	14C-PP	at	larger	size	intervals	were	due	to	low	
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concentrations	of	small	Synechococcus	cells	as	well	as	Prochlorococcus	cells	caught	

on	larger	pore	size	filters	(20	%	of	total).	32PO43-	assimilation	also	varied	by	roughly	

an	order	of	magnitude	over	the	bacteria	and	Prochlorococcus	size	interval	(0.20	–	

0.65	μm),	with	maxima	coinciding	with	the	bacterial	cell	number	maximum	at	0.40	

μm,	but	not	the	carbon	maximum	at	0.55	μm	(Figure	1.9).	

	

1.3.6	Allometric	relationships	

	 Prochlorococcus	carbon	specific	14C-PP	rates	(nmol	C	L-1	h-1	[nmol	C	L-1]-1)	

and	picoplankton	carbon	specific	32PO43-	assimilation	rates	varied	as	a	power	law	

function	of	pore	size	converted	to	cell	volume	(YC	=	YC,0Mb,	where	C	is	the	cellular	

carbon	content);	the	calculated	exponent	b	was	-1.3	±	0.4	(p	=	2e-7)	and	-1.1	±	0.4	(p	

=	1e-5),	respectively	(Figure	1.10	and	Figure	1.11,	respectively).	By	weighting	

Prochlorococcus	carbon	specific	14C-PP	rates	to	the	Prochlorococcus	carbon	size	

spectrum,	the	mean	population	growth	rate	was	0.58	±	0.15	d-1,	similar	to	maximal	

growth	rates	of	high-light	adapted	ecotypes	in	culture	(0.63	±	0.06	d-1;	Moore	et	al.,	

1995),	though	not	as	high	as	recent	estimates	from	surface	waters	at	Station	ALOHA	

(0.7	–	0.9	d-1;	Ribalet	et	al.,	2015).	The	calculated	b	for	Prochlorococcus	MIT9301	

carbon	specific	H14CO3-	assimilation	rates	was	-2.2	(p	=	0.04;	Figure	1.12).	Growth	

rates	estimated	from	a	linear	scaling	of	H14CO3-	assimilation	rates	to	the	daily	

incubation	light	profile	were	0.31	d-1.		
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1.4	Discussion	

	 When	cautiously	interpreted,	size	fractionation	is	an	effective	tool	for	

probing	the	variability	of	physiology	and	metabolism	within	natural	food	web	

components	and,	at	the	resolution	utilized	in	this	study,	within	microbial	

populations.	Whatever	the	mechanism,	be	it	flow	impaction	or	pore	clogging,	

particles	smaller	than	the	filter	pore	size	are	retained;	depending	on	the	application,	

this	fraction	may	significantly	bias	size	fractionation	results	(Figure	1.3).	

Accounting	for	this	effect,	we	coupled	size	fractionation	of	radioisotope	incubations	

to	flow	cytometric	determinations	of	cellular	carbon	and	observed	significant	and	

non-monotonic	(size-independent)	variability	in	photophysiology	and	metabolic	

rates	within	natural	picoplankton	populations.		

	 Photophysiology	variability	within	the	natural	Prochlorococcus	population	

was	similar	to	the	variability	observed	between	nitrogen	stressed	and	nitrogen	

replete	laboratory	isolates,	suggesting	effects	on	photochemical	efficiency	are	due	to	

distributions	of	cell-cycle	stages	or	rather	due	to	photophysiological	differences	

between	individual	strains	or	‘ecotypes’,	although	the	latter	cannot	be	rejected.	

Constant	σPSII	indicates	a	uniform	physiological	status	of	PSII	reaction	centers	across	

the	size	spectrum,	and	is	inversely	related	to	FV/FM	as	a	function	of	nutrient	supply,	

within	algal	classes,	and	between	algal	classes	(summarized	by	Suggett	et	al.,	2009).	

Thus	it	is	intriguing	that	peaks	in	FV/FM	within	the	Prochlorococcus	population	were	

associated	with	two	cell	abundance	maxima,	coincidentally	separated	by	a	roughly	

2-fold	difference	in	cell	volume.	The	late	afternoon	sampling	time	coincides	with	the	

initiation	of	cell	division	in	natural	Prochlorococcus	populations	(Ribalet	et	al.,	2015)	
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is	suggestive	of	cell-cycle	associated	changes	in	photophysiology,	though	cytometric	

cell	cycle	analysis	was	not	performed	on	these	samples.		

	 The	relationship	between	carbon-specific	primary	productivity	or	phosphate	

assimilation	rates	and	cell	size	differed	in	our	study	from	those	predicted	by	the	

broader	prokaryote	allometric	relationship.	In	natural	Prochorococcus	populations,	

bacterial	populations,	and	a	Prochlorococcus	isolate	MIT9301,	the	exponents	were	

all	negative	(b	=	-1.3,	b	=	-1.1,	and	b	=	-2.2,	respectively),	rather	than	positive	(b	=	

0.30;	DeLong	et	al.,	2010),	suggesting	that	within-population	size	dependence	is	

independent	of	between-population	size	dependence.	In	both	natural	populations	

and	a	laboratory	isolate,	a	highly	negative	b	indicates	that	the	smallest	cells	are	

disproportionately	active.	In	the	case	of	Prochlorococcus,	which	is	phase	locked	to	

the	solar	cycle	for	initiation	of	cell	division,	it	is	possible	that	larger	cells	are	

arrested	in	cell	cycle	stage.	Remnants	of	the	previous	day’s	cycle,	perhaps	these	cells	

require	very	little	additional	resources	to	satisfy	the	remaining	carbon	and	energy	

quota,	and	are	simply	awaiting	the	signaling	cascade	to	initiate	genome	replication	

and	division.	Although	such	a	synchronicity	has	not	yet	been	reported	for	other	

bacterioplankton,	diel	rhythms	in	gene	expression	are	widespread	(Ottesen	et	al.,	

2014;	Aylward	et	al.,	2015)	and	may	include	replication.										

	 	The	empirical	allometric	power	law	is	a	useful	approximation	of	ecosystem	

function	when	the	size	distribution	of	organisms	spans	several	orders	of	magnitude.	

However,	the	universal	borg	=	¾	is	a	victim	of	the	Lumberjack	Problem	(emergent	

trends	when	considering	too	many	logs),	and	has	been	challenged	by	closer	

inspection	of	borg	within	and	between	microbial	groups	(DeLong	et	al.,	2010;	
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reviewed	in	Marañon,	2015).	Transformation	of	the	newly	accepted	group-specific	

power	functions	by	normalizing	rates	to	biomass	would	indicate	a	positive	b	(b	=	

0.30;	Maranon	et	al.,	2013)	within	the	small	prokaryotes,	a	near	zero	b	within	the	

protists,	and	b	=	-1/4	within	the	metazoans.	Is	it	then	reasonable	to	approximate	the	

metabolic	rates	of	prokaryotic	life	by	size	alone?	Put	differently,	is	the	evolution	of	

metabolic	diversity,	the	vast	physiological	differences	between	microbes,	and	the	

give-and-take	of	microbial	community	interactions	irrelevant?	

At	the	smallest	scales	(<	1	μm),	the	size	dependence	of	microbial	metabolism	

had	not	until	recently	(García	et	al.,	2015)	been	investigated	in	natural	marine	

bacterioplankton	populations,	and	thus	the	lower	extent	of	the	size	range	which	

applies	to	the	prokaryotes	b	=	0.30.	Using	flow	cytometric	calibration	of	cell	size	and	

the	spectrophotometric	determination	of	respiration	by	2-para(iodo-phenyl)-

3(nitrophenyl)-5(phenyl)	tetrazolium	chloride	(INT	chloride)	reduction,	García	et	al.	

(2015)	found	a	cell-specific	respiration	exponent	b	=	1.67	±	0.19,	quite	close	to	

Delong	et	al.	(2010)	estimates	(b	=	1.72	±	0.07),	and	a	curiously	calculated	biomass-

specific	respiration	exponent	b	=	-1.43	(García	et	al.,	2015).	The	relationship	

between	small	angle	light	scatter	from	a	cuvette-based	flow	cytometer	and	cell	size	

is	problematic	(Becker	et	al.,	2002;	Casey	et	al.,	2013),	and	rates	were	normalized	to	

a	seemingly	arbitrary	biovolume	of	0.068	μm3	for	cells	captured	on	0.2,	0.4,	and	0.6	

μm	pore	size	filters.	For	these	and	other	reasons,	we	have	not	directly	compared	

results	from	this	study,	though	it	is	nonetheless	interesting	that	a	negative	slope	was	

found.			
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While	our	results	do	not	necessarily	refute	previously	reported	allometric	

relationships	within	the	prokaryotes,	we	do	demonstrate	that	within	the	size	

spectrum	of	the	smallest	prokaryotes	exists	complexity	in	photophysiology	and	

metabolic	rates	which	do	not	scale	with	broader	cell	size	comparisons.	Perhaps	it	

will	be	some	time	yet	before	allometry	is	applicable	to	marine	microbial	

communities.		
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Table	1.1	–	Summary	statistics	of	cell	carbon	quotas	for	natural	populations	of	

Prochlorococcus	and	bacteria.	High-scatter	(HS)	bacteria	and	low-scatter	(LS)	

bacteria	were	discriminated	by	their	Sybr	Green	I	fluorescence	and	side	angle	light	

scatter	spectra.	Concentrations	are	reported	as	105	cells	ml-1;	all	other	values	are	

reported	as	fg	C	cell-1.	All	values	were	computed	as	the	mean	±	standard	deviation	of	

three	unfiltered	seawater	samples	collected	from	25	m	on	Cruise	3.		

	

	 Prochlorococcus	 HS	Bacteria	 LS	Bacteria	
Concentration	 2.2	±	0.11	 0.4	±	0.1	 4.1	±	0.1	

Variance	 234.6	±	19.1	 116.0	±	0.8	 12.5	±	0.2	
Mean	 34.4	±	1.2	 34.7	±	0.3	 10.0	±	0.0	

Median	 31.5	±	1.1	 32.5	±	0.4	 9.8	±	0.0	
Mode	 26.9	±	6.2	 35.4	±	8.9	 9.8	±	1.2	

Standard	deviation	 15.3	±	0.6	 10.7	±	0.0	 3.5	±	0.0	
Skewness	 1.0	±	0.1	 0.6	±	0.0	 0.8	±	0.0	
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Figure	1.1–	In-line	filtration	apparatus.	Carboys	containing	unfiltered	and	pre-

filtered	seawater	are	not	pictured,	but	during	normal	operation	are	connected	to	the	

inlet	and	outlet,	respectively.	
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Figure	1.2	–	Comparison	of	manufacturer	stated	pore	sizes	(median	diameter)	and	

SEM	calibrated	pore	sizes.	Data	are	median	values	for	each	filter	and	error	bars	

represent	one	standard	deviation	of	the	mean.	Also	shown	are	the	line	of	unity	(1:1;	

black	line),	a	least	squares	regression	(red	line),	and	the	5%	and	95%	confidence	

intervals	(red	shaded	region).			
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Figure	1.3	–	Cell	count	normalized	carbon	spectrum	of	Prochlorococcus	MIT9301	

retained	on	each	filter	within	the	interval	comprising	91%	of	the	initial	population.	

Vertical	bars	represent	expected	carbon	quota	of	cells	with	equivalent	spherical	

diameter	matching	the	respective	pore	size.	Note	the	proportion	of	each	distribution	

with	carbon	quotas	lower	than	the	pore	size	derived	carbon	quota.	
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	Figure	1.4	–	Size	spectrum	of	bacteria	(top	panel)	and	Prochlorococcus	(bottom	

panel)	counts	retained	on	each	filter	collected	at	the	surface,	150m,	and	500m.	

“Bacteria”	refer	to	non-pigmented	microbes,	including	the	Archaea.	Note	different	

scales	for	each	group	are	indicated	in	the	legend.		
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Figure	1.5	–	Size	spectrum	of	photophysiology.	Variable	fluorescence	(FV/FM)	and	

the	effective	cross	sectional	absorption	area	of	photosystem	II	(σPSII)	values	are	

shown.	Note	multiple	vertical	axes	scales.	
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Figure	1.6	–	Histogram	of	Prochlorococcus	cell	carbon	quotas	retained	on	each	filter.	

Horizontal	scale	extends	from	4	to	100	fg	C	cell-1.	Each	column	is	a	replicate	sample,	

and	all	vertical	scales	are	equal.	
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Figure	1.7	–	Histogram	of	bacterial	cell	carbon	quotas	retained	on	each	filter.	

Horizontal	scale	extends	from	4	to	100	fg	C	cell-1.	Each	column	is	a	replicate	sample,	

and	all	vertical	scales	are	equal.	
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Figure	1.8	–	Size	spectrum	of	the	number	of	Prochlorococcus	cells	(top	panel),	

Prochlorococcus	carbon	(middle	panel),	and	14C-PP	(bottom	panel).	Mean	values	are	

shown	with	error	bars	representing	one	standard	deviation.	14C-PP	data	from	the	

1μm	filter	fraction	are	excluded.	
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Figure	1.9	–	Size	spectrum	of	the	number	of	Prochlorococcus	and	bacterial	cells	(top	

panel),	Prochlorococcus	and	bacterial	carbon	(middle	panel),	and	32PO43-	

assimilation	rates	(bottom	panel).	Mean	values	are	shown	with	error	bars	

representing	one	standard	deviation.	32PO43-	assimilation	data	from	the	1μm	filter	

fraction	are	excluded.		
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Figure	1.10	–	Prochlorococcus	carbon-specific	14C-PP	plotted	as	a	function	of	

equivalent	spherical	cell	volume	(based	on	pore	size).	Mean	values	are	plotted	and	

error	bars	represent	one	standard	deviation.	Non-linear	least	squares	fit	of	the	

power	law	regression	is	also	shown.	
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Figure	1.11	–	Bacterial	carbon-specific	32PO43-	assimilation	rates	plotted	as	a	

function	of	equivalent	spherical	cell	volume	(based	on	pore	size).	Mean	values	are	

plotted	and	error	bars	represent	one	standard	deviation.	Non-linear	least	squares	fit	

of	the	power	law	regression	is	also	shown.			
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Figure	1.12	–Prochlorococcus	MIT3901	carbon-specific	14C-bicarbonate	

assimilation	rates	plotted	as	a	function	of	equivalent	spherical	cell	volume	(based	on	

pore	size).	Non-linear	least	squares	fit	of	the	power	law	regression	is	also	shown.	
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Chapter	2	

Substrate	selection	for	heterotrophic	bacterial	growth	in	the	sea	
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Abstract		

	 Growth	of	heterotrophic	microbes	requires	the	extraction	of	energy,	

electrons,	carbon,	and	nutrients	from	a	complex	and	dynamic	reservoir	of	potential	

substrates.	We	employed	a	matrix	of	selected	organic	substrates	with	varying	

characteristics,	and	experimentally	followed	the	kinetics	of	assimilation	and	

respiration	to	explore	the	basic	principles	that	govern	selection	and	preferential	use	

based	on	carbon,	nitrogen,	and	energy	content.	We	further	competed	these	

substrates	in	a	combinatorial	fashion	to	evaluate	preferential	substrate	utilization	in	

natural	microbial	assemblages.	Several	substrates	displayed	biphasic	kinetic	

responses	and	variable	respiration	:	assimilation	ratios.	Amino	acids	had	the	

shortest	turnover	times	and	were	taken	up	preferentially	at	ambient	concentrations.	

We	also	identified	a	linear	relationship	between	substrate	uptake	rates	and	affinity,	

suggesting	the	microbial	community	optimizes	the	relative	abundances	of	

membrane	transporters	according	to	substrate	demand.	When	competed	against	

one	another	at	saturating	concentrations,	substrate	assimilation	and	respiration	

rates	were	enhanced	or	inhibited	by	up	to	two	orders	of	magnitude,	compared	to	

competitor-free	controls.	Further,	we	describe	an	unexpected	trend	between	the	

substrate	energy	density	and	turnover	times,	with	more	energetic,	reduced	carbon	

substrates	turning	over	more	slowly	than	more	oxidized	substrates.					
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2.1	Introduction	

Microbial	communities	in	the	oligotrophic	gyres	are	profoundly	complex,	

both	in	terms	of	taxonomic	diversity	and	metabolic	potential,	and	interpretations	of	

monoclonal	laboratory	cultures	cannot	easily	be	extended	to	the	natural	

environment.	Consequently,	a	qualitative,	let	alone	quantitative,	understanding	of	

microbial	community	substrate	preference	is	currently	lacking.	In	the	contest	for	

resources,	specialists	and	generalists	inevitably	compete	with	unique	metabolic	

strategies.	We	propose	that	individual	microbes	within	the	community	optimize	the	

utilization	of	growth-limiting	resources,	but	that	the	overall	outcome	is	based	on	

“rules”	within	the	social	order	of	the	microbial	community.	In	the	chronically	

inorganic	nutrient	depleted	surface	layer	of	the	North	Pacific	Subtropical	Gyre	

(NPSG),	it	might	logically	follow	that	dissolved	organic	nitrogen	and/or	phosphorus	

sources	should	be	preferentially	utilized	by	natural	heterotrophic	microbial	

communities	(e.g.,	.	In	this	paper,	we	ask,	“What	are	the	basic	principles	that	govern	

the	selection	of	extracellular	molecules	for	their	growth?”	We	examine	the	

hypothesis	that	heterotrophic	communities	in	the	surface	layer	of	a	typical	

oligotrophic	ocean	gyre	have	evolved	to	preferentially	utilize	dissolved	organic	

matter	(DOM)	substrates	based	in	accordance	to	the	hierarchy	of	energy	density	(KJ	

mol	C-1),	nitrogen	mole	fraction	(mol	N	mol-1),	or	carbon	mole	fraction	(mol	C	mol-1).		

Substrates	were	chosen	to	represent	a	broad	sampling	of	the	bio-available	

low	molecular	weight	(LMW)	organic	substrate	spectrum;	four	6-carbon	

compounds	with	different	energy	densities	(in	terms	of	standard	enthalpy	of	

combustion;	ΔHC’),	three	amino	acids	with	different	numbers	of	nitrogen	atoms,	and	
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three	carbohydrates	with	equal	energy	densities	but	different	numbers	of	carbon	

atoms	were	selected	as	representatives	of	each	class	(Table	2.1).	Gene	products	

associated	with	the	metabolism	of	all	selected	substrates	were	identified	in	Station	

ALOHA	metagenome	datasets	(NCBI	Accession:	PRJNA13694,	PRJNA29033,	

PRJNA16339) and	in	genomic	DNA	sequences	of	diverse	bacteria	and	eukaryotes	

isolated	from	the	NPSG	surface	waters,	including	alcohol	and	aldehyde	

dehydrogenases	that	are	required	for	the	metabolism	of	1-hexanol.	Other	selected	

compounds	(L-leucine,	L-lysine,	L-arginine,	glyceraldehyde,	D-ribose,	D-mannose,	

citric	acid,	and	hexanoic	acid)	are	associated	with	central	carbon	metabolism,	amino	

acid	biosynthesis,	and	fatty	acid	synthesis/degradation	pathways	and	therefore	are	

readily	metabolized	by	those	organisms	capable	of	transporting	them.	Individual	

substrate	utilization	and	kinetics	have	been	extensively	investigated	for	numerous	

amino	acid	(e.g.,	Ayo	et	al.,	2001;	Kirchman	and	Hodson,	1986),	sugar	(e.g.,	Azam	

and	Hodson,	1981;	Nissen	et	al.,	1984)	,	nucleotide	(e.g.,	Karl	and	Bailiff,	1989),	and	

organic	acid	(e.g.,	Kieber	et	al.,	1989;	Wright	and	Hobbie,	1966)	compounds	in	the	

marine	microbial	populations,	however	a	comparative	approach	with	multiple	

substrates	is	quite	rare	(c.f.,	Mopper	and	Kieber,	1991).		

To	evaluate	substrate	preference,	the	assimilation	and	respiration	kinetics	of	

each	substrate	were	measured	by	radioisotope	incubations	of	natural	surface	

seawater	at	Station	ALOHA.	We	further	hypothesized	that	substrate	uptake	(as	the	

sum	of	assimilation	plus	respiration)	and	subsequent	metabolism	(as	the	ratio	of	

respiration	to	uptake)	are	influenced	by	the	presence	of	competing	substrates.	To	

evaluate	substrate	competition,	each	radioisotope	tracer	was	incubated	in	the	
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presence	of	a	saturating	concentration	of	each	of	the	other	substrates.	Apart	from	a	

thorough	competition	of	amino	acids	against	different	peptides	(Kirchman	et	al.,	

1984),	we	are	unaware	of	a	competition	experiment	involving	multiple	substrate	

classes	in	natural	marine	microbial	assemblages.	

Collectively,	our	field	measurements	indicate	that	natural	heterotrophic	

microbial	communities	select	substrates	based	on	their	nitrogen	content	over	their	

carbon	or	energy	content.	Our	results	also	lead	to	a	somewhat	surprising	conclusion	

that	higher	energy	density	substrates	(1-hexanol	and	hexanoic	acid)	turn	over	more	

slowly	than	lower	energy	density	substrates	(D-mannose,	glyceraldehyde,	and	citric	

acid).		

	

2.2	Methods		

2.2.1	Sample	Collection	

The	experiments	were	carried	out	onboard	the	R/V	Kilo	Moana	at	Station	

ALOHA	(22°45’N,	158°W)	in	March	2014.	Seawater	samples	from	25	m	were	

collected	in	the	dark	from	12	l	Niskin®	bottles	each	night	following	a	2100	cast,	

approximately	3	h	after	sunset.	Samples	were	collected	over	the	course	of	11	days	

alongside	numerous	biological,	chemical,	and	hydrographic	measurements,	

including	measurements	of	community	respiration	based	on	diel	cycles	of	O2/Ar	

(Ferrón	et	al.,	in	review)	and	in	vivo	electron	transport	chain	activity	(Martínez-

García	et	al.,	2009).	Sample	collections,	preparations,	and	incubations	were	

conducted	in	the	dark	or	under	low	intensity	red	light	and	all	glassware	was	cleaned	

following	recommendations	by	Fitzwater	et	al.	(1982)	to	minimize	trace	metals	
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contamination	(pre-combusted,	acid-washed,	0.22	μm	filtered	distilled	deionized	

water-rinsed),	which	have	been	shown	to	affect	amino	acid	uptake	rate	

determinations	in	natural	seawater	samples	(Ferguson	and	Sunda,	1984).	

Incubations	were	conducted	at	night	to	avoid	extracellular	production	of	newly	

synthesized	photosynthate	and	to	encourage	constant	uptake	rates	(e.g.,	Carlucci	et	

al.,	1984).		

	

2.2.2	Reagents	and	Supplies	

We	evaluated	9	compounds:	[1,5-14C]citric	acid,	[1-14C]hexanoic	acid,	[1-

14C]hexanol,	[U-14C]D-mannose,	[U-14C]L-leucine,	[U-14C]L-lysine,	[U-14C]L-arginine,	

[U-14C]glyceraldehyde,	and	[1-14C]D-ribose	(MP	Biomedicals,	LLC;	American	

Radiolabeled	Chemicals,	Inc.;	Table	2.1).	Uniformly	labeled	substrates	were	chosen,	

where	available,	to	minimize	ambiguity	in	interpretations	of	respiration	and	

assimilation	(ref),	but	this	is	inconsequential	to	uptake	rates	determinations.	

Unlabeled	compounds	and	the	reagents	β-phenylethylamine	(PEA	herein),	sulfuric	

acid,	formaldehyde	(37	wt	%)	were	purchased	from	Sigma	Aldrich	Co.	Dilute	stocks	

of	labeled	substrates	were	made	up	to	92.5	MBq	l-1	and	specific	activities	were	

adjusted	to	1.85	GBq	mmol-1	by	the	addition	of	unlabeled	carrier,	with	the	exception	

of	1-hexanol	which	was	prepared	to	18.5	MBq	l-1	at	0.37	GBq	mmol-1.	1-Hexanol	

solutions	were	always	less	than	577	μM,	the	solubility	limit	for	1-hexanol	in	water	at	

20°C.		

