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enjoyable and rewarding experience.

I would also like to thank my thesis committee, Drs. Peter Berkelman and Lee Altenberg,

for being such a great committee and providing valuable critiques to my research.

The following individuals have mentored and inspired me over the past years and provided

me with the means to develop into the multidisciplinary researcher that I am today. I am

sincerely grateful for your support: Drs. Hervè Collin and Aaron Hanai from the Kapi‘iolani
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ABSTRACT

Societal interests and environmental considerations continue to fuel the evolution of the

modern energy grid. As we move towards a system with increased and decentralized inte-

gration of renewable energies, the dynamic and volatile nature of these renewables need to

be considered. This calls for a paradigm shift not only in the planning and operation of

our energy grid, but also in the way energy is consumed, marketed, and distributed. That

is, mechanisms are needed to control grid demand when needed to ensure the important

balance of demand and supply on the grid. Much theoretical work exists to address these

challenges, including new control strategies focused on optimization of networked resources,

strategies that focus on optimizing behaviors, and different game-theoretic market infras-

tructures that economically incentivize the use of novel demand response strategies. An

agent-based testbed system has thus been architected to allow rapid development of smart

agents that implement these control strategies and market infrastructures to test their in-

teractions when deployed in a modern information and communication technology system.

The behavior of various roles (e.g. system operator, demand response aggregators, and res-

idential homes) can be programmed in the form of Python applications that communicate

over the MQTT protocol. The use of a graph databases for cyber-physical energy system

modeling is demonstrated as a configuration and management tool for running distributed

co-simulations. A web application for monitoring and control for each role is backed by re-

lational and graph databases. All system components can be adapted for different purposes

and then deployed using Docker containers. Two use case scenarios were implemented and

demonstrated the information system’s ability to simulate dynamic pricing DR programs

and emergency DR programs utilizing the multi-agent system. Testing distributed agents

in the presented virtual Smart Grid testbed is shown to help develop these smart agents

and validate their feasibility and efficacy at scale without having to physically implement

the supporting sensor and control infrastructures; thus, the testbed system can bridge the

implementation gap between theoretical models and actual systems.
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CHAPTER 1

INTRODUCTION

1.1 Problem Description and Scope of the Research

“Data is the new oil”

The modern electrical grid is evolving and although more commonly cited in the context

of today’s data economy, Clive Humby’s statement that “data is the new oil”1 applies well

in the grid modernization context as centralized fossil fuel generation is making way for

increased integration of renewable and distributed energy resources. However, the value of

these distributed and volatile energy sources only lies in their networked coordination and

control.

Although fossil fuels, and especially oil, have provided much of the economic growth and

wealth in the last century, their finite availability and concerning environmental implications

have led to the call for a paradigm shift in the way we generate, distribute, and consume

energy. Local, national and global programs, such as the Paris Agreement, evidence these

developments. But as we begin to take action to integrate greater proportions of renewable

energy resources (RES) into the electrical grid and reduce our fossil fuel dependence, we begin

to see several problems arise. Many grids are still built with the century-old architecture in

mind. When we consider the total demand in terms of power and energy supplied by the

modern electrical grid, we are faced with the fact that the amount of RES currently integrated

into the grid are far below the capacity to deliver the amount of power and energy required

by today’s standards. We add the additional complication that RES are of course restricted

to the whims of nature in general and will be able to produce energy relative to the current

environmental conditions. This is in stark contrast to the conventional generator which is

able to be adjusted at the turn of a steam governor or other mechanism.

Simultaneously, digitalization is transforming processes in every aspect of our lives, both

at the personal and professional level. Marketing terms such as the Internet-of-Things (IoT)

and Big Data have emerged and artificial intelligence (AI) is said to be the new electricity2

that will transform industries in a way that electricity did about a century ago. The state

of affairs of what is technologically and economically feasible at large scale has thus changed

1https://tinyurl.com/hs-ms-data-oil
2https://tinyurl.com/hs-ms-ai-electricity

1

https://tinyurl.com/hs-ms-data-oil
https://tinyurl.com/hs-ms-ai-electricity


for the better. In the past, real-time access to sensors and controls for equipment has been

prohibitively expensive. Historical device data from aggregates of devices were generally not

available and optimization was often on a one to one basis. With the advent of affordable

network connected devices and controllers, i.e. IoT networks, and large capacity for data

storage and processing, i.e. Big Data and AI, we are now able to implement more powerful

control strategies for coordinated demand side management (DSM) in the modern electrical

grid.

Hence, data are indeed replacing fossil fuels as the most important resource in the modern

energy grid. But like oil, data in its raw format alone will not modernize the grid. It takes

the proper information system to turn data into information, and information into actionable

insights for operation and control. As Humby states in the latter part of his statement: “It’s

valuable, but if unrefined it cannot really be used. It has to be changed into gas, plastic,

chemicals, etc. to create a valuable entity that drives profitable activity; so data must be

broken down, analyzed for it to have value”3.

Smart Grid

The term Smart Grid (SG) refers to the concept of modernizing the electrical grid to achieve

more flexible and “smarter” use of available resources, especially RES, and considers all com-

ponents of the electrical grid between any point of generation and any point of consumption

[5, 6, 7]. Benefits of the SG include incentives for energy efficiency and reduced carbon

dioxide (and other harmful emissions), integration of renewable energies, and lower costs for

both utilities and consumers [8].

While the SG touches nearly every person—end users (consumers), electric-service retail-

ers, distribution-service providers, wholesale market operators, balancing authorities, prod-

ucts and services suppliers, and local, state, and federal energy policymakers to name some

[6]—the consumer plays an integral role in the operation of the SG system as they can ad-

just their purchasing pattern and behavior (i.e. demand) based on available information and

incentives [5, 9]. To allow for improved DSM, SG technologies, especially advanced infor-

mation and communication technology (ICT) systems are needed to provide near real-time

feedback to operationalize better decision making, and to inform and engage consumers [8, 9].

3https://tinyurl.com/hs-ms-data-oil

2
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Demand Response

Allowing consumers to participate in the optimization and operation of the energy grid

through the provision of intelligent monitoring, control, communication, and self-healing

technologies is considered integral by the International Electrotechnical Commission (IEC)

[5]. The term demand response (DR) describes the types and levels of consumer participation

in the grid. Chiu et al. [1] further define DR as “a dynamic change in electricity usage

coordinated with power system or market conditions. The response or change in usage is

facilitated through DR programs designed to coordinate electricity use with electric system

needs. ...DR is achieved through application of a variety of DR resource types, which include

distributed generation, dispatchable load, storage, and other resources capable of supporting

a net change in grid-supplied power.”

As detailed in [1, 9], DR programs can be classified by the type of interaction, type of

incentive, customer classes, and objectives. Considering DR program objectives, we can

categorize DR programs as follows:

a) Price Response (e.g. Dynamic Pricing):

Variable price structures incentivize altered electricity consumption during periods of

extreme market prices. Prices may be at pre-set times (e.g. time-of-use (TOU) pricing)

or dynamically during the day (e.g. real-time pricing (RTP)). Higher prices typically

characterize peak times and low prices off-peak times. Variable price structures may

also lead to negative rates to encourage energy consumption when needed.

b) Reliability Response (e.g. Emergency DR Programs):

Shedding loads upon request, rather than starting a generator, can be a viable mean to

prevent blackouts, but requires direct load control (DLC) over appliances and equip-

ment by the administrator. Event-based DR programs are hence only used when

needed, such as the sudden loss of generation for example. Consumers would typically

enroll in this type of program to receive compensation for the service they provide.

c) Both Price and Reliability Response (e.g. Ancillary Services):

Ancillary services are reserves than can be procured through bids in the wholesale elec-

tricity market. Consumers would place demand reduction bids (consisting of capacity

and price) to the utility or aggregator. The type of ancillary service (e.g. operating

reserve) would further determine the specifics of the time, bidding, and aggregation

constraints for this type of response.
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Table 1.1: Domain of the domains of SG to support DR business models [1].

Domain Name Domain Description

Customers Any entity that takes gas and/or electric service for its own
consumption. The consumers of electric power. Customers
include small to large size C&I customers and residential cus-
tomers.

Markets Power market is a system for effecting the purchase and sale
of electricity, using supply and demand to set the price.

Service Providers An entity that provides electric services to a retail or end-use
customer.

Operations The management of generation, market, transmission, distri-
bution and usage of the electric power.

Generation The production of bulk electric power for industrial, residen-
tial, and rural use. It also includes power storage and DER.

Transmission Electric power transmission is the bulk transfer of electrical
energy, a process in the delivery of electricity to consumers.

Distribution Electricity distribution is the final stage in the delivery of elec-
tricity to end users. A distribution system’s network carries
electricity from the transmission system and delivers it to con-
sumers.

Micro-grid The local grid for distributed energy resources management
and delivery.

Electricity Markets

While wholesale electricity market prices change periodically—with frequencies depending

on the type of market (e.g. 10-minute intervals)—, invariant electricity retail rates remain

today’s status quo [10]. Factors for the tremendous changes in the marginal cost of electric-

ity are “(a) the demand for electricity varies considerably; (b) it is uneconomical to store

electricity in most applications; and (c) the optimal mix of generating capacity to balance

supply and demand at all hours given (a) and (b) includes a combination of base load ca-

pacity with high construction costs and low marginal operating costs, intermediate capacity

with lower construction costs but higher marginal operating costs, and peaking capacity with

the lowest construction costs and the highest marginal costs” [11]. Consequently, consumers

will use too much when prices are higher than retail rates and too little when marginal prices

are lower than retail rates. Time-invariant pricing thus not only contradicts basic economic

principles of demand and supply, but distorted consumption can ultimately lead to distorted

investment that resists rather than promotes the modernization of grid infrastructures. The
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idea of time-marginal costs and varying prices is not novel and was already applied by public

utilities for wholesale markets by 1970; Kahn (1970) however critiqued that “unfortunately,

the principle has usually been badly applied, in several important ways. First, if the de-

mand charge were correctly to reflect peak responsibility, it would impose on each customer

a share of capacity costs equivalent to his share of total purchases at the time coinciding

with the system’s peak... Instead, the typical two-part tariff bases that rate on each cus-

tomer’s own peak consumption over some measured time period” [12]. Already identified

as a problem then, the lack and cost of advanced metering infrastructures and inconvenient

complexity for utility and consumers were considered as some of the main factors that have

historically hindered the adoption of Kahn’s work on time-varying retail rates [11]. Both SG

technologies, especially advanced metering infrastructures, and theory have since emerged

to operationalize time-varying rate structures [10, 11].

With the existence of DR markets for ancillary services where a pool of consumers or

DR aggregators places bids for providing services, bidders need to choose “good” bidding

strategies to make profits and market makers need to aggregate and select bids to optimally

provide ancillary services to the grid. Game-theoretic market models can be applied to study

how overall efficacy is related to market and competition models, how aggregators should

choose their strategies, and how market makers should operate their markets (see [13] and

references therein).

Simulation Tools

Industry, research, and education related to electric power grid systems heavily rely on

simulations to test theoretical models and control schemes. Simulation results are integral in

providing insights on the efficacy of tested models and a better understanding of the overall

system behavior. The cyber-physical nature of the evolving grid with its high degree of

networked and distributed generation, decentralized control, and decentralized agents in the

grid and on markets, presents unprecedented challenges to simulating energy systems [?].

