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ABSTRACT 

Jupiter’s icy moon Ganymede displays a fractured surface with many morphologically 

distinct regions of inferred strike-slip faulting that may be important to the structural 

development of its surface. Ganymede is dominated by heavily grooved terrain, which is likely 

the result of extensive normal faulting, but the role of strike-slip tectonism in shaping the surface 

of Ganymede is not well understood. This dissertation addresses strike-slip faulting on 

Ganymede in a three-part study. The first part uses detailed maps based on high-resolution 

Galileo and Voyager images of nine geologically relevant sites spanning Ganymede’s surface to 

document evidence of strike-slip faulting. Abundant evidence of strike-slip faulting exists at each 

site, indicating that strike-slip tectonism strongly affects Ganymede’s surface. The second part 

combines the detailed mapping results with a numerical tidal stress model (SatStress) that 

accounts for Ganymede’s orbital interactions with Jupiter and the other Galilean satellites, as 

well as the internal structure of Ganymede. The modeling results suggest, under particular 

circumstances, diurnal and secular tidal stresses such as nonsynchronous rotation (NSR) may 

have been sufficient to induce Coulomb failure and generate strike-slip faulting. In six of the 

nine regions the fault zone’s predicted slip is compatible with the slip deduced from the maps. 

The third part focuses on the effects of diurnal tidal stresses alone, and takes into account 

Laplace-like resonances among Ganymede, Europa, and Io that may have once led Ganymede to 

acquire an eccentricity as high as ~0.07 that may have been stable for 107-109 years. This 

previous period of high eccentricity may have allowed diurnal tidal stresses to drive faulting 

during a past period of active tectonism. Assuming a conservative eccentricity of 0.05, Coulomb 

failure can be achieved without the need to invoke a secular stresses such as NSR, but only for a 

past, high eccentricity case and limited depths of less than 250 m. In sum, tidal contributions are 
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predicted to vary in magnitude over time as the dynamics of the Galilean system evolved, and 

can help drive strike-slip faulting. These findings should be of use in future missions to Jupiter 

and its Galilean moons. 
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CHAPTER 1. INTRODUCTION 

We live in an era where new stars, moons, and planets are discovered in far-flung reaches of 

the universe on a regular basis. As exotic and grand as these new discoveries are (Welsh et al., 

2011), vast information is still waiting to be learned about bodies in our own galactic backyard. 

Consider Jupiter, the largest planet in the Solar System. Jupiter has been of interest to mankind 

since ancient times, being one of five planets visible to the naked eye from Earth. Galileo Galilei 

is credited with being the first to turn his home-built telescope to the gas giant in 1610 (Drake, 

1976; Pasachoff and Leich, 2015). He observed what he initially considered to be four stars 

orbiting Jupiter (Figure 1.1). Today we call these “stars,” now known to be moons, the Galilean 

satellites: Io, Europa, Ganymede, and Callisto (Morrison, 1982; Showman and Malhotra, 1999). 

While Galileo may have garnered acclaim for his discovery, the names of each moon come from 

Simon Marius (Owen, 1976), a German astronomer thought to have independently discovered 

the same four moons, noting his observations one day after Galileo’s (Pasachoff, 2015). 

Regardless of any controversy surrounding their initial discovery, the Galilean satellites helped 

bring an end to the Aristotelian “geocentric” perspective of universe, for how could a planet have 

smaller bodies orbiting it if the dominant belief at that time was that all celestial bodies should 

circle the Earth (Taton et al., 2003)? 
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Figure 1.1. Galileo’s notes on Jupiter and the Galilean satellites. Image Credit: University of Michigan Special Collections 
Library. 
 

Centuries later, humankind finally set out to visit the Jupiter system with a series of flybys 

conducted by numerous spacecraft. NASA’s Pioneers 10 and 11 made their closest approaches 

in 1973 and 1974 respectively, taking the first close-up images of Jupiter and its moons 

(Anderson et al., 1988). NASA’s Voyagers 1 and 2 flew by in 1979 and sent back a wealth of 

information about the Galilean satellites and discovered Jupiter’s ring system (Hanel et al., 

1979). The joint NASA-ESA solar probe, Ulysses, returned magnetosphere data from Jupiter 

while using the gas giant to maneuver the probe into a polar orbit in 1992, and again in 2004 

(Tsurutani et al., 1993). The joint NASA-ESA mission Cassini captured images of Jupiter while 
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en route to Saturn in 2000 (Porco et al., 2003), and NASA’s New Horizons studied the Galilean 

satellites using infrared spectral imaging while using Jupiter as a gravity assist to Pluto in 2007 

(Grundy et al., 2007). Of great importance is the contribution of the aptly named Galileo probe, 

which became the first spacecraft to enter orbit about Jupiter in 1995 until its planned descent 

and impact into the atmosphere in 2003 (Kivelson et al., 1996). In the almost eight years in orbit, 

the flagship mission conducted 33 total flybys of the four Galilean satellites. The data from these 

flybys that made the research of this dissertation possible. 

Jupiter and its Galilean satellites form a dynamic system (Table 1.1): Io, the closest to Jupiter 

and smallest of the group, is home to over 400 active volcanoes (Lopes and Spencer, 2007). 

Europa sustains a global liquid ocean under an ice shell that may harbor life (Kivelson et al., 

2000; Chyba and Phillips, 2001). Ganymede, also thought to have a liquid ocean overlain by ice, 

holds the title of largest satellite in the Solar System - even larger than the planet Mercury 

(Schubert et al., 1996; Kivelson et al., 2000). Callisto has one of the most heavily cratered 

surfaces in the Solar System, in fact the surface is so saturated with craters, any new crater tends 

to erase an existing one (Hartmann, 1984).  

 
Table 1.1. Galilean satellite characteristics. 

Moon Diameter 

(km) 

Mass 

(kg) 

Semi-major axis 

(km) 

Orbital period 

(days) 

Eccentricity 

Io 3660.0 8.93 x 1022 4.218 x 105 1.769 .0041 

Europa 3121.6 4.8 x 1022 6.711 x 105 3.551 .0094 

Ganymede 5268.2 1.48 x 1023 1.070 x 106 7.115 .0013 

Callisto 4820.6 1.08 x 1023 1.883 x 106 16.69 .0074 

 

As the Galilean satellites orbit Jupiter, the gravity of each body influences each other, 

causing tidal stresses (Greenberg et al., 1998). Like the Earth and Moon, the Galilean satellites 

are synchronously locked to Jupiter, meaning that the same side of the satellite always faces 

Jupiter and creates a tidal bulge on the satellite (Burns, 1976; Melosh, 1977; Helfenstein and 

Parmentier, 1980). On Earth, this tidal bulge is the cause of the ocean tides, where a bulge of 

water on either side of the Earth during “low tide” is observed on both sides of the planet 
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(Farrell, 1973). On Galilean satellites, this tidal bulge may be large enough to physically deform 

the surface (Yoder and Peale, 1981). Furthermore, the orbits of the Galilean satellites are 

elliptical rather than circular, meaning the tidal bulge will vary in both size and position as it 

changes distance from Jupiter during its diurnal orbit (Murray and Dermott, 1999). Therefore, 

the influence of tides provides a major source of stress and heat (Greenberg et al., 1998; Hoppa 

et al., 1999; Nimmo and Gaidos, 2002). Finally, the innermost Galilean satellites (Io, Europa, 

and Ganymede) orbit Jupiter in a configuration known as a Laplacian resonance – a resonance 

that is described by a three-body system with an orbital period ratio of 1:2:4 (Showman and 

Malthotra, 1997). Simply put, for every one orbit about Jupiter that Ganymede completes, 

Europa completes two, and Io completes four. The influence of this resonance may cause 

increased tidal heating within the interiors of the satellites, perhaps driving geologic activity on 

Io, the presence of a liquid water ocean under the icy surface of Europa, and the focus of this 

dissertation, tectonism on Ganymede (Yoder, 1979; Yoder and Peale, 1981; Greenberg, 1987; 

Tittemore, 1990; Malhotra, 1991; Showman and Malhotra, 1997).  

Unlike Earth, Ganymede’s surface is not composed of rock, but water ice. Global images of 

Ganymede reveal two distinct ice terrain types: an older dark terrain and a younger, grooved, 

light terrain. Dark terrain covers about one-third of the satellite and is characterized by an 

ancient, heavily cratered appearance (Shoemaker et al., 1982; Murchie et al., 1986, 1989; 

Neukum, 1997; Neukum et al., 1998; Prockter et al., 1998; Zahnle et al., 2003; Schenk et al., 

2004). Much of the dark terrain is estimated to date from > 4 Gyr based on measured crater 

densities (Zahnle et al., 2003). The dark color of the terrain is inferred to be due to a thin, loose 

deposit overlying brighter, icy material (Cassachia and Strom, 1984; Croft and Strom, 1985; 

Allison and Clifford, 1987; Figueredo et al., 1999; Moore et al., 1999; Prockter et al., 2000). 

Light terrain covers the remaining two-thirds of Ganymede’s surface and is characterized by a 

subparallel groove system that cross-cuts the older, dark terrain (Murchie et al., 1986; 

Pappalardo et al., 1998; Prockter et al., 2000; Collins, 2009). Crater density within the grooved 

light terrain is 2 to 10 times less than in the dark terrain, and light terrain is inferred to have been 

emplaced between 400 Myr and 4 Gyr ago. The large range in time reflects uncertainties in 

impact cratering rate histories (Zahnle et al., 1998; Neukum et al., 1998; Zahnle et al., 2003).  



	
	

5	

Although the dark and grooved light terrain may be composed of ice, the extreme cold of the 

outer solar system allows the ice to behave in a way similar to rocks, therefore analogous Earth 

processes may be used when considering the formation and interaction of these terrains. Much of 

the grooved light terrain is likely affected by extensional tectonism, such as horst-and-graben 

normal faulting, pulling the terrain apart (Shoemaker et al., 1982; Belton et al., 1996, Pappalardo 

et al., 1998; Dombard and McKinnon, 2001; Bland and Showman, 2007). Many authors have 

described these normal faulting processes since the emergence of Voyager data. Far fewer 

studies have investigated the role of a different style of tectonism: strike-slip faulting. Strike-slip 

faulting occurs where fault walls shift past one another laterally (Pollard et al., 1982; Naylor et 

al., 1986; Woodcock and Fisher, 1986; Pappalardo and Greeley, 1995), and is most famously 

described on Earth at the San Andreas Fault in California (Zoback et al., 1987; Graymer et al., 

2002). When viewing the San Andreas from above (Figure 1.2), features such as riverbeds or 

fences that have been split and offset from each other. Strike-slip behavior in satellite images is 

observed when viewing the grooved terrain of Ganymede (Murchie and Head, 1988; Cameron et 

al., 2018). These regions of strike-slip faulting may be important when considering Ganymede’s 

tectonic history, and are a focus of this dissertation.  

 
Figure 1.2. San Andreas Fault (left) and Ganymede’s Dardanus Sulcus (right). San Andreas Fault Image Credit: NOAA/NGDC. 

 

Perhaps one of the most fascinating aspects of Ganymede is the idea that a global, subsurface 

liquid water ocean could lie just below the ice shell (Ojakangas and Stevenson, 1989; Kivelson et 

al., 1997; Carr et al., 1998). When the Galileo space probe orbited Jupiter and imaged its moons 

between 1995 and 2003, we not only gained higher resolution imagery, but improved 
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geophysical data. Magnetic data from Voyager and Galileo provided evidence for an induced 

magnetic field, suggesting the presence of a conductive layer, i.e. a subsurface liquid water ocean 

(Ojakangas and Stevenson, 1989; Kivelson et al., 1997; Carr et al., 1998). The presence of a 

subsurface liquid water ocean has unique implications for the evolution of Ganymede’s tectonic 

history and stress mechanisms, particularly if the ocean layer acts as an interface to separate the 

ice shell from the deep interior of the moon. This process may allow for an additional source of 

stress within the icy shell, known as nonsynchronous rotation (NSR), in which the surface of the 

moon rotates at a different rate than the interior (Helfenstein and Parmentier, 1985; Ojakangas 

and Stevenson, 1989). In addition to the induced magnetic field, an internally generated magnetic 

field on Ganymede was also inferred, making it the only moon known to have one. This field 

probably formed in a similar fashion to Earth's: as a result of conducting, mobile material from a 

molten or semi-molten iron core (Anderson, 1996; Sohl et al, 2002).  

While Ganymede has likely not been active during recent geologic time, studying the history 

of tectonics and the stresses influencing the icy moon may have greater implications for 

Ganymede’s neighbor, Europa. Geologic activity on Europa has likely occurred in much more 

recent geologic time, with some studies suggesting it may be currently active today (Schmidt et 

al., 2011). From a biological perspective, this is of great interest as it may imply Europa could 

harbor life deep in its ocean, protected from the harsh radiation of Jupiter by its ice shell (Chyba 

and Phillips. 2001). This increased interest in the Galilean moons has driven two upcoming 

missions. NASA’s Europa Clipper is a spacecraft scheduled to launch in the 2020s with 

cameras, spectrometers, and other instruments to produce high-resolution images of Europa's 

surface and determine its composition (Philips and Pappalardo, 2014). The European Space 

Agency (ESA) is also sending a spacecraft, JUICE (JUpiter ICy moons Explorer), to the Jupiter 

system and aims to spend at least three years making detailed studies of Ganymede, Callisto, and 

Europa after its proposed arrival in 2030 (Grasset et al., 2013). Anticipated data from these 

missions will promote a more advanced understanding of the Galilean system. 

This dissertation leverages the well-established body of knowledge for Ganymede with 

several fascinating curiosities of Ganymede’s surface deformation in response to persistent tidal 

forces to further motivate exploration of the tectonic history on a variety of scales. Chapter 2, 

submitted to Icarus and presently under revision following expert review (Cameron et al., 2018a; 
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Morphological Mapping of Ganymede: Investigating the Role of Strike-slip Tectonics in the 

evolution of terrain types) examines Ganymede’s heavily fractured and morphologically distinct 

surface and considers how strike-slip faulting may be important to the structural development of 

observed features. To better understand the role of strike-slip tectonism in shaping this complex 

icy surface, detailed mapping analyses of nine sites is performed using Galileo and Voyager 

imagery, noting key examples of strike-slip morphologies where present. Sites of both light, 

grooved terrain (Nun Sulci, Dardanus Sulcus, Tiamat Sulcus, Uruk Sulcus, and Arbela Sulcus), 

and terrains that are transitional from dark to light terrains (Nippur and Philus Sulci, Byblus 

Sulcus, Anshar Sulcus, and the Transitional Terrain of Northern Marius Regio) are mapped. 

Abundant examples of strike-slip morphologies are found at every site, suggesting strike-slip 

tectonism is indeed important to Ganymede’s evolutionary history. Moreover, incorporation of 

strike-slip tectonism with pre-existing observations of extensional behavior provides an 

improved, synoptic representation of Ganymede’s history. 

Chapter 3, also submitted to Icarus and presently under review (Cameron et al., 2018b; Tidal 

Stress Modeling of Ganymede: Strike-slip Tectonism and Coulomb Failure) revisits the detailed 

mapping results of Cameron et al. (2018a) and considers tidal stresses stemming from 

Ganymede’s orbital interactions with Jupiter and the other Galilean satellites. The Coulomb 

criterion is used to investigate the roles of tidal stresses and assess the failure potential of 

individual fault segments. This criterion considers tractions that facilitate (tensile) and resist 

(compressive) slip on a fault, the shear tidal traction, the coefficient of friction of ice, and stress 

at depth due to the overburden pressure (Thatcher and Hill, 1991). Numerical modeling results 

suggest that under particular circumstances, diurnal and secular tidal stresses such as 

nonsynchronous rotation (NSR) may have been sufficient to induce shear failure and cause 

strike-slip faulting. The fault zone’s predicted slip sense is compared to the inferred slip sense 

from the structural mapping efforts of Cameron et al. (2018a); compatible senses of slip among 

six of the nine regions are found. Results suggest that combined diurnal and NSR tidal stresses 

promote Coulomb failure within the shallow (< 2 km) icy lithosphere across much of Ganymede. 

Based on these results, we infer that while diurnal stresses alone are not enough to drive 

tectonism on Ganymede, nonsynchronous rotation may have assisted the formation and evolution 

of strike-slip structures.  
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Chapter 4, in preparation for submission to EPSL (Cameron et al., 2018c; Ganymede Then 

and Now: How Past Eccentricity may have Altered Tidally Driven Coulomb Failure) isolates the 

effects of diurnal tidal stresses and considers how Laplace-like resonances among Ganymede, 

Europa, and Io (Greenberg 1987; Malhotra, 1991; Showman and Malhotra, 1997) may have once 

led Ganymede to acquire an eccentricity as high as ~0.07 (presently e = 0.0013). While diurnal 

stresses at Ganymede today are quite small (less than 10 kPa), a previous period of high 

eccentricity may have permitted a significant diurnal tidal stress influence on faulting during a 

past period of active tectonism, with stresses increasing by at least an order of magnitude. 

Results of Coulomb failure along three fault zones at Dardanus Sulcus, Tiamat Sulcus, and Nun 

Sulci are re-examined. Findings from Cameron et al. (2018b) are supported, showing that 

Coulomb failure is not expected along any of the three shear zones when considering present-day 

(low) eccentricity for diurnal stresses only. Coulomb failure is predicted, however, for a past, 

high eccentricity case, although in isolated periods during an orbit and limited to very shallow 

depths (< 250 m).  

The findings of this dissertation highlight the need to consider the full range of Ganymede’s 

evolution through time (with ancient terrain dating to > 4 Gyr) when describing a complex 

tectonic history. While Ganymede may not currently be geologically active, satellite images 

provide a rich and diverse surface morphology indicative of a past period of large-scale 

tectonics. Additionally, detailed mapping from this and previous studies reveals smaller-scale 

processes, such as strike-slip faulting, that may have helped shaped the terrain. The source of 

tectonics on Ganymede is largely driven by tidal forces from its interaction with Jupiter and the 

neighboring Galilean satellites. These tidal contributions varied in magnitude over time as the 

dynamics of the Galilean system evolved. Effects of a global subsurface ocean allow for 

additional stresses, and, at least on Europa, may have greater implications for the presence of life 

beyond Earth.  

Specifically, this work is directly relevant to the objectives of NASA’s Outer Planets 

Research Program in “Enhancing the scientific return from the … Galileo and Voyager… 

missions by continuing the analysis of their respective data sets through broadening scientific 

participation; Improving our understanding of the evolution of the outer Solar System, including 

the giant planets (or) their satellites…” When all three studies presented here are considered 
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together, insight may be gained into past and modern history of Ganymede, which may prove 

especially useful given the renewed interest in future missions to Jupiter and its Galilean moons 

with the recent selection of the JUpiter ICy moons Explorer (JUICE) as ESA’s next mission. 
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Abstract 

The heavily fractured surface of Ganymede displays many morphologically distinctive regions of inferred 

distributed shear and strike-slip faulting that may be important to the structural development of its surface. To better 

understand the role of strike-slip tectonism in shaping this complex icy surface, detailed mapping is performed at 

nine sites using Galileo and Voyager imagery, noting key examples of strike-slip morphologies where present. 

These four morphological indicators are: en echelon structures, strike-slip duplexes, laterally offset pre-existing 

features, and possible strained craters. Sites mapped consist of both light, grooved terrain (Nun Sulci, Dardanus 

Sulcus, Tiamat Sulcus, Uruk Sulcus, and Arbela Sulcus), and terrains that are transitional from dark to light terrains 

(Nippur and Philus Sulci, Byblus Sulcus, Anshar Sulcus, and the Transitional Terrain of Northern Marius Regio). At 

least one, if not more, of the four strike-slip morphological indicators are observed at every site, suggesting strike-

slip tectonism is indeed important to Ganymede’s evolutionary history. Byblus Sulcus is the only mapped site where 

the presence of strike-slip indicators is limited to only a few en echelon structures; every other mapped site displays 

examples of at least two types, with Arbela Sulcus containing candidate examples of all four. In addition, 

quantification of morphological characteristics suggests related rotation between sites, as evidenced by the 

predominant NW/SE trend of mapped features within the light terrain present in five different sites (Nun, Tiamat, 

Uruk, Nippur/Philus, Byblus, and Anshar Sulcus). Moreover, incorporation of strike-slip tectonism with previous 

observations of extensional behavior provides an improved, synoptic representation of Ganymede’s tectonic history. 

 
 

 

 

 

 

Submitted to Icarus and currently in revision.  



	
	

12	

1. Introduction 

Ganymede is the largest of Jupiter’s four Galilean moons (diameter of ~5270 km) and has a 

tectonically active past (Shoemaker et al., 1982; Schenk et al., 2001; Collins et al., 2013). The 

twin Voyager 1 and 2 spacecraft imaged the Jupiter system in 1979 (Smith et al., 1979a, b), 

followed by the Galileo space probe that orbited Jupiter between 1995 and 2003 (Carr et al., 

1995). In addition to high-resolution imagery, magnetic field data from Galileo provided 

evidence of an induced magnetic field, consistent with the presence of a subsurface liquid water 

ocean (Kivelson et al., 2002), as well as an intrinsic dipole field that may be the product of 

dynamo action (Kivelson et al., 1997). The exact thicknesses and depths of the differentiated 

layers of Ganymede’s interior are uncertain, but the outer ice shell is most likely ~100 km thick 

(Spohn and Schubert, 2003; Schubert et al., 2004). Imagery from Galileo flybys revealed 

Ganymede’s surface to be extensively fractured and composed of distinct terrains, with high-

resolution imagery showing indications of both normal and strike-slip structures (Collins et al., 

1998b; Pappalardo et al., 1998; Patel et al., 1999; DeRemer and Pappalardo, 2003; Pappalardo et 

al., 2004; Pappalardo and Collins, 2005).  

The evolution of Ganymede’s surface has been complex, and while most investigations so far 

have focused on the mechanisms for extensional tectonism (Collins et al., 1998b; Pappalardo et 

al., 2004; Pizzi et al., 2017), a global study of the nature and role of strike-slip tectonism using 

Galileo images is lacking. Voyager images of Ganymede (at best ~500 m/pixel) have been 

interpreted as indicating that strike-slip faulting and distributed shear deformation occurred, 

notably based on the sigmoidal shapes of some grooved terrain sets and candidate strike-slip 

offsets along major fault zones (Smith et al., 1979; Lucchitta, 1980; Murchie and Head, 1988; 

Pappalardo, 1994). However, the role of this process in shaping grooved terrain has been highly 

uncertain, and the evidence for major strike-slip fault zones was debated at the time (Schenk and 

McKinnon, 1987; Murchie and Head, 1988). Indeed, prior to Galileo imaging, it was questioned 

whether strike-slip faults occurred at all on Ganymede and most planetary surfaces (Golombek, 

1982). In isolated Galileo images at high resolutions (commonly 10s m/pixel), however, strike-

slip tectonism and components of distributed shear were subsequently inferred along some faults 

and faulted regions, helping to shape the present-day perspective of tectonic styles that may have 
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once contributed to Ganymede’s diverse surface (Collins et al., 1998b; Pappalardo et al., 1998; 

Patel et al., 1999; Prockter et al., 2000; Head et al., 2002; DeRemer and Pappalardo, 2003; 

Pappalardo et al., 2004; Pappalardo and Collins, 2005).  

Several first-order questions remain about the role of strike-slip tectonism on Ganymede: 

How prevalent is strike-slip faulting? What role do strike-slip structures play in the transition 

between prominent terrain types? If bright terrain is due to modification of dark terrain, do 

strike-slip processes promote this modification by breaking up the ancient dark surface to expose 

high albedo material? How can features related to strike-slip tectonism and features related to 

extension be distinguished? In this study, we aim to advance the knowledge of the structural and 

evolutionary history of Ganymede by documenting strike-slip faulting processes based on 

geological inferences, which will ultimately be synthesized with models of failure mechanics. 

In this paper, the types and distribution of strike-slip features on Ganymede based on Galileo 

images targeted at candidate sites of shear deformation identified using Voyager imagery are 

identified and carefully mapped. The objectives of this mapping are to understand the range of 

morphologies and morphometries, and to infer the possible manifestations of strike-slip faulting. 

Section 2 provides a brief background of Ganymede’s geologic history, including the two main 

types of geologic terrains that dominate the surface. In Section 3 reviews the kinematics of 

strike-slip tectonism and introduce key structural indicators of strike-slip faulting (en echelon 

structures, strike-slip duplexes, offset features, and strained craters). In Section 4 documents the 

image and mapping processes. In Section 5 presents observations and interpretations of the 

morphological mapping of nine target sites where strike-slip tectonism is inferred: Uruk Sulcus, 

Tiamat Sulcus, Nun Sulci, and Dardanus Sulcus, Transitional Terrain, Byblus Sulcus, Anshar 

Sulcus, Arbela Sulcus, and Nippur/Philus Sulci. Finally, in Sections 6 and 7 results from regional 

to global perspectives are discussed and synthesized, and include an analysis of the role of strike-

slip tectonism in modifying dark materials. The ultimate goal of this work is to firmly establish 

observations of strike-slip behavior in support of future detailed modeling of tidal and secular 

stresses that may have driven Ganymede tectonics. 
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2. Background 

2.1. Geologic Setting  

Global images of Ganymede (Figure 2.1a, b) reveal two distinct terrain types (Figure 2.1b, 

c): an older, heavily cratered dark terrain and a younger, typically grooved light terrain (Collins 

et al., 2013). Ganymede's history, inferred from imagery, can be divided into three intervals of 

relative age: (1) formation of its dark crust during the Nicholsonian period, (2) widespread 

tectonic activity and rifting of crust during the Harpagian period, and (3) subsequent cratering 

during the Gilgameshian period (Collins et al., 2013). Dark terrain was primarily emplaced 

during the Nicholsonian period but some appears to be modified during the Harpagian period 

(Collins et al., 2013). Light terrain consists of relatively high- to moderate-albedo, tectonically 

deformed material from the middle-aged Harpagian period.  