	

2.2.3	Sample	Preparation	and	Incubation	Conditions	
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Samples	(70	ml)	for	kinetic	and	competition	incubations	were	transferred	to	

either	70	or	125	ml	glass	serum	bottles	for	assimilation	and	respiration	

measurements,	respectively.	Kinetic	experiments	were	initiated	by	the	addition	of	9	

concentrations	of	a	labeled	substrate	(from	1	nM	to	365	nM,	spaced	logarithmically),	

in	triplicate	(n	=	486).	Competition	experiments	were	initiated	by	the	addition	of	32	

nM	of	a	labeled	substrate	in	the	presence	of	2	μM	of	each	unlabeled	substrate	

competitor,	in	triplicate	(n	=	486).	A	single	killed	control	(fixed	at	4	°C	for	1	h	with	

2%	w/v	formaldehyde)	was	used	for	each	treatment	(n	=	162).	Following	addition	

of	the	radiolabeled	substrate,	assimilation	bottles	were	crimped	sealed	without	a	

headspace	with	Teflon	stoppers	using	aluminum	caps.	The	respiration	bottles	were	

fitted	with	“sleeve-style”	rubber	stoppers	pierced	with	center	well	cups	containing	a	

dry	piece	of	fluted	cellulose	filter	paper	(Whatman®)	in	the	headspace.	All	bottles	

were	incubated	upright	in	the	dark	for	8	to	10	h,	submerged	in	a	bath	of	circulating	

surface	seawater	to	approximately	maintain	the	25	m	collection	depth	temperature	

(24.0	±	0.1	°C).		

	

2.2.4	Assimilation	

Incubations	were	terminated	by	gentle	vacuum	filtration	(<70	mBar)	onto	

nominal	0.3	μm	pore	size	glass	fiber	filters	(GF75,	Sterlitech).	Bottles,	caps,	and	filter	

funnels	were	thoroughly	rinsed	with	0.2	μm	filtered	seawater	(three	rinses	of	

approximately	20	ml	each).	Filters	were	transferred	to	20	ml	glass	scintillation	vials	

followed	by	a	10	ml	addition	of	scintillation	cocktail	(UltimaGold	LLT,	Perkin	Elmer).	

14C	activity	was	counted	on	a	Perkin-Elmer	2910TR	TriCarb	liquid	scintillation	
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counter	using	the	spectral	index	of	an	external	standard	for	quench	correction.	

Substrate	retained	on	the	glass	fiber	filters	or	adsorbed	to	cells	was	estimated	with	

killed-controls,	which	were	prepared	for	each	concentration	of	each	substrate.	

Killed	controls	were	incubated	alongside	live	samples	and	processed	identically.			

	

2.2.5	Respiration	

Incubations	were	terminated	by	soaking	the	filter	paper	in	the	cup	with	150	

μl	PEA	and	then	acidifying	the	sample	by	adding	4	ml	of	4.5	N	sulfuric	acid	through	

the	gas-tight	stopper.	The	acidified	solution	was	allowed	to	passively	distill	for	48	h	

before	removing	the	stoppers.	This	procedure	changes	the	dissolved	CO2	solubility	

and	leads	to	a	flux	of	14CO2	first	into	the	headspace,	then	into	center	well	cups	

containing	the	PEA.	Center	well	cups	containing	the	filter	paper	were	transferred	to	

scintillation	vials.	500	μl	aliquots	of	the	remaining	volume	of	each	sample	were	also	

transferred	to	scintillation	vials	(n	=	486).	14C	activity	was	quantified	identically	to	

the	filters	(see	Assimilation).	Activity	other	than	14CO2	that	was	retained	by	the	cup	

was	estimated	by	equilibrating	each	substrate	in	0.2	μm	filtered	seawater	and	

processing	identically	to	live	samples.	14CO2	trapping	efficiency	was	estimated	by	

processing	a	known	quantity	of	H14CO3-	added	to	0.2	μm	filtered	seawater.		

	

2.2.6	Data	analysis	

Filter	samples	(i.e.,	“assimilation”)	were	corrected	by	subtracting	killed	

control	activities	and	cup	samples	(respiration)	were	corrected	for	cell-free	

incubation	activities.	Transient	isotope	effects	affect	apparent	uptake	rates	due	to	
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mass-dependent	kinetic	isotope	fractionation	under	isotopic	disequilibrium;	specific	

transporter	fractionation	factors	differ	widely	between	different	enzyme-substrate	

systems,	and	the	respiration	to	assimilation	ratio	influences	the	magnitude	of	this	

effect.	However,	substrate	specific	activities	and	added	concentrations	were	

sufficiently	high	so	as	to	reduce	this	effect	to	well	below	the	analytical	standard	

error	of	the	measurment	(<5%	standard	error).	Kinetics	parameters	(Table	2)	were	

determined	for	assimilation	(vA),	respiration	(vR),	and	uptake	(vU)	of	each	substrate	

by	non-linear	least	squares	optimizations	for	each	of	four	potential	kinetics	models:		

	

where	Km	[nM]	and	Vmax	[nM	h-1]	are	the	Michaelis-Menten-like	half-saturation	

constant	and	maximal	rate,	KD	is	a	diffusive	parameter,	and	v	is	the	kinetic	velocity.	

To	account	for	systematic	analytical	variance,	which	varied	as	a	function	of	SA	added,	

we	weighted	the	cost	function	using	standard	errors.	A	sensitivity	analysis	of	the	

initialization	parameters	resulted	in	derived	kinetics	parameters	that	were	stable	to	

within	<1%	over	a	ten-fold	range	of	expected	values	(data	not	shown).	Models	were	

selected	using	the	minimal	Akaike	Information	Criterion	(AIC)	using	the	log-

likelihood	of	each	NLS	fit;	the	AIC	model	selection	procedure	rewards	the	goodness-

of-fit	of	each	model	while	penalizing	overly	complex	models.	Standard	errors	for	Km	

and	Vmax	values	were	propagated	by	the	root	sum	of	squares	deviation.	Specific	
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affinities	(not	biomass	normalized)	were	calculated	as	the	initial	slope	of	the	fast	

(aFo)	and	slow	(aSo)	subsets.	Competition	experiments	were	processed	similarly,	

except	that	rates	were	treated	as	a	fold-change	relative	to	an	unamended	control.			

Community	respiration	estimates	corresponding	to	the	same	casts	based	on	

ΔO2:Ar	and	electron	transport	activity	measurements	varied	by	28%	and	19%	over	

the	course	of	the	sampling	period,	respectively	(Ferrón	et	al.,	in	review).	This	day-to-

day	natural	variability	was	not	taken	into	account	in	our	error	analysis	and	

potentially	influenced	Vmax	estimates	since	our	experiments	were	conducted	over	an	

11	day	period,	however,	both	community	respiration	estimates	could	explain	<1%	

of	the	variance	in	Vmax	(p	=	0.936).		

Standard	enthalpies	of	combustion	were	calculated	for	each	substrate	

according	to	a	simplification	of	the	Kharash	equation	(Kharasch,	1929):	

ΔHC’	=	200a1	+	280a2	+	220a3	+	105a4	+	60a5	+	40a6	–	20a7	

Where	the	coefficients	are	the	average	bond	energies	(KJ	mol-1)	corresponding	to	

the	number	of	π	bonds	in	aromatic	compounds	(a1),	non-aromatic	double	bonds	

(a2),	σ	and	C-H	single	bonds	(a3),	C-N	and	N-H	bonds	(a4),	carbonyl	groups	(a5),	

hydroxy	(a6),	and	carboxyl	groups	(a7).			

	

2.3	Results	and	Discussion	

2.3.1	Method	Evaluation	

We	evaluated	the	14C-respirometry	method	for	determining	compound-

specific	assimilation	and	respiration	rates	in	natural	marine	seawater	incubations.	

We	consistently	found	quantitative	recovery	99.85	±	1.98	%	(calculated	as	the	sum	
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of	filter,	cup,	and	remaining	activity	as	a	percentage	of	activity	added)	and	low	

sample-sample	variability	(8.3	±	1.9	%;	Figure	2.1).	Killed	control	activities	were	

consistently	<0.1%	of	activity	added	and	consistently	<15	%	of	assimilation	with	the	

exception	of	[1-14C]D-ribose	(45.5	±	17.9	%	of	assimilation),	indicating	low	cell	

surface	and	glass	fiber	filter	adsorption	over	the	entire	SA	range.	The	trapping	

efficiency	of	PEA	soaked	filter	paper	after	acidifying	a	known	quantity	of	H14CO3-	

was	98.99	±	4.28	%.	When	the	same	procedure	was	followed	for	32	nM	additions	of	

each	labeled	substrate	in	0.2	μm	filtered	seawater,	the	absorption	was	0.08	±	0.04	%	

of	total	radioactivity	added,	with	the	exception	of	[1-14C]hexanol	which	was	10.4	%.		

	

2.3.2	Substrate	preference	and	kinetics	

Assimilation,	respiration,	and	uptake	kinetics	were	biphasic	or	multiphasic	

within	the	range	1	nM	to	364.5	nM	of	SA	for	7	of	the	9	substrates	tested	with	

“breakpoints”	(the	transition	between	two	transporter	systems	operating	at	

different	concentration	ranges)	between	20	nM	and	90	nM	of	the	SA	(Figure	2.2,	

Table	3).	No	differences	in	breakpoint	concentrations	were	found	between	

assimilation,	respiration,	or	uptake	kinetics	curves	for	a	given	substrate.	Multiphasic	

kinetics	in	natural	marine	bacterial	populations	have	been	reported	previously	for	

the	metabolism	of	glucose	and	mixed	amino	acids	(Azam	and	Hodson,	1981;	Nissen	

et	al.,	1984)	and	for	ectoenzyme	kinetics	(Unanue	et	al.,	1999).	Artifacts	associated	

with	SA	and	Sn	concentration	dependencies	of	Km	and	multiphasic	kinetics	have	been	

proposed	to	result	from	a	diffusive	model	with	a	sub-unity	slope	resulting	from	

different	membrane	permeabilities,	intracellular	substrate	concentrations,	and	
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kinetic	fractionation	of	the	radiolabeled	substrate	uptake	between	species	(Logan	

and	Fleury,	1993).	However	it	is	highly	unlikely	that	marine	bacteria	rely	on	

concentration	gradients	alone	for	substrate	uptake,	especially	since	intracellular	

metabolite	concentrations	are	frequently	in	the	μM	to	mM	concentration	range	(e.g.,	

Bennett	et	al.,	2009);	rather,	it	is	much	more	likely	a	combination	of	multiple	

transporters	(Button,	1993).	Although	the	multiphasic	model	has	been	theoretically	

and	experimentally	described	in	a	multitude	of	biological	systems	(Nissen	and	

Nissen,	1983),	we	cannot	discount	the	possibility	that	breakpoints	were	an	artifact	

of	de	novo	transporter	synthesis	during	the	course	of	the	incubation.	The	remaining	

two	substrates	were	not	well	described	by	the	multiphasic	or	biphasic	models,	

rather	a	monophasic	model	was	selected	for	L-arginine	kinetics	and	an	additional	

diffusive	term	best	fit	the	kinetics	of	L-lysine,	according	to	our	AIC	model	selection	

procedure.		

vR	/	vU	ratios,	which	are	upper	constraints	on	bacterial	growth	efficiencies	

(BGE)	due	to	isotopic	disequilibrium	of	intracellular	metabolite	pools	during	short	

incubations	(King	and	Berman,	1984),	were	not	constant	over	the	concentration	

range	of	substrates	tested	(Figure	2.3).	Coefficients	of	variation	(CV)	of	substrate	vR	

/	vU	ratios	ranged	from	14	to	45	%	from	glyceraldehyde	to	L-arginine,	respectively.	

SA	dependencies	of	BGE	are	ignored	in	most	bacterial	production	assays,	including	

those	based	on	[3H]L-leucine	assimilation	(CV	=	28	%),	and	will	introduce	ambiguity	

to	their	interpretations	since	ambient	substrate	concentrations	are	rarely	measured	

prior	to	incubations	and	substrate	is	usually	added	at	saturating	concentrations	(>	

20	nM;	e.g.	Church	et	al.,	2004).		
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Because	ambient	substrate	concentrations	(Sn)	were	not	measured,	“tracer”	

substrate	concentration	additions,	ideally	<10%	of	Sn,	were	not	necessarily	

achieved.	We	therefore	approximate	ambient	substrate	uptake	rates	as	the	initial	

velocity	(vo)	at	1	nM	SA.	With	this	proviso,	amino	acids	were	taken	up	at	rates	higher	

than	other	substrates	tested.	Another	metric	for	substrate	affinity,	Vmax/Km	(h-1),	was	

also	found	to	be	highest	for	the	amino	acids	compared	with	other	substrates.	We	

found	a	linear	relationship	(R2	=	0.70,	slope	=	0.85	±	0.1,	p	=	0.0001;	Figure	2.4)	

between	the	ambient	substrate	uptake	rate	and	the	substrate	affinity,	as	expected	

for	Michaelis-Menten	kinetics	at	SA	+	Sn	<<	Km.	Agreement	between	ambient	uptake	

rates	and	substrate	affinities	supports	the	hypothesis	that	microbial	communities	

collectively	optimize	the	scavenging	of	resources	according	to	substrate	availability	

and	demand.	Since	Km	is	an	intrinsic	property	of	transporter-substrate	affinity,	both	

the	cell	surface	density	of	transporters	and	the	distribution	of	transporters	among	

different	microbial	community	taxa	are	optimized	for	the	exploitation	of	specific	

substrates.	For	example,	amino	acid	transporters	are	likely	common	to	a	majority	of	

microbial	taxa,	and	may	represent	a	larger	fraction	of	outer	membrane	transporter	

proteins	than	e.g.,	fatty	acid	transporters,	as	was	the	case	for	coastal	

bacterioplankton	(Poretsky	et	al.,	2010).			

Over	the	concentration	range	tested,	we	found	that	1-hexanol	was	

assimilated	at	rates	comparable	to	other	C6	substrates.	Marine	microbes	are	known	

to	use	methanol	as	both	a	carbon	and	energy	source,	and	several	alcohol	

dehydrogenases	are	common	to	methylotrophic	bacteria	including	the	numerically	

dominant	Pelagibacter	ubique	SAR11	(Sun	et	al.,	2011).	1-Hexanol	is	
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dehydrogenated	to	hexanaldehyde	and	further	to	hexanoic	acid	and	subsequently	

directed	toward	fatty	acid	synthesis	or	degradation	pathways	to	regenerate	acetyl-

CoA.	Perhaps	since	1-hexanol	is	uniquely	connected	to	hexanoic	acid,	ambient	

substrate	uptake	rates	and	substrate	affinities	were	nearly	identical	for	1-hexanol	

and	hexanoic	acid,	despite	almost	certainly	depending	on	separate	transporters	due	

to	differences	in	charge	distribution.	We	estimated	an	upper	limit	on	the	

concentration	of	1-hexanol	to	be	7.0	±	1.9	nM	(Table	2.4),	however	there	are	no	

direct	determinations	for	the	ambient	concentration	of	any	primary	alcohols	other	

than	methanol	in	seawater	to	compare.	Km	and	Vmax	values	(Table	2.3)	were	

comparable	to	methanol	(Km	=	9.3	to	86	nM;	Vmax	=	1.0	to	1.2	nM	h-1	in	Dixon	et	al.,	

2011).	1-Hexanol	respiration	could	not	be	determined	due	to	a	high	sample	blank,	

perhaps	due	to	volatility	and	subsequent	scavenging	by	PEA,	though	we	are	

unaware	of	this	reaction	at	room	temperature.	We	suggest	that	future	respirometry	

determinations	of	volatile	and	semi-volatile	substrates	use	another	trapping	solvent	

(e.g.,	hyamine,	a	quaternary	ammonium	hydroxide).		

D-Ribose	was	taken	up	at	unexpectedly	low	rates	and	respiration	was	near	

the	limit	of	quantitation	(3	times	the	standard	deviation	of	vR	for	each	SA	

concentration)	resulting	in	poor	confidence	in	kinetic	constant	estimates	(3	out	of	9	

SA	concentrations	with	p	>	0.05).	This	study	is	the	first	to	report	D-ribose	uptake	

rates	in	natural	seawater	and	the	few	direct	concentration	determinations	available	

for	the	North	Pacific	suggest	D-ribose	is	typically	depleted	(<5	mol	%)	in	monomeric	

(MW	<	200	Da),	oligomeric	(MW	200	-	4000	Da),	and	polymeric	(MW	>	4000	Da)	

fractions	of	total	hydrolysable	dissolved	carbohydrates	(Mopper	et	al.,	1980;	
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Sakugawa	and	Handa,	1983).	Rather,	D-ribose	is	likely	present	mostly	as	the	sugar	

moiety	of	RNA	and	free	or	polymeric	nucleotides,	which	are	abundant	both	in	cells	

and	dissolved	in	seawater	(Karl	and	Bailiff,	1989;	Bjorkman	and	Karl,	2005).	

Pentosyltransferases,	such	as	purine	and	pyrimidine	nucleoside	transferases	are	

probably	not	active	exoenzymes,	otherwise	we	would	expect	an	accumulation	of	

dissolved	D-ribose	since	nucleotide	turnover	times	are	relatively	short	(1-2	d;	

Björkman	and	Karl,	2005).	Therefore,	RNA	and	nucleotides	must	be	transported	

prior	to	dissimilation	(e.g.,	xanthine	degradation	pathway,	purine	catabolic	

pathways,	pyrimidine	catabolic	pathways)	or	polymerization.	

	 In	contrast	to	D-ribose,	the	remaining	carbon	substrates	(citric	acid,	

glyceraldehyde,	and	D-mannose)	were	rapidly	utilized.	Of	these,	only	D-mannose	

uptake	has	been	previously	reported,	albeit	in	a	mesotrophic	lake,	with	roughly	

comparable	turnover	times	(20	to	170	h;	Bunte	and	Simon,	1999).	Citric	acid	vR	/	vU	

ratios	(0.65	±	0.10)	were	significantly	higher	(p	<	e-6)	than	the	other	carbohydrates	

glyceraldehyde	(0.35	±	0.05)	and	D-mannose	(0.23	±	0.05).	Glyceraldehyde	and	D-

mannose	vR	/	vU	ratios	were	comparable	to	D-glucose	in	other	marine	environments	

(Williams,	1970;	Williams	and	Yentsch,	1976).	Although	we	expected	high	

catabolism	of	citric	acid	due	to	its	role	as	a	tricarboxylic	acid	(TCA)	cycle	

intermediate,	high	anabolic	assimilation	of	carbohydrates	suggests	an	unexpected	

prevalence	of	carbon	storage	by	gluconeogenesis	in	marine	bacteria	inhabiting	the	

NPSG.	The	disparity	in	the	vR	/	vU	ratio	for	glyceraldehyde	and	D-mannose	further	

supports	this	hypothesis.	Intermediates	at	the	top	of	glycolysis	(β-D-fructose-6-

phosphate	derived	from	D-mannose	by	hexokinase,	M6P	isomerase)	are	expected	to	
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show	higher	anabolism	relative	to	bottom	of	glycolysis	intermediates	(2-phospho-D-

glycerate	or	3-phospho-D-glycerate	derived	from	glyceraldehyde	by	glyceraldehyde	

dehydrogenase	or	triose	kinase,	respectively)	under	conditions	where	the	oxidative	

pentose	phosphate	pathway	flux	is	low.		

Ambient	uptake	rates	were	similar	(p	>	0.05)	between	amino	acids,	however	

differences	were	observed	in	the	substrate	affinity,	turnover,	kinetic	constants,	and	

efficiencies	of	nitrogen	assimilation.	For	example,	the	efficiency	of	nitrogen	

assimilation,	expressed	as	the	nitrogen	assimilated	as	a	molar	fraction	of	the	

nitrogen	added,	increased	in	the	order	of	nitrogen	atoms	per	molecule	(L-leucine	(1)	

<	L-lysine	(2)	<	L-arginine	(4)).	Turnover	times	and	Km	constants	increased	in	the	

same	order,	while	ambient	substrate	uptake	rates	were	similar,	suggesting	

transporter	abundance	(proportional	to	Vmax)	was	predominantly	responsible	for	

the	high	uptake	rates.				

	 Among	the	carbohydrates,	the	number	of	carbon	atoms	was	not	a	

determinant	in	vU,	vA,	vR,	Km,	Vmax,	aFo,	aSo,	or	turnover	time.	However,	the	turnover	

time	was	exponentially	dependent	on	energy	density	(KJ	mol	C-1;	Figure	2.5).	It	is	

worth	noting	that	the	carbon	substrates	exhibiting	the	most	rapid	turnover	(citric	

acid,	glyceraldehyde,	and	D-mannose)	have	potential	energies,	average	degrees	of	

reduction,	and	respiration	quotients	(RQ)	closely	matching	those	of	microbial	cell	

biomass	(based	on	an	average	of	Escherichia	coli	and	Saccharomyces	cerevisiae).	Few	

compound-specific	turnover	time	determinations	are	available	for	oligotrophic	

marine	environments,	still	fewer	with	substrates	representing	a	broad	energy	

density	range,	however	the	turnover	dependence	on	substrate	energy	density	
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appears	to	be	consistent.	For	example,	in	an	assessment	of	substrate-specific	

turnover	times	of	10	substrates	in	the	Black	Sea	water	column,	L-ornithine	was	both	

the	highest	energy	density	substrate	surveyed	(626	KJ	mol	C-1)	and	had	the	longest	

turnover	time	(172	d;	Mopper	and	Kieber,	1991).	Long	turnover	times	have	been	

reported	for	other	high	energy	density	substrates;	acetone	(607	KJ	mol	C-1)	turnover	

was	estimated	at	41-55	days	in	the	oligotrophic	gyres	(Dixon	et	al.,	2013),	methanol	

(700	KJ	mol	C-1)	turnover	times	were	7-33	days	in	the	northeast	Atlantic	(Dixon	et	

al,.	2011),	comparable	to	1-hexanol	turnover	times	(41	days).	Methane	(880	KJ	mol	

C-1),	the	most	reduced	of	all	organic	substrates,	has	been	estimated	to	turn	over	

between	a	few	years	and	hundreds	of	years	in	the	western	North	Pacific	(Watanabe	

et	al.,	1995)	and	Sargasso	Sea	(Jones	et	al.,	1991).	The	number	of	substrates	

surveyed	in	this	and	other	studies	are	too	few	to	formalize	such	a	pattern,	however	

if	this	relationship	holds	for	other	labile	LMW	DOM	substrates,	it	may	be	applied	to	

the	existing	theoretical	framework	of	ecological	thermodynamics	since	both	

bacterial	growth	yield	(mol	C	mol	C-1	utilized)	and	bacterial	C	specific	growth	rate	

(mol	C	mol	C-1	utilized	d-1)	tend	to	increase	as	a	linear	and	squared	function,	

respectively,	of	the	degree	of	reduction	of	substrate	(Vallino	et	al.,	1996).	We	

observed	no	relationship	between	degree	of	reduction	or	energy	density	and	vR	/	vU	

so	the	catabolic	:	anabolic	ratio	of	individual	substrates	did	not	align	with	

theoretical	predictions	of	growth	yield	in	our	study	site.	Conversely,	for	a	particular	

substrate	as	the	sole	carbon	source	for	anoxygenic	microbes,	the	thermodynamic	

efficiency	for	growth,	defined	as	the	product	of	the	Gibbs	energy	of	assimilation	:	

chemical	potential	energy	ratio	and	the	growth	rate	:	uptake	rate	ratio,	is	
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theoretically	lower	for	reduced	substrates	(degree	of	reduction	>	4)	than	oxidized	

substrates	(Westerhoff,	1993).	Correspondingly,	the	theoretical	growth	yield	and	

the	ratio	of	free	enthalpy	of	catabolism	to	anabolism	increases	with	degree	of	

reduction	of	the	substrate	(Westerhoff	et	al.,	1983).	The	degree	of	reduction	of	

intermediate	metabolites	in	the	central	carbon	pathways	of	metabolism	are	

reminiscent	of	this,	since	oxidized	intermediates	are	associated	with	high	flux	

central	carbon	metabolic	pathways	(TCA	cycle,	glycolysis,	and	the	oxidative	pentose	

phosphate	pathway),	while	reduced	metabolites	(long-chain	fatty	acids	and	

alcohols)	are	associated	with	linear	biosynthetic	and	degradation	pathways	(e.g.,	

fatty	acid	biosynthesis,	β-oxidation)	which	turn	over	less	rapidly.	It	is	therefore	

plausible	that	the	degree	of	reduction	produces	an	imbalance	in	the	production	and	

consumption	of	LMW	DOM	substrates,	resulting	in	the	observed	trend	with	

turnover	time.	Even	for	specialists,	a	single	carbon	source	is	unlikely	to	support	

growth	in	the	marine	environment,	so	these	generalizations	are	complicated	by	

multiple	and	varying	carbon	sources.		