Palensky et al. view the following four categories as integral when considering the energy

system of the future: a) physical world: continuous models for generation, distribution,

consumption and infrastructure, b) information technology: discrete models for controllers

and communication infrastructure, c) roles and individual behavior: game theory models for

agents acting on behalf of a customer, and d) aggregated and stochastic elements: statistical

models for environmental influences such as weather [?]. A breadth of simulation tools and

platforms for simulating aspects of these four categories is presented by [?]. Some tools (e.g.
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OpenDSS [?] and MATPOWER [?]) are designed for modeling physical energy systems and

power distribution, whereas other tools are more focused on modeling communications (e.g.

OPNET Modeler [?]), or building energy consumption (e.g. EnergyPlus [?]). GridLAB-D

[?] presents an example of a comprehensive hybrid simulation framework for future energy

systems.

Commissioned by the US Department of Energy’s Office of Electricity and developed

by the Pacific Northwest National Laboratory, GridLAB-D was designed as an agent-based

simulation framework that can address a wide range of SG problems [14]. The agent-based

simulation approach allows GridLAB-D to remain modular and to let modelers determine

which agent-based characteristics to implement in any given module. Standard modules in-

clude the power flow module, generator modules, building modules using equivalent thermal

parameter (ETP) methods, and a retail market. The simulation framework’s efficacy has

been shown in a number of use cases (see [14] and references therein). [15], for example,

analyzes DR programs at the distribution level by simulating DLC and RTP using active

heating, ventilation, and air-conditioning (HVAC) controllers that respond to end-user set-

points and a price signal. As an open-source platform, GridLAB-D can also be integrated

as part of other simulation frameworks, as demonstrated in the GridSpice framework.

GridSpice is an open-source simulation framework for the modeling of electric power grid

networks that include aspects of generation, transmission, distribution, and markets [16].

The simulation framework integrates with the existing GridLAB-D and MATPOWER tools

for grid modeling, analysis, and power flow optimization, and uses simulation clusters with

supervisor and worker nodes that execute the simulation tasks on scalable cloud computing

platforms. GridSpice’s utility was demonstrated using simulations for integration and place-

ment of PV, volt/var control and demand response to name a few. GridSpice’s architectural

design aims at addressing other platform’s limitations in the co-simulation of transmission

and distribution systems, especially with regards to scale and modeling capabilities [16].

Simulation environments bridging multiple domains are typically characterized by a lay-

ered architecture where existing domain simulators are parallelized and managed by a co-

simulation interface, as shown in [16, ?, ?, ?]. The reader may refer to [?] for an additional

overview of integrated power/network simulators. The Virtual Grid Integration Laboratory

co-simulation platform additionally considers the integration of real hardware. A hardware-

in-the-loop co-simulation included the control of the ventilation system of a 12-story dor-

mitory in Denmark equipped with necessary sensors and controls. [17] further describes

a simulation testbed for IoT hardware-in-the-loop that leverages PSIM, an existing power
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modeling software [?], by connecting existing tools to network-connected devices in order

to test advanced optimization algorithms against simulated grid events with both real and

simulated device nodes.

The breadth of established simulation platforms in the energy system, communication,

and building modeling domains—and multi-domain combinations thereof—show the impor-

tance and value of these platforms to education, research, grid operators and policy makers.

Once simulated however, proposed DR programs for residential customers remain challenging

to implement due to temporal and monetary constraints in the roll-out and administration of

distributed sensors and control systems, even in proposed hardware-in-the-loop simulations,

such as [17].

Scope of the Research and Contributions

The consumer role is fundamental to the SG and is considered to have the potential to

overcome inherent challenges associated with managing high-variability distributed energy

resources (DERs). DR programs are designed to provide a framework that grid operators and

policy makers can use to evaluate the utility of consumer participation in an electrical grid.

More advanced multi-domain and agent-based simulation platforms allow researchers to test

proposed DR programs and control mechanisms; yet, the actual implementation remains a

challenge. Testbed systems are needed to bridge pure simulations and full-scale distributed

deployments on real hardware systems.

This work provides an agent-based testbed system designed to assist in the development

of smart agents for residential DSM and market participation. The presented multi-agent sys-

tem contributes to existing work by providing a platform for users to implement algorithms

that have already been proven to be effective in published and peer-reviewed simulations.

Instead of having time and monetary resources to go through the initial development and de-

ployment of distributed systems for real hardware, virtual smart agents can be containerized,

deployed, and tested more quickly in a distributed information system under consideration

of communication protocols and control strategies that are implementable on devices with

limited computing resources (IoT devices). The proposed use of a graph-theoretic modeling

approach for cyber-physical energy systems (CPES) provides an easy-to-use configuration

and asset management tool for distributed agents so that the implemented agent-based model

applications can remain versatile and reusable for various use case applications.

With a strong focus on the residential demand side, the user needs to define a virtual

SG model, define individual agent types, their behavior, and the information flow between
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them, and then run a real-time co-simulation where individual actions are communicated,

logged, and visualized in a web application. Utilization of this simulation tool can contribute

to the understanding of the benefits and drawbacks, scalability, and security concerns of DR

programs and markets when implemented on IoT systems and thus provide researchers, grid

operators, and policy makers with actionable insights to adapt tested programs and markets.

1.2 Thesis Outline

This thesis presents the architectural design of the proposed testbed system as well as its

implementation on two use case applications for system evaluation purposes: time-varying

retail rates and DLC in emergency DR programs. This introduction and remaining chapters,

especially Ch. 4, incorporate materials from papers [18, 19] by the author, coauthored by

Matsu Thornton and Reza Ghorbani.

Ch. 2 provides the general scheme of the testbed platform and outlines its major com-

ponents and their respective responsibilities. A process model is provided to frame the use

of the testbed system. Process specifics are then explored in Ch. 3 using the two use case

applications. Ch. 4 discusses the design and implementation of the multi-layered system.

Components of each layer are broken down by their functionalities and implementation with

respect to the tested use case applications. CPES models and use case simulation data are

analyzed and critically evaluated in Ch. 5 and 6 respectively, followed by a summary and

outlook for future work to conclude this thesis.
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CHAPTER 2

SYSTEM ARCHITECTURE AND PROCESS

MODEL

2.1 Architectural Overview

The objective is to provide a testbed that helps the implementation and testing of control

mechanisms and market policies for the SG under consideration of communication proto-

cols and data management for distributed resource constrained IoT devices. The proposed

architecture describes the technical framework of an information system capable of

a) modeling modern electrical grid domains (agents) as CPES;

b) communicating information between distributed agents;

c) simulation level data storage and management;

d) co-simulating distributed agents participating in a virtual grid.

The present discussion is limited to modeling residential customer participation and de-

mand management such that only the first four domains (customer, markets, service provider,

and operations) in Table 1.1 are considered. In reference to NIST’s Smart Grid Conceptual

Model (Fig. 2.1), one notices that this limitation simplifies the model as the electrical inter-

face, and thus physical limitations and constraints, between the bottom four domains is not

part of the simulation. Aforementioned simulation tools are far superior in this regard and

should therefore be integrated into this platform in the future if the consideration of these

domains is desired.

To co-simulate the four domains, a multi-agent system is designed where each domain has

its own set of behaviors and policies. The complexity of each agent model (domain) depends

on the use case of interest; in some cases, domains may also be represented passively through

other agents, or excluded altogether. Fig. 2.2 summarizes the modeling of components of the

multi-agent system; that is, virtual agents are “placed” in a virtual grid and behave based

on provided principles. Placing the virtual agents in the same virtual grid environment

allows the user to study agglomerate effects of being in the same environment. Consider the

following scenario for illustration.

Time-varying electricity rate structures are implemented with fixed TOU rates for three

intervals throughout the day. A residential home is equipped with a home energy man-

agement system (HEMS) to monitor the home’s energy usage, PV generation, and battery
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Figure 2.1: Smart Grid Conceptual Model [2]

energy storage system (BESS), and to control smart appliances and the BESS to optimize

the home’s overall consumption with respect to purchase, self-supply and export of energy

to the aggregator. An optimization algorithm is then designed and employed on the HEMS

to take historical patterns, weather predictions, and price predictions to reduce overall costs.

In a single-node simulation with prescribed inputs, the simulation may show great efficacy

for optimally low energy costs for the house. Running the same simulation in a multi-agent

system however, one can implement more sophisticated behaviors for the service provider

(aggregator) that puts purchase and export bids of each house into perspective of every other

house and thus restricts a house in its optimization possibilities.

The key aspect of this illustration is that every agent in a multi-agent system affects

the overall state of the system and that localized optimization schemes need to respond to

externalities. As stated in [12], “everyone’s economic activities indirectly affect the welfare

of others—effects that do not enter into his own decisions.” To achieve the co-simulation

of agents and information sharing between agents whenever appropriate—i.e. one would

share one’s energy usage with the utility or service providers but not one’s neighbors—

, a layered architectural approach is taken, as shown in Fig. 2.3. Depicted on the left,
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Figure 2.2: Overview of the virtual elements and their governing principles in the simulation.

a communication layer sits on top of the agent layer to facilitate communication among

agents. Above the communication layer sits the administration and data layer overseeing the

simulation and providing web-based administration tools such as configuration, monitoring

and control. The multi-layered approach with agents in the lower layer was modeled after

reference architectures for the SG, such as [20, 21].

Figure 2.3: Overview of the three-layered system architecture with each layers’ respective
components. Icons illustrate the type of language or software used in each respective layer.

Each component is packaged and deployed as a Docker container. Docker containers

are lightweight abstractions at the application layer that isolate processes from the host

system [3]. Like virtual machines, Docker containers are represented as binary artifacts

that can be run on any host with the Docker host environment installed. Unlike virtual

machines however, Docker containers only come with minimal resources and do not entail a

full operating systems. Docker containers are merely services that help make up applications
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that can easily be shared and run on different systems and thus do not fall under the

virtualization technology category. This differentiates the two technologies and shows that

one is not a substitute of the other; they are separate concepts for separate purposes (see

Fig. 2.4). In fact, the two technologies are often used in combination (e.g. when the Docker

host environment is installed on a cloud VPS). Further, since Docker containers can be

shared and scaled across platforms (e.g. server instances), single micro-service applications

often comprise of a larger number of small Docker containers (services) that when deployed

together, comprise a single application. That is, the system conceptualized in Fig. 2.3 can

be considered as a single micro-service application.

Figure 2.4: Conceptual comparison of Docker containers and virtual machines showing that
containers are isolated processes that do not contain an operating system. [3]

2.2 Simulation Process Model

A standardized process model provides a streamlined workflow for designing, developing,

and deploying different use case simulations. Each simulation breaks into its pre-, peri-, and

post-simulation stages, each of which is modeled by a set of processes that the user has to

walk-through. The pre-simulation processes are the most generalizable and are shown in Fig.

2.5. The pre-simulation stage consists of a design, setup, deployment, and start process, each

consisting in turn of multiple subprocesses. The use case scenarios in Ch. 3 demonstrate the

utilization of this process modeling scheme in a practical context.