2.1.1. Dark Terrain 

Dark terrain (Figure 2.1c, left) covers about one-third of the moon and is characterized by an 

ancient, heavily cratered appearance (Shoemaker et al., 1982; Murchie et al., 1986, 1989; 

Neukum, 1997; Neukum et al., 1998; Prockter et al., 1998; Zahnle et al., 2003; Schenk et al., 

2004). Much of the dark terrain is crosscut by systems of ~10 km wide furrows inferred to be 

remnants of large multi-ring structures (McKinnon and Melosh; 1980; Cassachia and Strom, 

1984; Moore et al., 1998, 2001; Prockter et al., 2000; Pappalardo et al., 2004). Dark terrain is 

estimated to date from > 4 Gyr based on measured crater densities (Zahnle et al., 2003). The 

terrain is inferred to consist of a thin dark regolith deposit that is heterogeneous in albedo at the 

scale of meters (Spencer, 1987a,b) overlying brighter, icy material that has been modified by 

surface processes (Cassachia and Strom, 1984; Croft and Strom, 1985; Croft and Goudreau, 

1987; Allison and Clifford, 1987; Figueredo et al., 1999; Moore et al., 1999; Prockter et al., 

2000). The darkest deposits are correlated with local topographic lows like crater floors and 

troughs, whereas brighter material is typically found along ridges and other topographic highs 

(Oberst et al., 1999). As dark terrain shows areas of tectonic deformation related to furrow 

formation, dark terrain tectonism is considered a potential precursor to grooved terrain (Patel et 

al., 1999; Pappalardo et al., 2004 and references within). Clear evidence of both extension and 
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strike-slip tectonism is far more prevalent in light terrain than in dark terrain. 

 
Figure 2.1: Ganymede map and terrain types: (a) Ganymede global mosaic (0° – 360° E; 60°S - 60°N) in Mercator projection. 
Examples of dark and light terrain are labeled; labeled boxes denote sites mapped in this study. Anti-Jovian, sub-Jovian, and 
leading/trailing hemispheres are labeled; (b) Ganymede global geologic map (modified from Collins et al., 2013) overlaying the 
global image mosaic. The domains are divided into: dark terrain (brown), light terrain (blue), and impact features (yellow); (c) 
Representative example of dark terrain of Nicholson Region (left) at the boundary of light (grooved) terrain (right) of Harpagia 
Sulcus. 
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2.1.2. Light (grooved) Terrain 

Light terrain (Figure 2.1c, right) covers the remaining two-thirds of Ganymede’s surface and 

is characterized by a subparallel ridge and trough system that cross-cuts the older, dark terrain 

(Murchie et al., 1986; Pappalardo et al., 1998; Prockter et al., 2000; Collins, 2009). Crater 

density within the light terrain is 2 to 10 times less than in dark terrain, and light terrain is thus 

inferred to have been emplaced between 400 Myr and 4 Gyr ago. The large range in time reflects 

uncertainty in the impact flux (Zahnle et al., 1998; Neukum et al., 1998; Zahnle et al., 2003). 

Morphological evidence suggests that light terrain may be tectonically modified pre-existing 

terrain (Head et al., 1998; Pappalardo et al., 2004). While direct evidence of cryovolcanism on 

Ganymede is sparse (Pappalardo et al., 1998; Prockter et al., 2000; Pappalardo et al., 2004, Bland 

and McKinnon, in press), the addition of cryovolcanic deposits may have helped brighten the 

dark terrain, for example, by flooding of graben (Cassachia and Strom, 1984; Croft and Strom, 

1985; Croft and Goudreau, 1987; Allison and Clifford, 1987; Figueredo et al., 1999; Schenk et 

al., 2001). For the purposes of this study, light terrain is further divided into three major 

categories introduced by Collins et al. (2013): light irregular material; light subdued material; 

and light grooved material. Light irregular material displays a mixture of smooth surfaces and 

grooves, but the grooves have irregular orientations and spacing. Light subdued materials are 

characterized by smooth surfaces and faint lineaments; the lineaments generally have similar 

spacing and orientations in each area and are inferred to be representative of early stages of 

grooved terrain formation. Light grooved materials are dominated by similarly spaced and 

oriented areas of closely packed troughs and lineaments, likely formed through modification and 

deformation of pre-existing materials, such as the light subdued material or dark terrain (Collins 

et al., 2013). 

2.2 Tectonic Setting 

Previous studies focused on the relevance of extension in grooved terrain formation. Voyager 

images initially suggested that most grooves are extensional tectonic structures (Shoemaker et 

al., 1982), and Galileo images later supported this interpretation (Belton et al., 1996, Pappalardo 

et al., 1998; Dombard and McKinnon, 2001; Bland and Showman, 2007). Various styles of 

extensional tectonism have been inferred on Ganymede, including horst-and-graben grooved 
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terrain morphology and tilt-block-style normal faulting (Pappalardo et al., 1998, 2004 and 

references therein). Both Uruk Sulcus and Philus Sulcus display morphologies resembling flat-

topped horst ridges and flat-floored grabens (Collins et al., 1998c), bounded by normal faults that 

dip in opposing directions (Davis and Reynolds, 1996). Moreover, Uruk Sulcus also displays 

ridges that appear triangular to rounded in cross-section, a morphology that is far more common 

on Ganymede and generally attributed to tilt-block, or domino style faulting (Pappalardo et al., 

1998, Collins et al., 1998b), which occurs where prominent fault planes dip in the same direction 

(Davis and Reynolds, 1996). Prior to Galileo-based observations of Uruk Sulcus (Pappalardo et 

al., 1998), tilt-block style faulting had not been predicted to occur on Ganymede because of the 

high degree of extension necessary to create them ( >10% of extensional strain (Wernicke and 

Burchfiel, 1982)) compared to horst-and-graben style faulting (< 10% extensional strain with the 

assumption that grooves are individual graben, as predicted by Golombek (1982)). Moreover, 

higher crater density in areas that show horst-and-graben morphology suggests that the terrain is 

older than less cratered tilt-block-style areas, and suggests faulting style may have changed over 

time within Uruk Sulcus (Pappalardo et al., 1998). By examining the grooves as extensional 

features, orientations of the stresses that formed them may be inferred, and the mechanisms of 

formation driven by different stressing mechanisms may be considered. 

In addition, many observations of structures indicative of strike-slip processes (as discussed 

next) suggest that a component of horizontal shear may have contributed to shaping grooved 

terrain (Lucchitta et al., 1980; Murchie and Head, 1988). Using Voyager data (kms/pixel 

resolution), Murchie and Head (1988) suggested that morphologic evidence for shear zones, such 

as the offset of distinctive structures, exists in both the sub- and anti-Jovian hemispheres of 

Ganymede; however, the lack of high-resolution coverage prevented conclusive results at the 

time. While subsequent Galileo data provide much higher resolution imagery (albeit limited 

coverage), very few studies have followed with a thorough inspection of strike-slip tectonism 

and consideration of the role of horizontal shear in Ganymede’s tectonic evolution (Pappalardo 

et al., 1998; Prockter et al., 2000). Moreover, many questions remain regarding the relevance of 

strike-slip faulting on Ganymede and its link to terrain types and terrain modification. 
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3. Four morphological indicators of strike-slip faulting 

Strike-slip faulting, also known as wrench faulting, occurs as fault walls shift past one 

another laterally. A series of structures (Figure 2.2) may develop along a narrow shear zone 

where strike-slip occurs along a steeply dipping fault overlain by weakly consolidated material 

(Tchalenko and Ambraseys, 1970; Wilcox et al., 1973; Pollard et al., 1982; Naylor et al., 1986), 

which may be relevant to icy satellite tectonics (Pappalardo and Greeley, 1995). Transpression 

and transtension deformation involves strike-slip that is combined with either contraction or 

extension, respectively (Dewey et al., 1998). Strike-slip faulting can produce patterns of 

intersecting and/or subparallel faults and fault-bounded structures (Pollard et al., 1982; Naylor et 

al., 1986; Woodcock and Fisher, 1986; Pappalardo and Greeley, 1995) that are potentially 

relevant to the formation of the ridge and trough terrain on Ganymede.  

When modeling fault mechanics, a complete quantitative analysis of faulting must specify 

several details, including fault geometry, boundary and initial conditions, and assumed 

constitutive stress-strain relationships (Segall and Pollard, 1980). Unfortunately, even in cross 

section, real fault geometries are complex. In addition, boundary and initial conditions for 

planetary surfaces are often based on inferences made from sparse data regarding materials with 

poorly known of unknown rheologies. Given these constraints, Earth analogs (including field 

observations), laboratory experiments, and an assumed linear elastic ice rheology are used to 

infer patterns and causes of strike-slip faulting of Ganymede’s surface. Several types of 

diagnostic structures that can evolve as the slip along a basement fault increases are examined: 

en echelon faults, strike-slip duplexes, and offset features (Figure 2.2). Strained craters can also 

serve as useful markers for strike-slip tectonism (Pappalardo and Collins,  2005). 
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Figure 2.2: Strike-slip morphology cross section: (a) Diagrammatic strain ellipse and associated structures predicted from dextral 
simple shear after Reading (1980) and Harding (1974), projected onto a perspective view surface. Open white arrows represent 
the corresponding principal stress directions. The maximum compressive stress (σ1) and minimum compressive stress (σ3) can be 
visualized as indicating the ‘‘compression axis’’ C and the ‘‘extension axis’’ E, respectively. Half-arrows indicate the inferred 
direction of simple shear, either dextral or sinistral; (b) Summary of morphological predictions of strike-slip faulting (modified 
from Pappalardo and Greeley, 1995). Features labeled are distinctive large-scale characteristics of strike-slip faulting that can be 
identified in spacecraft images, and which are examined in this study.  
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3.1. En echelon structures 

En echelon structures (Figure 2.2b and 2.3) are a series of sub-parallel structures restricted to a 

band that is narrow relative to its length, and separated by systematic offsets (or step-overs), used 

synonymously with Riedel (R) and antithetic (R’) shears in this study. On Earth, en echelon 

structures appear at a broad variety of scales in numerous materials, from granite to soil to ice, 

and several mechanisms may explain their formation. For example, Pollard et al. (1982) argue 

that en echelon fractures grow from a dilatant parent crack that encounters a region in which the 

principal stresses have rotated about an axis parallel to the direction of fracture propagation. 

Alternatively, shear stresses acting parallel to a parent crack front may allow for growth of 

incipient en echelon cracks (Wilcox, et al., 1973; Pollard et al., 1982; Thomas and Pollard, 

1993). Moreover, experimental models suggest that with low levels of strain, net simple shear 

causes a set of small faults (Figure 2.2), or R en echelon shears, to form (Tchalenko, 1970). R 

shears strike at a low angle to the basement fault and are characterized as right-stepping or left-

stepping by determining if one must step right or left to reach the next segment when looking 

along strike (Tchalenko, 1970; Segall and Pollard, 1980). Right-stepping transtensional en 

echelon fault segments indicate left-lateral strike-slip, while left-stepping transtensional fault 

segments indicate right-lateral strike-slip; transpressional en echelon structures will step in the 

opposite sense (Kingma, 1958; Reading, 1980; Woodcock and Fischer, 1988). With increasing 

angle to the basement fault, conjugate faults with an opposite sense of shear (R’) may also form 

(Tchalenko, 1970; Naylor et al., 1986). Faults may produce P shears that are roughly 

symmetrical to the R shears (with respect to the overall slip direction) and act to connect the R 

shears, ultimately linking into through-going faults (Naylor et al., 1986; Woodcock and Fischer, 

1988).  

En echelon structures are not limited to Earth, with evidence for them found on Venus 

(Basilevsky et al., 1986), Mars (Vetterlin and Roberts, 2003), Enceladus (Martin, 2016), Europa 

(Michalski et al., 2002, Kattenhorn, 2002; Kattenhorn, 2004; Hoyer et al., 2014), and Ganymede 

(DeRemer and Pappalardo, 2003). On Ganymede, examples of en echelon structures (Figure 2.3) 

are common within the grooved terrain (e.g., Uruk Sulcus), but they also occur within the dark 

terrain (e.g., Anshar Sulcus) (Collins et al., 1998c; DeRemer and Pappalardo, 2003; Pappalardo 

et al., 2004). En echelon structures display a variety of widths and lengths, and mapped example 
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zones on Ganymede range in length from several to tens of kilometers to hundreds of kilometers. 

Morphological observations of Ganymede's en echelon structures suggest a similar progression 

from R shears to complex fault zones with continued slip, as predicted by experimental models 

(Naylor et al., 1986; DeRemer and Pappalardo, 2003). This progression from simple to more 

complex shear zones may be related to an increase in the amount of slip (DeRemer and 

Pappalardo, 2003); moreover, shear zones in dark terrain might evolve into bright en echelon 

swaths as slip increases (Prockter et al., 2000; DeRemer and Pappalardo, 2003).  

Figure 2.3: Examples of en echelon structures on Ganymede, with simple corresponding sketch maps and inferred shear sense, 
after DeRemer and Pappalardo (2003). (a) Isolated en echelon structures within the dark lineated terrain of Anshar Sulcus 
(162°E, 18°N); (b) An en echelon swath in the light subdued material found within Transitional Terrain (173°E, 32°N). Arrows 
indicate inferred shear sense assuming a transtensional origin, where bold red lines are features of interests, thin red lines are 
craters and features outside of the relevant zone, and green lines are scarps (ticks point downslope).  
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3.2. Strike-slip duplexes 

Strike-slip duplexes (Figure 2.4) can form where a strike-slip fault bends and creates a 

sigmoidal or spindle-shaped fault-bounded area (Naylor et al., 1986; Woodcock and Fischer, 

1988; Pappalardo and Greeley, 1995; Prockter et al., 2000; DeRemer and Pappalardo, 2003). A 

transpressional duplex can form at restraining bends or steps, while an extensional duplex can 

form at releasing bends or steps. In addition, smaller en echelon faults can dissect the duplex 

interior (Woodcock and Fisher, 1986).  

Strike-slip duplexes have been interpreted to exist on Europa, for example, along the ~1500 

km long Agenor Linea where a ~50 km contractional duplex is inferred to have formed at a 

restraining bend (Prockter et al., 2000). On Ganymede, sets of faults resembling strike-slip 

duplexes are prevalent within the light terrain (e.g., Uruk Sulcus, Nun Sulci; Figure 2.4c), but 

also can occur in dark terrain (e.g., Transitional Terrain; Figure 2.4a, b). Duplexes within light 

terrain represent mostly extensional regimes; for example, an inferred extensional duplex at Uruk 

Sulcus suggests transtension (Collins et al., 1998c; Pappalardo et al., 1998). Far fewer examples 

suggest a contractional regime, such as the inferred contractional duplex at Nun Sulci.  

Previous work by Pappalardo and DeRemer (2003) suggests duplex structures on Ganymede 

can be categorized based on fracture density, continuity of bounding faults, and the presence of 

internal structure. Pappalardo and DeRemer (2003) consider three classes of duplex structures: 

(1) discontinuous fractures, (2) lensoid bounding structures, and (3) lensoid duplexes with 

subparallel internal structure. Discontinuous fractures suggesting lensoid shape (class 1, Figure 

2.4a) occur in dark terrain and are defined by discontinuous bounding structures of low fracture 

density, where no identifiable duplex-related internal structure exists. Lensoid bounding 

structures (class 2, Figure 2.4b) are also found in dark terrain and have fractures of great enough 

continuity and density as to define continuous lensoid-shaped bounding structures. If these areas 

have any identifiable duplex related internal structure, the structure is not organized. Examples 

of duplex structure class 1 and 2 may be observed in the Transitional Terrain (Section 5.2). 

Lastly, lensoid duplexes with subparallel internal structure (class 3, Figure 2.4c), recognized in 

grooved terrain, exhibit continuous bounding structures and an organized, subparallel group of 

internal structures. An example of duplex structure 3 is inferred in Uruk Sulcus (Section 5.1). 

These morphological transitions in duplex classes might form an evolutionary sequence, perhaps 
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occurring during the transition from dark to grooved terrain, in which originally discontinuous 

structures link together, and then their interiors overlap to form fault duplexes (DeRemer and 

Pappalardo, 2003).  

 
Figure 2.4: Examples of fault duplexes and duplex-like structures on Ganymede, with corresponding sketch maps, after 
DeRemer and Pappalardo (2003). (a) Dark lineated terrain showing discontinuous structures (class 1) suggesting a lensoid shape 
in Transitional Terrain (173°E, 32°N); (b) Light subdued terrain showing lensoid bounding structures (class 2) in Transitional 
Terrain; (c) Light grooved terrain showing a lensoid with a subparallel internal structure (class 3) in Uruk Sulcus (199°E, 0.8°N). 
Arrows indicate inferred shear sense assuming a transtensional origin, bold red lines are features of interests, thin red lines are 
craters and features outside of the relevant zone, green lines are scarps (ticks point downslope), and blue lines denote image 
boundaries.  

3.3. Offset features 

Offset of pre-existing structures (Figure 2.5) can indicate strike-slip faulting, even where 

other strike-slip features cannot be identified, for example, if available image resolution is 

limiting. Strike-slip offset can readily be observed on Earth, for example, along the San Andreas 

fault, a ~1300 km long right-lateral strike-slip fault where some markers suggest ~175 km of 

offset has occurred in the last 12 Ma (Graymer et al., 2002). Strike-slip offset is also commonly 

inferred on Europa, such as the ~800 km long Astypalaea Linea which exhibits ~40 km of right-

lateral offset (Hoppa et al., 1999). On Ganymede, discernible fault zone offsets are inferred along 

both Dardanus and Tiamat Sulcus (Figure 2.5), where right-lateral strike-slip is the likely 

explanation for the apparent offsets of preexisting features, of ~45 and ~20 km respectively,  
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Figure 2.5: Examples of offset features at Ganymede’s Dardanus Sulcus (342°E, 18°S) and Tiamat Sulcus (151°E, 0°S), with 
corresponding sketch maps and inferred shear sense. Arrows indicate inferred shear sense assuming a transtensional origin, bold 
red lines are features of interests, and blue lines denote image boundaries. 

3.4. Strained Craters 

Strained craters (Figure 2.6) can serve as natural strain markers on tectonically deformed 

planets. On Earth, markers of known initial shape, such as initially spheroidal sedimentary 

grains, or ooids, are commonly used to infer strain (Ramsay, 1967; Means, 1976; Ramsay and 

Huber, 1983). In other planetary environments, most craters originate as near-circular structures 

formed by impactors which strike a surface at >10° from the horizontal (Gault and Wedekind, 

1978). Studies of the geometry of deformed craters have helped infer crustal shortening along 

reverse faults on Mercury (Strom et al., 1975; Dzurisin, 1978), and the ellipticity of Martian 

craters has been used to infer strain across them (Thomas and Allemand, 1993; Golombek et al., 

1996).  

Very few strained craters were recognized in Voyager images of Ganymede (Shoemaker et 

al., 1982), but relatively high-resolution Galileo images reveal several strained craters tens of 
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kilometers in diameter. These deformed craters have retained identifiable rim segments along a 

considerable portion of their circumference, but are transected by sets of subparallel ridges and 

troughs oriented roughly orthogonal to the long axis of the crater, suggesting that initially 

circular craters have been extended (Pappalardo and Collins, 2005). Pappalardo and Collins 

(2005) used two methods (Figure 2.6) for estimating crater elongation. (1) For craters transected 

by a narrow zone of ridge and trough terrain resulting in two relatively undeformed, arc-shaped 

crater rim segments (split craters), such as Saltu crater in Arbela Sulcus (Figure 2.6a; Section 5), 

two best-fit circles can be fit to the undeformed rim arc remnants, and the line connecting the 

centers of the two best-fit circles is the slip vector accommodated by the narrow zone of 

deformation (Figure 2.6a). (2) For craters that are intensely deformed by ridge and trough terrain 

distributed across the entire crater, the deformed crater rim roughly approximates an ellipse, such 

as the unnamed crater in Marius Regio near Anshar Sulcus (Figure 2.6b; Section 5) or Nefertum 

crater in the Nun Sulci region (Figure 2.8). Locations along the deformed rim can be digitized to 

fit a best-fit ellipse (Figure 2.6b). Both of these methods can be used to determine displacement 

by simple extension and displacement by simple shear accommodated by the ridge and trough 

terrain. With this consideration, Pappalardo and Collins (2005) estimate elongation amounts 

ranging from 5 to 50% for five studied craters (Saltu, Nefertum, Erichthonius, and two unnamed 

craters) on Ganymede.  
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Figure 2.6: Images and sketch maps of example strained craters with representative troughs and smaller craters from Pappalardo 
and Collins (2005): (a) Saltu, within dark terrain of Nicholson Regio (7.3°E, 14°S); shown in gray are the circles fit to each rim 
segment and their corresponding centers; (b) An unnamed crater in dark terrain of Marius Regio, near Anshar Sulcus (162°E, 
18°N); shown in gray are the best-fit ellipses and their corresponding major and minor axes. 

4. Image processing, digitization of morphological structures, and structural analyses 

Between 1996 and 2000, the Galileo spacecraft made six close encounters with Ganymede 

allowing for acquisition of high-resolution images with the Solid State Imaging (SSI) camera 

(Patterson et al., 2010). Tables 2.1 and 2.2 provide details related to Galileo geospatial data, 

image resolution, and nomenclature; additional Galileo orbital information for Ganymede remote 

sensing data are provided by Schenk (2010) and Bagenal et al. (2004). Although high-resolution 

coverage of Ganymede is sparse (Carr et al., 1995), Voyager data provides additional lower 

resolution coverage (Smith et al., 1979a,b; Shoemaker et al., 1982; McKinnon and Parmentier, 

1986). Becker et al. (2001) created global image mosaics of Ganymede’s surface using the best 

data from the Galileo and Voyager 1 and 2 missions. Both the lighting and viewing geometries 
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of the images used in the mosaics vary greatly, and may hinder proper characterization of 

terrains. 

Each Galileo mosaic was first processed in U.S. Geological Survey ISIS 3 (Integrated 

Software for Imagers and Spectrometers, cf. Keszthelyi et al; 2013, 2014), then imported into 

ArcMap Geographic Information System (GIS) software in simple cylindrical map projection, 

and digitized at a standard scale ratio appropriate for each image set (ranging from 1:250 k and 

1:1 M, depending on the data set). For each mosaic, imagery was first inspected for trough-like 

structures, which were then digitally recorded as lines on the map; ridges were also mapped in 

some locations and notated accordingly. Where necessary, mapped features were extended into 

the surrounding low-resolution imagery, and some features were mapped directly on the low-

resolution images in separate GIS layers. For consistency in mapping, a reference circle 

appropriate to the resolution of the image was drawn for each image set, representing the 

smallest size structure (typically a crater) to be digitized. A stippled pattern was adopted for 

digitizing furrows.  

All image sets and features were mapped uniformly within the varying resolution limits, and 

special attention was focused on identification of strike-slip indicators described in Section 3. 

Where identified, these structures received text labels. An ArcGIS map package created in 

ArcMap 10.1 containing the corresponding high-resolution imagery of each site and presence of 

strike-slip indicators is available for download (Cameron et al., 2018d,	Mendeley dataset). While 

terrestrial geological map units are material units independent of structure (ACSN, 1961), 

exceptions are generally made in planetary mapping owing to the difficulty of using a strict 

lithologic definition of units when limited to remote sensing. Wilhelms (1972, 1990) outlines a 

process in which a broader suite of units may be defined on the basis of crater density, surface 

morphology, superposition relations, albedo contrasts, and other observable features (see also 

Head et al., 1978). The use of structure to characterize geological units, even in the qualified 

manner described above, can be controversial (Hansen, 2000). For the purpose of this study, 

“domains” are instead defined as tectonic divisions of similar and consistent morphology, 

reflectance, and density of any superposed craters. Where possible, the terrain types described in 

Section 2.1 (dark terrain, light subdued, light irregular, and light grooved) are used as a marker 

for assigning color types, with each terrain type receiving a unique color. Relative ages within 
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light terrain types are indicated by varying shades of a given color (darker with inferred age) as 

demonstrated in Figure 2.7. Please note the relationship between shading and relative age only 

applies within a single terrain type (light or dark), and is only applicable within any given 

individual mapping area, where contiguous high-resolution Galileo images exist. These color 

schemes were adopted to facilitate comparisons among mapped sites at a global scale. 
 

Table 2.1: Camera and lighting geometry of Galileo imagery. Between 1996 and 2000, the Galileo spacecraft made six close 
encounters with Ganymede (orbits G1, G2, G7, G8, G28, and G29), allowing for acquisition of high-resolution images with the 
Solid State Imaging (SSI) camera (Patterson et al., 2010). 

  

Site name Observation ID 
Emission angle 

 (°) 

Incidence angle  

(°) 

Average 

resolution 

(m/pixel) 

Nun Sulci G7GSNUNSUL01 56.95-60.47 48.64-51.20 170 

Dardanus Sulcus 29GSDARDAN01 19.58-30.912 20.13-31.61 2000 

Tiamat Sulcus G8GSTIAMAT01 21.21 84.51 500 

Uruk Sulcus G1GSURUSUL01 21.35-23.30 12.74-14.20 40-75 

Arbela Sulcus 28GSARBELA02 14.19-17.00 31.52-34.25 132-180 

Nippur/Philus Sulci G2GSNIPPUR01 49.22-54.72 59.62-63.10 100 

Byblus Sulcus G2GSGRVLNS01 39.37-39.99 52.82-53.95 85 

Anshar Sulcus G8GSANSHAR01 9.39-10.41 67.81-70.32 145 

Transitional Terrain G2GSTRANST01 32.80-37.61 39.30-43.70 190 
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Table 2.2: Nomenclature and geographic coordinates of Ganymede features. For Ganymede, feature names are derived from 
Mesopotamian and Egyptian myths, as sanctioned by the official International Astronomical Union. With the exception of 
craters, names also include Latin-derived descriptive terms, such as Sulcus (plural, Sulci) meaning parallel grooves and ridges, 
and Facula meaning bright spots. In relation to image plate references, quadrangles are named and numbered according to 
convention, where for example, “Jg4” refers to “J”upiter satellite “G”anymede quadrangle “4”. Longitude coordinates are given 
in an East-positive convention. Gray entries denote mapped region and corresponding plate; specific features discussed in Section 
5 are listed below region name, and in alphabetical order. 
 

