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ABSTRACT

The generalized word problem for a lattice L in a variety V asks if, given a finite subset Y ⊆ L and

an element d ∈ L, there is an algorithm to determine if d is in the subalgebra of L generated by Y .

In [6], it was shown that the generalized word problem for finitely presented lattices is solvable. This

algorithm, though effective, is potentially exponential. We present a polynomial time algorithm

for the generalized word problem for free lattices, but explain the complications which can arise

when trying to adapt this algorithm to the generalized word problem for finitely presented lattices.

Though some of the results for free lattices are shown to transfer over for finitely presented lattices,

we give a potential syntactic algorithm for the generalized word problem for finitely presented

lattices. Finally, we give a new proof that the generalized word problem for finitely presented

lattices is solvable, relying on the partial completion, PC(P ), of a partially defined lattice P .
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CHAPTER 1
GENERAL LATTICE THEORY

We begin this chapter with some preliminary definitions which are necessary for the rest of

the paper. We also introduce a useful construction of Alan Day which will be important for

future results. The definitions and results presented in this chapter can be found in any standard

introduction to lattice theory, such as [8].

1.1 Preliminary Definitions

Definition 1.1.1. An order relation on a set P is a binary relation which satisfies

1. x ≤ x, for all x ∈ P (reflexivity)

2. x ≤ y and y ≤ x imply x = y, for all x, y ∈ P (anti-symmetry)

3. x ≤ y and y ≤ z imply x ≤ z for all x, y, z ∈ P (transitivity)

An ordered set (also known as a partially ordered set) is a pair P = 〈P,≤〉, where P is a set and ≤
is an order relation on P . If 〈P,≤〉 is an ordered set, the relation ≥ is defined by x ≥ y if and only

if y ≤ x. 〈P,≥〉 is an ordered set known as the dual of 〈P,≤〉.

Remark 1.1.2. Each concept and theorem about ordered sets has a dual obtained by reversing the

roles of ≤ and ≥. In proofs we often use the phrase “by duality” to express the symmetry between

≤ and ≥. Of course x < y if and only if x ≤ y and x 6= y, and > is defined dually.

Definition 1.1.3. A relation which is reflexive and transitive, but not necessarily anti-symmetric

is called a quasiorder. If ≤ is a quasiorder on S, a ≡ b if a ≤ b and b ≤ a defines an equivalence

relation on S. Then ≤ induces a natural partial order on P/ ≡.

Definition 1.1.4. A chain C in an ordered set P is a subset of P such that any two elements of

C are comparable, i.e., if x and y ∈ C then either x ≤ y or y ≤ x. An antichain is a subset A of P

such that no two elements of A are comparable.

Definition 1.1.5. Let S be a subset of P and a ∈ P . We say that a is the least upper bound of

S if a is an upper bound for S, i.e., s ≤ a for all s ∈ S, and a ≤ b for any upper bound b of S. If

it exists, we denote the least upper bound by
∨
S. The dual concept is called the greatest lower

bound and is denoted by
∧
S. If S = {a, b} then

∨
S is denoted by a ∨ b and

∧
S by a ∧ b. The

terms supremum and join are also used for the least upper bound and infimum and meet are used

for the greatest lower bound.
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Definition 1.1.6. A lattice is an algebra L = 〈L,∨,∧〉, with two binary operations which are both

idempotent, commutative, and associative, and satisfy the absorptive laws: For all x, y ∈ L,

x ∨ (y ∧ x) = x and x ∧ (y ∨ x) = x

Remark 1.1.7. If L = 〈L,∨,∧〉 is a lattice, we can define an order on L by x ≤ y if and only if

x ∧ y = x. Under this order, x ∧ y is the greatest lower bound of x and y, and x ∨ y is the least

upper bound of x and y. Conversely, an ordered set 〈L,≤〉 such that each pair of elements of L

has both a greatest lower bound and a least upper bound defines a lattice. It is easy to see that

the dual of a lattice 〈L,∨,∧〉 is 〈L,∧,∨〉.

Definition 1.1.8. An element a in a lattice L is join irreducible if a = b ∨ c implies that either

a = b or a = c. An element a is completely join irreducible if a =
∨
S implies a ∈ S. An element a

is join prime if a ≤ b ∨ c implies that either a ≤ b or a ≤ c; it is completely join prime if a ≤
∨
S

implies a ≤ s for some s ∈ S. Naturally meet irreducible, completely meet irreducible, meet prime,

and completely meet prime are defined dually.

Remark 1.1.9. If a lattice has a least element, it is denoted by 0 and if it has a greatest element,

it is denoted by 1. Note that, technically, 0 is join irreducible but not completely join irreducible.

However, we will follow the long-standing convention that in a finite lattice, 0 is not regarded as

join irreducible. (This is because we treat a finite lattice as a complete lattice.) Dually, in a finite

lattice 1 is not considered to be meet irreducible. We let J(L) denote the join irreducible elements

of L and M(L) denote the meet irreducible elements of L.

Definition 1.1.10. If a < b are elements in a lattice L and there is no c ∈ L with a < c < b, then

we say that a is covered by b, and we write a ≺ b. In this situation we also say that b covers a and

write b � a. In addition we say that b is an upper cover of a and that a is a lower cover of b.

Definition 1.1.11. If a ≤ b, then we let b/a denote the interval {x : a ≤ x ≤ b}.

Definition 1.1.12. An order ideal in an ordered set P is a subset S of P such that whenever a ≤ b
and b ∈ S then a ∈ S. An order filter is defined dually. A subset I of a lattice L is called an ideal

if it is an order ideal and it is closed under finite joins. A filter is defined dually. If S ⊆ L, then

the ideal generated by S, the smallest ideal containing S, consists of all elements a ∈ L such that

a ≤ s1 ∨ · · · ∨ sk for some s1, . . . , sk ∈ S.

1.2 Day’s Doubling Construction

We now give Alan Day’s useful construction, which he introduced in [2].

Definition 1.2.1. Let L be a lattice. A subset C of L is convex if whenever a and b are in C and

a ≤ c ≤ b, then c ∈ C.

2



Definition 1.2.2. Let C be a convex subset of a lattice L and let L[C] be the disjoint union

(L− C) ∪ (C × 2). Order L[C] by x ≤ y if one of the following holds.

1. x, y ∈ L− C and x ≤ y holds in L,

2. x, y ∈ C × 2 and x ≤ y holds in C × 2,

3. x ∈ L− C, y = (u, i) ∈ C × 2, and x ≤ u holds in L,

4. x = (v, i) ∈ C × 2, y ∈ L− C, and v ≤ y holds in L.

There is a natural map λ from L[C] back onto L given by

λ(x) =

x if x ∈ L− C

v if x = (v, i) ∈ C × 2.
(1.1)

The next theorem shows that, under this order, L[C] is a lattice, denoted L[C].

Theorem 1.2.3. Let C be a convex subset of a lattice L. Then L[C] is a lattice and λ : L[C]→ L

is a lattice epimorphism.

Proof. Routine calculations show that L[C] is a partially ordered set. Let xi ∈ L−C for i = 1, . . . , n

and let (uj , kj) ∈ C × 2 for j = 1, . . . ,m. Let v =
∨
xi ∨

∨
uj in L and let k =

∨
kj in 2; if m = 0,

then let k = 0. Then in L[C],

x1 ∨ · · · ∨ xn ∨ (u1, k1) ∨ · · · ∨ (um, km) =

v if v ∈ L− C,

(v, k) if v ∈ C.
(1.2)

To see this, let y be the right side of the above equation, i.e., let y = v if v ∈ L−C and y = (v, k) if

v ∈ C. It is easy to check that y is an upper bound for each xi and each (uj , kj). Let z be another

upper bound. First, suppose z = (a, r) where a ∈ C. Since z is an upper bound, it follows from

the definition of the ordering that v ≤ a and k ≤ r, and this implies y ≤ z. Thus, in this case, y is

the least upper bound. Next, suppose z /∈ C. Then v ≤ z and so y ≤ z, which again makes y the

least upper bound. The formula for meets is of course dual. Thus L[C] is a lattice.

Since

λ(x1 ∨ · · · ∨ xn ∨ (u1, k1) ∨ · · · ∨ (um, km)) =

λ(v) if v ∈ L− C,

λ(v, k) if v ∈ C.

= v = x1 ∨ · · · ∨ xn ∨ u1 ∨ · · · ∨ um
= λ(x1) ∨ · · · ∨ λ(xn) ∨ λ(u1, k1) ∨ · · · ∨ λ(um, km)

holds as well as its dual, λ is a homomorphism which is clearly onto L.
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Corollary 1.2.4. Let L be a lattice generated by a set X, and let C be a convex subset of L with

X ∩ C = ∅. Let s be a term with variables in X whose evaluation in L is v. Then the evaluation

of s in L[C] is v if v /∈ C, and either (v, 0) or (v, 1) otherwise.

Proof. We induct on the complexity of s: If s has complexity 0, then s ∈ X and so sL[C] = v since

X ∩ C = ∅. Now suppose that s has complexity greater than 0 and any term with complexity

less than s whose evaluation in L is w evaluates in L[C] to w if w /∈ C, and either (w, 0) or (w, 1)

otherwise. WLOG, assume s = s1∨· · ·∨sn∨ t1∨· · ·∨ tm, where sLi /∈ C for i = 1, . . . , n and tLj ∈ C
for j = 1, . . . ,m. Since si and tj all have complexity less than s for 1 ≤ i ≤ n and 1 ≤ j ≤ m,

s
L[C]
i = sLi for i = 1, . . . , n and t

L[C]
j = (tLj , kj), for some kj ∈ 2, for j = 1, . . . ,m. Referring to

(1.2), we see that sL[C] is v if v /∈ C, and either (v, 0) or (v, 1) if v ∈ C, as desired.
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CHAPTER 2
FREE LATTICES

We begin this chapter by defining lattice terms and free lattices, as well as discussing the

connection between the two. We then develop some results which culminate in Whitman’s solution

to the word problem for free lattices. Finally, we conclude by defining the canonical form of a term

and of an element in a free lattice, and discuss an important property of the latter. The reader

may consult [5] for further details.

2.1 Introduction

Definition 2.1.1. We define lattice terms over a set X, and their associated lengths (or ranks), in

the following way:

Each element of X is a term of length (or rank) 1. Terms of length (or rank) 1 are called variables.

If t1, . . . , tn are terms of lengths (or ranks) k1, . . . , kn, then (t1 ∨ · · · ∨ tn) and (t1 ∧ · · · ∧ tn) are

terms with length (or rank) 1 + k1 + · · ·+ kn.

Remark 2.1.2. When we write a term we usually omit the outermost parentheses. Notice that if x,

y, and z ∈ X then

x ∨ y ∨ z x ∨ (y ∨ z) (x ∨ y) ∨ z

are all terms (which always represent the same element when interpreted in any lattice) but the

length of x ∨ y ∨ z is 4, while the other two terms are both of length 5. Thus our length function

gives preference to the first expression, i.e., it gives preference to expressions where unnecessary

parentheses are removed. Also note that the length of a term (when it is written with the outside

parentheses) is the number of variables, counting repetitions, plus the number of pairs of parentheses

(i.e., the number of left parentheses).

