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Abstract

Solar irradiation is a non-stationary process with its mean and variance changing de-

pending on time and day of the year. For solar irradiation prediction we remove both

seasonal and time of day effects to make observations approximately stationary and then

use prediction methods. We propose to use the zenith angle (the angle between sun beam

and perpendicular line on horizontal surface) to remove both seasonal and time of day

effects. Our simulations using least-squares (LS), time-varying least squares (TVLS), ex-

ponentially weighted recursive least squares (EWRLS) and one step estimation of second

order statistics shows that using zenith angle normalization gives lower mean square error

than traditional normalization by subtracting the mean and then dividing by deviation.

In electric power grids, generation must equal load at all times. Since wind and solar

power are intermittent, system operators must predict renewable generation and allocate

operating reserves to mitigate imbalances. If they overestimate the renewable generation

during scheduling, insufficient generation will be available during operation, which can

be very costly. However, if they underestimate the renewable generation, usually they

will only face the cost of keeping some generation capacity online and idle. Therefore

overestimation of renewable generation resources usually presents a more serious problem

than underestimation. Many researchers train their solar radiation forecast algorithms using

symmetric criteria like RMSE or MAE, and then a bias is applied to the forecast later to

reflect the asymmetric cost faced by the system operator - a technique we call indirectly

biased forecasting. We investigate solar radiation forecasts using asymmetric cost functions

(convex piecewise linear (CPWL) and LinEx) and optimize directly in the forecast training

stage. We use linear programming and a gradient descent algorithm to find a directly biased
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solution and compare it with the best indirectly biased solution. We also modify the LMS

algorithm according to the cost functions to create an online forecast method. Simulation

results show substantial cost savings using these methods.

We also propose two parametric probabilistic forecast methods by using beta and two

sided power distribution for predicting solar irradiation and evaluate their performance. To

improve their performance metrics a combining procedure based on the beta transformed

linear opinion pool is utilized. Our simulations show that these methods -despite the simple

structure- can accurately describe the stochastic characterization of solar irradiation and

effectively reduce its uncertainty. The proposed approach is robust and algorithms can be

modified for other point forecast methods.

We also consider reliability of electric grid as a public good and we use an insurance

policy to implement a benefit taxation mechanism that provides a framework to achieve

optimal reliability levels. Finally, we examine energy efficient scheduling for pumping

water in water supply networks. This is formulated as a nonconvex optimization problem

and we find solutions and conduct simulations for small networks.
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Chapter 1

Introduction

Using oil and other fossil fuels result in emission of ash and CO2 to the atmosphere

which results in global warming and environmental contamination. This has changed peo-

ple’s perception as new more efficient and more sustainable energy sources are being ex-

amined and more energy efficient technologies are being developed to reduce energy con-

sumption. To this end the main core of this dissertation is also related to optimizing energy

usage. In Chapter 2-4 we discuss solar forecasting methods which is a requirement for

efficient integration of solar generation into the power grid. In Chapter 5 we discuss reli-

ability of the electric grid using an insurance framework. Finally, Chapter 6 discusses an

important problem for the energy / water nexus. We discuss energy efficient scheduling

algorithms for pumping water in water networks.

In recent years photovoltaic (PV) generation has rapidly increased as it provides a com-

petitive solution for sustainable electricity generation. For example the total PV generation

capacity reached 40 GW in the United States by installing about 15 GWdc solar PV in

2016. The growth will continue and the total installed PV capacity is expected to triple
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over next five years [1]. Solar generation is also growing globally and in terms of world

solar capacity the 300 GW milestone was reached in 2016 and the total global installed PV

capacity is expected to exceed 700 GW in 2021 [2].

The PV generation in the electric grid has limitations since the generated power is time-

varying and intermittent. Prediction and control, large scale storage, and demand response

are three means that can be used to resolve these limitations. Despite all the progress in the

battery and other storage technologies, very large scale storage is not viable yet (economical

or environmental limitations) [3].

Solar irradiation is a non-stationary process with its mean and variance changing de-

pending on time of the day and day of the year. For example on a sunny day, the received

power in horizontal surface is maximum at around noon and at the same time of the day

expected solar radiation in summer is more than winter. For solar irradiation prediction

we need to remove both seasonal and time of day effects. For this purpose using satellite

data is proposed in [4] and [5] using statistics of historical records. In [6], the authors used

Fourier series to remove the seasonal effects in global solar radiation.

In Chapter 2 we use two approaches for normalization, first we use zenith angle (angle

between sun beam and perpendicular line on horizontal surface) at every time to remove

both seasonal and time of day effects. In the second approach, we use 60 successive days to

normalize this piece of data by subtracting mean followed by dividing by deviation at each

time of the day. For each of the approaches we investigate several forecasting methods like

least squares (LS), exponentially weighted recursive least squares (EWRLS) and second

order statistics are used. The simulation result for different sites shows that normalization

using zenith angle is a simple but effective way to remove seasonal and diurnal effects.

Traditionally, researchers who have studied the problem of forecasting solar radiation,
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evaluate their methods using symmetric cost criteria like root mean square error (RMSE)

or mean absolute error (MAE). However, In many applications the actual cost function is

not symmetric for example grid operators have more concern about shortage of production

rather than its abundance, i.e. overestimation of resources has more serious consequences

than underestimation. So in the grid operator’s view the cost function is not symmetric.

Therefore, in Chapter 3 we discuss solar radiation forecasts using convex piecewise linear

(CPWL) and linear-exponential (LinEx) as asymmetric cost functions which are better fit-

ted to the grid operator problem. For each of these cost functions we used two scenarios,

i.e. adding bias to an unbiased forecast or formulating a directly biased forecast which

considers the cost function from the outset. Under CPWL cost the forecast is formulated as

a linear program and for LinEx cost we formulated the problem as a convex optimization

and solved it by a gradient descent algorithm.

A key to Chapter 3 is establishing a general framework where we can make fair compar-

isons between the performance of forecast methods using asymmetric cost functions and

other approaches using symmetric cost functions for solar radiation forecasts. We show

that a method which creates a biased forecast by optimizing directly against the asymmet-

ric function gives a better result than adding an optimal ex post-bias to a forecast previously

trained with a symmetric cost function. We compare both “directly biased” and “indirectly

biased” forecasts to emphasize the importance of using a directly biased forecast in this

problem.

