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Abstract

Reversible Markov chains are used for modeling many physical and network phenom-
ena. The second largest eigenvalue magnitude of the transition probability matrix
gives a upper bound on the mixing time of a reversible Markov chain, but is incalcu-
lable for large transition probability matrices using typical eigenvalue algorithms. We
present the Modified Arnoldi iteration - a modification of the Arnoldi iteration for
reversible Markov chains that utilizes sample estimates where matrix operations may
be infeasible, thereby being a possible option when usual algorithms are nonviable.
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Chapter 1

Introduction

Reversible Markov chains find application in many settings. One famous applica-

tion of reversible Markov chains is the Metropolis-Hastings algorithm [7], where a

reversible Markov chain is constructed to converge to a distribution that is difficult

to sample from directly. Other applications of reversible Markov chains include Birth-

death processes [11], where a state variable increments or decrements its value with

certain rates, and the scaled SIS process [19], which models the spread of epidemics

on a graph.

The second largest eigenvalue magnitude of the transition probability matrix is

of interest because it gives a upper bound on the mixing time of the Markov chain

[13]. The knowledge provided by the second largest eigenvalue magnitude will be used

by the user of the Metropolis-Hastings algorithm to decide when to begin recording

samples, or the user of the scaled SIS process to find the network states with highest

probability at equilibrium. The challenge in calculating the second largest eigenvalue

magnitude lies in the fact that we may not be able to use typical eigenvalue algo-

rithms, as the transition probability matrix can be too large to load into memory.

For example, the size of the state space for scaled SIS is 2𝑀 , where 𝑀 is the number

of nodes on a graph. Practical networks are composed of hundreds to thousands of

nodes, but the largest vector a typical computer can load may be length 215.

The Arnoldi iteration, first given in [1], is a commonly used technique in solving

eigenvalue problems. Suppose we wish to estimate the eigenvalues of 𝑃 . Let 𝑓 be
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some trial vector, 𝑛 some positive integer, and 𝐾𝑛 [𝑓 ] be the subspace defined as

𝐾𝑛 [𝑓 ] = span{𝑓 , 𝑃𝑓 , . . . , 𝑃 𝑛−1𝑓}.

The Arnoldi iteration approximates the eigenvalues of 𝑃 by identifying the vector

𝑣 ∈ 𝐾𝑛 [𝑓 ], and scalar �̃� ∈ C that best approximates the condition

𝑃𝑣 ≈ �̃�𝑣.

The steps of the Arnoldi iteration involve computations that are infeasible when the

size of the state space is sufficiently large. We develop in this thesis modifications to

the Arnoldi iteration specifically for finding the second largest eigenvalue magnitude of

transition probability matrices of reversible Markov chains, utilizing sample estimates

in places where the algorithm calls for computations on prohibitively large matrices

and vectors, thus opening options when typical matrix operations are infeasible.

1.1 Previous Works

Work that is pertinent to our topic include analytical methods of bounding the second

largest eigenvalue - Cheeger bounds and Poincaire bounds [5] are commonly used. We

develop numerical options for cases where analytical methods are not easily applicable.

An alternative to calculating analytical bounds is to utilize the samples generated by

the Markov chain to create estimates. Past works utilizing samples generated from a

Markov chain to estimate the second largest eigenvalue include [14], [9] [6].

The authors of [14] consider the problem of using sample data generated by a

continuous time reversible Markov chain to estimate the second largest eigenvalue

when the transition rate matrix has the form

𝑄 =
𝑟∑︁

𝑘=1

𝛼𝑘𝑄𝑘.

where 𝑄𝑘 are known, but 𝛼𝑘 are not. A method to calculate the parameter esti-
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mates �̂�𝑘 using samples generated over the time interval [0, 𝑡] is introduced, and the

transition rate matrix is estimated to be

̂︀𝑄 =
𝑟∑︁

𝑘=1

�̂�𝑘𝑄𝑘.

The authors proceed to prove several conditions on the asymptotic behavior of several

estimators as 𝑡→∞, including �̂�2, the second largest eigenvalue of ̂︀𝑄.

The authors of [9] consider the problem of bounding the mixing time of a dis-

crete time reversible Markov chain when the transition probabilities are unknown.

A method of approximating the transition probabilities using the relative frequen-

cies of observed state transitions from generated samples is introduced, which allows

for the construction of a approximate transition probability matrix ̂︀𝑃 . The second

largest eigenvalue magnitude is then estimated by solving for the eigenvalues of ̂︀𝑃 .

Subsequent steps are developed to calculate confidence intervals for the estimate.

Our work draws upon Gade’s 2007 thesis [6], which addresses the problem of

estimating the second largest eigenvalue magnitude of transition probability matrices

of reversible Markov chains (see Appendix A.1 for a detailed discussion of [6]). The

method given in [6] utilizes the Krylov subspace along with the autocovariance of the

Markov chain to calculate estimates, and requires solving a ill-conditioned problem.

The method presented in this thesis circumvents the step of solving a ill-conditioned

problem.

1.2 Organization

This thesis is organized as follows. Chapter 2 gives the background concepts on

reversible Markov chains and the Arnoldi iteration. Chapter 3 presents our Modified

Arnoldi iteration. Chapter 4 shows the results we’ve obtained on model problems.

Chapter 5 is the conclusion to this thesis.

11





Chapter 2

Background

The eigenvectors and eigenvalues of a 𝑁 ×𝑁 matrix 𝑃 are the vectors 𝑣 and scalars

𝜆 that satisfy

𝑃𝑣 = 𝜆𝑣.

If 𝑃 is the transition probability matrix of a reversible Markov chain, it holds several

properties that are pertinent to solving the eigenvalue problem. We present in this

chapter some properties of reversible Markov chains and numerical techniques used

in the study of eigenvalue problems.

2.1 Markov Chains

The Markov chains analyzed in this thesis have the property of being ergodic: irre-

ducible and aperiodic. We will limit our discussion to Markov chains with finite state

space. We will use 𝜒 to denote the state space, and 𝑁 to denote the size of the state

space. The 𝑁 ×𝑁 transition probability matrix 𝑃 contains the transition probabili-

ties from state 𝑖 to 𝑗, 𝑝𝑖𝑗, where 𝑖, 𝑗 ∈ 𝜒. The equilibrium distribution 𝜋 for an ergodic

Markov chain is known to be unique [3]. It is also the dominant left eigenvector of 𝑃

with strictly positive entries summing to one. The dominant eigenvalue is 1, and the

corresponding right eigenvector is 1:

𝜋𝑃 = 𝜋
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𝑃1 = 1.

2.1.1 Reversible Markov Chains

The definitions and theorems in this section are from [3]. A reversible Markov chain

is defined as follows.

Definition 2.1.1. A Markov chain with transition probability matrix 𝑃 is reversible

if its equilibrium distribution satisfies

𝜋𝑖𝑃 (𝑖, 𝑗) = 𝜋𝑗𝑃 (𝑗, 𝑖) (2.1)

for all 𝑖, 𝑗 in 𝜒, where 𝜋 is the equilibrium distribution and 𝑃 (𝑖, 𝑗) is the transition

probability from 𝑖 to 𝑗.

We next introduce the inner product space ℓ2 (𝜋), given in [3], which has properties

that are useful when studying the eigenvalues of 𝑃 . Let 𝜋 be a strictly positive

distribution. The inner product space ℓ2 (𝜋) is the vector space R𝑁 with the inner

product

⟨𝑥,𝑦⟩𝜋 =
∑︁
𝑖∈𝜒

𝑥𝑖𝑦𝑖𝜋𝑖, ∀𝑥,𝑦 ∈ ℓ2 (𝜋) (2.2)

and norm

‖𝑥‖𝜋 =
√︀
⟨𝑥,𝑥⟩𝜋 =

√︃∑︁
𝑖∈𝜒

𝑥2𝑖𝜋𝑖 <∞. (2.3)

Given the state of a Markov chain, it may be easier or advantageous to work with

some function of the state, rather than to work with the state itself. The observable

vector 𝑓 is the member of ℓ2 (𝜋) obtained by mapping each Markov state, 𝑖 ∈ 𝜒, to

R, 𝑓 : 𝜒→ R:

𝑓 =

⎡⎢⎢⎢⎢⎢⎢⎣
𝑓 (𝑖1)

𝑓 (𝑖2)
...