Definition 2.1.3. The complexity, or depth, of a term t the depth of its term tree; that is, t has

depth 0 if t ∈ X, and if t = t1 ∨ · · · ∨ tn or t = t1 ∧ · · · ∧ tn, where n > 1, then the complexity of t

is one more than the maximum of the complexities of t1, . . . , tn.

Definition 2.1.4. By the phrase ‘t(x1, . . . , xn) is a term’ we mean that t is a term and x1, . . . , xn

are (pairwise) distinct variables including all variables occurring in t. If t(x1, . . . , xn) is a term and

L is a lattice, then tL denotes the interpretation of t in L, i.e., the induced n–ary operation on

L. If a1, . . . , an ∈ L, we will usually abbreviate tL(a1, . . . , an) by t(a1, . . . , an). Very often in the

study of free lattices, we will be considering a lattice L with a specific generating set {x1, . . . , xn}.
In this case we will use tL to denote tL(x1, . . . , xn).

Definition 2.1.5. If s(x1, . . . , xn) and t(x1, . . . , xn) are terms and L is a lattice in which sL = tL

as functions, then we say the equation s ≈ t holds in L.
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Definition 2.1.6. Let F be a lattice and X ⊆ F . We say that F is freely generated by X if X

generates F and every map from X into any lattice L extends to a lattice homomorphism of F into

L.

Since X generates F, such an extension is unique. If follows easily that if F1 is freely generated by

X1 and F2 is freely generated by X2 and |X1| = |X2|, then F1 and F2 are isomorphic Thus, if X is

a set, a lattice freely generated by X is unique up to isomorphism. We will see that such a lattice

always exists. It is referred to as the free lattice over X and is denoted FL(X).

If n is a cardinal number, FL(n) denotes a free lattice whose free generating set has size n.

To construct FL(X), let T(X) be the set of all terms over X. T(X) can be viewed as an algebra

with two binary operations. Define an equivalence relation ∼ on T(X) by s ∼ t if and only if the

equation s ≈ t holds in all lattices. It is not difficult to verify that ∼ restricted to X is the equality

relation, that ∼ is a congruence relation on T(X), and that T(X)/ ∼ is a lattice freely generated by

X, provided we identify each element of x ∈ X with its ∼–class. This is the standard construction

of free algebras.

This construction is much more useful if we have an effective procedure which determines, for

arbitrary lattice terms s and t, if s ∼ t. The problem of finding such a procedure is informally

known as the word problem for free lattices.

Definition 2.1.7. If w ∈ FL(X), then w is an equivalence class of terms. Each term of this class

is said to represent w and is called a representative of w. More generally, if L is a lattice generated

by a set X, we say that a term t ∈ T(X) represents a ∈ L if tL = a.

Definition 2.1.8. A variety is a class of algebras (such as lattices) closed under the formation of

homomorphic images, subalgebras, and direct products. A variety is called nontrivial if it contains

an algebra with more than one element.

By Birkhoff’s Theorem (see, for example, [1]), varieties are equational classes, i.e., they are defined

by the equations they satisfy. If V is a variety of lattices and X is a set, we denote the free algebra

in V by FV (X) and refer to it as the relatively free lattice in V over X. If L is the variety of

all lattices, then, in this notation, FL (X) = FL(X). However, because of tradition, we will use

FL(X) to denote the free lattice. The relatively free lattice FV (X) can be constructed in the same

way as FL(X).

Notice that every nontrivial variety of lattices contains the two element lattice, which is denoted

by 2.

6



Lemma 2.1.9. Let V be a nontrivial variety of lattices and let FV (X) be the relatively free lattice

in V over X. Then∧
S ≤

∨
T implies S ∩ T 6= ∅ for each pair of finite subsets S, T ⊆ X. (†)

Proof. We shall prove the contrapositive of (†): Suppose that S and T are finite, disjoint subsets

of X. As noted above, 2 ∈ V . Let f be the map from X to 2 = {0, 1} which sends each x ∈ S
to 1 and all other x’s to 0. By the defining property of free algebras, f can be extended to a

homomorphism from FV (X) onto 2, which we also denote by f . Then f(
∧
S) = 1 � 0 = f(

∨
T ).

Since f must be order-preserving, this implies that
∧
S �

∨
T , as desired.

Lemma 2.1.10. Let a be an element of a lattice L generated by a set X. Suppose that for every

finite subset S of X,

a ≤
∨
S implies a ≤ s for some s ∈ S. (‡)

Then (‡) holds for all finite subsets of L.

Proof. Let K be the collection of all sets U with X ⊆ U ⊆ L such that (‡) holds for every finite

subset S of U . We shall use Zorn’s Lemma to show that K contains a maximal element:

First, K is a partially ordered set with respect to set inclusion, and by hypothesis, X ∈ K . Let

C be a nonempty chain in K . We argue that
⋃
C ∈ K : If S is a finite subset of

⋃
C, then as

C is a chain and S is finite, there exists US ∈ C such that S ⊆ US . Thus, (‡) holds for S, and so⋃
C ∈ K . Therefore, by Zorn’s Lemma, there exists a maximal U ∈ K .

Now, let u, v ∈ U . Then U ∪ {u ∧ v} ∈ K . To see this, suppose that a ≤
∨
S ∨ (u ∧ v) for some

finite S ⊆ U , but a � s for all s ∈ S. Then, since a ≤
∨
S ∨ u, (‡) implies a ≤ u. Similarly, a ≤ v

and so a ≤ u ∧ v. But, as U is maximal in K , U = U ∪ {u ∧ v}, i.e. u ∧ v ∈ U .

Finally, it is trivial that U ∪ {u ∨ v} ∈ K . So again by maximality of U , U ∪ {u ∨ v} = U , i.e.

u ∨ v ∈ U . Therefore, as U is a sublattice of L containing X, L = U ∈ K .

Lemma 2.1.11. Let L be a lattice generated by a set X and let a ∈ L.

Then

1. If a is join prime, then a =
∧
S for some finite subset S ⊆ X,

2. If a is meet prime, then a =
∨
S for some finite subset S ⊆ X.

If X satisfies condition (†) above, then

3. For every finite, nonempty subset S ⊆ X,
∧
S is join prime and

∨
S is meet prime,

4. If X is the disjoint union of Y and Z, and F is the filter of L generated by Y and I is the

ideal generated by Z, then L is the disjoint union of F and I.

7



Proof. Since L is generated by X, every element of L can be represented by a term with variables

in X. It follows from this and an easy induction on the length of such a term that if X = Y ∪ Z,

then L = F ∪ I where F is the filter generated by Y and I is the ideal generated by Z.

To prove 1., let F be the filter generated by Y = {x ∈ X : a ≤ x} and let I be the ideal

generated by Z = {x ∈ X : a � x}. Since a is join prime, a /∈ I, for otherwise a would be below

some join of elements in Z and hence below one of the joinands, contradicting the fact that a is

not below any element of Z. So, by the above observation, a ∈ F . This implies that a ≥
∧
S, for

some finite S ⊆ Y . But every element of Y is above a; hence a =
∧
S, as desired. Of course 2. is

proved dually.

Let T be a finite, nonempty subset of X and let a =
∧
T . If S is a finite subset of X such that∧

T = a ≤
∨
S, then by condition (†) there exists s ∈ T ∩ S. In particular, a =

∧
T ≤ s for some

s ∈ S. Thus, condition (‡) holds for all finite subsets S of X and hence a =
∧
T is join prime

by Lemma 2.1.10. By a similar argument, using the dual of Lemma 2.1.10,
∨
T is meet prime.

Therefore, 3. holds.

For 4., we have already observed that L = F ∪ I. If F ∩ I is nonempty, there would be finite

subsets S ⊆ Y ⊆ X and T ⊆ Z ⊆ X with
∧
S ≤

∨
T . But since (†) holds for X, S ∩ T 6= ∅,

contrary to Y ∩ Z 6= ∅.

Corollary 2.1.12. Let V be a nontrivial variety of lattices and let FV (X) be the relatively free

lattice in V over X. For each finite, nonempty subset S of X,
∧
S is join prime and

∨
S is meet

prime. In particular, every x ∈ X is both join and meet prime. Moreover, if x ≤ y for x and

y ∈ X, then x = y.

Proof. By Lemma 2.1.9, X satisfies (†) and so the first assertion follows from 3. of Lemma 2.1.11.

If we let S = {x} for x ∈ X, then it immediately follows that x =
∧
S is join prime and x =

∨
S is

meet prime. Finally, if x, y ∈ X such that x ≤ y, S = {x}, and T = {y}, then
∧
S ≤

∨
T and so

{x} ∩ {y} 6= ∅ by Lemma 2.1.9, i.e. x = y as desired.

Corollary 2.1.13. If L is a lattice generated by a set X which satisfies condition (†), then the

following hold.

1. If Y generates L then X ⊆ Y .

2. Every automorphism of L is induced by a permutation of X.

In particular, these statements hold for the relatively free lattice, FV (X), for any nontrivial variety

of lattices V . Moreover, the automorphism group of FV (X) is isomorphic to the full symmetric

group on X.

Proof. By Lemma 2.1.11 3., each x ∈ X is both join and meet prime, and hence both join and

meet irreducible. Fix x ∈ X, and let t be a term representing x in the sublattice generated by
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Y . We induct on the complexity of t to show that x ∈ Y : If t has complexity 0, then x ∈ Y . If

t = t1 ∨ · · · ∨ tn and if an element of X can be represented by a term with complexity smaller than

t is forced to also be in Y , then x being join irreducible allows x to be represented in the sublattice

generated by Y by one of the joinands of t. Thus, x ∈ Y by our inductive hypothesis. A dual

argument will prove that t = t1 ∧ · · · ∧ tn also forces x ∈ Y . Therefore, 1. holds.

Now, let f be an automorphism of L. Since f(X) must generate L, by 1. above X ⊆ f(X). We

now prove that (†) holds when X is replaced with f(X):

Let S and T be finite subsets of f(X) such that
∧
S ≤

∨
T . Since f is an isomorphism, f−1(

∧
S) ≤

f−1(
∨
T ), that is

∧
f−1(S) ≤

∨
f−1(T ), where f−1(S) and f−1(T ) are finite subsets of X. Since

X satisfies (†), f−1(S ∩ T ) = f−1(S) ∩ f−1(T ) 6= ∅, and thus S ∩ T 6= ∅.
Thus, f(X) satisfies (†) and is a generating set for L, so by a similar argument 1. must hold with

f(X) in place of X. Therefore, since X generates L, f(X) ⊆ X, and hence f is a permutation of

X. Since f is determined by where it sends X, we have proven 2.

Furthermore, by Lemma 2.1.9, 1. and 2. hold for FV (X). Finally, since every permutation of

X induces an automorphism of FV (X), 2. gives us that the automorphism group of FV (X) is

isomorphic to the full symmetric group on X.

Theorem 2.1.14. The free lattice FL(X) satisfies the following condition:

(W)
If v = v1 ∧ · · · ∧ vr ≤ u1 ∨ · · · ∨ us = u, then either vi ≤ u for some i, or

v ≤ uj for some j.