	

2.3.3	Substrate	competition	

	 	DOM	composition	is	dynamic	in	the	near-surface	environment	on	both	

spatial	and	temporal	scales;	diel	oscillations	in	photochemical	production	of	organic	

matter,	especially	in	the	surface	microlayer	(e.g.,	Carlucci	et	al.,	1984;	Kieber	et	al.,	

1989;	Zhou	and	Mopper,	1997),	and	diel	oscillations	in	phytoplankton	extracellular	

DOM	production	interact	with	diurnal	mixing	cycles	to	alter	the	DOM	age	and	

composition	throughout	the	upper	water	column.	The	intention	of	the	competition	
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experiment	was	to	broadly	evaluate	changes	in	substrate	uptake	rates	in	the	

presence	of	saturating	concentrations	of	substrates	that	could	aid	in	our	

interpretation	of	pairwise	comparisons	of	kinetics	experiments,	in	a	combinatorial	

manner.	Substrate	utilization	is	constrained	by	one	of	two	proteins:	the	membrane	

transporter	(or	porin),	and	a	rate-limiting	metabolic	reaction.	For	marine	bacterial	

genomes	and	metagenomes,	adequate	functional	characterizations	of	membrane	

transporters	are	unavailable;	transporters	are	often	annotated	by	homology	to	no	

better	than	the	family	level.	With	neither	the	adequate	identification	nor	the	

abundance	of	transporters	known,	the	distinction	between	transporter	rate-

limitation	and	metabolic	rate-limitation	is	unclear.	Considering	that	a	typical	

oligotrophic	bacterium	(0.4	μm	diameter)	may	have	space	for	only	103	to	104	

individual	membrane	transporter	proteins	(based	on	approximate	protein	sizes,	

spacing,	and	surface	area),	and	given	the	diversity	of	potential	substrates	and	

minimal	genome	sizes,	it	is	likely	that	many	transporters	are	of	broad	specificity	and	

therefore	subject	to	competitive	inhibition.	Ultimately,	the	competitor	may	act	in	a	

great	many	ways	to	affect	a	change	in	apparent	uptake	rates	of	the	labeled	

substrates.	

	 We	observed	complex	interactions	between	many	labeled	substrates	and	

their	competitors,	affecting	significant	changes	in	uptake	rates	and	the	fraction	of	

uptake	respired,	spanning	more	than	a	factor	of	20	and	7,	respectively	(Figure	2.6).	

In	general,	competing	substrates	with	similar	chemical	properties	(e.g.,	L-lysine	and	

L-arginine)	and/or	mutual	metabolic	pathways	(e.g.,	hexanoic	acid	and	1-hexanol)	

were	inhibitors	of	one	another,	while	substrates	of	varied	structure	from	disparate	
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branches	of	the	metabolic	network	affected	assimilation	and	respiration	changes	in	

more	complex	ways.	We	highlight	several	of	these	interactions	below,	however,	we	

stress	that	in	all	cases,	inhibitive	or	enhanced	rates	and	ratios	are	exaggerated	

relative	to	natural	conditions	due	to	the	high	concentration	(2	μM)	of	competitor	

added	with	each	labeled	substrate.		

As	might	be	expected,	amino	acids	were	potent	inhibitors	of	other	amino	

acids,	with	50.0	±	0.2	%,	72.7	±	1.2	%,	and	88.1	±	6.3	%	inhibition	of	uptake	for	L-

leucine,	L-lysine,	and	L-arginine,	respectively,	regardless	of	which	saturating	amino	

acid	competitor	was	used.	This	result,	together	with	similarity	in	the	breakpoint	of	

high	and	low	affinity	transport	systems	between	these	three	amino	acids,	suggests	

that	a	high-affinity	but	broad	substrate-specificity	amino	acid	transporter	may	be	

prevalent	and	rate-limiting.	Alternatively,	metabolic	regulation	of	protein	synthesis	

may	be	rate-limiting;	Kirchman	and	Hodson	(1984)	used	oligopeptides	as	

surrogates	to	alter	the	intracellular	amino	acid	pool	size,	based	on	the	assumption	

that	free	and	polymeric	amino	acids	do	not	share	transport	systems.	They	attributed	

the	oligopeptide	inhibition	of	extracellular	amino	acid	uptake	to	‘buildup’	of	

intracellular	amino	acid	pools	and	suggested	the	feedback	indicates	direct	coupling	

between	amino	acid	uptake	and	protein	synthesis.	In	our	competition	experiment,	

amino	acid	competitors	similarly	affected	the	fraction	of	substrate	uptake	that	was	

subsequently	respired;	L-leucine,	L-lysine,	and	L-arginine	vR	/	vU	ratios	decreased	by	

53.4	±	1.5	%,	53.8	±	14.1	%,	and	58.7	±	11.9	%,	respectively.	Presumably,	decreased	

vR	/	vU	ratios	are	an	indication	of	connectivity	of	amino	acid	pools;	degradation	of	

the	competitor	amino	acid	to	ammonia	and	subsequent	de	novo	protein	synthesis	
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would	result	in	enhanced	assimilation	of	the	labeled	amino	acid.	L-leucine	also	

inhibited	the	uptake	of	all	other	substrates,	with	the	curious	exception	of	an	

increase	in	both	hexanoic	acid	and	1-hexanol	respiration,	perhaps	suggesting	that	

the	flux	through	fatty	acid	degradation	pathways	is	increased	when	nitrogen	growth	

limitation	is	relieved.	L-leucine,	the	only	acidic	aliphatic	amino	acid	investigated,	

responded	to	carbon	substrate	competitor	additions	differently	from	the	basic	non-

polar	amino	acids	L-lysine	and	L-arginine.	For	example,	L-leucine	uptake	was	

enhanced	in	the	presence	of	all	three	carbohydrates	and	hexanoic	acid.		

	

2.3.4	Conclusions	

Pairwise	comparisons	of	uptake	kinetics	and	competition	experiments	in	

natural	seawater	incubations	are	challenging	to	interpret,	however,	by	comparing	

substrates	spanning	a	wide	range	of	thermodynamic	and	chemical	properties,	we	

identified	three	emergent	patterns	of	substrate	selection	in	surface	microbial	

communities.	First,	amino	acids	were	preferentially	utilized	at	ambient		

concentrations	compared	with	all	other	substrates,	and	the	number	of	nitrogen	

atoms	was	important	to	amino	acid	uptake	kinetics.	Amino	acids	inhibited	the	

uptake	of	other	other	amino	acids,	suggesting	a	broad	specificity	transporter	

system.	Second,	a	linear	relationship	between	vo	and	aFo	was	identified,	suggesting	

that	interactions	between	transporter	binding	efficiency	and	translation	among	

complex	communities	have	evolved	to	optimize	the	consumption	of	specific	

substrates.	Third,	among	the	non-amino	acid	substrates,	oxidized	substrates	turn	

over	faster	than	reduced	substrates,	consistent	with	theoretical	assimilation	
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efficiencies.	The	turnover	times	of	organic	carbon	substrates	should	therefore	

proceed	in	the	order	of	oxidation	state	(alkanes	>	alcohols,	ethers,	alkenes	>	

ketones,	aldehydes,	epoxides	>	carboxylic	acids,	hydroxy	acids).	Our	results	reveal	

that	microbes	are	indeed	picky	eaters	and	that	the	surface	microbial	community	

prefers	a	“high	protein,	low	calorie”	diet.			
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Table	2.1	-	Comparison	of	selected	substrates.	Carbon	enthalpies	of	combustion	
(ΔHC’)	were	calculated	according	to	the	Kharasch	Equation	(see	Methods).	
Respiration	quotients	(RQ)	were	derived	from	balanced	respiration	equations.				

Compound	
ΔHC’		

[KJ	mol	C-1]	
RQ		

[mol	CO2:	mol	O2]	
	Nitrogen		
[N	atoms]	

	Carbon		
[C	atoms]	

citric	acid	 377	 1	 0	 6	
hexanoic	acid	 600	 1.33	 0	 6	
1-hexanol	 667	 2	 0	 6	

glyceraldehyde	 486	 1	 0	 3	
D-ribose	 473	 1	 0	 5	
D-mannose	 483	 1	 0	 6	
L-leucine	 615	 0.8	 1	 6	
L-lysine	 633	 0.86	 2	 6	
L-arginine	 652	 1.1	 4	 6	
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Table	2.2	-	Parameters	used	in	this	study.		
Parameter	 Description	 Units	

aFo	 substrate	affinity	of	fast	transport	system	(Km/Vmax)	 h-1	
aSo	 substrate	affinity	of	slow	transport	system	(Km/Vmax)	 h-1	
Km	 Michaelis-Menten	half-saturation	constant	 nM	
KD	 rate	of	diffusion	 h-1	
SA	 substrate	added	concentration	 nM	
Sn	 natural	(ambient)	substrate	concentration	 nM	
v	 transport	velocity	 nM	h-1	
vo	 initial	velocity	 nM	h-1	
vR	 respiration	rate	 nM	h-1	
vA	 assimilation	rate	 nM	h-1	
vU	 uptake	rate	(vR	+	vA)	 nM	h-1	
Vmax	 maximum	velocity	 nM	h-1	
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Table	2.3	-	Summary	of	uptake	kinetics	for	each	labeled	substrate.	Standard	
deviation	reported	in	parentheses.	ND-	not	determined.			

	
	
	

Substrate  Model Breakpoint 
[nM] 

Vmax (Fast) 
[nM h-1] 

Km (Fast) 
[nM] 

Vmax (Slow) 
[nM h-1] 

Km (Slow) 
[nM] R2 

citric acid Multiphasic 52.3 0.094 (0.003) 6.2 (0.6) 0.195 (0.003) 54.2 (3.2) 1.00 

hexanoic acid Multiphasic 45.5 0.050 (0.004) 16.6 (2.4) 0.712 (0.150) 912.1 (109.1) 1.00 

1-hexanol Multiphasic 89.1 0.037 (0.003) 6.9 (2.8) 0.218 (0.004) 243.8 (19.7) 1.00 

glyceraldehyde Multiphasic 22.9 0.096 (0.010) 11.4 (1.5) 0.410 (0.021) 80.3 (8.7) 1.00 

D-ribose Biphasic ND 0.001 (7.1e-5) 0.3 (0.1) 0.004 (2.2e-4) 97.7 (11.5) 0.97 

D-mannose Multiphasic 20.7 0.024 (0.001) 2.6 (0.4) 0.151 (0.001) 157.1 (15.1) 1.00 

L-leucine Biphasic ND 0.035 (0.001) 0.6 (0.2) 0.203 (0.015) 368.3 (57.1) 0.97 

L-lysine Diffusive ND 0.096 (0.003) 3.7 (0.6) ND KD = 0.0003 0.97 

L-arginine Monophasic ND 2.028 (0.090) 255.1 (16.1) ND ND 0.99 
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Table	2.4	-	Summary	of	turnover	times	and	Km(Fast)+Sn.	Standard	deviation	
reported	in	parentheses.	D-Ribose	not	reported	(see	text).			
	

CompoundName	 Turnover	Time		
[h]	

Km	+	Sn	[nM]	

citric	acid	 75.3	(9.2)	 7.2	(0.4)	
hexanoic	acid	 277.2	(29.6)	 12.9	(1.0)	
1-hexanol	 981.3	(262.0)	 7.0	(0.4)	

glyceraldehyde	 109.0	(10.9)	 9.7	(1.2)	
D-mannose	 112.2	(13.4)	 2.6	(0.1)	
L-leucine	 44.1	(20.7)	 2.4	(0.2)	
L-lysine	 54.4	(15.1)	 7.0	(0.4)	
L-arginine	 74.6	(16.4)	 38.1	(10.0)	
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Figure	2.1	-	Summary	of	performance	of	assimilation	and	respiration	methods.	A:	
“Box-and-Whiskers”	plot	of	loss	of	radioisotope	for	each	labeled	substrate.	
Calculated	for	all	samples	(n	=	972)	as	the	percent	of	isotope	added	minus	the	sum	
of	activities	caught	on	the	filter,	trapped	in	the	cup,	and	left	over	in	solution.	B:	
Stacked	bar	plot	of	percent	recovery	of	respirometry	for	each	labeled	substrate	and	
Na2H14CO3	(see	Methods:	Respiration;	n	=	12).	Solid	bars	represent	percent	of	added	
activity	trapped	in	the	cups;	open	bars	represent	percent	of	added	activity	
remaining	in	solution.	C:	“Box-and-Whiskers”	plot	of	killed	control	percent	of	
assimilation	for	all	kinetics	samples	(n	=	486).		
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Figure	2.2	-		Uptake	kinetics	(vU	=	vA	+	vR)	for	all	substrates.	Mean	values	(Data	from	
triplicate	samples	(open	circles)	are	shown	with	corresponding	NLS	regressions	
(lines)	are	shown	for	AIC	selected	models.	Values	for	all	transport	systems	are	given	
in	Table	3.	
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Figure	2.3	-	Respiration	:	uptake	(vR	/	vU)	ratio	for	A:	carbohydrates,	B:	carboxylic	
acids	and	C:	amino	acids	over	the	SA	range	(log	scale).	1-Hexanol	is	not	shown	(see	
text).		
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Figure	2.4	-	“Ambient”	substrate	uptake	rates	(vo)	as	a	function	of	substrate	affinity	
(aFo,	aSo).	Closed	symbols	correspond	to	fast	uptake	kinetics	and	open	symbols	
correspond	to	slow	uptake	kinetics.	Error	bars	represent	one	standard	deviation	for	
both	variables.	Values	are	plotted	with	the	line	of	unity	for	reference.		
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Figure	2.5	-	Turnover	time	of	carbon	substrates	as	a	function	of	energy	density.	
Error	bars	represent	one	standard	deviation	of	the	mean.		
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Figure	2.6	-	Summary	of	competition	experiments.	Colors	represent	relative	%	
change	compared	to	control	(the	diagonal	is	defined	as	unity,	100%).	Symbols	
represent	significant	(p<0.05;	Student’s	t-test)	Substrate	names	are	abbreviated	for	
clarity:	cit	–	citric	acid,	hxoic	–	hexanoic	acid,	hxol	–	1-hexanol,	leu	–	L-leucine,	lys	–	
L-lysine,	arg	–	L-arginine,	glyc	–	glyceraldehyde,	ribose	–	D-ribose,	mann	–	D-
mannose.			
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Chapter	3	

Photoheterotrophy	enhances	microbial	growth	efficiency	

	

	

	

	

	

John	R.	Casey,	Sara	Ferrón,	David	M.	Karl	
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Abstract	

Molecular	evidence	for	proteorhodopsin	and	bacteriochlorophyll	based	

photoheterotrophy	is	widespread	in	oligotrophic	marine	microbial	community	

metagenomes,	and	has	been	implicated	in	light-enhanced	growth	rates,	substrate	

uptake	rates,	and	anapleurotic	carbon	fixation,	thus	complicating	the	web	of	

interactions	within	the	‘microbial	loop’.	We	quantified	photoheterotrophic	

metabolism	of	the	oxidized	organic	acid,	glycolate,	a	fast-turnover	(0.63	d-1)	and	

exclusively	phytoplankton-derived	substrate	at	an	oligotrophic	site	in	the	

subtropical	North	Pacific	Ocean.	As	expected,	concentration-dependent	changes	in	

uptake	rates	were	observed	over	the	diel	cycle,	with	maxima	occurring	at	midday.	

Although	no	light-enhanced	substrate	uptake	rates	were	observed,	samples	exposed	

to	light	altered	assimilation	and	respiration	rates,	resulting	in	an	approximately	4-

fold	increase	in	glycolate-specific	growth	efficiency.	Energy	demand	for	such	a	

metabolic	change	was	linearly	related	to	light,	strongly	suggesting	phototrophy.		
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3.1	Introduction	

The	web	of	microbially	mediated	transformations	of	carbon	and	energy	in	

the	oceans	is	intricate	and	dynamic.	The	conduit	through	which	a	great	majority	of	

oceanic	respiration	is	channeled	is	the	marine	dissolved	organic	matter	(DOM)	

reservoir.	DOM	is	composed	of	thousands	of	unique	molecules	in	widely	varying	

concentrations	(Mopper	et	al.,	2007),	and	the	spectrum	of	turnover	spans	from	

minutes	(Fuhrman	and	Ferguson,	1986)	to	millennia	(Ziolkowski	and	Druffel,	2010).	

Among	other	physicochemical	attributes,	the	thermodynamic	properties	of	organic	

substrates	governs	their	turnover,	with	high	enthalpy	substrates	supporting	sub-

optimal	microbial	growth	rates	and	therefore	turning	over	more	slowly	than	low	

enthalpy	substrates	(Casey	et	al.,	2015).	However,	since	the	discovery	of	two	unique	

light-harvesting	systems	widespread	in	marine	bacteria	and	archaea,	aerobic	

anoxygenic	photoautotrophy	(AAP;	Shiba	et	al.,	1979)	and	proteorhodopsin	(PR)	

photoautotrophy	(PRP;	Béjà	et	al.,	2000),	the	traditional	view	of	a	primary	

producer-DOM-secondary	producer	microbial	loop	(Azam	et	al.,	1983)	may	need	

revision	(Karl,	2014).	Collectively,	PRP	and	AAP	bacteria	and	archaea	comprise	most	

of	the	total	heterotrophic	microbial	community	in	oligotrophic	marine	ecosystems	

(Rusch	et	al.,	2007),	and	PR’s	have	been	found	in	diverse	bacterial	phyla	(McCarren	

and	DeLong,	2007),	including	the	numerically	dominant	alpha-proteobacterium	

Pelagibacter	ubique	SAR11,	and	in	marine	archaea	(Frigaard	et	al.,	2006).	While	

nutrient	and	ion	transport	have	been	associated	with	rhodopsins	(Feng	et	al.,	2013;	

Kwon	et	al.,	2013;	Inoue	et	al.,	2013;	Yoshizawa	et	al.,	2014;	Dimroth,	1990;	Chan	et	

al.,	1981),	both	PR	and	the	bacteriochlorophyll	(BChl)	complex	are	capable	of	
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generating	a	proton	motive	force	(pmf)	to	supplement	the	ATP	demands	of	

biosynthetic	and	maintenance	functions.	The	PR	pmf	generated	has	been	shown	in	

monoclonal	cultures	to	markedly	stimulate	growth	rates	(Gomez-Consarnau	et	al.,	

2007;	Kimura	et	al.,	2011;	Palovaara	et	al.,	2014),	anapleurotic	carbon	fixation	rates	

(Palovaara	et	al.,	2014),	substrate	uptake	rates	(Alonso-Saez	et	al.,	2006;	Michelou	et	

al.,	2007;	Mary	et	al.,	2008),	and	to	resuscitate	carbon-starved	cells	(Gomez-

Consarnau	et	al.,	2010;	Steindler	et	al.,	2011).	Whether	the	high	abundance	and	

diversity	of	AAP	and	PRP	in	the	marine	environment	indicates	a	physiological	cost-

benefit	solution	to	energy	limitation	of	heterotrophic	microbial	growth	on	

thermodynamically	sub-optimal	substrates	remains	unclear.		

The	PRP	and	AAP	pmf	may	provide	microbes	with	a	readily	available	energy	

source	to	supplement,	or	perhaps	to	partly	relieve	oxidative	phosphorylation	

demands.	Indeed,	Koblížek	and	co-authors	(Koblížek	et	al.,	2010)	measured	a	70%	

reduction	in	respiration	rates	of	an	AAP	Roseobacter	isolate	when	grown	on	

glutamate	as	a	sole	carbon	source	in	the	presence	of	light.	Accordingly,	the	‘shaft	

work’	provided	to	facultative	photoorganoheterotrophs	by	photochemical	energy	

transduction	should	decouple	substrate	chemical	energy	potential	from	anabolic	

yields	of	obligate	chemoorganoheterotrophs	(von	Stockar	et	al.,	2006).	We	

hypothesized	that	light	inhibition	of	photoorganoheterotrophic	respiration	alters	

substrate-specific	growth	yields	within	natural	microbial	assemblages,	especially	for	

substrates	more	oxidized	than	their	anabolic	end-products.		

A	suitable	substrate	to	evaluate	light-enhanced	growth	yield	is	the	oxidized	

hydroxy	acid,	glycolate.	Glycolate	is	secreted	as	a	result	of	photorespiration	from	
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photoautotrophic	microbes	like	high-light	adapted	Prochlorococcus	strains	

(Bertilsson	et	al.,	2005),	and	some	of	which	lack	a	complete	salvage	pathway	(Casey	

et	al.,	2016).	Since	photorespiration	is	likely	the	sole	extracellular	source	of	

glycolate,	and	since	glycolate	permease	transporters	and	glycolate	oxidases	and	

dehydrogenases	are	present	in	SAR11,	glycolate	represents	a	direct	transfer	of	

oxidized,	newly	fixed	photosynthate	to	support	heterotrophic	carbon	and	energy	

demands.	In	this	study,	radiorespirometry	experiments	were	conducted	to	

determine	the	concentration-dependent	kinetics	of	glycolate	uptake,	the	diel	cycle	of	

glycolate	uptake,	and	the	effect	of	light	within	that	cycle	and	as	a	function	of	depth	

within	the	euphotic	zone	(5	–	100	m).		

	

3.2	Methods	

3.2.1	Station	locations	and	sample	collection	

Stations	sampled	were	on	two	separate	expeditions	(Cruise	1	–	September,	

2013	at	22°	75’	N,	158°	00’	W	and	Cruise	2	–	July-August	2015	at	24°	25’	N,	156°	45’	

W)	in	the	North	Pacific	Subtropical	Gyre	north	of	the	island	of	O’ahu.	The	kinetics	

experiment	was	carried	out	during	Cruise	1.	Cruise	2	followed	a	semi-Lagrangian	

track	near	the	center	of	an	anticyclonic	mode-water	eddy	feature,	facilitated	by	

maintaining	ship’s	position	with	World	Ocean	Circulation	Experiment	Surface	

Velocity	Profile	drifters	with	15	m	depth	drogues.	Sampling	for	glycolate	tracer	

incubation	time-series	was	conducted	at	4	h	intervals,	uninterrupted	over	the	

course	of	two	days.	Additionally,	surface	tethered	drifter	arrays,	designed	to	

accommodate	sample	bottles	suspended	at	5,	25,	50,	75,	and	100	m	were	deployed	
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before,	and	again	after	the	time-series	experiments.	Water	samples	were	collected	

using	a	rosette	of	PVC	Bullister	bottles	mounted	on	a	frame	equipped	with	dual	

conductivity	sensors,	temperature	sensors,	pressure	sensors,	oxygen	optodes,	

transmissometers,	and	triplet	fluorometers	(SBE	911plus,	Sea-Bird	Electronics,	

Inc.).	Photosynthetically	active	radiation	(PAR;	400	–	700	nm	wavelength	band)	was	

measured	both	in	time-series	experiments	by	shipboard	quantum	cosine	sensor	(LI-

190R;	LI-COR	Inc.)	with	data	logger	(LI-1000;	LI-COR	Inc.),	and	also	in	depth	profiles	

(8	–	190	m)	by	a	free-falling	profiling	hyperspectral	radiometer	(Hyperpro,	Satlantic	

LP.).	Incubation	time-integrated	PAR	was	calculated	by	scaling	shipboard	PAR	to	

incubator	transmittance.	

	

3.2.2	Community	stocks,	production,	and	respiration	data	

Alongside	glycolate	incubations,	samples	were	collected	for	particulate	

carbon	(PC),	chlorophyll	a	(Chl	a),	primary	productivity	(PP)	rates,	and	microbial	

community	respiration	(MCR)	rates.	PC,	Chl	a,	and	PP	measurements	were	

conducted	according	to	Hawaii	Ocean	Time-series	standard	protocols	(Karl	et	al.,	

2001;	http://hahana.soest.hawaii.edu/hot/methods/results.html).	Briefly,	for	PC,	4	

liter	samples	were	pre-filtered	through	202	μm	screen	mesh	and	pressure	filtered	

onto	pre-combusted	25	mm	glass	fiber	filters	(Whatman	GF/F).	Filters	were	then	

stored	at	-20°C	until	analysis	by	high-temperature	combustion	elemental	analyzer	

(CE-440,	Exeter	Analytical,	Inc.).	For	Chl	a,	2	liter	samples	were	filtered	as	above	and	

stored	in	acetone	at	-20°C	until	fluorometric	analysis.	For	PP,	500	ml	samples	were	

incubated	in	situ	on	a	surface-tethered	array	deployed	before	sunrise	and	recovered	
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after	sunset.	Bottles	were	spiked	with	H14CO3-	to	yield	a	final	radioactivity	of	

approximately	2	MBq	L-1.	After	a	14	hour	incubation,	samples	were	filtered	onto	

GF/F	filters,	acidified	in	glass	scintillation	vials	with	1	ml	2M	HCl	and	allowed	to	

vent	for	24	hours	prior	to	the	addition	of	10	ml	Ultima	Gold	LLN	cocktail	and	liquid	

scintillation	counting.	MCR	measurements	were	conducted	according	to	the	

difference	between	gross	oxygen	production	and	net	oxygen	change	(Ferrón	et	al.,	

2016).	Briefly,	samples	were	collected	in	125	ml	Pyrex	glass	bottles,	enriched	to	

2300	%0	H218O	(97.2%	18O)	and	incubated	in	situ	along	with	the	PP	array.	Mass-to-

charge	(m/z)	ratios	of	32	(16O16O)	and	34	(18O18O)	were	quantified	and	normalized	

to	the	biologically	inert	gas	Ar	(m/z	40)	by	a	silicone	membrane	inlet	quadrupole	

mass	spectrometer	(MIMS	gas	analyzer,	Bay	Instruments;	HiCube	80	Eco,	Pfeiffer	

Vacuum)	equipped	with	a	Faraday	collector	and	secondary	electron	multiplier.		