𝑓 (𝑖𝑁)

⎤⎥⎥⎥⎥⎥⎥⎦ . (2.4)

Let 𝑋𝑡 be a sample from a Markov chain at time 𝑡. Using the equilibrium distribution

14



as the initial distribution, the mean and variance of 𝑓 (𝑋𝑡) is

E𝜋 [𝑓 (𝑋𝑡)] = ⟨𝑓⟩𝜋 =
∑︁
𝑖∈𝜒

𝑓(𝑖)𝜋𝑖 (2.5)

var𝜋 (𝑓 (𝑋𝑡)) = ‖𝑓‖2𝜋 − ⟨𝑓⟩
2
𝜋. (2.6)

The following example illustrates the aforementioned calculations.

Example 2.1.1. Suppose there is a Markov chain describing the evolution of a epi-

demic on a two node network. Each node is either infected (1) or susceptible (0). The

state space of the Markov chain is:

𝑖0 =

⎡⎣0

0

⎤⎦ , 𝑖1 =

⎡⎣1

0

⎤⎦ , 𝑖2 =

⎡⎣0

1

⎤⎦ , 𝑖3 =

⎡⎣1

1

⎤⎦ .
If we select 𝑓 (𝑖) to be the number of infected nodes in state 𝑖, then 𝑓 is

𝑓 =

⎡⎢⎢⎢⎢⎢⎢⎣
𝑓 (𝑖0)

𝑓 (𝑖1)

𝑓 (𝑖2)

𝑓 (𝑖3)

⎤⎥⎥⎥⎥⎥⎥⎦ =

⎡⎢⎢⎢⎢⎢⎢⎣
0

1

1

2

⎤⎥⎥⎥⎥⎥⎥⎦ .

Suppose the equilibrium distribution is

𝜋 =
[︁
1
3

1
6

1
6

1
3

]︁
.

The mean of 𝑓 (𝑋𝑡) with respect to 𝜋 is

⟨𝑓⟩𝜋 =
∑︁
𝑖∈𝜒

𝑓 (𝑖) 𝜋𝑖 = 0× 1

3
+ 1× 1

6
+ 1× 1

6
+ 2× 1

3
= 1.

The norm of 𝑓 with respect to 𝜋 is

‖𝑓‖𝜋 =

√︃∑︁
𝑖∈𝜒

𝑓 (𝑖)2 𝜋𝑖 =

√︂
1

6
+

1

6
+ 4× 1

3
=

√︂
5

3
.
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The variance of 𝑓 (𝑋𝑡) with respect to 𝜋 is

‖𝑓‖2𝜋 − ⟨𝑓⟩
2
𝜋 =

5

3
− 1.

If the Markov chain has reached equilibrium by time 𝑡, then the probability of

observing 𝑋𝑡 = 𝑖,𝑋𝑡+𝑠 = 𝑗 is 𝜋𝑖𝑃 𝑠 (𝑖, 𝑗). We can then define the autocovariance of

𝑓 (𝑋𝑡) as

𝐶𝑓 (𝑠) = E𝜋 [𝑓 (𝑋𝑡) 𝑓 (𝑋𝑡+𝑠)]− E𝜋 [𝑓 (𝑋𝑡)]
2

=
∑︁
𝑖∈𝜒

∑︁
𝑗∈𝜒

𝑃 𝑠 (𝑖, 𝑗) 𝑓 (𝑖) 𝑓 (𝑗) 𝜋𝑖 −

(︃∑︁
𝑖∈𝜒

𝑓 (𝑖)𝜋𝑖

)︃2

= ⟨𝑓 , 𝑃 𝑠𝑓⟩𝜋 − ⟨𝑓⟩2𝜋.

(2.7)

Note that when starting from the equilibrium distribution, reversible Markov chains

are wide sense stationary - the mean is independent of time, and the autocovariance

depends not on two points in time, but the difference between them.

The following theorem from [3] will be utilized on multiple occasions throughout

the course of this thesis.

Theorem 2.1.1. A Markov chain with transition probability matrix 𝑃 is reversible

if and only if

⟨𝑥, 𝑃𝑦⟩𝜋 = ⟨𝑦, 𝑃𝑥⟩𝜋 (2.8)

for all 𝑥,𝑦 in ℓ2 (𝜋).

Definition 2.1.2. The transition probability matrix 𝑃 is self-adjoint in ℓ2 (𝜋) if

⟨𝑥, 𝑃𝑦⟩𝜋 = ⟨𝑦, 𝑃𝑥⟩𝜋 (2.9)

for all 𝑥,𝑦 in ℓ2 (𝜋).

The next theorem characterizes the eigenvalues and eigenvectors of reversible

Markov chains.
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Theorem 2.1.2. The transition matrix 𝑃 of a reversible Markov chain with equilib-

rium distribution 𝜋 satisfies the following:

1. 𝑃 has real eigenvalues.

2. The right eigenvectors of 𝑃 form a orthonormal basis of ℓ2 (𝜋).

3. 𝑃 is diagonalizable.

2.2 Rayleigh-Ritz and the Arnoldi Iteration

The Rayleigh-Ritz procedure is a method of obtaining a eigenvalue estimate using

vectors from a 𝑛 dimensional subspace. As we will see, the main advantage in seeking

the best eigenvalue approximations from a subspace instead of solving directly the

original 𝑁 ×𝑁 eigenvalue problem is in the dramatic simplification to a much more

manageable 𝑛 × 𝑛 eigenvalue problem, where 𝑛 ≪ 𝑁 . The following construction

of the Rayleigh-Ritz procedure is from [2]. We begin detailing the Rayleigh-Ritz

procedure by introducing the best approximation theorem.

Theorem 2.2.1 (The Best Approximation Theorem [12]). Let 𝑊 be a subspace of

R𝑁 , 𝑦 any vector of R𝑁 , and 𝑦 the orthogonal projection of 𝑦 onto 𝑊 . Then 𝑦 is

the closest point in 𝑊 to 𝑦, in the sense that

||𝑦 − 𝑦|| ≤ ||𝑦 − 𝑥|| (2.10)

for all 𝑥 in 𝑊 .

Let 𝑃 be the matrix whose eigenvalues we wish to approximate, and we do so by

finding 𝑣 ∈ 𝑊 , along with �̃� ∈ C that gives the closest approximation to

𝑃𝑣 ≈ �̃�𝑣 (2.11)

(𝑣 and �̃� are eigenvector and eigenvalue appoximations). From the Best Approxima-
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tion Theorem, �̃�𝑣 will be the orthogonal projection of 𝑃𝑣 onto 𝑊 . As a result,

𝑃𝑣 − �̃�𝑣 ⊥ 𝑊.

Equivalently,

𝑞𝑇 (𝑃𝑣 − �̃�𝑣) = 0 (2.12)

for all 𝑞 ∈ 𝑊 .

Let 𝑄 = [𝑞1, . . . , 𝑞𝑛] be a 𝑁×𝑛 matrix with columns forming a orthonormal basis

for 𝑊 (ideally, 𝑛≪ 𝑁). From Equation (2.12) we have

𝑄𝑇 (𝑃𝑣 − �̃�𝑣) = 0. (2.13)

Since 𝑣 ∈ 𝑊 , 𝑣 will be a linear combination of the columns of 𝑄, so 𝑣 = 𝑄𝑧 for some

𝑧 ∈ R𝑛. Inserting into Equation (2.13) gives

𝑄𝑇 (𝑃𝑄𝑧 − �̃�𝑄𝑧) = 0. (2.14)

Rearranging and making the substitution 𝐻𝑛 = 𝑄𝑇𝑃𝑄 gives

𝐻𝑛𝑧 = �̃�𝑧. (2.15)

Therefore the eigenvalues of the𝐻𝑛 are estimates of the eigenvalues of 𝑃 . The problem

of finding the eigenvalues of the 𝑁 × 𝑁 matrix 𝑃 has been reduced to finding the

eigenvalues of the 𝑛 × 𝑛 matrix 𝐻𝑛. The Rayleigh-Ritz method is summarized in

Algorithm (2.1).

Algorithm 2.1 Rayleigh-Ritz Procedure [2]
Input: Size 𝑁 ×𝑁 matrix 𝑃 and 𝑛 dimensional subspace 𝑊 .
1: Calculate a orthonormal basis for 𝑊 , and store the result as the columns of the
𝑁 × 𝑛 matrix 𝑄.

