
 

 

 
 

 
 
Measuring the intrarenal distribution of glomerular volumes from 
histological sections  
A thesis submitted to the graduate division of the University of Hawai‘i at Mānoa in 
partial fulfillment of the requirements for the degree of Master of Science in 
Molecular Biosciences and Bioengineering 

May 2017 

Bradley D. Hann 

Thesis committee:  
Kevin Bennett (chairperson), Daniel Jenkins, Gernot Presting 
 

May 2017 

 

  

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by ScholarSpace at University of Hawai'i at Manoa

https://core.ac.uk/display/211329029?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


2 
 

Contents 
Contents .............................................................................................................................................................. 2 

List of Figures and Tables .................................................................................................................................. 4 

Disclaimer ............................................................................................................................................................ 5 

Introduction ........................................................................................................................................................ 6 

Chapter 1 – Development and validation of the Unfolding model.............................................................. 8 

General stereological model ......................................................................................................................... 8 

Estimation of AVglom by Weibel-Gomez .................................................................................................... 9 

Estimation of Nglom by Fractionator Dissector ...................................................................................... 10 

Estimation of AVglom and distribution of IVglom by Unfolding ............................................................... 10 

Methods ........................................................................................................................................................ 13 

Volume Distribution by Unfolding ......................................................................................................... 13 

Unfolding validation ................................................................................................................................ 14 

Parameter optimization .......................................................................................................................... 14 

Results ........................................................................................................................................................... 15 

Validation of the Unfolding algorithm ................................................................................................... 15 

Estimating the required number of samples ....................................................................................... 16 

Effect of bin size ....................................................................................................................................... 16 

Discussion ..................................................................................................................................................... 17 

Alternate applications of the Unfolding algorithm .............................................................................. 17 

Chapter 2- Demonstration of Unfolding in WT and Oligosyncactyl mice ................................................. 19 

Methods ........................................................................................................................................................ 19 

Animal model ........................................................................................................................................... 19 

Tissue preparation ................................................................................................................................... 19 

Confocal imaging and measurements .................................................................................................. 19 

Estimation of AVglom and Nglom by Weibel-Gomez ................................................................................. 20 

Measurement of AVglom and Nglom by MRI .............................................................................................. 20 

Location of largest glomeruli .................................................................................................................. 21 

Statistics .................................................................................................................................................... 21 

Results ........................................................................................................................................................... 21 



3 
 

Tissue smoothing and segmentation .................................................................................................... 21 

AVglom, Nglom, and IVglom distribution ......................................................................................................... 22 

Comparison with other methods........................................................................................................... 24 

Spatial distribution of the largest glomeruli ......................................................................................... 25 

Discussion ..................................................................................................................................................... 27 

Conclusion ......................................................................................................................................................... 30 

Acknowledgements .......................................................................................................................................... 31 

References ......................................................................................................................................................... 32 

Appendix- Code Snippets ................................................................................................................................ 34 

Smoothing z-stacks to remove mounting artifacts .................................................................................. 34 

Simulating ellipsoidal profiles .................................................................................................................... 35 

Unfolding Algorithm .................................................................................................................................... 36 

 

 



4 
 

List of Figures and Tables 

Table 1 ..................................................................................................................................................... 8 

Figure 1 .................................................................................................................................................... 11 

Box 1 ........................................................................................................................................................ 12 

Figure 2 .................................................................................................................................................... 15 

Figure 3 .................................................................................................................................................... 16 

Figure 4 .................................................................................................................................................... 21 

Figure 5 .................................................................................................................................................... 22 

Figure 6 .................................................................................................................................................... 23 

Figure 7 .................................................................................................................................................... 24 

Table 2 ..................................................................................................................................................... 25 

Figure 8 .................................................................................................................................................... 26 

Figure 9 .................................................................................................................................................... 27 

 



5 
 

Disclaimer 

Although it is traditional to publish data after the submission of a MS Thesis, this work was 
published prior to submission of the MS Thesis as: 

 

Measuring the intra-renal distribution of glomerular volumes from histologic sections 

Bradley D Hann, Edwin J Baldelomar, Jennifer R. Charlton, Kevin M. Bennett 

American Journal of Physiology - Renal Physiology Mar 2016, 
ajprenal.00382.2015; DOI: 10.1152/ajprenal.00382.2015.  

 

That work was designed, performed, analyzed, written, edited, and published by Bradley Hann while 
a student at University of Hawaii at Manoa. Notable contributions from coauthors includes:  

E. Baldelomar  

• Consulted in the initial design and conception of the experiment. 
• Performed and analyzed the MRI experiments described in Chapter 2.  
• Assisted with manual image segmentation.  
• Consulted in the interpretation of results. 
• Edited and approved the AJP manuscript.  

J. Charlton 

• Consulted in the initial design and conception of the experiment. 
• Provided whole kidneys from WT and Os/+ mice.  
• Consulted in the interpretation of results.  
• Edited and approved the AJP manuscript.  

K. Bennett 

• Consulted in the initial design and conception of the experiment. 
• Consulted in the interpretation of results.  
• Edited and approved the AJP manuscript.  
• Edited and approved this Thesis.  

 

This thesis draws heavily on the AJP manuscript, including blocks of text, figures, and tables. The 
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Introduction 

The kidney has a significant ability to adapt to acute and chronic stress. However, unremitting 
stimulation of the renal adaptive mechanisms eventually contributes to the progression of disease. 
Renal adaptive mechanisms are highlighted clinically by the kidney’s ability to maintain a stable 
glomerular filtration rate with a wide range in the number of functioning nephrons(1). Because 
human nephron number is determined at birth and decreases with ageing (2,3), glomerular 
hypertrophy is one response the kidney employs to adapt and provide a constant filtration surface 
area when there are too few nephrons to maintain the homeostatic function of the kidney. 

Glomerular hypertrophy is manifested in a number of diseases such as diabetes, obesity, pregnancy, 
autosomal dominant polycystic kidney disease, focal segmental glomerulosclerosis, and following 
acute kidney injury(4). Although many types of glomerular hyperfiltration lead to glomerular 
hypertrophy and glomerulosclerosis, the specific mechanisms depend on the pathology(5) and the 
damage is heterogeneously distributed throughout the kidney (6). Importantly, disease progression 
is often heterogeneously observed in individual kidneys, particularly at the earliest stages, and focal 
changes may not present in estimates of average glomerular volume. Early detection of glomerular 
hypertrophy in patients or preclinical models may enable targeted therapy earlier in disease 
progression, improving the chances of halting the progression of chronic kidney disease. Thus, an 
efficient technique to examine the distribution of glomerular volumes is critical.  

Stereological techniques are used to estimate the number (Nglom) and average volume of glomeruli 
(AVglom) and other structures. Stereology is typically performed by thinly sectioning the kidney and 
measuring the number and area of glomeruli visible in a fraction of those slices. A mathematical 
model, based on certain simplifying assumptions, is used to extrapolate the Nglom from the profile 
measurements. One model-based method, outlined by Weibel and Gomez in 1962(7), assumes that 
glomeruli are spheres with radii that are normally distributed in the kidney. An alternative method, 
the unbiased fractioner/dissector, is generally preferred over model-based methods in studies in 
humans (8-10). The fractionator/dissector method dispenses with the geometric assumptions of 
Weibel and Gomez but requires sampling pairs of tissue slices and counting profiles that appear in 
only one section of the pair. Another, new strategy for measuring glomerular endowment relies on 
injecting a cationic magnetic resonance imaging (MRI) contrast agent that binds to the anionic 
glomerular basement membrane (11-15). The number of functioning glomeruli can be determined 
by counting the resulting dark artifacts in an MR image.  