	

3.2.3	Glycolate	kinetics	and	uptake	experiments	

Incubations	for	glycolate	kinetics	and	diel	uptake	rates	were	conducted	in	

semi-transparent	acrylic	(shaded	to	approximately	match	the	15	m	depth	of	

sampling)	or	darkened	deckboard	incubators	flushed	with	circulating	surface	

seawater	to	maintain	in	situ	temperatures.	Incubator	bath	temperatures	were	

monitored	by	Hobo	Pendant	Data	Loggers	(Onset	Computer	Corp.).		

Experimental	procedures	for	glycolate	incubations	were	described	in	Casey	

et	al.	(2015).	Briefly,	60	ml	samples	were	spiked	with	[U-14C]-glycolic	acid	calcium	

salt	(14C-glycolate	herein;	American	Radiolabeled	Chemicals,	Inc.)	at	a	specific	

activity	of	1.48	TBq	mol-1.	For	the	kinetics	experiment,	nine	spike	concentrations	
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were	added,	ranging	from	1	nM	to	348	nM,	spaced	logarithmically.	For	all	other	

incubations,	spike	concentrations	were	10	nM.	Uptake	time	series	samples	were	

collected	at	4	h	intervals	for	two	days.	All	samples	were	incubated	in	triplicate	and	a	

500	μL	total	activity	aliquot	was	collected	from	each	sample	prior	to	incubation.	For	

assimilation	rates,	samples	were	filtered	under	gentle	vacuum	(<70	mBar)	directly	

after	incubation	onto	25	mm	glass	fiber	filters	(nominal	pore	size	0.3	μm;	GF75,	

Sterlitech	Corp.)	and	rinsed	with	three	volumes	of	20	ml	0.2	μm	filtered	seawater.	

Filters	were	transferred	to	20	ml	glass	scintillation	vials	and	submerged	in	10	ml	

scintillation	cocktail	(UltimaGold	LLT,	Perkin	Elmer).	To	account	for	14C-glycolate	

adsorbed	to	cells	or	glass	fiber	filters,	a	“killed-control”	replicate	sample	poisoned	

with	2%	final	concentration	paraformaldehde	was	included	prior	to	each	

incubation.	Killed-controls	were	incubated	alongside	live	samples	and	processed	

identically.	Assimilation	depth	profiles	were	conducted	alongside	PP	and	MCR	in	situ	

arrays.		

For	respiration	rates,	125	ml	glass	serum	bottles	were	fitted	with	rubber	

sleeve	stoppers	pierced	with	center	well	cups	containing	a	dry	piece	of	fluted	

cellulose	paper	(Whatman	#2)	suspended	in	the	headspace.	Respiration	incubations	

were	terminated	by	first	soaking	the	filter	paper	with	150	μL	phenethylamine	and	

then	acidifying	the	sample	with	4	ml	4.5	N	sulfuric	acid	through	the	gas-tight	

stopper.	The	acidified	sample	was	allowed	to	react	for	at	least	48	hours	before	

removing	the	stoppers.	This	procedure	is	designed	to	completely	capture	the	

respired	14CO2.	Center	well	cups	were	transferred	to	20	ml	glass	scintillation	vials	

and	submerged	in	10	ml	scintillation	cocktail.	Quantitative	recovery	(100	±	4%)	was	
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determined	in	the	kinetics	experiment,	and	recovery	was	independent	of	substrate	

concentration.	

	

3.3	Results	

3.3.1	Glycolate	kinetics	experiment	

Two	distinct	kinetics	profiles	were	observed	for	dark	glycolate	assimilation	(va)	and	

respiration	(vR;	Figure	3.1).	Assimilation	followed	a	monophasic	Michaelis-Menten	

function	with	a	resulting	half-saturation	concentration	(Km,a)	of	118	nM	and	a	

maximum	velocity	(Vmax,a)	of	28	nM	h-1.	Respiration	rates	did	not	appear	to	

completely	saturate	over	the	concentration	range	tested,	therefore	Km,r	and	Vmax,r	

could	not	be	determined.	The	resulting	uptake	parameters	Km,u	and	Vmax,u	were	

calculated	to	be	195	nM	and	152	nM	h-1.	Glycolate-specific	growth	efficiency	(100*va	

/va+vR)	varied	as	a	logistic	function	of	substrate	concentration	added,	with	highest	

efficiencies	(29.3	±	0.9	%)	corresponding	to	SA	<	57	nM.	At	saturating	

concentrations,	the	growth	efficiency	approached	12%.				

	

3.3.2	Glycolate	diel	time-series	experiment	

Uptake	rates	varied	by	roughly	3-fold	(2.8	±	0.7	fold)	over	the	diel	cycle,	in	phase	

with	the	solar	cycle,	and	no	difference	between	shaded	and	unshaded	uptake	rates	

were	observed	(two-sample	t-test	with	unequal	variance;	p	=	0.39;	Figure	3.2).	

Assimilation	rates	also	followed	a	diel	cycle	(3.1	±	1.1	fold),	but	with	maximal	rates	

occurring	in	unshaded	samples	in	the	early	morning	(0600	–	1000	local	time).	

Assimilation	rates	in	shaded	samples	were	35	±	7%	lower	than	unshaded	samples	
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(p	=	0.007)	during	daylight	hours,	but	were	similar	to	nighttime	samples	(p	=	0.42).	

In	contrast,	respiration	rates	in	shaded	samples	were	120	±	14%	higher	than	shaded	

samples	(p	=	9e-6)	during	daylight	hours,	and	unshaded	samples	were	similar	over	

the	entire	daylength	(p	=	0.71).	The	discrepancy	between	daytime	light-dependent	

responses	in	assimilation	and	respiration	rates	resulted	in	large	variations	(3.5	±	0.9	

fold;	p	=	9e-7)	in	glycolate-specific	growth	efficiencies,	ranging	from	24	±	6%	in	

shaded	daytime	samples	to	82	±	8%	in	unshaded	daytime	samples.		

	

3.3.3	Glycolate	assimilation	depth	profile	experiment	

Assimilation	rates	decreased	exponentially	with	depth	(Figure	3.3),	and	were	more	

closely	matched	to	PAR	(Model	II	geometric	mean	least	squares	fit;	r2	=	0.99)	than	to	

PP	(r2	=	0.79).	In	consideration	of	incubation	lengths,	array	assimilation	rates	at	25	

m	were	similar	to	time-series	assimilation	rates	averaged	over	the	array	

deployment	interval	(p	=	0.71).	

	

3.4	Discussion	

Glycolate,	a	low	molecular	weight	(76	Da)	organic	acid,	may	constitute	an	

important	flux	of	both	carbon	and	energy	within	the	marine	microbial	community	

metabolism.	Dark	glycolate	uptake	kinetics	indicated	an	upper	bound	(Laws,	1983)	

ambient	concentration	of	30	±	6	nM,	based	on	turnover	time	as	a	function	of	

substrate	added	(Dietz	et	al.,	1977).	This	estimate,	though	an	upper	bound,	is	

roughly	half	the	nighttime	concentration	measured	by	HPLC	at	an	oligotrophic	(60-

70	ng	Chl	a	L-1)	site	in	the	tropical	eastern	North	Atlantic	(66	nM;	Leboulanger	et	al.,	
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1997),	and	is	well	below	the	Km,u	(119	nM).	During	the	dark	kinetics	incubation,	the	

glycolate	pool	turned	over	approximately	daily	(1.1	±	0.1	d);	however,	this	estimate	

is	likely	an	underestimate	due	to	disequilibrium	with	respect	to	production	(which	

is	exclusively	during	daylight	hours).		

Time-series	incubations	showed	a	characteristic	diel	cycle	in	uptake	rates	in	

phase	with	the	solar	cycle,	independent	of	whether	the	sample	was	exposed	to	light.	

Taken	together	with	our	understanding	of	a	photorespiratory	source	of	glycolate,	

these	results	indicate	ambient	concentration-dependent	rates,	rather	than	light-

enhanced	uptake	by	heterotrophs.	Although	the	time	series	experiment	and	kinetics	

experiment	were	conducted	on	separate	expeditions	with	somewhat	different	

phytoplankton	community	stocks	and	rates	(Cruise	1:	Chl	a	=	80	ng	L-1,	PP	=	8.1	mg	

C	L-1	d-1;	Cruise	2:	Chl	a	=	137	ng	L-1,	PP	=	9.9	mg	C	L-1	d-1),	nighttime	uptake	rates	

(10	nM	spike)	collected	during	the	time-series	experiment	closely	matched	the	

corresponding	values	from	the	kinetics	curve	(p	=	0.81).	With	this	caution,	we	

estimate	a	2-fold	change	in	ambient	glycolate	concentrations	over	the	course	of	the	

diel	cycle,	which	is	consistent	with	estimates	from	the	North	Atlantic	(2.4	±	1.2	fold;	

Leboulanger	et	al.,	1998).	Glycolate-specific	respiration	rates	accounted	for	

approximately	3%	of	total	community	oxygen	respiration	rates,	and	considering	the	

glycolate	respiration	quotient,	6%	of	total	community	respired	CO2	(assuming	a	

total	community	RQ	of	1.0;	del	Georgio	et	al.,	2006;	c.f.,	Berggren	et	al.,	2011).	On	a	

carbon	basis,	glycolate	production	rates	accounted	for	less	than	4%	of	gross	oxygen	

production	in	the	time-series	incubations,	however	this	is	can	also	be	interpreted	as	

an	underestimate	of	gross	photorespiration	since	salvage	pathways	are	present	in	
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some	photoautotrophs.	Due	to	methodological	challenges,	photorespiration	rates	

have	not	been	directly	quantified	in	the	oceans,	and	may	be	an	important	but	largely	

ignored	flux	of	carbon.		

High-light	adapted	‘ecotypes’	(eHL)	of	the	marine	cyanobacterium	

Prochlococcus,	the	most	abundant	photoautotroph	at	Station	ALOHA,	lacks	glycolate	

oxidase	or	glycolate	dehydrogenase,	an	essential	step	in	the	salvage	pathway	for	

photorespiratory	glycolate	regeneration	of	3-phosphoglycerate.	Because	the	

precursor	2-phosphoglycolate	is	toxic	to	central	carbon	fixation	pathways,	

Prochloroccus	actively	excretes	glycolate	via	an	ATP-binding	cassette	efflux	

transporter.	In	cultures	of	two	eHL	Prochlorococcus	strains,	glycolate	excretion	was	

3%	of	carbon	fixation	(Bertilsson	et	al.,	2005),	remarkably	close	to	our	upper	bound	

estimate.	It	should	be	noted	that	the	diazotrophic	cyanobacterium	Crocosphaera,	

which	was	relatively	abundant	during	the	time-series	expedition	(100-700	cells	ml-

1;	3%	of	GOP;	Wilson	et	al.,	in	review),	does	have	a	complete	photorespiratory	

salvage	pathway.	Therefore	we	cannot	eliminate	the	possibility	that	Crocosphaera	

could	take	up	glycolate,	though	we	could	not	find	mention	of	any	photoautotroph	

utilizing	glycolate.	Notwithstanding,	Prochlorococcus	was	the	dominant	primary	

producer	during	the	time-series	expedition,	and	was	likely	the	major	glycolate	

producer.	Interestingly,	a	major	consumer	of	glycolate	is	likely	the	numerically	

dominant	heterotroph	at	Station	ALOHA,	Pelagibacter	ubique	SAR11	(SAR11	

hereafter),	a	small	alphaproteobacterium	with	an	absolute	growth	requirement	for	

pyruvate	and	either	glycolate	or	one	of	several	photorespiratory	salvage	pathway	

intermediate	metabolites.	SAR11	has	both	a	glycolate	transporter	and	glycolate	
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oxidase	which	yields	glyoxylate	and	hydrogen	peroxide.	In	addition	to	the	apparent	

co-evolution	of	these	two	dominant	oligotrophs	(Braakman	et	al.,	in	review),	SAR11	

and	much	of	the	heterotrophic	microbial	community	at	Station	ALOHA	(Rusch	et	al.,	

2007),	have	genes	for	proteorhodopsin-based	phototrophy,	prompting	our	

investigation	into	the	light-dependent	metabolism	of	glycolate.	With	a	respiration	

quotient	(mol	CO2	:	mol	O2)	of	2,	a	carbon	redox	number	of	3,	and	a	standard	carbon	

molar	enthalpy	of	combustion	(ΔH°c)	of	340	KJ	[C-mol]-1,	glycolate	is	a	relatively	

poor	energy	substrate.	Accordingly,	heterotrophic	growth	on	oxidized	carboxylic	

and	hydroxy	acids	like	acetate	and	fatty	acids	typically	requires	the	operation	of	the	

glyoxylate	shunt	(Kornberg,	1966),	a	bypass	of	two	CO2	evolving	steps	of	the	

oxidative	tricarboxylic	acid	pathway	by	way	of	isocitrate	lyase	and	malate	synthase	

which	allows	the	net	accumulation	of	carbon	through	acetyl-CoA.	However,	at	least	

one	alternative	pathway	utilizing	glyoxylate	is	present	in	SAR11	and	many	other	

heterotrophs,	consisting	of	a	heterotrophic	analogue	of	the	photorespiratory	

salvage	pathway	which	can	supply	precursors	for	gluconeogenesis	(by	way	of	3-

phosphoglycerate)	or	a	number	of	amino	acid	synthesis	pathways	(by	way	of	L-

glycine).	These	anabolic	pathways	cannot	be	sustained	without	a	supplemental	

energy	source,	since	the	ATP/NAD(P)H	ratio	and	yield	of	the	glyoxylate	shunt	using	

glycolate	as	a	substrate	does	not	satisfy	the	demands	of	e.g.,	protein	synthesis	

(calculation	based	on	iAF1260,	a	metabolic	model	of	Escherichia	coli	K-12	MG1655;	

Feist	et	al.,	2007).	The	central	finding	of	this	study,	that	exposure	to	light	enhances	

the	glycolate-specific	growth	efficiency,	points	to	the	possibility	that	the	pmf	

generated	by	proteorhopsin	phototrophy	or	by	the	BChla-complex	yields	sufficient	
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energy	to	divert	glycolate	flux	from	the	mostly	catabolic	glyoxylate	shunt	to	the	

mostly	anabolic	pathways.	Considering	the	ΔH°c	and	the	maximum	chemical	

potential	energy	yield	of	glycolate	respiration,	and	assuming	a	quantitative	energy	

transduction	by	PR	or	BChla-complex,	the	energy	yield	was	closely	correlated	with	

PAR	irradiance	integrated	over	each	incubation	(r2	=	0.94;	p	=	4e-6;	Figure	3.4).	

Unfortunately,	it	is	not	possible	to	‘scale’	glycolate-specific	phototrophic	energy	

yields	to	total	photoheterotrophy,	since	the	composition	of	the	myriad	additional	

growth	substrates	and	their	respective	uptake	rates	and	light-dependent	growth	

efficiencies	is	not	known.	Even	if	during	their	co-evolution	(Braakman	et	al.,	in	

review)	Prochlorococcus	has	adapted	to	‘growing	SAR11’	on	a	thermodynamically	

optimal	substrate	(glycolate	and	pyruvate;	thermodynamic	efficiency	=	20-24%;	

Westerhoff	et	al.,	1983),	SAR11	could	be	fighting	back	by	enhancing	growth	yields	

with	the	help	of	PR.		
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Figure	3.1	–	Kinetics	experiment	Glycolate	assimilation	and	respiration	as	a	

function	of	substrate	added.	Error	bars	represent	one	standard	deviation	of	the	

mean	rates	at	each	concentration.	Michaelis-Menten	non	linear	least	squares	

regression	line	is	shown	for	assimilation	data.			
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Figure	3.2	–	Time-series	experiment	Glycolate	uptake	(top	panel),	assimilation	

(second	panel),	respiration	(third	panel),	and	specific	growth	efficiency	(bottom	

panel)	for	shaded	and	unshaded	incubations	over	the	course	of	the	diel	time-series	

experiment.	Mean	(large	symbols)	and	individual	data	points	(small	symbols)	are	

shown	for	clarity.	Photosynthetically	available	radiation	(PAR)	data	is	overlaid	

(green	line)	in	each	panel.			
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Figure	3.3	–	Glycolate	assimilation	array	Depth	profile	of	glycolate	assimilation	

rates.	Error	bars	represent	one	standard	deviation	of	the	mean	rates	at	each	depth.	
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Figure	3.4	–	Energy	transduction	Calculated	glycolate-specific	energy	

transduction	(see	main	text	for	details)	over	the	diel	time-series	experiment	(top	

panel)	and	as	a	function	of	incubation	time	integrated	PAR	(bottom	panel).	Model	II	

geometric	mean	least	squares	regression	line	is	shown.		
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Chapter	4	

Adaptive	evolution	of	phosphorus	metabolism	in	Prochlorococcus		
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Abstract	

Inorganic	phosphorus	is	scarce	in	the	Eastern	Mediterranean	Sea,	where	the	

high-light	adapted	ecotype	HLI	of	the	marine	picocyanobacterium	Prochlorococcus	

marinus	thrives.	Physiological	and	regulatory	control	of	phosphorus	acquisition	and	

partitioning	has	been	observed	in	HLI	both	in	culture	and	in	the	field,	however	the	

optimization	of	phosphorus	metabolism	and	associated	gains	for	its	phosphorus	

limited	growth	(PLG)	phenotype	have	not	been	studied.	Here	we	reconstructed	a	

genome-scale	metabolic	network	of	the	HLI	axenic	strain	MED4	(iJC568),	consisting	

of	568	metabolic	genes	related	with	794	reactions	involving	680	metabolites	

distributed	in	6	sub-cellular	locations.	iJC568	was	used	to	quantify	metabolic	fluxes	

under	PLG	conditions	and	we	observed	a	close	correspondence	between	

experimental	and	computed	fluxes.	We	found	that	MED4	has	minimized	its	

dependence	on	intracellular	phosphate,	not	only	through	drastic	depletion	of	

phosphorus	containing	biomass	components,	but	also	through	network-wide	

reductions	in	phosphate-reaction	participation	and	the	loss	of	a	key	enzyme,	

succinate	dehydrogenase.	These	alterations	occur	despite	the	stringency	of	having	

relatively	few	pathway	redundancies	and	an	extremely	high	proportion	of	essential	

metabolic	genes	(47%;	defined	as	the	percentage	of	lethal	in	silico	gene	knockouts).	

These	strategies	are	examples	of	nutrient-controlled	adaptive	evolution	and	confer	

a	dramatic	growth	rate	advantage	to	MED4	in	phosphorus	limited	regions.		

	
Importance	
	
Microbes	are	known	to	employ	three	basic	strategies	to	compete	for	limiting	

elemental	resources:	(i)	cell	quotas	may	be	adjusted	by	alterations	to	cell	physiology	
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or	by	substitution	for	a	more	plentiful	resource,	(ii)	stressed	cells	may	synthesize	

high-affinity	transporters,	and	(iii)	cells	may	access	more	costly	sources	from	

internal	stores,	by	degradation	or	by	petitioning	other	microbes.	In	the	case	of	

phosphorus,	a	limiting	resource	in	vast	oceanic	regions,	the	cosmopolitan	

cyanobacterium	Prochlorococcus	marinus	thrives	by	adopting	all	three	strategies	

and	a	fourth,	previously	unknown	strategy.	By	generating	a	detailed	model	of	its	

metabolism,	we	found	that	strain	MED4	has	evolved	a	way	to	reduce	its	dependence	

on	phosphate	by	minimizing	the	number	of	enzymes	involved	in	phosphate	

transformations,	despite	the	stringency	that	nearly	half	of	its	metabolic	genes	are	

essential	for	survival.	Relieving	phosphorus	limitation,	both	physiologically	and	

throughout	intermediate	metabolism,	substantially	improves	phosphorus-specific	

growth	rates.		
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4.1	Introduction	
	

The	picocyanobacterium	Prochlorococcus	marinus	is	the	numerically	

dominant	photoautotroph	in	the	vast	oligotrophic	gyres,	where	it	often	contributes	

a	majority	of	carbon	fixation	[1].	Ecotypes	of	the	Prochlorococcus	lineage	occupy	a	

broad	ecological	niche	space,	and	its	success	has	been	attributed	to	its	small	size,	a	

highly	streamlined	and	nearly	minimal	genome,	and	physiological	adaptations	to	

low	nutrient	environments	(2).	Natural	populations	and	laboratory	isolates	adjust	

their	elemental	quotas	widely	in	response	to	nutrient	supply	by	a	variety	of	

intriguing	mechanisms.	Among	other	notable	adaptations,	they	are	capable	of	

utilizing	organic	substrates	to	supplement	inorganic	nutrient	deficits	(3,	4,	5),	

replacing	phospholipids	for	sulfolipids	and	glycolipids	under	phosphate-deplete	

conditions	(6),	and	coordinating	proteome-wide	control	of	nitrogen	allocation	

under	nitrogen	stress	(7).	The	first	axenic	strain	cultivated	of	the	eMED4	high-light	

ecotype	lineage,	MED4	(and	synonymous	genotypes	PCC9511,	CCMP1378,	and	

CCMP1986	[8]),	has	been	the	subject	of	numerous	physiological	studies,	and	was	

originally	isolated	from	the	chronically	phosphate-deplete	surface	waters	of	the	

Eastern	Mediterranean	Sea,	where	it	is	numerically	dominant	(9,	10).	The	

phosphorus-stress	response	has	been	described	in	detail	for	MED4	regulation	of	

gene	expression	(11,	12),	and	for	physiological	responses	of	the	cell	cycle	(13),	

elemental	composition	(14),	phosphorus	substrate	uptake	rates	(15),	alkaline	

phosphatase	activity	(3),	and	lipid	composition	(6).	The	regulatory	circuit	includes	

upregulation	of	the	sensor	kinase	complex	phoBR	and	subsequent	upregulation	of	

the	high-affinity	phosphate	transporter	system	pstABCS	and	pho	operon	including	
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alkaline	phosphatase.	We	hypothesized	that,	in	addition	to	these	regulatory	and	

physiological	responses,	MED4	has	optimized,	through	adaptive	gene	loss	(16),	its	

metabolic	network	to	cope	with	low	phosphate	availability.	To	this	end,	we	sought	a	

quantitative	method	to	predict	metabolic	capabilities	of	the	MED4	genotype	and	its	

phosphorus	limited	growth	(PLG)	phenotype.		

	

Genome	scale	metabolic	(GEM)	network	reconstructions	represent	a	cornerstone	of	

systems	biology,	serving	as	both	a	‘knowledgebase’	for	contextualizing	physiological	

and	multi-omics	data	types,	and	as	a	framework	for	computational	approaches	such	

as	constraint-based	modeling	(17,	18).	GEMs	are	available	for	a	broad	spectrum	of	

microbes	and	model	organisms,	ranging	widely	in	network	size,	complexity,	and	

”quality”	(based	on	the	scoring	criteria	of	Thiele	et	al.	[19]).	Quantitative	metabolic	

flux	predictions	using	constraint-based	flux	balance	analysis	(FBA)	have	been	

validated	experimentally	for	a	range	of	different	organisms.	Furthermore,	FBA	and	

related	approaches	have	proven	valuable	for	strain	engineering,	natural	product	

yield	optimization,	identification	of	inhibition	targets	for	drug	therapies,	and	

numerous	other	industrial	and	medical	applications	(20).	Despite	these	routine	

applications,	to	our	knowledge	no	ecological	applications	have	been	reported.	

Indeed,	GEMs	of	ecologically	relevant	microbes	could	complement	trait-based	and	

cellular	resource	allocation	models,	which	benefit	from	broader	taxonomic	

coverage,	and	perhaps	be	nested	in	global	biogeochemical	models.		
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Here	we	reconstructed	a	GEM	for	MED4	and	used	the	model	to	simulate	growth	

under	a	variety	of	defined	media	to	describe	its	metabolic	capabilities	and	quantify	

fluxes	associated	with	phosphate,	carbon,	and	light	limited	growth	(PLG,	CLG	and	

LLG,	respectively)	conditions.	The	imprint	of	adaptive	evolution	in	phosphate-

deplete	conditions	was	found	throughout	the	MED4	metabolic	network,	with	

implications	for	global	cellular	elemental	turnover	and	energy	metabolism.	To	

explore	MED4	metabolism,	we	first	describe	fundamental	properties	of	the	

metabolic	network	in	relation	to	a	diverse	selection	of	microbial	GEMs.	We	then	

used	FBA	to	compute	its	metabolic	capabilities,	and	compared	model	simulations	

with	experimental	data	from	both	the	lab	and	the	field.	Finally,	we	discuss	genome	

wide	alterations	to	phosphorus	metabolism	and	implications	for	the	PLG	phenotype.		
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4.2	Methods	

4.2.1	Network	reconstruction	

A	metabolic	network	of	MED4	was	created	following	the	reconstruction	

process	detailed	previously	(19,	48).	Briefly,	an	initial	draft	reconstruction	was	

created	by	identifying	protein	homology	with	the	KEGG	Orthology	(KO)	database	

supplied	through	the	BioMet	Toolbox	(http://www.sysbio.se/BioMet).	Hidden	

Markov	models	(HMM)	of	protein	sequences	for	each	KO	were	retrieved	and	

queried	against	the	MED4	reference	genome	(NCBI	GenBank:	BX548174.1).	