For many decision makers point forecasts that only give a single value for prediction of

a random variable is not enough and more information is required. Probabilistic forecasts

can give a more complete stochastic characterization using probability distribution over

future quantity (for example predicting a CDF function for a random variable). Consid-
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ering the limitations of point forecasts, relatively few papers have proposed probabilistic

forecast for solar radiation prediction. For example, [7] suggests a Bayesian method to esti-

mate parameters of the predictive distribution which was assumed to be a modified gamma

distribution. Three different stochastic differential equation models are proposed in [8].

These models are first fitted to a training data set and subsequently evaluated on a one-year

test set. [9] uses a quantile regression forest to obtain a set of quantile values from ob-

served solar power and corresponding numerical weather prediction. An analog ensemble

method proposed in [10] which is based on a set of historical numerical weather forecasts

and corresponding observed solar power. A combination autoregressive moving average

(ARMA) and generalized autoregressive conditional heteroskedasticity (GARCH) models

are used in [11] to obtain probabilistic forecast of solar irradiance from historical observa-

tions. Extreme learning machine (ELM) is used for regression purposes and are trained to

obtain nonparametric probabilistic forecast by predicting quantiles [12]. Quantile regres-

sion is used in [13] as a competitive indirect method for solar forecast under asymmetric

cost function. However, probabilistic solar forecast is still immature and requires more in

depth research [14, 15].

Chapter 4 proposes two parametric probabilistic forecast methods using beta and stan-

dard two sided power distribution and improves their performance metrics by a combining

procedure based on beta transformed linear opinion pool. The proposed approach can be

used to extend the results of many different point forecast methods which are minimizing

RMSE or MSE.

Significant penetration of intermittent generation like wind and solar in the power grid

introduces concerns about reliability of the grid due to stochastic nature of these energy

sources. On the one hand, these intermittent generation sources improve long term supply

4



security and help transition from depletable energy sources toward sustainable renewable

sources, on the other hand, unpredicted fluctuations of intermittent generation may ag-

gravate reliability of the system and even lead to blackouts. In chapter 5, we argue that

reliability of electric grid is a public good and current pricing system where electricity and

reliability service are bundled together and enforce costumers to pay for the bundled price

is not efficient.

Bundled pricing creates a trade-off between immediate operating cost and the long

term goal of reliability as electricity and reliability are bundled together. The Utility hardly

receives any signal about consumers’ preferences on reliability so the immediate cost of

operation is the winner and reliability levels maintained (hopefully) at minimum mandated

standards (for example N-1 secure constraint which requires the service is provided under

any single contingency event). So the reliability upgrades are postponed to the future and

the reliability of the system constantly decreases as infrastructure deteriorates and demand

increases over time. The degradation of the system continues until a big blackout happens

in the over stressed system and the deficiencies of the power system are highlighted requir-

ing immediate substantial upgrades. The cycles of degradation and substantial upgrades

create a double paradox effect since the societies who are used to high levels of reliability

experience more losses due outages as they are less prepared for it and less concerned about

it [16].

Therefore, in Chapter 5, we propose to decouple electricity price from the reliability.

For collecting provision cost of reliability, we use an insurance framework to implement a

benefit taxation mechanism that provides a framework to achieve optimal reliability levels.

Electricity cost of pumping is a large part of total operation costs of water supply net-

works [17]. In order to decrease this cost some research has been conducted in [18–22].

5



Different optimization algorithms (linear Programming [22, 23], quadratic programming,

dynamic programming, genetic algorithm[24],ant colony[25] heuristics [26]), various hy-

draulic modeling (nonlinear hydraulic[27], simplified hydraulic[28, 29], mass transfer[30]),

and different decision variables (pump operating time , tank levels) [31] have been ex-

plored. In most of the past research, users do not have any active participation and demands

are either modeled as a deterministic model or a stochastic process that is predicted using

a time series model.

In Chapter 6 we consider active participation for the users of a radial network and we

show that suitable collaboration of users can reduce the required energy to pump the desired

amount of water for all users. We use a nonlinear hydraulic model for the pump (both fixed

speed and variable speed) and pipes and we find the most energy efficient schedule for two

users using nonlinear optimization. The solution for the two user case, is used to find an

approximate solution for more than two users.

The main contributions of this dissertation are using zenith angle for solar power ra-

diation normalization, modeling asymmetric cost for renewable power forecast error and

obtaining directly biased forecast for solar power, probabilistic forecast of solar power.

Also an insurance framework for reliability of the power grid and methods for optimizing

energy in water networks are given. These results are partially published in [13, 32–37].
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Chapter 2

Forecasting Solar Irradiation Using

Zenith Angle

2.1 Introduction

Solar irradiation is a non-stationary process with its mean and variance changing de-

pending on time of the day and day of the year. For example on a sunny day, the received

power in horizontal surface is maximum at around noon and at the same time of the day ex-

pected solar radiation in summer is more than winter. Solar irradiation prediction becomes

simpler if we remove both seasonal and time of day effects. For this purpose using satellite

data is proposed in [4] and [5] used statistics of historical records. In [6], the authors used

Fourier series to remove the seasonal effects in global solar radiation.

In this chapter we use two approaches for normalization, first we use zenith angle (angle

between sun beam and perpendicular line on horizontal surface) at every time to remove

both seasonal and time of day effects. In the second approach, we use 60 successive days
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to normalize this piece of data by removing mean and variance versus time of the day. For

each of the approaches we investigate several forecasting methods like least squares (LS),

exponentially weighted recursive least squares (EWRLS) and second order statistics. The

simulation result for different sites shows that normalization using zenith angle is a sim-

ple but effective way to remove seasonal and diurnal effects. This chapter is organized as

follows. In Section 2.2, forecast methods using zenith angle are explained. The same meth-

ods but using traditional normalization is discussed in Section 2.3. Section 2.4 presents the

simulation results and discussion. A summary of results and conclusion is given in Section

2.5.

2.2 Forecasting using zenith angle

Solar irradiation is a random process which consists of some deterministic and some

random parameters. One of the dominant deterministic parameters in solar radiation is

sun position and in particular zenith angle. Zenith angle (θz) is the angle between sun

beam and perpendicular line on horizontal surface. Every day the sun rises when θz = 90◦

and gradually decreases until around noon and then starts to increase until again reaches

θz = 90◦ when the sun sets. Time of sunrise and sunset is not constant during a year,

similarly, zenith angle at specific time of the day changes during a year. For example,

zenith angle at winter noon time is larger than summer noon time. For more illustration, in

Hawaii on Nov 20th the sun rises at 6:48 when θz = 90◦ then decreases to 41.2◦ at 12:20

then increases until the sun sets at 17:48 when again θz = 90◦. On the other hand, on May

26 (July 16) the sun rises at 5:53 (6:02) when θz = 90◦ and decrease to 0◦ at 12:30 (12:39)

then increases until the sun sets at 19:07 (19:16) when again θz = 90◦.
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Zenith angle is deterministic and calculated by position of earth around the sun. The

formula for the zenith angle is

cos θz = cosφ cos δ cosω + sinφ sin δ

where φ is latitude; ω is sun time which is negative in mornings, zero at noon and positive

in afternoons, and changes by 15◦/hour rate; and δ = −23.45◦ cos 360(d+10)
365

where d is day

of year [38].