In this work, we develop a stereological technique to measure the intra-renal distribution of 
individual glomerular volume (IVglom) and the standard deviation of intra-renal glomerular volumes, 
σglom, in addition to AVglom and Nglom, based on an iterative “Unfolding” algorithm. By making an 
empirically derived assumption about the shape of the particles (glomeruli) in the model, we 
calculate the distribution of profiles that would arise from randomly sectioning a particle given its 
size. Importantly, the largest observed profiles must come from the center of the largest particles. 
We thus “unfold” the histogram by iteratively counting the largest particles and then subtracting the 
smaller profiles from the distribution that would result from sectioning those particles. To apply and 
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test the Unfolding algorithm, we first simulated a set of glomerulus profiles and compared the 
calculated glomerulus radii to the original “true” simulated radii. Then we repeated this comparison 
using ellipsoidal, rather than spherical, simulated particles. Next we applied this technique to 
examine the distribution of IVglom in oligosyndactyl (Os/+) mice, a model of kidney pathology that 
exhibits reduced nephron number by nearly 50% and glomerular hypertrophy compared to wild 
type (WT) controls (16). By examining a large population of glomerulus profiles, we elucidated 
differences in numerical and spatial distributions of hypertrophic glomeruli. We hypothesized that 
Unfolding enables accurate measurements of heterogenous glomerular morphology in individual 
kidneys.  
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Chapter 1 – Development and validation of the Unfolding model 

The goal of this work is to develop a stereological method to measure the number, average volume, 
and distribution of volumes of glomeruli in the mouse kidney. While other methods may be used to 
determine the number and average volume of glomeruli, they cannot estimate the distribution of 
volumes. We approached this problem using the Unfolding concept, which was first proposed in 
1925 by Wicksell(17), but has not been robustly validated or applied to the problem of counting 
glomeruli. In the first portion of this work, we will develop and validate the Unfolding algorithm.  

The Chapter begins with a mathematical outline of two common methods for determining 𝑁𝑁𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔 and 
𝐴𝐴𝑉𝑉𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔, followed by a formal description of the Unfolding model. The model is then validated by 
simulating a set of spherical glomeruli and a random set of profiles that might be obtained by 
sectioning that population of glomeruli. By convention the 3D spheres are called ‘particles’ and use 
upper-case variables, while the 2D slices are called ‘profiles’ and used lower-case variables. We then 
use the unfolding algorithm on the simulated profiles to recover the original distribution of particles. 
To measure the accuracy of the result, we routinely calculate the ‘fidelity’ of the algorithm, defined 
as the correlation coefficient between the known distribution of particle radii and that calculated by 
Unfolding. We test the algorithm given several different assumptions about the underlying 
distribution of particle Radii. Next we acknowledge the fallibility of a key assumption of the model—
that glomeruli are spheres— and repeat the simulations using glomeruli that are ellipsoidal rather 
than spherical, without altering the model, to examine the detrimental effects on the result. Finally, 
we explore the conditions under which the model is valuable, considering the distribution of particle 
sizes, available number of samples, and homogeneity of particle shape.  

General stereological model 
Table 1. Summary of Variables 

Description Symbol Expression 
Total glomerular number 𝑁𝑁𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔 𝑁𝑁𝑉𝑉𝑉𝑉𝐶𝐶𝑔𝑔𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶  
Average glomerular volume 𝐴𝐴𝑉𝑉𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔   
Individual glomerular volume 𝐼𝐼𝑉𝑉𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔  4

3
𝜋𝜋𝑅𝑅𝑛𝑛3  

Intra-renal standard deviation of glomerular 
volume 𝜎𝜎𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔   
Measured profile area 𝑎𝑎𝑛𝑛  
Radius of a circle of equivalent area 𝑟𝑟𝑛𝑛 �𝑎𝑎𝑛𝑛 𝜋𝜋⁄  
Slice thickness 𝑡𝑡  
Radius of individual glomerulus 𝑅𝑅𝑛𝑛  
Mean radius 𝑅𝑅0  
Number density per unit area 𝑁𝑁𝐴𝐴  
Number density per unit volume 𝑁𝑁𝑉𝑉 𝑁𝑁𝐴𝐴 2𝑅𝑅0⁄  
Area density per unit area 𝐴𝐴𝐴𝐴  
Volume density per unit area 𝑉𝑉𝑉𝑉 𝐴𝐴𝐴𝐴 
Cortical volume 𝑉𝑉𝐶𝐶𝑔𝑔𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶   
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If a volume containing particles (such as glomeruli) is sectioned with a slice thickness much less than 
the size of the particles, the sections will contain a distribution of 2D profiles cut from those 
particles. For a collection of N spherical particles, each with radius Rn, in a cubic volume with side 
length l, the problem is to estimate the number and size of the particles from slices taken through 
the volume. By convention, capital R is used to indicate particle radius and lower-case r is used to 
indicate profile radius. All variables are summarized in Table 1. Taking an infinitely thin slice at a 
randomly chosen location through the box, the probability that the slice will intersect the nth particle 
is  

 

𝑃𝑃𝑟𝑟{𝑛𝑛} =
2𝑅𝑅𝑛𝑛
𝑙𝑙 ≡ 𝛼𝛼𝑛𝑛, (1) 

 

where 𝛼𝛼𝑛𝑛, with values between 0 and 1, is the probability of detecting the nth particle. 

In a single thin section of tissue, the fraction of total area containing particles is denoted AA. Similarly 
the fraction of the total volume containing particles is VV. These two quantities are equal according 
to the Delesse Principle (7), therefore the total glomerular volume 𝑉𝑉𝑇𝑇 = 𝑉𝑉𝑉𝑉𝑉𝑉𝐶𝐶𝑔𝑔𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 . Since 𝑉𝑉𝑇𝑇 =
𝑁𝑁𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝐴𝐴𝑉𝑉𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔, by accurately estimating either the number or average volume of particles, the other 
quantity may be calculated using  

  

𝑁𝑁𝑉𝑉 =
𝑁𝑁𝐴𝐴

2𝑅𝑅0
 (2) 

and 

𝑁𝑁𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔 = 𝑁𝑁𝑉𝑉𝑉𝑉𝑐𝑐𝑔𝑔𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶. (3) 
 

Estimation of AVglom by Weibel-Gomez 
The Weibel-Gomez technique relies on the assumption that particles are spheres with normally 
distributed radii. It is laid out in detail in Weibel-Gomez (1962)(7). Briefly, define a unitless constant 
𝛽𝛽 = 𝑉𝑉

𝑠𝑠3/2, where V is the volume of an object and s is the average cross-sectional area across every 

plane. For a sphere, 𝑠𝑠 = 2
3
𝜋𝜋𝑟𝑟2 and 𝑉𝑉 = 4

3
𝜋𝜋𝑟𝑟3, therefore 𝛽𝛽 ≈ 1.38. The number of convex particles per 

unit volume, NV, can be calculated by 𝑁𝑁𝑉𝑉 = 1
𝛽𝛽𝑖𝑖
�𝑁𝑁𝐴𝐴3

𝑉𝑉𝑉𝑉
. NA and VV can both be measured by unbiased 

stereological methods, however, this equation still assumes that all particles are the same size. Since 
larger particles are more likely to be sampled, the above measurement will systematically 
underestimate the number of particles. Therefore a second constant, K, is defined as the ratio of the 
skewness of the distribution of radii to the mean radius, and has been experimentally estimated to 

be ~1.04(18). Therefore the final equation for estimating number density is 𝑁𝑁𝑉𝑉 = 𝐾𝐾
𝛽𝛽𝑖𝑖
�𝑁𝑁𝐴𝐴3

𝑉𝑉𝑉𝑉
. Given NA, 

Vglom and Nglom can be estimated using equations 2 and 3.  
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Estimation of Nglom by Fractionator Dissector 
The Fractionator-Dissector technique for determining Nglom is an unbiased technique that doesn’t 
rely on an assumption of particle size or shape. The basis of this technique observing two imaging 
planes of the same tissue separated by a known distance, dS. This can practically be accomplished 
by taking two physical sections and aligning them physically(19) or by using a confocal microscope to 
collect optical sections at two different depths(20). Next the number of nephrons that appear in one, 
but not both, sections is determined. By using this trick the probability of detecting the nth particle 
𝑃𝑃{𝑛𝑛} = 2𝑑𝑑𝑑𝑑/𝑙𝑙, crucially not depending on the size of the particle. Therefore Equation 3 can be used to 
calculate an unbiased Nglom where 𝑁𝑁𝑉𝑉 = 𝑐𝑐𝑐𝑐𝑐𝑐𝑛𝑛𝑡𝑡𝑠𝑠

𝐴𝐴𝑐𝑐𝑔𝑔𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑑𝑑𝑑𝑑� . 