Metabolic	genes	which	were	excluded	from	HMM	hits	were	individually	examined	

using	different	resources	(NCBI,	UniProt,	IMG,	BioCyc,	ProPortal).	General	and	

unbalanced	reactions	were	excluded	and	extensive	manual	curation	was	performed	

for	gap-filling	and	balancing	process,	due	in	part	to	the	conservative	reaction	

assignment	criteria,	as	well	as	the	incomplete	genome	annotation	(30%	of	ORFs	

assigned	to	putative	or	unknown	function),	typical	of	marine	cyanobacteria	(e.g.,	

48%	of	ORFs	assigned	to	putative	or	unknown	function	for	Synechocystis	sp.	

PCC6803).	Draft	model	reactions	were	checked	for	elemental	and	charge	balance,	

for	known	substrate	and	cofactor	specificity,	and	for	directionality.	Reaction	

directionality	was	determined	by	thermodynamic	favorability	(49)	followed	by	

manual	inspection	and	elimination	of	futile	cycles	and	according	to	guidelines	

described	in	(19).	Cofactor	specificity,	especially	with	regard	to	preference	for	

NAD(H)	and	NADP(H),	was	often	unknown;	however,	4	genes	(PMM1127,	

PMM1145,	PMM1146,	PMM1147)	encoding	the	alpha	and	beta	subunits	of	the	

reversible	membrane-bound	nicotinamide	nucleotide	transhydrogenase	(EC	1.6.1.1;	
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R00112)	effectively	eliminated	the	need	to	differentiate	these	important	cofactors.	

Proteins	were	assigned	to	one	of	six	sub-cellular	locations:	cytoplasmic	membrane,	

periplasm,	thylakoid	membrane,	thylakoid	lumen,	cytoplasm,	or	carboxysome.	

Protein	localization	was	based	on	amino	acid	sequences	using	the	PSORTb	

algorithm	for	bacteria	(50)	and	the	ExPASy	tool	DAS-TMfilter	for	transmembrane	

domain	prediction	(51).	Proteins	associated	with	the	thylakoid	membranes	and	

carboxysomes	are	not	predicted	by	PSORTb,	and	were	instead	inferred	from	

homology	to	a	detailed	photophysiological	model	for	Synechocystis	sp.	PCC6803	

(52).		

Gaps	were	identified	by	iteratively	examining	dead-end	metabolites	and	

associated	blocked	reactions,	and	returning	to	the	literature	for	evidence	of	

synthesis,	degradation,	secretion	or	uptake	of	associated	metabolites.	Conserved	

domains	from	the	resulting	orphan	reactions	were	then	queried	against	the	MED4	

genome	by	protein	homology	using	BLASTp.	This	process	identified	several	ORFs	

with	high	sequence	identity.	The	resulting	well-connected	network	was	then	

queried	for	futile	cycles	and	transport	and	exchange	reactions	were	added.	Several	

exchange	reactions	were	added	for	protein	complexes	(e.g.,	acyl	carrier	protein,	

lipoylprotein)	which	are	not	explicitly	synthesized	by	the	network,	though	these	

carry	no	flux	and	are	included	only	for	modeling	purposes.	Fake	exchange	reactions	

were	also	added	for	dead-end	metabolites	not	included	in	the	biomass	objective	for	

which	no	transporters	are	annotated	(e.g.,	glycolaldehyde,	7-aminomethyl-7-

carbaguanine,	methanol).	These	reactions	can	carry	flux	and	are	considered	

analogous	to	diffusive	transport.	A	tunable	ATP	sink	was	introduced,	also	for	
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modeling	purposes,	to	account	for	costs	associated	with	photo-damage	above	an	

experimentally	determined	irradiance	(549	μmol	photons	m-2	s-1	[53]),	though	this	

reaction	is	constrained	to	zero	unless	explicitly	stated	herein.	Transporter	proteins	

are	particularly	poorly	annotated	in	the	MED4	genome,	so	physiological	evidence	

alone	was	required	for	transporter	presence	in	some	cases.	Because	transport	may,	

variously,	be	chemiosmotic	(symporter/antiporter	ion	pumps)	or	mediated	by	ATP	

hydrolysis,	it	is	likely	that	iJC568	is	not	accurately	charge	balanced	with	respect	to	

major	ions	(e.g.,	K+,	Ca2+).	In	all	cases,	reaction	presence/absence	was	scored	for	

evidence	according	to	(19).		

The	process	of	building	an	in	silico	metabolic	reconstruction	is,	historically,	a	

series	of	iterative	improvements	whereby	the	model	grows	in	size	and	complexity,	

often	with	detail	added	to	specific	pathways	as	experimental	data	become	available.	

Open	code	and	computational	design	is	essential	to	this	process,	and	we	have	made	

efforts	to	enable	community	contributions.	The	model	is	fully	MIRIAM	compliant	

and	is	available	in	standard	formats	(SBML	for	RAVEN	and	BioOpt	at	http://biomet-

toolbox.org;	Excel	format	in	Supplementary	File	4.1).	Since	naming	conventions	

and	database	link	identifiers	differ	widely,	the	Excel	file	contains	additional	fields	to	

identify	reactions	(SBO	Terms,	KEGG	Orthology,	EC	Codes),	metabolites	(molecular	

formula,	molecular	weight,	charge,	IUPAC	Names,	InChI,	InChIKey,	PubChem	CID,	

and	KEGG	Compound),	and	genes	(KEGG	Gene,	NCBI	Accession,	UniProt	ID)	which	

are	intended	to	aid	in	formatting	conversions	for	ease	of	sharing.	Simulation	results	

and	the	BOF	are	available	as	tabs	in	a	separate	Excel	file	(Supplementary	File	4.2).		
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4.2.2	Constraint-based	modeling	

FBA	and	several	related	approaches	were	employed	in	this	manuscript.	In	

the	dynamic	state,	FBA	seeks	to	maximize	or	minimize	a	metabolic	function,	such	as	

biomass	growth	or	ATP	dissipation,	subject	to	constraints	on	fluxes:		

	
	
	

Minimize:	
	

Subject	to:	 	 	 	 	 	 (1)	

	
	
where	c	is	a	vector	of	coefficients	of	length	n	identifying	the	objective	reaction	in	the	

flux	vector	v	of	length	n.	S	is	the	stoichiometric	matrix	of	metabolites	and	reactions	

of	dimension	m	x	n,	b	is	a	vector	of	exchange	fluxes	of	length	n,	and	X	is	a	vector	of	

metabolite	concentrations	of	length	m.	In	the	steady	state,	the	problem	is	restated	

by:		

	

	 	 	 	 	 (2)	
	
	
implying	that	there	is	no	net	accumulation	or	depletion	of	any	metabolite	pools.	The	

optimization	package	Mosek	(Mosek	ApS,	Denmark)	was	used	to	find	the	primal	

solution	of	the	linear	programming	(LP)	problem.	Elemental	flux	sums	(Φi)	were	

calculated	using	the	elemental	matrix	E,	constructed	for	hydrogen,	carbon,	nitrogen,	

oxygen,	phosphorus,	and	sulfur	from	metabolite	molecular	formulas:		
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	 	 	 	 (3)	
	
4.2.3	Shadow	Prices		

Sensitivity	analyses	were	based	on	so-called	Shadow	Prices	of	the	dual	

solution	to	the	LP	problem	according	to:		

	

		 	 	 	 (4)	
	
	
where	dual	variables	λ	of	length	m	are	assigned	to	steady	state	constraints,	and	

variables	q1

	

and	q2

	

are	assigned	to	the	flux	constraints	vLB	and	vUB,	respectively:		

	

	
Minimize:	

	
	 	 	 Subject	to:	 	 	 	 	 	 (5)	

	
	
4.2.4	Reporter	metabolites	and	reporter	subnetworks	

A	hypothesis-based	method	to	identify	key	biological	features	around	which	

transcriptional	changes	occur	was	implemented	to	interpret	the	phosphorus	stress	

response,	using	the	algorithms	for	reporter	metabolites	(54)	and	reporter	

subnetworks	(55).	Both	algorithms	map	the	p-values	and	fold-changes	from	a	

differential	expression	dataset	(11)	to	the	metabolic	network	using	gene-protein-

reaction	associations.	The	reporter	metabolites	algorithm	ranks	metabolite	nodes	

based	on	the	normalized	transcriptional	response	of	its	neighboring	protein	nodes	

according	to	Z-scores	assigned	to	each	edge.	The	reporter	subnetworks	algorithm	
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expands	on	this	concept	by	randomly	sampling	aggregates	of	reporter	nodes,	and	

again	ranking	each	aggregate	according	to	its	Z-score.		

	

4.2.5	Biomass	objective	function	

A	detailed	biomass	objective	function	(BOF)	is	essential	to	any	high-quality	

GEM.	iJC568	includes	detailed	biomass	composition	data	collated	from	the	MED4	

literature	under	similar	growth	conditions	(PRO99	medium,	14:10	hour	light:dark	

cycle	with	peak	intensities	of	40-80	μmol	photons	m-2	s-1),	where	available.	Our	BOF	

includes	the	protein	amino	acid	composition,	lipid	profiles,	pigment	content,	cell	

wall	composition,	carbohydrate	content,	DNA	nucleotide	fraction,	RNA	nucleotide	

fraction,	and	mineral	and	trace	element	composition,	for	a	total	of	121	compounds.	

However,	detailed	biochemical	composition	data	are	lacking	for	intracellular	

metabolite	concentrations	in	MED4,	and	our	BOF	lacked	information	on	free	

nucleotides,	free	amino	acids,	and	the	soluble	pool	(BioPool)	concentrations,	which	

were	instead	taken	from	the	more	completely	characterized	cyanobacterium	

Synechocystis	sp.	PCC6803.	Cumulatively,	these	three	pools	make	up	less	than	5%	of	

ash-free	dry	weight	(DW)	and	correspond	to	4%	of	the	variance	of	the	growth	rate	

under	optimal	growth,	mostly	(59%)	due	to	spermidine	and	nicotinamide	

dinucleotides	(Supplementary	File	4.2).	Growth	associated	maintenance	(GAM)	

and	non-growth	associated	maintenance	(NGAM)	ATP	requirements	were	

calculated	according	to	the	method	described	by	Feist	et	al.	(56).	The	sensitivity	of	

growth	rate	to	alterations	in	the	biomass	composition	(Ψk)	was	evaluated	by	brute-

force,	analogous	to	the	calculation	of	shadow	prices:		



	 125	

	

	 	 	 	 (6)	
	

	
where	XkBIO	is	the	biomass	equation	SBIO	with	variable	composition	k.	This	is	

accomplished	by	varying	either	a	pool	of	biomass	precursors,	where	BIO	is	the	index	

of	the	biomass	reaction	and	ak

	

is	a	vector	of	ones	with	an	element	of	variable	

magnitude	corresponding	to	a	crude	fraction	(e.g.,	protein)	or	a	specific	compound	

within	that	crude	fraction	(e.g.,	L-lysine).	These	targeted	elements	for	each	biomass	

precursor	pool	or	compound	were	varied	by	an	arbitrarily	small	interval	(-1	ppm	≤	

∆	ak

	

≤	1	ppm)	and	FBA	was	then	performed	to	quantify	the	resulting	change	in	

growth	rate	(∆Z	).		

An	exhaustive	search	algorithm	was	implemented	to	quantify	the	change	in	growth	

rate	as	a	function	of	varying	biomass	precursor	pool	compositions	that	satisfied	a	

particular	carbon:phosphorus	molar	ratio.	In	this	way	equation	1	is	additionally	

subject	to:		

	
	 (7)	

	
	
where	QC	is	the	number	of	carbon	atoms	and	QP	is	the	number	of	phosphorus	atoms	

of	each	compound	(k)	in	each	biomass	precursor	pool	(l),	and	emBIO	refers	to	the	mth	

target	C:P	composition	(QmC:P),	derived	from	the	elemental	matrix	E,	within	an	

interval	10%	below	Qmin,mC:P	and	above	Qmax,mC:P.	Table	4.1	summarizes	the	BOF	pool	

composition	and	sensitivity	(detailed	composition	and	sensitivity	under	carbon,	



	 126	

light,	phosphorus,	and	nitrogen	limited	growth	conditions	provided	in	

Supplementary	File	4.2).		

	

4.2.6	Culture	conditions	and	analytical	procedures	

Axenic	Prochlorococcus	marinus	strain	MED4	(courtesy	of	S.W.	Chisholm)	

was	grown	in	30	ml	batch	in	70	ml	borosilicate	glass	tubes	in	modified	PRO99	low	

nutrient	seawater-based	media	(31).	P-limited	growth	was	achieved	after	three	

transfers	into	2	μM	H2PO4-	with	a	resulting	N:P	of	200.	Cells	were	grown	at	24ºC	

under	cool	white	fluorescent	light	programmed	to	a	parabolic	14	h	:	10	h	light	:	dark	

cycle	reaching	a	peak	irradiance	of	45	μmol	photons	m-2	s-1.	Cell	growth	and	

contamination	were	monitored	daily	by	flow	cytometry	(57).	Cells	were	harvested	

by	centrifugation	(14,000	g)	and	the	pellets	resuspended	in	100	μl	0.2	μm	filtered	

seawater	containing	0.2%	paraformaldehyde.	Aliquots	of	harvested	cells	were	

allowed	to	fix	in	the	dark	at	4ºC	for	30	minutes	prior	to	analysis	of	

lipopolysaccharide	by	the	Limulus	amebocyte	lysate	spectrophotometric	method	

(58).		

	
	
4.3	Results		
	
4.3.1	Reconstruction	of	iJC568	and	its	computing	performance	

We	reconstructed	the	GEM	for	Prochlorococcus	marinus	str.	MED4,	termed	

iJC568,	which	consists	of	568	metabolic	genes	encoding	794	reactions	with	680	

metabolites	distributed	among	6	sub-cellular	locations	(cytoplasmic	membrane,	

periplasm,	thylakoid	membrane,	thylakoid	lumen,	cytoplasm,	and	carboxysome;	



	 127	

Supplementary	File	4.1).	A	summary	of	iJC568	network	properties,	and	a	

comparison	with	the	ensemble	is	given	in	Table	4.2.		

To	verify	the	iJC568	biomass	objective	function	(BOF;	see	Methods)	

composition	mass	and	energy	budgets,	elemental	stoichiometry	and	standard	

enthalpies	were	calculated	and	compared	with	reported	experimental	data.	

Elemental	stoichiometry	of	the	BOF	composition	was	within	the	error	of	reported	

values	for	carbon,	nitrogen,	and	phosphorus	ratios	under	balanced	growth	

conditions	(Supplementary	File	4.2	[14]).	We	calculated	the	heats	of	combustion	

(21)	for	each	of	the	121	compounds	comprising	the	BOF	(Supplementary	File	4.2).	

By	comparing	these	values	to	their	energy	cofactor	demands	(calculated	as	the	sum	

of	nucleotide	triphosphate,	nicotinamide	dinucleotide,	and	flavin	adenine	nucleotide	

standard	enthalpies),	a	slope	of	29.5	KJ	[mol	ATP]-1	was	found,	which	is	quite	similar	

to	the	theoretical	standard	enthalpy	of	ATP	hydrolysis	(30	KJ	[mol	ATP]-1	[22]).	The	

resulting	aggregate	energy	density	of	MED4	was	28	KJ	g	DW-1,	comparable	with	

Escherichia	coli	(23	KJ	g	DW-1)	and	Saccharomyces	cerevisiae	(21	KJ	g	DW-1	[23]).		

We	verified	FBA	results	by	comparing	simulated	growth	rates,	exchange	

fluxes,	and	internal	fluxes	with	experimental	data	by	simulating	experimental	

conditions.	Growth	rates	were	compared	with	a	fairly	extensive	set	of	culture	

experiments	grown	on	a	broad	selection	of	defined	media	compositions	and	light	

profiles.	The	most	commonly	reported	growth	condition	was	a	14	h:10	h	light:dark	

cycle	at	20-24°C,	reaching	a	peak	irradiance	ranging	from	10	to	56	μmol	photons	m-2	

s-1	blue	light	(24-27)	in	PRO99	medium.	Zinser	et	al.,	(26)	provided	the	most	

comprehensive	dataset	relating	carbon	fixation	rates	and	photophysiology	
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parameters	to	growth	rates,	with	sampling	intervals	(2	hourly)	most	relevant	to	our	

instantaneous	flux	distributions.	By	simulating	their	growth	conditions	over	a	diel	

cycle,	we	calculated	an	optimal	growth	rate	of	0.62	d-1	while	experimental	growth	

rates	were	0.62	±	0.04	d-1.	Short-term	[14C]-bicarbonate	primary	production	

measurements	fell	between	model	net	and	gross	primary	production	for	most	of	the	

light	cycle	(Figure	4.1).	Further	comparisons	of	iJC568	photosynthetic	parameters	

(ATP/NADPH	yields,	quantum	yields,	photosynthetic	quotient,	optimal	growth	

irradiance,	net	and	gross	primary	production),	growth	yields,	exchange	fluxes	

(protons,	CO2,	bicarbonate,	nutrients),	and	central	carbon	metabolism	metrics	

(phosphoglycerate	kinase/phosphoglycerate	mutase	flux,	anapleurotic	CO2

	

fixation)	

were	in	close	agreement	with	those	reported	for	strain	MED4,	where	available,	and	

Synechocystis	str.	PCC	6803	(Supplementary	File	4.2).	However,	the	tricarboxylic	

acid	(TCA)	cycle	and	photosynthetic	electron	flow	pathways	differed	considerably	

from	Synechocystis	str.	PCC	6803	and	are	discussed	below.		

	

4.3.2	Metabolic	genes	and	their	essentiality	

The	proportion	of	MED4	genes	encoding	metabolic	reactions	relative	to	the	

total	number	of	genes	(30%)	is	significantly	higher	than	the	GEM	ensemble	(19	±	

6%,	p	=	1e-7),	consistent	with	loss	of	many	regulatory	functions	(28).	Nearly	all	

(99.3%)	of	the	metabolic	genes	were	expressed	under	conditions	tested	by	Wang	et	

al.,	(29).	The	4	non-expressed	metabolic	genes	included,	surprisingly,	malate	

dehydrogenase	(PMM1023),	two	lipid	biosynthetic	genes	diacylglyceride	kinase	

(PMM0183)	and	diacylglycerol	phosphatidyltransferase	(PMM0798),	and	
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unsurprisingly,	arsenate	reductase	(PMM0512).	However,	it	should	be	noted	that	

these	4	genes	showed	low,	but	detectable,	expression	levels	in	natural	samples	from	

the	North	Pacific	Subtropical	Gyre	(30).	We	compiled	essential	metabolic	genesets	

based	on	photolithoautotrophic	growth	on	minimal	medium	(31)	and	on	a	

supplemental	medium	(including	the	39	carbon	substrates,	34	nitrogen	substrates,	

and	95	phosphorus	substrates	predicted	to	support	growth	if	suitable	transporters	

were	present).	Simulated	single-gene	knockouts	were	performed	for	each	metabolic	

gene,	and	we	required	that	enzyme	complexes	be	complete	for	the	corresponding	

reaction	to	proceed.	The	photolithoautotrophic	essential	geneset	consists	of	266	

genes,	or	47%	of	the	metabolic	genes.	Although	most	(88%)	of	the	metabolic	genes	

in	iJC568	belong	to	the	’core’	of	the	Prochlorococcus	pan-genome	(compared	with	

65%	of	the	whole	genome),	non-lethal	genes	were	enriched	(17%)	in	’flexible’	genes	

when	compared	with	essential	genes	(8%).	A	similar	pattern	was	seen	for	gene	

essentiality	for	mixotrophic	growth	in	supplemental	medium	(Supplementary	File	

4.2),	though	a	further	196	genes	(34%	of	metabolic	genes)	produced	lethal	mutants	

only	under	specific	conditions	(termed	’variable-essential’).	As	in	the	

photolithoautotrophic	case,	non-essential	genes	were	more	frequently	part	of	the	

’flexible’	pan-genome	(18%)	than	variable-essential	genes	(15%)	or	essential	genes	

(8%).	A	genetic	system	remains	elusive	for	Prochlorococcus	marinus,	so	individual	

knockouts	are	yet	to	validate	these	results,	however	this	is	likely	a	conservative	

estimate	since	false	negatives	are	likely	using	an	in	silico	approach.	Where	available,	

the	essential	geneset	of	the	ensemble	(Supplementary	File	4.2)	ranged	from	12%	

(Pseudomonas	putida	str.	KT2440)	to	38%	(Synechocystis	str.	PCC6803)	of	metabolic	
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genes,	reinforcing	the	adaptive	gene	loss	hypothesis	for	Prochlorococcus	(16).	

Examples	of	bacteria	with	exceptionally	high	gene	essentiality	include	the	obligate	

parasites	Mycoplasma	genitalium	str.	G37	(79%	of	whole	genome	[32])	and	

Haemophilus	influenzae	str.	Rd	KW20	(47%	of	whole	genome	[33]).		

	

4.3.3	The	role	of	phosphate	in	MED4	metabolism	

We	examined	the	role	of	phosphate	in	MED4	by	quantifying	its	connectivity,	

dynamic	coupling,	and	turnover	within	the	iJC568	metabolic	network.	A	

fundamental	attribute	of	the	stoichiometric	matrix	S	(see	Methods)	is	the	

connectivity	of	the	column	and	row	space,	defined	here	as	the	degree	distribution	of	

the	undirected	bipartite	graph.	Metabolite	participation	(i.e.,	the	number	of	

reactions	associated	with	a	particular	metabolite)	was	assessed	for	iJC568	and	the	

ensemble	by	normalizing	the	degree	distribution	to	the	number	of	non-	exchange	

and	transport	reactions	of	each	network.	For	example,	the	obligate	anaerobes	

Thermotoga	maritima	and	Methanosarcina	barkeri	str.	Fusaro	had	oxygen	

metabolite	participations	near	zero.	Patterns	of	metabolite	participation	generally	

clustered	together	according	to	taxonomic	group	(Figure	4.2),	however	iJC568	

deviated	from	other	cyanobacteria	for	orthophosphate,	with	the	lowest	

participation	among	all	ensemble	models.			

The	fixed	matrix	S	is	itself	a	transformation	of	the	flux	vector	v	to	the	vector	

of	concentration	time	derivatives	dX/dt.	Therefore,	studying	the	topology	of	the	

matrix	S	and	its	four	fundamental	subspaces	(the	row	and	null	space	comprising	the	

flux	vector,	and	the	column	and	left	null	space	comprising	the	vector	of	
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concentration	time	derivatives)	is	useful	for	interrogating	network	properties	and	

for	comparing	the	structural	features	and	dynamic	coupling	of	networks.	Among	the	

numerous	factorization	methods	for	analyzing	the	unconstrained	solution	space	of	

the	stoichiometric	matrix,	the	most	intuitive	is	the	singular	value	decomposition	

(SVD),	given	by	S	=	UΣVT.	The	m	x	r	column-space	(U)	and	r	x	n	row-space	(V)	

matrices	contain	the	linearly	independent	orthonormal	eigenvectors	of	the	four	

fundamental	subspaces	of	the	m	x	n	matrix	S,	and	the	singular	values	σ	=	diag(Σ)	

that	define	the	set	{σ1,	.	.	.,	σr

	

},	where	r	is	the	rank	of	S,	are	measures	of	the	

distortion	induced	by	each	linear	transformation.	In	this	way,	the	first	mode	(σ1)	is	

the	weight	given	to	the	first	systems	reaction,	a	linearly	dependent	set	of	reactions	

forming	a	basis	pathway	that	is	effectively	a	spanning	set	of	S.	For	iJC568,	and	

typical	of	other	networks,	the	first	systems	reaction	maps	to	a	set	of	reactions	

involving	proton	translocation,	due	to	the	central	role	of	the	proton	motive	force	in	

the	electron	transport	chain	and	photosystems.	The	first	systems	reactions	

correspond	quite	closely	to	the	metabolites	with	the	highest	flux	sums	(see	

Methods),	with	the	exception	of	the	photon	flux,	which	participates	in	the	3rd	and	6th	

modes	in	iJC568.	In	other	organisms,	subsequent	modes	vary	in	composition	

according	to	the	metabolic	capabilities	of	the	organism	(34).	Further	analysis	of	the	

systems	reactions	indicated	that	phosphate	metabolism	is	a	less	dominant	feature	of	

iJC568.	While	the	first	three	modes	(ATP	hydrolysis,	NAD(P)	redox,	and	the	proton	

motive	force)	were	similar	for	iJC568,	phosphate	transformations	were	associated	

with	the	8th	mode,	compared	with	the	4th	mode	of	Escherichia	coli,	Haemophilus	

influenzae,	and	Helicobacter	pylori	(34)	or	the	4th	or	5th	mode	of	each	of	the	
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ensemble	models.	Accordingly,	the	fractional	singular	value	(e.g.,	the	percent	weight	

of	a	particular	mode)	associated	with	phosphate	transformations	was	lower	in	

iJC568	(0.9%)	compared	with	other	phyla	(range	1.9%	to	6.3%;	Supplementary	

Figure	4.1).		