2: Calculate 𝐻𝑛 = 𝑄𝑇𝑃𝑄.
3: Find the eigenvalues of the 𝑛× 𝑛 matrix 𝐻𝑛.

18



2.2.1 The Arnoldi Iteration

The dimension 𝑛 Krylov subspace is defined as

𝐾𝑛 [𝑓 ] = span{𝑓 , 𝑃𝑓 , . . . , 𝑃 𝑛−1𝑓}

where 𝑓 is a trial vector. We will refer to the vectors 𝑓 , 𝑃𝑓 , . . . , 𝑃 𝑛−1𝑓 as the power

iterates. The Arnoldi iteration carries out the Rayleigh-Ritz procedure using𝐾𝑛 [𝑓 ] as

the choice for 𝑊 . Algorithm (2.2), from [18], gives the steps of the Arnoldi iteration.

The result of the Arnoldi iteration is the (𝑛+ 1)×𝑛 matrix 𝐻; truncating the last row

Algorithm 2.2 Arnoldi Iteration [18]
Input:

Matrix 𝑃
Trial vector 𝑓
Number of dimensions 𝑛

Output:
(𝑛+ 1)× 𝑛 matrix 𝐻

1: 𝐻 ← (𝑛+ 1)× 𝑛 zero matrix
2: 𝑞1 ← 1√

⟨𝑓 ,𝑓⟩
𝑓

3: for 𝑘 = 1, . . . , 𝑛 do
4: 𝑢← 𝑃𝑞𝑘

5: for 𝑗 = 1, . . . , 𝑘 do
6: ℎ𝑗,𝑘 ← ⟨𝑢, 𝑞𝑗⟩
7: 𝑢← 𝑢− ℎ𝑗𝑘𝑞𝑗

8: end for
9: ℎ𝑘+1,𝑘 ←

√︀
⟨𝑢,𝑢⟩

10: 𝑞𝑘+1 ← 𝑢/ℎ𝑘+1,𝑘

11: end for

gives 𝐻𝑛. Solving for the eigenvalues of the 𝑛×𝑛 matrix 𝐻𝑛 gives the approximations

to 𝑛 eigenvalues of 𝑃 . Typically, these approximate the 𝑛 eigenvalues of 𝑃 largest in

magnitude.

The Arnoldi iteration calls for a computation using a matrix of size 𝑁 ×𝑁 in line

4 (𝑂 (𝑁2) computations), and vectors of length 𝑁 in lines 2, 6, 7, 9, and 10 (𝑂 (𝑁)

computations for each line). Such computations become infeasible for sufficiently large

𝑁 . We propose a modification of the Arnoldi Iteration using properties of reversible

Markov chains to estimate the second largest eigenvalue of 𝑃 without computations
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on 𝑁 ×𝑁 matrices or length 𝑁 vectors.
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Chapter 3

Modified Arnoldi Iteration

Given a reversible Markov chain with a state space of size 𝑁 and equilibrium distribu-

tion 𝜋, we wish to find the second largest eigenvalue magnitude of the corresponding

𝑁 × 𝑁 transition probability matrix 𝑃 , as the second largest eigenvalue magnitude

is known to give a upper bound on the mixing time of the Markov chain [13]. The

Arnoldi iteration gives �̃�𝑖, the best approximation to the 𝑖th eigenvalue of 𝑃 using

the dimension 𝑛 Krylov subspace 𝐾𝑛 [𝑓 ]. However, the steps of the Arnoldi iteration

consists of computations with matrices and vectors of size 𝑁 , which may be infeasible

for sufficiently large 𝑁 . This chapter introduces modifications to the Arnoldi iteration

that are possible when the Markov chain is reversible. We will use 𝜆* and 𝑣* to refer

to the second largest eigenvalue magnitude and the corresponding right eigenvector

of 𝑃 .

3.1 Modified Arnoldi Iteration

The approximation of eigenvalues using the Arnoldi iteration is accomplished by

minimizing the Euclidean norm of the error:

min ||𝑃𝑣 − �̃�𝑣||. (3.1)
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To incorporate the properties of reversible Markov chains into our analysis, consider,

instead, minimizing the norm of the error with respect to 𝜋:

min ||𝑃𝑣 − �̃�𝑣||𝜋, (3.2)

which has the equivalent interpretation of minimizing the average squared error:

min E𝜋

(︁
𝑃𝑣 − �̃�𝑣

)︁2
.

The resulting Arnoldi iteration is shown in Algorithm (3.1). Algorithm (3.1) as

Algorithm 3.1 Arnoldi Iteration on ℓ2 (𝜋)

Input:
Matrix 𝑃
Trial vector 𝑓
Number of dimensions 𝑛

Output:
(𝑛+ 1)× 𝑛 matrix 𝐻

1: 𝐻 ← (𝑛+ 1)× 𝑛 zero matrix
2: 𝑞1 ← 1√

⟨𝑓 ,𝑓⟩𝜋
𝑓

3: for 𝑘 = 1, . . . , 𝑛 do
4: 𝑢← 𝑃𝑞𝑘

5: for 𝑗 = 1, . . . , 𝑘 do
6: ℎ𝑗,𝑘 ← ⟨𝑢, 𝑞𝑗⟩𝜋
7: 𝑢← 𝑢− ℎ𝑗𝑘𝑞𝑗

8: end for
9: ℎ𝑘+1,𝑘 ←

√︀
⟨𝑢,𝑢⟩𝜋

10: 𝑞𝑘+1 ← 𝑢/ℎ𝑘+1,𝑘

11: end for

written still requires 𝑂 (𝑁2) computations in line 4, and 𝑂 (𝑁) computations (in

addition to knowledge of 𝜋) in lines 2, 6, and 9. It was shown in [6] that inner

products with respect to 𝜋 between vectors in 𝐾𝑛 [𝑓 ] are equal to linear combinations

of the autocovariance of 𝑓 . With this observation in mind, we now construct a

method that carries out the Arnoldi iteration utilizing autocovariances, instead of

directly calculating inner products in ℓ2 (𝜋). Assuming E𝜋𝑓 = 0, the autocovariance
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of 𝑓 is

𝐶𝑓 (𝑠) = ⟨𝑓 , 𝑃 𝑠𝑓⟩𝜋 − ⟨𝑓⟩𝜋

= ⟨𝑓 , 𝑃 𝑠𝑓⟩𝜋.

The sample autocovariance is

̂︀𝐶𝑓 (𝑠) =
1

𝑇 − |𝑠|

𝑇−|𝑠|−1∑︁
𝑡=0

(︀
𝑓(𝑋𝑡)− 𝑓

)︀ (︀
𝑓(𝑋𝑡+𝑠)− 𝑓

)︀
, (3.3)

where 𝑓 is the sample mean. Let 𝑥 and 𝑦 be the following two vectors in the Krylov

subspace 𝐾𝑛 [𝑓 ]:

𝑥 = 𝜉1𝑓 + 𝜉2𝑃𝑓 + · · ·+ 𝜉𝑛𝑃
𝑛−1𝑓

𝑦 = 𝜑1𝑓 + 𝜑2𝑃𝑓 + · · ·+ 𝜑𝑛𝑃
𝑛−1𝑓 .

The inner product of 𝑥 and 𝑦 in ℓ2 (𝜋) is

⟨𝑥,𝑦⟩𝜋 =
𝑛∑︁

𝑖=1

𝑛∑︁
𝑗=1

𝜉𝑖𝜑𝑗⟨𝑃 𝑖−1𝑓 , 𝑃 𝑗−1𝑓⟩𝜋

=
∑︁
𝑖,𝑗

𝜉𝑖𝜑𝑗⟨𝑓 , 𝑃 𝑖+𝑗−2𝑓⟩𝜋

=
∑︁
𝑖,𝑗

𝜉𝑖𝜑𝑗𝐶𝑓 (𝑖+ 𝑗 − 2) .

(3.4)

If we have good estimates for the autocovariance of 𝑓 , we can estimate the inner

products using Equation (3.4), thereby circumventing computations over 𝑁 numbers.