Estimation of AVglom and distribution of IVglom by Unfolding 
 

 

Figure 1. (a) A sphere with radius R cut by sampling planes at a random height (h) will produce a distribution of 
profiles, each with radius r. (b) The distribution of profile radii expected from randomly slicing a sphere of r=39μm. 
Since the measured data is a collection of profiles cut from spheres of different sizes, we developed an Unfolding 
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algorithm to estimate the original distribution of spheres from the collection of observed profiles. (c) The Unfolding 
procedure is based on the principal that the largest profiles are sections cut from the center of the largest population 
of spheres. Beginning with the largest size class, we calculate the number of spheres (bottom right) of that radius that 
produce the observed number of large profiles. Next we subtract all of the profiles that would arise from those 
spheres from the histogram (shown in gray, bottom left). This process is repeated until all the observed profiles are 
accounted for.  
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Box 1: Derivation of Equation 2 

 

From the Pythagorean theorem 

𝑦𝑦(𝑟𝑟) = �𝑅𝑅2 − 𝑟𝑟2 
Whose derivative is  

𝑑𝑑𝑦𝑦
𝑑𝑑𝑟𝑟 =

1
2

(𝑅𝑅2 − 𝑟𝑟2)−
1
2(−2𝑟𝑟) =

−𝑟𝑟
√𝑅𝑅2 − 𝑟𝑟2

. 

Since the height through which a glomerulus is cut y, is a uniform random variable, if 
yi is between y and y+dy, then ri is between r and r-dr:  

Pr{𝑟𝑟 < 𝑟𝑟𝑖𝑖 < 𝑟𝑟 − 𝑑𝑑𝑟𝑟|𝑅𝑅} = 𝑑𝑑𝑦𝑦/𝑅𝑅. 
By substitution, the continuous probability distribution function is:   

𝜙𝜙(𝑟𝑟|𝑅𝑅)𝑑𝑑𝑟𝑟 =
−𝑟𝑟

𝑅𝑅√𝑅𝑅2 − 𝑟𝑟2
𝑑𝑑𝑟𝑟.  

The discretized version of the function gives the probability that r is between 𝑟𝑟𝑛𝑛 and 
𝑟𝑟𝑛𝑛 − Δ𝑟𝑟 where 𝑟𝑟𝑛𝑛 is the upper bound of the nth bin and Δr is the bin width 

Pr{𝑟𝑟𝑛𝑛|𝑅𝑅} = � 𝜙𝜙(𝑟𝑟|𝑅𝑅)𝑑𝑑𝑟𝑟
𝐶𝐶𝑛𝑛

𝐶𝐶𝑛𝑛−∆𝐶𝐶
=
√𝑅𝑅2 − 𝑟𝑟2

𝑅𝑅 �
𝑟𝑟𝑛𝑛

𝑟𝑟𝑛𝑛 − ∆𝑟𝑟 

 

If a single sphere with radius R is intersected by a slice at a uniformly randomly distributed location, 
the probability density of observing a profile with radius r in the slice is  

 

𝜓𝜓(𝑟𝑟|𝑅𝑅)𝑑𝑑𝑟𝑟 = �
𝑟𝑟

𝑅𝑅 √𝑅𝑅2 − 𝑟𝑟2
𝑑𝑑𝑟𝑟, 𝑟𝑟 < 𝑅𝑅

0, 𝑟𝑟 ≥ 𝑅𝑅
 (4) 

 

(Figure 1a) (21). Equation 4 is illustrated in Figure 1b. We adopt the convention that a single slice 
through the volume can intersect with each particle only once. If the slice does not intersect with the 
nth particle, the observed radius will be 0. These observed profiles with r=0 are represented by a 
delta function 𝛿𝛿(𝑟𝑟) that satisfies ∫ 𝛿𝛿(𝑟𝑟)𝑑𝑑𝑟𝑟 = 1∞

−∞ . From Equation 1, the total probability distribution 
function (PDF) is the sum of these two functions weighted by the probability of detecting (𝛼𝛼𝑛𝑛) or not 
detecting (1 − 𝛼𝛼𝑛𝑛) the nth glomerulus. Because the glomeruli are small and sparse, we assumed that 
the excluded volume effect was negligible. Therefore the expected distribution of profile radii in a 
slice through a control volume containing N particles each with a radius of Rn will be:  

 

 

𝑃𝑃𝑟𝑟(𝑟𝑟)𝑑𝑑𝑟𝑟 =
1
𝑁𝑁�

⎝

⎛𝛼𝛼𝑛𝑛
𝑟𝑟

𝑅𝑅𝑛𝑛�𝑅𝑅𝑛𝑛2 − 𝑟𝑟2
𝑑𝑑𝑟𝑟 + (1 − 𝛼𝛼𝑛𝑛)𝛿𝛿(𝑟𝑟)𝑑𝑑𝑟𝑟

⎠

⎞
𝑁𝑁

𝑛𝑛=1

. (5) 
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Pr(r) is the probability that the nth particle will be detected as a profile of radius r in a random slice. 
Because the location of the nth particle is unknown, the slice may not intersect the particle. This case 
yields an observed radius of 0 for that particle, represented by the second term inside the 
parentheses. If the slice intersects the nth particle, with probability 𝛼𝛼𝑛𝑛, the profile radius depends on 
the particle radius as in Eqn. 2. However, because the particle radius is also unknown, the PDF is 
averaged over all particles in the volume. Each section results in one measurement of the profile 
(which may be 0). Thus the equation sums to 1. Because the unobserved profiles with r=0 cannot be 
measured, we must estimate the number of unobserved profiles from those that were observed. 
(Equation 2b formally describes the probability of detecting a profile of a specific radius, but the 
formula used in the algorithm is given in Eqn 6.) 

Methods  
Volume Distribution by Unfolding 
To estimate the distribution of true glomerular radii Rn from the measured profile radii rn, we 
developed and applied the Unfolding algorithm based on the theory described by Wicksell in 
1925(17). We first sorted the measured rn into a normalized histogram of 18 bins evenly spaced from 
0 to 60μm. The number of bins should depend on the number of observations and the variance but 
will generally fall between 16 and 20 for this procedure(21). We assumed that the profiles in the 
largest bin of this histogram arose from sections near center of the largest glomeruli. We also 
assumed that there were no particles larger than the largest observed profile. To find the probability 
that an observed profile will have a radius between rm and rm- Δr we discretized Eqn. 4: 

 

Pr{𝑟𝑟𝑔𝑔|𝑅𝑅} = � 𝜓𝜓(𝑟𝑟|𝑅𝑅)𝑑𝑑𝑟𝑟
𝐶𝐶𝑚𝑚

𝐶𝐶𝑚𝑚−∆𝐶𝐶
=
√𝑅𝑅2 − 𝑟𝑟2

𝑅𝑅 �
𝑟𝑟𝑔𝑔

𝑟𝑟𝑔𝑔 − ∆𝑟𝑟 (6) 

 

where 𝑟𝑟𝑔𝑔 is the upper bound of the mth bin and Δr is the bin width. Next, beginning with the bin of 
largest profiles, we calculated the fraction of glomeruli with the corresponding radius and the 
expected number of profiles in each smaller profile bin attributed to glomeruli in this size class. We 
removed these calculated values of r from the histogram and repeated the process for the bin of 
next largest profiles. The bins with negative frequency, after all expected profiles were subtracted, 
represented profiles from larger glomeruli that were not identified due to experimental challenges. 
Frequencies in the final histogram were corrected by a factor of Rn/R0 to account for the increased 
likelihood of observing larger glomeruli explained by Eq 1. Finally, we calculated the average radius 
R0 from the histograms. Vcortex was measured directly from the 3D MR images, and Nglom and AVglom 
were calculated according to Equation 3 and 𝐴𝐴𝑉𝑉𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔 = 4

3
𝜋𝜋𝑅𝑅03. For reproducibility, the MATLAB code 

has been included as supplemental material.  
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Unfolding validation 
To test the Unfolding algorithm, we simulated the kidney as a cube filled with 10,000 spherical 
glomeruli uniformly distributed inside. In the simulated samples the radii were normally distributed 
(37±3μm) (Figure 2, left) or bimodally distributed (70% 32±3μm, 30% 45±3μm, Figure 2, right), which 
was approximately the range of glomerular radii measured here. (The mean glomerular radii of Os/+ 
and WT mice were 44±1.4μm and 36±1.7μm respectively). Next we simulated the profile radii that 
would be expected if seven uniformly spaced, infinitely thin, sections were taken through the 
volume, and calculated the particle radii from the distribution of these observed profile radii using 
the Unfolding algorithm. Finally we computed the correlation coefficient between the original 
distribution of particle radii and the distribution of particle radii calculated from the Unfolding 
algorithm. We defined this correlation as “fidelity”.  To assess this, we performed the same 
simulation 1000 times using normal and bimodal distributions of particle radii. To test the sensitivity 
of Unfolding to the standard deviation of the particle radius distribution, we performed the 
simulation for particles with normally distributed radii 1000 times while varying the standard 
deviation from 0 to 5μm— a conservative estimate of σglom (Figure 2, insert). Because the unfolding 
algorithm is applied serially, errors might be systematically propagated across histogram bins. To 
assess the magnitude of this effect, we examined the correlation between the number of profiles in 
the bins containing the largest profiles and the fidelity of Unfolding. To assess the effect of 
measurement error on the algorithm, we introduced artificial measurement error (0-25%) and 
repeated the simulations. We chose this range because, in our experience, typical inter-investigator 
variability is ~5-10%. Finally, we ran the simulations a number of times using different values of 
AVglom, σglom, and distributions of IVglom, estimating the minimum number of profiles that must be 
sampled for the Unfolding algorithm to have an average fidelity of 90%. The results are not shown, 
but the estimates are given in the discussion as a guideline for using the Unfolding algorithm in 
other species.  

To test how the assumption of spherical glomeruli affects the accuracy of Unfolding and estimates 
of Nglom and AVglom, we simulated profiles cut from a triaxial ellipsoid defined by two axial ratios and a 
volume. We generated triaxial ellipsoids in MATLAB with equivalent volumes to the spheres used in 
the first set of simulations (2.12±0.51 x10-4 mm3). The ratio of the lengths of the second and third 
axes, with respect to the shortest axis, was uniformly distributed between 1 and 1.63. To choose the 
maximum possible axial ratio (1.63), we varied that parameter from 1 to 2, and selected the value 
that produced an average 2D profile axial ratio of 1.26 (the glomerular axial ratio that was observed 
in this work). Next, we found the area of the 2D ellipse formed by the intersection of each 3D 
ellipsoid and a plane passing in uniformly distributed random orientation through the ellipsoid 
according to the method of Klein(22). While still assuming the particles were spheres, we repeated 
the Unfolding procedure 1000 times and compared the estimated sphere volumes with the known 
ellipsoid volumes.  

Parameter optimization  
To estimate the number of samples required for the Unfolding method to be viable, we examined 
several different scenarios, each assuming a different distribution of particle sizes, then simulated 
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corresponding sets of particles and profiles. Next, we used the unfolding algorithm with a variable 
number of sampled profiles and examined the average (n=1000 runs) correlation coefficient 
between true distribution and that calculated by unfolding. We report the smallest number of 
samples required for an average correlation coefficient of 0.90.  

The effect of bin size on fidelity is necessarily intertwined with the number of profiles sampled. More 
bins requires more samples to reduce sampling noise. Therefore we repeated the simulation on 
normally distributed simulated particles (37±3μm) as before and varied the number of samples from 
500 to 2000 and the number of bins from 16 to 40. We calculated the average (n=2000 runs) 
correlation coefficient between true distribution and that calculated by unfolding. 

Results  
Validation of the Unfolding algorithm 
To test the accuracy of the Unfolding algorithm, we used a simulated data set consisting of random 
populations of spherical particles, (as a model for glomeruli), and the corresponding circular profiles 
of these particles observed by randomly sectioning the 3D volume. The intra-renal distribution of 
IVglom was calculated from profile radii for particles of normally distributed size, shown in Figure 2. 
The correlation coefficient between the calculated and true radii was 0.96 for normally distributed 
radii and 0.95 for bimodally distributed radii. Increasing the standard deviation of particle radii in 
the simulation to 5 μm decreased the correlation coefficient slightly to 0.95 (Figure 2, insert). 

 

Figure 2. An Unfolding algorithm was developed to calculate the true radii of glomeruli from measured profiles. Here, 
the algorithm was validated using simulated data based on normally distributed spheres (left) or bimodally 
distributed spheres (right). We calculated the correlation coefficient between the known simulated particle radii and 
the calculated particle radii; the algorithm was accurate even with a broad distribution of particle radii (insert). 

To determine the importance of error caused by assuming that glomeruli are spherical, we 
simulated the case in which glomeruli are triaxial ellipsoids. We based the shape on our 
experimental findings, where the mean ratio of the major and minor axes of the measured 
glomerular profiles was 1.26±0.03 in Os/+ and WT mice (with no difference between genotypes). In 
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the model, this corresponded to a set of ellipsoids in which the length of shortest axis was a, and the 
other two axes were b*a and c*a, where b and c were uniformly distributed values between 1 and 
1.63. When we used the Unfolding algorithm to estimate the volumes of these triaxial ellipsoids 
from random profiles, the correlation coefficient between the histograms of the calculated and true 
volumes was 0.88, and AVglom was underestimated by 3.6% on average. To test the fidelity of 
Unfolding in the presence of measurement error, we repeated simulations with artificial error of 0-
25% of the profile radius.  Measurement error below ±15% decreased the fidelity ~2-3%; ±25% 
measurement error decreased fidelity to ~85%. We estimate that typical inter-investigator variability 
is ~5-10%. To test the robustness of the Unfolding algorithm to sampling error, we examined the 
simulations with an unusually large or small frequency of profiles in the bins containing the largest 
profiles. We found no correlation (r2~10-4) between the frequency of the largest profiles and the 
fidelity of the algorithm. 

Estimating the required number of samples 
We extended our computer simulations to estimate the number of profiles per kidney that must be 
sampled for the Unfolding algorithm to be accurate, (defined by at least a 90% correlation with the 
true distribution). In general, the number of samples depends on the expected distribution of 
glomerular (particle) radii. Regardless of the number of profiles needed for accurate Unfolding, 
uniform random sampling with good spatial coverage is required for an accurate estimate of Nglom. 
The following guidelines are based on calculations in our laboratory (data not shown): For normally 
distributed glomerular radii with R=100±5μm, 300 profiles are sufficient. If the standard deviation is 
increased to 20μm, then 700 profiles are required. If a second population of larger glomeruli is 
present, e.g. a bimodal distribution where 80% of radii are 100±5μm and 20% are 125±5μm, 500 
profiles are necessary. If the second population is smaller than the median, e.g. a bimodal 
distribution where 80% of radii are 100±5μm and 20% are 75±5μm, only 400 profiles are necessary. 
This is because larger glomeruli are more likely to be sampled, so a second population of large 
glomeruli biases the distribution more than a second population of small ones. For a trimodal 
distribution, e.g. 75±5μm, 100±5μm, and 125±5μm radii in a 10/80/10 ratio, ~500 profiles are 
needed. For reference, ~75 profiles were observed in a single axial section of a mouse kidney. 
Regardless of the required total number of profiles, uniform random sampling procedures must be 
observed. These estimates are meant to serve as a guideline rather than a precise number, and 
preliminary data should be used to gauge the expected distribution.  

Effect of bin size 
To examine the effect of bin numbers, we repeated the simulations examining the fidelity of the 
algorithm with different numbers of bins between 0 and 60μm. Increasing the number of bins 
increases the resolution of the histogram and therefore naturally should require more sampled 
profiles. Figure 3 shows the fidelity of the algorithm for different combinations of number of bins 
and number of samples.  
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Figure 3. Effect of number of bins and number of samples on fidelity of the Unfolding algorithm. Color indicates the 
correlation coefficient between the known histogram and that calculated using the unfolding algorithm. 

Discussion  
In this chapter, we present a model-based stereological approach to measure intra-renal 
distribution of IVglom. While other stereological techniques exist for estimating Nglom and AVglom, they 
cannot be used to estimate the distribution of IVglom. We tested the ability of the Unfolding technique 
to recover the distribution of particles from a set of profile measurements by simulating spherical 
profiles with a known volume distribution; the correlation between the known and calculated 
distribution was 96%. Next we tested the algorithm using simulated profiles cut from random 
triaxial ellipsoids rather than spheres. The correlation between the true and calculated volume 
distribution was 88% and AVglom was underestimated by 4%. We considered a number of potential 
distributions of glomerular volume and estimated the number of samples required for the unfolding 
algorithm to be valid. A conservative estimation for mouse glomeruli is to expect a bimodal 
distribution with the second population of glomeruli being fewer and larger than the first. Therefore 
our calculations suggest we need at least 500 sampled profiles. Since our experimental design gave 
us at 700 samples per kidney, bin number should be between 18 and 26 (evenly distributed between 
0 and 60µm.  In conclusion, the Unfolding algorithm is useful for calculating 𝑁𝑁𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔, 𝐴𝐴𝑉𝑉𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔, and the 
distribution of 𝐼𝐼𝑉𝑉𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔 in mouse kidneys.  