Each point in Fig. 2.1 represents one minute solar radiation versus cosine of solar

zenith angle. The data is for Oahu in 2010 and is obtained from [39]. The figure shows

high correlation between cos θz and irradiation.

Figure 2.1: cos θz and irradiation are highly correlated.

Since cos θz is a measure of time we can use it instead of time index by a transform.

This transform changes non-linear relationship between irradiation and time of the day to

approximately linear relation between irradiation and cos θz. This transform also elimi-
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nates seasonal effects caused by change of sun position.(Seasonal effects caused by clouds

pattern will not be removed.) Fig. 2.2 shows a partly sunny day in summer, a sunny day in

winter, and a day with sunny morning and cloudy afternoon as well as their transforms.
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Figure 2.2: Transform of time to cos θz (in sunny days relationship between irradiation and

cos θz is almost linear )

In this section we divide radiation at each time by corresponding cos θz to decouple

data from time. Let solar irradiation at time n be r(n) and corresponding time decoupled

data be x(n)

x(n) = r(n)
cos θz(n)
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2.2.1 LS using zenith angle

Now we want to forecast r(n + k) in which k varies from 10 to 120 minutes and

sampling resolution is 1 sample per minute. We start Least Squares in which future forecast

is estimated by linear combination of past data with specific constant weights. Here, we

consider one of year data and divide it by corresponding cos θz. Then we find optimal

weight vector W that predict future data using combination of past data. Let y(n) be an

(m + 1) × 1 vector of past decoupled data at time n converted to time of prediction by

multiplication of cos θz(n+ k) and m is number of taps. Since x(n) is not zero mean we

need to add constant 1 to our vector

y(n) = [1, x(n), ..., x(n−m+ 2), x(n−m+ 1)]T × cos θz(n+ k)

Let Y be matrix of training inputs, D be row vector of corresponding desired output, and

N be number of data samples per day.

Y = [y(1), y(2), y(3), ..., y(365N)]

D = [r(1 + k), r(2 + k), r(3 + k), ..., r(365N + k)]

If Y Y T is of full rank optimum weight using least squares method is

W = ((Y Y T )
−1
Y )DT

Finally predicted r(n+ k) is

r̂(n+ k) = W T .y(n)

The computed weight vector for Oahu dataset is shown in following table ??. As we

use more taps the intercept decreases.
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Table 2.1: Weight vectors

number of taps W0 W1 W2 W3 W4 sum of weights without W0

single tap 394.8 0.487 0.487

10 taps 368.1 0.933 -0.537 -0.0008 -0.038 0.523

20 taps 345.4 0.858 -0.471 -0.0382 -0.078 0.554

40 taps 319.1 0.852 -0.445 -0.0265 -0.039 0.590

60 taps 305.1 0.831 -0.428 -0.0254 -0.037 0.609

Fig. 2.3 shows the resulted RMSE for an hour ahead forecast using LS and zenith angle

in simulations for different sites. For each site we used one year for training and another

year for testing to validate results. It reveals that increasing number of taps has little effect

on improving performance.

In Fig. 2.4 the red solid line is measured irradiation in Oahu in the first week of April

and the blue dashed line is an hour ahead forecasting using single tap LS and zenith angle.

Fig. 2.5 shows that forecasting error rises as time of horizon of prediction increases.

12



0 10 20 30 40 50 60
182

184

186

188

190

R
M

S
E

 (
W

/m
2 )

 

 

0 10 20 30 40 50 60
180

185

190

R
M

S
E

 (
W

/m
2 )

 

 

0 10 20 30 40 50 60
184

186

188

190

R
M

S
E

 (
W

/m
2 )

 

 
LaOla2012 train error
Test error by LaOla 2010

LaOla2010 train error
Test error by LaOla 2011

LaOla2011 train error
Test error by LaOla 2012

0 10 20 30 40 50 60
90

92

94

96

Number of  taps

R
M

S
E

 (
W

/m
)2

 

 

0 10 20 30 40 50 60
90

92

94

96

Number of  taps

R
M

S
E

 (
W

/m
2 )

 

 

LA 2011train error 
Test error by LA2012

0 10 20 30 40 50 60
145

146

147

148

149

R
M

S
E

 (
W

/m
2 )

 

 
Oahu 2011 train error

LA2012 train error
Test error by La2011

An hour a head forecasting using LS and zenith angle

Figure 2.3: Increasing number of taps improves the performance some

0 1000 2000 3000 4000 5000
0

200

400

600

800

1000

Ir
ra

di
at

io
n 

(W
/m

2 )

An hour ahead foercasting using LS and zenith angle in Oahu

 

 Measured Irradiation
an hour ahead forecasted Irradiation 

Figure 2.4: Sample forecast using LS and zenith angle in Oahu

13



0 20 40 60 80 100 120
100

110

120

130

140

150

160

170

180

190

200

210

Time horizon of prediction (minutes)

R
M

S
E

 (
W

/m
2 )

Forecast error versus time of prediction using single tap LS and zenith angle

 

 
LaOla 2010 using single tap LS and zenith angle

Figure 2.5: Forecasting error versus time horizon of prediction

2.2.2 Time varying least squares using zenith angle

Since using zenith angle does not remove seasonal effect related to clouds, it is rea-

sonable to check if the results improve by using smaller training sets. Thus we check time

varying Least Squares (TVLS). While in Least Squares the weights are constant during all

times of year, in TVLS weights are changed at each time update. Training data in Least

Squares is total data for one year, however, training data in TVLS for each time is a frame

from a previous time up to present. Let L be length of training frame

Y (n) = [y(n− k − L+ 1), y(n− k − L+ 2), y(n− k − L+ 3), ..., y(n− k)]

D(n) = [r(n− L+ 1), r(n− L+ 2), r(n− L+ 3), ..., r(n)],

then the solution is given by

W (n) = ((Y (n)Y (n)T )
−1
Y (n))D(n)T
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and

r̂(n+ k) = W (n)T .y(n)

As shown in Figure 2.6 single tap TVLS using zenith angle needs many training point

to be as accurate as LS using zenith angle. We get similar results using more taps. Although

in LS we use one year data for training however calculations are done only one time, but in

TVLS computation is done at every time thus complexity of calculation dramatically grows

as number of training points increases. In the next subsection we resolve these issues using

EWRLS.
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Figure 2.6: Increasing number of training points (L=1080-etc...) improves the result of

TVLS using zenith angle however it needs many training points to be as precise as LS

using zenith angle.