The simulation design (Step 1) becomes the foundation of the entire simulation and is

thus of foremost importance. This pre-simulation process involves the clear definition of the
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simulation objectives as well as the resulting agent models. At the end of this step, the

user should be able to design graphics analogous to those in Fig. 2.1 and Fig. 2.2 detailing

the information flow between domains as well as the grid model, agent model, and their

governing principles respectively. In terms of the three-layered software architecture, this

corresponds to the agent layer design.

Pre-simulation process 2 entails the majority of the remaining workload before starting

the application in process 4. We begin by generating configuration files which capture all of

the important parameters and which can later be used as the seed for modeling the CPES.

Next, each agent that follows a different behavior needs to be implemented as a containerized

application with appropriate application program interfaces (APIs). Once an application has

been developed in this step, it can be reused and modified at a later time in a similar use

case. Consider the practical example of a residential home agent in a system with time-

varying electricity rates. Assuming that an agent model from a prior simulation exists that

entails the reporting of energy given a predefined load profile (see 3.1), a second simulation

is to be implemented with a bottom-up simulation approach for appliance usage (see 3.2).

Consequently, the user only needs to modify the existing model with the added functionality

of modeling individual appliances in a household.

Besides the agent models, some modifications to the database (DB) design, web applica-

tions, and communication layer may be necessary to address all aspects of the system design.

Creating Docker images is then the last subprocess before transitioning into the deployment

stage, which simply requires the user to deploy containers on server equipment with the

Docker host system installed. The web interface provides the functionalities needed for pre-

simulation process 4, which entails the upload of DB seed files and start of the simulation.
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Figure 2.5: Pre-simulation process model showing the steps from the ideation to start of the
simulation.
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CHAPTER 3

USE CASE APPLICATIONS

3.1 Use Case A: Smart Metering with Time-varying

Pricing

Dynamic pricing DR programs require the use of advanced metering infrastructures (smart

meters) to correctly charge customers for their purchases coinciding with the system’s elec-

tricity rate at the time of purchase. The cost associated with such infrastructure has his-

torically prohibited the implementation of these strategies [11] but has since been overcome.

By the end of 2016, 47% of 150 million electricity customers in the U.S. had smart meters

installed [22]. Given the time and resources needed to deal with the complexity of manu-

ally analyzing day ahead price predictions and plan one’s house’s energy usage for the next

day to save costs under time-varying prices, it seems uneconomic for the average residen-

tial consumer to do so. HEMS should rather be used to schedule appliances in a way that

automatically adjusts usage based on time-varying prices. To show the system’s ability to

co-simulate such optimizations, the simplified case of smart metering and time-varying prices

is considered in this use case scenario. In doing so, this use case further allows the testing

of the overall three-layered architecture approach as well as the CPES modeling approach.

Applying the design process (see Fig. 2.5), the following concept emerges.

P1.1 Simulation Goals: The objective is to test the testbed’s ability to support dynamic

pricing DR programs and test layers and components of its three-layered system architecture.

P1.2 Grid Components: The virtual grid is comprised of residential customers located

across multiple zones (geographic regions) in a distribution grid.

P1.3 Agent Types: The role of the system operator, service provider, and residential

home is considered, where only the operator and the homes play an active role; the service

provider is only present for modeling purposes.

P1.4 Agent Behaviors: The system operator sets the market price for residential rates

in 1-hour intervals using a predefined rate schedule. HEMSs, representing residential homes,
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publish their predefined energy usage at 5-minute intervals.

P1.5 Market Structure. Time-varying prices are published by the system operator and

the residential customer is billed based on rates coinciding with the time of energy usage.

Fig. 3.1 summarizes the subprocesses of the simulation design. The predefined rate

schedule for the system operator is based on historical 1-hour energy prices from the PJM

energy market between May 1 and May 14, 2018. The residential load data were taken from

a residential house on Oahu, Hawaii, that was monitored by the REDLab Manoa for 14 days

in April 2018 using a Fluke 1735 power logger.

Figure 3.1: Overview of the subprocesses of the design process for the pre-simulation stage
of the first test case scenario.
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3.2 Use Case B: Providing Emergency DR Services

Emergency DR programs promote the use of DR strategies under special conditions, such

as the sudden loss of generation. In such events, the ISO may fall back to the available

immediate DR resources, its regulating reserves, by directly requesting an immediate load

reduction on the grid (or in a certain zone), which is the focus of this simulation example.

The simulation has a similar design to that of Use Case A but with different behaviors and

market structure, as shown in the design below.

P1.1 Simulation Goals: The objective is to test the testbed’s ability to support emer-

gency DR programs that use DLC and to test the administrator’s interaction with the virtual

grid through the web interface.

P1.2 Grid Components: The virtual grid is comprised of residential customers located

across multiple zones (geographic regions) in a distribution grid.

P1.3 Agent Types: The role of the system operator, service provider, and residential

home is considered, where only the operator and the homes play an active role; the service

provider is only present for modeling purposes.

P1.4 Agent Behaviors: The system operator sets the market price for residential rates

in 1-hour intervals using a predefined rate schedule (same as in Sect. 3.1) and outputs direct

control signals to available DR assets in the case of an immediate need for load curtailment.

HEMSs, representing residential homes, model the use of appliances (controllable and non-

controllable), report energy usage and DR availability, and adjust their usage when direct

control events are received.

P1.5 Market Structure. Time-varying prices are published by the system operator and

the residential customer is billed based on rates coinciding with the time of use. Residential

customers participating in DR events receive a credit of 5x the load shed evaluated at the

coinciding price.

Reiterating the implications of the defined simulation goal in terms of information system

capabilities, the simulation tests:

a) a granular, bottom-up simulation approach of residential homes;
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Figure 3.2: Overview of the subprocesses of the design process applied to the second use
case scenario.

b) the direct interaction with the virtual environment from the control interface in the

form of direct control mechanism;

c) tracking the distribution of DR credits for residential homes.
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CHAPTER 4

SYSTEM DESIGN AND IMPLEMENTATION

4.1 Implementation Synopsis

Administration Layer. The administration layer provides the necessary functionalities

to manage simulations from start to end. This entails the use of a graph-theoretic modeling

approach to model the virtual electric grid and its connected components with their func-

tionalities, a centralized data store to capture all events during the simulation, and a web

application for administration, monitoring, and control. The driving design principle for

the administration layer was to design an information system that could be used to manage

actual distributed sensor and control systems.

Communication Layer. The communication layer enables the communication among

agents themselves as well as the agents and the administration layer. The communication

layer employs the Publish/Subscribe (Pub/Sub) communication scheme; the MQTT pro-

tocol is therefore used by the virtual resource constrained agents and components of the

administration layer.

Agent Layer The agent layer describes the nodes of the multi-agent system. Each agent

type implements a behavior based on the simulation design, which then translates into a set

of functionalities and rationales that can be implemented as dockerized Python applications.

Each node container is thus a micro-service in the simulation environment with an API for

MQTT communications.
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4.2 Administration Layer Implementation

The administration layer’s implementation is based on the following system requirements:

a) CPES modeling for asset management in distributed systems;

b) centralized data storage for event logging and web applications;

c) administration, monitoring and controls through web applications.

4.2.1 Cyber-Physical Energy System Modeling

Graph databases (GDBs) are grounded in graph theory, a proven tool for modeling complex,

highly interconnected systems, e.g. computer systems, biological systems, and social net-

work systems, that uses graph structures such as nodes, edges, and labels. Graph-theoretic

approaches to system modeling allow emphasis on component interactions and interconnec-

tions rather than device level logic. One particularly interesting and fitting application for

this approach is in electrical grid modeling, where physical power lines are viewed as the

connections (edges) between grid components (nodes). These applications range from pure

topological modeling (see [23, 24, 25]) to extended topological methods that integrate power

flow considerations to conventional network science modeling techniques (e.g. [26]) for grid

robustness analysis (e.g. [27, 28, 29]) and system design (e.g. [30, 31, 32]).

In this work, a graph-theoretic approach is taken to model SG domains with their assets

and intra- and inter-domain relationships in a distribution grid to provide an administration

layer that allows the simulation of multi-agent systems. That is, a CPES model is created

using a graph database that captures administrative information of each component.

Graph modeling with neo4j

The CPES model describes assets (agents or their representative systems) using neo4j, a

graph database that implements the property graph model [?]. As such, the graph consists

of nodes and relationships. Nodes are basic entities that can exist in and of themselves.

Relationships connect exactly two nodes, the source node and the target node. Tokens are

nonempty strings of Unicode characters; nodes can have sets of labels (one or more tokens)

and relationships have exactly one relationship type (exactly one token). Both, nodes and

relationships can have properties, which are key-value pairs (one or more tokens). Graph

traversal describes how the graph database is being traveled, or in other words the navigation

through a graph to find paths. Fig. 4.1 depicts an illustration of three nodes connected by
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three relationships. Each node has a different label (i.e. DRA, HEMS, Zone) and different

sets of properties. Unlike relational databases, entities of the same type (nodes with the

Figure 4.1: Sample graph illustrating concepts of property graph models in neo4j.

same label) do not need to have the same set of properties; that is, one HEMS may have

information on the average daily energy usage whereas another HEMS does not. Properties

can be defined as strings, lists, or numeric data types as indicated by the properties of the

HEMS node. Graph traversal can be illustrated in Fig. 4.1. If one wants to know all the

HEMS that are :LOCATED_IN the zone with id zone_0 and :MANAGED_BY the DRA with id

agg_0, then one can first find the DRA operating in zone_0, and then the HEMSs that are

managed by the previously identified DRAs.

Cypher, the query language used in neo4j provides declarative ways of querying the

database using ascii-art syntax. The above described traversal, for example, could be imple-

mented in Cypher as

MATCH (Zone {id: "zone_0"}) <- [:OPERATES_IN] - (d:DRA {id: "agg_0"}

MATCH (h:HEMS) - [:MANAGED_BY] -> (d)

RETURN h.id, h.dailykWh

Alternatively, if one wanted to know the total average energy consumption in homes

managed by agg_0 in zone_0, one could modify the query above and utilize the sum() ag-

gregation function.

MATCH (Zone {id: "zone_0"}) <- [:OPERATES_IN] - (d:DRA {id: "agg_0"}

MATCH (h:HEMS) - [:MANAGED_BY] -> (d)
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RETURN sum(h.dailykWh)

The GDB provides great utility for reflecting the state of the system with its components

and their relationships, properties, and functionalities. The GDB is not used however to log

historical device-level data; more traditional databases are used for that purpose (see Sect.

4.2.2). The graph model hence provides a snapshot of the system at any given time but does

not provide the functionality of observing system or device level states at historical points

in time.

Simulation configuration using administration shells

Administration shells, introduced in the RAMI4.0 reference architecture [21], are virtual

representations of objects that describe their technical functionalities needed for integrating,

managing, and operating the object. In this simulation, each agent’s administration shell

comprises of the agent’s functionalities and characteristics, and is captured in the form of

node labels, relationships, and relationship properties in the CPES model. This then allows

the GDB to serve as a configuration reference for the simulation. On startup, each agent

queries the GDB and retrieves configuration parameters pertaining to the agent’s behav-

ior. Using the Bolt protocol, a connection oriented network protocol over TCP connection

integrated in neo4j, the GDB microservice is made available other services.

Consider the following example. Each HEMS is tasked to simulate a house’s energy using

a bottom-up simulation approach based on the type and number of appliances in the home.