Alternate applications of the Unfolding algorithm 
Stereology has several biological applications, such as measuring the endowment of cells or vessels, 
and non-biological applications, such as analyzing sediment in rocks. Ideally the Unfolding algorithm 
would be applied to multiple problems in which the distribution of particle sizes is useful. This 
iteration of the Unfolding algorithm relies on the assumption that glomeruli are spherical, and the 
algorithm could readily be applied to any stereological application where sphere counting is 
required. More fundamentally, Unfolding requires only that particles be consistently shaped, so that 
all particles can be described by a single characteristic measurement of particle size (in this case 
Radius). To extend Unfolding to non-spheres, one must derive an equation akin to Equation 4 that 
describes the probability distribution of areas of random profiles as a function of the characteristic 
size of the particle. That equation could be the sum of multiple PDF describing a mixed population 
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of particles. Since spheres have rotational symmetry in 3 dimensions, Equation 4 was easily derived. 
While these PDFs have been determined for other ideal shapes(7), simulation may be necessary to 
solve more complex shapes(23). Some applications that meet these requirements include cell 
counting (for example podocytes, hepatocytes, or neurons), bubble counting (in solutions, 
suspensions like concrete, or against material surfaces), or sediment analysis.  
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Chapter 2- Demonstration of Unfolding in WT and Oligosyncactyl mice  

In the first portion of this work, we developed an algorithm for calculating the distribution of particle 
volumes from a collection of thinly sliced profiles. We validated the assumptions considering the 
shape of mouse glomeruli, number of possible profile samples, and distribution of glomerular 
volumes. In this Chapter we will apply the Unfolding algorithm to compare the distribution of 
glomerular volumes in wild type (WT) and oligosyndactly (Os/+) mice. The Os/+ strain exhibits ~50% 
reduced kidney mass. We first use the unfolding algorithm to compare the distribution of 𝐼𝐼𝑉𝑉𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔 for 
WT and Os/+ mice. Next, as a secondary method of validating the Unfolding algorithm, we compare 
the values of 𝑁𝑁𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔 and 𝐴𝐴𝑉𝑉𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔  estimated by Unfolding to those estimated by Weibel-Gomez and by 
MRI. Finally, we examine the location of the largest glomeruli in both strains of mice. We hypothesize 
that the Unfolding algorithm will give new insight into the morphological changes in the whole 
population of glomeruli that are associated with reduced kidney mass.  

Methods 
Animal model 
All animal experiments were approved by the Institutional Animal Care and Use Committee at 
University of Virginia and performed according to the NIH Guide for the Care and Use of Laboratory 
Animals. Five Os/+ and five WT mice were used for the study. One Os/+ mouse was later removed 
from the study as outlier. The mice were bred in-house on a predominately C57Bl/6 background. 
The Os/+ mice were identified by syndactylism of the toes (15).  

Tissue preparation 
Mouse kidneys were fixed by perfusion using 0.9% sodium chloride followed by 10% neutral 
buffered formalin and stored in 2% gluteraldehyde in 0.1M cacodylate buffer at 4°C. To achieve 
histology blocks suitable for sectioning, the kidneys were embedded in gelatin (300 Bloom, 15% 
gelatin in PBS). These were crosslinked overnight with formalin at 4°C. The kidneys were 
exhaustively sectioned at a nominal thickness of 75 μm using a Leica VT1000S vibrating microtome. 
Every 8th section, beginning with a random section was selected for imaging. (e.g. Beginning with 
section number 3,11,19, etc., where 3 was the first section chosen using a random number 
generator).  Freshly cut floating sections were blocked with 2% BSA, 1% Triton X-100 for 1 hour at 
room temperature with gentle shaking, then stained with 1 μg/ml wheat germ agglutinin-Alexa-555 
(WGA-555) conjugate in PBS with 0.1% BSA overnight at 4°C, then washed 3x for 15 minutes with 
PBS. WGA-555 binds to sialic acids and N-acetylglucosamine on the surface of podocytes(24). It was 
used to highlight glomeruli at an imaging wavelength where there is little tissue auto-fluorescence. 
The sections were wet-mounted with ProLong Diamond (Life Technologies), covered with #1 glass 
coverslips, and sealed after 24 hours.  

Confocal imaging and measurements 
3D images were acquired on a Zeiss LSM710 confocal microscope running Zen 2012 software. A 
561nm laser line excited the Alexa-555 fluorophore and Zen selected the emission filter 
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automatically (566-697nm). Z-stacks of tiles with 0.83x0.83x2.0μm resolution were collected at10μm 
intervals in Z. Since the microscope field of view is much smaller than the slice of tissue, multiple 
images were collected in a tiling scheme. A complete raw image of one slice of kidney might consist 
of 10x20x6 different individual images. The tiles were stitched in the XY plane using the ‘Stitch’ 
function in Zen.  

To correct for tilted or wrinkled tissue slices, a smoothing operation was developed in MATLAB 
(MathWorks, Matick MA). The goal of this algorithm was to combine data from multiple focal planes 
to form a single image that is always in focus. This was accomplished by first finding the brightest 
pixel in Z at every point. Next that matrix of indexes was blurred with a Gaussian lowpass filter (size 
= 200, standard deviation = 50) using the imfilter function in MATLAB. Finally, the smoothing 
operation selected the brightest xy region out of all z-slices and then returned a single composite 
image of the brightest regions acquired.  

Glomeruli were clearly identifiable compared to the background tissue (Figure 5). An average of 705 
glomeruli per kidney were identified manually to the edge of the capillary tuft. Segmented mask 
images were generated in FEI Amira 5.6.0 software (Hillsboro, OR, USA). (This segmentation could 
easily be performed in many other image processing software packages). 

Estimation of AVglom and Nglom by Weibel-Gomez 
The Weibel-Gomez technique assumes that glomeruli are spheres in estimating AVglom and Nglom. The 
technique is based on Eqn. 1 and uses constants k and β to correct for the size distribution and shape of 
the glomeruli respectively, and glomerular area density per kidney unit area AA.  
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Previously reported values for k and β are 1.04 and 1.38 respectively(18). NA is the number of profiles per 
unit area of cortex and AA is the glomerular area per unit area of cortex. Here Nglom was calculated 
according to Eqn 3. To calculate AVglom, we set the volume fraction of glomeruli, VV = AA (Delesse 
principle) and used the formula:  

  

𝐴𝐴𝑉𝑉𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔 =
𝑉𝑉𝑉𝑉𝑉𝑉𝐶𝐶𝑔𝑔𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶
𝑁𝑁𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔

. (8) 

 

Measurement of AVglom and Nglom by MRI 
We compared the AVglom and Nglom obtained by Unfolding to those obtained by MRI of the same kidneys. 
The MRI techniques are described in previous work(11,14,25). Briefly, the mice were given a total of 5.75 
mg/kg cationized ferritin (Sigma Aldrich, St. Louis MO) by retro-orbital injection in two doses spaced 1.5 
hours apart. 1.5 hours after the last injection the mice were sacrificed by CO2. Blood was removed by 
transcardial perfusion with 0.9 M NaCl and stored in 2% gluteraldehyde/0.1 M cacodylate buffer at 4°C. 
MRI was performed on a Bruker 7T/30 MRI (Billerica, MA), TE/TR = 20/80ms, resolution=50x50x55μm.  
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To measure Nglom and AVglom, we developed an image-processing algorithm in MATLAB. Local minima in 
the images were identified using a watershed algorithm, and individual glomeruli were counted if their 
component pixels were connected within a specified radius of 26 pixels. Next we isolated a line profile of 
11 pixels in each direction (x-axis) of the center of the glomerulus, and measured the width of the artifact 
at 55% of the maximum depth. This width was chosen because it produced the same AVglom as Weibel-
Gomez stereology. 