15



2.2.3 Exponentially Weighted Recursive Least Squares (EWRLS) by

using zenith angle

As we found that larger training frame may give better result but need more com-

plex computation, we tried to implement Exponentially Weighted Recursive Least Squares

(EWRLS). RLS is a recursive algorithm for finding least squares solution [40]. The algo-

rithm is able to solve exponentially weighted linear least squares by choosing an appropri-

ate forgetting factor. While TVLS requires to calculate and invert Y (n)Y (n)T and multiply

it by Y (n) and D(n)T , in EWRLS we just use new data to correct previous result. In this

way, using EWRLS has both less computation cost and more accuracy comes from larger

training frame.

Let

d(n) = r(n)

y(n) = [1, x(n), x(n− 1), ...,x(n−m+ 2), x(n−m+ 1)]T × cos θz(n+ k)

The weight vector (W (n)) updates at each step by following equations

W (n) = W (n− 1) +K(n)(d(n)− y(n− k)TW (n− 1))

where K(n) is m× 1 gain vector

K(n) =
Σ(n− 1)y(n− k)

λ+ y(n− k)TΣ(n− 1)y(n− k)

Σ is m×m covariance matrix

Σ(n) =
1

λ
(Σ(n− 1)−K(n)y(n− k)TΣ(n− 1))
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and λ is forgetting factor.

Finally

r̂(n+ k) = W (n)Ty(n)

Results of EWRLS using zenith angle is slightly better than LS using zenith angle. Figure

2.7 compares the results of single tap filter using EWRLS vs using LS. Similar results is

obtained for more taps.
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Figure 2.7: EWRLS using zenith angle is slightly better.
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2.2.4 Forecasting using one step second order statistics

This method comes from linear mean square error estimator (LMMSE) which needs

mean and covariance. Here, we use mean and auto-covariance. This method is easy to

implement. Let λ be forgetting factor then mean and auto-covariance updated at each step

by following equations:

x̄(n) = λx̄(n− 1) + (1− λ)x(n)

Cn
xx(0) = λC(n−1)

xx (0) + (1− λ)(x(n)− x̄(n))2

Cn
xx(k) = λC(n−1)

xx (k) + (1− λ)(x(n− k)− x̄(n))(x(n)− x̄(n))

Then

x̂(n+ k) = x̄(n) + Cn
xx(k)

Cn
xx(0)

(x(n)− x̄(n))

Then we find the predicted output by considering θz at time of forecasting.

r̂(n+ k) = x̂(n+ k) cos θz(n+ k)

Simulation of this method in LaOLa showed that this method could be as accurate as

EWRLS using zenith angle with lower computation (Figure 2.8)

2.3 Normalizing data to be zero mean unit variance by re-

moving time of day average and variance

In order to evaluate effectiveness of using zenith angle for forecasting, in this sec-

tion we normalize data by removing mean and variance versus time of the day. Since

seasonal effects happen gradually during a year instead of using several years data records
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Figure 2.8: In simulation of LaOla using one step second order statistics using zenith angle

is as accurate as EWRLS using zenith angle
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for estimating mean and variance of irradiation at specific time of particular day, we can

approximate that mean and variance using some neighbor days at that specified time of the

day. There is a trade off in selecting number of neighbor days, if we consider more days

we can estimate mean and variance more precisely, while we have less accuracy since we

neglect seasonal effects more. Let N be number of samples per day and r(n) be measured

radiation at time n, we define mean and variance of radiation at same time of day in ms

past days i.e.

µr(n) =
1

ms + 1

ms∑
i=0

r(n−Ni)

σ2
r(n) = (

1

ms + 1

ms∑
i=0

r2(n−Ni))− µ2
r

Now our normalized data is x(n)

x(n) = (r(n)− µr(n))/(σr(n))

Here we used ms = 60.

2.3.1 Least Squares (LS)

Now we want to forecast x(n + k) where k vary from 10 to 120 minutes and sam-

pling resolution is 1 sample per minute. Our first attempt is training data using Least Square

in which future forecast estimated by linear combination of past data with specific constant

weights.

x̂(n+ k) = W Ty(n)
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where W is an m× 1 vector of weights and y(n) is an m× 1 vector of past data and m is

number of taps.

y(n) = [x(n), x(n− 1), ..., x(n−m+ 2), x(n−m+ 1)]T

For finding optimal weights using LS we need training data. For this purpose we normalize

one year data using above method. Let N be number of samples per day,Y be matrix of

training inputs and D be row vector of corresponding desired output

Y = [y(1), y(2), y(3), ..., y(365N)]

D = [x(1 + k), x(2 + k), x(3 + k), ..., x(365N + k)]

If Y Y T is of full rank, optimum weight using least squares is

W = ((Y Y T )
−1
Y )DT .

Finally

x̂(n+ k) = W Ty(n)r̂(n+ k) = σr(n+ k −N)x̂(n+ k) + µr(n+ k −N).

Increasing number of taps marginally improves result. For example, for forecasting one

hour ahead in all stations in Figure 2.9, comparing RMSE of 60-tap vs one-tap, we have

less than 1.5% improvement.

2.3.2 Time Varying Least Squares (TVLS) Method

We have discussed TVLS using zenith angle in subsection 2.2.2. Here we use the same

method but using conventional normalization. Let L be length of training frame

Y (n) = [y(n− k − L+ 1), y(n− k − L+ 2), y(n− k − L+ 3), ..., y(n− k)]

D(n) = [x(n− L+ 1), x(n− L+ 2), x(n− L+ 3), ..., x(n)]
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Figure 2.9: Increasing number of taps improves training error very slightly.(one hour ahead

forecast)

which results in,

W (n) = ((Y (n)Y (n)T )
−1
Y (n))D(n)T .

Then,

x̂(n+ k) = W (n)Ty(n)

r̂(n+ k) = σr(n+ k −N)x̂(n+ k) + µr(n+ k −N).