The	implications	of	a	diminished	role	for	phosphate	in	MED4	were	

investigated	by	comparing	the	elemental	turnover	of	intermediate	metabolism	

based	on	flux	sums	and	quotas	for	hydrogen,	carbon,	nitrogen,	oxygen,	phosphorus,	

and	sulfur	with	the	high-quality	reconstruction	(iTO977	[35])	for	Saccharomyces	

cerevisiae.	Internal	flux	sums	and	turnover	were	normalized	for	the	differences	in	

optimal	growth	rate,	transport	flux	of	each	element,	and	cellular	elemental	quotas	

between	iTO977	and	iJC568.	Phosphorus	turnover	was	approximately	an	order	of	

magnitude	higher	than	the	other	elements	in	both	organisms,	but	iTO977	turnover	

was	nearly	3-fold	higher	than	iJC568	(Supplementary	Figure	4.2).	Surprisingly	

little	of	this	turnover	(40%)	was	due	to	ATP	hydrolysis	and	ADP	phosphorylation,	

with	dissolved	Pi

	

demand	for	ATP	synthase	primarily	recycled	from	the	Calvin-

Benson-Bassham	(CBB)	cycle	reactions	D-glyceraldehyde-3-phosphate:NAD+	

oxidoreductase	and	sedoheptulose	1,7-bisphosphate	1-phosphohydrolase.	The	

majority	of	the	remaining	60%	of	the	P	turnover	was	shared	between	reactions	with	

phosphorylated	central	carbon	metabolites,	nucleic	acid	intermediates,	and	

dinucleotide	energy	carriers,	implying	that	much	of	the	difference	in	turnover	is	due	

to	phosphate	participation.		

	

4.3.4	Physiological	response	to	low	phosphate	
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Prochlorococcus	is	known	to	have	an	extremely	flexible	elemental	

stoichiometry,	perhaps	a	key	to	coping	with	variable	supply	of	nutrients	and	

extended	periods	of	nutrient	starvation	typically	encountered	in	the	oligotrophic	

surface	waters.	Populations	of	Prochlorococcus	in	the	periodically	P-limited	

Sargasso	Sea	exhibited	wide	particulate	C:P	ratios	(120:1	to	350:1),	varying	

latitudinally	(36).	When	grown	in	batch	culture	under	P-limitation	(molar	

NH4+:H2PO4-

	

=	800:1),	MED4	particulate	C:P	increased	to	464:1	±	28:1,	compared	

with	121:1	±	17:1	under	balanced	growth	(molar	molar	NH4+:H2PO4-

	

=	16:1	[14]).	

The	partitioning	of	P	in	crude	fractions	of	MED4	biomass,	calculated	by	the	

elemental	composition	of	the	BOF,	is	predominantly	bound	in	RNA	(45%),	DNA	

(23%),	cell	wall	(di-trans-poly-cis-undecaprenyl	diphosphate	and	lipid	A	

disaccharide;	15%),	and	the	soluble	pool	(especially	inorganic	P,	nucleotides,	folate	

cofactors,	and	several	vitamins;	14%).	The	remaining	P	quota	(2%)	is	found	in	lipids	

and	in	protein	fractions.	Since	the	discovery	that	P-limited	MED4	and	other	

Prochlorococcus	strains	have	virtually	eliminated	phospholipids	(2%	of	total	lipid)	

in	favor	of	sulfolipids	and	glycolipids	(66%	and	32%	of	total	lipid,	respectively	[6]),	

the	majority	remains	in	cell	wall	and	nucleotide	fractions.	DNA-P	is	static	

throughout	the	cell	cycle	phase	G1,	and	the	whole	proteome	phosphorylation	state	is	

unlikely	to	vary	significantly,	so	it	follows	that	the	ability	to	modulate	C:P	ratios	to	

such	extremes	(~464:1)	requires	that	all	of	these	fractions	must	be	capable	of	

drastic	reductions.	Accounting	for	the	33%	increase	of	the	C-quota	under	P-

limitation	(14),	the	cumulative	P	quota	in	non-DNA	pools	(lipid,	protein,	RNA,	cell	

wall,	and	the	soluble	pool)	must	be	reduced	by	85%	to	achieve	a	C:P	of	464:1,	and	
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the	additional	constraint	of	genome	replication	exacerbates	this	problem.	MED4	

must	therefore	regulate	C:P	ratios	beyond	those	reached	by	lipid	head-group	

substitution	alone;	such	a	reduction	undoubtedly	has	profound	impacts	on	cellular	

metabolism	and	physiology.	An	exhaustive	search	(see	Methods)	was	implemented	

to	quantify	the	growth	rate	advantage	imparted	on	the	PLG	and	CLG	phenotypes	by	

varying	crude	fractions	of	biomass	to	meet	a	range	of	feasible	cellular	C:P	ratios	

(Figure	4.3).	Over	the	allowable	range	of	C:P	ratios	(120:1	to	528:1),	the	change	in	

growth	rates	for	the	CLG	phenotype	(14	±	7%)	was	identical	(p	=	0.71)	to	the	

coefficients	of	variation	(CV)	within	any	particular	biomass	composition	(12	to	

14%).	In	contrast,	growth	rates	increased	370	±	12%	over	the	allowable	C:P	range	

for	the	PLG	phenotype,	with	smaller	compositional	variations	(CV	=	2	to	9%;	two-

sample	F-test	p	≤	1e-6).	To	identify	which	biomass	components	would	yield	the	

highest	growth	rate	gains,	we	performed	a	brute-force	sensitivity	analysis	(Ψk;	see	

Methods;	Supplementary	File	4.2).	Positive	Ψk

	

values	imply	an	increase	in	growth	

rate	resulting	from	a	unit	decrease	in	a	particular	biomass	precursor	pool	k	or	an	

individual	compound	within	a	specified	biomass	precursor	pool	k.	Among	the	crude	

biomass	fractions,	DNA,	RNA,	lipid,	and	cell	wall	were	responsible	for	96%	of	the	

growth	rate	sensitivity.	Since	DNA	content	is	considered	static	in	G1,	the	highest	

growth	sensitivity	crude	fractions	were	RNA	(Ψk

	

=0.45),	cell	wall	(Ψk

	

=0.15),	and	

the	soluble	pool	(Ψk

	

=0.13).	Within	the	cell	wall	crude	fraction,	di-trans-poly-cis-

undecaprenyl	diphosphate	and	Lipid	A	disaccharide	were	responsible	for	74%	and	

26%	of	the	sensitivity,	respectively.	Within	the	soluble	pool,	most	(70%)	of	the	

sensitivity	was	due	to	nicotinamide	dinucleotides.		
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Differential	gene	expression	may	be	used	to	infer	changes	in	metabolism	using	the	

reporter	metabolites	and	reporter	subnetwork	algorithms	(see	Methods).	By	

ranking	Z-scores	for	each	reporter	metabolite,	we	identified	a	set	of	metabolites	

which	were	associated	with	up-	or	down-regulated	proteins	from	differential	

expression	(11)	and	changes	in	protein	abundance	(37)	of	phosphorus	limited	

MED4	cultures.	The	top	reporter	subnetworks	included	lipopolysaccharide	(LPS)	

synthesis,	tRNA	synthesis,	cell	wall	synthesis,	and	a	large	subnetwork	associated	

with	the	CBB	cycle	branches	for	carbon	fixation,	lower	glycolysis,	and	the	reductive	

PPP	(Supplementary	Figure	4.3).	Similarly,	shadow	prices	(λ;	see	Methods)	can	be	

used	to	infer	the	degree	to	which	production	of	certain	metabolites	are	limiting	

growth.	By	constraining	a	sub-optimal	upper	bound	on	the	Pi

	

transport	rate	and	

calculating	the	shadow	prices,	a	set	of	28	metabolites	were	negative,	or	limiting	

growth.	These	include	phosphate	esters,	nucleotides,	cell	wall	precursors,	NADH,	

and	the	phosphorylated	central	carbon	metabolites	3-phosphoglycerate	and	2-

phosphoglycolate.	A	comparison	of	reporter	metabolites	and	shadow	prices	showed	

agreement	between	Z-scores	and	the	relative	magnitude	|	−	λ|	(Supplementary	File	

4.2).	These	qualitative	(gene	expression)	and	quantitative	(shadow	prices)	

predictions	are	complementary	but	independent	methods	and	were	partially	

validated	in	our	laboratory	comparison	of	LPS	in	culture	(see	Methods),	where	P-

limited	cells	showed	a	55	±	4	%	reduction	compared	with	P-replete	cells.		
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In	culture,	P-stress	induced	changes	not	only	in	acquisition	mechanisms	and	

biosynthetic	pathways	but	also	in	central	carbon	metabolic	pathways	and	the	

photosynthetic	apparatus.	Following	initiation	of	P-stress,	photosystem	II	(PSII)	was	

subsequently	degraded	with	a	concomitant	decrease	in	carbon	fixation	proteins,	

though	photosystem	I	(PSI)	and	subunits	of	the	ATP	synthase	complex	remained	

intact	(37).	This	finding	was	also	apparent	for	the	in	silico	PLG	phenotype	in	iJC568,	

with	an	increase	in	the	PSI/PSII	photon	absorption	ratio	at	Imax

	

as	a	non-linear	

function	of	the	Pi

	

transporter	flux,	converging	on	a	new	steady	state	for	ATP	and	

reductant	for	the	PLG	phenotype.	We	compared	growth	and	key	photosynthetic	

fluxes	between	the	LLG	and	PLG	conditions	by	phenotype	phase	plane	(PhPP)	

analysis	varying	light	and	Pi

	

uptake	rates	(Figure	4.4	and	Supplementary	Figure	

4.4).	In	iJC568,	the	linear	electron	flow	(LEF)	pathway	begins	with	PSII,	cytochrome	

b6f	(Cyt	b6f),	PSI,	and	ends	with	ferredoxin-NADP+	reductase	(FdR).	LEF	is	linked	by	

the	plastocyanin	(Cu2+PC/Cu+PC),	ferredoxin	(Fdox/Fdred),	and	plastoquinone	

(PQ/PQH2)	pools.	A	set	of	alternative	electron	flow	(AEF)	pathays	include	cyclic	

electron	flow	(CEF)	around	PSI	via	the	NADPH	dehydrogenase	type	1	(NDH)	or	via	

ferredoxin:quinone	oxidoreductase	(FQR),	pseudocyclic	electron	flow	(PCEF)	

around	PSII	via	cytochrome	oxidase	bd	(COX;	MED4	apparently	lacks	the	aa3-type	

cytochrome	c	oxidase),	the	Mehler	reaction,	and	photorespiration.	The	activity	of	

AEF	pathways	affect	a	number	of	fundamental	fluxes,	including	the	ATP/NADPH	

ratio,	photosynthetic	efficiency,	quantum	yield,	and	the	photosynthetic	quotient.	

Under	optimal	growth	conditions	(along	the	line	of	optimality;	L.O.),	the	ratio	of	PSI	

to	PSII	absorption	was	2.3,	with	the	entirety	of	the	PSI	flux	split	between	CEF	
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around	PSI	via	NDH	to	prevent	over-reduction	of	the	PQ	pool,	and	to	NADPH	via	FdR	

to	maintain	the	optimal	ATP/NADPH	ratio	of	1.30.	Under	LLG	conditions	(above	the	

L.O.),	the	ratio	of	PSI	to	PSII	absorption	increased	to	2.4,	with	the	PSI	flux	mostly	

diverted	to	NADP+,	at	the	expense	of	CEF	via	NDH.	Under	PLG	conditions	(below	the	

L.O.),	ATP	deficits	resulted	in	a	PSI	to	PSII	absorption	ratio	of	0.8,	with	excess	

reductant	diverted	to	PCEF	around	PSII	via	COX	and	LEF	to	NADPH	from	PSI.	CEF	

around	PSI	was	diverted	to	FQR	from	NDH	under	PLG	conditions.		

It	is	plausible	that	persistent	changes	to	the	optimal	path	of	electron	flow	

under	P-limited	conditions	have	resulted	in	a	restructuring	of	the	MED4	

photosynthetic	apparatus.	MED4	lacks	the	genes	encoding	succinate	dehydrogenase	

(SDH),	which	catalyzes	the	succinate-fumarate	couple	and	directly	links	the	

oxidation	of	TCA	cycle	intermediates	to	the	reduction	of	the	PQ	pool	in	the	

photosynthetic	electron	chain.	Succinate	oxidation	forms	an	AEF	pathway	which	

supplies	reductant	to	Cu2+PC	at	the	cost	of	PQH2	via	Cyt	b6f.	Furthermore,	all	

cyanobacteria	have	a	branched	TCA	cycle,	lacking	2-oxoglutarate	dehydrogenase,	

however	Prochlorococcus	marinus	and	marine	Synechococcus	spp.	also	lack	the	

recently-discovered	analogous	enzymes	2-oxoglutarate	decarboxylase	(2OGDC)	and	

succinic	semialdehyde	dehydrogenase	(SSADH),	which	are	necessary	to	regenerate	

succinate	from	2-oxoglutarate	(38)	and	have	long	been	implicated	in	obligate	

photolithoautotrophy	(39).	To	quantify	the	effect	of	SDH	and	the	branched	TCA	

cycle	on	the	energy	budget	of	iJC568,	we	compared	the	NAD(P)H	costs	of	four	in	

silico	variants	grown	photolithoautotrophically:	wild	type	(WT),	+2OGDC+SSADH,	

+SDH,	and	+2OGDC+SSADH+SDH.	NAD(P)H	costs	were	calculated	as	the	change	in	
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flux	sums	for	each	variant	after	forcing	a	net	accumulation	of	succinate	(dXi/dt	>	0;	

where	i	corresponds	to	succinate).	For	both	the	WT	and	the	+2OGDC+SSADH	

mutant,	the	NAD(P)H	cost	of	succinate	synthesis	was	primarily	due	to	the	CEF	

enzyme	NDH	and	the	Calvin-Benson-Bassham	pathway	enzyme	triosephosphate	

dehydrogenase.	For	both	the	+SDH	and	+2OGDC+SSADH+SDH	mutants,	electron	

flow	largely	bypasses	NDH,	reducing	the	cost	of	succinate	synthesis.	However,	with	

the	+SDH	mutant	(lacking	the	cyanobacterial-type	TCA	cycle),	additional	NAD(P)H	

costs	were	required	for	precursor	sythesis	via	malate	dehydrogenase.	In	summary,	

and	in	detail	in	Supplementary	File	4.2,	the	NAD(P)H	cost	of	regenerating	

succinate	de	novo	for	mutants	with	the	cyanobacterial	TCA	cycle	increases	from	14	

to	16	molecules	NAD(P)H	in	the	absence	of	SDH,	while	the	reverse	is	true	for	MED4	

WT,	which	decreases	from	21	to	14	molecules	NAD(P)H	in	the	absence	of	SDH.	

These	findings	are	qualitatively	in	agreement	with	wild-type	and	–SDH,	–2OGDC,	

and	–SSADH	mutants	of	Synechococcus	sp.	PCC7002	(38).	As	a	consequence	of	the	

MED4	(WT)	TCA	pathway,	under	PLG	conditions	the	absence	of	SDH	reduces	the	PSI	

flux	by	30%,	resulting	in	a	16%	to	37%	increase	in	quantum	yield	(mol	CO2

	

reduced	

[mol	photons]-1)	over	the	range	of	PLG	phenotypes.		
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4.4	Discussion	

We	explored	metabolic	strategies	of	the	Prochlorococcus	PLG	phenotype	in	

an	effort	to	characterize	its	adaptation	to	low	phosphate	marine	environments.	In	

addition	to	sulfolipid	substitution	and	utilization	of	organophosphorus	to	satisfy	P-

demand,	we	uncovered	three	additional	strategies	that	reduce	the	influence	of	

phosphorus	control	over	optimal	growth	flux	topology:	(a)	choreographed	

reductions	in	enzymes	reliant	on	orthophosphate	as	a	substrate	across	the	entire	

metabolic	network,	(b)	reductions	in	phosphorus-rich	biomass	constituents,	and	(c)	

alterations	to	photosynthetic	and	respiratory	electron	flow.	Phosphorus,	the	‘staff	of	

life’	(40),	plays	myriad	roles	in	the	structural,	regulatory,	and	energetic	functions	of	

all	cellular	life.	The	phosphate	residue	provides	hydrophilicity	and	increased	water	

solubility	of	the	parent	chain,	provides	a	charge	to	prevent	membrane	permeation,	

and	provides	a	nucleophile	repellent	to	resist	hydrolysis.	Phosphoester	bonds	

modulate	post-translational	regulation	of	protein	function	and	phosphodiester	

bonds	form	the	connective	tissue	of	the	DNA	and	RNA	backbone.	The	

phosphoanhydride	bonds	of	nucleotide	polyphosphates	and	polyphosphates	contain	

the	ultimate	source	of	chemical	energy	required	for	all	metabolism	and,	once	

hydrolyzed,	the	free	monomeric	metaphosphate	ion	is	a	strong	electrophile	and	

phosphorylating	agent,	capable	of	phosphorylating	even	aromatic	amine	rings,	

attacking	carbonyl	groups	and	ketones	to	their	enol	phosphates.	It	is,	therefore,	

unsurprising	that	hydrolysis,	esterification,	and	isomerization	of	phosphorylated	

metabolites	are	ubiquitous	functions	in	metabolic	networks.	Since	typical	

intermediate	metabolite	pool	concentrations	meet	or	exceed	the	associated	enzyme	



	 140	

half-saturation	constant	for	growth	in	rich	media	(41),	a	phosphorus	limited	

metabolic	state	would,	presumably,	influence	substrate	binding	kinetics	widely.	At	

the	level	of	pathways,	phosphate	availability	would	distribute	rate	limitation	

broadly,	in	keeping	with	metabolic	control	analysis	(42),	which	finds	a	non-zero	

elasticity	coefficient	for	almost	all	enzymes,	resulting	in	flux	control	shared	among	

all	participating	reactions	in	a	pathway.		

A	strategy	to	alleviate	metabolic	control	of	a	single,	persistent	rate	limiting	

co-substrate	might	be	to	selectively	reduce	its	degree	(‘participation’)	in	the	

network.	In	a	comparison	of	iJC568	and	the	ensemble,	phosphate	participation	was	

lowest	for	iJC568.	Reductions	in	phosphate	participation	results	in	a	greatly	

diminished	”role”	(fractional	contribution	of	the	phosphate	transformation	systems	

reaction	to	the	singular	value	spectrum)	for	phosphate	from	a	network	perspective,	

suggesting	that	low	phosphate	availability	may	have	guided	gene	loss	during	the	

evolution	of	MED4,	streamlining	the	loss	of	genes	associated	with	phosphate	

transformations.	Low	phosphate	reaction	participation	in	iJC568	contributed	to	

decreased	total	elemental	phosphorus	fluxes	in	a	comparison	with	iTO977,	resulting	

in	slower	turnover	and	possibly	lowering	soluble	phosphate	concentration	

requirements	to	maintain	optimal	fluxes	throughout	the	network.	This	prediction	is	

supported	by	experimental	determinations	of	intracellular	phosphate	

concentrations	and	their	responses	to	phosphate	availability	(Supplementary	File	

4.2).	Under	P-replete	conditions,	intracellular	phosphate	concentrations	were	7-fold	

lower	in	MED4	than	in	another	oligotrophic	marine	picocyanobacterium	

Synechococcus	WH7803	(43).	Importantly,	when	grown	in	P-deplete	medium,	MED4	
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intracellular	phosphate	decreased	by	only	22	±	3%	compared	with	69	±	4%	for	

Synechococcus	WH7803.	A	similar	contrast	might	be	made	between	MED4	and	

Saccharomyces	cerevisiae	(44),	although	the	experimental	conditions	could	not	be	

directly	compared.	To	our	knowledge,	this	is	the	first	example	of	nutrient	control	of	

metabolic	network	evolution.		

Beyond	the	inherent	architecture	of	the	metabolic	network,	MED4	is	known	

to	respond	physiologically	to	low	phosphate	availability	by	widely	altering	its	

elemental	C:P	ratio.	The	range	of	the	flexible	elemental	stoichiometry	of	MED4	in	

culture	and	in	the	field	presents	a	problem	if	carbon	quotas	increase	by	only	20%	

and	C:P	ratios	approach	the	theoretical	limit	of	528:1	under	severe	phosphorus	

limitation	(C:P	=	464:1):	how	can	genome	replication	be	feasible	when	a	fully	

replicated	genome	alone	translates	to	a	C:P	of	264:1?	Based	on	comparison	of	the	

phosphatidylglycerol	content	of	P-replete	and	P-limited	cultures	(45),	phospholipid	

for	sulfo-	and	glycolipid	head	group	substitution	accounts	for	2%	of	the	required	P	

quota	reduction,	so	we	sought	in	silico	methods	to	identify	where	the	additional	

98%	of	P	quota	reductions	were	to	be	found.	Sensitivity	analysis	of	the	BOF	

composition	suggested	that	reductions	in	RNA	and	the	cell	wall	were	likely	

candidates.	The	selective	reduction	in	phospholipid,	cell	wall	and	RNA	synthesis	was	

also	observed	by	the	method	of	reporter	subNetworks	from	differential	gene	

expression	of	balanced	versus	phosphate	limited	growth	conditions.	Our	exhaustive	

search	algorithm	predicted	a	set	of	feasible	biomass	compositions	for	a	range	of	C:P	

ratios,	with	optimal	growth	corresponding	to	a	phosphorus	composition	of	DNA	:	

RNA:	Lipid:	BioPool:	CellWall	of	1:	2.8±0.5:	4.7±0.9:	1.6±0.4:	3.0±0.5.	This	optimal	
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biomass	composition	was	partially	validated	in	our	culture	experiments	with	a	shift	

in	the	DNA	:	CellWall	ratio	from	1.51	under	CLG	to	2.75	under	PLG	conditions,	

assuming	LPS	remains	proportional	to	cell	wall	content.	It	is	unclear	what	

physiological	effects	such	a	dramatic	reduction	in	cell	wall	might	have;	even	under	

rich	medium	growth	MED4	has	a	reduced	cell	wall	thickness	(19	nm),	compared	

with	34	nm	thickness	in	a	strain	isolated	from	deeper	in	the	euphotic	zone	where	

phosphate	limitation	is	less	prevalent	(46).		

Consistent	with	the	theme	of	low	phosphate	guided	gene	loss,	the	

conspicuous	absence	of	SDH	in	MED4	and	other	eHL-I	strains	prompted	us	to	

investigate	the	role	of	this	otherwise	ubiquitous	enzyme	under	a	variety	of	growth	

conditions.	The	reversible	succinate-fumarate	couple	and	its	catalyst,	SDH,	are	

found	in	all	three	domains	of	life,	the	last	universal	ancestor,	and	were	probably	

conserved	throughout	organismal	evolution	(47).	Additionally,	SDH	represents	a	

unique	connection	between	the	TCA	cycle	and	respiratory	and	photosynthetic	

electron	flow,	and	it	is	thus	under	considerable	evolutionary	pressure	that	eHL-I	

shed	SDH.	The	loss	of	SDH	creates	an	unexpected	link	between	photosynthetic	

quantum	yield	and	phosphorus	limited	growth,	and	it	is	at	least	suggestive	that	the	

gene	coding	for	the	A	subunit	of	SDH,	sdhA,	is	the	one	annotated	gene	that	

differentiates	the	high	light	ecotypes	eHLI,	which	dominates	the	P-limited	

Mediterranean	and	eHLII,	which	dominates	the	predominantly	N-limited	Atlantic	

and	Pacific.		