Location of largest glomeruli 
We noted in manual inspection of the image slices that larger glomerulus profiles were more frequently 
present in the juxtamedullary region than in the cortex. Because the sagittal tissue sections were 
randomly selected, the locations of glomeruli could not be directly compared between samples. 
Therefore, to determine if larger glomeruli were juxtamedullary, we collected coronal sections from the 
center of WT (n=3) and Os/+ (n=3) kidneys (minimum of 74 profiles per kidney). Next we calculated the 
distance between each glomerular profile center and the nearest edge of the kidney section. We 
compared the average distance for the largest 10% of profiles to the average distance of all profiles in 
that kidney. Results shown are the average plus or minus the inter-mouse standard deviation.  

Statistics 
A Student’s t-test was used to compare pairs of samples between groups. For multiple comparisons, one-
way-ANOVA tests were performed in MATLAB using the ‘multcompare’ function. A p-value < 0.05 was 
considered significant.  

Results  
Tissue smoothing and segmentation  
 

 

Figure 4. Visual representation of the smoothing algorithm designed to correct tissue mounting artifacts. Images from 
different focal planes are stitched together selecting regions of brightest signal intensity to ensure complete imaging of 
a surface that is not parallel to the slide. (first pane) One slice from the middle of the original 3D image stack. (second 
pane) z-location of the brightest pixel at every point in xy of the image. (third pane) a Gaussian blur applied to the 
previous image to regionally identify the brightest slice. (final pane) The smoothed composite image, green lines 
indicate the region boundaries. Please see Methods for detailed description of the algorithm.    

The imaging plane of a confocal microscopes is always parallel to the slide, however tissue does not 
necessarily sit perfectly parallel to the slide due to imperfections in mounting. To produce single 
images suitable for manual segmentation, we developed an algorithm that regionally identifies the 
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brightest section in Z, then produces a single image. Figure 4 shows a tissue section that exemplifies 
the correction of a ‘tilting’ mounting artifact. Figure 5 shows the corrected image and the manually 
segmented map that was used as the raw data source.  

 

Figure 5. (left) Sample microscopy image after smoothing, showing full resolution detail in the inserts, scale bars are 
1mm (white) and 0.2mm (black). (right) masks showing the segmented medulla, cortex, and glomeruli. 

AVglom, Nglom, and IVglom distribution 
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Figure 6. Unfolding of measured glomerular profiles for wild type (left) and Os/+ (right) mice. Dashed line indicates 
original distribution of the measured profile radii. Small profiles were observed less frequently than expected based 
on the profiles. 

Glomeruli were traced manually from the confocal images. A sample image is shown in Figure 6. 
Sample histograms, fits of measured glomerular profiles, and calculated glomerular volumes are 
shown in Figure 4. AVglom and σglom for each mouse were calculated from the distributions of IVglom 
according to Eqn. 5 (Table 2). AVglom was 2.01±0.28 x10-4 mm3 for the WT mice (n=5) and 3.47±0.35 
x10-4 mm3 for the Os/+ mice (n=4). The intra-sample volume standard deviation, σglom, was 
significantly larger for Os/+ mice (1.4±0.19 x10-4 mm3) than for WT mice (0.85±0.28 x10-4 mm3). Nglom 
was estimated according to Eqn. 2. Nglom was 12,126±1658 (glomeruli/kidney) in the WT mice and 
5,516±899 in the Os/+ mice. In summary, the Os/+ mice had 54% fewer (p<0.001) and 73% larger 
(p<0.001) and glomeruli than the WT mice. Os/+-3 was clearly an outlier, Nglom and AVglom were similar 
to the WT mice, and was omitted from the population comparisons.  
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Figure 7. Comparison of the volume distributions of glomeruli in wild type (n=5) and Os/+ (n=4) mice. Error bars 
indicate inter-mouse standard deviation; stars indicate significant (p<0.05) differences between WT and Os/+ mice. 

We compared the glomerulus volume distributions of the WT and Os/+ mice, shown in Figure 7. The 
largest Os/+ peak (3.0 x10-4 mm3) was larger than the largest WT peak (1.8 x10-4 mm3). The Os/+ mice 
also had a larger standard deviation of intra-renal volume; σglom was 1.80±0.23 (x10-4 mm3) in Os/+ 
mice and 1.06±0.35 (x10-4 mm3) in WT mice. Glomeruli in the largest size bin (r > 55μm) were 
observed significantly more frequently (p<0.05) in the Os/+ mice (3.4±1.6%) than in the WT mice 
(0.6±1.2%). Thus Os/+ mice had fewer, larger glomeruli with a broader intra-renal standard deviation.  

Comparison with other methods 
To validate the Unfolding algorithm as a predictor of Nglom and AVglom we compared our results for 
the WT and Os/+ glomerular endowment to estimates made with other stereological techniques 
(Table 2). There were no statistically significant differences in Nglom estimated by Unfolding or MRI. 
Others have found that the Weibel-Gomez overestimated AVglom by 23% compared to the dissector 
method(26). In this work, the Weibel-Gomez estimate of AVglom was 20% and 22% (for WT and Os/+ 
mice) larger than that estimated by Unfolding, even when both numbers were calculated using the 
exact same data. This is because the Unfolding algorithm implicitly considers the undetected small 
profiles when determining AVglom. 
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Table 2. To further validate the Unfolding protocol, we compared Nglom and AVglom based on different stereological 
methods for the same kidneys. Unfolding, Weibel-Gomez, and MRI are based on the same samples (n=5). Unfolding 
and Weibel-Gomez are based on exactly the same data (images and segmentation). 

Method 
WT  Os/+ 

𝑁𝑁𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔 𝐴𝐴𝑉𝑉𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔  𝑁𝑁𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔 𝐴𝐴𝑉𝑉𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔 
Unfolding 12,126±1,658 2.01±0.28  5,116±899 3.47±0.35 
Weibel-Gomez 11,600±1,009 2.41±0.23  4,723±640 4.24±0.30 
MRI 12,529±703 2.68±0.11  5,126±689 3.18±0.39 

 

Spatial distribution of the largest glomeruli 
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Figure 8. Overview of spatial distribution of glomeruli in representative wild type and Os/+ mice, mapped by 
glomerulus area. Color indicates the area of each measured glomerular profile. Larger glomeruli and increased 
frequency of glomeruli near large vessels were observed in the Os/+ mice. On average, larger glomerular profiles are 
found closer to the center of the kidney section. 

Finally, we examined the spatial distribution of glomeruli based on their profile sizes, shown in 
Figure 8. For both WT and Os/+ mice, there were apparently three populations of glomeruli. The 
superficial glomeruli near the cortical surface were the smallest, the juxtamedullary glomeruli were 
visibly larger, and the glomeruli near major vessels were the largest. To verify this across all sections, 
we calculated the distance to the edge of the kidney section for every glomerulus (Figure 9). In the 
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WT kidneys the largest 10% of profiles were 1.12±0.26mm from the edge whereas all profiles were 
0.59±0.12mm from the edge. In the Os/+ kidneys the largest 10% of profiles were 0.82±0.14mm from 
the edge whereas all profiles were 0.46±0.14mm from the edge. The same trend was observed in 
sagittal sections of the kidney but was less pronounced. We did not compare between genotypes 
because WT kidneys are larger in general and the glomeruli should be farther from the edge of the 
kidney in WT mice. We conclude that larger glomeruli were on average located more deeply in the 
cortex.  

 

Figure 9. The average shortest distance to the edge of the coronal sections for all profiles compared to the largest 10% 
of profiles in WT (n=3) and Os/+ (n=3) mice. Asterisks (*) indicate statistically significant differences (p<0.05, t-test). 