Here, simulation results of TVLS is more precise than LS. Figure 2.10 shows although

increasing number of taps form one to two give more accuracy for less than 30 minutes,

more than two taps (even 10 taps) did not result in more significant improvement. Another

effective parameter in this method is size of training frame. Increasing size of training data

improves forecasting error ,however, it increases computation complexity. Figure 2.11

shows this fact via simulations of LaOLa 2010 data.
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Figure 2.10: Increasing number of taps more than two does not have significant effect

2.3.3 Exponentially Weighted Recursive Least Squares (EWRLS)

As we found that larger training frame gives better results but need more complex com-

putation, we tried to implement Exponentially Weighted Recursive Least Square(EWRLS).

While TVLS requires to calculate and invert Y (n)Y (n)T and multiply it by Y (n) and

D(n)T , in EWRLS we just use new data to correct previous result. In this way, using

EWRLS has both less computation cost and more accuracy comes from training frame.

Let

d(n) = x(n)

y(n) = [x(n), x(n− 1), ...,x(n−m+ 2), x(n−m+ 1)]T

The weight vector (W (n)) updates at each step by following equations

W (n) = W (n− 1) +K(n)(d(n)− y(n− k)TW (n− 1))
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Figure 2.11: Increasing size of training frame improves accuracy of prediction but increases

complexity.

where K(n) is m× 1 gain vector

K(n) =
Σ(n− 1)y(n− k)

λ+ y(n− k)TΣ(n− 1)y(n− k)

Σ is m×m covariance matrix

Σ(n) =
1

λ
(Σ(n− 1)−K(n)y(n− k)TΣ(n− 1))

and λ is forgetting factor. Here, we use λ = 0.9997 which gives the best result.

Finally

x̂(n+ k) = W (n)Ty(n)

r̂(n+ k) = σr(n+ k −N)x̂(n+ k) + µr(n+ k −N)

As you can see in figures 2.12,2.13,and 2.14 using EWRLS slightly improves the result

respect to LS using normalization. Comparison vs this method using zenith angle will be

given in section 2.4.
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2.3.4 Forecasting by one step estimation of second order statistics

Since we find from previous discussion that we can forecast only by single tap,

here we predict by estimating mean and one step auto-covariance. This method is easy to

implement:

x̂(n+ k) = x̄(n) + Cn
xx(k)

Cn
xx(0)

(x(n)− x̄(n))

Where

x̄(n) = λx̄(n− 1) + (1− λ)x(n)

Cn
xx(0) = λC(n−1)

xx (0) + (1− λ)(x(n)− x̄(n))2

Cn
xx(k) = λC(n−1)

xx (k) + (1− λ)(x(n− k)− x̄(n))(x(n)− x̄(n))

Then denormalize data by using of yesterday average and variance at time of prediction.

r̂(n+ k) = σr(n+ k −N)x̂(n+ k) + µr(n+ k −N)

2.4 Comparing methods

For evaluating methods we used the following datasets which are downloaded from

www.nrel.gov/midc. These data have 1 minute resolution.
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Latitude:21.31347 N

Hawaii Longitude:158.08257 W 4/1/2010-3/31/2011

Kalaeloa Oahu, Elevation: 11 meters AMSL

Latitude:20.76685 N 1/1/2010-12/31/2010

Hawaii Longitude:156.92291 W 1/1/2011-12/31/2011

La Ola Lanai Elevation: 381 meters AMSL 1/1/2012-11/31/2012

Los Angeles Latitude:33.966674 N 1/1/2011-12/31/2011

California Longitude:118.42282 W 1/1/2012-11/31/2012

27 meters AMSL

Simulation result of methods in these sites shows that by LS, EWRLS, and using one step

second order statistics are more effective methods of forecasting using zenith angle normal-

ization than using traditional normalization by removing mean and dividing by deviation.

Effectiveness of methods depends on weather characteristic of the site and desired time

horizon of forecasting, for example, the RMSE in Los Angles data sets is lower than corre-

sponding forecast for LaOla and Oahu. This is intuitively justified as Los Angeles has more

sunny days than Hawaii this results in more easily predicted solar irradiation values for Los

Angeles. In simulation of LaOla the best results were achieved using EWRLS and one step

second order statistics with zenith angle. In Oahu station best result comes from LS with

zenith and EWRLS with zenith angle. However, for LA station the best result comes from

LS using zenith.
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Figure 2.12: In simulation of LaOla using EWRLS and one step second order statistics

with zenith angle give the best result
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Figure 2.13: In Oahu station best result comes from LS with zenith and EWRLS with

zenith angle
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Figure 2.14: In LA station the best result comes from LS using zenith angle

2.5 Conclusion

In this chapter we implemented and evaluate simple forecasting methods for predicting

solar radiation. We used two normalization methods for removing effects of time of day

and day of the year. In the first method the solar radiation decoupled from time by dividing

by corresponding cosine of zenith angle then LS, EWRLS and second order statistics are

used as forecasting methods. In the second method we use 60 previous data and calculate

mean and variance at each time of the day and use them to normalize the data to become

zero mean and unit variance then forecasting methods like LS, EWRLS and second order

statistics are used.

Simulation results for three different sites showed that dividing solar radiation by cor-

responding cosine of zenith angle is an effective way for removing both seasonal and daily

effects.

28



Chapter 3

Prdiction Under Asymmetric Cost

Functions

3.1 Introduction

Continuous balancing of load and generation is necessary for the electric grid. Power

system balancing authorities (BAs) at each hour estimate the loads and schedule opera-

tion of conventional power plants. Integration of renewable generation into the grid has

been increasing in recent years. However, renewable sources such as solar and wind are

intermittent. Since it takes time to start additional conventional power plants, grid opera-

tors must predict the intermittent generation as well as load and commit enough generation

resources in advance. To mitigate forecast errors, system operators allocate operating re-

serves - equivalent to creating a downward-biased forecast of “firm” renewable generation

forecast - to ensure that during operation, generation always meets load [41] [42].

In this context, underestimation means that true renewable generation during operation
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time is more than what the BA forecast. In this case during operation, output from conven-

tional power plants is decreased below their committed level, so that generation equals load

[43]. Output of conventional power plants could be decreased by a certain amount (avail-

able downward reserves) and if the magnitude of underestimation is more than available

downward reserves, the excess renewable generation would be curtailed.