Proof. Suppose v = v1 ∧ · · · ∧ vr ≤ u1 ∨ · · · ∨ us = u but that vi � u and v � uj for all i and all j.

If v ≤ x ≤ u for some x ∈ X, then since x is meet prime, vi ≤ x ≤ u for some i, contrary to our

assumption. Let I be the interval u/v and let FL(X)[I] be the lattice obtained by doubling I. By

the above remarks, none of the generators is doubled. This implies that X is a subset of FL(X)[I]

and so the identity map on X extends to a homomorphism f : FL(X) → FL(X)[I]. Since x /∈ I
for x ∈ X, λ(x) = x for x ∈ X, where λ is the epimorphism defined by (1.1). Hence λ(f(w)) = w

for all w ∈ FL(X) and this implies f(w) = w if w /∈ I. Thus it follows from (1.2) and its dual that

f(v) = f(v1) ∧ · · · ∧ f(vr) = v1 ∧ · · · ∧ vr =
(
v,
∧
∅
)

= (v, 1)

� (u, 0) =
(
u,
∨
∅
)

= u1 ∨ · · · ∨ us

= f(u1) ∨ · · · ∨ f(us) = f(u),

contradicting the fact that v ≤ u and f is an order-preserving map.

Definition 2.1.15. The condition (W) is known as Whitman’s condition.

Remark 2.1.16. Note that Day’s doubling is a procedure for correcting (W)–failures.
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Corollary 2.1.17. Every sublattice of a free lattice satisfies (W). Every element of a lattice which

satisfies (W) is either join or meet irreducible.

Theorems 2.1.12 and 2.1.14 combine to give a recursive procedure for deciding, for terms s and t, if

sFL(X) ≤ tFL(X) known as Whitman’s solution to the word problem. To test if s ∼ t, the algorithm

is used twice to check if both sFL(X) ≤ tFL(X) and tFL(X) ≤ sFL(X) hold. The following appears in

[10].

Theorem 2.1.18. If s = s(x1, . . . , xn) and t = t(x1, . . . , xn) are terms and x1, . . . , xn ∈ X, then

the truth of

sFL(X) ≤ tFL(X) (∗)

can be determined by applying the following rules.

1. If s = xi and t = xj, then (∗) holds if and only xi = xj.

2. If s = s1 ∨ · · · ∨ sk is a formal join then (∗) holds if and only if s
FL(X)
i ≤ tFL(X) holds for all

i.

3. If t = t1 ∧ · · · ∧ tk is a formal meet then (∗) holds if and only if sFL(X) ≤ tFL(X)
i holds for all

i.

4. If s = xi and t = t1 ∨ · · · ∨ tk is a formal join, then (∗) holds if and only if xi ≤ t
FL(X)
j for

some j.

5. If s = s1 ∧ · · · ∧ sk is a formal meet and t = xi, then (∗) holds if and only if s
FL(X)
j ≤ xi for

some j.

6. If s = s1 ∧ · · · ∧ sk is a formal meet and t = t1 ∨ · · · ∨ tm is a formal join, then (∗) holds if

and only if s
FL(X)
i ≤ tFL(X) holds for some i, or sFL(X) ≤ tFL(X)

j holds for some j.

Proof. Conditions 1., 4., and 5. hold by Corollary 2.1.12, while 2. and 3. are trivial. Theorem

2.1.14 shows that free lattices satisfy 6. It is easy to see that all possibilities are covered by 1.–6. and

that each of these leads to a genuine reduction (except for 1., which gives the answer directly).

2.2 Canonical Form in Free Lattices

In this section we show that each element w of a free lattice has a term of least rank representing

it, unique up to commutativity.1 This term is called the canonical form of w. The phrase “unique

up to commutativity” can be made precise by defining equivalent under commutativity to be the

equivalence relation, s ≡ t, given by recursively applying the following rules.

1Usually the canonical form is described as “unique up to commutativity and associativity.” However, our definition
of lattice terms and their ranks, given at the beginning of the previous section, imply that a term of minimal rank
can be associated in only one way.
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1. s, t ∈ X and s = t.

2. s = s1 ∨ · · · ∨ sn and t = t1 ∨ · · · ∨ tn and there is a permutation σ of {1, . . . , n} such that

si ≡ tσ(i) for all i.

3. The dual of 2. holds.

Theorem 2.2.6 below shows that if two terms both represent the same element of FL(X) and both

have minimal rank among all such representatives, then they are equivalent under commutativity.

We define s ≤ t for terms s and t to mean sFL(X) ≤ tFL(X). Note that this is only a quasiorder.

Definition 2.2.1. Let L be a lattice and let A and B be finite subsets of L. We say that A join

refines B and we write A � B if for each a ∈ A there is a b ∈ B with a ≤ b. The dual notion is

called meet refinement and is denoted A� B.

Remark 2.2.2. Note that A� B does not imply B � A.

Lemma 2.2.3. The join refinement relation has the following properties.

1. A� B implies
∨
A ≤

∨
B.

2. The relation � is a quasiorder on the finite subsets of L.

3. If A ⊆ B then A� B.

4. If A is an antichain, A� B, and B � A, then A ⊆ B.

5. If A and B are antichains with A� B and B � A, then A = B.

6. If A� B and B � A, then A and B have the same set of maximal elements.

Proof. 1. Since A � B, for each a ∈ A there exists b ∈ B such that a ≤ b. So, for each a ∈ A,

a ≤
∨
B. Thus,

∨
A ≤

∨
B.

2. Let A,B be finite subsets of L. Since a ≤ a for all a ∈ A, A� A. Now assume A� B and

B � C, and let a ∈ A. If b ∈ B such that a ≤ b, and c ∈ C such that b ≤ c, then a ≤ c.

Thus, A� C.

3. If a ∈ A, then a ∈ B such that a ≤ a. Therefore, A� B.

4. Let a ∈ A. Since A� B, there exists b ∈ B such that a ≤ b. But since B � A, there exists

a1 ∈ A such that b ≤ a1. But since a ≤ a1 and A is an antichain, a = a1 = b ∈ B.

5. Since A is an antichain, A� B, and B � A, A ⊆ B by 4. Similarly, since B is an antichain,

A� B, and B � A, B ⊆ A by 4. above. Therefore, A = B.
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6. Let a be a maximal element of A. First, we argue that a ∈ B:

Since A� B, there exists b ∈ B such that a ≤ b. But since B � A, there exists a1 ∈ A such

that b ≤ a1. So as a is a maximal element of A, a = a1 = b ∈ B.

Next, we argue that a must be a maximal element of B:

Let b ∈ B such that a ≤ b. Since B � A, there exists a1 ∈ A such that b ≤ a1. So since a is

a maximal element of A, a = a1 = b.

A similar argument shows that a maximal element of B will be a maximal element of A, and

hence A and B have the same set of maximal elements.

Remark 2.2.4. We use the term “join refinement” because if u =
∨
A =

∨
B and A � B, then

u =
∨
A is a better join representation of u than u =

∨
B in that its elements are further down in

the lattice.

Lemma 2.2.5. Let t = t1 ∨ · · · ∨ tn, with n > 1, be a term such that

1. Each ti is either in X or formally a meet,

2. If ti =
∧
tij then tij � t for all j.

If s = s1 ∨ · · · ∨ sm and s ∼ t, then {t1, . . . tn} � {s1, . . . , sm}.

Proof. For each i we have ti ≤ s1 ∨ · · · ∨ sm. Applying (W) if ti is formally a meet and using join

primality if ti ∈ X, we conclude that either ti ≤ sj for some j, or ti =
∧
tij and tij ≤ s for some j.

However, since s ∼ t, the second case would imply tij ≤ t, contrary to assumption 2. Hence in all

cases there is a j such that ti ≤ sj . Thus {t1, . . . , tn} � {s1, . . . , sm}.

Theorem 2.2.6. For each w ∈ FL(X) there is a term of minimal rank representing w, unique up

to commutativity. This term is called the canonical form of w.

Proof. Suppose that s and t are both terms of minimal rank that represent the same element w in

FL(X). If either s or t is in X, then clearly s = t.

Suppose that t = t1 ∨ · · · ∨ tn and s = s1 ∨ · · · ∨ sm. If some ti is formally a join, we could lower the

rank of t by removing the parentheses around ti. Thus each ti is not formally a join. If there is a ti

such that ti =
∧
tij and tij ≤ t for some j, then ti ≤ tij ≤ t. In this case we could replace ti with

tij in t, producing a shorter term still representing w, which violates the minimality of the term t.

Thus t satisfies the hypotheses of Lemma 2.2.5, whence {t1, . . . , tn} � {s1, . . . , sm}. By symmetry,

{s1, . . . , sm} � {t1, . . . , tn}. Since both are antichains (by the minimality) they represent the same

set of elements of FL(X). Thus m = n and after renumbering si ∼ ti. Now by induction si and ti

are the same up to commutativity.

If t = t1 ∨ · · · ∨ tn and s = s1 ∧ · · · ∧ sm, then (W) implies that either ti ∼ t for some i or sj ∼ s

12



for some j, violating the minimality.

The remaining cases can be handled by duality.

Definition 2.2.7. A term is in canonical form if it is the canonical form of the element it represents.

Theorem 2.2.8. A term t = t1 ∨ · · · ∨ tn, with n > 1, is in canonical form if and only if

1. Each ti is either in X or formally a meet,

2. Each ti is in canonical form,

3. ti � tj for all i 6= j (the ti’s form an antichain),

4. If ti =
∧
tij then tij � t for all j.

A term t = t1 ∧ · · · ∧ tn, with n > 1, is in canonical form if and only if the duals of the above

conditions hold. A term x ∈ X is always in canonical form.

Proof. All of these conditions are clearly necessary. For the converse we need to show that if t

satisfies 1.–4. then it has minimal rank among the terms which represent the same element of

FL(X) as t. Suppose that s = s1 ∨ · · · ∨ sm is a term of minimal rank representing the same

element of FL(X) as t. Now using 1. and 4. for t, and the arguments of the last theorem for s,

Lemma 2.2.5 yields

{t1, . . . , tn} � {s1, . . . , sm} and

{s1, . . . , sm} � {t1, . . . , tn}.

Since both are antichains, we have that n = m and after renumbering si ∼ ti, i = 1, . . . , n. The

proof can now easily be completed with the aid of induction.

Definition 2.2.9. Let w ∈ FL(X) be join reducible and suppose t = t1∨· · ·∨tn (with n > 1) is the

canonical form of w. Let wi = t
FL(X)
i . Then {w1, . . . , wn} are called the canonical joinands of w.

We also say w = w1∨· · ·∨wn canonically and that w1∨· · ·∨wn is the canonical join representation

(or canonical join expression) of w. If w is join irreducible, we define the canonical joinands of w to

be the set {w}. Of course the canonical meet representation and canonical meetands of an element

in a free lattice are defined dually.