Rather than hardcoding each house configuration as part of the Python application script,

the configuration can be stored in the CPES model. The Python application than merely

needs to query the GDB to determine the type and quantity of appliances to simulate. The

Python application’s complexity is thus significantly reduced as the same application can be

deployed any number of times as long as the provided unique node identifier is captured in

the CPES.
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4.2.2 Data Store

The CPES modeling approach using a neo4j database presented one type of data store that

is suitable for managing and configuring distributed assets. File storage and object-relational

databases are other data stores more suitable for capturing

a) simulation inputs (e.g. appliance load profiles);

b) simulation events (e.g. energy usage or DR availability);

c) simulation controls (e.g. start/end of a simulation).

File Storage

Static data files, e.g. csv files, are a standard means for sharing data as they are easy to read,

easy to write to, and easy to share over the web using a static file server. Take the example

of Use Case A where the reference load profile of a residential home needs to be accessed

by each of over 400 HEMS. The reference file is provided for download from a NGINX

web server such that it can easily be modified without effecting any of the dockerized agent

applications. Like all other microservices, the file server service is deployed as a Docker

container. The in List. 4.1 shown Dockerfile can be used to generate the Docker image so

that all files from the static/ directory will be hosted on the server. Once the image is

built, it can be deployed as shown in List. 4.2. A loadprofile node can be added to the

CPES with the file URL as one of the properties, so that it becomes available to all agents

in the agent layer.

1 FROM nginx

2 COPY static /usr/share/nginx/html

Listing 4.1: Dockerfile showing the simplicity of creating the static file server container.

1 $ Docker build -t nginx-file-server .

2 $ Docker run --it --restart unless-stopped -p 8080:80 nginx-file-server

Listing 4.2: Commands for Unix based system to build and then run the static file server.
The working directory should contain the Dockerfile and the static/ directory form List.
4.1.
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Object-Relational Database

PostgreSQL, an open source database management system, is used as the centralized DB

for storing information at the administrative level and supporting the web application. The

PostgeSQL DB is used for storing simulation events and is modeled based on the application

domain and system requirements. Each simulation may have different variables that need

to be tracked or maybe even different entities and entity relationships; yet, the in Fig. 4.2

depicted relational schema was designed to support a variety of simulations. If needed, it

can also easily be adjusted and expanded.

The relations in the top row refer to the “physical” components in the simulation that

were also provided in the sample property graph model in Fig. 4.1. The pricing, emeasurements,

and billings relations are capturing data pertaining to residential energy rates and usage.

These three relations in combination with the addition of the nodes and zones tables would

suffice to capture data generated by the simulation in Use Case A. As the ISO publishes

electricity prices for each zone, these will be stored in the pricing table with the zoneid

as a foreign key. As a HEMS publishes its energy consumption, these data are stored in the

emeasurements table with a foreign key referencing a node in the nodes relation. For each

emeasurements entry created, a billings entry is added as well as the product of consumed

energy and electricity price at that time.

The remaining two tables in the middle column capture the reported DR availability

by the nodes (drnas) as well as DR events that control the nodes (drncs). Adding these

two relations to the relational schema described for Use Case A, one can log all information

needed for Use Case B. DR credits are added to the billings relation as negative amounts.

The remaining tables to the left account for the addition of service providers, e.g. DRAs

(aggregators), which aggregate, coordinate, and manage residential homes (nodes). These

DRAs also report their DR availability as bids for DR services for each respective zone. Once

the winning aggregator has been determined, the control event and contract could captured

in the dracs and transactions relations respectively. This shows how the presented schema

can easily be extended to account for additional requirements.

The current system design in itself is flexible enough to accommodate different behaviors

for the same set of nodes. Instead of having many columns in each table for each variable

(e.g. energy, power, voltage, current in the emeasurements table), all variables are stored

as jsonb data types, which is PostgreSQL’s decomposed binary format for JSON objects1.

1https://www.postgresql.org/docs/10/static/datatype-json.html
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The input format follows all JSON rules2. Using the jsonb data type provides a similar

flexibility to that of popular document-based NoSQL databases, such as MongoDB3.

Figure 4.2: Sample relational schema for capturing data at the administrative level during
the simulation.

2https://tools.ietf.org/html/rfc7159
3https://www.mongodb.com

25

https://tools.ietf.org/html/rfc7159
https://www.mongodb.com


4.2.3 Web Application

The web application, developed using the Phoenix framework, was designed to provide an

interface for administrative tasks, and to capture all events in the communication layer. The

administrative tasks considered are the

a) setup of the simulation by uploading DB seed files;

b) query of data from the DB;

c) monitoring of simulations;

d) coordination of manual simulation events;

Phoenix Framework and Elixir Umbrella Application

The Phoenix framework follows a server-side MVC pattern and is known for bringing con-

currency and functional programming to web application development [33]. Phoenix is built

using the functional Elixir programming language and thus also runs on the Erlang VM [?].

The functional approach to web application development and use of concurrent lightweight

Elixir processes for handling real-time connections are especially well-suited for smart appli-

cations that require efficient socket connections for human-computer interactions (e.g. live

updates for monitoring) as well as API-based machine-to-machine interactions (e.g. process-

ing of IoT events). In the Phoenix framework, incoming requests are simply passed between

layers and transformed at each step by groups of functions, so-called pipelines [33], making

the handling of high numbers of API requests for IoT events possible. Phoenix renders

web pages (templates) developed using HTML, CSS, JS, and EEx (Embedded Elixir, which

allows the developer to embed Elixir code inside the HTML pages). The following code

snippet for the residential home dashboard exemplifies the concept of EEx (see List. 4.3).

In the request pipeline, once the request reaches the controller, the controller queries the DB

and then passes the variables currentp and dailyb to the view, which in turn renders the

template containing the variables in their embedded form as indicated by the <%= %> tags.
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<div class="row">

<div class="col-md-4 cards">

<div class="card card-pricing card-raised">

<div class="card-body">

<h3 class="card-category">Demand</h3>

<div class="card-icon icon-primary">

<i class="material-icons">power</i>

</div><br>

<h3 class="card-title"><%= @currentp %> W </h3>

<p class="card-description">

Demand is the last reported value from the device.

(Updated every 5 min.)</p>

</div>

</div>

</div>

<div class="col-md-4 cards">

<div class="card card-pricing card-raised">

<div class="card-body">

<h3 class="card-category">Billing</h3>

<div class="card-icon icon-primary">

<i class="material-icons">monetization_on</i>

</div><br>

<h3 class="card-title">$ <%= @dailyb %> </h3>

<p class="card-description">

Energy bill for current day in USD. Cost per kWh is set by the ISO.

</p>

</div>

</div>

</div>

</div>

Listing 4.3: HTML code snippet exemplifying the use of EEx in Phoenix templates.

The web application is implemented as a child application in an Elixir Umbrella applica-

tion [34]. Using an Elixir Umbrella application scheme allows us to separate system require-

ments into multiple child applications while making each child aware of its siblings. This

allows us to separate the two main functionalities (administrative tasks and event capturing)

into two applications: a Phoenix app that provides the web interface for administrative tasks

and an Elixir app (MqttHandler) that subscribes to events from the communication layer.

Both applications can access the code of one another, so that the MqttHandler app can use
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the Pheonix app’s API to log events to the DB, and so that the Phoenix app can publish

MQTT through the MqttHandler app’s API to the message broker.

Administrative Tasks

Simulation setup. The testbed system should allow the user to upload the network con-

figuration files before starting a new simulation. The settings page is designed to help with

setting up simulations by providing an overview tab that summarizes all agents currently

stored in the DB, a data upload tab that allows the user to upload individual csv files for

HEMSs or DRAs for example, and a simulation tab that allows the user to start/stop the

simulation.

Data Query. The web interface should allow the user to query data through the web in-

terface.

To simplify data retrieval from the DB, a web form is provided. The user thus does not have

to log in to the server, log in to the database management system, and query the data of

interest, instead, the web form can be used. Queries can be exported as csv files.

Simulation Monitoring. The simulation platform should provide an interface so that the

user may monitor ongoing simulations.

Monitoring of the simulation can be performed through various dashboards that present data

at various levels: the ISO level, the DRA level, and the HEMS level. Each dashboard varies

in its emphasis on data pertaining to respective behaviors.

Manual Simulation Events. The testbed system should allow the user to manually ini-

tiate events of interest, e.g. the loss of generation.

Based on the simulation design process (Sect. 2.2), each simulation should be designed to

test certain events, functionalities (e.g. algorithms), etc. When testing a distributed sys-

tem’s ability to respond to a sudden loss of generation for example, one may want to initiate

events manually rather than having to pre-program it somewhere. That is, the web applica-

tion should provide a control interface that allows the administrator to request a reduction

in demand by some desired amount. Once the action has been initiated by the user through

the web interface, the action is communicated to the agents in the agent layer to respond

to that scenario. In Use Case B, a message is published to the drsim/event topic that the
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ISO listens and reacts to by then in turn sending control commands to the HEMSs that can

provide DR services at that time.

Event Capturing

An MqttHandler app is responsible for capturing events published by nodes in the communi-

cation layer, and thus heavily depends on the in Sect. 4.3 described communication scheme

and API design. To implement the MQTT communication scheme, the application uses the

tortoise package4, a MQTT client for Elixir. List. 4.4 shows how each agent type is handled

in its own module that is started and supervised by the application5. That is, when the

application starts, the :start_link function of each module is called.

1 defmodule MqttBroker.Application do

2 @moduledoc false

3

4 use Application

5 def start(_type, _args) do

6 # List all child processes to be supervised

7 children = [

8 %{

9 id: PriceLogger,

10 start: {PriceLogger, :start_link, ["my_client_id_24"]}

11 },

12 %{

13 id: HemsLogger,

14 start: {HemsLogger, :start_link, ["my_client_id_26"]}

15 },

16 %{

17 id: Publisher,

18 start: {Publisher, :start_link, [[]]}

19 }

20 ]

21 opts = [strategy: :one_for_one, name: MqttBroker.Supervisor]

22 Supervisor.start_link(children, opts)

23 end

24 end

Listing 4.4: Supervisor of the Elixir app with one child for each type of agent.

4https://hex.pm/packages/tortoise
5https://hexdocs.pm/elixir/Supervisor.html
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List. 4.5 shows that the HemsLogger module will then start a new connection to the

message broker and subscribe to a list of topics. The following :handle_message functions

are callback functions that are executed for every incoming message and use pattern matching

on the message topic in their function parameters. The Dris.Data module stems from the

Phoenix app (called Dris), which exemplifies how code from the sibling application is made

available to the MqttHandler app in the Elixir Umbrella application.

1 defmodule HemsLogger do

2 # code omitted here #

3

4 def start_link(clientid \\ "my_client_id_2") do

5 Tortoise.Supervisor.start_child(

6 client_id: clientid,

7 handler: {HomesTortoise, []},

8 server: {Tortoise.Transport.Tcp, host: 'post.redlab-iot.net', port: 55100},

9 subscriptions: [{"metering/energy/#", 0},{"drna/now/#", 0} ])

10 end

11

12 # code omitted here#

13

14 def handle_message(["metering", "energy", agg, dev], message, state) do

15 b = message |> Poison.Parser.parse!