To illustrate, consider the Arnoldi iteration for 𝑛 = 1:

∙ 𝑞1 ← 1√
⟨𝑓 ,𝑓⟩𝜋

𝑓 = 1√
𝐶𝑓 (0)

𝑓

∙ 𝑢← 𝑃𝑞1 = 1√
𝐶𝑓 (0)

𝑃𝑓

∙ ℎ1,1 ← ⟨𝑢, 𝑞1⟩𝜋 = ⟨ 1√
𝐶𝑓 (0)

𝑃𝑓 , 1√
𝐶𝑓 (0)

𝑓⟩𝜋

=
𝐶𝑓 (1)

𝐶𝑓 (0)
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∙ 𝑢← 𝑢− ℎ11𝑞1 = 1√
𝐶𝑓 (0)

𝑃𝑓 − ℎ11 1√
𝐶𝑓 (0)

𝑓

∙ ℎ2,1 ←
√︀
⟨𝑢,𝑢⟩𝜋 =

[︁
𝐶𝑓 (2)

𝐶𝑓 (0)
− 2ℎ211 + ℎ211

]︁1/2
∙ 𝑞2 ← 𝑢/ℎ2,1 = 1

ℎ2,1

1√
𝐶𝑓 (0)

𝑃𝑓

While it is no longer necessary to multiply vectors in R𝑁 when utilizing autocovari-

ance, converting the steps of Algorithm (3.1) to equivalent calculations utilizing au-

tocovariance can become cumbersome. In the Modified Arnoldi Iteration we propose,

the aforementioned calculations are systematized.

Let 𝑋 be the (𝑛+ 1)×(𝑛+ 1) matrix with column 𝑖 containing the power iterates

coefficients for 𝑞𝑖. Let 𝑦 be the (𝑛+ 1)×1 column vector containing the power iterates

coefficients for 𝑢. Let �̂� be the sample autocovariance matrix given by

̂︀𝐵 =

⎡⎢⎢⎢⎢⎢⎢⎣
̂︀𝐶𝑓 (0) ̂︀𝐶𝑓 (1) · · · ̂︀𝐶𝑓 (𝑛)̂︀𝐶𝑓 (1) ̂︀𝐶𝑓 (2) · · · ̂︀𝐶𝑓 (𝑛+ 1)

...
... · · · ...̂︀𝐶𝑓 (𝑛) ̂︀𝐶𝑓 (𝑛+ 1) · · · ̂︀𝐶𝑓 (2𝑛)

⎤⎥⎥⎥⎥⎥⎥⎦ . (3.5)

We will use the notation 𝑋 (:, 𝑖) to denote the 𝑖th column of 𝑋. Algorithm (3.2) is

the Modified Arnoldi iteration. Upon constructing 𝐻 and removing the last row to

obtain 𝐻𝑛, solving for the 𝑛 eigenvalues of 𝐻𝑛 gives 𝑛 values from C, one of which

we will select as our approximation to 𝜆*. To select the appropriate candidate, we:

∙ Discard the eigenvalues having magnitude greater than 1.

∙ Discard ill-conditioned eigenvalues [6]. The condition number of a eigenvalue is

a measure of how sensitive the eigenvalue is to perturbations in the matrix [16],

and is equal to

Cond (𝜆) =
‖𝑢𝐻𝑛‖‖𝑣𝐻𝑛‖
|⟨𝑢𝐻𝑛 ,𝑣𝐻𝑛⟩|

,

where 𝑢𝐻𝑛 and 𝑣𝐻𝑛 are the left and right eigenvectors of 𝐻𝑛 corresponding to

𝜆. A perfectly conditioned eigenvalue has a condition number of 1, and the
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Algorithm 3.2 Modified Arnoldi Iteration
Input:

Number of dimensions 𝑛
Sample autocovariance matrix ̂︀𝐵

Output:
(𝑛+ 1)× 𝑛 matrix 𝐻

1: 𝐻 ← (𝑛+ 1)× 𝑛 zero matrix
2: 𝑋 ← (𝑛+ 1)× (𝑛+ 1) zero matrix
3: 𝑋 (1, 1)← 1√ ̂︀𝐶𝑓 (0)

4: for 𝑘 = 1, . . . , 𝑛 do
5: 𝑦 ← shift (𝑋 (:, 𝑘))
6: for 𝑗 = 1, . . . , 𝑘 do
7: ℎ𝑗,𝑘 ← ⟨𝑦, ̂︀𝐵𝑋 (:, 𝑗)⟩
8: 𝑦 ← 𝑦 − ℎ𝑗,𝑘𝑋 (:, 𝑗)
9: end for

10: ℎ𝑘+1,𝑘 ←
√︁
⟨𝑦, ̂︀𝐵𝑦⟩

11: 𝑋 (:, 𝑘 + 1)← 𝑦/ℎ𝑘+1,𝑘

12: end for

condition number goes to infinity as 𝑢𝐻𝑛 and 𝑣𝐻𝑛 become orthogonal. We will

discard all eigenvalues having a condition number greater than 2.

∙ Select the largest magnitude from the remaining candidates as the approxi-

mation to 𝜆*. This selection rule is justified by invoking Rayleigh’s theorem

[3]:

Theorem 3.1.1 (Rayleigh’s Theorem). If 𝑃 is the transition matrix for a re-

versible Markov chain with equilibrium distribution 𝜋, then

𝜆* = max
𝑓∈ℓ2(𝜋)

⃒⃒⃒⃒
⟨𝑓 , 𝑃𝑓⟩𝜋
⟨𝑓 ,𝑓⟩𝜋

⃒⃒⃒⃒
s.t. E𝜋𝑓 = 0.

(3.6)

The eigenvalue estimates can be interpreted as the following estimates:

�̃� ≈ ⟨𝑣, 𝑃𝑣⟩𝜋
⟨𝑣,𝑣⟩𝜋

In addition, assuming 𝑓 has zero mean has the effect of making the power
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iterates orthogonal to the dominant right eigenvector, making 𝐾𝑛 [𝑓 ] orthogonal

to 1:

⟨𝑃 𝑘𝑓 ,1⟩𝜋 = ⟨𝑓 , 𝑃 𝑘1⟩𝜋

= ⟨𝑓 ,1⟩𝜋

= 0.

Using the selection rules above, it is possible for all candidates to be discarded. In such

cases, we output no estimate and instead use a different set of samples to estimate

𝜆*. The use of multiple sets of sample runs will be discussed in Section 3.1.2.

Although we have assumed 𝑓 to have zero mean, in practice, it is not necessary

to subtract the mean from 𝑓 . The equation for autocovariance is

𝐶𝑓 (𝑠) = ⟨𝑓 , 𝑃 𝑠𝑓⟩𝜋 − ⟨𝑓⟩2𝜋.

Evaluating the autocovariance for 𝑓 and 𝑓 ′ = 𝑓 − E𝜋𝑓 will show 𝐶𝑓 (𝑠) = 𝐶𝑓 ′ (𝑠),

and ̂︀𝐵 will remain unchanged.

How should 𝑛, the number of Krylov subspace dimensions, be chosen? If the

actual autocovariance values are known, there is no harm in choosing a large value

for 𝑛 — the only price to be paid is in the additional computations needed to form

𝐻𝑛. However when sample autocovariance values are used, incrementing 𝑛 comes

with the risk of introducing errors. Each sample autocovariance estimate can be seen

as the sum of the actual autocovariance and a error term:

̂︀𝐶𝑓 (𝑠) = 𝐶𝑓 (𝑠) + 𝜀𝑠

Recall that the inner product of two vectors in 𝐾𝑛 [𝑓 ] is a linear combination of 2𝑛−1

autocovariance values:

⟨𝑥,𝑦⟩ =
𝑛∑︁

𝑖=1,𝑗=1

𝜉𝑖𝜑𝑗𝐶𝑓 (𝑖+ 𝑗 − 2)
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As 𝑛 increases, the estimates for inner products collect more error terms, affecting

the estimates for ℎ𝑗,𝑘. It is therefore preferable to keep 𝑛 as small as possible when

working with sample autocovariances. We introduce next the lag parameter 𝑟, which

will allow us to generate eigenvalue estimates using modest value for 𝑛.

3.1.1 Lags

Subsampling is a technique used in Monte Carlo Markov Chain (MCMC) calculations

to reduce the autocorrelation between samples [15], where autocorrelation is defined

as

𝜌 (𝑠) = 𝐶𝑓 (𝑠) /𝐶𝑓 (0) .