Definition 2.2.10. A join representation a = a1 ∨ · · · ∨ an in an arbitrary lattice is said to be

a minimal (nonrefinable) join representation if a = b1 ∨ · · · ∨ bm and {b1, . . . , bm} � {a1, . . . , an}
imply {a1, . . . , an} ⊆ {b1, . . . , bm}. Equivalently, a join representation a = a1∨· · ·∨an is minimal if

it is an antichain and nonrefinable, in the sense that whenever a = b1∨ · · ·∨ bm and {b1, . . . , bm} �
{a1, . . . , an}, then {a1, . . . , an} � {b1, . . . , bm}.
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Theorem 2.2.11. Let w = w1 ∨ · · · ∨ wn canonically in FL(X). If also w = u1 ∨ · · · ∨ um, then

{w1, . . . , wn} � {u1, . . . , um}.

Thus w = w1 ∨ · · · ∨ wn is the unique minimal join representation of w.

Proof. Interpreting the terms of Lemma 2.2.5 in FL(X) immediately gives this result, since w1, . . . , wn

is an antichain.
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CHAPTER 3
FINITELY PRESENTED LATTICES

We begin this chapter with giving important definitions for the theory of finitely presented

lattices, followed by Dean’s solution to the word problem for finitely presented lattices. We then

define the canonical form in finitely presented lattices and give an important result characterizing

the nonrefinable join representations of an element in a finitely presented lattice. These results can

all be found in [7]. We finish the chapter by giving Freese and Nation’s solution to the generalized

word problem for finitely presented lattices, as well some important definitions for our own solution

appearing in the following chapter.

3.1 Introduction

Definition 3.1.1. Let X be a set (of variables). A lattice relation is a formal expression of the

form s ≈ t, where s and t are terms with variables from X. We also consider s ≤ t to be a relation,

which in lattices is obviously equivalent to s ≈ s ∧ t. A presentation is a pair (X,R) where X is a

set and R is a set of relations with variables from X. We say that (X,R) is a finite presentation if

both X and R are finite.

A lattice F is the lattice finitely presented by (X,R) if there is a map ϕ : X → F such that F is

generated by ϕ(X), F satisfies the relations R under the substitution x 7→ ϕ(x), for x ∈ X, and

F satisfies the following mapping property: if L is a lattice and ψ : X → L is a map such that L

satisfies R under the substitution x 7→ ψ(x), then there is a homomorphism f : F → L such that

fϕ(x) = ψ(x) for all x ∈ X.

Remark 3.1.2. Using the definition it is easy to see that the lattice finitely presented by (X,R) is

unique up to isomorphism. This lattice is denoted Free(X,R).

Remark 3.1.3. We verify that Free(X)/θR, where θR is the congruence generated byR, is Free(X,R),

thereby showing the existence of Free(X,R): Let ηX : X ↪−→ Free(X) be the natural inclusion map-

ping and qθR : Free(X) → Free(X)/θR be the natural projection mapping. Then, following with

the notation of the definition above, we define ϕ = qθRηX . Clearly, since Free(X) is generated by

X, Free(X)/θR is generated by ϕ(X). Furthermore, since θR is the congruence generated by R,

Free(X)/θR satisfies the relations R under the substitution x 7→ ϕ(x), for x ∈ X. Finally, let L

be a lattice and ψ : X → L be a map such that L satisfies R under the substitution x 7→ ψ(x).

Using the universal mapping property of the free lattice Free(X), there exists a homomorphism

h : Free(X) → L such that ψ = hηX . Since h : Free(X) → L and qθR : Free(X) → Free(X)/θR

are homomorphisms, qθR is onto, and θR = ker(qθR) ⊆ ker(h) (as L satisfies R under the substitu-

tion x 7→ ψ(x)), there a homomorphism f : Free(X)/θR → L such that h = fqθR by the Second

Homomorphism Theorem (see [1]). Notice also that fϕ = fqθRηX = hηX = ψ, as desired.
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Definition 3.1.4. A partially defined lattice is a partially ordered set (P,≤) together with two

partial functions,
∨

and
∧

, from subsets of P into P such that if p =
∨
S then p is the least upper

bound of S in (P,≤), and dually. We use (P,≤,
∨
,
∧

) to denote this structure.

Remark 3.1.5. The defined joins and meets in a partially defined lattice are not restricted to be

binary. So, for example, d = a ∨ b ∨ c is allowed (assuming d is the least upper bound in P , of

course), while a ∨ b may not be defined and may not even exist in P .

Remark 3.1.6. Given any finite lattice presentation there is a polynomial time algorithm to produce

a finite partially defined lattice such that the finitely presented lattices generated by both are

isomorphic. Consequently, in our study of finitely presented lattices we will study Free(P,≤,
∨
,
∧

).

Rather than providing the details of the algorithm here, we refer the reader to [9] and presently

discuss the following example of producing a finite partially defined lattice from a finite lattice

presentation:

Consider the lattice presentation

〈a, b, c, d, e | d ∧ e = (a ∧ b) ∨ c〉.

Now, P will contain every generator of this presentation. However, for each subterm of a relation of

the presentation which itself is not already a generator of the presentation, we will need to designate

a new element of P . The following figure gives P along with its ordering:

ob

o
g

oa o f

o
c

o
d

o
e

Figure 3.1: A new (P,≤)

Finally, to complete the construction of the new finite partially defined lattice, we give the defined

joins and meets:

f = c+ g, f = de, g = ab
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3.2 Dean’s Theorem

The word problem for (X,R) is, given terms s and t with variables from X, to decide if the

interpretations of s and t in Free(X,R) are equal. Equivalently, is (s, t) ∈ θR? In this section, we

provide one solution to the word problem.

Definition 3.2.1. An ideal I in a partially defined lattice (P,≤,
∨
,
∧

) is a subset of P such that

if a ∈ I and b ≤ a then b ∈ I, and if a1, . . . , ak are in I and a =
∨
ai is defined then a ∈ I.

Remark 3.2.2. It is worth pointing out that these two rules may have to be applied repeatedly to

find the ideal generated by a set.

Remark 3.2.3. The set of all ideals of (P,≤,
∨
,
∧

) including the empty ideal forms a lattice denoted

Idl0(P,≤,
∨
,
∧

) or just Idl0(P ). The map p 7→ id(p) embeds P into Idl0(P ), preserving the order

(and its negation) and all the defined joins and meets. This is easy to see: if a < b in P then

id(a) ( id(b), and if a = a1 ∨ · · · ∨ ak is a defined join then a is in the ideal I generated by the

union of the id(ai)’s, whence it follows that I = id(a). If b is the greatest lower bound in (P,≤) of

{a1, . . . , ak} then id(b) = id(a1)∩ · · · ∩ id(ak), so the meet relations are certainly preserved. Hence

the map p 7→ id(p) extends to a map

ψ : Free(P,≤,
∨
,
∧

)→ Idl0(P,≤,
∨
,
∧

),

and this shows in particular that (P,≤) is embedded in Free(P,≤,
∨
,
∧

).

Definition 3.2.4. If w ∈ Free(P,≤,
∨
,
∧

) we let

w = idP (w) = {a ∈ P : a ≤ w},

the ideal of P below w. Define w (the filter above w), Fil1(P,≤,
∨
,
∧

), and ψd : Free(P,≤,
∨
,
∧

)→
Fil1(P,≤,

∨
,
∧

) dually. If w1, . . . , wk ∈ Free(P,≤,
∨
,
∧

) let idP (w1, . . . , wk) be the ideal of (P,≤
,
∨
,
∧

) generated by w1∪· · ·∪wk which of course is the ideal w1∨· · ·∨wk. The filter filP (w1, . . . , wk)

is defined dually.

Remark 3.2.5. One can show by induction on the rank of w that, for the map ψ above,

ψ(w) = idP (w) = w,

as follows: If w has rank 1, then w ∈ P and hence ψ(w) = id(w) = w. Now, assume w has rank

greater than 1, and that if v ∈ Free(P,≤,
∨
,
∧

) has rank less than w then ψ(v) = v. WLOG,

assume w = w1 ∨ · · · ∨ wk. Since ψ is a homomorphism and w1, . . . , wk all have rank less than w,

ψ(w) = ψ(w1) ∨ · · · ∨ ψ(wk) = w1 ∨ · · · ∨ wk = w1 ∨ · · · ∨ wk = w, as desired.

A dual argument shows that ψd(w) = filP (w) = w.
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The following is Dean’s solution to the word problem for finitely presented lattices (see [3]).

Theorem 3.2.6. Let s and t be terms with variables in P . Then s ≤ t holds in Free(P,≤,
∨
,
∧

) if

and only if one of the following holds:

(i) s ∈ P and t ∈ P and s ≤ t in (P,≤);

(ii) s = s1 ∨ · · · ∨ sk and ∀ i si ≤ t;

(iii) t = t1 ∧ · · · ∧ tk and ∀ j s ≤ tj;

(iv) s ∈ P and t = t1 ∨ · · · ∨ tk and s ∈ idP ({t1, . . . , tk});

(v) s = s1 ∧ · · · ∧ sk and t ∈ P and t ∈ filP ({s1, . . . , sk});

(vi) s = s1 ∧ · · · ∧ sk and t = t1 ∨ · · · ∨ tm and ∃ i si ≤ t or ∃ j s ≤ tj or ∃ a ∈ P s ≤ a ≤ t.

Proof. First, it is easy to see that all possibilities are covered by (i) – (vi) and that each of these

leads to a genuine reduction (except for (i), which gives the answer directly).

Since (P,≤) is embedded in Free(P,≤,
∨
,
∧

), if s and t are in P , then s ≤ t holds in Free(P,≤,
∨
,
∧

)

if and only if it holds in (P,≤).

Now, assume that (ii), (iii), (iv), (v), or (vi) hold. Clearly, if (ii), (iii) or (vi) hold, then s ≤ t holds

in Free(P,≤,
∨
,
∧

). A straightforward inductive argument shows that if (iv) or (v) holds then s ≤ t
holds in Free(P,≤,

∨
,
∧

). Therefore, any of (i) to (vi) implies s ≤ t.
For the converse suppose s ≤ t holds in Free(P,≤,

∨
,
∧

).

If s = s1 ∨ · · · ∨ sk, then clearly (ii) holds. Similarly, if t = t1 ∧ · · · ∧ tk, then (iii) immediately

follows.

Now, assume s ∈ P and t = t1 ∨ · · · ∨ tk. Using the homomorphism ψ above

idP (s) = ψ(s) ≤ ψ(t) = idP (t) = idP ({t1 ∨ · · · ∨ tk})

= idP (t1) ∨ · · · ∨ idP (tk)

= idP ({t1, . . . , tk}),

and so s ∈ idP ({t1, . . . , tk}), proving (iv).

If s = s1 ∧ · · · ∧ sk and t ∈ P , using a dual argument with the dual homomorphism ψd, (v) easily

follows.

Finally, suppose s ≤ t and s = s1 ∧ · · · ∧ sk and t = t1 ∨ · · · ∨ tm and, for a contradiction, that

there is no i with si ≤ t, no j with s ≤ tj and no a ∈ P with s ≤ a ≤ t. Let C be the interval

[s, t] and let FP [C] be the lattice with C doubled, where FP = Free(P,≤,
∨
,
∧

). Since P ∩ C = ∅,
(P,≤) is embedded in FP [C], and by (1.2) the image satisfies the join and meet relations. Hence

there is a homomorphism ϕ : FP � FP [C]. Let v be the interpretation of s in FP and let u be

the interpretation of t. By Corollary 1.2.4 the interpretation of s in FP [C] is either (v, 0) or (v, 1).
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Since s = s1∧ · · · ∧ sk and each si is not in C, each si is above (v, 1), i.e. (v, 1) ≤ s in FP [C]. Thus,

as either possible interpretation of s in FP [C] is below (v, 1), it follows that the interpretation of s

in FP [C] must be (v, 1). By a similar argument, the interpretation of t in FP [C] must be (u, 0). But

then ϕ(s) = (v, 1) 6≤ (u, 0) = ϕ(t), which is a contradiction since s ≤ t. Therefore, (vi) holds.