 

Feature name 
Latitude 

(°N) 
Longitude 

(°E) 
Plate 

Nun Sulci 49.5 43.6 Jg5 
Haroeris crater 28.5 63.2 Jg5 
Mont crater 44.6 48.1 Jg5, Jg5.1 
Nefertum crater 44.3 38.9 Jg5, Jg5.1 
Tros crater 11.1 332.7 Jg6 
Upuant crater 46.4 40.5 Jg5, Jg5.1 
Dardanus Sulcus -17.5 342.5 Jg6, Jg11 
Barnard Regio -10.7 341 Jg6 
Damkina crater -30 355 Jg11 
Mysia Sulcus -7 352.1 Jg6 
Nicholson Regio -33.5 355.2 Jg10, Jg11 
Tiamat Sulcus 3.4 151.5 Jg8, Jg9 
Kishar Sulcus -6.4 143.4 Jg9 
Maa crater 1.3 156.4 Jg8, Jg8.8 
Uruk Sulcus  0.8 199.7 Jg8 
En-Zu crater 11.6 191.6 Jg8, Jg8.2 
Arbela Sulcus -21.1 10.2 Jg10, Jg10.3, Jg14 
Nicholson Regio -33.5 355.2 Jg10, Jg11 
Saltu crater -14.2 7.3 Jg10 
Nippur/Philus Sulci 36.9 175 Jg4 
Marius Regio 6.8 178.8 Jg4 
Byblus Sulcus 37.9 160.1 Jg4 
Marius Regio 6.8 178.8 Jg4 
Nergal crater 38.6 159.7 Jg4, Jg4.2 
Anshar Sulcus 18 162.1 Jg4, Jg8, Jg8.5 
Marius Regio 6.8 178.8 Jg4 
Thebes Facula 7.1 157.6 Jg8 
Transitional Terrain 32 173 Jg4.1 
Anhur crater 32.6 167.7 Jg4, Jg4.1 
Epigeus crater 23.4 179.4 Jg4, Jg4.5 
Marius Regio 6.8 178.8 Jg4 
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Figure 2.7: Color key for digitized maps (Figures 2.8 – 2.16) denoting material types and relative age. Each light terrain type 
(light subdued, light irregular, and light grooved) receives a unique color (i.e., green, blue, purple), and relative ages within 
terrain types are indicated by varying shades (darker with age). 

Major structural domains were then grouped and exported as digital data for additional post-

processing analyses. For each mapped site, a polar plot angle histogram (rose diagram) is created 

based on the trend of line segments in relation to the origin point (restricted to 90 - 270° for 

simplicity). A single rose diagram might combine several domains that are inferred to be of 

similar age based on their cross-cutting relationships with other domains, and are labeled 

according to relative age of each domain grouping (e.g., oldest, intermediate, youngest). For this 

analysis, similar data entries are combined into 10° wide bin domains. Each rose diagram 

presented in this analysis represents a distribution of values by the combined length (in meters) 

of line segments of a particular orientation. It is important to note that all mapped structures, 

whether assessed to be extensional or strike-slip in nature, were weighted equally in the rose 

diagrams. Finally, deformation stages, illustrated by standard strain ellipses (Figure 2.2a, after 

Reading (1980) and Harding (1974)) were established to account for orientations of 

morphological domains (or groups of domains) and the principal stress directions (open white 

arrows) that support these orientations. Here, open white arrows represent maximum 

compressive stress (σ1) and minimum compressive stress (σ3), which can be visualized as 

indicating the ‘‘compression axis’’ C and ‘‘extension axis’’ E of each strain ellipse, respectively. 
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Half-arrows indicate the inferred direction of simple shear, either dextral or sinistral, while a 

strain ellipse without half-arrows indicates a deformation stage where little indication of strike-

slip behavior is inferred. The diagrammatic strain ellipses presented in this paper were 

configured based on the slip tendency analysis described next. 

Slip tendency (Ts) describes the ability of a fault plane to slip in a given stress field, and is 

defined as the ratio of resolved shear (τ) to normal tractions (σn) acting on the plane,  

      𝑇! =
!
!!

.       (1) 

The assessment of stress states and potential fault activity using slip tendency analyses has 

previously been used to assess hazards along terrestrial fault zones (Morris et al., 1996; Lisle and 

Sribastava, 2004; Collettini and Trippetta, 2007; Moeck and Zimmerman, 2009). Slip tendency 

analyses assume that faults already exist and are used to assess whether applied stress will cause 

slip on a fault, and if this slip will be manifested as strike-slip or normal faulting. Because the 

digitized faults are represented only by their surface traces and fault dip cannot be measured 

from spacecraft images, each fault trace is evaluated as both a potential vertical strike-slip fault 

(dipping 90° from the horizontal) and as a modestly dipping potential normal fault (dipping 60° 

from the horizontal). For this analysis, if the slip tendency, Ts, in pure normal fault mode is 

larger than the slip tendency in pure strike-slip fault mode, the trace is marked as a normal fault; 

otherwise it is treated as a strike-slip fault. Pure strike-slip on a fault trace is prohibited if the 

calculated normal stress on a given fault segment is tensile. All possible shear and normal 

tractions are calculated by first rotating and evaluating each possible orientation the principal 

stresses, σ1 and σ3, defined as the most and least compressive horizontal stress (deviatoric stress + 

vertical lithostatic (ρgz) stress), respectively, through 180° in 10° increments. Calculations 

consider fault planes at a depth of 1 km and assume model parameters appropriate to Ganymede: 

g = 1.428 m/s2, ice density, ρ = 930 kg/m3, and a coefficient of friction of ice (µf = 0.55) that is 

consistent with laboratory estimates of ice friction and previous studies (Schulson and Fortt, 

2012). Additionally, a stress multiplier of -1 between σ1 and σ3 is applied, making the horizontal 

stresses equal, but opposite. Changing this multiplier assumption changes the total number of 

faults that undergo strike-slip, but it does not change the orientation at which the maximum 

number of faults in a set will slip.  
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Using the slip tendency method at each of the nine sites studied, models show where mapped 

structures will be locked, or experience either strike-slip or normal faulting (see Supplementary 

Material: Slip Tendency Analysis) and allow for the comparison of the prediction with the 

presence (or absence) of morphological indicators of strike-slip and normal faulting from 

mapping efforts (described in detail in Section 5). The resulting stress orientation is considered 

plausible if features with morphological strike-slip indicators undergo the correct sense of shear, 

and if similarly aged features interpreted as graben or normal fault sets are slipping as normal 

faults. Stress orientations indicating the wrong shear sense, or locked faults, are considered 

implausible. Stress orientations are presented for each inferred main stage of tectonic 

deformation for each of the nine sites studied below.  

5. Morphological observations and interpretations 

Nine Galileo target sites (Figure 2.1a), of varying terrain types displaying evidence of strike-

slip indicators, were chosen for this study of strike-slip tectonism. Five of these sites are located 

primarily in light, grooved terrain (e.g. Nun Sulci, Dardanus Sulcus, Tiamat Sulcus, Uruk Sulcus 

and Arbela Sulcus); the remaining four sites occur within terrains transitional from dark to light 

terrain (e.g., Nippur/Philus Sulci, Byblus Sulcus, Anshar Sulcus, and the Galileo G2 Transitional 

Terrain target site). Sites also represent different hemispheric regions on Ganymede: trailing, 

leading, anti-Jovian, and sub-Jovian (Figure 2.1a). This section discusses the geologic setting of 

these nine sites, morphologic interpretations from the digitization efforts, the presence of strike-

slip indicators, and inferred stress histories consistent with these observations. Note that the 

process of inferring geologic history (cause) from structures (effect) is distinct from traditional 

methods typically used to infer terrestrial geologic relationships and take care to consider 

uncertainties due to this in Section 6. 

5.1. Grooved Terrain 

5.1.1. Nun Sulci 

The two-frame image mosaic of the Nun Sulci site (Figure 2.8a) shows a complex group of 

intersecting bands of light terrain generally trending NW-SE or E-W (Collins et al., 1998c). The 
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strained crater Nefertum, measures ~35 km in width and shows pervasive fracturing and 

elongation. Other named craters include ~14 km diameter Upuant and 11 km diameter Mont. The 

bright splotches that appear throughout the site are inferred to be secondary craters from bright-

ray craters Tros, a ~95 km diameter central dome crater located ~3690 km to the southwest of 

the image mosaic (Moore and Malin, 1988; Schenk et al., 2004), and Haroeris, located ~1310 km 

to the southeast of the image mosaic. Arcuate, scalloped features in the eastern portion of the 

image mosaic have been interpreted as cryovolcanic calderas (Lucchitta, 1980; Schenk and 

Moore, 1995; Head et al., 1998; Kay and Head, 1999; Schenk et al., 2001; Spaun et al., 2001). 

Here we identify seven domains of similar morphologies in this primarily light terrain site 

(Figure 2.8b), with only a small area of dark terrain present (label j). The oldest domains 1 – 3 

are grouped separately based on variations from smooth to more heavily grooved terrain (Figure 

2.8c); all share a similar NW-SE trend of lineations within domains, although domain 3 contains 

some NE-SW trending structures. Domain 1 consists of both subdued and grooved terrain, 

domain 2 is heavily grooved and bounded on each side by prominent troughs, and domain 3 

consists of mostly subdued grooves. Structures in the youngest domains (4 – 7) have an E-W 

trend and crosscut domains 1 – 3, while the boundary between domains 2 and 6 is ill-defined. 

Several domains have plentiful examples of en echelon structures (labels d – i) and possible left-

lateral offset (labels b – c, see also Murchie and Head, 1988). Analyses performed by Pappalardo 

and Collins (2005) on the strained crater Nefertum (label a, see also Supplementary Figure 10) 

suggests right-lateral deformation; we find the orientation of expected right-lateral R shears 

corresponds with the strained crater’s major axis.  

We infer two main stages of tectonic deformation of light terrain at Nun Sulci (Figure 2.8d): 

(Stage I) NE-SW extension and normal faulting of the oldest domains (1 – 3), perhaps 

accompanied by a component of right-lateral shearing along the R shearing axis of Nefertum 

crater. Slip tendency analysis suggests that a principal stress orientation of σ1 = 140° – 150° 

provides the best match to these observations (Supplementary Figure 1); (Stage II) 

counterclockwise rotation of the principal stresses about a vertical axis to a NW-SE extensional 

regime, resulting in left-lateral offset (Murchie and Head, 1988) of domain 2 along the simple 

shear axis, reactivation of extensional fractures in youngest domains (4 – 7), and formation of 

several en echelon fractures in domain 1. Slip tendency analysis suggests a principal stress 
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orientation of σ1 = 60° – 70° provides the best match to these observations (Supplementary 

Figure 1). For Stage I, strike-slip indicators are less prevalent, as indicated by the absence of 

half-arrows of its representative strain ellipse; we infer that extension dominated this first stage. 
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Figure 2.8: Nun Sulci. (a) Voyager background imagery underlying Galileo high-resolution imagery, (b) lineament map, with 
letters and numbers referred to in the text, (c) rose diagrams (by length), and (d) diagrammatic strain ellipses. 
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5.1.2. Dardanus Sulcus 

Galileo image resolution for Dardanus Sulcus (Figure 2.9a, Table 2.2) was lower than for 

other regions in this study (Collins et al., 2013). Dardanus Sulcus is a NW-SE trending band of 

light terrain ~150 km wide that cuts the surrounding Nicholson Regio dark terrain in the sub-

Jovian hemisphere. It displays ~45 km of right-lateral offset along an unnamed NE-SW fault 

with a wavy planform that cuts through Nicholson Regio (Murchie and Head, 1988). En echelon 

structures are observed in several of the light terrain domains. Barnard Regio and Mysia Sulci lie 

north of Dardanus Sulcus near the top of the mosaic. Damkina, a ~175 km wide central dome 

crater, is visible at the lower right of the image mosaic.  

Here we identify eight domains of distinct morphology (Figure 2.9b), with the oldest 

(domain 1) being the heavily cratered dark terrain of Nicholson Regio. Intermediate light terrain 

(domains 2 – 4) cross-cut Nicholson Region and are subsequently cross-cut by younger light 

terrain (domains 5 – 8). A NE-SW striking fault (label a) offsets the grooved terrain of domains 2 

and 3 ~45 km right-laterally (Murchie and Head, 1988). Possible en echelon structures indicative 

of left-lateral shear are visible in domain 2 (label b, see also Supplementary Figure 10). We 

interpret domain 4 to represent the southern extension of domain 3, as they appear to have 

similar grooved terrain spacing and appearance. Domain 5 appears to have a less organized 

internal structure than domains 2 – 4, and also is oriented quite differently. The relationship of 

domains 7 and 8 with respect to other domains is unclear, but domain 7 shares a similar 

orientation and appearance to domain 8. Rose diagrams of structures within the dark terrain 

indicate the structure generally strikes NW-N (Figure 2.9c). The intermediate-aged offset band of 

light terrain trends mostly NW, while the lineations of the youngest of the light terrain domains 

trends NE (Figure 2.9c). Domain 6, a thin swath of grooved material that shares a similar 

orientation to domains 2 – 4, appears to crosscut domain 5, but we do not clearly understand how 

the feature fits into the tectonic history. Domain 6 could be the youngest domain and reflect an 

additional period of tectonic deformation. Due to this uncertainty, we do not include it in our slip 

analysis. 

We infer two main stages of tectonic deformation of light terrain at Dardanus Sulcus (Figure 

2.9d): (Stage I) ENE-WSW extension of the oldest of the bright terrain domains 2 – 4. We do not 

include domain 1 due to the lack of distinct, linear structures. Slip tendency analysis suggests a 
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principal stress orientation of σ1 = 170° provides the best match for extension of the light terrain 

domains (Supplementary Figure 2); (Stage II) counterclockwise rotation of the principal stresses 

about a vertical axis to a more NE-SW extension regime resulting in right-lateral slip of domains 

2 and 3 along the fault. Slip tendency analysis suggests a principal stress orientation of σ1 = 120° 

– 140° provides the best match for the inferred right-lateral offset (Supplementary Figure 2). 
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Figure 2.9: Dardanus Sulcus. (a) Voyager background imagery underlying Galileo high-resolution imagery, (b) lineament map, 
with letters and numbers referred to in the text, (c) rose diagrams (by length), and (d) diagrammatic strain ellipses. 
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5.1.3. Tiamat Sulcus 

Tiamat Sulcus (Figure 2.10a) appears as a band of light terrain trending NW-SE and cutting 

through the dark terrain of Marius Regio. Tiamat Sulcus appears to be tens of kilometers wider 

south of the NE-SW trending Kishar Sulcus than to its north. Murchie and Head (1988) 

interpreted that right-lateral slip occurred here, and perhaps the southern section of Tiamat 

experienced more extension, as the light terrain in the southern portion of Tiamat seems to either 

be contemporaneous or postdate the slip along Kishar Sulcus. Other bands of light terrain in the 

east appear to bend either south from an initial NE-SW trend, or north from an initial NW-SE 

trend. Maa crater (Figure 2.10a) measures ~ 30 km in diameter, and many other older, relatively 

flat and presumably viscously relaxed, craters appear throughout the dark terrain.  

Here we identify twelve domains of distinct morphology in this rather complex region 

(Figure 2.10b). The oldest domains (1 – 3) belong to the surrounding Marius Regio dark terrain, 

while intermediate (4 – 10) and young (11 – 12) light terrain domains primarily trend NW-SE 

and NE-SW (Figure 2.10c). Murchie and Head (1988) examined this region and refer to domains 

11 and 12 as a single lineament, but also note the ~30° – 40° change in orientation from the 

northwestern to southeastern end. Domains are distinguished by changes in orientation of 

internal structure, and also by appearance, most notably the uniquely braided appearance of 

domain 4. Braided, or anastomosed zones, are sometimes observed in strike-slip systems on 

Earth, such as the Carboneras fault in Spain, where an array of steeply dipping fault planes link 

to form a complex system of branching faults and shear lenses (Keller, et al., 1995; Davis et al., 

2000; Faulkner et al., 2003). En echelon structures are observed in many of the light terrain 

domains (labels c – e, see also Supplementary Figure 10) including within the braided domain 4. 

There are also instances of possible right-lateral offset between domains 6 and 7 (label b) 

judging by the similarity of groove spacing along domain 9, Kishar Sulcus. Additionally, domain 

8 appears to have experienced right-lateral slip along domain 11; a clear example of offset 

(Murchie and Head, 1988) lies off the digitized map area.  

We infer three corresponding stages of deformation of light terrain at Tiamat Sulcus (Figure 

10d): (Stage I) NNW-SSE extension of dark terrain domains (1 – 3), as well as formation of 

domain 9. We note that domains 1-3 may instead be related to furrow formation, limiting this 

strain ellipse to account only for the formation of domain 9; additionally, strike-slip indicators 
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are minimal here. Slip tendency analysis suggests a principal stress orientation of σ1 = 40°-60° 

provides the best match for extension of these domains (Supplementary Figure 3); (Stage II) NE-

SW extension of old to intermediate aged domains (4 – 7), right-lateral shearing, and offset of 

domain 9 along simple shear axis. Slip tendency analysis suggests a principal stress orientation 

of σ1 = 130° provides the best match to these observations (Supplementary Figure 3); (Stage III) 

slight clockwise rotation of the principal stresses about a vertical axis with formation and 

perhaps right-lateral shearing of the young domain 11. Slip tendency analysis suggests a 

principal stress orientation of σ1 = 150° – 180° provides the best match to these observations 

(Supplementary Figure 3).  
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Figure 2.10: Tiamat Sulcus: (a) Voyager background imagery underlying Galileo high-resolution imagery, (b) lineament map, 
with letters and numbers referred to in the text, (c) rose diagrams (by length), and (d) diagrammatic strain ellipses. 
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5.1.4. Uruk Sulcus 

This five-frame image mosaic of the Uruk Sulcus region (Figure 2.11a) displays several 

intersecting bands of light terrain with various trends (cf. Pappalardo et al., 1998). For example, 

a NE-SW trending section of light terrain in the northeastern corner of the mosaic is cut by a 

NW-SE band of light terrain, which may also cut an older impact crater. Packets of N-S trending 

grooves occur throughout. Stereo coverage implies a close correlation between albedo variations 

and topography, with bright material along topographic highs, such as ridges, and dark material 

at local topographic lows, such as trough and crater floors (Collins et al., 1998b; Oberst et al., 

1999). One of these dark floored craters is the ~6 km diameter En-Zu (labeled), and many small 

craters spot the site. Previous studies by Collins et al (1998b) suggest two scales of ridges and 

troughs are observed in the Uruk Sulcus region. 

Here we identify fifteen domains of distinct morphology in this complex section of light 

terrain; no dark terrain appears in this region (Figure 2.11b). The oldest domains (1 – 4) belong 

to pitted and lineated terrain of various orientations. Younger domains (6 – 15) compose the 

more striated and ridged terrain of this region. The oldest domains in this site are predominantly 

NNW-SSE and NNE-SSW, while younger domains trend more NW-SE (Figure 2.11c). En 

echelon structures are prevalent in the younger domains (labels a – d), and a possible strike-slip 

duplex is among the youngest domains (label e, see also Supplementary Figure 2.10). This 

duplex may be an example of a lensoid with subparallel internal structure, or duplex class (3), as 

described in Section 3.2.  

We infer three main stages of deformation of light terrain at Uruk Sulcus (Figure 2.11d): 

(Stage I) NW-SE extension and formation of pitted terrain domains (2 – 4) through normal 

faulting with formation of left-lateral antithetic shear structures within domains 3 and 4. Slip 

tendency analysis suggests a principal stress orientation of σ1 = 20° – 30° provides the best 

match to these observations (Supplementary Figure 4). Domain 1 was not included in the slip 

tendency analysis due to the severely reduced image resolution; (Stage II) counterclockwise 

rotation to a E-W extension direction, along with formation of intermediate aged bright terrain 

domains (5 – 9) through normal faulting. Slip tendency analysis suggests a principal stress 

orientation of σ1 = 170° – 10° provides the best match to these observations (Supplementary 

Figure 4); (Stage III) counterclockwise rotation of the principal stresses about a vertical axis to a 
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NE-SW extension, and formation of young domains (10 – 15) with possible right-lateral shearing 

and normal faulting. En echelon features in domain 15 align with the implied right-lateral R 

shear axis, while features within the duplex of domain 14 correlate to the inferred extension 

direction. Slip tendency analysis suggests a principal stress orientation of σ1 = 150° – 160° 

provides the best match to these observations (Supplementary Figure 4). These results are in 

agreement with Collins et al. (1998a), in which the least compressive stress (here labeled σ3) for 

the oldest units was NW-SE, rotating over time to a NE-SW orientation during the formation of 

the youngest units. 
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Figure 2.11: Uruk Sulcus: (a) Voyager background imagery underlying Galileo high-resolution imagery, (b) lineament map, with 
letters and numbers referred to in the text, (c) rose diagrams (by length), and (d) diagrammatic strain ellipses. 
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5.1.5. Arbela Sulcus 

The multi-frame mosaic of the Arbela Sulcus region (Figure 2.12a) contains the dark terrain 

of Nicholson Regio, and two bands of light terrain trending NE-SW cut through the eastern 

portion of the site. One of these bands is intensely grooved and may be transitional from normal-

faulted dark terrain (Patel et al., 1999) and is disrupted by the second, much smoother band, 

Arbela Sulcus. Nicholson Regio also has several regions of narrow fractures throughout, 

especially noticeable in the southeastern area of the mosaic. One of these fracture zones splits the 

~30 km wide crater, Saltu, and is identified as a possible strained crater by Pappalardo and 

Collins (2005). In fact, the site contains three strained craters examined by Pappalardo and 

Collins (2005): Saltu crater (label e), and two unnamed strained craters (label d). A possible split 

crater (label c – c’; Head et al., 2002) is also mapped. A relatively bright and smooth area just 

north of Saltu may be a palimpsest: an ancient, circular, low-relief impact scar that is different in 

appearance from typical impact craters (Guest et al., 1988; Lucchitta et al., 1992; Jones et al., 

2003).  

Here we identify five domains of distinct morphology (Figure 2.12b). This region is 

dominated by the dark, heavily cratered terrain of Nicholson Regio (domain 1) and contains 

fractures that trend NE-SW (Figure 2.12c). The younger domains (2 – 5) within the Arbela 

Sulcus site include a NE-SW trending highly grooved band and an even younger NNE-SSW 

trending smooth band (domain 3). The latter shows possible structures associated with left-lateral 

shear of the grooved band of domain 2 (label a, see also Supplementary Figure 10), consistent 

with a step-over feature in domain 3 (label b, see also Supplementary Figure 10). The 

relationship of domains 4 and 5 and other domains in the site is difficult to determine given 

limited high-resolution imagery; we note that these domains have a similar appearance and 

orientation to domain 2.  

We infer two main stages of deformation of light terrain at Arbela Sulcus based on the 

general orientation of the structures in the bright terrain domains 2-5 (Figure 2.12d): (Stage I) 

NW-SE extension (matching the inference of Pappalardo and Collins (2005) based on the 

direction of lengthening at Saltu crater), along with formation of bright terrain domain 2. Slip 

tendency analysis suggests a principal stress orientation of σ1 = 40° – 60° provides the best 

match to the extensional formation of domain 2 (Supplementary Figure 5); (Stage II) 
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counterclockwise rotation of the principal stresses about a vertical axis to a WNW-ESE 

extension, with formation of domain 3 through normal faulting, along with possible left-lateral 

shear of domain 2 along the antithetic shear axis. Slip tendency analysis suggests a principal 

stress orientation of σ1 = 0° – 30° provides the best match to the extensional formation of domain 

3 (Supplementary Figure 5). Indeed, a reconstruction by Head et al. (2002) suggests the bright 

smooth lane of Arbela Sulcus (defined here as domain 3) formed through crustal separation, left-

lateral strike-slip, and counterclockwise relative rotation of the eastern portion of the mosaic. 

Additionally, the major-axis of the possible right-lateral strained crater Saltu aligns with the 

right-lateral R shear axis, while the major-axis of the left-lateral strained unnamed craters (label 

d) aligns with the left-lateral antithetic shear axis. 
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Figure 2.12: Arbela Sulcus: (a) Voyager background imagery underlying Galileo high-resolution imagery, (b) lineament map, 
with letters and numbers referred to in the text, (c) rose diagrams (by length), and (d) diagrammatic strain ellipses. 
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5.2. Dark to light transitional terrain 

5.2.1. Nippur/Philus Sulci 

In the three-frame mosaic of the Nippur/Philus Sulci site (Figure 2.13a), several crosscutting 

bands of light terrain show differing degrees of deformation from smooth and less deformed 

bands, to heavily grooved and deformed terrain. The narrow, NW-SE trending smooth band 

Nippur Sulcus shows the least amount of deformation in the site. In the northeastern corner of 

the mosaic, NW-SE trending light terrain appears to partially fracture a zone of light terrain that 

trends E-W. The light terrain of Philus Sulcus lies south of Nippur Sulcus and displays fractures 

striking NE-SW. In contrast, a NW-SE trending belt, that may mark a series of grabens, cuts 

through Philus Sulcus. The heavily deformed dark terrain of Marius Regio shows multiple 

furrows in the southeastern portion of the site, as well as a possible unnamed strained crater 

(label e, Figure 2.13b; see Pappalardo and Collins, 2005).  

Here we identify six domains of distinct morphology (Figure 2.13b). The dark terrain of 

Marius Regio (domain 1) contains structures that trend NW-SE, with a lesser contribution of 

structures oriented E-W (Figure 2.13c), with some features that may be related to furrow 

formation (dashed blue lines). The oldest of the light terrain, domain 2, trends almost E-W and is 

located in the northeastern corner of the site; domain 3 trends NE-SW and shares an orientation 

with the furrows (dashed lines) of the dark terrain; the youngest domains (4 – 6) trend more NW-

SE. Domain 5 is grouped separately from domain 4 due to a slight change in orientation, most 

noticeable in the Voyager context imagery. The smooth band of domain 6 borders the abrupt 

change in orientations between southern and northern light terrain. There are few direct 

indicators of strike-slip tectonism in this region: some en echelon structures within domain 3 

(label d) and domain 5 (label a, see also Supplementary Figure 10), possible right-lateral offset 

(label c) of inferred drag features (label b) within Philus Sulcus, and a possible right-lateral 

strained crater (Pappalardo and Collins, 2005) within domain 1 (label e). Pappalardo and Collins 

(2005) note that at least three differently oriented sets of fractures cut this crater, including 

lineaments that are subparallel to Philus Sulcus, suggesting the dextral shear inferred within 

Philus Sulcus may also have deformed the neighboring dark terrain and crater. 

We infer three main stages of tectonic deformation of the light terrain in the Nippur/Philus 



	
	

49	

Sulci site (Figure 2.13d): (Stage I) NW-SE extension and formation of dark terrain structures and 

furrow system of domain 1. Slip tendency analysis suggests a principal stress orientation of σ1 = 

60° provides the best match to an extensional formation of domain 1 (Supplementary Figure 6). 