The use of subsampling in the estimation of eigenvalues of transition probability

matrices is discussed in [6], and we adapt the technique here. Instead of sampling the

Markov chain at every step, consider instead sampling the Markov chain at every 𝑟th

step, where 𝑟 ≥ 1. Equivalently, we sample from the transition probability matrix 𝑃 𝑟

instead of 𝑃 . In a typical setting, the autocorrelation decreases exponentially to zero.

Sampling the Markov chain at every 𝑟 steps results in a autocorrelation function that

decays faster — Figure 3-1 shows the plots of the autocorrelation of a test Markov

chain using lags 𝑟 = 1, 2, and 20. The use of the lag parameter therefore can be seen

as having the effect of “squeezing” the autocorrelation to the left.

Having introduced the lag parameter 𝑟, we now give a interpretation of how 𝑟

works in conjunction with the number of Krylov subspace dimensions 𝑛 in the esti-

mation of 𝜆*. Let �̃� be the best approximation to 𝜆* using vectors in 𝐾𝑛 [𝑓 ], and 𝑣

be the corresponding eigenvector estimate. Then �̃� can be written as

�̃� =
⟨𝑣, 𝑃𝑣⟩𝜋
⟨𝑣,𝑣⟩𝜋

=
𝑏0𝐶𝑓 (1) + 𝑏1𝐶𝑓 (2) + · · ·+ 𝑏2𝑛−2𝐶𝑓 (2𝑛− 1)

𝑏0𝐶𝑓 (0) + 𝑏1𝐶𝑓 (1) + · · ·+ 𝑏2𝑛−2𝐶𝑓 (2𝑛− 2)

=
𝑏0𝜌 (1) + 𝑏1𝜌 (2) + · · ·+ 𝑏2𝑛−2𝜌 (2𝑛− 1)

𝑏0𝜌 (0) + 𝑏1𝜌 (1) + · · ·+ 𝑏2𝑛−2𝜌 (2𝑛− 2)
.

(3.7)

From Equation (3.7), we see that the choice for 𝑛 can be interpreted as the choice
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(a) 𝑟 = 1

(b) 𝑟 = 2

(c) 𝑟 = 20

Figure 3-1: Plots of 𝜌 (𝑠) for different values of 𝑠 of a test Markov chain using lags
𝑟 = 1, 2, and 20.
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for the number of autocorrelation terms used to approximate 𝜆*. Let us call the set

[0, 1, . . . , 2𝑛− 1] the evaluation region — if 𝑠 is inside the evaluation region, then 𝜌 (𝑠)

is used in the approximation in Equation (3.7). For a fixed 𝑛, increasing 𝑟 has the

effect of “squeezing” the autocorrelation into the evaluation region. We demonstrate

with a example.

Let 𝑛 = 7. The evaluation region is [0, 1, . . . , 13]. If 𝑓 has the autocorrelation in

Figure 3-1(a) or 3-1(b), which corresponds to using lags 𝑟 = 1 or 𝑟 = 2, then 𝜌 (𝑠)

has nonzero values for 𝑠 > 13, so the evaluation region does not capture the entire

nonzero content of 𝜌 (𝑠). As a result, we can expect our approximation to change if we

increment 𝑛. However, if 𝑓 has the autocorrelation in Figure 3-1(c), which corresponds

to using lag 𝑟 = 20, then 𝜌 (𝑠) ≈ 0 for 𝑠 > 10, so the evaluation region captures the

entire nonzero content of 𝜌 (𝑠), and everything outside of the evaluation region is

negligible. We can expect our approximation to change negligibly by increasing 𝑛,

as doing so would amount to adding negligibly small terms to the numerator and

denominator of Equation (3.7). Increasing the 𝑟 parameter therefore has the effect of

“squeezing” the nonzero content of 𝜌 (𝑠) into the evaluation region.

What happens as 𝑟 →∞? As 𝑠→∞, 𝐶𝑓 (𝑠)→ 0. However, the same is not the

case for ̂︀𝐶𝑓 (𝑠), which takes on random values. The difference in magnitude between

𝐶𝑓 (𝑠) and ̂︀𝐶𝑓 (𝑠) as 𝑠 → ∞ can be significant [6][17], so increasing 𝑟 to too large a

value comes with the risk of introducing errors in the calculation of 𝐻. Estimating

𝜆* therefore includes the task of finding a good choice for 𝑛 and 𝑟. In Chapter 4, we

will experiment using lags between 𝑟 = 1 and 𝑟 = 50.

The sample covariance matrix resulting from the use of lag 𝑟 is

̂︀𝐵𝑟 =

⎡⎢⎢⎢⎢⎢⎢⎣
̂︀𝐶𝑓 (0) ̂︀𝐶𝑓 (𝑟) · · · ̂︀𝐶𝑓 (𝑛𝑟)̂︀𝐶𝑓 (𝑟) ̂︀𝐶𝑓 (2𝑟) · · · ̂︀𝐶𝑓 ((𝑛+ 1) 𝑟)

...
... · · · ...̂︀𝐶𝑓 (𝑛𝑟) ̂︀𝐶𝑓 ((𝑛+ 1) 𝑟) · · · ̂︀𝐶𝑓 (2𝑛𝑟)

⎤⎥⎥⎥⎥⎥⎥⎦ . (3.8)

Let 𝛼 be the Modified Arnoldi estimate obtained using ̂︀𝐵𝑟. We will use �̂�* to denote
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our approximation to 𝜆*, which is

�̂�* = 𝛼1/𝑟.

Figure 3-2 illustrates the Modified Arnoldi calculations when evaluating a Markov

chain with a slowly decaying autocorrelation (actual autocovariance values were used

- not sample estimates). The choice of 𝑟 = 20 produces accurate estimates with

𝑛 = 6, while the choice of 𝑟 = 1 will require a larger value for 𝑛 to achieve accurate

estimates. Algorithm 3.3 gives the steps to calculating �̂�*.

Algorithm 3.3 �̂�* Calculation Procedure
Input:

Samples 𝑋0, . . . , 𝑋𝑇−1

Choice for 𝑓 , 𝑛, and 𝑟
Output:

�̂�*: estimate to 𝜆*
1: Form the sample covariance matrix in Equation (3.8) using the estimator

̂︀𝐶𝑓 (𝑠) =
1

𝑇 − |𝑠|

𝑇−|𝑠|+1∑︁
𝑡=0

(︀
𝑓 (𝑋𝑡)− 𝑓

)︀ (︀
𝑓 (𝑋𝑡+𝑠)− 𝑓

)︀
2: Run Algorithm 3.2 to generate the (𝑛+ 1)× 𝑛 matrix 𝐻
3: Truncate the last row of 𝐻 to obtain 𝐻𝑛

4: Solve for the eigenvalues of 𝐻𝑛 - these are candidate estimates.
5: Discard the candidates that have magnitude greater than 1.
6: Discard the candidates that have a condition number greater than 2.
7: 𝛼← Maximum magnitude over the remaining candidates.
8: �̂�* ← 𝛼1/𝑟

3.1.2 Batch Estimates

Since different sets of samples will yield different estimates for 𝜆*, an estimate aggre-

gated over multiple batches of samples is preferable to one generated from a single

batch. Figure 3-3 illustrates a hypothetical situation where 10 batches of samples

were used to estimate 𝜆*. Six of the estimates come close to the actual answer, two

batches resulted in overestimations, and two batches failed to produce a result. The
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(a) 𝑟 = 1

(b) 𝑟 = 20

Figure 3-2: Modified Arnoldi estimates using 𝑟 = 1 and 𝑟 = 20. Actual autocovariance
values were used.
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Figure 3-3: Estimates of 𝜆* generated from 10 sample runs

overestimates are the result of the errors in the sample autocovariance — we will refer

to the overestimates as “noisy” eigenvalues. Since the noisy eigenvalues will skew the

sample mean, the median may be closer to the actual eigenvalue. In Chapter 4, we

will report both the sample mean and median.
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Chapter 4

Results

This chapter gives the results produced by Modified Arnoldi on the following reversible

Markov Chains:

∙ Ehrenfest Urn Model

∙ Scaled SIS Process

4.1 Ehrenfest Urn Model

For the continuous time Ehrenfest urn process,the eigenvalues and right eigenvectors

of the transition probability matrix are given in [10]. We will use the discrete time

embedded Markov chain given in [6]. The embedded Markov chain is constructed as

follows: Start with 𝑀 balls split between urn 1 and urn 2. At each time step, select

a ball from one of the urns and place it in urn 1 with probability 𝑝, and in urn 2 with

probability 1− 𝑝. Let 𝑖 be the number of balls in urn 1. The transition probabilities

for the Ehrenfest urn model are

𝑃 (𝑖, 𝑗) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

𝑀−𝑖
𝑀
𝑝 if 𝑗 = 𝑖+ 1

𝑖
𝑀

(1− 𝑝) if 𝑗 = 𝑖− 1

1− 𝑀−𝑖
𝑀
𝑝− 𝑖

𝑀
(1− 𝑝) if 𝑗 = 𝑖

0 otherwise.
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The second largest eigenvalue magnitude is 𝜆* = 1− 1
𝑀

.