Remark 3.2.7. If there are no defined joins then idP ({t1, . . . , tk}) is simply the set of elements below

one of the ti’s. Hence condition (iv) of Dean’s Theorem can be simplified to saying that if s ∈ P
and t = t1 ∨ · · · ∨ tk, then s ≤ t if and only if s ≤ ti for some i. In other words the elements of P

are join prime. Also note that in this case condition (vi) simplifies to

s = s1 ∧ · · · ∧ sk and t = t1 ∨ · · · ∨ tm implies ∃ i si ≤ t or ∃ j s ≤ tj (W)

which is just Whitman’s condition.

If no joins and no meets are defined and the order on P is an antichain, then Dean’s solution

reduces to Whitman’s solution to the word problem for free lattices.

Lemma 3.2.8. If x ∈ P and x ≤ t1 ∨ · · · ∨ tn in Free(P,≤,
∨
,
∧

) then there is a set Y ⊆ P such

that Y � {t1, . . . , tn} and x ≤
∨
Y in Free(P,≤,

∨
,
∧

).

Proof. By (iv) of Dean’s Theorem, the hypotheses imply that x is in the ideal of (P,≤,
∨
,
∧

)

generated by Y = {y ∈ P : y ≤ ti for some i}. Clearly Y � {t1, . . . , tn}. The join of Y may

not be defined in (P,≤,
∨
,
∧

), but it is easy to see that every element of the ideal of (P,≤,
∨
,
∧

)

generated by Y , idP (Y ), is below
∨
Y in Free(P,≤,

∨
,
∧

), and hence x ≤
∨
Y .

3.3 Canonical Form in Finitely Presented Lattices

Each element in a free lattice has a canonical form, that is a shortest term representing it, which

is unique up to commutativity and associativity. This syntactical concept is closely related to

the arithmetic of the free lattice. We will see that the elements of Free(P,≤,
∨
,
∧

) also have a

canonical form and that there is a nice connection between this form and the arithmetic of the

finitely presented lattice. The canonical form presented here (taken from [4]) has the nice property

that when applied to free lattices, it agrees with Whitman’s.

As we mentioned above, the major difference between Dean’s algorithm and Whitman’s lies in

conditions (iv), (v) and (vi). However if we are dealing with a certain kind of term, which we will

call adequate, these difficult conditions can be replaced with the simple free lattice conditions.

Definition 3.3.1. Let (P,≤,
∨
,
∧

) be a finite partially defined lattice. A term t with variables

from P is called adequate if it is an element of P , or if t = t1 ∨ · · · ∨ tn is a formal join, each ti is

adequate, and if p ≤ t for p ∈ P then p ≤ ti for some i. If t is formally a meet the dual condition

must hold.

19



Lemma 3.3.2. Let s and t be adequate terms. Then s ≤ t in Free(P,≤,
∨
,
∧

) if and only if s ≤ t
in Free(P,≤).

Proof. Note that (P,≤) denotes P as a partially ordered set, with no nontrivial joins and meets

defined. Thus, (i) of Dean’s Theorem holds in Free(P,≤,
∨
,
∧

) if and only if (i) holds in Free(P,≤).

Furthermore, as (ii) and (iii) of Dean’s Theorem hold in any lattice if s ≤ t, (ii) and (iii) hold in

Free(P,≤,
∨
,
∧

) if and only (ii) and (ii) hold in Free(P,≤), respectively.

If s ∈ P and t = t1 ∨ · · · ∨ tk and (iv) of Dean’s Theorem holds in Free(P,≤,
∨
,
∧

), then since t is

adequate, s ≤ ti for some i. By Remark 3.2.7, this implies that (iv) of Dean’s Theorem holds in

Free(P,≤). A dual argument shows that if s = s1 ∧ · · · ∧ sk and t ∈ P and (v) of Dean’s Theorem

holds in Free(P,≤,
∨
,
∧

), it must hold in Free(P,≤).

Finally, if s = s1∧· · ·∧sk and t = t1∨· · ·∨tm and (vi) of Dean’s Theorem holds in Free(P,≤,
∨
,
∧

),

then the case that s ≤ a ≤ t for some a ∈ P reduces to s ≤ si ≤ a ≤ tj ≤ t for some si and tj as

both s and t are adequate terms. Thus, (W) holds in Free(P,≤), i.e. (vi) of Dean’s Theorem holds

for Free(P,≤).

For the converse, it is easy to see from Remark 3.2.7 that if (iv), (v), or (vi) of Dean’s Theorem

hold in Free(P,≤), they must hold in Free(P,≤,
∨
,
∧

), respectively.

Remark 3.3.3. An easy inductive argument on complexity of terms shows that for every element w

of the lattice Free(P,≤,
∨
,
∧

) there is an adequate term representing w.

Remark 3.3.4. It follows from Corollary 2.1.12 and the definition of adequate that every term is

adequate in the case of free lattices.

Theorem 3.3.5. For each element of Free(P,≤,
∨
,
∧

) there is an adequate term of minimal rank

representing it, and this term is unique up to commutativity.

Proof. Suppose that s and t are both shortest adequate terms that represent the same element w

in Free(P,≤,
∨
,
∧

). If either s or t is in P , then clearly s = t.

Observe that if t = t1 ∨ · · · ∨ tn and some ti is formally a join, we could lower the rank of t by

removing the parentheses around ti. Since ti is adequate, the resulting term would still adequately

represent w. But this would violate the minimality of t. Thus we conclude that each ti is not

formally a join.

Suppose that t = t1 ∨ · · · ∨ tn and s = s1 ∨ · · · ∨ sm. Then ti ≤ s1 ∨ · · · ∨ sm for each ti. This

implies that either ti ≤ sj for some j, or ti =
∧
tij and tij ≤ s for some j, or there is an x ∈ P with

ti ≤ x ≤ s1 ∨ · · · ∨ sm. In the second case we have ti ≤ tij ≤ t, and replacing ti by tij in t produces

a shorter term still representing w. It is easy to see that this term is still adequate, violating the

minimality of the term t. If the third case holds then, by the adequacy of s, x ≤ sj for some j.

Hence in all cases there is a j such that ti ≤ sj . Thus {t1, . . . , tn} � {s1, . . . , sm}. By symmetry,

{s1, . . . , sn} � {t1, . . . , tm}. Since both are antichains (by the minimality) they represent the same
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set of elements of Free(P,≤,
∨
,
∧

). Thus m = n and after renumbering si ≈ ti. Now by induction

si and ti are the same up to commutativity.

If t = t1 ∨ · · · ∨ tn and s = s1 ∧ · · · ∧ sm, then, since neither s nor t is in P , (W) implies that either

ti = t for some i or sj = s for some j, violating the minimality.

The remaining cases can be handled by duality.

Definition 3.3.6. The shortest adequate term mentioned in the above theorem representing w,

unique up to commutativity, is called the canonical form of w.

Remark 3.3.7. Examining the proof of this theorem we see that an adequate term t = t1 ∨ · · · ∨ tn
is a minimal adequate term if every proper subterm is a minimal adequate term, the ti’s form an

antichain, and if ti =
∧
j tij , then tij � t for every j.

Theorem 3.3.8. To put a term t = t1 ∨ · · · ∨ tn with n > 1 into canonical form, do the following.

(a) (Remove unnecessary parentheses) For each i for which ti is a formal join, replace ti by its

joinands. We still use t1, . . . , tn to denote the list of joinands.

(b) Put each of the ti’s into canonical form.

(c) Let T be the maximal elements of {t1, . . . , tn} ∪ idP (t).

(d) If ti ∈ T is a formal meet, ti =
∧
j tij, and tij ≤ t for some j, then replace ti with tij in T .

(e) If s1, . . . , sm are the maximal elements of T , then the canonical form of t is s1 ∨ · · · ∨ sm.

In free lattices the canonical form is associated with nonrefinable join representations, which in

free lattices are unique. The next theorem will show that in a finitely presented lattice each element

can have only finitely many nonrefinable join representations, and these can be easily found from

the canonical form.

Definition 3.3.9. We define the canonical join representation of w ∈ Free(P,≤,
∨
,
∧

) to be

w1∨· · ·∨wm if the canonical form of w is t1∨· · ·∨tm and the interpretation of ti in Free(P,≤,
∨
,
∧

)

is wi. It is useful to separate out the elements of P in such a representation. Thus let

w = w1 ∨ · · · ∨ wn ∨ x1 ∨ · · · ∨ xk (3.1)

=
∨∧

wij ∨
∨
xi (3.2)

be the canonical join representation of w where xi ∈ P , i = 1, . . . , k, and the canonical meet

representation of wi is wi =
∧
wij .

Remark 3.3.10. Note that an element x ∈ P is join irreducible in Free(P,≤,
∨
,
∧

) except when

some (z1, . . . , z`, x) ∈
∨

is among the defining relations of (P,≤,
∨
,
∧

) and x 6= zi, i = 1, . . . , `.
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Theorem 3.3.11. Let the canonical join representation for w be given by (3.1). Every join rep-

resentation of w can be refined to a nonrefinable join representation of w. If w = v1 ∨ · · · ∨ vm in

Free(P,≤,
∨
,
∧

) then there exist y1, . . . , yr ∈ P such that

w = w1 ∨ · · · ∨ wn ∨ y1 ∨ · · · ∨ yr

and

{w1, . . . , wn, y1, . . . , yr} � {v1, . . . , vm}.

Every nonrefinable join representation of w contains {w1, . . . , wn} and also contains every xi which

is join irreducible.

Proof. Assume w = v1 ∨ · · · ∨ vm. Since, for fixed i = 1, . . . , n,

wi ≤ v1 ∨ · · · ∨ vm = w

we have that either (i) wi ≤ vj for some j, (ii) wij ≤ w, or (iii) wi ≤ x ≤ w for some x ∈ P .

If either (ii) or (iii) held, we could produce a shorter adequate term representing w, violating the

minimality of the representation w = w1 ∨ · · · ∨ wn ∨ x1 ∨ · · · ∨ xk. Hence (i) must hold.

Since, for 1 ≤ i ≤ k, xi ≤ v1 ∨ · · · ∨ vm, by Lemma 3.2.8 there is a set {zi1, . . . , zis} ⊆ P such that

xi ≤ zi1 ∨ · · · ∨ zis in Free(P,≤,
∨
,
∧

) and

{zi1, . . . , zis} � {v1, . . . , vm}.

Hence if we let {y1, . . . yr} be the union of the z’s obtained from all of the xi’s,

{w1, . . . , wn, y1, . . . , yr} � {v1, . . . , vm}.