We note the complex nature of domain 1, coupled with the possibility that some structures may 

be impact related furrow structures, may result in uncertainty (as denoted by the asterisk in 

Figure 2.13d); (Stage II) clockwise rotation of the principal stresses about a vertical axis to a N-S 

extension and formation of the northeastern most domain 2 of Philus Sulcus through normal 

faulting, along with possible right-lateral shearing of the strained crater in domain 1, and offset 

of drag features in domain 3 along the simple shear axis. The oldest light terrain of domain 2 is 

difficult to place into one of these two tectonic episodes, but it does predate all the other light 

terrain domains. Slip tendency analysis suggests a principal stress orientation of σ1 = 80° – 100° 

provides the best match to these observations (Supplementary Figure 6); (Stage III) NE-SW 

extension and formation of the remaining young domains (4 – 6), with domain 6 sharing the 

inferred orientation for normal faulting. Slip tendency analysis suggests a principal stress 

orientation of σ1 = 140° – 150° provides the best match to these observations (Supplementary 

Figure 6). 
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Figure 2.13: Nippur/Philus Sulci: (a) Voyager background imagery underlying Galileo high-resolution imagery, (b) lineament 
map, with letters and numbers referred to in the text, (c) rose diagrams (by length), and (d) diagrammatic strain ellipses. 
*Asterisk denotes uncertainty in principal stress orientations due to prominent furrows that may be impact related structures.  
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5.2.2. Byblus Sulcus 

Byblus Sulcus (Figure 2.14a) is a lane of light terrain oriented NW-SE which transects the 

surrounding dark terrain of Marius Regio. The dark terrain west of Byblus shows a degraded 

furrow that truncates at Byblus Sulcus. Other narrow fractures in the dark terrain east of Byblus 

appear to truncate at Byblus Sulcus, while similar narrow fractures occur throughout the site. 

Nergal (labeled, Figure 2.14a) is a ~8 km wide dark floored crater located near the center of the 

image mosaic and which post-dates Byblus.  

Here we identify three domains of distinct morphology (Figure 2.14b). The oldest is the dark 

terrain of Marius Regio, containing minor structures that trend both NW-SE and NE-SW (Figure 

2.14c); fracture chronology in this terrain is difficult to determine, and could have possibly 

formed simultaneously as conjugate sets, and may contain structures related to furrow formation 

(dashed blue lines). Domain 2 is distinguished from domain 1 by its more grooved appearance. 

Domain 3 is a mostly smooth band, with orientation similar to the NW-SE trends of grooves in 

the dark terrain, perhaps indicating a genetic relationship between the two domains. This region 

also hosts few strike-slip indicators, with some possible en echelon structures observed in 

domain 2 (label b, see also Supplementary Figure 10). Although limited by resolution in the 

surrounding images, the northwestern curving planform shape of domain 2 may indicate it is part 

of a fault duplex (label a).  

We infer two primary stages of tectonic deformation here, notably without a dominant 

shearing presence (Figure 2.14d): (Stage I) Considering only NW-SE extension and formation of 

NE-SW extensional features in the Marius Regio dark terrain domain 1, slip tendency analysis 

suggests a principal stress orientation of σ1 = 60° provides the best match to the extensional 

formation of domain 1 (Supplementary Figure 7), and matches the orientation from nearby 

Nippur/Philus Sulci’s stage I; (Stage II) counterclockwise rotation of the principal stresses about 

a vertical axis to a NE-SW extension and formation of the band of the grooved light terrain 

(domain 3) through normal faulting, with possible reactivation of NW-SE structures in Marius 

Regio dark terrain. Additionally, the possibly left-stepping en echelon features within domain 2 

align with the right-lateral Reidel shear axis. Slip tendency analysis suggests a principal stress 

orientation of σ1 = 130° – 140° provides the best match to the extensional formation of domain 3 

(Supplementary Figure 7), and matches the extension orientation from nearby Nippur/Philus 
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Sulci’s stage III. 
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Figure 2.14: Byblus Sulcus: (a) Voyager background imagery underlying Galileo high-resolution imagery, (b) lineament map, 
with letters and numbers referred to in the text, (c) rose diagrams (by length), and (d) diagrammatic strain ellipses. *Asterisk 
denotes uncertainty in principal stress orientations due to prominent furrows that may be impact related structures. 
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5.2.3. Anshar Sulcus 

The Anshar Sulcus area is composed of mostly Marius Regio dark terrain (Figure 2.15a), 

with a very narrow (~20 km wide) band of generally NW-SE oriented light terrain that cuts 

across the site, truncating several craters in the surrounding dark terrain. The dark terrain is 

pervasively fractured, and in some cases craters have been pulled apart, including the ~22 km 

wide unnamed crater (label a, Figure 2.15b) identified as a strained crater by Pappalardo and 

Collins (2005). A reconstruction by Prockter et al. (2000) of a crater that appears to be missing 

its southern rim (label i, Figure 2.15b) suggests the crater was rifted and destroyed during the 

sulcus formation, rather than just pulled apart. Recent studies by Pizzi et al. (2017) suggests the 

missing portion of the rim may have been erased by subsequent cratering events, or by 

superimposed furrows, and that spreading or crustal separation still best describes the observed 

features of the region. Other fractures in the southwestern portion of the site are perhaps related 

to Thebes Facula, a palimpsest located east of the image mosaic. Several degraded furrows trend 

NE-SW in the dark terrain as well.  

Here we identify six domains of distinct morphology (Figure 2.15b), with domains 1 and 2 

belonging to the heavily cratered Nicholson Regio, with structural trends that are both NE-SW 

and NW-SE (Figure 2.15c). While the NW-SE trending structures of domains 3 and 4 do share 

an orientation with structures in the surrounding dark terrain, the appearance of these domains 

are much more heavily fractured. Structures within domain 5 trend NE-SW and represent a large 

zone of en echelon structures (Prockter et al., 2000), though we note formation of domain 5 may 

have preceded the formation of domains 3 and 4. Domain 6 is a heavily grooved, trough-

bounded structure trending NW-SE. This region contains prevalent en echelon structures in both 

dark and light terrain (labels b-g, see also Supplementary Figure 10). In addition, the unnamed 

strained crater (label a) suggests a left-lateral component of strike-slip (Pappalardo and Collins, 

2005). What may be a right-lateral fault splay is visible at the eastern portion of the high-

resolution image boundary (label h).  

We infer two main stages of deformation within the Anshar Sulcus site (Figure 2.15d): 

(Stage I) ENE-WSW extension and formation of structures within dark terrain domain 2 and 

light terrain domains 3 and 4. Furthermore, this ENE-WSW extension matches the direction of 

inferred lengthening along the unnamed strained crater. Slip tendency analysis suggests a 
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principal stress orientation of σ1 = 110° – 120° provides the best match to the extensional 

formation of light terrain domains 3 and 4 (Supplementary Figure 8); (Stage II) 

Counterclockwise rotation of the principal stresses about a vertical axis to a NE-SW extension 

direction and formation of the youngest bright terrain domain (6) through normal faulting, as 

well as right-lateral shearing of the eastern margin of Anshar Sulcus. Slip tendency analysis 

suggests a principal stress orientation of σ1 = 130° – 160° provides the best match to these 

observations (Supplementary Figure 8). These results coincide with the previous findings of 

Prockter et al. (2000).  
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Figure 2.15: Anshar Sulcus: (a) Voyager background imagery underlying Galileo high-resolution imagery, (b) lineament map, 
with letters and numbers referred to in the text, (c) rose diagrams (by length), and (d) diagrammatic strain ellipses. 
 



	
	

57	

5.2.4. Transitional Terrain 

The four-frame mosaic of the "Transitional Terrain" site imaged during the Galileo G2 

encounter (Figure 2.16a) contains the dark terrain of northern Marius Regio, which is broken into 

blocks by narrow lanes and patches of bright terrain. The dark terrain is heavily fractured with 

numerous grabens, especially in the southern portion of the site. Patches of dark terrain that are 

most heavily fractured are also brightest, suggesting that the formation of bright terrain is related 

to intense fracturing of ancient dark terrain (see Prockter et al., 1998, 2000; Moore et al., 1999; 

Oberst et al., 1999). Noticeable fault duplex shapes are likely associated with strike-slip. A small 

section of Nippur Sulcus (labeled) lies at the northeast of the image mosaic. The ~25 km 

diameter Anhur crater (labeled) is located in the eastern portion of the image mosaic, with many 

of the other craters in the south and east inferred to be secondary craters from the ~340 km 

diameter penepalimpsest Epigeus (Schenk et al., 2004), just southeast of the image mosaic.  

Here we identify ten domains of distinct morphology (Figure 2.16b), with en echelon 

structures (labels d – e, see also Supplementary Figure 10) and fault duplexes (labels b – c) 

characterizing the region. We have separated domain rose diagrams by terrain type rather than 

age in order to distinguish bounding structures. The lensoid bounding structures of the inferred 

central duplex (label b) suggests it is an example of duplex class 2 structure as described in 

Section 3.2. Discontinuous fractures suggesting a lensoid shape (duplex class 1 structure) 

characterize the outer duplex (label c). The dark terrain of Marius Regio (domains 1 – 3) shows 

primarily NW-SE trending structures (Figure 2.16c), with some NE-SW structures found as well. 

Some of the structures within the dark terrain may be related to impact generated furrow 

structures. The orientation of structures in the light terrain (domains 4 – 6) ranges widely, 

although bounding structures of the inferred fault duplexes (Figure 2.16b, thick black lines) trend 

primarily NW-SE, similar to those in dark terrain, suggesting inheritance of structural trends.  

We infer two main stages of deformation in the Transitional Terrain (Figure 2.16d): (Stage I) 

NW-SE extension and formation of grabens within the dark terrain of domain 1. Slip tendency 

analysis suggests a principal stress orientation of σ1 = 60° – 80° provides the best match to these 

observations (Supplementary Figure 9), though it is important to note uncertainty may be 

introduced if many of the structures within domain 1 are related to impact processes; (Stage II) 

counterclockwise rotation of the principal stresses about a vertical axis allowing for N-S 
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extension and normal faulting of the central fault duplex, as well as left-lateral shearing of both 

the central and outer duplex along the antithetic shear axis. Slip tendency analysis suggests a 

principal stress orientation of σ1 = 80° – 90° provides the best match to these observations 

(Supplementary Figure 9). 
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Figure 2.16: Transitional Terrain: (a) Voyager background imagery underlying Galileo high-resolution imagery, (b) lineament 
map, with letters and numbers referred to in the text, (c) rose diagrams (by length), and (d) diagrammatic strain ellipses. 
*Asterisk denotes uncertainty in principal stress orientations due to prominent furrows that may be impact related structures. 
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6. Discussion 

When considering the complexity of Ganymede’s heavily fractured surface, mapping 

domains that are based on regions of similar morphology help illustrate interactions between 

dark and bright terrain and to infer the history of geologic events. The formation and subsequent 

deformation of the most pristine grooved terrains tends to be associated with the most recent 

events. In some regions, like the Transitional Terrain area, grabens within the dark terrain share 

similar orientations to the light terrain, and duplex characteristics within the light terrain are 

likely associated with strike-slip (Figure 2.16 b, d). The mechanism for how the transition from 

dark to light terrain occurs is not well understood. Possible explanations point to tectonic 

modification of dark terrain, ultimately causing it to become more heavily fractured and 

brightened with time, perhaps due to tectonism exposing ice-rich, high albedo material (Head et 

al., 1998; Pappalardo et al., 2004). Extensional processes such as horst-and-graben, tilt-block or 

domino-style faulting are likely fundamental to this (Collins et al., 1998b, Pappalardo et al., 

2004). A strike-slip strain component may also influence terrains during these processes, 

especially with increased lateral offset.  

Detailed morphological mapping of these nine intriguing sites suggests strike-slip tectonism 

at both large and small scales may have played a key role in the development of Ganymede’s 

complex surface terrain. At least one, if not more, of the four strike-slip morphological indicators 

(en echelon fractures, strike-slip duplexes, offset markers, and strained craters) are observed at 

each of these sites (Table 2.3). En echelon structures, indicative of the lowest amount of shear 

strain (Tchalenko, 1970; Naylor et al., 1986), are the most prevalent strike-slip structure and are 

found in every site examined here. Byblus Sulcus is the only mapped region where the presence 

of strike-slip indicators is limited to only a few en echelon structures, while every other mapped 

site displays examples of at least two types of strike-slip indicators, and the Arbela Sulcus site 

contains candidate examples of all four. The widespread presence of these indicators suggests 

strike-slip tectonism is indeed important to Ganymede’s morphological history and evolution.  

Inspection of rose diagrams and strain ellipses of each mapped site also suggests that trends 

exist in the orientations of features mapped within light terrain domains, with many regions 

exhibiting a predominant NW-SE orientation for light terrain domains (Table 2.3). Within the 
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mapped sites, only the light terrain of Arbela Sulcus exhibits a dominant NE-SW orientation, 

while Dardanus Sulcus and the Transitional Terrain do not seem to show any preference for 

structural orientation of light terrain. Regions that share similarities of light terrain orientation 

are also linked by geographic proximity, considering that many of these sites are within 50° 

latitude and 30° longitude of each other within the anti-Jovian hemisphere.  

Analysis of regional slip tendency also permits a comparison of total inferred rotation and 

direction of each site (Table 2.3). Figure 2.17 provides a synthesis of these results, presenting the 

most plausible principal stress orientations acting within the local deformation stages at each of 

the nine sites. Dardanus, Arbela, and Nun Sulcus all lie within the sub-Jovian hemisphere and 

may have experienced 30 – 70° of counterclockwise rotation between the two main stages of 

local deformation. In the anti-Jovian hemisphere, many sites share roughly the same principal 

extension directions across three main stages of local deformation. For example, Nippur/Philus, 

Byblus, and Tiamat Sulcus all have inferred principal stress orientations of 60° for Stage I, and 

140 – 160° for Stage III, yielding 80 – 100° of total inferred clockwise rotation of the principal 

stresses about a vertical axis. We also note that while Anshar, Byblus Sulcus, and Transitional 

Terrain do not have all three corresponding deformation stages (dashed boxes in Figure 2.17c), 

their associated principal stress orientations are placed within the most appropriate stage panel 

based on regional stratigraphic relationships. Uruk and Anshar Sulcus (within 18° latitude and 

30° longitude from each other) behave differently than the other sites within the anti-Jovian 

hemisphere; examination of principal stress orientations suggest that they both experienced 

between 20 – 40° of total inferred counterclockwise rotation of the principal stresses between 

Stage I and Stage III.  

These similarities in principal stress orientations and inferred direction and amount of 

rotation based on slip tendency analyses, coupled with the dominant NW-SE trend of light 

terrain, suggest there may be a connection between the orientation of the principal stresses and 

the emplacement of light material on a global scale. These observations and inferences may be 

important for understanding the relationship between dark and light terrain, given that 

stratigraphic relationships between dark terrain and grooved terrain imply an evolutionary 

sequence in which the dark terrain is heavily fractured and becomes brighter with time (Collins 

et al., 1998b; Prockter et al., 2000). A companion study is already underway to investigate the 
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role of tidal stresses on Ganymede in the formation and evolution of strike-slip structures in both 

dark and grooved terrains (Cameron et al., 2018), where priority consideration is being given to 

tidal stress scenarios that explore Ganymede’s variability in eccentricity. Showman and Malhotra 

(1997) showed that Ganymede’s eccentricity (presently ≈0.0013) once could have been altered 

by Laplace-like resonances among Ganymede, Europa, and Io to as high as ~0.05 (depending on 

the past ratio of tidal dissipation between Ganymede and Jupiter). Diurnal stresses during a past 

period of high eccentricity could have been significant, and could have played an important role 

in triggering and controlling faulting on Ganymede during its period of tectonic activity (Nimmo 

et al., 2002).  
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Table 2.3: Strike-slip indicators within mapped Ganymede sites: *E - En echelon structures; D - Strike-slip duplexes; O - Offset 
features; Sc - Strained craters. Check marks indicate presence of strike-slip indicators, double check marks indicate the region 
displays numerous examples, and question marks indicate uncertainty. Hemisphere location*: T – trailing; L – leading; SJ – Sub-
Jovian; AJ – Anti-Jovian. The remaining columns display dominant orientation of mapped features within the light terrain at each 
site, and total magnitude and direction of assumed rotation through time. 

 

 

Site name 

Presence of strike slip 

indicators * 

Hemisphere 

location * 

Dominant 

orientation of 

light terrain 

domains 

Inferred total 

rotation and 

direction 

  E D O Sc       

Nun Sulci ✓ 
 

? ✓ T, SJ NW-SE 70°CCW 

Dardanus Sulcus ✓ 
 

✓ 
 

L, SJ none 
40° CCW/ 

20°CW 

Tiamat Sulcus ✓ 
 

✓ 
 

T, AJ NW-SE 100° CW 

Uruk Sulcus ✓ ? 
  

L, AJ NNW-SSE 40° CCW 

Arbela Sulcus ✓ ✓ ✓ ✓✓ T, SJ NE-SW 30° CCW 

Nippur/Philus Sulci ✓ 
  

✓ T, AJ NW-SE 90°CW 

Byblus Sulcus ✓ ? 
  

T, AJ NW-SE 80°CW 

Anshar Sulcus ✓ 
  

✓ T, AJ NW-SE 20° CCW 

Transitional Terrain ✓ ✓✓ 
  

T, AJ none 30° CW 
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Figure 2.17: Local stress evolutionary sequence: (a) Ganymede global mosaic (0° – 360° E; 60°S - 60°N) in Mercator projection. 
Small, labeled boxes denote sites mapped in this study; large boxes labeled SJ (Sub-Jovian) and AJ (Anti-Jovian) refer to zoomed 
in region shown in (b) and (c). Bottom left inset shows a representative symbol denoting principal stress axes orientation, with σ1 
(red) and σ3 (blue) being defined as the most and least compressive horizontal stress, respectively. (b) The most plausible 
principal stress orientation of the local deformation stages within each mapped site in the Sub-Jovian hemisphere. Numbers 
indicate the orientation of σ1 in degrees from North. *Due to difficulty in determining age relationships within Dardanus Sulcus 
Stage II, labels i-ii represent orientations based on two different possible domain groupings; (c) Same as (b), but for the Anti-
Jovian hemisphere. Dashed boxes indicate regions that do not have a corresponding deformation stages. 
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7. Conclusions 

In this study, we explore the role of strike-slip tectonism in shaping Ganymede’s terrain by 

performing detailed morphological mapping of Galileo high-resolution imagery set within lower 

resolution Galileo and Voyager image context. Where applicable, the presence of strike-slip 

indicators is available for download as an ArcGIS map package (Cameron et al., 2018d,	

Mendeley dataset), providing additional context for investigation of inferred sense of slip and 

tectonic evolution of Ganymede’s fractures. We utilize rose diagrams, slip tendency, and strain 

ellipse methods to infer and interpret relationships between and among tectonic domains of 

similar morphology.  

We find that examples of strike-slip faulting on Ganymede are ubiquitous, with 

representative strike-slip indicators identified at every examined site, and in both terrain types. 

Strike-slip tectonism may play a role in the transition between dark and light terrain, perhaps by 

exposing fresh, high albedo ice. While caution must be taken not to attribute morphology solely 

to strike-slip processes, we find that by incorporating strike-slip tectonism with previous 

inferences of extensional-tectonic behavior, we gain a more complete view of Ganymede’s 

tectonic history. We also find that the mapped sites share similarities with each other, both in the 

occurrence of strike-slip indicators and in the stages of deformation when comparing 

neighboring regions. These correlations may allow for inferences about the effects of a shifting 

stress field through time from a local to global scale. Future work aims to further study the 

principal stress directions that could have acted at the regional or global scale to produce 

Ganymede's grooved terrain, and to examine plausible stress mechanisms (such as tidal stresses 

and nonsynchronous rotation) that support the development of observed tectonic features from 

detailed mapping.  
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Supplementary Figure 1-9: Plausible orientations of the principal stress axes for domains within each of the nine sites, 
subpanels a-c correspond to their respective deformation stages (Stages I-III). An orientation is considered plausible if 
features with morphological strike-slip indicators undergo the correct sense of slip, and if contemporaneous features 
interpreted as graben or normal fault sets are slipping as normal faults. A sample principal stress orientation diagram is 
shown with σ3 arrows pointing out, and σ1 arrows pointing in to help distinguish between the two. Note: Features were 
mapped in Mercator projection, but are displayed here in x-y projection rather than Mercator, accounting for some of the 
differences in appearance.  
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Supplementary Figures, continued 
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Supplementary Figures, continued 



	
	

70	

  

Supplementary Figure 1, continued 
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Supplementary Figure 10: Higher resolution images of key strike-slip morphological indicators at each of the nine regions 

studied. Letter labels refer to each region’s main text imagery. 
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Abstract 

High-resolution Galileo data from Ganymede’s complex surface provide strong and ubiquitous evidence of 

strike-slip faulting: en echelon structures, strike-slip duplexes, laterally offset pre-existing features, and strained 

craters. In a previous study, we mapped in detail strike-slip morphologies within nine regions on Ganymede: 

Dardanus Sulcus, Tiamat Sulcus, Nun Sulci, Byblus Sulcus, Nippur and Philus Sulci, the Transitional Terrain of 

Northern Marius Regio, Anshar Sulcus, Arbela Sulcus, and Uruk Sulcus. We also find evidence of normal 

faulting at each site. However, the prominence of strike-slip indicators suggests that strike-slip faulting has 

played an important role in the structural development of Ganymede’s surface. Moreover, tidal stresses on 

Ganymede, under particular circumstances, may have been sufficient to induce Coulomb failure and strike-slip 

faulting. Here we investigate the role of both diurnal and nonsynchronous rotation (NSR) tidal stresses on 

Ganymede using the numerical code SatStress. We resolve normal and shear tractions onto discrete fault 

segments of specified orientation and assess Coulomb failure potential for the nine regions. Testing a range of 

subsurface fault depths (z = 0-5 km) and ice friction coefficients (µf = 0.2-0.6), we find that tidal stress models 

of combined diurnal and NSR stress readily promote Coulomb failure within each studied fault zone. High 

friction (µf = 0.6) limits failure depths to ~1 km, while low friction (µf = 0.2) extends failure depths to ~2 km, 

consistent with elastic thickness estimates. We also compare each fault zone’s predicted slip sense to the slip 

sense inferred from our structural mapping efforts and find compatible senses of shear among six of the nine 

regions that exhibit notable fault offset and/or other strong evidence of strike-slip faulting. In addition, principal 

stress orientations and failure feasibility computed on a global scale suggest that combined diurnal and NSR 

tidal stresses promote Coulomb failure within the shallow (< 2 km) icy lithosphere across much of Ganymede. 

Coulomb failure is restricted near the equator by large compressive NSR stresses, but stresses at mid- to high-

latitudes readily promote Coulomb failure along a wide range of fault orientations. Based on these results, we 

infer that nonsynchronous rotation may have assisted the formation and evolution of strike-slip structures on 

Ganymede.  
Submitted to Icarus and currently under review.  
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1. Introduction 

Observations by Voyager and Galileo of Ganymede, the largest of Jupiter’s four Galilean 

moons (~5260 km in diameter), revealed a surface of extensively fractured and distinct dark 

and grooved terrains. High-resolution imagery provides evidence of both normal and strike-

slip faulted structures (Collins et al., 1998; Pappalardo et al., 1998; Patel et al., 1999; 

DeRemer and Pappalardo, 2003; Pappalardo et al., 2004; Pappalardo and Collins, 2005). 

Previous investigations of these structures focused on the mechanisms for extensional 

tectonism (Collins et al., 1998; Pappalardo et al., 2004; Pizzi et al., 2017), however a recent 

global study of the morphological expression of strike-slip tectonism (Cameron et al., 2017) 

found that examples of strike-slip faulting on Ganymede are ubiquitous; representative 

strike-slip indicators, such as distinct offsets, en echelon structures, and strained craters were 

identified at nine examined sites. Furthermore, detailed morphological mapping of these nine 

sites suggests that strike-slip tectonism, which is visible at both large and small scales, may 

have played a key role in the development of Ganymede’s complex surface terrain (Figure 

3.1). 

Previous studies suggest tectonic fractures on icy satellites result from gravitational tidal 

stresses (as at Europa; Helfenstein and Parmentier, 1985; McEwen, 1986; Leith and 

McKinnon, 1996; Geissler et al., 1998; Greenberg et al., 1998; Hoppa et al., 1999; Figueredo 

and Greeley, 2000; Kattenhorn, 2002; Spaun et al., 2003; Schenk et al., 2008, Rhoden et al., 

2010). As Ganymede orbits Jupiter every 171.6 hours (Figure 3.2), variations in gravitational 

tidal forces, due in part to the satellite’s eccentric orbit, act to deform the satellite (Greenberg 

et al., 1998). Nonsynchronous rotation stresses (NSR) may also arise if a tidally flexed 

satellite like Ganymede has an outer icy shell that is decoupled from its interior (Ojakangas 

and Stevenson, 1989) by a global liquid layer. As the outer shell rotates, the surface migrates 

eastward relative to the tidal bulge, and this can result in an additional source of stress within 

the icy shell. Both of these stressing mechanisms have been linked to the formation of both 

extensional and strike-slip tectonic structures on other moons, such as Ganymede’s neighbor, 

Europa, and Saturn’s moon Enceladus, (Showman and Malhotra, 1997; Greenberg et al., 

1998; Hoppa et al., 1999; Nimmo and Gaidos, 2002; Nimmo et al., 2007; Smith-Konter and 
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Pappalardo, 2008; Olgin et al., 2011) and tidal stresses probably are the catalyst for faulting 

on Ganymede (Greenberg et al., 1998; Hurford et al., 2007; Collins, 2009). 

Given that the surface of Ganymede displays several candidate regions of strike-slip 

tectonism, with shear failure presumably driven by a combination of global and local stress 

sources, a variety of questions arise: Can we identify a dominant mechanism for driving 

strike-slip tectonism on Ganymede? Are simulations of tidal stress able to explain the 

expression, distribution, and orientation of strike-slip structures on Ganymede? What 

plausible sets of conditions (i.e., normal and shear traction magnitudes, fault orientation and 

depth, coefficient of ice friction) permit strike-slip faulting on Ganymede?  