16 attrs = %{agg_id: agg, dev_id: dev, data: b["data"]}

17 Dris.Data.create_emeasurement(attrs)

18 {:ok, state}

19 end

20

21 def handle_message(["drna", "now", agg, dev], message, state) do

22 b = message |> Poison.Parser.parse!

23 attrs = %{agg_id: agg, dev_id: dev, data: %{now: b["value"]}}

24 Dris.Data.create_derna(attrs)

25 {:ok, state}

26 end

27 end

Listing 4.5: Extract of the HemsLogger module showing how each process subscribes to the
communication broker and handles incoming messages.
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Deployment

As with all other system components, the web application is deployed as a Docker container.

Consisting of the Phoenix application for administrative tasks and the Elixir application for

event capturing, the Docker container is built using the Dockerfile shown in List. A.5. Once

built, the image can be deployed and run to host the web application on any system and

also across multiple systems.

4.3 Communication Layer Implementation

The second layer of the simulation platform is the communication layer with the following

requirements:

a) The communication layer should utilize a lightweight Pub/Sub communication scheme

designed for resource-constrained devices;

b) The communication layer should provide an easy-to-use API;

c) The communication layer should address cyber security concerns.

4.3.1 MQTT Data Protocol and Message Broker

MQTT is a lightweight Pub/Sub protocol that is widely used for resource constrained sensor

devices. MQTT has excellent compatibility with various programming environments, sits on

top of TCP/IP, and offers TLS support. The Pub/Sub protocol implies that a client publishes

messages to a topic without knowing who is subscribed to that topic. The subscriber does

not know who publishes messages in a topic and who else is subscribed to it, but will

receive any message published to that topic [4]. Fig. 4.3 depicts this concept of publishers,

topics, and subscribers. In addition to communication clients (publishers and subscribers),

the Pub/Sub messaging scheme requires a message broker that filters messages and routes

them from publishers to subscribers. The message broker is further responsible for client

authentication and authorization, which means that one may configure the system to only

allow registered users to participate and to publish/subscribe to certain topics.

Here, the VerneMQ MQTT Broker is used. VerneMQ is built on the Erlang/OTP (open

telecom platform), a platform that has proven its concurrency model and fault tolerance in

the operation of telecommunication networks. VerneMQ was specifically designed for soft

real-time, distributed control and messaging applications while providing fault-isolation and
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fault-tolerance [35]. A Docker image for the VerneMQ MQTT broker is provided by the

creators [36].

Figure 4.3: Conceptual depiction of the publish/subscribe protocol where clients can either
publish or subscribe to topics [4].

4.3.2 MQTT API Design

A generalized topic scheme was established to provide a standardized API for nodes in the

agent and administration layer. Table 4.1 shows a selection of topics separated by the type

of client that would publish to the topic. Topics are designed to be intuitive, to allow

efficient usage of wildcards—placeholders for single or multiple topic levels when subscribing

to multiple topics at a time—, and to ease the authorization for topics. As shown in Table

4.1, message payloads are formatted as JSON objects. The shown keys for each topic are

only select samples for the performed simulations, but they typically just depend on the

simulation.

Each topic consists of multiple levels, where the first level generally indicates the type

of data or the type of action that is captured in the payload. Topics starting with the

term meterings for example refer to sensor data (measurements) that are being reported,

and topics starting with dr relate to DR monitoring or control events. That is, the drna

topic informs on the “demand response node availability” for different time intervals and the

drnc topic represents a control command for nodes (e.g. a single HEMS) to reduce/increase

energy usage.
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To understand why efficient wildcard usage is important, consider the example of the

administration layer that needs to capture all energy measurements published by HEMSs.

Instead of having to subscribe to every single topic in that category, i.e. all devices, the

multi-level wildcard # can be used. The administration layer, or more specifically the

HemsLogger (see List. 4.5), could then just subscribe to metering/energy/# and receive

all published energy measurements. The reverse—having a unique identifier first and the

message type last— would not be possible as multi-level wildcards are only allowed at the

end of a topic. The same reasoning applies to the authorization of clients that allows them

to only publish and subscribe to certain topics. For the metering example, the HEMS would

only be allowed to publish to the metering/energy/aggid/devid topic, where aggid and

devid vary for each HEMS, whereas the DRA and ISO could be authorized to subscribe

to metering/energy/aggid/+ and metering/energy/# respectively. (The + symbol is a

single-level wildcard.)

The implementation of client/topic authorization schemes generally depends on the mes-

sage broker being used. In the case of VerneMQ, either file-based or database-based autho-

rization is possible (see [37]).

Table 4.1: Overview of select MQTT topics ands their sample payloads.

Publisher Topic Payload Sample

HEMS metering/energy/aggid/devid {"avgp": _, "energy": _, "vrms": _ }

HEMS metering/bess/aggid/devid {"soc": _, "state": _}

HEMS metering/degen/aggid/devid {"avgp": _, "energy": _}

HEMS drna/aggid/devid {"now": _, "hour": _, "day": _ }

ISO, DRA drnc/aggid/devid {"type": _, "amount": _, "time": _}

DRA draa/zoneid/aggid {"now": _, "hour": _, "day": _ }

ISO drac/aggid {"type": _, "amount": _, "time": _}

ISO iso/rtp/zoneid {"value": _ , "ts": _}

admin drsim/settings {"mode": "start/stop"}

admin drsim/events {"type": _, "amount": _}

admin set/drmode/devid {"value": "on/off"}

admin get/info/devid {"type": _ }
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4.3.3 Cyber Security

Securing devices, communication, and data are a growing concern when considering dis-

tributed systems, e.g. IoT systems, with large numbers of connected devices. As with

most information systems, the security level provided by the MQTT communication proto-

col strongly depends on how it is being implemented and used. At the data protocol level,

confidentiality can be ensured using authentication and authorization methods that restrict

clients in their ability to publish and subscribe to certain topics. Doing so ensures that data

are not simply publicly shared. As aforementioned, using VerneMQ, a database can be used

with an entry for each client that specifies the client’s username, password and topics that

the user can publish and/or subscribe to. Using a scalable, reliable, and high-performance

message broker such as VerneMQ, can help in ensuring availability of the MQTT messaging

service. The MQTT protocol further allows the option to use SSL/TLS for added confiden-

tiality and integrity, although this can come at a cost for resource constrained IoT devices.

Ultimately, the above stated options are only optional security features, and it is left to the

system designer to make use of them. For some simulation purposes, these features can be

ignored, and for others they should not, depending on the goal of the simulation.

Although not in the scope of this work, cyber-security motivated simulations can be

considered for this simulation tool in the future. This could entail the use of additional

encryption algorithms at the agent-level, the use of a different data protocol altogether, or

the implementation of emerging blockchain technologies. This simulation tool is well suited

for such studies given the multi-agent nature of the tool, modular design, and containerized

implementation.
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4.4 Agent Layer Implementation

The agent layer implements the micro level behavior of the distributed nodes which then

translates into the macro level behavior in the virtual grid. Provided the requirements below,

the agent layer typically demands the most modifications out of the three layers for each

simulation.

a) Implement agent behavior in the form of dockerized Python applications;

b) Implement the aforementioned communication scheme;

c) Implement the ability to query information from the administration shells in the CPES

model.

4.4.1 Common Interfaces

Requirements b) and c) are shared among all agent types and refer to the implementation of

MQTT and Bolt clients. As shown in List. B.1 and List. B.3 the paho-mqtt6 client library

and the neo4j-driver7 are used respectively to achieve this. All agents are dockerized using

the in List. A.7 shown Dockerfile. The required libraries and drivers are specified by means

of text files that are copied into the Docker container and then parsed for installation in

the build process. Using the alpine flavor of the base image reduces the overall size of

the container. To differentiate containerized applications that share the identical code base,

a unique identifier is passed as an environment variable to the container and the Python

application parses the environment variable and queries the CPES model based on that

identifier. List. 4.6 and List. 4.7 demonstrate this concept as well as the spawning of

containers using a for-loop iteration.

1 for i in {1..10}

2 do

3 Docker run -it --restart unless-stopped -d --name housebot-$i -e devId=dev_$i

housebot-v2 python app.py↪→

4 done

Listing 4.6: Bash command to to start ten Docker containers, each with a different name
and environment variable. The environment variable is picked up by the Python script in
the container.

6https://pypi.org/project/paho-mqtt/#client
7https://neo4j.com/docs/api/python-driver/current/
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1 import os

2 devId = os.environ["devId"]

Listing 4.7: Python code snippet showing how environment variables from the Docker envi-
ronment are loaded.

4.4.2 Use Case A

Recall that in this example, the objective was to simulate a dynamic pricing DR program

where residential consumer publish their energy usage every five minutes and the system

operator publishes the electricity price every 60 minutes.

ISO

In addition to the above described common interfaces, the specifics of the behavioral strategy

of the ISO are rather simple. The ISO publishes electricity prices to the iso/rtp/zoneid

topic, where the zoneid indicates the regions where the price applies. Fig. 4.4 shows the

flowchart for this scenario.

HEMS

The HEMS agent type follows a very similar program flow to that aforementioned, with the

only difference that electricity data were sent more frequently (5-minute intervals). In addi-

tion, instead of price data, the energy data are being sent. Given the program similarities,

Fig. 4.4 can be used as a reference for the program flow for the HEMS model.

4.4.3 Use Case B

Use Case B includes all of the in Use Case A described concepts, with the following additions:

a) a bottom-up simulation approach for the residential home behavior;

b) user initiated control events to shed a desired amount of load immediately;

c) DR credits provided to the user in the case of an event taking place and load being

shed.

ISO

The implementation of the ISO is much the same to that conceptually depicted in Fig. 4.4,

with the added functionality that the ISO can send control signals to individual HEMS agents
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Figure 4.4: Flowchart of the ISO agent for Use Case A. The same flowchart also applies for
the HEMS, only that the frequency of published data and the data itself (energy data not
electricity rates) are different.

to request immediate load shedding. As users manually interact with the web application

and initiate DLC events, the web application publishes a message for each interaction to the

drsim/events topic with the type (DLC) and amount (5, 50, 100, 500, 1000 kW) specified

in the payload (see Table 4.1). The ISO is subscribed to this topic and then immediately

schedules each individual node to request the load reduction. The ISO retrieves the most

recent time-ordered list of availabilities by node, aggregator, and zone, and then starts

curtailing loads on a last-come, first-served principle until the requested amount of DR is

dispatched (open-loop control). Last-come, first-served here means that the node with the

most recent update on its availability—i.e. the last to publish its value—is curtailed first as

the probability that the reported value is still valid is highest. Since the ISO does not keep

a data store on its own to store node availabilities for the scope of this work, a JSON API

request is made to the web application, which has the central data store of all published

availabilities, measurements, etc.
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HEMS

A bottom-up approach is used for the HEMS agent to model the individual power consump-

tion of the house’s appliances throughout the day, to publish aggregated consumption and

availability data to the system, and to subscribe to control events from the system operator.

[38] designed an educational MATLAB Simulink model that simulates fixed and controllable

appliances, an HVAC system, an electric water heater, a PV system, a BESS and an ag-

gregator, and allowed users to test their DR bidding strategies for residential homes. This

model was adapted into the HEMS Python application after simplifying it to only consist

of fixed appliances, a variably controllable HVAC system, and an added baseload. Table 4.2

summarizes the model’s load types and their parameters.