But then, xi ≤ zi1∨· · ·∨zis gives us that x1∨· · ·∨xk ≤ y1∨· · ·∨yr, and so since {w1, . . . , wn, y1, . . . , yr} �
{v1, . . . , vm}, w = x1∨ · · · ∨xk ∨w1∨ · · · ∨wn ≤ y1∨ · · · ∨ yr ∨w1∨ · · · ∨wn ≤ v1∨ · · · ∨ vm = w, i.e.

w = w1 ∨ · · · ∨ wn ∨ y1 ∨ · · · ∨ yr.

This proves the first part of the theorem and also shows that every nonrefinable join representa-

tion of w must be a subset of {w1, . . . , wn, y1, . . . , yr} for some y1, . . . , yr in P . Since {w1, . . . , wn} �
{v1, . . . , vm} by the argument at the beginning of this proof, no wi can be omitted from {w1, . . . , wn, y1, . . . , yr}
if w = v1 ∨ · · · ∨ vm is a nonrefinable join representation since {w1, . . . , wn} forms an antichain.

Hence every nonrefinable join representation of w has the form {w1, . . . , wn, y1, . . . , yr} for some

y1, . . . , yr in P .

This proves everything except the statement about the join irreducible xi’s. First we claim that

each xi in (3.1) is a maximal element of idP (w). If, on the other hand, xi < y ≤ w for some y ∈ P ,
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we could replace xi by y in (3.1). The resulting expression would still correspond to an adequate

term, in violation of the uniqueness of the canonical form. Assume {v1, . . . , vm} is a nonrefinable

join representation of w. By Theorem 3.2.6, xi ≤ v1 ∨ · · · ∨ vm means that xi is in the ideal of P

generated by
⋃
j idP (vj). This ideal is obtained from this union by alternately taking joins of sub-

sets of this union that are defined in (P,≤,
∨
,
∧

) and adding all elements in P less than something

in the set. Obviously all such elements will be in idP (w). But since xi is a maximal element in

idP (w), the only way for a join of elements of P below w to contain (be greater than or equal to)

xi is for it to equal xi. Thus, in the case that xi is join irreducible, we must have xi ≤ vj for some

j. We have shown that {v1, . . . , vm} = {w1, . . . , wn, y1, . . . , yr} for some yj ’s. Since xi ≤ wk would

violate the canonical form (3.1) of w, we must have xi ≤ yj for some j. But the maximality of xi

implies xi = yj , proving the last statement.

Remark 3.3.12. Notice that this proof shows that every nonrefinable join representation of w refines

the canonical join representation.

3.4 The Generalized Word Problem and PC(P )

The beginning results in this section are largely based on [6].

Definition 3.4.1. We denote the join and meet closure of P in Free(P,≤,
∨
,
∧

) by P∨ and P∧,

respectively. Furthermore, we let L0 = P∨(∧∨)
n

be the n-fold closure of P∨ under joins and meets,

and L1 = P∧(∨∧)
n

be the n-fold closure of P∧ under joins and meets.

Remark 3.4.2. L0 and L1 are finite subsets of Free(P,≤,
∨
,
∧

) closed under joins and meets, where

L0 possesses a least element and L1 possesses a greatest element. Hence, both L0 and L1 are lattices.

More specifically, L0 is a join subsemilattice of Free(P,≤,
∨
,
∧

) and L1 is a meet subsemilattice of

Free(P,≤,
∨
,
∧

). If n is large enough these lattices will satisfy the relations of P and thus there

are epimorphisms f0 : Free(P,≤,
∨
,
∧

)→ L0 and f1 : Free(P,≤,
∨
,
∧

)→ L1.

Definition 3.4.3. The epimorphisms f0 and f1 above are referred to as the standard epimorphism

and the dual standard homomorphism, respectively.

Remark 3.4.4. It is easy to see that f0 is the identity on L0 and f1 is the identity on L1. Furthermore,

we argue that f0(w) ≤ w and w ≤ f1(w) for all w ∈ Free(P,≤,
∨
,
∧

): Let ∨i and ∧i denote the

operations of Li (i = 0, 1), and let S0 = {y ∈ Free(P,≤,
∨
,
∧

) : f0(y) ≤ y}. Note first that

a ∧0 b =
∨
{x ∈ L0 : x ≤ a and x ≤ b} ≤ a ∧ b for a, b ∈ L0

a ∨1 b =
∧
{y ∈ L1 : a ≤ y and b ≤ y} ≥ a ∨ b for a, b ∈ L1.

If b, c ∈ S0, then

f0(b ∧ c) = f0(b) ∧0 f0(c) ≤ f0(b) ∧ f0(c) ≤ b ∧ c,
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so b ∧ c ∈ S0. Similarly, b ∨ c ∈ S0. Thus S0 is a sublattice of Free(P,≤,
∨
,
∧

) with P ⊆ S0,

and so S0 = Free(P,≤,
∨
,
∧

). Therefore, f0(w) ≤ w, and by a dual argument, w ≤ f1(w), for all

w ∈ Free(P,≤,
∨
,
∧

).

Lemma 3.4.5. Let f : Free(P,≤,
∨
,
∧

) → L0 × L1 be given by f(w) = (f0(w), f1(w)). If w ∈
L0 ∩ L1, then f−1(f(w)) = {w}.

Proof. Since w ∈ L0 ∩ L1, f(w) = (w,w). So, if u ∈ f−1(f(w)), then f(u) = (w,w), and hence

w = f0(u) ≤ u. Similarly, u ≤ f1(u) = w. Therefore, f−1(f(w)) = {w}.

Definition 3.4.6. The generalized word problem for a finitely presented algebra A asks if there

is an algorithm to determine, for an arbitrary element d ∈ A and a finite set U = {u1, . . . , uk} of

elements of A, if d is in the subalgebra generated by U .

Theorem 3.4.7. The generalized word problem for lattices is (uniformly) solvable.

Proof. Let d ∈ Free(P,≤,
∨
,
∧

) and let f be the homomorphism onto the finite lattice L0 × L1

described above. If n is chosen large enough so that d ∈ L0 ∩ L1 = P∨(∧∨)
n ∩ P∧(∨∧)n , by

Lemma 3.4.5, f−1(f(d)) = {d}. Now let u1, . . . , uk be elements of Free(P,≤,
∨
,
∧

). We claim d

is in the sublattice generated by u1, . . . , un if and only if f(d) is in the sublattice generated by

f(u1), . . . , f(un): If the latter condition holds, then there is a term t such that

f(d) = t(f(u1), . . . , f(un)).

Since f is a homomorphism, t(f(u1), . . . , f(un)) = f(t(u1, . . . , un)). Thus, d = t(u1, . . . , un) is in

the sublattice generated by u1, . . . , un. The other direction is obvious. This construction is effective

so the theorem follows from the claim.

We now end this section by giving two important definitions which will be important for our

new results.

Definition 3.4.8. An epimorphism f : K → L is called lower bounded if each element x ∈ L has a

least preimage. This least preimage, when it exists, is denoted βf (x) or just β(x) . Upper bounded

is defined dually and the greatest preimage, when it exists, is denoted αf (x) or just α(x). The map

f is bounded if it is both upper and lower bounded.

Definition 3.4.9. Let (P,≤,
∨
,
∧

) be a partially defined lattice. The partial completion of (P,≤
,
∨
,
∧

), denoted PC(P ), is the sublattice of Idl0(P )× Fil1(P ) generated by {(idP (p),filP (p)) : p ∈
P}.

Remark 3.4.10. In working with PC(P ), P is usually identified with {(idP (p),filP (p)) : p ∈ P}.
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CHAPTER 4
NEW RESULTS

We now further explore algorithms for the generalized word problem. Our first result shows that,

for free lattices, there is a polynomial time algorithm for the generalized word problem. We begin

with the following definition.

Definition 4.0.1. Let L be a lattice generated by X. Let Y be a subset of L and t(X) be a lattice

term. We say that Y interlaces t iff, for every branch of the term tree of t, there are nodes t′ and

t′′, with t′′ a child of t′, such that there exists y ∈ Y between t′(X) and t′′(X).

Remark 4.0.2. Before we continue, let us take some time to clarify some aspects of what we have

just defined:

First, if t is a variable, Y interlaces t iff t(X) ∈ Y .

Next, let us clarify other aspects of our definition by referring to the following term tree:

o
a

o
a ∨ (b ∧ c)

o b ∧ c

o
b

o
c

Figure 4.1: Interlacing clarification example

In the above term tree, we have three branches: one originates at a∨ (b∧ c) and ends at a; another

originates at a∨ (b∧ c), passes through b∧ c, and ends at b; a final branch originates at a∨ (b∧ c),
passes through b∧ c, and ends at c. Thus, by “branch of the term tree of t” in our definition above,

in particular we mean a path along the term tree of t which originates at t.

Furthermore, in the above term tree, a is a child of a∨ (b∧ c), b∧ c is a child of a∨ (b∧ c), and b is

a child of b∧ c. However, b is not a child of a∨ (b∧ c). Thus, by “t′′ a child of t′ ” in our definition

above, we mean t′′ is a direct descendant of t′.

Lastly, if we had a set Y which interlaced our term a ∨ (b ∧ c), we would be able to find y ∈ Y
between a and a ∨ (b ∧ c), i.e. a ≤ y ≤ a ∨ (b ∧ c) in the lattice L. However, if we are able to find

y ∈ Y between b ∧ c and b, we of course would have b ∧ c ≤ y ≤ b in the lattice L. Thus, by “there

exists y ∈ Y between t′(X) and t′′(X)” in our definition above, we mean either t′(X) ≤ y ≤ t′′(X)

in L or t′′(X) ≤ y ≤ t′(X) in L, depending on the ordering of t′(X) and t′′(X) in L.

We now present the main result that we will use in order to show that the generalized word problem

for free lattices can be done in polynomial time.
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Theorem 4.0.3. Let d ∈ FL(X) and Y be a finite subset of FL(X).

(a) If Y interlaces a term t representing d in FL(X), then d ∈ SgFL(X)(Y ).

(b) If d ∈ SgFL(X)(Y ), then Y interlaces the canonical form of d.

Proof. Suppose t is a term such that d = t(X) and Y interlaces t. If c(t) = 1, d ∈ Y . Now,

assume c(t) > 1, every term s with c(s) < c(t) and Y interlacing s forces s(X) ∈ SgFL(X)(Y ), and

t = t1 ∨ · · · ∨ tr. Fix ti. We must either have some yi ∈ Y between ti(X) and t(X) or Y interlaces

ti. If some yi ∈ Y is between ti(X) and t(X), we can replace ti(X) with yi in the expression of

t(X) and obtain another representation of d. If Y interlaces ti, then by our inductive hypothesis,

ti(X) ∈ SgFL(X)(Y ). Let B = {b1, . . . , br}, where bj is either tj(X) if tj(X) ∈ SgFL(X)(Y ) or is yj

if tj(X) ≤ yj ≤ t(X). Then clearly
∨
tj(X) ≤

∨
B ≤ t(X) and hence d =

∨
B ∈ SgFL(X)(Y ). If

t = t1 ∧ · · · ∧ tr, then by duality we can also show d ∈ SgFL(X)(Y ). Therefore, by induction on c(t),

d ∈ SgFL(X)(Y ).