To better illuminate the temporal and spatial variability of tidal stresses on Ganymede, as 

well as the implications for strike-slip tectonism from these stresses, we investigate the 

relationship between shear and normal tractions resolved onto fault structures in nine target 

regions (Figure 3.1): Dardanus Sulcus, Tiamat Sulcus, Nun Sulci, Byblus Sulcus, 

Nippur/Philus Sulci, Transitional Terrain, Anshar Sulcus, Arbela Sulcus, and Uruk Sulcus. In 

this paper, we first provide a brief background of Ganymede’s geologic history, including the 

two main types of geologic terrains that dominate the surface and the previous work aimed at 

identifying key strike-slip morphologies of these terrains (Section 2). We also review 

possible tidal stress mechanisms and introduce the numerical model SatStress (Wahr et al., 

2009) used to calculate both diurnal and NSR tidal stresses at Ganymede’s surface (Section 

3). We describe our method for resolving tidal stress components on an existing fault plane 

and for calculating shear failure based on the Coulomb failure criterion (Section 4). We 

present candidate regions for Coulomb failure for each target region and consider a range of 

plausible friction coefficients and brittle fault depths, and evaluate how failure estimates vary 

as a function of depth, ice friction, geographic location, and fault geometry (Section 5). 

Finally, we synthesize these results from a regional to global perspective, and include an 

analysis of the role of tidal stresses as a driver for strike-slip tectonism (Section 6). The 

ultimate goal of this work is to reconcile observations of strike-slip tectonism with 

comprehensive mechanical models of Ganymede tectonics. 
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Figure 3.1. Regions of strike-slip tectonism on Ganymede. (Top) Ganymede global mosaic (0° – 360° E; 60°S - 60°N) in 
Mercator projection (modified from Cameron et al., 2017). Examples of dark and light terrain are labeled; labeled boxes 
denote sites where inferred fault zones were mapped for this study. (Bottom, a-i) Example Galileo imagery and inferred 
fault zones (black dashed lines). White half arrows indicate inferred sense of shear. Strike-slip indicators within mapped 
Ganymede sites are also labeled: *E - En echelon structures; D - Strike-slip duplexes; O - Offset features; Sc - Strained 
craters. Check marks indicate presence of strike-slip indicators, double check marks indicate that the region displays 
numerous strike-slip indicators, and question marks indicate uncertainty.  
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2. Background 

Twin spacecraft Voyager 1 and 2 imaged the Jupiter system in 1979, followed by the 

Galileo space probe that orbited Jupiter and imaged its moons between 1995 and 2003, 

providing improved surface imagery and geophysical data for exploring the internal and 

surficial structure of Ganymede. Initial interpretations of Voyager images were that most 

grooves are extensional tectonic structures (Shoemaker et al., 1982), and later Galileo images 

supported this interpretation (Belton et al., 1996, Pappalardo et al., 1998; Dombard and 

McKinnon, 2001; Bland and Showman, 2007). In addition, magnetic data from Voyager and 

Galileo provided evidence for an internally generated magnetic dipole on Ganymede, likely 

due to a molten iron core surrounded by a silicate rock mantle and an outer shell of ice 

(Anderson, 1996; Schubert et al., 1996, Sohl et al, 2002). In addition to an intrinsic magnetic 

field, an induced magnetic field was also inferred, suggesting the presence of a conductive 

layer inferred to be a subsurface liquid water ocean (Ojakangas and Stevenson, 1989; 

Kivelson et al., 1997; Carr et al., 1998). The presence of a subsurface liquid water ocean has 

unique implications for the evolution of Ganymede’s tectonic history and stressing 

mechanisms, particularly if the ocean layer acts as a decoupling interface. An outer ice I shell 

composed of a brittle near-surface layer and ductile interior is inferred to overlay the ocean. 

A separate ductile layer of higher pressure ice may lie below the subsurface ocean (Kivelson 

et al., 2002). The depths and thicknesses of these layers are not well constrained and may 

have changed over time (Showman and Malhtora, 1997).  

Imagery from Galileo and Voyager reveals Ganymede’s surface to be extensively 

fractured and composed of two distinct terrains, dark and light (grooved) terrain. Dark terrain 

covers about one-third of the moon and is characterized by an ancient, heavily cratered 

appearance (Shoemaker et al., 1982; Murchie et al., 1986, 1989; Neukum, 1997; Neukum et 

al., 1998; Prockter et al., 1998; Zahnle et al., 2003; Schenk et al., 2004). Much of the dark 

terrain is crosscut by systems of ~10 km wide furrows inferred to be remnants of large multi-

ring structures (McKinnon and Melosh; 1980; Cassachia and Strom, 1984; Moore et al., 

1998, 2001; Prockter et al., 2000; Pappalardo et al., 2004). Dark terrain is estimated to date 

from > 4 Gyr based on measured crater densities (Zahnle et al., 2003). Light (grooved) 
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terrain is younger and shows regions of extensive (extensional and strike-slip) tectonism. 

Crater density within the light terrain is 2 to 10 times less than in dark terrain, and light 

terrain is thus inferred to have been emplaced between 400 Myr and 4 Gyr ago. The large 

range in time reflects uncertainty in the impact flux (Zahnle et al., 1998; Neukum et al., 

1998; Zahnle et al., 2003).  

Nine mapped Galileo target sites of varying terrain types (Cameron et al., 2017) that 

show evidence of strike-slip faulting were used for this study to investigate strike-slip 

tectonism (Figure 3.1). Five of these sites are located primarily in light, grooved terrain (e.g. 

Nun Sulci, Dardanus Sulcus, Tiamat Sulcus, Uruk Sulcus and Arbela Sulcus); the remaining 

four sites occur within terrains transitional from dark to light terrain (e.g., Nippur/Philus 

Sulci, Byblus Sulcus, Anshar Sulcus, and the Transitional Terrain of Marius Regio). Sites 

also represent different hemispheric regions on Ganymede: trailing, leading, anti-Jovian, and 

sub-Jovian (see Figure 3.1). Previous work by Cameron et al. (2017) found similarities 

among the mapped sites, such as the presence of strike-slip indicators, the stages of 

deformation amongst neighboring regions, and the dominant orientation of light terrain 

within each site. These similarities may allow for inferences about the orientation of stress 

fields and the emplacement of light material on a global scale. 

3. Tidal Stress Mechanisms and Modeling 

Satellites commonly become synchronously locked to their parent planet, a behavior in 

which the same side of the satellite always faces the parent planet (Burns, 1976; Melosh, 

1977; Helfenstein and Parmentier, 1980). This is due to the large tidal torques exerted by the 

parent planet (i.e., Jupiter) that allow for the spinning satellite to evolve into a synchronous 

configuration (Melosh, 1977; Peale, 1977, 1999; Helfenstein and Parmentier, 1980; Murray 

and Dermott, 1999). A synchronously rotating satellite will also experience a tidal bulge due 

to the difference in gravitational attraction of its parent planet. This tidal bulge is the cause of 

the ocean tides on Earth, where a bulge of water on either side of the Earth during “low tide” 

is observed on both sides of the planet. If the orbit of the satellite is elliptical (i.e., an 

eccentricity of greater than zero, and less than 1), the tidal bulge will vary in both magnitude 
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and longitudinal position as it changes distance from the parent planet during its diurnal orbit 

(Murray and Dermott, 1999). Therefore, gravitational stresses affect both orbital and 

rotational evolution of a satellite like Ganymede, and provide a mechanism for crustal 

deformation and a major source of heat (Peale, 2003).  

As Ganymede orbits within Jupiter’s gravitational field, the varying gravitational 

potential causes tidal stresses and deformation as portions of the satellite are subjected to 

gravitational effects (Wahr et al., 2009). Observed regions of strike-slip tectonism on 

Ganymede may be due, in part, to a combined effect of temporally varying stresses. 

Processes possibly impacted by tidal stress have been associated with the formation of global 

tectonic features on satellites and include reorientation of the ice shell relative to the spin axis 

(Melosh, 1975), tidal despinning (Melosh, 1977), radial and librational tides due to an 

eccentric orbit (Yoder, 1979; Greenberg et al., 1998), nonsynchronous rotation (NSR) 

(Helfenstein and Parmentier, 1985), orbital recession and precession (Squyres and Croft, 

1986; Croft et al. 1995), and polar wander (Leith and McKinnon, 1996; Schenk et al., 2008). 

Effects of tidal stresses are well documented for Europa (i.e., Helfenstein and Parmentier, 

1985; McEwen, 1986; Leith and McKinnon, 1996; Geissler et al., 1998; Greenberg et al., 

1998; Hoppa et al., 1999; Figueredo and Greeley, 2000; Kattenhorn, 2002; Spaun et al., 

2003; Schenk et al., 2008, Rhoden et al., 2010). 

In this study, we focus on two primary mechanisms of tidal deformation: diurnal and 

nonsynchronous (NSR) stresses. As Ganymede orbits Jupiter, variable diurnal stresses sweep 

across the surface over a period equal to that of the satellite’s orbital (diurnal) period, or 

171.6 hours (Figure 3.2). Diurnal tidal stresses may be quite relevant to the formation of 

Ganymede’s terrain; previous studies have suggested that diurnal tidal stresses are (1) 

responsible for the formation of Europa’s ridges (Greenberg et al., 1998; Hoppa et al., 1999; 

Nimmo and Gaidos, 2002), and (2) may trigger geological activity along fractures of 

Enceladus (Showman and Malhotra, 1997; Hurford et al., 2007; Nimmo et al., 2007; Smith-

Konter and Pappalardo, 2008; Olgin et al., 2011). Furthermore, NSR stresses may arise if a 

tidally flexed satellite has an outer icy shell that is decoupled from its interior (Helfenstein 

and Parmentier, 1985; Ojakangas and Stevenson, 1989), likely by a global liquid layer. As 

the outer shell rotates, the surface migrates eastward relative to the tidal bulge and can result 
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in an additional source of stress within the viscoelastic icy shell (Figure 3.2). Hoppa et al. 

(1999) compared Voyager and Galileo observations to constrain the present NSR period of 

Europa’s ice shell to be > 104 yr. The period of NSR stresses could be on the order of the 

thermal diffusion timescale, or ~107 yrs (Ojakangas and Stevenson, 1989; Hoppa et al., 

1999). Wahr et al. (2009) also considered a range of NSR periods (105 – 107) and their 

implications of global tidal stress variations. Nonsynchronous rotation may explain the lack 

of leading-trailing hemisphere crater asymmetry, a characteristic observed on satellites that 

are synchronously locked to their parent planet, such as Earth’s Moon (Kawamura et al, 

2011; Ito and Malhotra, 2010), Saturn’s Triton (Strom et al., 1990; Schenk and Sobieszczyk, 

1999), and the Galilean satellites (Zahnle et al. 1998, Morota and Furomoto, 2003). This 

asymmetry is caused in part by the leading side intercepting more impactors than the trailing 

side (Melosh, 2011). Additionally, the mean impact velocity on the leading side becomes 

higher than that on the trailing side; therefore, average crater sizes on the former tend to be 

larger than those on the latter. For these reasons, synchronous rotation can lead to a slight 

increase in the cratering rate on the leading side. In this study we adopt a NSR period of 

1.42x105 yrs following Wahr et al. (2009).  

To investigate tidal diurnal and NSR stresses on Ganymede, we utilize SatStress, a 

numerical code that calculates tidal stresses at any point on the surface of a satellite. 

SatStress (http://code.google.com/p/satstress) computes stresses based on tidal potential 

theory (e.g., Wahr, 1981, Wahr et al., 2009), allowing for both elastic and layered Maxwell 

viscoelastic treatments of the lithosphere. Table 3.1 describes the model parameters for a 

layered Ganymede adopted in this study, represented by a spherically symmetric ice shell 

underlain by a global subsurface ocean and a deep interior. We represent Ganymede’s outer 

ice shell with two layers (Moore and Schubert, 2003; Wahr et al., 2009): (1) an upper rigid 

layer 10 km thick with a viscosity of 1019 Pa s, and (2) a more ductile ice shell extending 

another 140 km deep with a viscosity of 1014 Pa s. Beneath these ice layers, we assume a 

global 40 km thick liquid ocean. The deep interior is assumed to comprise the underlying 

mantle of high-pressure ice and the core of rock and metal, with a combined thickness of 

2441 km and bulk density of 2184 kg/m3. Degree-two Love numbers for this assumed 

rheology for both diurnal and NSR models were derived using a companion Love number 
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code available in the SatStress package (J. Wahr, personal communication, 2011) and were 

verified by alternative models (Moore and Schubert, 2003; F. Nimmo, personal 

communication, 2013). 
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Table 3.1: Ganymede physical, orbital and rheological model; SatStress input parameters. 

Physical and Orbital Characteristics   
Satellite radius (km) 2630   

Satellite orbit eccentricity 0.0013   
Satellite orbit semi-major axis (km) 1.07x106   

Satellite gravity (m/s2) 1.428   
Planet mass (kg) 1.90x1027   

   Viscoelastic Parameters     
Ice (Upper and Lower)     
Young's modulus (GPa)  9.30   

Shear modulus (GPa) 3.49   
Poisson's ratio 0.30   

Density (kg/m3) 920   
  Upper ice layer Lower ice layer 

Thickness (km) 10 140 
Viscosity (Pa s) 1019 1014 

Ocean     
Young's modulus (GPa) 0   

Shear modulus (GPa) 0   
Poisson's ratio 0.50   

Density (kg/m3) 1000   
Thickness (km) 40   
Viscosity (Pa s) 0   

Deep Interior (high-phase ice + silicates)     
  Diurnal NSR 

Young's modulus (GPa) 100 0 
Shear modulus (GPa) 40 0 

Poisson's ratio 0.25 0.50 
Density (kg/m3) 2184 2184 
Thickness (km) 2441 2441 
Viscosity (Pa s) ~1020 ~1020 

   SatStress Parameters     
  Diurnal NSR 

Period (yrs) 1.42x107 1.42x105 

 Elastic love number h2 

 

1.427  

 Real diurnal Love number h2   1.427 

 Imaginary diurnal Love number h2   -5.796x10-2 
Real NSR Love number h2   1.962 

Imaginary NSR Love number h2   -5.704x10-4 

Elastic love number l2 0.3641  
Real diurnal Love number l2 

 
0.3641 

Imaginary diurnal Love number l2   -1.981x10-2 

 Real NSR Love number l2   0.5123 
Imaginary NSR Love number l2   -5.372x10-4 
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Figure 3.2. Tidal stress schematic. As Ganymede orbits Jupiter every 171.6 hours, variations in gravitational tidal stresses, 
due in part to the satellite’s eccentric orbit (e = 0.0013), act to deform the moon’s surface. Diurnal tidal stresses are on the 
order of kPa. Inset: Ganymede’s internal structure consists of an outer ice layer ~150 km thick underlain by a thin ocean ~40 
km deep, and a deep interior comprised of mantle and core material. Nonsynchronous rotation (NSR) stresses may arise if a 
tidally flexed satellite has an outer icy shell that is decoupled from its interior. As the outer shell rotates, the surface migrates 
eastward relative to the tidal bulge and can result in an additional source of stress within the viscoelastic icy shell. NSR rate 
may be ~105 years. NSR stresses are on the order of MPa. 
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SatStress computes both raw (σφφ, σθθ, σθφ or latitudinal, longitudinal, and shear tractions, 

respectively) and diagonalized (principal) stress tensor components as a function of orbital 

position past periapse (i.e., the mean anomaly, m) and geographic location on the satellite. In 

this study we adopt a positive compressional stress sign convention to maintain consistency 

with our previous work. Subsequently, we apply a reverse color palette to provide a 

consistent visual comparison with other publications (i.e., Wahr et al., 2009). To demonstrate 

the behavior of Ganymede’s predicted tidal stress field as a function of mean anomaly, we 

first plot the diurnal stresses at 90° mean anomaly intervals (Figure 3.3). The diurnal stress 

field provides stresses on the order of a few kPa and varies as a function of mean anomaly 

position, m. Moreover, inspection of the diurnal tidal stress model reveals that the most 

variation in stresses occurs with the σθθ (longitudinal) component (Figure 3.3b), with all nine 

studied fault zones subject to peak stresses of ~ +/-5 kPa throughout Ganymede’s orbit. 

Additionally, the variability in diurnal maximum principal stresses (Figure 3.3a) is most 

significant in the central to mid-latitudes, where fault zones experience an exchange of peak 

compressive (~4 kPa) and tensile (~-4 kPa) stresses over an orbit. 
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Figure 3.3. Global diurnal tidal stresses. (a) Maximum principal stress (s1, kPa) at mean anomaly position m = 
0°, 90°, 180°, and 270°. We adopt an inverted color palette to maintain visual consistency with previous studies: 
Negative (red) values indicate tensile stress, positive (purple) values indicate compressive stress. Letter labels a-
i refer to locations of the nine strike-slip study regions of Figure 3.1. (b) Stress tensor components at anomaly 
position m = 0°, 90°, 180°, and 270°. Stress amplitudes are in kPa. 
  



	
	

86	

We next plot the combined diurnal and NSR tidal stress field (Figure 3.4) at periapse (m 

= 0°). The combined diurnal + NSR (which we will call diNSR) field is dominated by the 

large, secular NSR stresses within the ice shell. These stresses are on the order of MPa and 

have the largest absolute values in the central to mid-latitudes, as demonstrated by the large 

compressive principal stresses of Figure 3.4a. We also note that all but one of our studied 

sites (Nun Sulci, label c) is located within zones of large magnitude principal tensile stress. 

Moreover, while the diNSR stress field does vary slightly (~6 kPa) on a diurnal timescale, 

these variations are a very small, nearly indistinguishable fraction, of the total diNSR stress 

field. To demonstrate this effect, we plot the residual stress of the diNSR field (in kPa) at 

apoapse (m = 180°) with respect to the periapse (m = 0°) diNSR stress field (Figure 3.4b). 

Hence, with respect to the scope of this study, the dominant stress contribution of the diNSR 

model within an orbital period can largely be represented by a quasi-static MPa-order stress 

field. We note these particular stress contributions, as (1) subsequent figures reflect only the 

m = 0° diNSR stress field, which is a good approximation for the stress field at all mean 

anomaly positions, and (2) they are important for understanding large-scale variations in 

along-strike failure predicted by our models along several sections of the studied sulci, as 

described next in detail. 
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Figure 3.4. Global diNSR (diurnal + NSR) stresses: (a) Maximum principal stress (s1, MPa) at mean anomaly m = 0°. (b) 
Residual s1 stress at m = 0° and 180°, on the order of kPa, demonstrating the quasi-static nature of stresses once NSR is 
introduced. Negative values indicate tensile stress, positive values indicate compressive stress. (c) Stress tensor components 
at periapse (m = 0°). Note stress amplitudes are in MPa. This snapshot of the stress tensor is provided for m = 0°, however is 
nearly representative of all m positions. 

4. Coulomb Failure 

Coulomb failure theory accounts for a fault’s frictional resistance to slip (e.g. Byerlee, 

1978; Brace and Kohlstedt, 1980). Following the methodology of previous studies (Hurford 

et al., 2007; Nimmo et al., 2007; Smith-Konter and Pappalardo, 2008;), we resolve tidal 

stress tensor components onto discrete fault segments, of varying length and orientation, into 

normal (σn) and shear (τs) traction components:  

𝜏! =
1
2 𝜎!! − 𝜎!! 𝑠𝑖𝑛2𝛽 + 𝜎!"𝑐𝑜𝑠2𝛽	

𝜎! = 𝜎!!𝑐𝑜𝑠!𝛽 + 𝜎!!𝑠𝑖𝑛!𝛽 + 𝜎!"𝑠𝑖𝑛2𝛽 

        (Eq. 1) 

where β is a line segment trend, defined with respect to the longitudinal direction (β = 0° for 

a line segment due east-west). Where applicable, we adopted mapped feature traces (i.e., 

measured trend with assumed vertical dip) from Cameron et al. (2017); however, due to 
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sparse high-resolution imagery (commonly on the order of 10s m/pixel), we estimated fault 

geometry in some regions. Each sulcus is represented as a series of digitized fault segments 

with lengths of 5 km or less, and with orientations that may vary from the overall strike of 

the major fault zone. For each individual fault segment, the resolved normal traction 

component is defined as that acting perpendicular to each segment fault plane, while the 

resolved shear traction component is that acting parallel to each segment fault plane.  

The Coulomb failure criterion (Byerlee, 1978; Jaeger and Cook, 1979) considers stresses 

that facilitate (tensile) and resist (compressive) slip along a fault, simultaneously accounting 

for both resolved normal and shear tidal traction, the coefficient of friction of ice, and stress 

at depth due to the overburden pressure (Thatcher and Hill, 1991). To model this behavior, 

we calculate the Coulomb stress as   

   𝜏! = 𝜏! − 𝜇!(𝜎! + 𝜌𝑔𝑧),    (Eq. 2) 

where µf is the effective coefficient of friction and ρgz is the maximum overburden pressure 

(positive z is the vertical depth of the fault plane beneath the surface). Note that while the 

actual overburden pressure could be less than this, we assume the overburden pressure 

translates 1:1 to the lateral pressure acting on the fault. The sign of the overburden stress is 

taken to be positive, while normal tidal tractions are assumed positive when in compression 

and negative when in tension. The sign of the shear stress (positive for right-lateral, negative 

for left-lateral) becomes important when inferring the direction of slip where the failure 

conditions are met.  

For simplicity, we will refer to the rightmost quantity of Eq. 2 that includes µf as the 

“frictional stress.” Thus, for Coulomb failure to occur, the tidal shear traction on a fault must 

be greater than the frictional stress. Positive Coulomb stresses imply a fault would slip, while 

negative Coulomb stresses imply a locked fault. For compressive zones with no melting, no 

minimum fault depth limitation applies, as a fault interface will always be closed. Because 

the Coulomb criterion only applies for a closed fault interface, we evaluate the role of fault 

depth for both normal tensile and compression regimes separately. If the overburden stress is 

less than the tensile traction, a fault would dilate and the Coulomb failure criterion is not 

applicable. Using the z-depth dependence of overburden stress in this manner, we evaluate 

the depth sensitivity of Coulomb failure for each fault zone at 0.1 km discretized depth 
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observation planes. 

Laboratory experiments on ice indicate µf = 0.1 – 0.7 are applicable depending on sliding 

velocity, pressure, and temperature (Beeman et al., 1988; Fortt and Schulson, 2007; Schulson 

and Fortt, 2012). Previous studies (e.g., Nimmo and Gaidos, 2002; Nimmo et al., 2007; Olgin 

et al., 2011) have assumed a coefficient of friction appropriate to ice near its melting 

temperature (µf = 0.1 – 0.3) for shear heating models on Europa and Enceladus. In this 

analysis, we consider a conservative range of friction coefficients (µf = 0.2 – 0.6), consistent 

with both laboratory estimates of ice friction and previous studies by Schulson and Fortt 

(2012). We assume a constant frictional coefficient with depth within the shallow icy crust (0 

– 5 km), and compare end-member models of high (µf = 0.6) and low (µf = 0.2) friction. To 

evaluate how Coulomb failure varies with depth, coefficient of friction, and fault orientation, 

we compare stresses within the ice to the stress required for Coulomb failure at each of the 

nine inferred strike-slip fault zones. 

We note that the magnitude and sign of resolved normal and shear tractions of each fault 

segment are highly dependent on the β  of the segment, or orientation with respect to the east-

west direction. This local angle may vary considerably from segment to segment from the 

overall fault zone strike, as well as from nearby structures. Moreover, Coulomb failure 

stresses on nearby fault segments may vary significantly if the orientations of these structures 

significantly differ, in addition to the effects of a spatially varying stress field. To illustrate 

the dependency of both Coulomb failure and shear traction direction on β, we provide fault 

orientation dependency diagrams for a range of β (i.e., Hoppa et al., 1999; Rhoden et al., 

2011) throughout this paper. An example diagram is provided for the location of Dardanus 

Sulcus (Figure 3.5). In this example, Equation 1 is used to compute the shear and normal 

tractions on faults for a range of β angles  (β = 0-360°, at 10° intervals). Equation 2 is used to 

determine Coulomb stress, where a positive result indicates stresses that promote Coulomb 

failure, and a negative result indicates a locked fault; in this example case we assume µf  = 0.2 

and z = 1 km.  