On the other hand, overestimation means that true renewable generation during opera-

tion time is less than what the BA forecast. So the committed generation capacity is not

enough to meet load. In market-based power systems, this can result in extremely high

prices in the balancing market. If additional generation is not available, the misforecast

may lead to an area control error (ACE), drawing unscheduled power from neighboring

BAs. In extreme cases or on isolated power systems, the BA may need to disconnect firm

loads. ACE or load shedding are very undesirable for the BA and/or customers [44]. These

also correspond to high economic costs, which manifest as fines paid by the BA for violat-

ing reliability standards [45], or the loss by customers of a valuable resource[46][47].

Put simply, in the case of overestimation of renewable generation, the BA will encounter

shortages of generation and even may be forced to shed loads; however, in the case of

underestimation of renewable generation, they can curtail the excess generating capacity.

So overestimation is a more serious - and more costly - error than underestimation.

Therefore the solar and wind generation forecast problem in the BA’s view is not sym-

metric. Many forecast models are trained using symmetric cost functions, but this may give

sub-optimal results if forecast errors will impose asymmetric costs when used in practice.

In this case, a forecast model using an asymmetric cost function may be more desirable.

The International Energy Agency (IEA) recommends the use of symmetric metrics such

as Root Mean Square Error (RMSE), Mean Bias Error (MBE), and Kolmogorov Smirnoff
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Integral (KSI) for evaluating renewable energy forecasts [48][49]. Many authors who study

solar irradiation forecasting tune their methods to minimize the RMSE, Mean Absolute

Error (MAE) or Mean Absolute Percentage Error (MAPE) [50] which apply a symmetric

cost for both underestimation and overestimation.

Renewable energy forecast tools can be divided into two broad categories - those that

are trained using historical data [50][51], and those that are not. We do not address

non-training-based methods, which include numerical weather prediction (NWP) [52][53],

satellite image processing [54], or sky image processing [55]. Instead, we show the value

of using asymmetric cost functions when training the first category of forecast tools.

A diverse array of forecast methods use a training phase. These include machine learn-

ing algorithms [56][57][58], artificial neural networks [59][60][61], fuzzy systems [62],

hybrid methods [63][64], auto-regressive models [65], auto-regressive moving average

(ARMA) models [66], and auto-regressive integrated moving average (ARIMA) [67]. In

addition, training-based techniques are sometimes used to supplement non-training-based

methods [68]. Statistical, training-based methods are more popular than physics-based

models when making forecasts for short time scales (0-3 hours)[50], as needed for spin-

ning reserve allocation.

Each of the training-based methods discussed above usually uses a symmetric cost func-

tion during the training phase. However, in many practical problems in economics the cost

function is asymmetric. For example in dam construction underestimation of peak water

level is more serious than overestimation [69]. In estimation of average life of the compo-

nents of a spaceship, overestimation is usually more serious than underestimation. In this

study, overestimation of renewable generation is more serious than underestimation.

To model the asymmetry, we use the asymmetric cost functions convex piecewise linear
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(CPWL) and linear-Exponential (LinEx); these cost functions have been used successfully

for optimization problems in economics, statistics and energy [69][70][71][72]. The sim-

plest form of CPWL cost function (which is called LinLin) consists of two connected line

segments - a constant positive slope (constant per-unit cost) for overestimation and a lower

negative slope for underestimation errors (Fig. 3.1). In the LinEx cost function the per unit

cost of overestimation increases exponentially as the error increases, but the per unit cost

is relatively constant for underestimation errors. We note that the true cost function for

renewable energy forecast errors is complex and unique to each BA. However, CPWL and

LinEx make good, simplified proxies when evaluating forecast systems generically or train-

ing them for a particular region. They also allow us to illustrate some general properties of

forecast methods tuned for asymmetric rather than symmetric cost functions.

A key to this chapter is establishing a general framework where we can make fair com-

parisons between the performance of forecast methods using asymmetric cost functions

and other approaches using symmetric cost functions for solar radiation forecasts. We show

that a method which creates a biased forecast by optimizing directly against the asymmet-

ric function gives a better result than adding an optimal post-bias to a forecast previously

trained with a symmetric cost function. We compare both “directly biased” and “indirectly

biased” forecasts to emphasize the importance of using a directly biased forecast in this

problem.

Online algorithms are interesting because of their suitability for real time applications,

tracking gradual changes in statistics of input and hardware configuration [73][74]. For

this reason, we also implement online algorithms based on the stochastic gradient descent

or the least mean square (LMS) algorithm.

The chapter is organized as follows. In Section 3.2, the forecast problem is formulated
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as an optimization problem; a forecast model using solar zenith angle is discussed and

the use of CPWL and LinEx cost functions are justified. Section 3.3 presents the solution

formulation for both CPWL and LinEx cost functions. For each of the cost functions we

compare an “indirectly biased” and “directly biased” training method. In the indirectly

biased method, the model’s main training phase uses a traditional, symmetric cost function,

which results in an unbiased model. Then a constant bias value is added, to minimize the

asymmetric cost function as far as possible (with no other change to the forecast model). In

the directly biased method, we use an asymmetric cost function (CPWL or LinEx) during

the forecast model’s main training phase. We also discuss methods for finding optimal

parameter values in each of these cases. Section 3.4 introduces an online forecast method

under these asymmetric cost functions. Section 3.5 presents the simulation results and

discussion. A summary of results and conclusion is given in Section 3.6.

3.2 Problem statement

This section is divided into three subsections. In subsection 3.2.1, the forecast problem

is formulated as an optimization problem based on a weight function of past and present

observations. In subsection 3.2.2, a weight function that uses the solar zenith angle is

explained. In subsection 3.2.3, we justify the use of CPWL and LinEx asymmetric cost

functions in the utility scheduling problem.

3.2.1 Optimization Problem

Our objective is to minimize expected cost by adjusting forecast hypothesis parameters.

Let the actual solar radiation at time n be xn and the corresponding forecast be x̂n. We are
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interested in k step ahead forecast using a window of past observations,

Xn = [xn, xn−1, ..., xn−m+1]
T (3.1)

where m is the window size.

Let us assume that the k step ahead forecast is a function of past and present observa-

tions

x̂n+k = h(Xn) (3.2)

Then the optimization problem is

Minimize
h

M∑
i=1

L(h(Xi)− xi+k) (3.3)

where L is the loss function (either CPWL or LinEx in this chapter) and M is the total

number of samples.

3.2.2 Hypothesis Model

Many solar power forecast methods use a training stage to adapt the model to conditions

in a particular locale. In this chapter, we use a simple training-based method introduced in

[32] to illustrate the benefits of using an asymmetric cost function during the training stage.

This simplifies the discussion, and results found with this model may be generalizable to

other training-based models.