Now suppose d ∈ SgFL(X)(Y ), and let s be a term of minimal complexity with d = s(Y ).

First, if d ∈ X we shall see that s can only be a variable: First, if s is in fact a variable, then clearly

d = s(Y ) ∈ Y . If s = s1 ∨ · · · ∨ sm, then since d ∈ X and hence join irreducible, d must be equal to

one of the joinands of s(Y ), a contradiction to s being a term of minimal complexity representing

d in SgFL(X)(Y ). If s = s1 ∧ · · · ∧ sm, then a dual argument will give another contradiction since

d ∈ X is meet irreducible. Therefore, d ∈ Y .

Now let d = d1 ∨ . . . ∨ dn canonically in FL(X). If s is a variable, then d ∈ Y and we are done.

Suppose for a contradiction that s = s1 ∧ · · · ∧ sm. By (W), we would have that either sj(Y ) ≤ d

or s(Y ) ≤ dk. In the first case d = sj(Y ), contrary to s being of minimal complexity. In the second

case d = dk, contrary to the canonical form of d. Thus, we must have s = s1 ∨ · · · ∨ sm.

Fix di, where 1 ≤ i ≤ n. Since {d1, . . . , dn} � {s1(Y ), . . . , sm(Y )} by Theorem 2.2.11, di ≤ sj(Y )

for some sj . Since s is of minimal complexity, sj cannot be a join and hence must either be a

variable or sj = sj1∧ . . .∧sjk. If sj is a variable, sj(Y ) ∈ Y and sj(Y ) ∈ d/di. If sj = sj1∧ . . .∧sjk,
(W) would guarantee that either sjl(Y ) ≤ d for some 1 ≤ l ≤ k or sj(Y ) ≤ dp for some 1 ≤ p ≤ n.

In the first case, we could replace sj with sjl in s and obtain a term of lower complexity representing

d, a contradiction. In the second case, di ≤ sj(Y ) ≤ dp forces di = sj(Y ) ∈ SgFL(X)(Y ). Since

c(di) < c(d), we can invoke induction to conclude that Y interlaces the canonical form of di, and

hence for every branch of the term tree of d = d1 ∨ . . . ∨ dn containing di, there are nodes d′i and

d′′i with d′′i a child of d′i such that there exists y ∈ Y between d′i and d′′i .

A duality argument completes the proof.

Corollary 4.0.4. Let d ∈ Free(P,≤) and Y be a finite subset of Free(P,≤).

(a) If Y interlaces a term t representing d in Free(P,≤), then d ∈ SgFree(P,≤)(Y ).

(b) If d ∈ SgFree(P,≤)(Y ), then Y interlaces the canonical form of d.
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Corollary 4.0.5. Let d ∈ FL(X) and Y be a finite subset of FL(X). Then d ∈ SgFL(X)(Y ) iff

there is a term t(X) representing d in FL(X), i.e. d = t(X), such that Y interlaces t.

Given d ∈ FL(X), we can use Corollary 4.0.5 to write out a polynomial time algorithm to test if

d ∈ SgFL(X)(Y ):

1. First, test if d ∈ Y . If it is, d ∈ SgFL(X)(Y ) and we are done.

2. At this point, we may sssume d /∈ Y . If d ∈ X, as we saw in the proof of Theorem 4.0.5,

d /∈ SgFL(X)(Y ). Thus, we may assume that d is either canonically a join or a meet in FL(X).

If d = d1∨ · · ·∨dn canonically, for each branch of the term tree of d = d1∨ · · ·∨dn, test if the

branch contains nodes d′ and d′′ with d′′ a child of d′ such that there exists y ∈ Y between d′

and d′′. If this holds for every branch of the term tree d = d1 ∨ · · · ∨ dn, then d ∈ SgFL(X)(Y ).

A similar test would be applied if d = d1 ∧ · · · ∧ dm canonically.

3. If all of the tests above fail, then d /∈ SgFL(X)(Y ).

We would hope that a similar algorithm can be stated for finitely presented lattices, but the following

example illustrates one issue that arises when trying to use our polynomial time algorithm for free

lattices on finitely presented lattices:

Let P = {a, b, c, d} with order given in Figure 4.2 and the single defined join d = a + b and the

single defined meet b = cd. Furthermore, take Y = {a, c}, its elements labeled in red in Figure 4.2.

o
a

o
d = a+ b

o
b = cd

o
c

Figure 4.2: A nonconvergent example

Now, d /∈ Y , nor is d canonically a join or a meet since it is in P . However, d = a ∨ b is a join

representation to which we can attempt to apply the second step of our algorithm. We easily find

an element of Y along the term tree branch from d to a (namely a itself), however we find none

along the term tree branch from d to b. Nevertheless, keeping in mind that b = c ∧ d is a meet

representation for b, we can continue looking for an element of Y along the term tree branch from d

to b. From b, we again can easily find an element of Y along one branch but not the other, namely

the branch from b to d. However, when using again the join representation d = a ∨ b, we arrive

back at the problem with which we started, as we see in Figure 4.3 below.

Thus, our algorithm never converges for this example.
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o
a

o
d

o
b

o
c

o
d

o
a

o
b

. . .

Figure 4.3: A neverending term tree

Even worse, the following example illustrates further issues that can arise for a syntactic algo-

rithm for the generalized word problem for finitely presented lattices:

Let P be given by Figure 4.4 below, with the obvious order and no defined meets.

o
d

o o o

o o o o o o o o o

o o o o o o o o o

...
...

...

. . . . . .

Figure 4.4: Many nonrefinable join representations

That is, d is the top element of P , with exactly three incomparable coatoms in P . Each of these

coatoms is above exactly three elements, and these nine new elements are incomparable to each

other. Continuing on, each element in a“level” of P is above exactly three elements, giving way to

another “level” of incomparable elements of P .

Finally, we specify the defined joins in P in the following way: For each p ∈ P , except for the

minimal elements of P , there are three elements directly below it in P ; call them q, r, and s. P

has defined joins p = q + r = q + s = r + s.

Now, if n = max(depth(d)), then

|P | = 1 + 3 + 9 + · · ·+ 3n =

n∑
k=0

3k =
1− 3n+1

1− 3
=

3n+1 − 1

2
.

We shall show that d in (P,≤,
∨
,
∧

) has exponentially-many nonrefinable join representations:

28



First, there are
(
3
2

)
= 3 many ways to write d as a join of two coatoms of P . But then, for each of

the two coatoms that we choose, there are 3 ways to write them as a join of two elements below

them. Continuing on in this way, we see that are

3 · 32 · 322 · · · · · 32n−1
= 3

∑n−1
k=0 2k = 32

n−1

nonrefinable join representations of d in (P,≤,
∨
,
∧

). Since 32
n−1 is exponential in (3n+1 − 1)/2,

the number of nonrefinable join representations of an element can be exponential in |P |. Hence,

we see that an algorithm for the generalized word problem which requires us to search through the

nonrefinable join representations of an element could be exponential.

Nevertheless, we wish to see if we can salvage a similar result for finitely presented lattices. The

following theorem gives one similar result that can be carried over.

Theorem 4.0.6. Let P be finite, Y ⊆ FP , and d ∈ SgFP
(Y )−Y . Let d = w1∨. . .∨wn∨x1∨. . .∨xk

be the canonical join representation of d ∈ FP , as given in Equation 3.1. Then d/wi∩SgFP
(Y ) 6= ∅

for 1 ≤ i ≤ n.

Proof. Let t be a term of minimal complexity representing d ∈ SgFP
(Y ). Since d /∈ Y and d is

canonically a join in FP , a similar argument to that in Theorem 4.0.5 can be used to conclude

that t = t1 ∨ . . . ∨ tr. As we saw in the proof of Theorem 3.3.11, there exists a nonrefinable

join representation d = w1 ∨ . . . ∨ wn ∨ z1 ∨ . . . ∨ zl in FP such that {w1, . . . , wn, z1, . . . , zl} �
{t1(Y ), . . . , tr(Y )}.
Fix wi. There exists tj such that wi ≤ tj(Y ). Since t is of minimal complexity, tj cannot be a

join and hence must either be a variable or tj = tj1 ∧ . . . ∧ tjm. If tj is a variable, tj(Y ) ∈ Y and

so tj(Y ) ∈ d/wi. If tj = tj1 ∧ . . . ∧ tjm, (W) would guarantee either tjp(Y ) ≤ d, tj(Y ) ≤ wq, or

tj(Y ) ≤ x ≤ d for some x ∈ P . In the first case, we could replace tj(Y ) with tjp(Y ) and obtain

a term of lower complexity representing d, a contradiction. In the second case, wi ≤ tj(Y ) ≤ wq

forces wi = tj(Y ) ∈ SgFP
(Y ). If the last case holds, x ≤ d = w1 ∨ . . . ∨ wn ∨ x1 ∨ . . . ∨ xk would

give us that x is below one of the canonical joinands of d (by adequacy), and since wi ≤ tj(Y ) ≤ x,

we would again have that wi = tj(Y ) ∈ SgFP
(Y ).

While a polynomial time algorithm may not exist for the generalized word problem for finitely

presented lattices, we vie instead for a syntactic algorithm. We begin with the following Lemma.

Lemma 4.0.7. Let d = d1 ∨ · · · ∨ dn ∈ FP be a nonrefinable join representation and, for some di,

there exists p ∈ P such that di ≤ p ≤ d. Then di ∈ P .

Proof. Suppose, for a contraction, that di /∈ P . Then
∨

idP (di) < di, for if
∨

idP (di) = di we could

replace di by the elements of idP (di) and obtain a refinement of {d1, . . . , dn}, contradicting the
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fact that {d1, . . . , dn} forms a nonrefinable join representation of d. Furthermore, since p ≤ d =

d1 ∨ · · · ∨ dn, p ∈ idP (d1, . . . , dn) by Dean’s Theorem and hence

di ≤ p ≤ d1 ∨ · · · ∨ di−1 ∨
(∨

idP (di)
)
∨ di+1 ∨ · · · ∨ dn ≤ d.

But then d = d1 ∨ · · · ∨ di−1 ∨ (
∨

idP (di))∨ di+1 ∨ · · · ∨ dn, contradicting the fact that {d1, . . . , dn}
forms a nonrefinable join representation of d. Therefore, di ∈ P as desired.

Theorem 4.0.8. Let d ∈ FP and Y be a finite subset of FP . Then d ∈ SgFP
(Y ) iff either d ∈ Y ,

there exists a nonrefinable join representation of d, call it {d1, . . . , dn}, such that, for each di, either

(a) d/di ∩ Y 6= ∅,

(b) di ∈ SgFP
(Y ), or

(c) di ∈ P and there exists p ∈ P such that di ≤ p ≤ d and p/di ∩ SgFP
(Y ) 6= ∅,

or there exists a non-upper refinable meet representation of d such that the duals of (a), (b), and

(c) hold for the elements of this non-upper refinable representation.

Proof. First, suppose d ∈ SgFP
(Y ). If d ∈ Y , then we are done. If d is a join in SgFP

(Y ), let

t = t1 ∨ · · · ∨ tm be a term of minimal complexity representing d in SgFP
(Y ). Then, there exists a

nonrefinable join representation d1 ∨ · · · ∨ dn = d such that {d1, . . . , dn} � {t1(Y ), . . . , tm(Y )} as

in the proof of Theorem 3.3.11. Fix di, and let tj be such that di ≤ tj(Y ).