In Figure 3.5a, the normal traction sign (positive for compression, negative for tension) 

for a range of segment orientations is illustrated; in this case all orientations experience a 

tensile traction. Figure 3.5b shows the sign of the shear stress (positive for right-lateral, 
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negative for left-lateral). For a fault plane with a β = 10° to 100°, shear tractions are negative 

(left-lateral). Alternatively, for fault planes with 100° < β < 190°, the resolved shear are 

positive (right-lateral). Figure 3.5c shows the Coulomb stress sign as a function of β, where 

planes favorably oriented to slip have positive Coulomb stresses, and planes that would not 

slip have negative Coulomb stresses. For example, for β = 120° to 260°, Coulomb stresses 

are positive the plane is predicted to slip. Alternatively, for 80° < β < 120°, the Coulomb 

stress would be negative and a fault would be locked. For simplicity, we note that only the 

sign of the quantity (normal and shear tractions, or Coulomb stress) is represented here, 

whereas the magnitude of both of these quantities will also smoothly vary with β. We use a 

binary color scheme to identify regions of positive or negative stress, but the function also 

varies smoothly from minimum magnitudes at the wedge boundaries (where colors switch 

from gray to black) to maximum magnitudes at each circle center (note, we do adopt a more 

complete representation of this behavior in subsequent figures, but we explore this simple 

diagram here to highlight a fundamental behavior). Moreover, a fault segment’s resolved 

shear traction direction, and Coulomb failure tendency is strongly guided by its present-day 

orientation as captured by satellite imagery. We further explore the Coulomb failure 

tendency for each mapped sulcus in the subsequent sections. 
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Figure 3.5. Fault orientation dependency diagrams, demonstrating the sign of resolved normal, shear and Coulomb stresses 
as a function of fault plane orientation. In this example, stresses from the Dardanus Sulcus region (Figure 3.1a; 340° to 345° 
E longitude, 22.5°S to 17.5°S) are used to demonstrate how ranges of fault strikes yield variable quantities for a depth of 1 
km. (a) Normal traction orientation diagram, where fault plane orientations yielding positive normal traction (compression) 
is shaded black and negative normal traction (tension) is shaded gray. (b) Traction sense diagram, where fault plane 
orientations yielding positive shear traction is shaded gray (right-lateral) and negative shear traction (left-lateral) is shaded 
black. (c) Coulomb stress orientation diagram, where fault plane orientations yielding positive Coulomb stress is shaded 
gray (indicating orientations that promote slip, and fault plane orientations yielding negative Coulomb stress is shaded black 
(indicating orientations that inhibit slip). 
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5. Results 

For completeness, we first evaluate the opportunity for Coulomb failure at each fault zone 

in response to diurnal tidal stresses alone and illustrate the results at 100 m depth assuming a 

low (µf = 0.2) coefficient of friction. Figure 3.6 shows the sinusoidal nature of the resolved 

normal and shear tractions over a complete diurnal cycle. Stresses peak at different mean 

anomaly positions depending on the geographic location of each fault zone. Additionally, 

while a diurnal sinusoid is calculated for every point along the length of the fault to 

accommodate the varying orientations along strike, the mean of the resulting diurnal 

sinusoids serves as a representation of average stress behavior and therefore is shown in 

Figure 3.6. If the shear traction (blue line), at any mean anomaly position m, exceeds the 

magnitude of the frictional stress (red dashed line), Coulomb failure is achieved. Our results 

indicate, however, that the stresses required for failure are approximately an order of 

magnitude larger than the modeled diurnal shear tractions, and therefore failure is not 

predicted. For example, at Dardanus Sulcus, the diurnal normal tractions (black line) are 

small (4.5 kPa) and compressive for m = 30-230° and then become small and tensile (-4.5 

kPa) for m = 230-30°; shear tractions (blue line) are also small (<1 kPa) and left-lateral for m 

= 45-225° and right-lateral for m = 225-45°. The mean frictional stress (red line) for µf = 0.2 

at 100 m depth is 28±1.5 kPa, which is nearly triple the magnitude of diurnal shear stress 

needed to drive failure. Hence, a fault segment of Dardanus Sulcus is expected to remain in a 

locked state throughout its diurnal orbital cycle. A higher coefficient of friction makes fault 

segments less prone to slip, with an even higher frictional stress; for example, for µf = 0.6 the 

mean frictional stress of Dardanus is 85±2 kPa. Moreover, tidal stress models, limited to 

present-day diurnal stresses, do not permit Coulomb failure along any of the nine major fault 

zones investigated here.  
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Figure 3.6. Modeled tractions on faults experiencing diurnal stresses. The mean modeled resolved normal traction (black), 
shear traction (blue), and frictional (red dashed) stress calculated at z = 100 m and µf =0.2. In this plot, negative resolved 
normal tractions are tensile, while positive normal tractions are compressive. Likewise, negative resolved shear tractions are 
left-lateral while positive shear tractions are right-lateral. The frictional stress for µf = 0.6 is not plotted, but has a mean 
value of 85±2 kPa, even higher than the low friction case demonstrated here. Shear failure is never achieved from diurnal 
stresses alone, given their very small magnitudes. 
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Given the evidence for strike-slip faults on Ganymede (Cameron et el., 2017), we next 

consider the role of NSR stresses as a potential driver for strike-slip faulting (Figures 3.7 – 

3.15). In these figures, we demonstrate the diNSR model normal and shear tractions in map 

view (panel a), with tractions calculated along the midpoint position of each fault segment. 

Additionally, normal and shear traction dependency diagrams for varying orientations are 

provided in each map panel. Coulomb stresses (shear stress minus the frictional stress) are 

also plotted, in both map view and along cross-sections for both low (µf = 0.2) and high (µf = 

0.6) friction cases (panel b). Representative Coulomb failure orientation dependency 

diagrams for varying segment orientations are also provided. Note that only the m = 0° 

position of the diNSR model is presented here, given the negligible variation of these stresses 

as a function of mean anomaly (as shown in Figure 3.4). For the Coulomb failure models of 

Figures 3.7 – 3.15, when shear tractions exceeds the frictional stress, Coulomb stress is 

positive (green) and slip on the fault would be expected; if shear tractions are less than the 

frictional stress, Coulomb stress is negative (red) and a fault segment would be expected to 

be locked. For example, Figure 3.7 illustrates the major fault zone within Dardanus Sulcus, 

with modeled normal, shear, and Coulomb stresses for these structures, given the current 

fault strike and prescribed µf. In this and subsequent figures, small wavelength variations in 

stress along-strike are a result of a change in β, while longer wavelength variations are due to 

spatial changes in the stress field, as described in Section 3. The collective results in Figures 

3.7 – 3.15 suggest Coulomb failure is possible down to depths of ~1 km for high friction (µf 

= 0.6) cases and to ~2 km for low friction (µf = 0.2) cases for most fault zones. We note that 

near-surface depth regions where tensile tractions are larger than the overburden stress, fault 

opening and frictionless shearing (and slip) are possible when a shear stress is applied. We do 

not model this region, as we limit the focus of this analysis to Coulomb failure guided by 

friction; hence this region is indicated as a gray region in the uppermost depths of each fault 

zone. Below we summarize the results for each fault zone individually for the assumed 

present-day fault geometry and location on the surface of the major fault zones of each 

region. 
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5.1. Dardanus Sulcus 

Along the Dardanus Sulcus fault zone (Figure 3.7), located near the equator (sub-Jovian), 

normal tractions are tensile (-0.3 to -0.4 MPa) along the length of the fault zone, with some 

minor undulations near segments with more northerly strike. Modeled shear tractions are 

right-lateral (~0.15 to 0.2 MPa) along this NE-SW striking structure, with a few very low 

magnitude right lateral tractions along east-west oriented segments. This is consistent with 

the inferred right-lateral offset (Cameron et al., 2017) of the fault zone. Coulomb stress along 

most of the NE-SW striking segments is positive, however some of the segments that strike 

east-west have low magnitude Coulomb stress, and hence might not slip. An interesting 

feature that appears for the high friction µf = 0.6 model is the transition to a locked zone 

along the westernmost and mid-section of the fault, where the segment orientation strikes 

more E-W and NNE, respectively. High tensile tractions (gray zones) represent plausible slip 

zones, but are not guided by the physics of Coulomb failure. At Dardanus Sulcus, this 

prevents Coulomb failure at depths < ~800 m. For the low friction µf = 0.2 model, Coulomb 

failure is evident down to depths of ~2 km, with isolated locked zones along the southwest 

portion of the fault zone corresponding to patches of east-west oriented fault segments. For 

the high friction µf = 0.6 model, Coulomb stresses suggest that the much of the fault zone 

transitions to a locked state at depths slightly greater than 1 km. 
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Figure 3.7 – 3.15. Resolved normal traction, shear traction, and Coulomb failure stresses of diNSR model. (a) Map view 
representation of normal (C = compression, T = tension), shear (RL = right-lateral, LL = left-lateral), and Coulomb stresses 
(Fs = indicating free to slip, Lo = locked) calculated at mean anomaly m = 0°. Stresses are provided at an example depth of z 
= 1 km and for µf = 0.2 (low friction case) and 0.6 (high friction case). Each map view plot also shows the corresponding 
normal, shear stress, and Coulomb failure orientation diagrams (right corner), similar to the examples in Figure 3.5 but with 
color gradient preserved. Each orientation diagram shown is based on calculations at the midpoint of each fault zone. (b) 
Same as in (a), but with Coulomb stresses presented now along strike and as a function of depth in km, where the origin is 
defined as the western most point of the fault zone. Both low friction µf = 0.2 and high friction µf = 0.6 cases are provided. 
Gray zones are plausible slip zones, but not guided by the physics of Coulomb failure. The dashed line at 1 km corresponds 
to map view representation in (a). 
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5.2. Tiamat Sulcus 

Along the Tiamat Sulcus fault zone (Figure 3.8) normal tractions are tensile along the 

entire length of the fault zone (-0.2 to -0.3 MPa), much like Dardanus (located ~150° to the 

west of Tiamat) due to their similar NE-SW orientation and similar stress regimes. Modeled 

shear tractions are also right-lateral (~0.1 to 0.2 MPa), in agreement with the inferred right-

lateral offset (Cameron et al., 2017) across the fault zone. Coulomb stress along most of 

Tiamat Sulcus is positive (promoting failure) for the low friction µf = 0.2 model, but slightly 

negative for the high friction µf = 0.6 model. High tensile tractions (gray zones) at depths of < 

~600 m represent plausible slip zones, but are not guided by the physics of Coulomb failure. 

For the low friction model, Coulomb stresses permit failure down to depths of ~1.5 km. For 

the high friction µf = 0.6 model, Coulomb stresses suggest that the much of the fault zone 

transitions to a locked state at depths of 0.7 to 1 km. This locked zone is shallower than at 

Dardanus Sulcus, although both features share a similar azimuthal strike, due to the lower 

magnitude shear tractions (and ultimately lower σθθ stress) in the region of Tiamat.  
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Figure 3.8.  
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5.3. Nun Sulci 

Along the two main branches of Nun Sulci (Figure 3.9), normal tractions are predomi-

nantly tensile along the NW-SE striking sections of the fault zone (-0.05 to -0.1 MPa) and 

compressional (0.1 to 0.4 MPa) along the E-W and NE-SW striking sections. We note that 

Nun Sulci is the only fault zone of this study located within the northern sub-Jovian latitudes, 

where its primarily east-west strike allows for both compressive and tensile stress regimes. 

Modeled shear tractions are right-lateral (~0.3 MPa). This differs from the left-lateral shear 

inferred from the imagery, and is discussed further in Section 6.2. The model supports 

Coulomb failure along much of the entire span of Nun Sulci for low ice friction µf = 0.2, 

although NE-SW striking sections of the south branch transition to locked zones in regions of 

highest compressive stresses. For the low friction µf = 0.2 model, Coulomb stresses permit 

failure down to depths of ~2.5 km for the north branch, and ~2 km (intermittently) for the 

south branch. Also along the south branch, the extended depth of the gray (non-Coulomb 

failure) zone along the eastern section is due to modest-to-high compressional stresses that 

act to clamp the fault together. For the high friction µf = 0.6 model, results suggest a 

completely locked fault from end to end on both branches at depths greater than ~700 m.  
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Figure 3.9.  
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5.4. Byblus Sulcus 

Along the Byblus Sulcus fault zone (Figure 3.10), located along similar longitudes to 

Tiamat Sulcus fault zone, normal tractions are compressive along much of the length of the 

fault zone (~ 0.1 MPa). Only the southeastern portion of the zone experiences low magnitude 

tensile stresses, due to its slight difference in strike with respect to the rest of the structure. 

Shear tractions are negative and hence left-lateral (~-0.1 to 0.3 MPa), in agreement with the 

inferred left-lateral shear in the region (Cameron et al., 2017). Coulomb stress along the NW-

SE striking segments favor Coulomb failure for a low coefficient of friction (µf = 0.2), 

however the more NNW-SSE striking segments have very low to negative Coulomb stresses, 

limiting failure. Coulomb stresses for a high coefficient of friction are strongly negative for 

most of the zone. Modest tensile tractions (gray zones) at depths of < ~ 100 m represent 

plausible slip zones, but are not guided by the physics of Coulomb failure. For the low 

friction µf = 0.2 model, Coulomb stresses support failure down to depths of ~1 km, with only 

the southeastern most portion allowing failure to extend to ~2 km; the high friction µf = 0.6 

model suggests that the much of the fault zone is locked below a depth of roughly 300 m.  
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Figure 3.10. 
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5.5. Nippur/Philus Sulci 

Along Nippur/Philus Sulci fault zone (Figure 3.11) lying just north of the Byblus fault 

zone, normal tractions are tensile along much of the NW-SE striking fault zone (-0.1 to -0.2 

MPa) and slightly positive (compression, ~0.1 MPa) at the northwestern side where the zone 

strikes slightly more north. Shear tractions are left-lateral (~-0.4 MPa), in agreement with the 

inferred left-lateral slip (Cameron et al., 2017) in the region. For the low friction µf = 0.2 

model, the fault zone begins to lock only at the northwestern end due to the Coulomb stresses 

at 2.5 km depth, while the remaining span of the fault zone could experience slip. The high 

friction µf = 0.6 model suggests that the much of the fault zone is locked at depths > 1 km. 
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Figure 3.11.  
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5.6. Transitional Terrain 

The Transitional Terrain region (Figure 3.12) is split into two branches (north branch 

spans longitudes of 170° – 176°; south branch spans 168° – 176°), located slightly southeast 

of Byblus Sulcus. Normal tractions reach a peak tensile stress of -0.4 MPa for the E-W and 

NW-SE striking segments within both the north and south branch. Segments with a more 

northerly strike, however, have very low magnitude, if not near-zero, normal tensile traction. 

Shear tractions are primarily left-lateral (-0.1 to -0.4 MPa), in agreement with the inferred 

left-lateral slip (Cameron et al., 2017) along the fault zone. Near the junction of the two 

branches is a low magnitude positive shear traction (~0.1 MPa), reflecting the east-west 

strike of this section. Coulomb stress along the NW-SE striking segments favor Coulomb 

failure for a low coefficient of friction (µf = 0.2), but have low magnitude positive and 

negative Coulomb stresses for a high coefficient of friction (µf = 0.6). For both friction cases, 

substantial variations in slip and locked zones may exist. For the low friction µf = 0.2 model, 

Coulomb stresses permit failure down to depths of ~2 km, with some locked portions in the 

northwest and southeast end of the north branch, and very isolated zones across the south 

branch. For the high friction µf = 0.6 model, however, Coulomb stresses suggest that the 

majority of both branches become locked at depths around 1 km, and become completely 

locked from end to end at depths of ~1.5 km.  
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Figure 3.12.  
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5.7. Anshar Sulcus 

Along the Anshar Sulcus fault zone (Figure 3.13), located just to the east of Tiamat 

Sulcus and south of the Transitional Terrain, normal tractions are tensile along the entire 

length of the fault zone (-0.2 to -0.4 MPa). Shear tractions are primarily left-lateral (-0.3 

MPa), with the southeastern end of the fault zone transitioning to right-lateral where the fault 

locally strikes east-west. This is in agreement with the inferred right-lateral slip along a fault 

splay (Prockter et al., 1998; Cameron et al., 2017). Coulomb stress along the entire span of 

Anshar is low magnitude but positive, thus promoting Coulomb failure for a low coefficient 

of friction (µf = 0.2). For high friction (µf = 0.6), Coulomb stresses are reduced, with both end 

sections of Anshar becoming slightly negative and thus locked. For the low friction µf = 0.2 

model, Coulomb stresses permit some failure at depths > 2 km, although the fault zone would 

become locked at depths > 1 km near its southeast end; this behavior is less pronounced in 

the high friction case, where Coulomb stresses suggest that the much of the entire fault zone 

is locked at depths > 1 km. 
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Figure 3.13.  
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5.8. Arbela Sulcus 

Along the Arbela Sulcus fault zone (Figure 3.14), located along the sub-Jovian longitudes 

near Dardanus, resolved normal tractions are tensile along its entire length (~ -0.3 to 0.6 

MPa). Shear tractions are right-lateral (~0.2 MPa), which appears incompatible with the 

inferred left-lateral slip and is discussed further in Section 6.2. Coulomb stress along most of 

Arbela is positive (promoting failure) for the low friction µf = 0.2 model, but slightly negative 

for the high friction µf = 0.6 model, similar to the situation along the Tiamat Sulcus fault 

zone, which shares a common equatorial latitude with Arbela. High tensile tractions (gray 

zones) at depths of < ~ 500 m represent plausible slip zones, but are not guided by the 

physics of Coulomb failure. For the low friction µf = 0.2 model, Coulomb stresses permit 

failure along the length of the fault zone down to depths of ~ 2 km. For the high friction µf = 

0.6 model, Coulomb stresses suggest that much of the fault zone is locked at depths of > ~ 1 

km. 
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Figure 3.14.  
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5.9. Uruk Sulcus 

Along the Uruk Sulcus fault zone (Figure 3.15), normal tractions are tensile along the 

entire length of the fault zone (~-0.4 MPa). Shear tractions are primarily left-lateral (-0.2 

MPa) along the ends and midpoint of the fault zone, which appears incompatible with the 

inferred right-lateral slip (Cameron et al., 2017); this is discussed further in Section 6.2. The 

regions on each side of the midpoint transition to slightly right-lateral where the zone locally 

strikes more nearly E-W. These nuanced variations may be in part due to Uruk Sulcus being 

the smallest mapped area with the highest resolution imagery (40 – 75 m/pixel) when 

compared with the other eight mapped sites (100+ m/pixel). The fault zone at Uruk Sulcus 

strikes similar to the fault zone of Anshar Sulcus, Uruk’s nearest neighbor. Also like Anshar, 

Coulomb stresses are of low magnitude but positive, thus promoting Coulomb failure for a 

low coefficient of friction (µf = 0.2), but locked near the center of the fault. For high friction 

(µf = 0.6), Coulomb stresses are further reduced, and along the mid section of Uruk, become 

negative. Coulomb stresses also display the same end/midpoint pattern as the shear tractions, 

with stresses at the ends and midpoint permitting failure, with locked zones predicted on each 

side of the midpoint; this behavior demonstrates the significance of the magnitude of the 

shear stress in permitting slip. For the low friction µf = 0.2 model, Coulomb stresses permit 

some failure at depths > 1 km, especially on the northwestern end where β steepens. For the 

high friction µf = 0.6 model, Coulomb stresses suggest that the much of the entire fault zone 

is locked at depths > 1 km, with the ends of the fault zone experiencing a slightly deeper 

(1.25 km) locking depth. 
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Figure 3.15. 
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6. Discussion 

These results suggest that diurnal stresses at Ganymede today are quite small (<10 kPa) 

and that global tidal stress models limited to only present-day diurnal stress do not permit 

Coulomb failure along any of the nine major fault zones investigated here. Alternatively, we 

find that a combination of both diurnal and NSR stress mechanisms readily generate shear 

and normal traction magnitudes that promote Coulomb failure in all nine regions. We note 

that previous work examining Europa’s stress history has considered the sole role of diurnal 

stresses and found these to be sufficient to promote tidal walking mechanisms of faulted 

structures (Hoppa et al., 1999). Europa’s diurnal stresses, however, are 10 times those of 

Ganymede’s, and therefore likely play a more significant role in driving fault slip, as 

evidenced by cycloidal features, series of linked arcuate features (Hoppa et. al, 1999b; 

Kattenhorn and Hurford, 2009; Hurford et al., 2009). Moreover, while Ganymede’s diurnal 

stresses are small today, they may have been much larger during a former period of high-

eccentricity (e = 0.05, Greenberg 1987; Malhotra, 1991; Showman and Malhotra, 1997). A 

detailed investigation spanning the role of eccentricity is beyond the scope of this paper; 

however, we are currently developing models to explore the sensitivity of Coulomb failure 

for such a possible high-eccentricity past (Cameron et al., in prep). Nevertheless, we find that 

a present-day diurnal and NSR stress combination easily supports Coulomb failure for 

several inferred shear zones on Ganymede. 

6.1. Comparisons to strike-slip indicators and failure depth  

To perform a first-order comparison of mapped and modeled shear sense, we limit our 

analysis to the previously mapped regions of Cameron et al. (2017), where the sense of slip is 

deduced based on strike-slip indicators (i.e., en echelon structures, strained craters, and 

significant offsets). We compare the overall slip along fault zones in these regions to the 

resolved shear tractions, as derived from SatStress output and measured fault orientation (Eq. 

1 and Figure 3.5) where positive shear traction is right-lateral, and negative shear traction is 

left-lateral. Since there is negligible diurnal variation in the diNSR model, we note that the 

resolved tidal shear stresses of this model do not alternate between right- and left-lateral 
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modes over the diurnal cycle like the traditional tidal walking model (i.e., Hoppa et al., 

1999); the stresses are largely static and hence slip derived from stress accumulation 

gradients (Rhoden et al., 2012) do not apply here. Moreover, we find compatible senses of 

shear between our observations and predictions at six of the nine regions studied here, 

although it is important to note that these results are sensitive to both fault strike (affecting 

how stress is resolved onto modeled fault planes) and our inferred morphology of strike-slip 

indicators (Cameron et al., 2017). Because confidence in slip sense is greatest where easily-

identified strike-slip offsets occur (which also provide the strongest inference of brittle 

failure), we next organize our results into three groups: (1) fault zones with discernable 

offset, (2) fault zones with indirect strike-slip indicators and a compatible predicted slip 

sense, and (3) fault zones with indirect strike-slip indicators and incompatible slip sense. 

(1) Fault zones with discernable offset of preexisting features: Hard evidence for strike-

slip offset, as inferred in Galileo imagery (Figure 3.1), occurs at three of our target regions: 

Dardanus Sulcus (45 km offset, right-lateral), Tiamat Sulcus (40 km offset, right-lateral), and 

Nun Sulci (50 km offset, left-lateral). These three regions have diverse geographic locations, 

with Dardanus Sulcus positioned in the low southern latitudes of Ganymede’s sub-Jovian 

point, Tiamat Sulcus positioned near the equator of Ganymede’s anti-Jovian point, and Nun 

Sulci positioned in the higher northern latitudes of Ganymede’s trailing hemisphere. 

Resolved shear tractions along Dardanus and Tiamat offsets are consistent with their 

respective inferred shear senses: Dardanus Sulcus (Figure 3.7) and Tiamat Sulcus (Figure 

3.8) are dominated by right-lateral modeled shear tractions along the fault zones. 

Alternatively, resolved shear tractions (right-lateral) for Nun Sulci are incompatible with the 

inferred left-lateral offset, however a well-documented strained crater, Nefertum, located 

within the Nun Sulci fault zone (Figure 3.9), suggests right-lateral deformation (Pappalardo 

and Collins, 2005), consistent with right-lateral R shear orientations along the strained 

crater’s major axis. While models suggest Nun Sulci is dominated today by right-lateral shear 

tractions, this may be due to its current E-W azimuthal strike, as global models suggest much 

of this region is expected to experience left-lateral slip (discussed further in Section 6.2).  

(2) Fault zones with indirect strike-slip indicators and a compatible predicted slip sense: 

Other fault zones that present where the deduced sense of slip is compatible with the 
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modeled stress fields are recognized at Byblus Sulcus (Figure 3.10), Nippur/Philus Sulci 

(Figure 3.11), and Transitional Terrain region (Figure 3.12). While these regions do not 

display any clear examples of offset of pre-existing structures, the sense of en echelon 

structures, strike-slip duplexes, and strained craters found in each region suggest prevalent 

left-lateral shear across the fault zones (Cameron et al., 2017). We calculate shear tractions 

along each major zone and find that all should be dominated today by left-lateral shear 

traction, consistent with the inferred sense of slip deduced from surface features. 

Interestingly, our models suggest both left- and right-lateral shear at Anshar Sulcus (Figure 

3.13), with right-lateral shear localized at the southeast end of the fault zone as it transitions 

to a more E-W orientation. In this same location, Cameron et al. (2018) inferred a right-

lateral splay fault (see also Prockter el al., 1998). To the west, however, a mapped strained 

crater just south of the main fault zone was inferred to be left-lateral by Pappalardo and 

Collins (2005).  

(3) Fault zones with indirect strike-slip indicators and incompatible slip sense: The 

inferred sense of slip at Arbela Sulcus (left-lateral), and Uruk Sulcus (right-lateral) are not 

clearly compatible with present-day stress fields predicted by our tidal stress modeling. The 

fault zone at Arbela Sulcus, like Dardanus Sulcus, strikes roughly NE-SW and is positioned 

in the low southern latitudes of Ganymede’s trailing hemisphere. Similar to Dardanus, 

Arbela’s resolved shear traction is right-lateral, demonstrating the regional consistency of 

these two fault zones’ modeled shear traction. Independent inferences from satellite imagery 

suggest, however, that Arbela has left-lateral en echelon structures and a possible left-lateral 

offset (Head et al., 2002). The fault zone at Uruk Sulcus, the only modeled region in the anti-

Jovian leading hemisphere, is predicted to have mostly left-lateral slip; however, regions of 

the fault that approach a more E-W strike are predicted to be right-lateral. A possible 

explanation for the incompatible shear sense at Arbela and Uruk Sulcus may be due to the 

migration and reorientation of the ice shell, in which a feature may have formed in a different 

orientation or location than it is presently positioned (discussed further in Section 6.2). 

Based on these results, we infer that Coulomb failure within the upper few km of 

Ganymede’s icy outer shell is possible along the nine analyzed fault zones when NSR is 

included as a driving stress mechanism. Tensile stresses within the uppermost 1 km of most 
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fault zones are important to consider in a fault’s behavior, as they are plausible regions of 

slip, though not subject to Coulomb failure due to fault opening. Frictionless sliding in the 

uppermost depths or some other mechanism may still link the motions between the interface 

between fault opening and Coulomb failure regions, but is not considered here. Additionally, 

given the parameters investigated by this work, Coulomb failure seems to be confined to 

depths < 2 km for most fault zones, suggesting there is a mechanical link to the brittle-ductile 

elastic thickness depth of Ganymede’s icy shell, estimated at ~ 2 km (Nimmo, 2004; Wahr et 

al., 2009; Jara-Orué and Vermeersen, 2016)  

The 2 km locking depth zone for shear zones of Ganymede studied here is slightly more 

shallow than those inferred on other icy satellites, due to the smaller tidal influence on 

Ganymede than many of its counterparts. For example, studies of the tiger stripe fractures on 

Enceladus (Smith-Konter and Pappalardo, 2008; Olgin et al., 2011) find that failure 

conditions may extend down to depths ∼2–3 km when considering a 24 km thick ice shell; 

these values represent the bottom of the locked fault. Additionally, studies applying similar 

methods to Europa linea (Cameron et al., 2012; Cameron et al., 2015) suggest failure depths 

< 6 km from NSR simulations. These values are compatible with estimates of Europa’s 

effective ice shell elastic thickness (6!!!! km) based on stereo topographic profiles (Nimmo et 

al., 2004). 