4.1.1 Results

The following procedure was used to estimate 𝜆* for 𝑀 = 70, 𝑝 = 0.5:

∙ Generate 100 batches of 𝑇 = 107 samples𝑋0, 𝑋1, . . . , 𝑋𝑇−1, where𝑋0 is recorded

after a burn in period of 50,000 samples following a random starting position.

∙ Apply the observable 𝑓 (𝑋𝑡) = 𝑖, the number of balls in urn 1 for state 𝑋𝑡.

∙ Execute Algorithm 3.3 using 𝑛 = 5 and varying 𝑟 from 1 to 50. For each value

of 𝑟, calculate the average and median estimates.

Figure 4-1 shows the results. Figure 4-1(a) is generated using the calculation 𝜆*𝑏 ±√︁ ̂︁var �̂�*
𝐿

, where 𝜆*𝑏 is the average estimate of 𝜆*, and 𝐿 is the sample size. The results

show that the average estimate is skewed by “noisy” eigenvalues, but the median is

more robust to the overestimates and closer to the actual value.

4.2 Scaled SIS process

The scaled SIS process describes the spread of a virus on a 𝑀 node network char-

acterized by the adjacency matrix 𝐴. The continuous time Markov chain is given in

[19]. We will use the embedded discrete time Markov chain given in Appendix A.2.

The parameters 𝜁, 𝛾 describe the rates at which a susceptible node becomes infected,

and the parameter 𝜇 describes the rate at which a infected node becomes healed. The

state of the network is given by the length 𝑀 column vector 𝑥, where 𝑥𝑘 = 1 if node

𝑘 is infected, and 𝑥𝑘 = 0 if node 𝑘 is susceptible. The size of the state space is 2𝑀 .

At each time increment, either a single node changes its state or no change occurs

in the network. Using 𝑥 to denote the network state before a time step, and 𝑥′ to

denote the network state after the time step, the state transitions are illustrated as

follows:
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(a) Average

(b) Median

Figure 4-1: Modified Arnoldi estimates for the Ehrenfest Urn Model.
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∙ Susceptible node 𝑘 becomes infected:

𝑥 =
[︁
𝑥1, 𝑥2, . . . , 𝑥𝑘 = 0, . . . , 𝑥𝑀

]︁𝑇
𝑥′ =

[︁
𝑥1, 𝑥2, . . . , 𝑥𝑘 = 1, . . . , 𝑥𝑀

]︁𝑇

∙ Infected node 𝑘 becomes healed:

𝑥 =
[︁
𝑥1, 𝑥2, . . . , 𝑥𝑘 = 1, . . . , 𝑥𝑀

]︁𝑇
𝑥′ =

[︁
𝑥1, 𝑥2, . . . , 𝑥𝑘 = 0, . . . , 𝑥𝑀

]︁𝑇

∙ No change in the network:

𝑥 = 𝑥′

Let 𝑑𝑘 be the number of infected neighbors to node 𝑘, which can be calculated by

multiplying the 𝑘th row of 𝐴 to 𝑥:

𝑑𝑘 = 𝐴 (𝑘, :)𝑥

The transition probabilities of the Markov chain are

𝑃 (𝑥,𝑥′) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1
𝛼
𝜁𝛾𝑑𝑘 if susceptible node 𝑘 turns infected

1
𝛼
𝜇 if infected node 𝑘 becomes healed

1−

[︃ ∑︀
infected nodes

1
𝛼
𝜇+

∑︀
susceptible nodes

1
𝛼
𝜁𝛾𝑑𝑘

]︃
if 𝑥 = 𝑥′

0 otherwise.

where 𝛼 is the normalizing constant given by

𝛼 =

⎧⎪⎨⎪⎩𝑀 (𝜁 + 𝜇) if 𝛾 ≤ 1

𝜁
(︀
1, 𝛾𝐴1

)︀
+𝑀𝜇 if 𝛾 > 1.
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4.2.1 Results

We will investigate the Scaled SIS process on structured graphs. The observables we

will use are:

∙ Number of Infected Nodes. This number can be calculated by evaluating

𝑓 (𝑥) = ⟨1,𝑥⟩.

∙ Number of Infected Edges. An infected edge is a edge connecting two

infected nodes. The number of infected edges can be calculated by evaluating

𝑓 (𝑥) = 1
2
⟨𝑥, 𝐴𝑥⟩.

4.2.2 Structured Graphs - Complete, Ring, and Star Graphs

(a) Complete (b) Ring (c) Star

Figure 4-2: 6 node Complete, Ring, and Star graphs

This section is the results of our experiments using Complete, Ring, and Star

graphs comprised of 8 or 14 nodes, and Scaled SIS parameters 𝜁 = 2, 𝛾 = 2, 𝜇 = 10.

The following procedure was used to estimate 𝜆* for each graph:

1. Generate 100 batches of 𝑇 = 107 samples𝑋0, 𝑋1, . . . , 𝑋𝑇−1, where𝑋0 is recorded

after a burn in period of 50,000 samples following a random starting position.

2. Apply the observable 𝑓 (𝑋𝑡).

3. Execute Algorithm 3.3 using 𝑛 = 5 and varying 𝑟 from 1 to 50. For each value

of 𝑟, calculate the average and median estimates.
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Complete graph, 8 nodes

The size of the state space for the Scaled SIS process on 8 node graphs is 28. Figure 4-

3 shows the Modified Arnoldi iteration estimates using 𝑓 = number of infected nodes.

To illustrate the effect of using different observables, Figure 4-4 gives the results using

𝑓 = number of infected edges, and Figure 4-5 gives the results using 𝑓 = 𝑣*, the right

eigenvector corresponding to 𝜆*. The plots show 𝑣* as the observable giving the best

estimates.

How should one choose 𝑓? Let 𝑣*,𝑣1, . . . ,𝑣𝑁 be the right eigenvectors of 𝑃 . It is

noted in [6] that optimal observables have the form

𝑓 = 𝑎1𝑣1 + 𝑎*𝑣* + 𝑎3𝑣3 + · · ·+ 𝑎𝑚𝑣𝑚, (4.1)

where 𝑚 ≪ 𝑁 , and 𝑎* has the maximum magnitude over 𝑎*, 𝑎3, 𝑎4, . . . , 𝑎𝑚. We

were unable to find optimal observables for the Scaled SIS process — finding optimal

observables for use with Modified Arnoldi is left as a topic for future research.

Ring and Star graphs, 8 nodes

Figures 4-6 and 4-7 gives the results for the Scaled SIS process on the 8 node ring

and star graphs, using the observable 𝑓 = number of infected nodes. The average

estimates are skewed by “noisy” eigenvalues, leading the median to be closer to the

actual value.