	

4.4.1	Concluding	remarks	
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Nearly	three	decades	after	its	isolation,	MED4	has	very	likely	undergone	

considerable	laboratory	evolution,	however	its	metabolic	potential	remains	

imprinted	with	the	signature	of	the	chronically	phosphorus	depleted	surface	waters	

of	the	Eastern	Mediterranean	Sea.	Metabolic	network	reconstruction	and	constraint-

based	modeling	revealed	previously	unknown	evolutionary	strategies	for	organisms	

perpetually	coping	with	low	phosphate	availability.	These	strategies	include	a	re-

design	of	the	metabolic	network	to	alleviate	metabolic	control	of	a	single	substrate,	

global	control	of	phosphorus	partitioning	in	biomass	components,	and	optimization	

of	photosynthetic	electron	flow.		
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Table	4.1	-	Crude	biomass	composition	and	growth	sensitivity	(Ψ)	of	iJC568.	DW	–	
ash	free	dry	weight.		

Component	 Composition	(%	of	Total	DW)	 Ψ		(%	of	Total)	
DNA	 1.2	 <1	
RNA	 4.7	 2	
Protein	 58.1	 41	
Lipid	 11.5	 35	

Pigments	 3.8	 5	
Cell	Wall	 5.0	 5	

Carbohydrate	 2.9	 7	
Free	nucleic	acids	 <0.1	 <1	
Free	amino	acids	 2.1	 <1	

BioPool	 2.9	 3	
Mineral	and	Trace	metals	 2.4	 <1	
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Table	4.2	-	Summary	of	iJC568	properties.	Complexed	-	subunit	encoding	genes;	

Blocked	-	reactions	associated	with	dead-end	metabolites;	Orphaned	-	reactions	not	

connected	to	the	network;	Gap	filled	-	metabolic	reactions	with	no	annotated	gene;	

Transport	-	including	diffusive	reactions	and	porins;	Exchange	-	boundary	transport	

used	for	modeling.		

Genes	 	 568	 	
	 Complexed	 302	 53%	

Reactions	 	 794	 	
	 Blocked	 23	 3%	
	 Orphaned	 3	 <1%	
	 Gap	filled	 60	 8%	
	 Reversible	 329	 42%	
	 Transport	 63	 8%	
	 Exchange	 79	 10%	

Metabolites	 	 	 	
	 Unique	 597	 88%	

	
	
	
	
	
	
	



	 157	

Figure	4.1	-	Diel	simulation.	Comparison	of	calculated	net	and	gross	primary	

production	against	short-term	[14C]-bicarbonate	primary	production	measurements	

reported	by	(26).	The	light	profile	followed	a	gradual	increase	from	darkness	to	a	

peak	irradiance	of	232	μmol	photons	m-2	s-1	which	was	held	constant	for	four	hours,	

followed	by	a	gradual	decrease	to	darkness.		
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Figure	4.2	-	Metabolite	participation.	Comparison	of	the	10	highest	degree	

metabolites	(excluding	H2O	and	H+)	between	the	Ensemble,	grouped	by	phylum,	and	

iJC568	(black	square	markers).	Abbreviations:	Pi	-	orthophosphate;	PPi	-	

diphosphate;	AMP	-	adenosine	monophosphate;	L-Glut	-	L-glutamate.		
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Figure	4.3	-	Simulated	growth	rate	as	a	function	of	altered	biomass	compositions.	

Values	represent	the	calculated	growth	rates	associated	with	a	composition	of	DNA,	

RNA,	lipid,	cell	wall,	and	soluble	pool	which	correspond	to	each	interval	of	the	C:P	

ratio	range.	Growth	rates	were	compared	by	constraining	the	orthophosphate	

transporter	flux	(red)	or	the	carbon	fixation	flux	(black)	to	sub-optimal	rates.	The	

number	of	biomass	compositions	at	each	C:P	ratio	is	indicated	(n).		
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Figure	4.4	-	Phenotype	phase-planes	of	light	and	phosphate	uptake	for	key	

photosynthetic	fluxes.	In	each	panel,	the	white	line	of	optimality	(L.O.)	indicates	

optimal	growth	and	delineates	LLG	(above)	and	PLG	(below)	phenotypes.	

Abbreviations:	FdR	-	ferredoxin-NADP+	reductase;	FqR	-	ferredoxin:quinone	

oxidoreductase;	COX	-	cytochrome	oxidase	bd;	Cytb6f	-	cytochrome	b6f;	NDH	-	

NADPH	dehydrogenase	type	1.	
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4.7	Supplementary	
		
Supplementary	Figure	4.1	-	Fractional	singular	values	of	the	phosphate	

transformation	systems	reaction	for	iJC568	and	the	ensemble.	References	for	each	

ensemble	model	can	be	found	in	Supplementary	File	4.2.	Figure	S1.eps	
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Supplementary	Figure	4.2	-	Elemental	flux	sums	and	turnover	comparison	of	

iJC568	and	iTO977.	Figure	S2.eps	
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Supplementary	Figure	4.3	-	Reporter	subNetworks	identified	from	differential	

expression	in	P-replete	and	P-limited	media.	Data	from	(11).	Figure	S3.eps	
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Supplementary	Figure	4.4	-	Illustration	of	changes	to	photosynthetic	electron	flow	

under	optimal	growth	conditions,	light-limited	growth	conditions,	phosphorus	

limited	growth	conditions,	and	phosphorus	limited	growth	conditions	for	the	in	

silico	SDH	knock-in	mutant.	The	center	panel	is	a	detailed	view	of	the	iJC568	

photosystem,	including	the	transport	of	protons	across	the	thylakoid	membrane	

(orange	text),	cofactors	associated	with	each	reaction	(black	arrows	and	numbers),	

and	the	stoichiometry	of	metabolites	associated	with	each	reaction	(blue	arrows	

and	numbers).	Reactions	belonging	to	the	LEF	(pink),	CEF	(yellow),	PCEF	(orange),	

and	the	succinate	dehydrogenase	knock-in	(black)	include	photosystem	II	(PSII),	

ferredoxin-NADP+	reductase	(FdR),	photosystem	I	(PSI),	ferredoxin:quinone	

oxidoreductase	(FQR),	cytochrome	oxidase	bd	(COX),	cytochrome	b6f,	NADPH	

dehydrogenase	type	1	(NDH),	ATP	synthase,	and	succinate	dehydrogenase	(SDH).	

Reactions	catalyze	oxidations	(towards	the	left)	and	reductions	(towards	the	right)	

of	ferredoxin	(Fdox/Fdred),	plastoquinone	(PQ/PQH2),	NADP+/NADPH,	and	

plastocyanin	(Cu2+/Cu+).	Arrows	in	the	condition-specific	panels	(top	left,	top	right,	

bottom	left,	bottom	right)	are	scaled	by	the	flux	of	electrons,	based	on	the	individual	

fluxes,	the	stoichiometry	of	each	metabolite,	and	the	number	of	valence	electrons	
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exchanged,	normalized	to	the	incident	number	of	photons	absorbed.	Figure	S4.tif	
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Supplementary	File	4.1	-	iJC568	model	in	Excel	format.	BioOpt	format	and	RAVEN	

SBML	format	are	available	for	download	at	http://biomet-toolbox.org/.	SI_File_1.xls	

	

Supplementary	File	4.2	-	Accompanying	datasets	used	and	produced	in	this	

manuscript.	SI_File_2.xls		

readme	-	Description	of	each	dataset	as	well	as	hyperlinks	to	navigate.	

BOF	-	Molar	and	mass	based	composition	of	crude	biomass	fractions	and	their	

individual	components.	

Elemental	stoichiometry	-	Comparison	of	BOF	elemental	stoichiometry	with	

experimental	data.		

Enthalpy	of	combustion	-	Heats	of	combustion	for	each	of	the	biomass	components	

on	a	molar	and	carbon	molar	basis.	

CLG	Sensitivity	-	Carbon	limited	growth	biomass	sensitivity.	

LLG	Sensitivity	-	Light	limited	growth	biomass	sensitivity.		

PLG	Sensitivity	-	Phosphorus	limited	growth	biomass	sensitivity.	

NLG	Sensitivity	-	Nitrogen	limited	growth	biomass	sensitivity.	

repMets	vs	Shadow	-	Table	of	the	top	10	most	positive	and	negative	shadow	prices	

for	PLG	conditions	and	their	corresponding	Z-scores	from	the	reporterMetabolites	

algorithm.	

Rate	validations	-	Comparison	of	growth	rates,	photosynthetic	parameters,	and	

internal	fluxes	for	iJC568	and	experimental	data.	

Gene	Information	-	Annotations	and	identifiers	for	each	metabolic	gene	included	in	

iJC568,	gene	length,	strand	sense,	whether	the	gene	belongs	to	the	core	or	flexible	



	 167	

Prochlorococcus	pan-genome,	the	expression	level	from	Wang	et	al.,	(29),	and	the	

gene	product	molecular	weight	and	isoelectric	point.	

Gene	Essentiality	-	Results	from	in	silico	gene	knockouts.	This	worksheet	includes	

essential	and	non-essential	genes	from	the	autotrophic	and	mixotrophic	growth	

simulations.	Mixotrophic	growth	includes	a	third	classification	for	’variable’	

essential	genes	which	were	lethal	deletions	only	under	certain	media	compositions.	

Ensemble	Models	-	Table	summarizing	ensemble	models	(number	of	metabolites,	

reactions,	metabolic	genes,	total	genes,	essential	genes).	

Intracellular	Pi	-	Table	of	intracellular	phosphate	concentrations	in	P-replete	and	P-

limited	media	for	Prochlorococcus	marinus	MED4,	Synechococcus	WH7803,	

Escherichia	coli	MG1655,	and	Saccharomyces	cerevisiae.		

Succinate	costs	in	mutants	–	Table	of	NAD(P)H	costs	associated	with	de	novo	

succinate	synthesis	for	each	of	the	strain	variants	(WT,	+SDH,	+2OGDC+SSADH,	and	

+2OGDC+SSADH+SDH).	Values	for	NAD(P)H	consuming	reactions	represent	the	

difference	between	fluxes	in	the	steady-state	solution	and	fluxes	in	the	forced	

accumulation	solution.			
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Chapter	5		

A	data-driven	model	of	the	diel	cycle	of	Prochlorococcus	physiology	and	metabolism	

	

	

	

	

	

	

John	R.	Casey	
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Abstract	

Predicting	the	dynamics	of	cellular	phenotype	from	a	static	genotype	poses	a	

profoundly	complex	challenge,	with	broad	applications.	Towards	this	goal,	

physiology	and	metabolism	constitute	a	partial	description	of	cellular	phenotype,	

and	can	be	modeled	within	a	stoichiometric	framework.	Integrating	transcriptome	

time-series	data	with	a	genome-scale	metabolic	network	reconstruction	of	

Prochlorococcus	metabolism,	we	describe	an	approach	for	predicting	time-of-day	

dependent	biomass	compositions.	By	discretizing	the	resulting	biomass	objective	

function	in	time,	diel	flux	balance	analysis	simulations	provide	a	time-series	of	

context-specific	flux	distributions	and	growth	rates.	Integrated	growth	rates	

determined	with	this	approach	differ	from	those	of	a	static	objective	function,	and	

compare	favorably	with	experimental	results.	Predicted	changes	in	the	elemental	

ratios	and	enthalpy	of	biomass	over	the	diel	cycle	may	broadly	impact	microbial	

food	web	processes.				
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5.1	Introduction	

	 Through	their	broad	applications	in	bioprocess	engineering	and	systems	

medicine,	genome-scale	stoichiometric	flux	models	of	metabolism	(GEM’s)	have	

become	a	routine	approach	to	the	quantification	of	metabolic	fluxes	and	yields	

(Varma	and	Palsson,	1994)	and	subsequently	the	design	of	efficient	process	strains	

(Nielsen	and	Keasling,	2016)	and	the	elucidation	of	new	drug	targets	for	metabolic	

diseases	(Mardinoglu	and	Nielsen,	2015).	Optimization	approaches	with	GEM’s	are	

poised	to	provide	powerful	predictions	of	complex	and	dynamic	interactions	

between	environmentally	relevant	organisms,	capitalizing	on	their	gene-protein-

reaction	(GPR)	associations	and	the	explosion	of	‘omics	data	from	environmental	

samples	as	metabolic	controls.	Accordingly,	an	approach	to	incorporating	

environmental	transcriptomic	or	proteomic	data	into	the	GEM	framework	is	needed,	

without	the	requirement	of	synoptic	and	detailed	physiological	and	biochemical	

contextual	information,	which	are	not	available	for	most	environmental	samples.					

	 A	common	approach	to	interpreting	gene	expression	data	is	to	infer	

metabolic	changes	and	physiological	alterations	from	genes	associated	with	a	

particular	function	or	pathway.	However,	pathways	and	certainly	individual	

enzymes	cannot	be	observed	in	isolation;	emergent	from	the	circuitry	of	a	highly	

connected	metabolic	network	topology	is	a	system	of	thermodynamically	controlled	

logic	gates	which	govern	metabolism	(Chubukov	et	al.,	2014).	To	this	end,	several	

methods	exist	for	interfacing	GEM’s	with	gene	expression	data,	from	widely	

different	angles.	Differential	expression	data	have	been	used	to	identify	‘reporter’	

metabolites,	and	their	annealed	sub-networks,	associated	with	significant	changes	
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in	expression	(Patil	and	Nielsen,	2005),	to	alter	flux	constraints	in	a	binary	fashion	

(Covert	and	Palsson,	2002;	Shlomi	et	al.,	2007;	Covert	et	al.,	2008;	Colijn	et	al.,	

2009),	to	probabilistically	alter	flux	constraints	(Chandrasekaran	and	Price,	2010)	

or	to	match	flux	changes	to	differential	expression	changes	(Jensen	and	Papin,	

2011).	A	separate	approach	minimizes	a	cost	function	for	metabolic	adjustment	

relative	to	differential	expression	(Becker	and	Palsson,	2008;	Collins	et	al.,	2012).	

Common	to	all	these	approaches	is	a	key	assumption	about	a	proportionality	

relationship	between	gene	expression	levels	and	fluxes,	an	assumption	that	has	

been	empirically	challenged	(Chubukov	et	al.,	2013;	Korchanowski	et	al.,	2013;	

Gerosa	et	al.,	2013).	We	implemented	a	subtly	different	approach,	interpreting	the	

relative	expression	of	metabolic	genes	as	a	synoptic	view	of	metabolic	capabilities,	

rather	than	as	binary	or	proportional	control	variables	on	fluxes.	Our	approach	is	

heavily	based	on	a	combination	of	GIMME	(Becker	and	Palsson,	2008),	TEAM	

(Collins	et	al.,	2012),	and	flexFBA	(Birch	et	al.,	2014).	By	allowing	for	flexibility	in	

the	objective	function,	we	generate	condition-dependent	or	time-dependent	

objective	functions	reflecting	the	‘ability’	of	the	entire	network	to	produce	a	

particular	component	of	biomass	by	constraints	imposed	from	relative	expression	

levels,	while	penalizing	disproportionate	biomass	compositions.	Fluxes	can	then	be	

optimized	in	subsequent	simulations	replicating	experimental	conditions	to	each	

discretized	objective	function.	

	 Much	of	the	variance	in	the	frequency	domain	of	marine	microbial	

metabolism	is	found	at	the	diel	scale,	with	synchronous	effects	radiating	throughout	

the	marine	food	web.	Although	it	is	interesting	to	consider	that	the	coordination	of	
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periodic	changes	in	physiology	and	metabolism	imparts	some	advantage	to	

microbial	communities,	it	is	unclear	whether	this	attribute	is	important	at	longer	

time-scales.	However,	physiological	alterations	would	imply	changes	to	both	the	

elemental	stoichiometry	and	the	energy	density	of	biomass.	A	dominant	primary	

producer	in	much	of	the	nutrient-deplete	subtropical	oceans	is	the	tiny	

cyanobacterium	Prochlorococcus	(Liu	et	al.,	1997),	serving	to	some	extent	as	a	

pacemaker	for	community	interactions	and	governing	the	balance	between	

community	production	and	respiration	at	broad	scales.	Time-series	studies	at	12	d-1	

sampling	frequencies	of	a	high-light	adapted	isolate,	MED4,	have	revealed	

widespread	coordination	of	gene	expression	(Zinser	et	al.,	2009;	Waldbauer	et	al.,	

2012),	suggesting	diel	rhythms	to	both	physiology	and	metabolism.	In	addition	to	

the	great	diel	vertical	migration	(DVM)	of	large	zooplankton	to	feed	near	the	surface	

at	night,	is	has	recently	been	suggested	that	periodic	mortality	in	Prochlorococcus	

(Ribalet	et	al.,	2015),	perhaps	mediated	by	phagocytotic	protists	(Caron	et	al.,	1991),	

is	in	phase	with	the	DVM.	Relative	displacement	of	the	grazing	cycle	from	the	

Prochlorococcus	physiology	cycle	would	result	in	the	trophic	transfer	of	biomass	

chemically	altered	from	time-invariant	grazing	or	time-invariant	biomass	

composition.	In	addition,	relative	displacement	of	the	grazing	cycle	from	the	

Prochlorococcus	metabolic	cycle	may	alter	complementary	heterotrophic	microbial	

metabolism,	growth	and	thus	the	daily	photosynthesis-respiration	balance.				

In	the	current	study,	we	consider	only	laboratory-based	(isolate)	time-series	

datasets	for	which	extensive	experimental	data	are	avialable	(Zinser	et	al.,	2009;	

Waldbauer	et	al.,	2012)	to	evaluate	whether	an	extension	to	metatranscriptomic	
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datasets	from	field	surveys	is	warranted.	These	transcriptomic	time-series	datasets	

were	integrated	with	a	MED4	GEM	to	predict	patterns	in	biochemical	composition,	

elemental	ratios,	growth,	and	metabolic	fluxes	over	the	diel	cycle.	

	

5.2	Methods	

5.2.1	GEM	reconstruction	

	 A	GEM	for	Prochlorococcus	MED4	(iJC568)	consisting	of	568	metabolic	genes	

encoding	794	reactions	with	680	metabolites	distributed	in	6	subcellular	locations	

(cytoplasmic	membrane,	periplasm,	thylakoid	membrane,	thylakoid	lumen,	

cytoplasm,	and	carboxysome)	was	performed	according	to	standard	procedures	

(Thiele	and	Palsson,	2010;	Agren	et	al.,	2013)	and	described	elsewhere	(Casey	et	al.,	

2016).	Briefly,	an	initial	draft	reconstruction	was	manually	curated	for	reaction	

directionality,	substrate	and	co-factor	specificity,	gap-filling,	mass	and	charge	

balance,	elimination	of	futile	cycles,	and	protein	localization.	Metabolic	capabilities	

and	detailed	biomass	compositions	were	acquired	from	the	literature	and	from	

experimental	data	(described	in	Casey	et	al.,	2016)	and	growth	and	non-growth	

associated	maintenance	ATP	requirements	were	calculated	according	to	the	method	

of	ATP	utilization	costs	and	estimated	polymerization	costs	(Feist	et	al.,	2007).		

	

5.2.2	Incorporation	of	gene	expression	time-series	as	constraints	

	 Gene	expression	time-series	datasets	were	acquired	from	two	nearly	

identical	Prochlorococcus	MED4	isolate	experiments	which	we	will	refer	to	as	

Dataset	1	(Zinser	et	al.,	2009)	and	Dataset	2	(Waldbauer	et	al.,	2012).	In	both	
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experiments,	axenic	isolates	were	grown	on	replete	medium	(PRO99;	Moore	et	al.,	

2007)	under	a	simulated	natural	14	h	:	10	h	light:dark	regime,	reaching	a	peak	

irradiance	of	232	μmol	photons	m-2	s-1	at	an	incubation	temperature	of	24	°C.	

Transcriptome	samples	were	collected	at	2	h	intervals,	over	the	course	of	two	days.	

To	normalize	expression	levels	over	the	diel	cycle,	a	cumulative	distribution	

function	(CDF)	was	generated	for	each	transcript.		

Transcripts	and	their	mean	relative	expression	diel	time-series	(emet)	were	

detrended	and	the	residuals	were	collapsed	to	a	single	24	h	diel	cycle	by	averaging.	

2	h	binned	residual	means	were	mapped	to	iJC568	metabolic	genes	and	to	their	

corresponding	enzyme	catalyzed	reaction	or	reactions.	A	threshold	(ξ)	was	applied	

to	the	CDF	of	relative	expression	level	time-series	of	each	reaction	to	identify	time	

points	when	a	reaction	was	assumed	to	be	inactive.	If	a	reaction	was	catalyzed	by	an	

enzyme	coded	by	a	multiple	genes,	we	assumed	that	reaction	activity	was	present	

only	if	all	subunits	of	the	complex	satisfied	the	condition	emet	≥	ξ.	In	this	fashion,	

reactions	were	constrained	to	zero	flux,	vjlb	=	vj	=	vjub	=	0	(see	below).	This	approach	

differs	from	TEAM	and	GIMME	by	removing	the	cost	function	associated	with	fluxes	

which	differ	from	gene	expression	level	changes,	and	does	not	require	or	benefit	

from	extensive	a	priori	knowledge	of	changing	media	compositions	and	biomass	

data.	Instead,	we	consider	that	gene	expression	is	itself	a	reflection	of	the	full	

complexity	of	the	physiological	and	physicochemical	state	of	the	system,	the	lags	

associated	with	translation,	and	the	inertia	of	‘system	memory’	pre-programmed	

into	circadian	rhythms.		
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Modeling	Simulations	

	 A	stoichiometric	matrix,	S	(m	×	n),	was	constructed	for	iJC568,	where	m	is	the	

number	of	metabolites	and	n	is	the	number	of	reactions.	Each	element	Sij	

corresponds	to	the	stoichiometric	coefficient	of	the	ith	metabolite	participating	in	

the	jth	reaction.	The	product	of	S	and	a	vector	of	reaction	fluxes,	v	(of	length	n;	in	

units	of	mmol	gDW-1	h-1)	is	set	equal	to	the	accumulation	of	each	metabolite	pool	

dX/dt,	where	X	is	a	vector	of	metabolite	concentrations	of	length	m.	Within	a	time	

step	of	2	h,	we	assumed	there	was	no	net	accumulation	(or	depletion)	of	any	

metabolite	pool,	and	the	system	is	considered	only	at	steady	state,	S!v	=	0.		

	

A	‘biomass	reaction’	vector	SBIO	of	length	m	and	appended	to	S,	is	the	molar	

fraction	of	each	metabolite	comprising	the	dry	weight	(DW)	of	cellular	material	in	

aggregate	(in	units	of	mmol	gDW-1).	The	complete	SBIO	vector	is	available	as	a	

supplementary	file	elsewhere	(Casey	et	al.,	2016).	Correspondingly,	an	element	vBIO	

was	appended	to	v	and	the	resulting	matrices	are	Ŝ and	 .		

	

The	linear	programming	(LP)	problem	for	flux	balance	analysis	was	then	

solved	by	optimizing	the	‘biomass	objective	function’	(BOF).	The	primal	solution	
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given	by	the	LP	solver	(Mosek	ApS,	Denmark)	is	a	set	of	fluxes such	that	biomass	

growth	vBIO	was	maximized.		

	

where	c	is	a	binary	vector	with	an	element	of	one	at	the	index	corresponding	to	vBIO	

(in	units	of	h-1).	A	set	of	lower	and	upper	boundary	constraints	on	each	flux	(vjlb	and	

vjub,	respectively)	was	determined	by	reaction	directionality	in	most	cases,	with	an	

arbitrarily	high	flux	(±1000	mmol	gDW-1	h-1)	as	boundaries	on	reversible	reactions,	

and	zero	as	a	lower	boundary	on	irreversible	reactions	in	the	forward	direction.	In	

all	simulations,	a	constraint	on	the	carboxylase	flux	of	ribulose	bisphosphate	

carboxylase/oxygenase	was	implemented	based	on	the	analytically	determined	

maximum	photosynthetic	rate	of	Prochlorococcus	MED4	(Zinser	et	al.,	2009).	As	

noted	above,	relative	gene	expression	values	lower	than	a	threshold	emetj	≤	ξ	were	

iteratively	included	as	additional	constraints,	using	a	flexible	objective	function	

(described	below).	