6.2. Alternate stress mechanisms 

Deviations of observed slip sense between imagery and global slip predictions from 

modeling may be due to a number of mechanisms that could alter fault location and/or 

orientation over time. For example, we find a small rotation of the modeled strike of Nun 

Sulci, Arbela, Anshar, and Uruk Sulcus (~10 – 30° counterclockwise) results in subtle but 

reversed sense of shear that is compatible with mapped shear indicators discussed in Section 

6.1. Additionally, true polar wander (TPW) involves reorientation of an icy satellite’s 

floating outer ice shell about the tidal axis with Jupiter. TPW is possible if the icy shell is 

latitudinally variable in thickness and decoupled from the rocky interior, imposing high stress 

levels on the shell (Schenk et al., 2008). While beyond the scope of this study, TPW has been 

proposed as a possible explanation for some of the features whose tectonic patterns and stress 



	
	

117	

history remains unexplained (Schenk et al., 2008). It is also important to note that for each of 

these tectonically complex regions, the major fault zone structure adopted for our shear 

calculations may not have been formed by strike-slip tectonism, but instead by tensile 

stresses, as suggested by several en echelon features associated with several of these 

structures. Thus local rheological conditions and pre-existing fault structures may also affect 

sense of shear. 

6.3. Global Coulomb Failure and Sense of Shear 

Beyond our localized analyses of tractions and Coulomb failure of the nine high-

resolution imaged regions presented here, we can also expand our modeling efforts to a 

global scale. Combining the schematic representation of tractions on a fault as a function of 

fault orientation, or β (Figure 3.5), we explore ranges of fault strikes from 60°S-60°N, 

represented by structures of 5° in length and of varying β centered within 96 grid cells 

spanning 15° latitude by 30° longitude (Figure 3.16). For simplicity, the Coulomb failure 

orientation results of Figure 3.16 represent the modeled stresses at 1 km depth, consistent 

with previous figures.  

Global normal traction patterns (Figure 3.16a) reflect the variation in principal stress 

magnitude and sign, with high compressional zones centered within the leading and trailing 

equatorial regions, for north and south latitudes less than ~ 25°. Faults of any orientation will 

be subjected to compressive tractions in these regions. Alternatively, high tensile zones 

centered within the anti- and Sub-Jovian equatorial regions (again confined to latitudes less 

than 25°), suggest faults of any orientation will experience tensile tractions. High north and 

south latitudes host the lowest principal stresses and also provide a range of compression and 

tension regimes as a function of fault orientation and longitudinal position.  

Global shear traction patterns (Figure 3.16b) largely follow the variation in magnitude and 

sign of shear stress tensor component σθφ. The shear traction orientation dependency 

diagrams suggest that faults that strike predominately north-south within positive shear stress 

zones are subject to right-lateral shear. Alternatively, faults that strike predominantly north-

south within negative shear stress zones are subject to left-lateral shear. This pattern repeats 

every 90° and is inverted about the equator. Additionally, shear traction orientation 
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dependency diagrams are inverted and reflected across the central meridian. This 

reflection/inversion pattern has previously been observed by Rhoden et al. (2010) when 

examining strike-slip predictions given their model considerations (diurnal stresses with no 

obliquity), although orientation results vary from this study. We note that there is no diurnal 

reversal of shear direction for this model given the quasi-steady-state of NSR. Interestingly, 

the four fault zones located within the highest northern latitudes and highest magnitude shear 

regimes have orientations that favor a reversed sense of shear: Nun Sulcus is positioned in a 

left-lateral shear region, but its E-W orientation subjects it to right-lateral shear tractions. 

Likewise, Nipper/Philus, Byblus, and the Transitional Terrain are positioned in a right-lateral 

shear region, however these fault zones are largely subject to left-lateral shear due to their 

NW-SE orientations. When investigating Coulomb failure orientations, we find there are 

regions where either right- or left-shear failure might occur.  

From this global perspective, we also demonstrate the abundance of Coulomb failure 

opportunities for strike-slip structures of Ganymede. For a diNSR stress model, resolved 

shear and normal tidal tractions promote Coulomb failure at depths of ~1 km along a wide 

range of geographic locations and fault orientations (Figure 3.16c). However, Coulomb 

failure is highly sensitive to influences from compressive stresses when combined with low 

shear stress magnitudes, as evidenced by the few faults (black, or fully locked wedges) near 

the equator, where the largest compressive NSR stresses and lowest shear regimes are 

centered. As such, the only regions along the equator capable of Coulomb failure lie in 

longitudinal zones of high tensile stresses. Coulomb failure orientation dependency diagrams 

are reflected about the equator and repeated about the central meridian (0° E).  

Moreover, by isolating and plotting the shear tractions and Coulomb failure potential in 

such a manner, we construct a more complete perspective of the sensitivity of slip to fault 

orientation. Modeling tidal stresses in this way may also allow us to predict whether a feature 

of interest is optimally oriented for failure, and in what direction it will slip. While this 

method may be currently applied to existing imagery, high-resolution imagery from future 

spacecraft may allow us to characterize regional trends in strike slip orientation based on 

finer scale indicators. For example, the European Space Agency’s (ESA) large-class mission 

JUICE (JUpiter ICy moons Explorer) aims to spend at least three years making detailed 
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studies of Ganymede, Callisto, and Europa after its proposed arrival in 2030. This increased 

coverage may allow us to better understand the timeline of deformation and potentially 

constrain the time scales of secular stresses that drive this slip. 
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Figure 3.16. Global failure predictions for a diNSR model. (a) Normal stress orientation diagrams (simplified black and 
gray representations, see Figure 3.5) overlaying global imagery and maximum principal stress (σ1, MPa). Note regions of 
high compressive stresses near the equator. (b) Traction sense diagrams overlaying global imagery and stress tensor 
component σθφ+φφ (MPa). (c) Coulomb failure orientation diagrams overlaying global imagery. Note regions of limited slip 
corresponding to high compressive stresses and low shear stresses. All images are for a mean anomaly, m = 0°. 
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7. Conclusions 

In this study, we investigate the conditions necessary for tidally driven Coulomb failure 

on Ganymede due to two fundamental stress mechanisms: diurnal and nonsynchronous 

rotation tidal stresses. Using the Coulomb failure criterion to assess failure potential, we find 

that Ganymede’s diurnal tidal stresses are not large enough to yield Coulomb failure within 

the shallow brittle crust. However, when stresses derived from the nonsynchronous rotation 

(NSR) of Ganymede’s outer icy shell are included, shear and normal tractions on the order of 

~1 MPa are resolved onto imaged fault structures. Moreover, we find that the diNSR tidal 

stress model provides stress magnitudes and orientations on Ganymede that support Coulomb 

failure at shallow depths along candidate strike-slip structures. We explored the sensitivity of 

the coefficient of ice friction (µf = 0.2 – 0.6) and the depth dependency of Coulomb failure, 

demonstrating how low friction permits failure down to depths of ~ 2 km for nine fault zones 

with inferred (previously mapped) strike-slip structures.  

Based on these results, we infer that Coulomb failure is possible, when NSR is included 

as a driving stress mechanism, along many fault zones spanning Ganymede’s surface. The 

NSR model successfully predicts the same sense of slip for six candidate fault zones as 

inferred from imagery and mapping efforts (Dardanus Sulcus, Tiamat Sulcus, Byblus Sulcus, 

Nippur/Philus Sulci, Anshar Sulcus, and the Transitional Terrain region). Tractions from the 

three other fault zones (Nun Sulci, Arbela Sulcus, and Uruk Sulcus) that do not match the 

inferred sense of slip may be consistent with a migrating ice shell as due to NSR, perhaps 

allowing for reorientation of modeled strike. Local rheological conditions, pre-existing faults, 

and temporal sensitivity to orbital evolution may also affect sense of predicted slip. 

Moreover, these results reflect tidal dynamics assuming the present-day eccentricity for 

Ganymede, however preliminary work (Pappalardo et al, 2012; Cameron et al., 2017) 

suggests a past high eccentricity may have allowed for significant diurnal tidal stress 

influence on faulting at very shallow depths (< 200 m). The sensitivity of diurnal tidal 

stresses to Ganymede’s past eccentricity is currently being investigated (Cameron et al., in 

prep) and may help to advance our understanding of faulting in several tectonically complex 

regions across Ganymede’s surface. 
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Abstract 

Laplace-like resonances among Ganymede, Europa, and Io may have once led Ganymede to acquire an 

eccentricity as high as ~0.07 (presently e = 0.0013). While diurnal stresses at Ganymede today are quite small 

(less than 10 kPa), a previous period of higher eccentricity may have allowed for a diurnal tidal stress that could 

drive faulting during a past period of active tectonism, with stresses increasing by at least an order of 

magnitude. To investigate the role of tidal stresses on faulting, we use the numerical tidal stress model SatStress 

to calculate diurnal tidal stresses of Ganymede’s surface assuming e = 0.05, representative of a more eccentric 

orbit in Ganymede’s past. The past model assumes a 100 km ice shell (upper 2 km is cold, stiff ice), underlain 

by a 140 km deep ocean. We resolve normal and shear stresses onto discrete mapped fault segments and assess 

Coulomb failure criteria along three previously inferred shear zones: Dardanus Sulcus, Tiamat Sulcus, and Nun 

Sulci. We find that for a diurnal model of present-day (low) eccentricity, Coulomb failure is not expected along 

any of the three shear zones. Coulomb failure is predicted, however, for a past, high eccentricity case, although 

in isolated diurnal slip windows and limited to very shallow depths (results are shown for a depth of 100 m, 

failure may extend to ~ 250 m). This model predicts a dominant right-lateral slip window for both Dardanus and 

Tiamat Sulcus and right- and left-lateral slip windows for both north and south branches of Nun Sulci, 

coincident with the sense of inferred shear from imagery and structural mapping efforts. Moreover, a low 

coefficient of friction (µf = 0.2) Coulomb failure model of right- and left- lateral slip episodes over a diurnal 

cycle could indicate a plausible case for tidal walking in Ganymede’s high-eccentricity past. 
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1. Introduction 

Twin spacecraft Voyager 1 and 2 began imaging the Jupiter system in 1979, followed by 

the Galileo space probe that orbited Jupiter’s moons between 1995 and 2003, providing high-

resolution images and geophysical data. Images from Galileo and Voyager reveals 

Ganymede’s surface to be extensively tectonized. The surface of Ganymede displays several 

candidate regions of strike-slip tectonism, with fault slip presumably driven by a combination 

of global and local stress sources. As Ganymede orbits Jupiter every 171.6 hours, variations 

in gravitational tidal forces, due in part to the satellite’s eccentric orbit, act to deform the 

moon’s surface (Greenberg et al., 1998), with diurnal stresses on the order of a few 10s of 

kPa when considering Ganymede’s eccentricity (presently e = 0.0013). Past Laplace-like 

resonances among Ganymede, Europa, and Io may have altered eccentricity to as high as 

~0.07 depending on the past ratio of tidal dissipation between Ganymede and Jupiter 

(Showman and Malhotra, 1997), yielding potential diurnal tidal stresses on the order of 100s 

of kPa. This increase in diurnal stress may have been a catalyst for faulting during a past 

period of tectonic activity, similar in nature to geologic activity currently, or fairly recently, 

on other icy satellites (Greenberg et al., 1998; Hurford et al., 2007; Collins, 2009). 

We use the numerical code SatStress (Wahr et al., 2009) to calculate diurnal tidal stress as 

a plausible mechanism for strike-slip tectonism at Ganymede’s surface considering a past, 

higher eccentricity. We utilize the Coulomb stress equation (Byerlee, 1978) to determine the 

Coulomb failure potential of fault segments of varying orientation and as a function of mean 

anomaly (orbital position), m. Previous studies (Cameron et al., 2018a) detailed nine mapped 

Galileo target sites displaying evidence of strike-slip indicators (en echelon structures, strike-

slip duplexes, laterally offset pre-existing features, and strained craters). Of these strike-slip 

indicators, lateral offset (Figure 4.1) of pre-existing structures at Dardanus Sulcus, Tiamat 

Sulcus, and Nun Sulci provide the clearest evidence for which to evaluate sense of shear and 

are therefore used as the basis for testing the influence of diurnal stresses and Coulomb 

failure when considering a past eccentricity.  

This paper revisits tidal stress modeling efforts of Cameron et al. (2018b) assuming a 

present-day eccentricity (0.0013) and compares those previous results with new results 
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considering a possible past high (~0.05) eccentricity. We first provide a brief overview of the 

geologic history of three target regions displaying strike-slip offset, Ganymede’s orbital 

evolution through time, and the effects of eccentricity changes on internal structure. Next we 

discuss the potential for Coulomb failure induced by diurnal tidal stresses considering the 

limitations on failure that are imposed by the Coulomb failure criterion. We also describe 

adaptations to our modeling process to account for varying eccentricity tides. We 

demonstrate Coulomb failure results for each of the three offset regions and evaluate how 

failure estimates vary as a function of mean anomaly. Finally, we examine the implications 

of this failure model of both right- and left-lateral slip episodes over a diurnal cycle as a 

plausible case for tidal walking in Ganymede’s high-eccentricity past. This work aims to 

establish the importance of tidal stresses as a driver for strike-slip tectonism, noting that past-

Ganymede diurnal stresses may be comparable to those modeled for Europa today. 
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Figure 4.1: Ganymede global mosaic (0° – 360° E; 60°S - 60°N) in Mercator projection (modified from 
Cameron et al., 2018a). Examples of dark and light terrain are labeled; labeled boxes (a-c) denote sites where 
inferred fault zones were mapped for this study. (a-c) Galileo imagery and inferred fault zones (black dashed 
lines). White half arrows indicate inferred sense of shear. Strike-slip indicators within mapped Ganymede sites 
are also labeled: *E - En echelon structures; D - Strike-slip duplexes; O - Offset features; Sc - Strained craters. 
Check marks indicate presence of strike-slip indicators and double check marks indicate that the region displays 
many instances of that strike-slip indicator 
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2. Ganymede’s Orbital Evolution 

Orbital resonances between Io, Europa, and Ganymede create a dynamic system that may 

have a strong effect on a satellite’s thermal evolution (Showman and Malthotra, 1997). In the 

Galilean system, the strongest interactions occur between Io and Europa, and Europa and 

Ganymede. The current arrangement of this three-body system is known as a Laplace 

resonance, or a 1:2:4 orbital period ratio between Ganymede, Europa, and Io, respectively. 

While secular perturbations from Callisto are considered in analyses by Malhotra (1991) and 

Showman and Malhotra (1997), their effects are not essential to this study, and not discussed 

further.  Many previous studies have explored the orbital history of the Galilean system and 

the potential effects on a satellite’s eccentricity (Yoder, 1979; Yoder and Peale, 1981; 

Greenberg, 1987; Tittemore, 1990; Malhotra, 1991; Showman and Malhotra, 1997). Yoder 

and Peale (1981) determined an analytical solution for eccentricity variations in an attempt 

explain Io’s high rate of external activity, however, Malhotra (1991) later showed that the 

Yoder-Peale solution was non-unique and suggested their proposed path towards the current 

resonance state was unlikely due to the high probability of capture into a Laplace-like 

resonance instead. Indeed, Showman and Malhotra (1997) revisited the Malhotra model to 

explore a wider range of conditions and found a high probability that the Galilean satellites 

would have been temporarily captured (for a period of 107 – 109 years) in two Laplace-like 

resonances before reaching the current state. This is significant for Ganymede’s evolution in 

that these resonances may have pumped Ganymede’s past eccentricity to as high as ~0.07, 

potentially allowing for tidal dissipation to drive internal activity (Greenberg 1987; Malhotra, 

1991; Showman and Malhotra, 1997). As eccentricity calculations depend on the past ratio of 

tidal dissipation between Ganymede and Jupiter, we choose a value of 0.05 to represent a 

conservative estimate. 

The total orbital eccentricity of a satellite is found by the sum of the forced and free 

components, where each component is treated as a vector. If both forced and free vectors are 

in the same direction, the total eccentricity is simply the sum of the magnitudes of each 

component. If the forced component has a different direction than that of the free component, 

the total eccentricity must then be less that the sum of the magnitudes of each component. 
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The free component arises from a combination of the distance and velocity of a satellite after 

it formed around its parent planet. The forced component, however, arises from the 

gravitational interaction of two satellites whose orbital periods are in resonance, and 

therefore the forced component direction continuously changes, thus continuously changing 

the total eccentricity. We thus use the free eccentricity component when describing the 

eccentricity of Ganymede. It is worth noting that Showman and Malhotra (1997) suggest 

Ganymede’s current free eccentricity (0.0013) to be higher than expected, and also is 

unlikely to have been produced by a cometary impact, further suggesting the current 

eccentricity is representative of some primordial value. 

3. Tidal stress and Coulomb failure modeling 

Ganymede is a synchronously rotating satellite, meaning that the same side of the satellite 

always faces Jupiter (Burns, 1976; Melosh, 1977; Helfenstein and Parmentier, 1980), causing 

Ganymede to experience a tidal bulge due to the difference in gravitational attraction of 

Jupiter. The varying gravitational potential within Jupiter’s gravitational field causes tidal 

stresses and deformation as portions of Ganymede are subjected to these gravitational effects 

(Wahr et al., 2009). Additionally, Ganymede’s orbit is elliptical (i.e., an eccentricity of 

greater than zero, and less than 1), allowing the tidal bulge to vary in both magnitude and 

longitudinal position as it changes distance from Jupiter during its diurnal orbit (Murray and 

Dermott, 1999). Moreover, the influence of tides affects both orbital and rotational evolution, 

and provides a major source of stress and heat (Peale, 2003); observed regions of strike-slip 

tectonism on Ganymede may be due, in part, to a combined effect of temporally varying 

stresses (Cameron et al., 2018b). 

Here we focus on diurnal stress as the primary mechanism of tidal deformation due to a 

past, high eccentricity. As Ganymede orbits Jupiter, variable diurnal stresses sweep across 

the surface over a period equal to that of the satellite’s orbital (diurnal) period, or 171.6 

hours. Diurnal tidal stresses may be quite relevant to the formation of Ganymede’s terrain; 

previous studies have suggested that diurnal tidal stresses are (1) responsible for the 

formation of Europa’s ridges (Greenberg et al., 1998; Hoppa et al., 1999; Nimmo and 
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Gaidos, 2002), and (2) may trigger geological activity along fractures of Enceladus 

(Showman and Malhotra, 1997; Hurford et al., 2007; Nimmo et al., 2007; Smith-Konter and 

Pappalardo, 2008; Olgin et al., 2011).  

To investigate the effects of these varying stresses for a past, high eccentricity, we use 

numerical model SatStress (http://code.google.com/p/satstress). SatStress (Wahr et al., 2009) 

calculates tidal stresses at any point on the surface of a satellite based on tidal potential 

theory (e.g., Wahr, 1981), allowing for both elastic and layered Maxwell viscoelastic 

treatments of the lithosphere (i.e., Smith-Konter and Pappalardo, 2008; Olgin et al., 2011, 

Cameron et al., 2018b). As a proof of concept, we use SatStress to model the diurnal stress of 

two end-member models: (1) Ganymede today (present-day, low eccentricity e = 0.0013), 

and (2) Ganymede in the past (using a conservative past high eccentricity e = 0.05).  

We consider a simplified model of the internal structure of Ganymede (Figure 4.2) to 

simulate tidal stresses in the outer ice shell. Table 4.1 describes the model parameters for a 

present and past layered Ganymede represented by a spherically symmetric ice shell 

underlain by a global subsurface ocean and a deep interior. We represent Ganymede’s outer 

ice shell as divided into two mechanically distinct layers whose properties are governed by 

the strong temperature dependence of ice I (Goldsby and Kohlstedt, 2001). For the present 

model, we assume an upper rigid layer 10 km thick and a more ductile ice shell extending 

another 140 km. For the past model, we assume an upper rigid layer 2 km thick, and a more 

ductile ice shell extending another 98 km deep. The upper layer of cold ice in both models is 

stiff (η = 1019 Pa s), while the warmer ice in the interior of the ice shell has a viscosity that 

approximates ice I near its melting temperature (η = 1014 Pa s, Showman et al., 1997; 

Goldsby and Kohlstedt, 2001; Mitri and Showman, 2005). Both layers have an ice I density 

of ρ = 920 k/m3. Beneath the base of the ice shell, we impose an inviscid interior ocean with 

a density of ρ = 1000 kg/m3. Beneath the ocean, we assume a deep interior that includes the 

high-pressure phases of ice predicted at the ocean-core interface, as well as a rocky core. The 

density and thickness of this layer varies with the assumed fraction of high-pressure ice 

(Figure 4.2). For a past, high eccentricity, tidal heat production was likely higher than present 

day, and we assume that more of the ice I shell and high-pressure ice layer in the deep 

interior would have melted when compared to the present day model. Thus, we reduce the 
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thickness of the ice shell and the deep interior by 50 km each (correcting the density of the 

deep interior layer to account for this loss), and correspondingly increase the thickness of the 

ocean layer by 100 km for the past model (Moore and Schubert, 2003). For the purpose of 

these layered models, we do not consider the volumetric change associated with melting ice. 

Degree-two diurnal love numbers (Table 4.1) for this assumed rheology were derived 

using a companion Love number code available in the SatStress package (J. Wahr, personal 

communication, 2011) and were verified by alternative models (Moore and Schubert, 2003; 

F. Nimmo, personal communication, 2013). Love numbers are found to be similar for the 

present and past Ganymede structures that we assumed. Thus, the primary difference in our 

two end-member models is the significant change in Ganymede’s eccentricity, which is 

manifested as increased diurnal stress magnitude for the past Ganymede model. 
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Figure 4.2: Comparison of past and present Ganymede internal structure and resulting tidal stress amplification due to 
variation in eccentricity. (a) The internal structure and rheology assumed for the two end member models used in this study. 
Note the deep interior includes high-pressure phases of ice predicted at the ocean-core interface, as well as a rocky core. (b) 
Diurnal shear (τs) and normal (σn) tractions at Dardanus Sulcus as a function of orbital position (mean anomaly, m). Solid 
lines represent Ganymede today (e = 0.0013) and dashed lines represent past, high eccentricity Ganymede (e = 0.05). At this 
example location, peak absolute stress magnitudes for Ganymede today approach ~4 kPa (normal) and ~1 kPa (shear). For a 
past Ganymede model, peak normal traction magnitudes reach 120 kPa and shear traction magnitudes approach 50 kPa. 
These past Ganymede diurnal stresses are comparable to those modeled for Europa today. 
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Table 4.1: Ganymede physical, orbital and rheological model for both a past (high) eccentricity and present day (low) 
eccentricity model.  
 

Physical and Orbital Characteristics   
 Past Present day 

Satellite radius (km) 2630  2630 
Satellite orbit eccentricity .05  0.0013 

Satellite orbit semi-major axis (km) 1.07x106 1.07x106 
Satellite gravity (m/s2) 1.428 1.428 

Planet mass (kg) 1.90x1027 1.90x1027 
   

Viscoelastic Parameters     
Ice (Upper and Lower)  Past Present day 
Young's modulus (GPa)  9.30 9.30 

Shear modulus (GPa) 3.49 3.49 
Poisson's ratio 0.30 0.30 

Density (kg/m3) 920 920 
  Upper ice layer Upper ice layer 

Thickness (km) 2 10 
Viscosity (Pa s) 1019 

 

1019 
 

 

 

Lower ice layer Lower ice layer 
Thickness (km) 98 140 
Viscosity (Pa s) 1014 1014 

Ocean     
Young's modulus (GPa) 0 0 

Shear modulus (GPa) 0 0 
Poisson's ratio 0.50 0.50 

Density (kg/m3) 1000 1000 
Thickness (km) 140 40 
Viscosity (Pa s) 0 0 

Deep Interior (high-phase ice + silicates)  Past Present day 
Young's modulus (GPa) 100 100 

Shear modulus (GPa) 40 40 
Poisson's ratio 0.25 0.25 

Density (kg/m3) 2253 2184 
Thickness (km) 2391 2441 
Viscosity (Pa s) ~1020 ~1020 

   
SatStress Parameters     
   Past Present day 

Period (yrs) 1.42x107 1.42x107 
Elastic love number h2 

 

1.444 1.427 
Elastic love number l2 0.3765 0.3641 
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Coulomb failure theory relates the resolved shear and normal tractions on a fault plane; 

shear tractions drive strike-slip motions, while normal tractions control a fault’s frictional 

resistance to failure (e.g. Byerlee, 1978; Brace and Kohlstedt, 1980). SatStress computes 

both raw (σφφ, σθθ, σθφ or latitudinal, longitudinal, and shear tractions, respectively) and 

diagonalized (principal) stress tensor components as a function of orbital position past 

periapse (i.e., the mean anomaly, m) and geographic location on the satellite. Following the 

methodology of previous studies (Hurford et al., 2007; Nimmo et al., 2007; Smith-Konter 

and Pappalardo, 2008), we resolve tidal stress tensor components onto discrete fault 

segments, of varying length and orientation, into normal (σn) and shear (τs) traction 

components:  

𝜏! =
1
2 𝜎!! − 𝜎!! 𝑠𝑖𝑛2𝛽 + 𝜎!"𝑐𝑜𝑠2𝛽 

𝜎! = 𝜎!!𝑐𝑜𝑠!𝛽 + 𝜎!!𝑠𝑖𝑛!𝛽 + 𝜎!"𝑠𝑖𝑛2𝛽 

        (Eq. 1) 

where β is a line segment orientation, defined with respect to the longitudinal direction (β = 

0° for a fault oriented exactly east-west). Where applicable, we adopted mapped feature 

traces (i.e., measured trend with assumed vertical dip) from Cameron et al. (2018a); however, 

due to spare high-resolution imagery, we estimated fault geometry in some regions. Each 

sulcus is represented as a series of digitized fault segments with lengths of 5 km or less, and 

with β that may vary from the overall strike of the major fault zone. For each individual fault 

segment, the resolved normal traction component acts perpendicular to each segment, while 

the resolved shear traction component acts parallel to each segment.  

To investigate the roles of resolved shear and normal tractions, we employ the Coulomb 

failure criterion (Byerlee, 1978; Jaeger and Cook, 1979) to assess the failure potential of 

individual fault segments. This criterion considers stresses that facilitate (tensile) and resist 

(compressive) slip, with faulting simultaneously accounting for both resolved normal and 

shear tidal traction, the coefficient of friction of ice, and additional stress at depth due to the 

overburden pressure (Thatcher and Hill, 1991). To model this behavior, we calculate the 

Coulomb stress as   

   𝜏! = 𝜏! − 𝜇!(𝜎! + 𝜌𝑔𝑧),    (Eq. 2) 
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where µf is the effective coefficient of friction and ρgz is the maximum overburden pressure 

(positive z is the vertical depth of the fault plane beneath the surface). Note the actual 

overburden pressure could be less than this, we conservatively assume the overburden 

pressure translates 1:1 to the lateral pressure acting on the fault. The sign of the overburden 

stress is taken to be positive, while normal tidal tractions are assumed positive when in 

compression and negative when in tension. The sign of the shear traction (positive for right-

lateral, negative for left-lateral) becomes important when inferring the sense of slip when the 

failure conditions are met. Compressive tractions work to clamp a fault together, thus 

enhancing the frictional resistance and inhibiting failure, and require higher shear tractions to 

overcome the failure criterion. Alternatively, tensile tractions work to unclamp a fault, 

reducing the frictional contact between fault surfaces and encouraging failure if the acting 

shear traction is large enough. In general, the failure criterion is most easily met when tensile 

tractions dominate.  