Ring and Star graphs, 14 nodes

We now turn our attention to Markov chains with larger state spaces. The size of the

state space for the Scaled SIS process on 14 node graphs is 214. Figures 4-8 and 4-9

gives the results for the Scaled SIS process on 14 node ring and star graphs, using

the observable 𝑓 = number of infected nodes. For both Markov chains, the median is

close to the actual value, while the average estimates for the 14 node ring are erratic

due to skewing by “noisy” eigenvalues.
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(a) Average

(b) Median

Figure 4-3: Scaled SIS on 8 node Complete graph. Results using 𝑓 (𝑥) = ⟨1,𝑥⟩
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(a) Average

(b) Median

Figure 4-4: Scaled SIS on 8 node Complete graph. Results using 𝑓 (𝑥) = 1
2
⟨𝑥, 𝐴𝑥⟩
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(a) Average

(b) Median

Figure 4-5: Scaled SIS on 8 node Complete graph. Results using 𝑓 = 𝑣*
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(a) Average

(b) Median

Figure 4-6: Scaled SIS on 8 node Ring. Results using 𝑓 (𝑥) = ⟨1,𝑥⟩
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(a) Average

(b) Median

Figure 4-7: Scaled SIS on 8 node Star. Results using 𝑓 (𝑥) = ⟨1,𝑥⟩
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(a) Average

(b) Median

Figure 4-8: Scaled SIS on 14 node Ring. Results using 𝑓 (𝑥) = ⟨1,𝑥⟩
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(a) Average

(b) Median

Figure 4-9: Scaled SIS on 14 node Star. Results using 𝑓 (𝑥) = ⟨1,𝑥⟩
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Chapter 5

Conclusion

We demonstrated the modification of the Arnoldi iteration for the purpose of es-

timating the second largest eigenvalue magnitude of reversible Markov chains. To

conclude this thesis, we outline additional topics that may strengthen the utility of

the Modified Arnoldi iteration.

∙ Robust Estimates. The results show that errors in the sample autocorrelation

may lead to overestimates of 𝜆*. As a result, the sample median was closer to

the true value than the average in most instances. We would like to investigate

methods to detect and remove the “noisy” eigenvalues that arise as a result of

poor sample autocorrelation estimates.

∙ Incorporating estimates of the integrated autocorrelation time. For

large 𝑠, the following upper bound on 𝐶𝑓 (𝑠) is given in [17]:

𝐶𝑓 (𝑠) ≤ 𝜅 exp

(︂
− 𝑠

𝜏𝑒𝑥𝑝

)︂

where 𝜅 is some constant and 𝜏𝑒𝑥𝑝 is the exponential autocorrelation time:

𝜏𝑒𝑥𝑝 =
1

ln𝜆*
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The integrated autocorrelation time is given as

𝜏𝑖𝑛𝑡 =
∞∑︁
𝑠=0

𝐶𝑓 (𝑠)

𝐶𝑓 (0)
.

For 𝜏𝑒𝑥𝑝 ≫ 1, 𝜏𝑒𝑥𝑝 can be approximated by

𝜏𝑒𝑥𝑝 ≈
1

2
𝜏𝑖𝑛𝑡

There are various methods of estimating 𝜏𝑖𝑛𝑡 - a good estimate can be used

to inform our choice for 𝑛 and 𝑟. For example, the following value for 𝑟 is

recommended in [6]:

𝑟 =

⌊︂
4𝜏𝑖𝑛𝑡

2𝑛− 1

⌋︂
(5.1)

The integrated autocorrelation time may also lead to insights on how lengths

of sample runs are related to estimation errors.

∙ Which regions of 𝜒 produce good estimates? Some batches produced bet-

ter estimates than others. It is therefore worth investigating whether sampling

from certain portions of the state space yield better eigenvalue estimates than

others.
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Appendix A

Background Information

A.1 The Krylov Subspace Pencil

We detail here the Krylov Subspace Pencil (KSP) approximation given by [6]. Let 𝑃

be the 𝑁 ×𝑁 transition matrix of a reversible Markov chain. Let 𝑓 be a observable

in ℓ2 (𝜋) with zero mean, and let 𝑣𝑖 be the right eigenvectors of 𝑃 . Suppose 𝑓

has insignificant components along all but a few of the right eigenvectors, with the

component largest in magnitude in the direction of 𝑣2, the eigenvector corresponding

to 𝜆*.

𝑓 = 𝜓1𝑣1 + 𝜓2𝑣2 + · · ·+ 𝜓𝑁𝑣𝑁

≈ 𝜓2𝑣2 + · · ·𝜓𝑚𝑣𝑚,

where 𝑚 ≪ 𝑁 . In such cases, using the Krylov Subspace allows us to estimate 𝜆*

using the sample autocovariance of 𝑓 . The dimension 𝑛 Krylov subspace generated

by 𝑓 is defined as

𝐾𝑛 [𝑓 ] = span{𝑓 , 𝑃𝑓 , 𝑃 2𝑓 , . . . , 𝑃 𝑛−1𝑓}

Let 𝑢 be any vector in 𝐾𝑛 [𝑓 ]. Then for some 𝜉1, . . . , 𝜉𝑛 ∈ R,

𝑢 =
𝑛∑︁

𝑗=1

𝜉𝑗𝑃
𝑗−1𝑓 . (A.1)
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The variational quotient1 with 𝑢 is defined as

⟨𝑢, 𝑃𝑢⟩𝜋
⟨𝑢,𝑢⟩𝜋

(A.2)

Using Equation (A.1) allows the variational quotient to be expanded to

⟨𝑢, 𝑃𝑢⟩𝜋
⟨𝑢,𝑢⟩𝜋

=

∑︀
𝑖,𝑗

𝜉𝑖𝜉𝑗⟨𝑃 𝑖−1𝑓 , 𝑃 𝑗𝑓⟩𝜋∑︀
𝑖,𝑗

𝜉𝑖𝜉𝑗⟨𝑃 𝑖−1𝑓 , 𝑃 𝑗−1𝑓⟩𝜋
. (A.3)

Let 𝐴 and 𝐵 be the following 𝑛× 𝑛 autocovariance matrices:

𝐴 =

⎡⎢⎢⎢⎢⎢⎢⎣
𝐶𝑓 (1) 𝐶𝑓 (2) . . . 𝐶𝑓 (𝑛)

𝐶𝑓 (2) 𝐶𝑓 (3) . . . 𝐶𝑓 (𝑛+ 1)
...

... . . .
...

𝐶𝑓 (𝑛) 𝐶𝑓 (𝑛+ 1) . . . 𝐶𝑓 (2𝑛− 1)

⎤⎥⎥⎥⎥⎥⎥⎦

𝐵 =

⎡⎢⎢⎢⎢⎢⎢⎣
𝐶𝑓 (0) 𝐶𝑓 (1) . . . 𝐶𝑓 (𝑛− 1)

𝐶𝑓 (1) 𝐶𝑓 (2) . . . 𝐶𝑓 (𝑛)
...

... . . .
...

𝐶𝑓 (𝑛− 1) 𝐶𝑓 (𝑛) . . . 𝐶𝑓 (2𝑛− 2)

⎤⎥⎥⎥⎥⎥⎥⎦ .
(A.4)

Equivalently,

𝐴 (𝑖, 𝑗) = 𝐶𝑓 (𝑖+ 𝑗 − 1)

𝐵 (𝑖, 𝑗) = 𝐶𝑓 (𝑖+ 𝑗 − 2) .

The following result is from Gade 2007.

Theorem A.1.1. The best approximation to 𝜆* using variational quotients formed by

vectors in 𝐾𝑛 [𝑓 ] is the largest magnitude over the generalized eigenvalues satisfying

1This quantity is known as the Rayleigh quotient for the case where 𝑃 is Hermitian and
Euclidean inner products are used.
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the generalized eigenvalue problem

𝐴𝜉 = 𝜆𝐵𝜉. (A.5)

Proof. Consider first the numerator of Equation (A.3). Since 𝑃 is self adjoint with

respect to 𝜋,

⟨𝑢, 𝑃𝑢⟩𝜋 =
∑︁
𝑖,𝑗

𝜉𝑖𝜉𝑗⟨𝑃 𝑖−1𝑓 , 𝑃 𝑗𝑓⟩𝜋

=
∑︁
𝑖,𝑗

𝜉𝑖𝜉𝑗⟨𝑓 , 𝑃 𝑖+𝑗−1𝑓⟩𝜋

=
∑︁
𝑖,𝑗

𝜉𝑖𝜉𝑗𝐶𝑓 (𝑖+ 𝑗 − 1) .

Similarly, the denominator can be written as

⟨𝑢,𝑢⟩𝜋 =
∑︁
𝑖,𝑗

𝜉𝑖𝜉𝑗⟨𝑃 𝑖−1𝑓 , 𝑃 𝑗−1𝑓⟩𝜋

=
∑︁
𝑖,𝑗

𝜉𝑖𝜉𝑗⟨𝑓 , 𝑃 𝑖+𝑗−2𝑓⟩𝜋

=
∑︁
𝑖,𝑗

𝜉𝑖𝜉𝑗𝐶𝑓 (𝑖+ 𝑗 − 2) .