Now, since t is of minimal complexity, tj(Y ) ∈ Y or tj = tj1 ∧ · · · ∧ tjl. If the former happens,

d/di ∩ Y 6= ∅. If the latter happens, we must either have that tjk(Y ) ≤ d for some tjk, tj(Y ) ≤ dk

for some dk, or there exists p ∈ P such that tj(Y ) ≤ p ≤ d. In the first case, we could replace tj

with tjk and obtain a term of lower complexity representing d in SgFP
(Y ), a contradiction. In the

second case, we would have di = tj(Y ) ∈ SgFP
(Y ) since {d1, . . . , dn} forms an antichain. In the

last case, Lemma 4.0.7 gives us that di ∈ P , and so tj(Y ) ∈ p/di ∩ SgFP
(Y ).

We now prove the converse: If d ∈ Y , then d ∈ SgFP
(Y ). Now, suppose that {d1, . . . , dn} is a

nonrefinable join representation of d such that, for each di, either (a), (b), or (c) above hold. If

some yi ∈ Y is between di and d, we can replace di with yi in the nonrefinable join representation

for d and obtain another expression for d. If di ∈ P and there exists p ∈ P such that di ≤ p ≤ d and

ti(Y ) ∈ p/di∩SgFP
(Y ), we can similarly replace di with ti(Y ) in the nonrefinable join representation

for d and obtain another expression for d. Let B = {b1, . . . , bn}, where bi is yi if d/di ∩ Y 6= ∅, di if

di ∈ SgFP
(Y ), or ti(Y ) if di ∈ P and there exists p ∈ P such that di ≤ p ≤ d and p/di∩SgFP

(Y ) 6= ∅.
Then clearly d1 ∨ · · · ∨ dn ≤

∨
B ≤ d and hence d =

∨
B ∈ SgFL(X)(Y ). Dually, if {d1, . . . , dn} is

a non-upper refinable meet representation, we would again have d ∈ SgFP
(Y ).

We now use the above result to provide a possible syntactic algorithm for the generalized word

problem for finitely presented lattices: Suppose there is an oracle that can decide, for all p, q ∈ P
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with p ≤ q if there exists f ∈ SgFP
(Y ) such that p ≤ f ≤ q. Given d ∈ FP , we can test if

d ∈ SgFP
(Y ) in the following way:

1. First, test if d ∈ Y . Since Y is finite, this can be completed in polynomial time.

2. If d /∈ Y , then d is either a join or a meet in FP .

(a) If d is a join, for each nonrefinable join representation {d1, . . . , dn} of d, and for each

joinand di, we test if one of the following holds for di:

i. d/di ∩ Y 6= ∅. Since Y is finite, and through use of Dean’s Theorem, this can be

done in polynomial time for fixed di.

ii. di ∈ SgFP
(Y ). Note that this step is a reduction since c(di) < c(d).

iii. di ∈ P and there exists p ∈ P such that di ≤ p ≤ d and p/di ∩ SgFP
(Y ) 6= ∅. Since

P is finite, through the use of Dean’s Theorem it is easy to test whether or not

di ∈ P . If we in fact find that di ∈ P , for each p ∈ d/di, we use our oracle to test if

there exists f ∈ SgFP
(Y ) such that di ≤ f ≤ p.

If we are able to find a nonrefinable join representation for d such that one of the above

holds for each of the joinands, then d ∈ SgFP
(Y ).

(b) If d is a meet, for each non-upper refinable meet representation {d1, . . . , dn} of d, and

for each meetand di, we test if one of the following holds for di:

i. di/d ∩ Y 6= ∅. Since Y is finite, and through use of Dean’s Theorem, this can be

done in polynomial time for fixed di.

ii. di ∈ SgFP
(Y ). Note that this step is a reduction since c(di) < c(d).

iii. di ∈ P and there exists p ∈ P such that d ≤ p ≤ di and di/p ∩ SgFP
(Y ) 6= ∅. Since

P is finite, through the use of Dean’s Theorem it is easy to test whether or not

di ∈ P . If we in fact find that di ∈ P , for each p ∈ di/d, we use our oracle to test if

there exists f ∈ SgFP
(Y ) such that p ≤ f ≤ di.

If we are able to find a non-upper refinable meet representation for d such that one of

the above holds for each of the meetands, then d ∈ SgFP
(Y ).

3. If none of the above holds for d, then d /∈ SgFP
(Y ).

We conclude this chapter by giving another proof that the generalized word problem for finitely

presented lattices is solvable. The following results closely mirror those presented in Section 3.4,

though using the tools defined at the end of Chapter 3.

Recall the homomorphism ψ : FP → Idl0(P ) defined by ψ(w) = idP (w).We claim that ψ is lower

bounded:

Let I ∈ Idl0(P ). Now,
∨
I may not exist in (P,≤,

∨
,
∧

), but it certainly exists in FP . We show
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that
∨
I is the least element of ψ−1(P/I).

Suppose that x ∈ FP such that x ≤
∨
I and idP (x) = ψ(x) ∈ P/I. So for all i ∈ I, i ∈ idP (x), i.e.

i ≤ x. Therefore
∨
I ≤ x, and so x =

∨
I.

Therefore, ψ is lower bounded, and we note that βψ(idP (p)) = p for p ∈ P . By duality, the

homomorphism ψd : FP → Fil1(P ) is upper bounded and we note that αψd(filP (p)) = p for all

p ∈ P . Define h(x) = (ψ(x), ψd(x)) for all x ∈ FP . Since ψ and ψd are homomorphisms, so is

h. Furthermore, since FP is generated by P , h(FP ) = h(SgFP
(P )) = SgIdl0(P )×Fil1(P )(h(P )) =

SgIdl0(P )×Fil1(P )({(idP (p),filP (p)) : p ∈ P}) = PC(P ).

Lemma 4.0.9. Let P be finite, Y ⊆ FP , and d ∈ P . Then d ∈ SgFP
(Y ) iff h(d) ∈ SgPC(P )(h(Y )).

Proof. First, suppose d ∈ SgFP
(Y ). Then there exists a term t such that d = tFP (Y ). Thus, as h

is a homomorphism, h(d) = tPC(P )(h(Y )) ∈ SgPC(P )(h(Y )).

Now suppose that h(d) ∈ SgPC(P )(h(Y )). Thus, there is a term t such that h(d) = tPC(P )(h(Y )) =

h(tFP (Y )). Since d ∈ P , (ψ(tFP (Y )), ψd(tFP (Y )) = h(tFP (Y )) = h(d) = (idP (d), filP (d)), and

so ψ(tFP (Y )) = idP (d) and ψd(tFP (Y )) = filP (d). Therefore, d = βψ(idP (d)) ≤ tFP (Y ) ≤
αψd(filP (d)) = d, and so d = tFP (Y ) ∈ SgFP

(Y ).

Since the map h|P : P → PC(P ) is an isomorphism and it is customary to identify P and

{(idP (p),filP (p)) : p ∈ P}, we can rephrase Lemma 4.0.9 above as:

Let P be finite, Y ⊆ FP , and d ∈ P . Then d ∈ SgFP
(Y ) iff d ∈ SgPC(P )(h(Y )).

Lemma 4.0.10. Let P be finite, FP = 〈P | r1 = s1, . . . , rm = sm〉, and d ∈ FP . Then there exists

a finite lattice B and an epimorphism f : FP → B such that f−1(f(d)) = {d}.

Proof. Let t be a term representing d in FP . Define L1 = PC(P )(∨∧)
l

and L2 = PC(P )(∧∨)
l
,

where l + 1 > max{c(t), c(ri), c(si) : 1 ≤ i ≤ m}. Now, L1 is a finite join-subsemillatice of FP

and L2 is a finite meet-subsemilattice of FP . Since l ≥ 1, the least element of FP is in L1 and

the greatest element of FP is in L2, so L1 and L2 must both be lattices. Since L1 and L2 both

satisfy the relations of FP , there exist homomorphisms f1 : L1 → FP and f2 : L2 → FP such that

f1 |P= f2 |P= idP .

Let ∨i and ∧i denote the operations of Li (i = 1, 2). Then a∧1 b =
∨

(↓ a∩ ↓ b) ≤ a∧b for a, b ∈ L1,

a∨2 b =
∧

(↑ a∩ ↑ b) ≥ a∨ b for a, b ∈ L2, a∨1 b = a∨ b for a, b ∈ L1, and a∧2 b = a∧ b for a, b ∈ L2.

Note that f1(a) = a for a ∈ L1 and f2(b) = b for b ∈ L2.

We argue that f1(a) ≤ a for a ∈ FP : Define S1 = {y ∈ L : f1(y) ≤ y}. If b, c ∈ S1, then we must

have b ∧ c ∈ S1 since f1(b ∧ c) = f1(b) ∧1 f1(c) ≤ f1(b) ∧ f1(c) ≤ b ∧ c. Since we must also have

b ∨ c ∈ S1, S1 is a sublattice of FP containing P , forcing S1 = FP . A dual argument shows that

f2(a) ≥ a for a ∈ FP .

Define f : FP → L1 × L2 by f(a) = (f1(a), f2(a)) for a ∈ FP , and let B = f(FP ). Since L1 and

L2 are finite, B must also be finite. By the choice of l, d ∈ L1 ∩ L2, and by what we have shown
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above f(d) = (f1(d), f2(d)) = (d, d). If a ∈ f−1(f(d)), (d, d) = f(d) = f(a) = (f1(a), f2(a)). But

then d = f1(a) ≤ a ≤ f2(a) = d, and so f−1(f(d)) = {d} as desired.

Lemma 4.0.11. Let P be finite, U be a sublattice of FP , and d ∈ FP − U . Then there is a finite

lattice B and a homomorphism f : FP → B such that f(d) /∈ f(U).

Proof. Let B and f : FP → B be as in the proof of Lemma 4.0.10. Suppose for a contradiction that

f(d) ∈ f(U). Then there exists u ∈ U such that f(u) = f(d). But by Lemma 4.0.10, d = u ∈ U , a

contradiction. Therefore f(d) /∈ f(U), as desired.

Theorem 4.0.12. The generalized word problem for FP is solvable.

Proof. Let d ∈ FP and Y be a finite subset of FP . Furthermore, let L1, L2, B, and f : FP → B be

as in the proof of Lemma 4.0.10. List all of the elements from SgL1×L2
(f(Y )), which is a sublattice

of B; there will only be finitely many such elements since B is finite. Then, check to see if

f(d) ∈ SgL1×L2
(f(Y )). Since the word problem for finitely presented lattices is solvable by Dean’s

Theorem, this process is recursive. If we find that f(d) ∈ SgL1×L2
(f(Y )) then d ∈ SgFP

(Y ), for if

d ∈ SgFP
(Y ) then f(d) /∈ f(SgFP

(Y )) = SgL1×L2
(f(Y )) by Lemma 4.0.11. If we find instead that

f(d) /∈ SgL1×L2
(f(Y )), then of course d /∈ SgFP

(Y ).
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