Discussion 
In the second chapter of this work we applied the Unfolding algorithm to examine glomerular 
endowment in WT and Os/+ mice; Os/+ mice had 54% fewer glomeruli and 73% larger AVglom than the 
WT mice. This is consistent with previous observations of the Os/+ mouse(16). Finally we compared 
the estimate of Nglom by Unfolding to the estimates by MRI and Weibel-Gomez and found no 
significant difference between the different techniques. The measurements required for Unfolding 
are the same as those required for the dissector technique. Thus, the Unfolding approach could be 
used as a supplement to a design-based technique, calculating Nglom and AVglom from the dissector 
method and distribution of IVglom from Unfolding. If the geometry of the glomeruli is known, 
Unfolding may be used as a standalone approach.  When we applied the Unfolding algorithm to WT 
and Os/+ mouse models, we found that the Os/+ had 54% fewer glomeruli and 73% larger AVglom than 
the WT mice. This is consistent with previous observations of the Os/+ mouse(16). Finally we 
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compared the estimate of Nglom by Unfolding to the estimates by MRI and Weibel-Gomez and found 
no significant difference between the different techniques. The measurements required for 
Unfolding are the same as those required for the dissector technique. Thus, the Unfolding approach 
could be used as a supplement to a design-based technique, calculating Nglom and AVglom from the 
dissector method and distribution of IVglom from Unfolding. If the geometry of the glomeruli is 
known, Unfolding may be used as a standalone approach. 

Several sources of error and bias arise in measuring glomeruli from thin sections of kidneys. These 
include assumptions about size variance, shape, finite section thickness, ambiguity in identifying 
glomerular profiles, tissue preparation artifacts, and random sampling error. Bias due to variance in 
glomerular size arises from the fact that larger glomeruli are more likely to be sampled. This bias 
scales with (𝜎𝜎 𝑅𝑅0⁄ )2, which is up to 4% for mouse glomeruli. This source of bias is easily corrected if 
σglom is determined. Bias from finite section thickness is due to the projection of a curved 3D profile 

onto a 2D imaging plane and scales with �1 + 3𝑡𝑡
2𝐷𝐷� �

−1
; this was a ~4% overestimation of radius in 

this work (section thickness t = 2μm). Assuming the shape of glomeruli affects the estimations in two 
ways; it changes the probability of detecting a glomerulus (Eqn. 1) and causes underestimation of 
glomerular volume. If the profiles are considered ellipses rather than circles, the term Rn in Equation 
1 must be converted to the mean caliper radius rather than the radius of a circle of equivalent area 

(measured here). The ratio between these is given by �1+𝑞𝑞2

2𝑞𝑞
 (21), where q is the axial ratio of the 

ellipse, and results in ~1.3% underestimation of Nglom for the axial ratio of 1.26 measured for 
glomeruli in this work. The effect of assuming shape on the unfolding algorithm is more complex. 
Here we underestimated the volume of non-spherical simulated data by 3.6%. However, more 
detailed studies of glomerular shape and shape distribution will improve the application of 
Unfolding. Ambiguity due to sampling error is particularly complex, because it depends on stain 
quality, imaging quality, tissue preparation, and researcher skill. In this work we identified almost no 
profiles with radius <20μm2, which likely constitute up to 20% of possible profiles from the 
glomeruli. This is a systematic error in all stereological techniques. One can ‘correct’ the observed 
number of profiles to include this estimate of lost small profiles. However, because these small 
profiles are only assumed to exist, we chose not to make this correction here. Tissue shrinkage, 
another source of error, depends highly on the method of embedding and sectioning. Estimates 
range from 5-15% shrinkage for plastic embedding to 50% for paraffin embedding. Here we used a 
vibrating microtome to section fixed tissue(9). This alleviated the need to infiltrate the tissue with a 
hypertonic solvent (such as benzyl alcohol/paraffin, which causes tissue shrinkage), but required a 
confocal microscope be used to image the thick sections. Finally, based on the comparison between 
the MRI and stereology estimates of Nglom, we estimate ±5-10% sampling error when number of 
observations ~ 700. We conclude that systematic error and bias arising from tissue preparation, 
profile identification, and sampling may be much greater than the bias from size variance and 
assumptions about glomerulus shape.  

All stereological techniques are biased from tissue preparation artifacts, small pieces of glomeruli 
that are lost during sectioning and finite section thickness. The dissector technique makes no 
assumptions about the size or shape of the glomeruli, however it can be subject to the tissue 
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processing artifacts and assumes unambiguously identified profiles. The Weibel-Gomez technique 
assumes the size variance and shape of glomeruli, but can be performed extremely quickly. Neither 
the dissector nor Weibel-Gomez techniques can be used alone to measure the distribution of IVglom. 
Unfolding assumes glomeruli are spherical and is the only microscopy technique to determine the 
distribution of IVglom. In this work, we used very thick (75μm) physical sections and confocal 
microscopy to obtain very thin optical sections (2μm), but standard light microscopy with 
Hematoxylin and Eosin staining would also be sufficient if thin (<5μm) sections were used. While the 
Unfolding technique introduces some bias, this bias is small compared to the error associated with 
tissue preparation, profile identification, and sampling error. Further, because large numbers of 
profiles are quickly identified and measured, the bias can easily be quantified and corrected.  

In summary, Unfolding is extremely efficient, requires minimal equipment, produces results 
comparable to other stereological methods, and can be used to measure σglom and the intra-renal 
distribution of IVglom (in addition to AVglom and Nglom). In principle, Unfolding could be applied to 
measure intra-organ distributions of any number of structures. In the kidney, this could include 
vessel, podocyte and tubule diameters. Unfolding is thus a flexible technique that provides a new, 
quantitative view of morphology in the individual organ.  
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Conclusion 

This work describes a novel stereological technique to measure intra-renal glomerular volume, 
applied to detect glomerular hypertrophy in the Os/+ mouse model of low nephron endowment. The 
technique is based on an Unfolding algorithm applied to recover the original distribution of 
glomerular radii from a sample of profile measurements. In simulated data, the correlation between 
true and calculated particle radii was 96% accurate for Gaussian distributions and 95% accurate for 
bi-modal distributions of glomerular radii. When we made an alternate assumption— that particles 
are triaxial ellipsoids— the algorithm was 88% accurate and underestimated AVglom by 3.6%. 
Comparing the volume distributions in Os/+ and WT kidneys, we observed that the largest peak in 
the Os/+ mice was shifted from the WT peak, and that glomeruli with a radius greater than 55μm 
were more prevalent. The Os/+ mice had significantly fewer, larger glomeruli than the WT mice. 
Comparing several different means of estimation, (Unfolding, Weibel-Gomez, or MRI), we found no 
significant difference in estimates of Nglom. We conclude that the Unfolding algorithm is an efficient 
technique to measure the intra-renal glomerular volume distribution. This work may enable detailed 
studies of common kidney diseases that heterogeneously affect glomerular and nephron 
morphology. 
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Appendix- Code Snippets 

Publishing source code is important scientific best practice. Open-source software improves 
scientists’ ability to code, enhances peer-review, allows replication, and builds public trust(27). Thus 
the MATLAB scripts for critical portions of the algorithms are included here.   

Smoothing z-stacks to remove mounting artifacts 
 
function [smoothed]=smoothStack(varargin) 
    %input should be a 3D matrix consisting of a z-stack (single channel) 
    %if no input, prompt for a tiff z-stack (single channel) 
    %Code by Bradley Hann 
     
    %Parameters 
    blurSize=200; %increase to make regions larger 
    doPlots = 1; %1 to plat figures, 0 to plot nothing 
     
    %initialize 
    if nargin == 0  
        image = tifRead(); 
    elseif nargin ==1 ;  
        image = varargin{1}; 
    end 
     
    height = size(image,1); 
    width = size(image,2); 
    smoothed = zeros(height,width); 
    noSlices = size(image,3); 
     
    %main algorithm 
    [~,i]=max(image,[],3); 
    gFilt = fspecial('gaussian',blurSize,blurSize/4); 
    iBlur= imfilter(i,gFilt,'replicate'); 
    iBlur = round(iBlur); 
    iBlur(iBlur==0)=1; 
  
    for i = 1:height 
        for j = 1:width 
            smoothed(i,j) = image(i,j,iBlur(i,j)); 
        end 
    end 
     
    if doPlots 
        [gx,gy]=imgradientxy(iBlur); 
        grad=imgradient(gx,gy); 
        grad(grad>.1)=1; 
        figure, imshowpair(smoothed(:,:,1),grad,'falsecolor','colorchannels',[1 2 0]); 
    end 
     
    function [image]=tifRead() 
[file , path]=uigetfile({'*.tif';'*.tiff'},'Select a single-channel tiff image.'); 
        tifFile = [path file]; 
        thisInfo = imfinfo(tifFile); 
        noImages = numel(thisInfo); 
        image = zeros(thisInfo(1).Height,thisInfo(1).Width,noImages); 
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        for ii = 1:noImages 
            image(:,:,ii)=imread(tifFile,ii,'Info',thisInfo); 
        end 
    end  
end 
 