Then the variational quotient becomes

⟨𝑢, 𝑃𝑢⟩𝜋
⟨𝑢,𝑢⟩𝜋

=
⟨𝜉, 𝐴𝜉⟩
⟨𝜉, 𝐵𝜉⟩

. (A.6)

From Rayleigh’s theorem, the largest generalized eigenvalue satisfying Equation (A.5)

is also the largest variational quotient in 𝐾𝑛 [𝑓 ] and the best estimate to 𝜆* using

vectors in 𝐾𝑛 [𝑓 ].

The problem given in Equation (A.5) is highly ill conditioned [6], and requires the

Generalized Upper Triangle algorithm [4] to solve.

The Modified Arnoldi iteration differs from the KSP in that the Modified Arnoldi
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iteration approximates the condition

𝑃𝑣 ≈ �̃�𝑣, (A.7)

while the KSP method maximizes the expression

max
𝑢∈𝐾𝑛[𝑓 ]

⃒⃒⃒⃒
⟨𝑢, 𝑃𝑢⟩𝜋
⟨𝑢,𝑢⟩𝜋

⃒⃒⃒⃒
. (A.8)

The Modified Arnoldi iteration circumvents the step of solving a ill-conditioned prob-

lem.

A.2 The Scaled SIS Process

Given a 𝑀 node network characterised by a undirected graph with adjacency matrix

𝐴, the status of each node is either 1 (infected) or 0 (susceptible). The network states

are given as 𝑀 bit column vectors, where the 𝑖th row indicates the status of node

𝑖. The evolution of the network is composed of state transitions involving either a

single susceptible node turning infected, a single infected node turning susceptible,

or all nodes retaining their current state. The rates corresponding to each transition

are given as follows:

∙ Healing: The time it takes for infected agents to transition to the susceptible

state is exponentially distributed with rate 𝜇. The average time it takes to leave

the infected state is then equal to 1/𝜇. We will refer to 𝜇 as the healing rate.

Consider the case where infected node 𝑘 becomes susceptible. The network

configurations before and after the transition are

𝑥 =
[︁
𝑥1, . . . , 𝑥𝑘 = 1, . . . , 𝑥𝑀

]︁𝑇
𝑥′ =

[︁
𝑥1, . . . , 𝑥𝑘 = 0, . . . , 𝑥𝑀

]︁𝑇
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The corresponding entry in the transition rate matrix is

𝑄 (𝑥,𝑥′) = 𝜇

∙ Infection: The time it takes for a susceptible agent to transition to the infected

state is exponentially distributed with rate 𝜁𝛾𝑑 where 𝑑 is the number of infected

neighbors adjacent to the susceptible agent. The average time it takes to leave

the susceptible state is then equal to 1
𝜁𝛾𝑑 . This is in contrast to works using

earlier forms of the SIS process, which utilize a infection rate of the form 𝜁+𝛾𝑑.

The name scaled SIS therefore emphasizes the choice of infection rate 𝜁𝛾𝑑, which

is more amenable to analysis.

Infection in scaled SIS can be interpreted as the resultant of two components:

exogenous infection and endogenous infection. Exogenous infection character-

izes the scenario where a susceptible becomes infected due to a source external

to the network, and occurs with rate 𝜁. Endogenous infection characterizes the

scenario where a susceptible becomes infected due to influence from infected

neighbors, and occurs with rate 𝛾𝑑.

Consider the case where susceptible node 𝑘 becomes infected. The network

configurations before and after the transition are

𝑥 =
[︁
𝑥1, . . . , 𝑥𝑘 = 0, . . . , 𝑥𝑀

]︁𝑇
𝑥′ =

[︁
𝑥1, . . . , 𝑥𝑘 = 1, . . . , 𝑥𝑀

]︁𝑇
The corresponding entry in the transition rate matrix is

𝑄 (𝑥,𝑥′) = 𝜁𝛾𝑑𝑘

where 𝑑𝑘 is the number of infected neighbors of node 𝑘, and can be calculated
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by multiplying 𝑥 by the 𝑘th row of 𝐴:

𝑑𝑘 = 𝐴(𝑘, :)𝑥

∙ More than one change in the network: Since each network transition

changes the status of only a single node, the entry in the transition rate matrix

when 𝑥 and 𝑥′ differ by more than one bit is

𝑄 (𝑥,𝑥′) = 0

= 𝑄 (𝑥′,𝑥)

∙ No change in the network: The corresponding entry in the transition rate

matrix is

𝑄 (𝑥,𝑥) = −
∑︁
�̸�=𝑥′

𝑄 (𝑥,𝑥′)

The following result is from [19].

Theorem A.2.1. The scaled SIS process is a reversible Markov process with the

equilibrium distribution given by

𝜋(𝑥) =
1

𝑍

(︂
𝜁

𝜇

)︂1𝑇𝑥

𝛾
1
2
𝑥𝑇𝐴𝑥, ∀𝑥 ∈ 𝜒 (A.9)

where 𝑍 is the partition function given by

𝑍 =
∑︁
𝑥∈𝜒

(︂
𝜁

𝜇

)︂1𝑇𝑥

𝛾
1
2
𝑥𝑇𝐴𝑥

Since the state space grows exponentially with the number of nodes in the network,

calculating 𝑍 is infeasible for many practical purposes. Therefore, it is assumed we

have no knowledge of 𝑍 and can only know the entries of 𝜋 up to a normalizing

constant.
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A.2.1 Scaled SIS Process Embedded Markov Chain

The eigenvalue algorithms discussed in this thesis apply only to discrete time Markov

chains (DTMC). The scaled SIS process can be transformed to a DTMC by applying

the following operation on 𝑄:

𝑃 = 𝐼 +
1

𝛼
𝑄,

𝛼 ≥ max
𝑖
|𝑄 (𝑖, 𝑖)|

(A.10)

The resulting Markov chain has the following properties:

∙ Reversible and ergodic.

∙ The eigenvectors of 𝑃 and 𝑄 are the same, and hence the equilibrium distribu-

tion of both Markov chains are the same.

∙ The eigenvalues of 𝑃 and 𝑄 map to each other by the relation

𝜆(𝑃 ) = 1 +
1

𝛼
𝜆(𝑄) (A.11)

Choosing 𝛼 to be larger than the spectral radius of 𝑄 has the effect of setting all

eigenvalues of 𝑃 greater than 0. In addition, the second eigenvalue of 𝑃 can be

mapped to the second eigenvalue of 𝑄 using Equation (A.11) - if 𝛼 is less than the

spectral radius, such may not be the case. The following theorem provides a means

to upper bound the largest eigenvalue magnitude of 𝑄.

Theorem A.2.2 (Gershgorin Circle Theorem [8]). Let 𝑄 be a real matrix with real

eigenvalues, and define 𝑅𝑖 to be the sum over the off diagonal entries of row 𝑖:

𝑅𝑖 =
∑︁
𝑘 ̸=𝑖

𝑄 (𝑖, 𝑘)

Then every eigenvalue is in at least one of the intervals:

𝐷𝑖 = {𝑡 : |𝑡−𝑄 (𝑖, 𝑖)| ≤ 𝑅𝑖} (A.12)

55



Let 𝐶𝑥 be the sum over the off diagonal entries of the column corresponding to 𝑥:

𝐶𝑥 =
∑︁
𝑘 ̸=𝑥

𝑄 (𝑥, 𝑘)

A corollary of Gershgorin’s circle theorem is the following upper bound on the eigen-

value magnitudes:

|𝜆| ≤ max
𝑥∈𝜒
|𝑄 (𝑥,𝑥)|+ 𝐶𝑥 (A.13)

The quantity |𝑄 (𝑥,𝑥)| + 𝐶𝑥 is the rate of exit added to the rate of entrance into

state 𝑥, and is equal to

𝜁⟨1, 𝛾𝐴𝑥⟩+𝑀𝜇

We then obtain the following upper bound to the largest eigenvalue magnitude of 𝑄

|𝜆| ≤

⎧⎪⎨⎪⎩𝑀 (𝜁 + 𝜇) if 𝛾 ≤ 1

𝜁⟨1, 𝛾𝐴1⟩+𝑀𝜇 if 𝛾 > 1

(A.14)

Our choice for 𝛼 is given in Equation (A.14).
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