	 The	traditional	FBA	formulation	requires	that	the	network	is	capable	of	

synthesizing,	simultaneously,	all	components	of	the	BOF	in	the	static	ratios	defined	

in	the	biomass	reaction.	If,	for	example,	a	simulated	knock-out	of	the	enzyme	

polyprenyl	synthetase	would	prevent	synthesis	of	an	important	component	of	the	

cell	wall	and	result	in	an	infeasible	LP	solution.	To	allow	cellular	physiology	to	vary	
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over	the	diel	cycle,	a	flexible	objective	approach	(flexFBA,	adapted	from	Birch	et	al.,	

2014),	was	applied.	Leaving	SiBIO	intact	in	Ŝ,	individual	elements	of	SiBIO	were	parsed	

to	a	diagonalized	square	matrix	(of	dimensions	m	×	m)	and	appended	to	the	reaction	

space	of	Ŝ.	Accordingly,	a	vector	f	of	length	m	representing	the	fractional	fulfillment	

of	each	element	of	SiBIO	was	appended	to .	We	refer	to	these	matrices	as and :	

	

To	encourage	a	complete	biomass	composition	(i.e.,	to	avoid	the	scenario	that	

growth	is	allowed	without	e.g.,	a	particular	deoxyribonucleotide),	an	L1-norm	

penalty	(γ)	is	applied	to	fractional	fulfillments	less	than	proportional	to	the	

fractional	fulfillment	of	ATP.	The	steady-state	is	maintained,	and	thus	the	

optimization	becomes:	

	

where	β	is	a	weight	applied	to	the	BOF	to	incentivize	maximal	growth	rate.	The	

additional	constraints	require	that	the	growth	rate	of	the	BOF	is	less	than	the	
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fractional	fulfillment	of	any	component	of	the	BOF,	and	that	fractional	fulfillment	of	

all	BOF	components	are	less	than	the	ATP	fractional	fulfillment.	A	comprehensive	

description	of	the	flexFBA	formulation	is	available	elsewhere	(Birch	et	al.,	2014).	

	 Solving	the	flexFBA	problem	iteratively	using	constraints	imposed	by	relative	

gene	expression	on	each	reaction	yields	a	matrix	F	(of	dimensions	m	×	n	×	k).	

Accordingly,	each	element	Fijk	corresponds	to	the	ith	fractional	fulfillment	resulting	

from	the	jth	reaction	constraint	for	each	kth	time	point.	The	cumulative	effect	of	

reaction	constraints	on	each	component,	fitotal	was	evaluated	at	each	time	point	t	

according	to:	

	

where	fBIO,j	is	the	fractional	fulfillment	of	the	consolidated	biomass	component.	The	

resulting	vector	f	total	was	then	normalized	to	the	biomass	reaction	SBIO	and	

evaluated	at	each	time	point:	

	

	 The	final	set	of	vectors	SBIO(t)	were	implemented	as	time-dependent	BOF	

equations	(BOFt)	in	diel	simulations	and	further	used	to	calculate	the	elemental	

composition	of	biomass	synthesized	at	each	time	point.	Briefly,	growth	irradiance	

values	from	each	study	were	converted	to	photon	fluxes	by	the	wavelength	specific	

absorption	efficiency	and	optical	cross	sections	for	MED4	(Morel	et	al.,	1993).	These	

values	were	included	as	upper	boundaries	on	the	photon	flux	at	each	time	point.	

Nighttime	respiration	was	assumed	to	be	satisfied	by	respiration	of	glycogen	stores,	
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which	were	calculated	as	the	daytime	time-integrated	glycogen	flux.	Other	nighttime	

energy	sources	are	feasible	for	iJC568,	including	beta-oxidation	of	lipids	or	

polyphosphate	substrate-level	phosphorylation,	however	these	were	not	

considered.	Using	these	time-dependent	constraints	and	the	BOFt,	FBA	was	used	to	

solve	for	growth	rates	and	fluxes	in	discretized	time.	Elemental	growth,	the	

elemental	composition	of	biomass	accumulated	over	the	time-series	(Ek;	mmol	gDW-

1),	was	calculated	according	to:	

	

	

where	E0	is	the	initial	elemental	composition	of	biomass,	μk	is	the	growth	rate	at	

time	k,	and	EiBIOk	is	the	elemental	composition	of	the	ith	component	of	the	biomass	

equation	in	SiBIOk,	determined	from	molecular	formulas.	Elemental	growth	time-

series	were	calculated	for	C,	H,	O,	N,	P,	and	S,	and	their	ratios.	Additionally,	the	

carbon	redox	number	and	the	enthalpy	of	combusion	of	biomass	was	calculated	at	

each	time	point.	Standard	enthalpies	of	combustion	of	each	molecule	(ΔH0C,i)	were	

calculated	according	to	a	modification	of	the	Kharash	equation	(Kharash,	1929).					

We	stress	that	degradation	processes,	including	the	respiration	of	glycogen	

stores	and	the	many	protein	repair	and	replacement	activities,	are	not	included	in	

fractional	fulfillment	or	elemental	budgets.	Modeling	degradation	processes	in	the	

stoichiometric	framework	would	require	knowledge	of	the	physicochemical	

stability,	thermodynamic	properties,	structural	properties,	kinetics,	and	abundance	

of	all	proteins	represented	in	the	network.	Lacking	this	information,	our	results	
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indicate	only	synthetic	activities	and	are	to	be	considered	gross	rather	than	net	

budgets.	In	the	physiological	context,	repair	of	proteins	with	short	half-lives	(i.e.,	

those	that	are	rapidly	degraded	in	vivo,	e.g.,	the	D2	protein	of	photosystem	II)	could	

be	misinterpreted	as	net	synthesis	using	this	method,	and	extension	of	this	

approach	would	likely	fail	to	provide	meaningful	results	in	spores,	slow-growing	

vegetative	cells	and	tissues.			

	

5.3	Results	

5.3.1	Determination	of	biosynthetic	activities	over	the	diel	cycle	

A	common	approach	to	interpreting	metabolic	activities	of	microbial	

metabolism	over	e.g.,	a	diel	cycle	is	to	plot	relative	expression	levels	of	the	enzyme	

which	catalyzes	the	synthesis	of	a	molecule	of	interest.	We	will	refer	to	this	

approach	as	the	‘nearest	neighbor’	method.	Few	quantitative	compound-specific	

time-series	datasets	are	available	for	Prochlorococcus	MED4	or	ecotype	MED4	at	

hourly	intervals,	however	diel	datasets	for	DNA	replication	are	available	from	both	

isolate	studies	incorporated	in	this	work.	The	timing	of	DNA	replication	in	

Prochlorococcus	is	tightly	regulated,	both	in	culture	(Bruyant	et	al.,	2005)	and	in	

field	samples	(Liu	et	al.,	1997),	and	most	replicating	cells	are	in	S-phase	within	an	

hour	before	or	after	local	‘sunset’.	Thus	it	is	expected	that	all	four	

deoxyribonucleotides	be	phase	locked	to	the	diel	cycle	and	exhibit	a	similar	profile	

between	all	three	datasets,	given	that	no	metabolic	function	apart	from	DNA	

synthesis	is	known	for	dATP,	dGTP,	dCTP,	and	dTTP	in	MED4.	The	timing	of	DNA	

nucleotide	synthesis	SiBIO(t)	from	our	flexible	objective	simulations	was	closely	
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correlated	with	flow	cytometry	cell	cycle	analysis	based	determinations	of	the	

timing	of	the	peak	in	S-phase	cells	in	all	three	datasets,	whereas	relative	gene	

expression	of	the	nine	5’-phosphotransferase	enzymes	responsible	for	synthesizing	

the	four	deoxyribonucleotides	in	MED4	was	not	(Figure	5.1).		

Although	the	special	case	of	DNA	does	not	necessarily	hold	for	other	biomass	

components,	coherence	between	datasets	and	phase	locking	to	the	diel	cycle	are	

expected,	as	>86%	of	Prochlorococcus	transcripts	corresponding	to	metabolic	genes	

in	iJC568	were	significantly	periodic	(false	discovery	rate	<	0.05)	in	the	two	

experimental	studies.	To	evaluate	consistency	of	results	between	datasets,	we	

compared	the	distribution	of	p-values	of	correlation	coefficients	by	pairwise	

Pearson’s	linear	correlations,	with	the	hypothesis	that	the	correlation	is	greater	

than	zero	(Figure	5.2).	The	proportion	of	significantly	similar	flexFBA	results	

between	datasets	was	55%,	compared	to	35%	for	nearest	neighbor	results.	To	

evaluate	the	periodicity	of	flexFBA	results	against	nearest	neighbor	results,	diel	time	

series	were	fit	to	sines,	and	plotted	as	the	distribution	of	coefficients	of	

determination	(Figure	5.3).	While	non-parametric	tests	for	periodicity	are	

available,	and	may	better	describe	more	complex	periodic	functions	of	gene	

expression	regulation	beyond	a	simple	harmonic	oscillator,	the	sine	fit	is	still	

instructive.	The	proportion	of	R2	values	greater	than	0.8	was	51%	for	flexFBA,	

compared	with	31%	for	the	nearest	neighbor	method.			

	

5.3.2	BOF	and	BOFt	simulated	growth	rates	
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	 The	growth	rates	reported	in	the	original	studies,	based	on	changes	in	cell	

number	at	24	h	intervals,	were	0.66	±	0.04	d-1	(Dataset	1;	Zinser	et	al.,	2009)	and	

0.56	±	0.02	d-1	(Dataset	2;	Waldbauer	et	al.,	2012).	Simulations	with	flexible	

objectives	(BOFt)	using	the	irradiance	data	from	each	study	resulted	in	growth	rates	

of	0.60	d-1	(Dataset	1)	and	0.58	d-1	(Dataset	2),	whereas	the	growth	rate	from	the	

fixed	objective	(BOF)	simulation	using	the	irradiance	data	from	Dataset	1	was	0.81	

d-1	(Figure	5.4).	Large	variations	in	instantaneous	growth	rates	were	observed	

between	datasets	for	BOFt	simulations	at	the	first	sampling	time-point	following	

‘sunrise’	and	preceeding	‘sunset’.	Closer	inspection	revealed	that	these	differences	

were	primarily	due	to	an	asymmetry	in	the	relative	expression	values	of	key	

photosystem	I	genes	(psaAB)	which	were	similar	to	the	CDF	threshold	value	(emetj	≈	

ξ	=	0.2)	at	these	time-points.	Because	of	the	absence	of	succinate	dehydrogenase,	

constraining	the	flux	through	photosystem	I	to	zero	dramatically	reduces	iJC568	

photochemical	efficiency.	Thus,	our	approach	for	the	determination	of	objective	

functions	is	sensitive	to	significantly	periodic	metabolic	genes	with	small	amplitude	

oscillations	relative	to	high-frequency	noise	throughout	a	time-series,	and	is	likely	a	

bias	introduced	by	sequencing	of	low	relative	abundance	transcripts.	Presmoothing	

of	time-series	could	be	accomplished	with	a	Gaussian	filter,	based	on	a	recent	

proposal	that	an	autoregressive	model	with	Gaussian	noise	explains	constitutive	

gene	expression	dynamics	at	the	single-cell	level	in	Escherichia	coli	strains	

(Tanouchi	et	al.,	2015).					

				

5.3.3	Diel	cycle	of	crude	fractions	of	biomass	
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	 The	BOF	(or	BOFt)	can	be	aggregated	into	crude	fractions	(e.g.,	protein,	DNA,	

etc.)	which	tend	to	co-vary	in	vivo.	This	grouping	introduces	some	noise	originating	

from	variability	within	a	particular	fraction;	as	an	interesting	example,	results	from	

both	datasets	indicate	a	difference	in	the	timing	of	lipid	head-group	synthesis	with	

digalactosyldiacylglycerol	(DGDG)	and	phospatidylglycerol	(PG)	maxima	occurring	

between	0400	and	0800	local	time,	and	sulfoquinovodiacylglycerol	(SQDG)	and	

monogalactosyldiacylglycerol	(MGDG)	maxima	occurring	between	1000	and	1400	

local	time.		This	discrepancy	may	be	due	to	differing	lipid	compositions	of	thylakoid	

and	cell	membranes,	since	peak	synthesis	times	for	DGDG	and	PG	coincided	with	

pigment	peak	synthesis	times,	or	may	perhaps	indicate	an	energy	storage	pool	

composed	of	SQDG	and	MGDG	lipids	not	included	in	our	simulations.	Nevertheless,	

the	timing	of	the	fractional	fulfillments	of	each	crude	fraction	(Figure	5.5)	were	

consistent	between	datasets	(p	<	0.05	for	all	fractions	except	‘minerals’	where	p	=	

0.84).	The	‘mineral’	fraction	was	noisy	due	to	few	genes	(15	in	total)	associated	only	

with	transporters	governing	the	appropriate	flux	constraints,	and	while	no	gene	is	

annotated	in	MED4	for	Mo	transport,	this	element	is	included	in	SBIO.	In	this	case,	

individual	ions	or	minerals	(e.g.,	Zn)	should	be	treated	individually;	similarly,	the	

‘dissolved	pool’	is	a	composite	of	many	metabolites	with	varying	functions	(e.g.,	

osmolytes,	energy	co-factors,	electrolytes).	Despite	these	caveats,	the	general	

sequence	of	synthesis	begins	pre-dawn	with	pigments,	followed	by	lipids	and	

glycogen	at	midday,	genome	replication	in	mid-afternoon,	followed	by	free	nucleic	

acids,	RNA,	protein	and	cell-wall	synthesis	following	cell	division	after	sunset.	When	

plotted	as	mass	fractions	over	the	diel	cycle	(Figure	5.6),	differences	in	the	timing	
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of	peak	glycogen	and	lipid	synthesis	are	especially	apparent	between	Dataset	1	and	

Dataset	2,	while	other	crude	fractions	follow	a	generally	similar	pattern.				

	

5.3.4	Diel	cycle	of	biomass	elemental	ratios	

	 Solutions	to	BOFt	simulations	yield	both	instantaneous	and	cumulative	

elemental	compositions	of	biomass	(EBIOk).	Mass	and	elemental	balances,	which	are	

expected	for	the	steady	state	condition,	were	validated	by	comparing	the	biomass	

time-integrated	fluxes	at	each	BOFt	composition	to	time-integrated	system	

boundary	fluxes.	All	balances	were	within	0.1%	of	an	ideal	closed	system,	with	

leakage	in	mass	attributed	to	rounding	errors	in	molecular	weights.		

“Instantaneous”	and	“cumulative”	elemental	compositions	of	biomass	in	

discrete	time	were	quite	similar	between	Dataset	1	and	Dataset	2	(Figure	5.7).	

“Instantaneous”	is	defined	as	the	composition	of	synthesis	de	novo	at	each	2	h	

interval,	while	“cumulative”	refers	to	the	aggregate	composition	weighted	by	growth	

rates	and	integrated	in	discrete	2	h	intervals	over	the	24	h	time-series,	i.e.,	what	one	

might	measure	by	harvesting	cells	at	each	timepoint,	neglecting	dedgradation.	

Driven	primarily	by	protein	relative	to	glycogen	and	lipid,	instantaneous	C:N	

synthesis	ratios	varied	from	approximately	4	mol	C	[mol	N]-1	after	cell	division	to	a	

peak	of	6	to	8	mol	C	[mol	N]-1	at	midday.	A	more	dramatic	variation	(approximately	

4-fold	change)	was	observed	in	C:P	ratios,	driven	by	the	cumulative	effect	of	minima	

in	phospholipid	and	RNA	levels	in	the	2	to	4	h	following	sunrise,	an	effect	that	is	

echoed	in	the	N:P	ratio.	C:S	ratios	were	driven	primarily	by	the	dominant	lipid	

SQDG,	and	to	a	lesser	extent	the	amino	acids	L-cysteine	and	L-methionine,	with	
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resulting	instantaneous	synthesis	ratios	spanning	the	range	40	–	140	mol	C	[mol	S]-

1.	The	instantaneous	C:H	ratio	was	effectively	static	over	the	diel	cycle,	and	C:O	

ratios	varied	by	30	to	60%	with	minima	during	daytime	as	expected	from	the	

reduction	potential	of	photosynthesis.	While	the	instantaneous	elemental	

composition	of	biomass	synthesized	at	each	timepoint	was	highly	variable,	the	

cumulative	elemental	composition	was	dampened.	Due	to	relatively	low	

instantaneous	growth	rates	at	night,	differences	in	BOFt	were	most	sensitive	to	

variations	in	crude	fractions	during	the	daylight	hours,	and	the	accumulated	

elemental	ratios	varied	by	less	than	15%	over	the	diel	cycle	(Figure	5.8).		

Using	the	instantaneous	elemental	composition	of	synthesized	biomass,	a	

calculation	of	the	average	carbon	redox	number	as	a	function	of	time	is	trivial.	While	

the	C:O	ratio	was	variable	over	the	diel	cycle,	reflecting	the	photochemical	reduction	

power	of	photosynthesis,	the	average	carbon	redox	number	was	relatively	static	

(Figure	5.9).	It	seems	that	the	timing	of	protein	synthesis	offsets	any	net	reduction	

of	biomass,	effectively	shuttling	electrons	from	newly	fixed	carbon	atoms	in	sugars	

to	carbon	atoms	in	proteins.	Instead,	it	is	the	total	enthalpy	of	combustion	of	

biomass	synthesized	(instantaneously)	over	the	diel	cycle	that	is	minimal	during	

daylight	hours.	Since	the	change	in	entropy	of	biomass	over	time	could	be	assumed	

to	be	fairly	static,	the	transduction	of	exergy	to	Gibbs	energy	from	low	carbon	

enthalpy	stores	(e.g.,	ΔH0C,glycogen	=	466	KJ	[mol	C]-1)	during	the	daytime	to	high	

carbon	enthalpy	structural	components	like	pigments	(ΔH0C,pigments	=	542	±	11	KJ	

[mol	C]-1)	and	protein	(ΔH0C,protein	=	536	±	63	KJ	[mol	C]-1)	at	nighttime	must	be	
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accompanied	by	increased	heat	dissipation	or	by	entropy	production	by	metabolite	

excretion	during	the	daylight	hours.				

	

5.4	Discussion	

Spurious	feedback	effects	resulting	from	the	dynamics	of	complex	networks	

and	high-frequency	noise	in	gene	expression	levels	are	obstacles	to	the	inference	of	

the	timing	of	physiological	and	metabolic	activities.	For	example,	a	comparison	of	

time-series	from	the	two	datasets	considered	in	this	study	of	relative	gene	

expression	levels	for	those	enzymes	directly	catalyzing	the	synthesis	of	

deoxyribonucleic	acids	were	poorly	correlated	with	the	known	patterns	of	DNA	

synthesis	for	the	MED4	isolate	in	vivo.	By	incorporating	gene	expression	of	all	

metabolic	genes	with	iJC568,	accurate	predictions	could	be	made	for	the	timing	of	

synthesis	of	all	four	deoxyribonucleotides.	Although	the	predictions	of	the	timing	of	

synthesis	of	each	crude	fraction	of	biomass	using	the	flexible	objective	approach	

were	consistent	between	datasets,	not	sensitive	to	the	arbitrary	expression	level	

cutoff	parameter	ξ	within	the	range	(less	than	14	%	variation	in	the	fractional	

fulfillment	of	crude	fractions	over	time	in	the	interval	0.15	≤	ξ	≤	0.35),	and	relatively	

well	described	by	simple	harmonics,	experimental	data	beyond	DNA	synthesis	are	

lacking	to	validate	our	predictions.	

Extension	of	the	complete	set	of	biosynthetic	predictions	to	generate	

conditional	biomass	objective	functions	resulted	in	improved	growth	rate	

predictions	relative	to	observations	than	with	a	fixed	steady	state	objective	function	

in	diel	simulations.	While	time-series	data	were	used	in	this	study,	the	flexible	
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objectives	method	is	by	no	means	limited	to	this	format	and	could	easily	be	adapted	

to	differential	expression	data	from	stress	response	experiments	or	adaptive	

evolution	studies.	However,	the	current	system	is	not	a	realistic	model	of	in	vivo	

physiology,	due	to	the	dynamic	nature	of	storage	reservoirs	which	are	not	

represented	in	a	linear	stoichiometric	framework	and	were	instead	parameterized.	

Despite	this	obvious	limitation,	gene-expression-based	estimates	of	time	resolved	

biomass	objectives	allow	for	the	calculation	of	the	accumulation	of	storage	pools	like	

glycogen,	which	we	assume	to	be	the	major	source	of	respiratory	energy	and	carbon	

for	nighttime	activity.	The	accumulated	glycogen	in	the	isolate	studies	during	the	

daytime	was	185	and	171	mg	gDW-1	and	nighttime	biosynthetic	ATP	requirements	

resulted	in	a	glycogen	carbon-specific	growth	efficiency	of	22	%	and	29	%	for	

Dataset	1	and	Dataset	2,	respectively.	Validation	of	the	magnitude	of	these	stores	

will	enable	the	calculation	of	light-dependent	respiration	rates,	an	analytically	

challenging	measurement.		

The	elemental	composition	of	instantaneous	biomass	production	computed	

from	BOFt	showed	consistent	patterns	in	C:N:P:S	ratios,	and	to	a	lesser	extent	C:H:O	

ratios	over	the	diel	cycle.	When	computed	for	accumulated	biomass,	the	variability	

in	these	ratios	was	suppressed,	but	not	completely.	Since	Prochlorococcus	mortality	

appears	to	also	be	periodic	(Ribalet	et	al.,	2015),	even	subtle	changes	in	the	

elemental	stoichiometry	of	biomass	consumed	by	grazers	could	have	a	profound	

impact	on	the	composition	of	the	sinking	flux,	the	stoichiometry	of	upward	eddy	

diffusion	supplied	nutrients,	and	thus	the	productivity	of	the	surface	layer.	We	also	

noted	a	dramatic	change	in	ΔH0C,biomass	synthesized	over	the	diel	cycle.	Relative	
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displacement	of	the	grazing	cycle	and	the	ΔH0C,biomass	cycle	would	bias	the	trophic	

energy	transfer	efficiency.	In	addition,	this	prediction	has	implications	for	the	time-

integrated	Gibbs	energy	balance	and	suggests	the	need	for	either	enhanced	heat	

flow	during	the	daytime,	which	we	do	not	predict	from	daytime	respiration	rates,	or	

more	likely	the	excretion	of	‘overflow’	metabolites,	further	fueling	the	microbial	

food	web.		
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Figure	5.1	–	Comparison	of	the	timing	of	deoxyribonucleotide	synthesis	between	

relative	gene	expression	levels	(emet;	top	panels)	using	the	‘nearest	neighbor’	

method	and	fractional	fulfillments	calculated	with	the	flexible	objectives	flexFBA	

method	(fi;	bottom	panels)	for	both	Dataset	1	(blue	lines	and	markers)	and	Dataset	

2	(green	lines	and	markers).	The	fraction	of	cells	in	S-phase	from	flow-cytometry	

cell	cycle	analysis	data	(Zinser	et	al.,	2009)	are	included	in	each	panel	(black	lines).			
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Figure	5.2	–	Summary	comparison	of	correlation	p-values	between	Dataset	1	and	

Dataset	2	using	the	nearest	neighbor	gene	expression	method	(top	panel)	and	

fractional	fulfillments	calculated	with	the	flexible	objectives	flexFBA	method	

(bottom	panel).		

	

	

	

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 10

20

40

60
Gene Expression

p−value

fre
qu

en
cy

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 10

20

40

60
flexFBA

p−value

fre
qu

en
cy



	 196	

Figure	5.3	–	Summary	comparison	of	coefficients	of	determination	resulting	from	

harmonic	regression	using	the	nearest	neighbor	gene	expression	method	(top	

panel)	and	fractional	fulfillments	calculated	with	the	flexible	objectives	flexFBA	

method	(bottom	panel)	for	Dataset	1	(blue	bars)	and	Dataset	2	(green	bars).			
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Figure	5.4	–	Comparison	of	instantaneous	growth	rates	during	diel	simulations	

using	BOFt	calculated	from	Dataset	1	(blue	lines	and	markers),	Dataset	2	(green	

lines	and	markers)	and	using	a	fixed	BOF	(black	lines	and	markers).			
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Figure	5.5	–	Diel	cycle	of	fractional	fulfillments	of	crude	fractions	of	biomass	(fcrude)	

used	to	compute	BOFt	from	Dataset	1	(blue	lines	and	markers)	and	Dataset	2	(green	

lines	and	markers).	The	daylight	period	is	indicated	in	yellow.	fcrude	was	calculated	as	

the	average	of	individual	fractional	fulfillments	(fi).			
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Figure	5.6	–	Comparison	between	Dataset	1	(left	panel)	and	Dataset	2	(right	panel)	

of	the	diel	cycle	of	crude	fractions	of	biomass	synthesized	at	each	time	point.	The	

proportions	should	be	interpreted	as	gross	production	and	do	not	include	

degradation,	including	the	respiration	of	accumulated	glycogen.		
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Figure	5.7	–	Instantaneous	elemental	ratios	of	BOFt	for	Dataset	1	(blue	lines	and	

markers)	and	Dataset	2	(green	lines	and	markers).		
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Figure	5.8	–	Cummulative	elemental	ratios	of	synthesized	biomass	for	Dataset	1	

(blue	lines	and	markers)	and	Dataset	2	(green	lines	and	markers).		
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Figure	5.9	–	Average	carbon	redox	number	and	total	enthalpy	of	combustion	(ΔH0C)	

of	BOFt	instantaneous	compositions	for	Dataset	1	(blue	lines	and	markers)	and	

Dataset	2	(green	lines	and	markers).		
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