The model we use for illustration is based on an autoregressive approach using the co-

sine of the solar zenith angle as we discussed in previous chapter. For illustration, we use

an autoregressive forecast method but rather than regressing directly on recent irradiance

measurements, this method uses irradiance normalized by cos θz. This normalization ac-

counts for much of the daily and seasonal variation in irradiance, so that the model mostly
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predicts the effect of the atmosphere on irradiance [32]. Our hypothesis model h is a linear

combination of past data converted to the time of prediction:

x̂n+k = (α0+
α1xn

cos θz(n)
+...+

αmxn−m+1

cos θz(n−m+1)
) cos θz(n+ k) (3.4)

where θz(n) is solar zenith angle at time n and α0, α1, ..., αm are the weight parameters.

3.2.3 The Cost Functions

If the BA ignores all intermittent generation (i.e. forecasts zero output from these

sources) it will schedule enough operating reserves at all times. However, unused reserves

cost about 20% of per unit price of energy (i.e. in Hawaii about $0.05/kWh) [42]. So fore-

cast of intermittent generation is useful to avoid that cost. On the other hand if intermittent

generation is overestimated, the BA may run short of generation and be forced to draw

unscheduled power from neighboring BAs, or eventually shed loads. The BAs view load

shedding as very undesirable and expensive. The cost of unscheduled power transfers is

difficult to assess. The value of lost load (VOLL) due to load shedding is reported to be

around $8/kWh to $24/kWh [75][76][77]. As a starting point in this study, let us assume

VOLL to be $10/kWh.

To model asymmetric costs, Granger introduced the piecewise linear LinLin function

and suggested a useful although sub-optimal way to consider asymmetry, by adding a con-

stant bias value to the predictor [70]. This is analogous to the simple approach of discount-

ing renewable energy forecasts by a fixed amount when allocating spinning reserves.

Let ε be the forecast error given by

εn+k = x̂n+k − xn+k (3.5)
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So overestimation, which means the predicted value exceeds the actual value, corresponds

to a positive error and underestimation which means the forecasted value is less than actual

generation, corresponds to a negative error. The asymmetric trade off between underesti-

mation ($0.05/kWh unnecessary cost) and overestimation ($10/kWh penalty fee) lead to a

LinLin loss function.

LinLin(ε) =

 C1ε if ε > 0, C1 ≈ $10/kWh

−C2ε if ε ≤ 0, C2 ≈ $0.05/kWh

(3.6)
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Figure 3.1: CPWL (C1=-300/p.u., d1=-0.4 p.u., C2=-40/p.u., d2=0, C3=60/p.u., d3=0.15

p.u., C4=10000/p.u.), LinLin ( C1=-50/p.u.,C2=10000/p.u) and LinEx (b=9, a=16/p.u.)

The LinLin loss function is the simplest asymmetric cost function we can use to dis-

tinguish between overestimation and underestimation. However, it is unable to represent

cases where the per-unit cost increases as the magnitude of the error increases. A more

complicated cost function could be obtained by using more line segments.

CPWL(ε) = max
i=1,2,...p

Ciε+ bi (3.7)
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where p is number of line segments. Without loss of generality let us assume C1 < C2 <

... < Cp and d1, d2, ....dp−1 are intermediate points that determine the domain of each

line segment. The solid line graph in Fig. 3.1 shows a CPWL cost function. It has four

line segments with different slopes, the small positive slope shows the cost of upward

reserves and the line with the steepest slope represents the penalty for errors which are

larger than available upward reserves (high penalty for violating reliability standards and/or

disconnecting firm load). Similarly, gentle negative slope shows the cost of downward

reserves and the steeper negative slope represents cases where output of power plants could

not decrease further (minimum generation level of power plants) and the excess renewable

generation must be curtailed. An illustrative example in Fig. 3.1 slopes and break points

are chosen by rule of thumb for a system with a single power plant which is set at 85%

of rated power and must have minimum output power around 45% of rated power. The

actual cost function may have more line segments representing the cost of different control

actions which could be taken to mitigate errors and different break points based on power

plant states.

Another popular asymmetric cost function is LinEx which was originally introduced

for real estate assessment [78] and comprehensively discussed by Zellner [69]. The LinEx

function could be a useful proxy for the costs of generation shortfall, which may rise as

the size of error increases. These could occur if it costs more per MWh to correct a large

error than a small one. For example, this could occur for renewable energy forecasts if a

limited pool of reserves are used for renewable energy and other risks; small errors could

easily be absorbed by the pool, but large errors could cause greater harm since increasingly

expensive emergency resources may need to be brought online, or increasingly valuable

loads may need to be shed. The reliability fines in the WECC region also depend in part on
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the severity of violation [45]. Hence as a second case, we assume the load shedding cost

is exponentially distributed among errors such that that small errors impose a smaller cost

but large errors are more expensive. In this case we have the LinEx loss function given by

LinEx(ε) = b(eaε − aε− 1) (3.8)

The a and b constants are called shape factor and scale factor respectively. In Fig. 3.1

the dotted line graph is a LinEx function and its shape and scale factor are selected to

be similar to the given CPWL. Different values could be used to fit the function to any

particular power system.

3.3 Solution Formulation

In a power system with asymmetric costs for forecast errors, the balancing authority

will generally prefer to adopt a forecast method which is biased toward the lower-cost side.

In this section we show two ways that a balancing authority could introduce this bias. We

call these “indirectly biased” and “directly biased” forecasts. In later sections, we compare

the effectiveness of these two biasing methods.

To create an indirectly biased forecast, a balancing authority would first use an unbi-

ased forecast method, and then add a constant bias factor, with a value selected to minimize

the asymmetric cost function. This approach could be used, for example, when a balancing

authority adopts a solar forecast tool previously optimized to minimize mean squared error,

and then allocates an additional reserve margin to compensate for possible forecast errors.

This is equivalent to creating a downward-biased forecast of “firm” solar power[79]. Vari-

ous methods that are commonly used create unbiased forecasts. In particular, any forecast
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method trained to minimize squared error will produce an unbiased predictor, with a mean

error equal to zero. Further, any forecast method with symmetrical error distributions will

result in an unbiased predictor if it is trained with a symmetrical cost function.

To create a directly biased forecast instead of an indirectly biased forecast, the balancing

authority would incorporate an asymmetric cost function directly into the training stage of

the forecast tool, rather than adjusting the forecast after-the-fact.

This section is divided into two subsections. Subsection 3.3.1 is devoted to training

or adjusting forecasts using CPWL cost functions and Subsection 3.3.2 uses LinEx cost

functions. In both cases, we show techniques for optimizing indirectly and directly biased

forecasts.