Simulating ellipsoidal profiles 
function [out]=sliceEllipsoid(varargin) 
    %optional input is (Volume, [axialRatio1 axialRatio2]) 
    %code is based on the method of Klein, Applied Mathematics, 2012, 3, 1634-1640 
     
    if nargin == 0  
        vol = 2.5*10^5; 
        ratios = [1 1]; 
    elseif nargin == 2 
        vol = varargin{1}; 
        ratios = varargin{2}; 
    end 
     
    %main 
  
        el = generateEllipsoid(vol,ratios); 
        [n,q] = generatePlane(el); 
        d = calcD(n,q,el); 
        beta1=roots([1,-1*sumBeta(n,el),prodBeta(n,el)]); 
        beta1 = real(beta1); 
        beta1 = beta1(find(beta1>0,1,'first')); 
        beta2=prodBeta(n,el)/beta1(1); 
        A = sqrt((1-d)/beta1); 
        B = sqrt((1-d)/beta2); 
        area = pi()*A*B; 
  
    %save stuff 
    out = struct( ... 
        'el',el ... 
        ,'n', n ... 
        ,'q', q ... 
        ,'d', d ... 
        ,'vol', vol ... 
        ,'elRatios' , [1, ratios] ... 
        ,'beta', [beta1,beta2] ... 
        ,'A', A ... 
        ,'B', B ... 
        ,'area', area ... 
        ,'axRatio' , max([A/B , B/A])... 
        ,'l' , sqrt(area/pi()) ... 
        ); 
 
function [out] = generateEllipsoid(vol,ratios) 
        %generate random ellipse at the origin 
        a = (3*vol/(4*pi()*prod(ratios)))^(1/3); 
        b = ratios(1)*a; 
        c = ratios(2)*a; 
        out = [a b c]; 
end 
  
    function [const] = sumBeta(n,el) 
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        a = el(1)^-2; 
        b = el(2)^-2; 
        c = el(3)^-2; 
        const = (n(1)^2)*(b + c) + (n(2)^2)*(c+a) + (n(3)^2)*(a+b);        
    end 
  
    function [const] = prodBeta(n,el) 
        t(1) = (n(1)^2)/(prod(el([2,3]))^2); 
        t(2) = (n(2)^2)/(prod(el([1,3]))^2); 
        t(3) = (n(3)^2)/(prod(el([1,2]))^2); 
        const = sum(t); 
    end 
  
    function [const] = calcD(n,q,el) 
        kappa = sum(q.*n)/sqrt(sum(n.^2)); 
        num = sum(n.^2); 
        den = sum((el.^2).*(n.^2)); 
        const = (kappa^2)*num/den; 
    end 
         
    function [pnv, point] = generatePlane(ellipse) 
  
        %generate random plane that bisects the ellipse 
        pn = rand(1,2)*2*pi(); 
        pnv = [sin(pn(1))*cos(pn(2)) , sin(pn(1))*sin(pn(2)) , cos(pn(1))];  
        badPoint = 1; 
        count = 0; 
        while(badPoint) 
            point = (2*rand(1,3)-1).*ellipse; 
            isIn = sum((point.^2)./(ellipse.^2)); 
            count=count + 1;  
            if (isIn < 1 ) || (count>100) 
                badPoint = 0; 
            end 
        end 
        %d = -1*sum(pn.*point); 
        %out = [pnv d]; 
    end 
end 
     

Unfolding Algorithm 
function [out]=histCorrectPublish(ls,varargin) 
  
% First input must be a column of measured glomerular radii 
% Optional input-value pairs: 
% 'noisy': 1 will do plots, 0 will not. Default 0 
% 'smallest': assumed smallest possible particle radius. Default 20um 
% 'nBins': number of bins to use. Default 18. 
% 'maxBin': largest possible glomerular radius. Default 60 
%  
% Output is struct with the following fields: 
% 'hists':2D matrix of the histogram at each iteration 
% 'finalProfile': profile histogram after the algorithm (negative values of small glomeruli are the 'lost caps') 
% 'original': original normalized histogram of profile radii 
% 'corrected': normalized histogram of profile radii including the calculated 'lost caps' 
% 'centers': output histogram centers in terms of radius 
% 'rHist': hitogram of particle radii without correction for size  
% 'sizeRhist': histogram of particle radii after correcting for the increased probability of sampling larger glomeruli 
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% 
% Code by Bradley Hann 
  
  
p = inputParser; 
addOptional(p,'noisy',0,@isnumeric); 
addOptional(p,'smallest',20,@isnumeric); 
addOptional(p,'nBins',18,@isnumeric); 
addOptional(p,'maxBin',60,@isnumeric); 
addRequired(p,'ls',@isnumeric); 
parse(p,ls,varargin{:}); 
  
norm = @(x) x./sum(x); 
smallest=p.Results.smallest; 
noisy = p.Results.noisy; 
gloms = p.Results.ls; 
maxBin=p.Results.maxBin; 
gloms=gloms(gloms>10); 
nBins = p.Results.nBins; 
  
%Initialize things that will be output, 
%itHists (particles), itProfs (profiles), and itPsi (PDF) are only used  
%to save data for possible future inspection. 
itHists=zeros(nBins); 
itProfs=zeros(nBins); 
itPsi=zeros(nBins); 
rHist=zeros(1,nBins); 
  
%Bin index is the upper bound of the bins 
binIdx = linspace(0,maxBin,nBins+1); 
binIdx = binIdx(2:end); 
dbin=binIdx(3)-binIdx(2); 
binCent = binIdx-dbin/2; 
  
%The MATLAB function hist uses bin centers as an input 
[start,~]=hist(gloms,binCent); 
original=start; 
  
%The variable 'smallest' is the smallest possible profile,  
%this guards against segmentation artifacts  
small=find(binCent<smallest,1,'last'); 
start(1:small)=0; 
start=start/sum(start); 
  
%Normalize the original histogram, with small profiles removed, 
%and save to an extra variable for possible future use 
origFlattened=start; 
  
for i = 1:sum(start>0) 
    itHists(i,:)=start; 
    currentBin = nBins-(i-1); 
    if (start(currentBin)>0) || (currentBin>10) %occasionally a lone large profile will cause the loop to stop prematurely 
        R=binIdx(currentBin); 
        r=(1:currentBin)*dbin; 
        for j = 1:currentBin 
            psi(j)=psiInt(r(j),R,dbin); 
        end 
        itPsi(i,1:numel(psi))=psi; 
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        psi = psi*(start(currentBin)/psi(end)); 
        rHist(currentBin)=sum(psi); 
        profiles=[psi zeros(1,nBins-numel(r))]; %zero fill array 
        itProfs(i,:)=profiles; 
        start=start-profiles; 
        clear psi 
    end 
end 
rHist(rHist<0)=0; 
corrected = origFlattened; 
corrected(1:small+1)=corrected(1:small+1)-start(1:small+1); 
  
out = struct( ... 
    'hists',itHists ... 
    , 'finalProfile', start ... 
    , 'original' , norm(original) ... 
    , 'centers', binCent... 
    , 'rHist', real(rHist) ... 
    , 'corrected', corrected ... 
    , 'sizeRhist' , real(sizeCorrect(rHist,binCent)) ... 
    , 'originalData' , ls ... 
    ); 
  
if noisy  
    figure; hold on;  
    plot(out.centers,out.original/sum(out.original),'x-') 
    plot(out.centers,out.corrected,'xr-') 
    xlabel('Profile radius (\mum)') 
    ylabel('frequency') 
    legend('Original','Corrected','location','northwest'); 
    hold off 
     
    figure; plot(out.centers,out.rHist,'x-') 
    xlabel('Glomerular radius (\mum)') 
    ylabel('frequency') 
    title('Original Distribution') 
end 
  
    function [outHist]= sizeCorrect(inHist,centers) 
        histMean=sum(norm(inHist).*centers); 
        factors = centers/histMean; 
        outHist = inHist./factors; 
    end 
     
    function [out]=psiInt(r,R,dbin) 
        a = -sqrt(R^2-r^2)/R; 
        b = -sqrt(R^2-(r-dbin)^2)/R; 
        out = a-b; 
    end 
end 
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