The house load at a given time step ti consists of three components: the sum of the

loads due to fixed appliances that are scheduled to run at ti, the HVAC load at ti based on

the schedule and house’s thermal model, and the baseload at ti determined by the reference

loadprofile. Having already described the latter part in Fig. 4.4, let us consider the first two

components further.

Starting with N appliances, we can let a be the list of appliances, and s be the list of

states with sn being the state of an at a given time ti. Then the power consumption Pa due

to all fixed appliances is

Pa = a · s (4.1)

Table 4.2: Overview of appliances considered in the house model.

Appliance Controllability Power Scheduled Usage

Lights fixed schedule 360 W 5-8am, 6-11pm
Refrigerator fixed schedule 200 W 12-1am, 5-6am, 8-9am, 11-

12pm, 3-4pm, 7-8pm
TV & Entert. fixed schedule 200 5-10pm
Range & Oven fixed schedule 1500 W 11-12pm, 6-7pm
HVAC schedule & vari-

able control
3500 W 12am-3am, 10-1pm, 5-11pm

Baseload none 250 W∗ N/A
∗ Baseload is 25 % of the reference loadprofile (Sect. 4.5 at any time in the simulation.

The Advanced Python Scheduler (APScheduler)8 library presents a convenient tool for

8See https://tinyurl.com/hs-ms-apscheduler
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scheduling the appliances based on their states; that is, using the Cron-style9 scheduling

method, we turn each device on on every day and on the hour(s) of the day provided and

also turn them off on every day and the hour(s) of the day provided. Since the HVAC system

is also running on a predefined schedule, it’s on/off switching can be handled in much the

same way as the fixed appliances. In addition to its schedule, the HVAC system’s power draw

PHV AC depends on the house and environmental conditions. That is, control outputs are

designed to keep the house at a comfortable setpoint temperature TSP (e.g. 23◦C) during

the HVAC system’s scheduled time of operation.

In the considered thermal model based on [38], the temperature changes based on the

inside temperature TH , the ambient temperature Ta, the equivalent heat capacity of the

house CH , thermal equivalent resistance RTH and the HVAC system. The first-order thermal

equivalence circuit of the house is shown in Fig. 4.5 and can be described as

dT

dt
=

−1

CH

(
PHV AC +

TH − Ta
RTH

)
(4.2)

Where CH is the heat capacity of the room measured in J/K and RTH the thermal equivalent

resistance in K/W . From Eq. 4.2, the temperature of the house THi
at time ti given THi−1

ti−1 is given by

THi
= THi−1

− 1

RTHCH

∫ ti

ti−1

(
RTHPHV AC + (THi−1

− Ta)
)
dτ (4.3)

During the HVAC system’s operation, variable control is used during the HVAC system’s

“on”-time to keep the temperature at a comfortable level. A proportional-integral (PI)

controller was implemented for this purpose as it is a fundamental control mechanism for

feedback control systems and widely used in the industry, especially in HVAC applications

[39, 40]. The gains of the controller, kp and ki, determine the control output given current

and time-integrated errors, as described below.

c(t) = Kpe(t) +Ki

∫ t

0
e(τ)dτ (4.4)

Where e is the temperature difference Ta − TSP (positive difference indicates cooling), and

c(t) is the control output at time t. Considering that the HVAC system is the only load that

can be shed, the total DR availability at any time is expressed by PHV AC (i.e. the product

of the HVAC state and control variable).

9See https://tinyurl.com/hs-ms-crontab
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Figure 4.5: Thermal equivalent circuit of the first-order thermal system.

The Python application approximates the first-order system (Eq. 4.2) using Eq. 4.3 in its

discrete form. The discrete time step should be sufficiently small based on the system’s dy-

namics. That is, depending on the heat capacity and the thermal resistance, or in other words

the system’s time constant τ = RC, the scheduling interval for the updateHouseTemp()

function should be adjusted. Table 4.3 summarized the parameters used during implemen-

tation. However, since these values are stored in and queried from the CPES model, they

can be updated for different simulation runs.

Based on the MQTT API design in Table 4.1, the HEMS application subscribes to the

a) drnc/aggid/devid and b) set/drmode/devid topics. Should an event be published to

topic a), the HEMS will shed its load by temporarily raising the HVAC’s temperature such

that PHV AC decreases. This provides more flexibility in terms of shedding loads gradually,

but for the scope of this work, raising the temperature is considered equivalent to turning

it off. Events on the latter topic, topic b), control the HEMS participation in DLC events

based. Should the DR mode be set to off, the HEMS reports zero availability and does not

respond to messages on topic a).

Table 4.3: Setpoints, environmental conditions, and thermal properties used during imple-
mentation.

Parameter Value

Setpoint TSP 23◦C
Initial Temp. T0 23◦C
Ambient Temp. Ta CSV file∗

Heat Capacity CH 2.25e5 J/K
Equiv. Resistance RTH 5.7e− 3 K/W
∗ Ambient temperature is provided at a 5-min resolution.
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4.5 Simulation Parameters

To deploy and run the simulation, a combination of cloud and in-house hosting services was

used. The Linode10 platform was used primarily with a total of four available Linodes and

one in-house server. The following table summarizes the type of server used, the domain

assigned to them, and the type of micro-service hosted on them. Except for the Nanode,

which was hosted in Dallas, TX, USA, the Linodes were all hosted in Fremont, CA, USA.

Table 4.4: Overview of servers used for the simulation.

Domain Server Type RAM CPU Cores Usage

linode1.redlab-iot.net Linode 4GB 4 GB 2 HEMS
linode2.redlab-iot.net Nanode 1GB 1 GB 1 ISO, Web Application
linode3.redlab-iot.net Linode 4GB 4 GB 2 HEMS, File Server
linode4.redlab-iot.net Linode 2GB 2 GB 1 HEMS
post.redlab-iot.net In-house∗ 64 GB 8 VerneMQ, PostgreSQL
∗ Dell r7805 server in the REDlab Manoa’s server rack located at the UH at Mānoa

Table 4.5 and Table 4.6 show the configuration parameters for both implementation

scenarios. In both scenarios, the time scale of the simulation was real-time and nodes were

synchronized using UTC time since servers were split across different timezones and time

commands in most programming languages default to UTC time as well. In Use Case

A, 441 simulation HEMS nodes were deployed across four servers and the simulation ran

continuously for about three days.

Table 4.5: Simulation configuration parameters for Use Case A.

Parameter Value

Simulation time step real-time
Simulation duration 3 days
Simulation time zone UTC time
ISO nodes 1
Zones 2
Aggregator nodes∗ 3
HEMS nodes 441
∗ These nodes are only considered for the CPES model.

Use Case B on the other hand entailed only 200 simulation nodes due to a an increased

10https://www.linode.com
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memory utilization for the HEMS node. Since manual interaction with the system was re-

quired in Use Case B, the duration of the simulation varied. Based on the time of interaction,

one would observe different behaviors as different appliances are scheduled at different times

in the UTC timezone.

Table 4.6: Simulation configuration parameters for Use Case B.

Parameter Value

Simulation time step real-time
Simulation duration variable
Simulation time zone UTC time
ISO nodes 1
Zones 2
Aggregator nodes∗ 3
HEMS nodes 440
∗ These nodes are only considered for the CPES model.

The reference load profile acquired by the REDLab Manoa for a residential home—used

as a simulation input—is shown in Fig. 4.6 and Fig. 4.7. The 5-minute temporal resolution

is maintained in Fig. 4.6, while Fig. 4.7 resampled the load data with hourly averages to

overlay it with the referenced electricity rates.

Figure 4.6: Reference load profile of a residential home on Oahu, Hawaii. The dates were
shifted forward by 18 days for graphing purposes.
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Figure 4.7: Reference load profile at a 1-hour temporal resolution (top) plotted along refer-
ence electricity rates (bottom). Dates are adjusted for graphing purposes.
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CHAPTER 5

TESTBED PLATFORM EVALUATION

This chapter presents the results of the use cases with respect to the overall testbed

system; that is, the testbed is evaluated based on its ability to manage multi-agent co-

simulations. The smart metering application proved to be a good first use case as it required

the use of the CPES modeling methodology to share information (e.g. configuration settings)

across distributed agents. The web application proved effective in providing administrative

and event logging functionalities as illustrated by a series of screen captures of the front-end

interface. Using a simple enough, yet realistic, example, a baseline was obtained for possible

resource requirements for the designed micro-service architecture. The bottom-up building

model additionally showed how existing CPES models can be modified and extended to

model the required system complexities for respective applications.

5.1 CPES Modeling

A graph-theoretic CPES modeling approach was used to represent agents and their admin-

istration shells through node labels, relationships, and relationship properties. Fig. 5.1 and

5.2 show subgraphs of the implemented neo4j database demonstrating how this modeling

approach has been implemented at different levels of granularity. Fig. 5.1 provides a coarse-

grained overview of the CPES with a 50 node subset of HEMSs. The graph visualizes how

an aggregator’s presence in a residential area (zone) is simply determined by the location

of the houses that the aggregator is managing. The reference files for the load profile and

price rates are similarly depicted. In the shown implementation, price profiles were specific

to each zone, and the load profile was generic to all nodes. If one wanted to change this, one

could (a) do it at the individual level where the loadprofile is connected to hems nodes

directly; (b) do it at the aggregator level where the loadprofile is connected to agg nodes;

(c) do it at the zone level, as it’s currently being done for the priceprofile nodes.

In contrast, the subgraph depicted in Fig. 5.2 focused on a single HEMS, its neighbors

and the load profile. This type of subgraph is queried by the HEMS application on startup;

it contains all the information it needs to determine (a) which zone to subscribe to for time-

varying electricity rates; (b) which aggregator it is managed by, and (c) which reference

inputs to use (e.g. for load profile or weather data). The remaining two small nodes below

the hems node are drna and emeasurement nodes, which could potentially be used to store
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latest information on DR availability and power consumption. During initial testing, the

MqttHandler app (see Sect. 4.2.3) was also responsible for updating these two nodes in the

GDB for every incoming message, but the implemented connection protocol to the neo4j

database was not sufficiently stable to support reliable updates. Further work is needed to

publish real-time sensor data updates to the CPES model.

Figure 5.1: Subgraph showing the key node types and their connections. The largest nodes
(blue) have the zone label, the centered nodes (red) have the agg label, the smallest nodes
(violet) have the hems label, the outermost nodes (yellow) have the priceprofile label, and
the isolated top-most node (green)has the loadprofile label. 50 hems nodes were queried
and shown in this subgraph.

To meet the requirements for Use Case B, the in Fig. 5.1 shown CPES was extended

to also include weather profiles and appliances, as shown in Fig. 5.3. Similarly to the load

profile, these nodes can be left isolated to make them apply to all agents, or they can be

related to zones, aggregators, or HEMS agents individually.
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Figure 5.2: Subgraph showing the dev_245-node with its neighbors and the loadprofile

node (left-most node). The two smallest nodes are drna and emeasurement nodes that could
potentially be used to store descriptive data or real-time updates.

Figure 5.3: Extended CPES model to account for appliances (green nodes) and weather
profiles (left and bottom-most yellow node). Appliance nodes connect to the aggregator by
a SCHEDULED_BY relationship and contain information from Table 4.2 as node properties.
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5.2 Web Application

5.2.1 Administrative Tasks

The web application proved functional to support testbed administration, simulation mon-

itoring, data storage, and manual event control. Each of these is captured through screen

captures and their descriptions in this section and Appendix D. The general structure of the

interface is presented in Fig. D.1 that shows that the side menu structures the application

into dashboard pages (User, Aggregator, and System Operator tabs) and administration

pages (Graph-DB, Data, and Settings).