 For simplicity, we will refer to the rightmost quantity of Eq. 2 that includes µf as the 

“frictional stress.” Thus, for Coulomb failure to occur, the tidal shear traction on a fault must 

be greater than the frictional stress. According to this model, Coulomb failure will occur on 

optimally oriented fault segments when the shear traction exceeds the frictional resistance of 

the fault. Thus positive Coulomb stresses imply conditions supporting fault slip, while 

negative Coulomb stresses imply a locked fault. Because the Coulomb criterion only applies 

for a closed fault interface, we evaluate the role of fault depth for both normal tensile and 

compression regimes separately. For compressive tractions with no melting, no minimum 

fault depth limitation applies, as a fault interface will always be closed. For tensile zones 

however, the overburden stress must be larger than the tensile traction, otherwise a fault 

would dilate. Using the z-depth dependence of overburden stress in this manner, we evaluate 

the depth sensitivity of Coulomb failure for each fault zone at 0.1 km discretized depth 

observation planes. 
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4. Results 

For completeness, we first evaluate the opportunity for Coulomb failure of a fault zone 

resulting from diurnal tidal stresses with a present-day eccentricity (Figure 4.3). We 

demonstrate the regional sinusoidal nature of resolved normal and shear tractions over a 

complete diurnal cycle for Dardanus Sulcus, Tiamat Sulcus, and the southern branch of Nun 

Sulci. We discretize each fault zone into many short (< 5 km) segments and calculate 

tractions along their midpoints. As segments may have varying orientations across the fault 

length (~ 30° of variation for Dardanus Sulcus, 20° for Tiamat Sulcus, and 30° for Nun 

Sulci’s south branch), a range of diurnal stress patterns are estimated along the full length of 

each fault zone. To generalize this variation, we present the mean of these, which serves as a 

representation of each fault zone’s along-strike behavior. Moreover, shear and normal 

tractions peak as a function of mean anomaly position depending on the geographic location 

of each fault zone. We assume a nominal depth of z = 100 m and a coefficient of friction of 

µf = 0.2. If the shear traction (blue line), at any mean anomaly position (orbital position) m, 

exceeds the magnitude of the frictional stress (red dashed line), Coulomb failure is achieved. 

We find that the tractions required for failure are approximately an order of magnitude larger 

than the diurnal shear tractions produced by the models, and therefore, Coulomb failure is not 

achieved when considering a present-day eccentricity (Cameron et al., 2018b). For example, 

the present-day mean diurnal normal traction at Dardanus Sulcus is small (4.5 kPa) and 

compressive for m = 30 – 230° and then becomes small and tensile (-4.5 kPa) for m = 230 – 

30°; the present-day mean shear traction is also small (<1 kPa) and left-lateral for m = 45 – 

225° and then right-lateral for m = 225 – 45°. The mean frictional stress (red line) for µf = 0.2 

at 100 m depth is 28±1.5 kPa, which is nearly triple the magnitude of diurnal shear tractions 

needed to drive failure. The low coefficient of friction assumed here, µf = 0.2, is a 

conservative end member for ice (Fortt and Schulson, 2007; Schulson and Fortt, 2012); a 

higher coefficient of friction (i.e., µf = 0.6) yields an even higher mean frictional stress of 

85±2 kPa. Hence, a fault segment of Dardanus Sulcus is expected to remain locked 

throughout its diurnal orbital cycle given this range of stresses.  
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Figure 4.3. Modeled tractions on faults experiencing diurnal stresses for a present eccentricity. (a) Dardanus Sulcus, located 
in the sub-Jovian leading hemisphere, (b) Tiamat Sulcus, located in the anti-Jovian trailing hemisphere, and (c) Nun Sulci, 
located in the sub-Jovian trailing hemisphere. The mean resolved normal traction (black), shear traction (blue), and frictional 
stresses (red line, calculated at z = 100 m and µf =0.2) are provided. Negative resolved normal tractions are tensile, while 
positive normal tractions are compressive; negative resolved shear stresses are left-lateral while positive shear stresses are 
right-lateral. Shear failure is never achieved from diurnal stresses alone, given their very small magnitudes. Figure adapted 
from Cameron et al. (2018b).  
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Next we evaluate the opportunity for Coulomb failure of a fault zone subject to a much 

larger orbital eccentricity (Figure 4.4). We find that for a past, high eccentricity, both normal 

and shear tractions are larger in magnitude than for the present day eccentricity, although 

they follow the same pattern of transition between compressive-to-tensile or left-to-right-

lateral regimes throughout an orbit. Frictional stress is also larger, however a combined effect 

of increased normal and shear tractions allows for slip windows (gray regions; Figure 4.4), or 

a continuous range of mean anomaly positions where the Coulomb criterion for failure is 

met. Additionally, these slip windows may allow for either right- and left-lateral slip along a 

fault zone depending on orbital position, m. For example, past diurnal normal tractions at 

Dardanus Sulcus are large (as great as 120 kPa) and compressive for m = 40 – 220° and then 

become large and tensile (as negative as -120 kPa) for m = 220 – 40°; shear tractions are 

smaller (as great as 50 kPa) and left-lateral for m = 0 – 180° and right-lateral for m = 180 – 

360°.  

Failure in slip windows is estimated at each fault zone for diurnal cycles for a past, high 

eccentricity. We calculate the net sense of slip for cases with µf =0.6 and µf =0.2 from the slip 

windows and sense of slip predicted by the models of the three fault zones. At Dardanus 

Sulcus when considering µf =0.6, we find that the feature is free to slip in only one window, 

from m ~270° – 355°, where the sense of shear at this position is right-lateral. Thus, 

considering only the sense of shear, the net sense of slip is estimated to be right-lateral. For a 

low coefficient of friction, µf =0.2, Coulomb failure criteria are met only for a right-lateral 

slip window occurring at m = 260° – 20°. Thus, in the simplest form, net slip for this example 

at Dardanus Sulcus, is predicted to be right-lateral. For Tiamat Sulcus, considering the high 

friction case, we identify a single slip window with right-lateral slip from m = 225° – 325°. 

For a low coefficient of friction, the left-lateral slip window occurs from m = 350° – 95° and 

the right-lateral slip window occurs from m = 190° – 350°, also suggesting the net slip to be 

right-lateral. Along the south branch of Nun Sulci, a high friction model yields a slip window 

where the sense of shear is left-lateral, at m = 110° – 190° and a right-lateral slip window at 

m = 30° – 110°, implying no net sense of slip. Additionally, the low friction model also 

yields equal windows of left- and right-lateral slip. Interestingly, the net sense of slip 

modeling estimates match strongly justified sense of slip inferences at both Dardanus and 
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Tiamat Sulcus from high-resolution imagery (Figure 4.1, also Cameron et al., 2018a).  
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Figure 4.4. Modeled tractions on faults experiencing diurnal stresses for a past eccentricity. (a) Dardanus Sulcus, (b) Tiamat 
Sulcus, and (c) Nun Sulci. The mean modeled resolved normal traction (black), shear traction (blue), and frictional (red, 
calculated at z = 100 m and µf =0.2 (dashed) and µf =0.6 (solid) stresses are provided. As in Figure 4.3, negative resolved 
normal tractions are tensile, while positive normal tractions are compressive. Alternatively, the absolute value of shear stress 
is plotted here, to illustrate the occasional coinciding magnitudes of the frictional stress sinusoid. Gray shaded windows 
(light gray, µf =0.2; dark gray, µf =0.6) denote regions where the shear traction is greater than the frictional stress and 
Coulomb failure could be manifested as strike-slip. Gray outlined boxes indicate regions where frictional stress is < 0. 
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We next explore the implications of a past, high eccentricity orbit in map view at each 

fault zone (Figures 4.5 – 4.7). Map view results closely follow those from the sinusoids 

shown in Figure 4.4, with the exception that mean diurnal sinusoid (per fault zone) is 

represented in previous figures. In the interest of clarity and simplicity, we next show only 

four mean anomaly positions, m = 0°, 90°, 180° and 270°, acknowledging that the nuanced 

behavior of the stresses may be diminished. For example, map view results of Dardanus 

Sulcus (Figure 4.5) indicate that the fault zone transitions from tensile to compressive 

tractions between m = 0° and 90°, and back to a tensile regime by m = 270°, but the precise 

mean anomaly position of this transition is observed only in the sinusoidal data presented in 

Figure 4. Still, the map view plots (Figures 4.5 – 4.7) provide the ability to make 

observations regarding the sensitivity of shear and normal tractions to fault strike. As an 

example, when examining shear tractions, the mid-section of Dardanus Sulcus has a more 

northern strike that behaves opposite to the less northern striking sections on either side, 

regardless of mean anomaly position. When inspecting Coulomb stress, this same section 

also varies in magnitude and is especially noticeable when consider a lower µf. We explore 

this sensitivity to fault strike in great detail in Cameron et al. (2018b). Tiamat Sulcus (Figure 

4.6) is more linear than Dardanus Sulcus, but changes in magnitude are also observed in 

shear traction and Coulomb stress for the less northern striking section. We note that there 

are also a few segments along Tiamat spanning the last quarter of Ganymede’s orbit where 

Coulomb failure theory does not apply due to high tensile stresses that exceed the overburden 

strength. Similar patterns are observed along both branches of Nun Sulci (Figure 4.7), 

specifically where sections of the fault that strike southeast (e.g., near the midpoint of the 

southern branch) behave similarly to the southeast striking sections of the northern branch, 

but with varied magnitude when compared to the northeast striking sections. In all cases, 

increasing µf reduces the likelihood of Coulomb criterion failure to be met. While Figures 4.5 

– 4.7 highlight results for a z value of 100 m, we find Coulomb failure along all fault zones 

may be possible down to an average depth of 250 m for µf = 0.2. 
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Figure 4.5. Map view representation of normal traction, shear traction, and Coulomb failure stresses of diurnal model along 
Dardanus Sulcus. (C = compression, T = tension), shear (RL = right-lateral, LL = left-lateral), and Coulomb stresses (Fs = 
indicating free to slip, Lo = locked) calculated at mean anomaly positions m = 0°, 90°, 180°, and 270°. Stresses are provided 
at an example depth of z = 100 m and for µf = 0.2 (low friction case) and 0.6 (high friction case).  
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Figure 4.6. Map view representation of normal traction, shear traction, and Coulomb failure stresses of diurnal model along 
Tiamat Sulcus. (C = compression, T = tension), shear (RL = right-lateral, LL = left-lateral), and Coulomb stresses (Fs = 
indicating free to slip, Lo = locked) calculated at mean anomaly positions m = 0°, 90°, 180°, and 270°. Stresses are provided 
at an example depth of z = 100 m and for µf = 0.2 (low friction case) and 0.6 (high friction case). Black dots indicate 
plausible shallow slip zones, but not guided by the physics of Coulomb failure due to high tensile stresses.  
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Figure 4.7. Map view representation of normal traction, shear traction, and Coulomb failure stresses of diurnal model along 
Nun Sulci. (C = compression, T = tension), shear (RL = right-lateral, LL = left-lateral), and Coulomb stresses (Fs = 
indicating free to slip, Lo = locked) calculated at mean anomaly m = 0°, 90°, 180°, and 270°. Stresses are provided at an 
example depth of z = 100 m and for µf = 0.2 (low friction case) and 0.6 (high friction case). Black dots indicate plausible slip 
zones, but not guided by the physics of Coulomb failure due to high tensile stresses. 
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6. Discussion 

To illustrate the behavior of Coulomb failure on a larger scale, we next expand our 

analysis to a global perspective of Ganymede’s stress field. As demonstrated in previous 

figures, a fault segment’s resolved traction depends on its orientation. We attempt to capture 

(1) the dependency of traction on fault strike and (2) the time-dependent variability, by 

adopting the schematic representation of stress as a function of fault orientation (i.e., Hoppa 

et al., 1999; Rhoden et al., 2011; Cameron et al., 2018b), where all possible fault orientations 

are represented. We explore the dependency of hypothetical fault segments with varying 

orientations that span the global stress field (60°S - 60°N), represented by structures of 5° in 

length and of varying strikes centered within 96 grid cells spanning 15° latitude by 30° 

longitude. In Figures 4.8 – 4.9, we plot the Coulomb stress and resolved shear traction 

direction, respectively, as a function of position and strike, and note that only the sign of the 

quantity (Coulomb stress or shear) is represented here, whereas the magnitude of both of 

these quantities will also smoothly vary along strike. That is, we use a binary color scheme to 

identify regions of positive or negative stress, but the function varies smoothly from a 

minimum magnitude at the wedge boundaries (where colors change from gray to black) to 

maximum magnitudes at the circle centers. For simplicity, the results represent the stress 

regime at 100 m depth, µf = 0.2, and mean orbital positions m = 0°, 90°, 180°, 270°, 

consistent with previous figures.  

Using this global perspective, we demonstrate the abundance of shear failure 

opportunities for strike-slip structures of Ganymede due to diurnal stresses when considering 

a past eccentricity (Figure 4.8). For this model, resolved shear and normal tidal stresses 

promote Coulomb failure along a wide range of geographic locations and fault orientations 

for each orbital position examined. Patterns of Coulomb failure as a function of fault 

orientation are noted to reflect about the equator and repeat across the central meridian (0° 

E). While m = 0° (periapse) and m = 180° (apoapse) are additionally reflected about a major 

axis at the central meridian, minor reflection patterns also appear at 90° intervals. At m = 90° 

and m = 270°, reflections occur at meridians of intervals 45° from 0° E. Alternatively, the 

global pattern of sense of shear as a function of fault orientation (Figure 4.9) displays an anti-
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symmetric pattern across the equator and central meridian, and largely follow the shear stress 

tensor component (σθφ). In both figures, the locations and average strike of Dardanus, Tiamat, 

and Nun are also plotted (locations approximated by the grid cell of closest proximity), 

illustrating the dependency on fault orientation for each fault zone’s preference for Coulomb 

failure and shear sense throughout an orbital cycle. 

Examining sense of slip patterns of Figures 4.4 and 4.9 allows for consideration of a 

plausible case for tidal walking, where both right- and left- lateral slip episodes could be 

possible over a diurnal cycle, during Ganymede’s high eccentricity past. We adopt three 

assumptions from the shell tectonics model (Rhoden et al., 2012) and Coulomb shear failure 

model (Smith-Konter and Pappalardo, 2008) for Ganymede: (1) we include tidal diurnal 

stress only (i.e., no secular stress), (2) we limit evaluation depths to the very shallow 

uppermost region of the ice shell, where overburden stress is very low (z = 100 m), and (3) 

we assume that strike-slip can occur in the directional sense of the applied stress only if the 

Coulomb failure criterion are met. Following this approach, as with the diurnal sinusoids 

shown in Figure 4.4, we find that when tracking a single hypothetical fault zone through 

different orbital positions, the fault zone may have the potential for both left- or right- lateral 

slip over a complete orbit, as described in Section 5. We note that the primary assumption of 

strike-slip occurring in the same directional sense of the applied stress, if the Coulomb failure 

criterion are met, is a deviation from Rhoden et al. (2012), which considers a net stress 

gradient. To test the uniqueness of the Rhoden model, we next permit our quantification of 

sense of slip to account for shear stress gradients (i.e., positive stress slopes equate to left-

lateral slip, and vice versa). With this model, Dardanus Sulcus has a net left-lateral slip for µf 

= 0.2 and 0.6, Tiamat Sulcus has a net right-lateral slip for µf = 0.2 and 0.6, and the south 

branch of Nun Sulci has a net right-lateral slip for µf = 0.2 and 0.6. We find the sense of slip 

predicted by this alternate method, with the exception of Tiamat Sulcus, is not in agreement 

with geologic evidence, and is not considered further. Future work aims to compile global 

sense of shear results from all mean anomaly positions evaluated against feasible slip 

windows as dictated by the Coulomb failure criterion to provide a means to evaluate a 

hypothetical faults behavior. 
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Figure 4.8: Global Coulomb failure predictions, and range of fault orientations permitting failure, for a past, high 
eccentricity model at mean anomaly m = 0°, 90°, 180°, and 270°. Mean anomaly position about Jupiter is illustrated on the 
left side of each map. Per circular schematic, zones shaded in gray represent possible fault orientations that exhibit positive 
Coulomb stress, and hence be free to slip at a z = 100 m depth, assuming a coefficient of friction of µf = 0.2. Alternatively, 
zones shaded in black represent possible fault orientations that exhibit negative Coulomb stress, and hence would be locked. 
Blue, purple, and orange outlined boxes correspond to mapped regions as shown in Figure 4.1. Similarly, blue, purple, and 
orange line segments represent the approximate strike of the corresponding fault zones. D: Dardanus Sulcus. T: Tiamat 
Sulcus. N: Nun Sulci.  
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Figure 4.9: Global sense of shear predictions, either right-lateral (RL) or left-lateral (LL) for a past, high eccentricity model 
at mean anomaly m = 0°, 90°, 180°, and 270° overlaying stress tensor component σθφ (kPa). Mean anomaly position about 
Jupiter is illustrated on the left side of each map. Per circular schematic, zones shaded in gray represent possible fault 
orientations that exhibit right-lateral slip at a z = 100 m depth, assuming a coefficient of friction of µf = 0.2. Alternatively, 
zones shaded in black represent possible fault orientations that exhibit left-lateral slip. Blue, purple, and orange outlined 
boxes correspond to mapped regions as shown in Figure 4.1. Similarly, blue, purple, and orange line segments represent the 
idealized strike of the corresponding fault zones. D: Dardanus Sulcus. T: Tiamat Sulcus. N: Nun Sulci. 
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7. Conclusions 

These results suggest that diurnal stresses on Ganymede today are quite small (<10 kPa) 

and do not permit Coulomb shear failure along any of the three major fault zones 

investigated here, nor along six other fault zones investigated by Cameron et al. (2018b). 

Diurnal stresses during a former period of high-eccentricity (~100 kPa), however, readily 

generate shear and normal traction magnitudes that promote Coulomb shear failure, though 

limited to shallow depths and isolated windows of slip. This model predicts a dominant (≥ 

45° mean anomaly) right-lateral slip window for Dardanus Sulcus when considering both µf 

= 0.2 and 0.6. Tiamat Sulcus has a dominant right- and left-lateral slip window when only 

considering µf = 0.2, but is isolated to a dominant right-lateral slip window when considering 

µf = 0.6. The south branch of Nun Sulci has a dominant right- and left-lateral slip window 

when considering only µf = 0.2, but is isolated to a dominant left-lateral slip window when 

considering µf = 0.6. These models match the sense of inferred shear from imagery and 

structural mapping efforts, with right-lateral offset inferred for Dardanus and Tiamat Sulcus, 

and left-lateral offset for Nun Sulci. Moreover, a low coefficient of friction (µf = 0.2) 

Coulomb failure model of right- and left- lateral slip episodes over a diurnal cycle could 

indicate a plausible case for tidal walking in Ganymede’s high-eccentricity past. This past, 

high eccentricity provides stresses that may be comparable to Europa’s current diurnal 

stresses, which are also considered to be sufficient to promote slip of faulted structures 

(Hoppa et al., 1999b; Kattenhorn and Hurford, 2009; Hurford et al., 2009). 
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CHAPTER 5. CONCLUSIONS 

5.1. Summary 

This dissertation engages in a broad-ranging planetary investigation - connecting surface 

observations and morphological mapping to global tidal stress mechanisms that drive and 

evolve large-scale tectonism - of the largest moon in the solar system, Ganymede. This body 

of work is the first to study the occurrence and significance of strike-slip tectonism on 

Ganymede in significant detail, however the methods presented may be applied to many icy 

satellites. Beginning with a detailed morphological mapping study of nine areas of 

Ganymede’s morphologically complex icy surface in Chapter 2, Galileo high-resolution 

imagery relationships and Voyager context imagery are used to infer tectonic domains of 

similar morphology, similar to how geologic units may be used on Earth. Unlike Earth, 

Ganymede’s surface evolution is not well constrained, and age relationships rely almost 

exclusively on relative age dating. Through detailed mapping, this dissertation asserts that 

strike-slip tectonism has helped shape the terrain in addition to the more commonly studied 

extensional processes. This study finds strike-slip tectonism is present in all nine regions 

detailed. By noting local similarities in these mapped sites, which lie scattered across a broad 

geographical area, larger scale trends may be observed between locations that suggest a 

fingerprint of a shifting stress field through time. Future missions, specifically ESA’s JUICE, 

will provide increased high-resolution image coverage and increased instrument analysis that 

will aid in strengthening the mapping observations presented in this study. 

Now that strike-slip tectonism has been established as a contributor to the formation of 

Ganymede’s terrain, we may consider the source of this tectonic activity in Chapter 3. 

Specifically, it is necessary to consider the effects of tidal stresses acting on Ganymede as it 

interacts with the dynamic Jupiter and Galilean satellite system. Thus, the conditions 

necessary for tidally driven Coulomb failure on Ganymede are likely due to two fundamental 

stress mechanisms: diurnal stresses, or the stress imparted on Ganymede solely due to its 
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orbit around Jupiter; and nonsynchronous rotation tidal stresses, a secular stress that may 

arise if the surface of the satellite is decoupled from its interior, in this case due to the global, 

subsurface liquid water ocean. These tidal stresses are modeled using the numerical code 

SatStress, and the Coulomb failure criterion is used to assess the resulting stresses.  

While Ganymede’s current eccentricity (e = 0.0013) yields diurnal stresses that are small 

(<10 kPa), stresses derived from the nonsynchronous rotation (NSR) of Ganymede’s outer 

icy shell may yield shear and normal tractions on the order of ~1 MPa. This increase in 

magnitude of stresses owing to NSR ultimately provides stresses that are large enough to 

allow for strike-slip along fault zones. Stresses for a combined diurnal and NSR model 

(diNSR) indeed allow for strike-slip along each of the major fault zones identified in the nine 

regions mapped in detail in Chapter 2. Additionally, the compatibility of modeled sense of 

slip, either right- or left-lateral, inferred sense of slip from Voyager and Galileo images may 

be compared. Specifically, the models of this study predict the same sense of slip as 

inferences from mapping in six of nine regions, with the three incompatible areas perhaps 

being influenced by reorientation of the icy shell. 

The dynamism of Ganymede’s orbit within the Jupiter-Io-Europa system becomes even 

more important when considering the effects of much more eccentric orbit (e = 0.5) during 

Ganymede’s past, as described in Chapter 4. When considering this model, diurnal stresses 

may be ~100 kPa, an order of magnitude larger than present day. These higher diurnal 

stresses may permit an abundance of strike-slip opportunities along fault zones of varying 

orientation, without the need to consider secular stresses such as NSR. These strike-slip 

failure opportunities are however limited to shallow depths (<250 m) and are highly 

dependent on Ganymede’s orbital position, allowing for a transition between slip and locked 

zones as Ganymede’s distance from Jupiter changes during a single orbit.  

Combined, these three studies explore past and modern tectonic history at Ganymede, 

and will hopefully provide a significant contribution to the body of Ganymede and icy moon, 
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literature. Given the renewed interest in future missions to Jupiter and its Galilean moons, 

this dissertation documents one of the first attempts to perform detailed analysis of the role of 

strike-slip tectonism. While this work provides the initial framework for future analyses of its 

kind, it also reveals several areas for improvement.  

5.2. Future Work 

5.2.1. Directions for Modeling 

This study focused primarily on use of the Coulomb failure criterion to assess slip along 

an inferred fault zone. In short, for Coulomb failure to occur, the tidal shear traction on a 

fault must be greater than the frictional stress. However, because the Coulomb failure 

criterion only applies for a closed fault interface, the criterion is not applicable in areas of 

high tensile tractions. This does not mean that that these high tensile regions are not plausible 

zones of slip, only that the type of slip that might occur here was not modeled. Future 

modeling efforts then should explore other failure mechanics models that include high tensile 

regions, especially since these regions typically occur in the shallow subsurface, an area of 

focus for instruments onboard spacecraft collecting data. 

5.2.2. Upcoming Spacecraft Missions  

The current lack of global coverage of Ganymede from decades-past surveys inhibits 

mapping the most complex features, and makes it difficult to expand from regional to more 

global observations. This is where improved imagery and geophysical data, such as the type 

of data anticipated from JUICE will greatly refine existing models of Ganymede tectonics. 

The science payload aboard JUICE will include a comprehensive remote sensing package, 

consisting of multiple spectral imaging instruments (MAJIS, Moons And Jupiter Imaging 

Spectrometer; UVS, Ultraviolet Spectograph; and SWI, Submillimeter Wave Instrument) and 

an optical camera (JANUS, Jovis, Amorum ac Natorum Undique Scrutator) capable of a 2.4 
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m spatial resolution (Della Corte et al., 2014).  

Additionally, the processes that drive ice shell tectonics and the forces associated with 

decoupling between the ice shell and interior are not well understood. Here, the geophysical 

package on JUICE will be key: GALA (GAnymede Laser Altimeter) will study the tidal 

deformation of Ganymede and the morphology and topography of the surfaces of the icy 

moons (Lingenauber et al., 2014), while RIME (Radar for Icy Moons Exploration) uses ice 

penetrating radar to characterize the subsurface structure of icy moons (Bruzzone et al., 

2013). Specifically, data from spacecraft based radar may help constrain thicknesses of near 

surface features, ultimately allowing for improved inputs in geodynamic models. 

Additionally, J-MAG (JUICE Magnetometer) will further investigate the interaction of 

Jupiter’s magnetic field with the internal magnetic field of Ganymede (both intrinsic and 

induced) and may provide more information about the subsurface ocean (Plaut et al., 2014).  

While Ganymede is not a target for NASA’s flagship mission, Europa Clipper, will carry a 

comparable science payload to study Europa, providing additional context for icy tectonics.  

In conclusion, this body of research strengthens the scientific foundation that will support 

planned future missions to Jupiter and its Galilean moons. 
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