Data Upload

From the settings page, one can navigate to the data tab (Fig. 5.4a) and upload seed data as

csv files using simple forms (Fig. 5.4b). The simulation can be started from the simulation

tab, also shown in Fig. D.2.

Simulation Monitoring

The simulation can be monitored in several ways, one being the use of dashboards. Using

dashboards like those shown in Fig. D.4 and Fig. D.6 for an individual home and the system

operator respectively, ensures that the system is running and logging data. They can also be

used in the decision making process for manual event interactions when one needs to decide

when, where, and how much load to curtail.

Data Query

The data query tool is shown in Fig. D.8. The user is provided with predefined queries to

choose from. The PostgreSQL can also be accessed directly for custom queries.

Manual Interaction

In addition to the starting and ending of simulations, the web application provides options to

directly play a role in the simulation. That is, the HEMS and ISO dashboards have options

to curtail load immediately through the use of buttons (see Fig. D.4 and Fig. D.7).
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(a) Data Upload Overview (b) Upload Form

Figure 5.4: Settings view of the interface with options for csv upload to populate the database
with agents and their configuration.

5.2.2 Event Capturing

The administration layer proved capable of subscribing to all simulation events and logging

them to the respective DB relations. One additional aspect of interest in distributed sensor

and control systems is that of the delay. Delays can occur at the data transfer level (com-

munication protocol) or the data processing level (application level). The delay at the data

transfer level has been studied extensively for the MQTT protocol (see [41] and references

therein); here, we analyze the delay at the processing level which is mainly associated with

the software level implementation (see Sect. 4.2.3).

The reported and stored energy measurements from the HEMS nodes were used to quan-

tify the overall delay between the event that data are sent and the event that data are in-

serted into the DB. More specifically, the HEMS is programmed to add a Unix timestamp1

to its payload, which then gets logged with the measurement data. The web application

additionally adds a timestamp upon data insert. Analyzing N = 100000 records from the

emeasurements relation showed an average delay of 13 seconds with a standard deviation

of 8 seconds (Table 5.1). The frequency distribution in Fig. 5.5 showed a right-skewed

distribution with a median of 12 seconds.

Although the delay in the event capturing component of the system was not interfering

with the systems ability to run the simulation, it suggests that there is a bottleneck in the

logging component of the system. Given low server utilization, it appears that it is not

a problem associated with limited computing resources and thus cannot be mitigated by

deploying the system with more computing resources. More likely, the problem is rooted in

the event subscription method for the MqttHandler app that cannot process sufficiently large

numbers of messages simultaneously. This can be tested by implementing a VerneMQ plugin

1Unix timestamps are expressed in seconds since January 1, 1970 at UTC
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with similar functionalities to that of the MqttHandler for the message broker itself, such as

described in [18], and comparing the performance of both approaches. Further investigation

is therefore needed to identify the system’s bottleneck.

Table 5.1: Summary of statistics for the data processing delay.

Parameter Value

N 100000
Mean 13
Median 12
Std. Deviation 8
Minimum 0
Maximum 62

Figure 5.5: Right-Skewed distribution of delays depicted in a histogram with apparent in-
terval limits at each second. The mean, median, and standard deviation are 12.7, 12.0 and
7.9 respectively.
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5.3 Deployment

All application services are deployed as Docker containers. The pool of HEMS applications

requires the most resources overall as it has the most instances (i.e. 441 containers in Use

Case A). Table 5.2 describes the resource usage of each container type obtained with the

docker stats container-name and with respect to the server that they are deployed on.

The use of Python objects and dictionaries in the implementation of appliance scheduling

and thermal modeling for the HEMS application resulted in additional 20 MB of memory

allocation compared to the initial use case shown in Table 5.2.

Table 5.2: Overview of containers and their resource usage.

Container Type Server Memory Usage∗ CPU%∗∗

HEMS linode4 32.32 MiB 0.01%
ISO linode2 24.56 MiB 0.02%
Phoenix WebApp linode2 99.97 MiB 0.62%
PostgreSQL post 74.48MiB 0.18%
neo4j post 887 MiB 1.26%
VerneMQ post 1.516 GiB 2.33%
∗ Maximum value across all servers running this application.
∗∗ Percentage is with respect to the server.
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CHAPTER 6

SIMULATION RESULTS

This chapter outlines the further analysis of simulation data obtained from the two use

cases. The testbed was used successfully to facilitate the necessary communications and

simulation administration to capture energy meter data with time-varying price rates, to

configure appliances through administration shells in the CPES, and to execute reliability

DR controls.

6.1 Energy Metering

Recall the in Fig. 4.7 depicted reference load and price profiles that were used as system

inputs for Use Case A. With Gaussian noise added to the input, the recorded agent output

closely followed the input, shown in Fig. 6.1. The HEMS agent dev_133 and HEMS agent

dev_233 differed from each other and from the provided input by a time shift. Each agent

corresponded to one docker container and as containers were started sequentially, small

delays carried over throughout the simulation. Using time-based rather than interval-based

events helped to prevent these shifts in Use Case B.

Time-varying prices were implemented in this example; the recorded billing instances were

graphed against a hypothetical average flat rate price, shown in Fig. 6.2. The difference

in the running total fluctuated depending on the amount and time of energy usage. For

this agent, the energy consumption at 3am and 10pm were more cost-efficient whereas the

consumption at 9am and 1pm were less cost-efficient with respect to the average daily cost.

The results showed that the testbed communication and administration layers easily allow for

the implementation of time-varying rate structures and energy metering. Future work could

consider changes to the agent layer so that energy usage is adjusted based on forecasted and

actual prices. A more sophisticated behavioral model for the HEMS agent would be needed

for such purpose while all other components could remain the same.

6.2 Building Models

Use Case B implemented the in Sect. 4.4.3 described bottom-up building model with sched-

uled appliances and a variable HVAC controlled thermal model. The annotated graph in

Fig. 6.3 for the one-day power profile showed efficacy for configuring appliance parameters
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Figure 6.1: One-day power log two devices compared to the reference input at a temporal
resolution of five minutes.

in the CPES model. Agents successfully queried the GDB and then scheduled appliances

based on query results. The power profile reflected the power ratings of each appliance and

showed the difference between fixed and variable appliances. That is, the power output of

the HVAC system varied depending on the house temperature and setpoint, whereas fixed

appliances consistently used what they were rated for.

The thermal response of the house is shown with respect to the ambient temperature and

the overall power consumption of the house. During the off-times, the house temperature

followed the ambient temperature in a first order response with a time constant of about

21 minutes. The HVAC system consumed maximum power on system startup, thus causing

a rapid spike in the load curve. During steady-state operation between 11am and 1pm,

the system drew 1500W with a steady-state error of 1◦C. At night, the house temperature

dropped below the setpoint and the HVAC system did not run despite its scheduled usage.

Given the presented house and control model, one could expect the load curve to follow a

similar profile each day provided similar ambient temperatures and no external factors such

as load shedding.
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Figure 6.2: Cumulative billing for RTP and flat rate pricing are graphed with respect to
half-hourly energy consumption for HEMS agent dev_133.

6.3 Emergency DR Program

In addition to recording power and temperatures of all agents, DLC events were also illus-

trated using the testbed platform. Once an event was initialized from the web interface, e.g.

“shed 500kW at 10:33 am on July 1”, the ISO queried all available loads at that time and

sent out requests to each agent to shed its controllable load. Since in this particular event

that amount requested exceeded the amount available, all available agents were requested

to shed their controllable HVAC load. The macro level response of all HEMS agents is por-

trayed in Fig. 6.4. The response was compared to the system’s macro-level behavior during

the same time interval on the following day that did not have any DR events. The curve for

the case with the DR event showed the power drop after the event was initiated accompanied

by a temperature increase of 1.5◦C during the event. After the DR event, the proportional

controller regulated the temperature back down at the expense of a rise in demand. The

observed spikes in demand for the HVAC system alludes to macro level behaviors that can
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Figure 6.3: House load and temperature curves for node dev_133. Annotations indicate the
scheduled runtime of appliances. Table 4.2 provides power ratings for each appliance. The
refrigerator is only marked for the first three scheduled time slots.

be expected from autonomous agents that do not have properly implemented mechanisms

to return to their default operation after a DR event. Using this testbed, smarter HEMS

controllers can be quickly developed, deployed, and if proven to be effective, quickly installed

on a real residential house for continued testing on this platform.
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Figure 6.4: Macro level system response on a day with DR event superimposed onto a day
without DR event. The ambient temperature conditions for both days were the same.
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CHAPTER 7

CONCLUSION

7.1 Summary

This thesis presented the design, implementation, and application of a multi-agent testbed

system. The presented system was designed to address the need for a representative platform

that can help implement smart agents and to test the system level outcome of their decen-

tralized behaviors in a Smart Grid environment under consideration of the distributed and

resource-constrained nature of actual smart devices. The platform was further designed to

specifically consider characteristics of residential demand and demand side management due

to the ever increasing importance of consumer participation for the optimization of resource

utilization in a modern energy grid with high levels of interconnected distributed renewable

energy resources.

Ch. 2 presented the three-layered micro-service architecture and information flow in the

distributed system. That is, a virtual electrical grid is implemented in the form of deployable

agent applications that represent the different Smart Grid domains. The agent models are

realizations of Smart Grid domains that trade energy in the form of metered consumption or

demand response services. Functionalities of the communication and administration layers

that sit on top of the agent layer enable the configuration and co-simulation of the con-

tainerized agent-based models that implement—individually or as an aggregate—antecedent

research in demand side management.

The design and implementation of the architecture (Ch. 4) was presented in light of two

sample use cases, that of a smart metering infrastructure and that of a DR program with

direct load control in emergency situations, as described in Ch. 3. The implementation

design—and thus system utility—hinges on three key aspects: a) the ability to deploy con-

tainerized applications with defined agent-level behavior on any computing platform while

maintaining a standardized communication scheme, b) the ability to represent agents, their

functionalities, and their relationships in a graph database, and c) the ability to capture data,

visualize data, and provide interaction mechanisms for users to participate in the simulation.

Sample use case applications evidenced how each of these aspects played a role when the

testbed was used in practice. In particular, the bottom-up modeling approach of residential

household energy usage showed how agent-based applications can be networked, linked, and
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configured using a graph database that captures each agent’s parameters in virtual admin-

istrations shells using node properties (Ch. 5). This new approach to managing distributed

co-simulations for complex dynamical systems enables the presented testbed to easily man-

age virtual (or real) agents during simulations (Ch. 6). The testbed system thus becomes a

valuable tool in the rapid development of smart agents for the grid based on antecedent re-

search and alleviates challenges in the implementation of demand side management research

for the Smart Grid.

7.2 Future Work

The presented testbed platform considered building models, market structures, and agent-

based strategies for consumers, system operators, and service providers. As alluded to in

prior sections, a variety of DR strategies for ancillary service can currently be developed

and tested through changes in the agent layer. DR strategies and simulation results for DR

programs are already readily available in the vast pool of DR research; their implementation

and evaluation as smart agents however remains as future work for this testbed system.

In addition to DR programs, this testbed has great potential for developing energy man-

agement agents that participate in the market. Multiple users can develop different strategies

and deploy them together as agent-based applications, similar to the approach in [38] for

demand side management or [42] for power generation, but with much simplified commu-

nication interface (MQTT API), deployment scheme (docker containers), and web-based

administration interface. This endeavor can be further enhanced when existing power grid

simulation tools, such as GridLAB-D, are tied into this platform to also consider the inter-

action of demand and supply at the physical transmission level.

Lastly, with much research in cyber security and distributed ledger technologies, the cur-

rent agent-layer design with distributed docker applications is well-suited for implementing

distributed ledgers for certified energy exchange and data management in the Smart Grid.
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APPENDIX A

DOCKER RELATED CODE

A.1 Administration Layer

Graph Database

1 $ docker run --name dris-neo4j-1 --publish=7474:7474 --publish=7475:7687

--volume=/home/holm/dris/neo4j/data:/data --volume=/home/holm/dris/neo4j/logs:/logs

-dit --restart unless-stopped neo4j:3.3.3

↪→

↪→

Listing A.1: Docker command to start a new neo4j database using image version
neo4j:3.3.3. All parameters can be adjusted.

File Server

1 FROM nginx

2 COPY static /usr/share/nginx/html

Listing A.2: Dockerfile showing the simplicity of creating the static file server container.

1 $ docker build -t nginx-file-server .

2 $ docker run --it --restart unless-stopped -p 8080:80 nginx-file-server

Listing A.3: Commands for Unix based system to build and then run the static file server.
The working directory should contain the Dockerfile and the static/ directory form List.
A.2.

PostgreSQL Database

1 $ docker run --name dris-psql-1 -p 5005:5432 -e POSTGRES_USER=postgres -e

POSTGRES_PASSWD=postgres -dit --restart unless-stopped postgres:10.2↪→

Listing A.4: Docker command to start a new PostgreSQL database. Name, ports, user, and
password are just examples here.
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Web Application

1 FROM elixir:alpine

2 ARG APP_NAME=simeng_umbrella

3 ARG PHOENIX_SUBDIR=apps/dris

4 ENV MIX_ENV=prod \

5 REPLACE_OS_VARS=true \

6 TERM=xterm

7 WORKDIR /opt/app

8 RUN apk update \

9 && apk --no-cache --update add nodejs nodejs-npm \

10 && mix local.rebar --force \

11 && mix local.hex --force

12 COPY . .

13 RUN mix do deps.get, deps.compile, compile

14 RUN cd ${PHOENIX_SUBDIR}/assets \

15 && apk --no-cache add --virtual native-deps \

16 g++ gcc libgcc libstdc++ linux-headers make python \

17 && npm install --quiet \

18 && ./node_modules/brunch/bin/brunch build -p \

19 && cd .. \

20 && MIX_ENV=prod mix phx.digest

21 RUN MIX_ENV=prod mix release --env=prod --verbose \

22 && mv _build/prod/rel/${APP_NAME} /opt/release \

23 && mv /opt/release/bin/${APP_NAME} /opt/release/bin/start_server

24 FROM alpine:latest

25 RUN apk update \

26 && apk --no-cache --update add bash openssl-dev

27 ENV PORT=5005 \

28 MIX_ENV=prod \

29 REPLACE_OS_VARS=true

30 WORKDIR /opt/app

31 COPY --from=0 /opt/release .

32 EXPOSE ${PORT}

33 CMD ["/opt/app/bin/start_server", "foreground"]

Listing A.5: Dockerfile used to create the web application container that is deployable on
any system.
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A.2 Communication Layer

1 $ docker run --name dris-vernemq-1 -p 5883:1883 -dit --restart unless-stopped

erlio/docker-vernemq↪→

Listing A.6: Docker command to run a container with the docker-vernemq image. Admin-
istration and adjustments to the configurations can be done from within the container.

A.3 Agent Layer

1 FROM python:2-alpine

2 RUN mkdir -p /usr/src/app

3 WORKDIR /usr/src/app

4 COPY requirements.txt /usr/src/app/

5 RUN apk --update add --no-cache g++

6 RUN pip install --no-cache-dir -r requirements.txt

7 ADD crontab.txt /crontab.txt

8 COPY entry.sh /entry.sh

9 RUN chmod 755 /entry.sh

10 RUN /usr/bin/crontab /crontab.txt

11 COPY ./src/app.py /usr/src/app/app.py

12 CMD ["/entry.sh"]

Listing A.7: Dockerfile used to create the Python application container. Python pack-
ages/drivers are specified in the requirements.txt file in the working directory of the Dock-
erfile.
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APPENDIX B

PYTHON RELATED CODE

MQTT

1 #! /usr/bin/env python2

2

3 import paho.mqtt.client as mqtt

4 import json

5 from time import time, sleep

6

7 def on_connect(client, userdata, flags, rc):

8 """ Callback function when client connects """

9 client.subscribe("drsim/settings")

10 client.subscribe("iso/rtp/+")

11

12 def on_message(client, userdata, msg):

13 """ Callback function when message received """

14 global simon, price, drsignal

15 data = json.loads(msg.payload)

16 print "Received: ", data, " Topic: ", msg.topic

17

18 client = mqtt.Client("test-123")

19 client.on_connect = on_connect

20 client.on_message = on_message

21

22 try:

23 client.connect("post.redlab-iot.net", 55100, 60)

24 print "connection established"

25 except:

26 print "connection failed"

27

28 client.loop_start()

29

30 while True:

31 topic = "redlab/dr"

32 payload = '{"hello": "world", "ts": '+ str(int(time())) + ' }'

33 client.publish(topic, payload, qos=0, retain=False)

34 print "published: ", payload, " to: ", topic

35 sleep(300)
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36

37 client.loop_stop()

Listing B.1: Python code demonstrating the use of the paho-mqtt library.

$ python mqtt-client-demo-2.py

connection established

published: {"hello": "world", "ts": 1529792804 } to: redlab/dr

Received: {u'mode': u'start'} Topic: drsim/settings

Received: {u'ts': 1529791260, u'value': 0.3944} Topic: iso/rtp/zone_1

Received: {u'ts': 1529791260, u'value': 0.3976} Topic: iso/rtp/zone_0

published: {"hello": "world", "ts": 1529793104 } to: redlab/dr

published: {"hello": "world", "ts": 1529793404 } to: redlab/dr

published: {"hello": "world", "ts": 1529793704 } to: redlab/dr

Listing B.2: Sample console output when running the demo script in List. B.1

Neo4j-Driver

1 import os

2 from neo4j.v1 import GraphDatabase

3

4 # devId should be set as an environment variables

5 devId = os.environ["devId"]

6

7 # connection information (replace ***** with actual user/pass)

8 uri = "bolt://post.redlab-iot.net:55097"

9 driver = GraphDatabase.driver(uri, auth=("*****", "*****"))

10

11 # function to get info based on devId

12 def get_config_from_neo4j(devId):

13 with driver.session() as session:

14 with session.begin_transaction() as tx:

15 for record in tx.run("MATCH (a:Agg) <- [:MANAGED_BY] - (h:Hems) "

16 "MATCH (h:Hems) - [:LOCATED_IN] -> (z:Zone) "

17 "MATCH (l:Loadprofile)"

18 "WHERE h.hemsid = {devid}"

19 "RETURN [a.aggid, z.name, h.appliances, l.url]",

devid=devId):↪→

20 return record["[a.aggid, z.name, h.appliances, l.url]"]

21

22 # get the configuration info from the GDB

23 [aggId, zoneId, appliances, loadprofile] = get_config_from_neo4j(devId)

Listing B.3: Python code snippet demonstrating the use of the neo4j-driver.
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APPENDIX C

NEO4J RELATED CODE

1 CREATE INDEX ON :Sysop()

2 CREATE INDEX ON :Zone(name)

3 CREATE INDEX ON :Agg(aggid)

4 CREATE INDEX ON :Hems(hemsid)

5

6 LOAD CSV WITH HEADERS FROM "file:///neoZones_1.csv" AS csvLine FIELDTERMINATOR ','

7 create (z:Zone {name: csvLine.zoneName})

8 create (z) <- [:RTP_IN] - (:RTPrice {timestamp: timestamp(), price: 0.28})

9

10 Match (z:Zone)

11 create (z) <- [:PROFILE_FOR] - (:Priceprofile {url:

"http://linode3.redlab-iot.net:8080/pjm_rt_hrl_lmps.csv"})↪→

12

13 LOAD CSV WITH HEADERS FROM "file:///neoAggs_1.csv" AS csvLine FIELDTERMINATOR ','

14 create (:Agg {aggid: csvLine.aggid, aggname: csvLine.aggname, services:

csvLine.services, zones: csvLine.regions})↪→

15

16 MATCH (a:Agg)

17 UNWIND split(a.zones, ',') AS zone

18 MATCH (z:Zone {name: zone})

19 CREATE (a) - [:OPERATES_IN] -> (z)

20

21 LOAD CSV WITH HEADERS FROM "file:///neoDevs_1.csv" AS csvLine FIELDTERMINATOR ','

22 match (z:Zone {name: csvLine.zone})

23 match (a:Agg {aggid: csvLine.aggid})

24 create (h:Hems {hemsid: csvLine.devid, appliances: csvLine.appliances})

25 create (h) - [:LOCATED_IN] -> (z)

26 create (h) - [:MANAGED_BY] -> (a)

27 create (h) <- [:MEASURED_BY] - (:Emeasurement {name: "emeas_"+csvLine.devid, avgp:

null, vrms: null, pf: null, ts: timestamp()})↪→

28 create (h) <- [:REPORTED_BY] - (:Derna {name: "derna_"+csvLine.devid})

29

30 create (:Loadprofile {url:

"http://linode3.redlab-iot.net:8080/20180503_recorded_data.csv"})↪→

Listing C.1: Collection of Cypher commands used to build and populate the initial database
from provided csv files. The shown commands need to be executed individually.
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APPENDIX D

INTERFACE

Figure D.1: Homepage of the interface with introductory text. The application contains
three dashboards for the user (home), aggregator, and system operator. The data tab allows
the query and download of data and the settings tab provides controls to configure and run
the simulation.
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Figure D.2: The settings page provides some general information and then has tabs for data
upload and simulation controls (start/stop/pause).
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Figure D.3: Data tables give the user the option to search for nodes and then look at their
respective interface.
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Figure D.4: Monitoring dashboard for home nodes. The demand value is the latest power
measurement submitted and the billing value the cumulative charge for a given day (calcu-
lated based on time-varying prices and the UTC timezone). Hourly energy usage is reported
for the past 24 hours in a line chart. At the time of this capture, the HVAC system was not
scheduled to run.

Figure D.5: Control interface for home nodes. The user can choose to opt-out of the DR
program or to also manually curtail energy usage.
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Figure D.6: Interface for the system operator to monitor total and by zone aggregated load,
availability, and price data.
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Figure D.7: Interface for the system operator with options to curtail 50, 100, 500, or 1000
kW. Once the button is clicked, an MQTT message is published to the drsim/events topic,
which the ISO can subscribe to.
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Figure D.8: Interface with predefined options for querying data from the database as csv
files.
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