3.3.1 CPWL cost function

Indirectly biased forecast: Let the (unbiased) forecast error from the initial forecast

model be ε and cumulative distribution function (CDF) of error be Fε and probability den-

sity function of errors be f(ε). For CPWL cost function we have that

Losstotal =

∫ +∞

−∞
CPWL(ε)f(ε)dε (3.9)

If we add a bias value β to the initial forecast, the cumulative loss with the CPWL cost

function changes as there is a shift of β resulting in :

Losstotal =

∫ +∞

−∞
CPWL(ε)f(ε− β)dε (3.10)

=

∫ +∞

−∞
CPWL(x+ β)f(x)dx (3.11)
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To find the bias value β which minimizes cumulative loss, we have:

∂Losstotal
∂β

=

∫ +∞

−∞

∂CPWL(x+ β)

∂β
f(x)dx = 0 (3.12)

=

∫ d1−β

−∞
C1f(x)dx+

p−1∑
i=2

∫ di−β

di−1−β
Cif(x)dx+

∫ +∞

dp−1−β
Cpf(x)dx

=

p−1∑
i=1

(Ci − Ci+1)F (di − β) + Cp = 0 (3.13)

Hence the optimal bias value to minimize CPWL cost will satisfy the following condition:

p−1∑
i=1

(Ci − Ci+1)F (di − β∗) + Cp = 0 (3.14)

The left side is nondecreasing in β∗ so we can easily find the solution using a bisection

method [80]. Hence, we find a best-possible indirectly biased solution as follows: first use

an unbiased initial forecast method (here, we use least squares to find weight parameters of

equation (3.4)); then calculate the distribution of errors and compute the optimal bias value

that solve equation (3.14) using the bisection algorithm; finally add this bias value to the

initial prediction.

Directly biased forecast: Our objective is

min
α0,α1,...,αm

M∑
n=1

CPWL(x̂n+k − xn+k) (3.15)

where x̂n+k is computed using equation (3.4).

So we have

min
α0,α1,,...,αm

M∑
n=1

max
j=1,2,...p

{Cj[(α0 +
α1xn

cos θz(n)
+ ... (3.16)

+
αmxn−m+1

cos θz(n−m+ 1)
) cos θz(n+ k)− xn+k] + bj}
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In order to eliminate the maximum segment, let us introduce new decision variables wn for

n = 1, 2, 3, ...,M such that

wn = max
j=1,2,...p

{Cj[(α0 +
α1xn

cos θz(n)
+ ...+

αmxn−m+1

cos θz(n−m+ 1)
) cos θz(n+ k)− xn+k] + bj}

(3.17)

So we have

min

w1, w2, ..., wM

α0, α1, ..., αm

M∑
n=1

wn (3.18)

subject to

Cj[(α0 +
α1xn

cos θz(n)
+ ...+

αmxn−m+1

cos θz(n−m+ 1)
) cos θz(n+ k)− xn+k] + bj ≤wn (3.19)

for all n = 1, 2, ...,M and j = 1, 2, ..., p

which is a linear programming problem.

3.3.2 LinEx cost function

Indirectly biased forecast: An indirectly biased solution could be found by using an

unbiased forecast method (we used least squares to tune the parameters of equation 3.4) and

then computing the optimal β. Again let our unbiased forecast error be ε and the probability

density function of the errors be f(ε). If we add bias value β to the unbiased forecast, the

errors are also increased by β so the cumulative loss with LinEx cost function becomes:

Losstotal =

∫ +∞

−∞
LinEx(ε+ β)f(ε)dε (3.20)

= b

∫ +∞

−∞
(ea(ε+β) − a(ε+ β)− 1)f(ε)dε (3.21)
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To find the optimal bias value β which minimizes cumulative loss, we have:

∂Losstotal
∂β

=abeaβ
∫ +∞

−∞
eaεf(ε)dε− ab (3.22)

⇒ β =− 1

a
log(

∫ +∞

−∞
eaεf(ε)dε) (3.23)

similar to Zellner’s suggestion [69] :

β = −1

a
log(Eε[e

aε]) (3.24)

If there are enough samples available we can estimate β using the following:

β = −1

a
log(Eε[e

aε]) ≈ −1

a
log(

1

M

M∑
i=1

eaεi) (3.25)

where M is the total number of samples and εi is the error corresponding to ith sample.

Directly biased forecast: Here again we use a forecast method based on zenith angle

as in equation (3.4); however for selection of parameters we consider a LinEx cost func-

tion. We want to adjust α0, α1, ..., αm such that the following objective function will be

minimized:

J =
M∑
n=1

LinEx(x̂n+k − xn+k) (3.26)

where x̂n+k is computed using equation (3.4). Since this optimization does not have an

analytical answer, we use the gradient descent algorithm. We note that LinEx is a con-

vex function [69] so the gradient descent algorithm with proper step size converges to the

global minimum. Let α = [α0, α1, ...αm]T ; then the α is iteratively updated by following

equation.

αi+1 = αi − η∇J (3.27)

where η is step size and∇J is the gradient vector, computed by the following equations:

∇J = [
∂J

∂α0

,
∂J

∂α1

, ...,
∂J

∂αm
]T (3.28)
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∂J

∂α0

= ab

M∑
n=1

[cos θz(n+ k)(ea(x̂n+k−xn+k) − 1)] (3.29)

similarly for j = 0, 1, 2, ...,m− 1

∂J

∂αj+1

= ab
M∑
n=1

[
xn−j cos θz(n+ k)

cos θz(n− j)
(ea(x̂n+k−xn+k) − 1)] (3.30)

.

3.4 Online Methods

In many instances information about data is not complete and data statistics may be

nonstationary. In these cases online learning algorithms which continually update their

weights often give superior performance over the batch algorithms [81] we formulated in

Section 3.3. The algorithmic simplicity of online algorithms is also an important issue

when we deal with large scale problems [82] especially in real time. Online algorithms are

also more preferable in term of hardware implementation due to high modularity [73].

Therefore in this section we implement online forecast methods based on the stochastic

gradient descent algorithm. The first subsection is devoted to online formulation for a

CPWL cost function and the second subsection is dedicated to the LinEx cost function.

3.4.1 CPWL Cost Function

Similar to least mean squares (LMS) algorithm [74] which uses the instantaneous es-

timate of gradient vector for squared error cost, we use an instantaneous estimate of the

gradient vector for the CPWL cost function.

Ĵ = CPWL(x̂n+k − xn+k) (3.31)
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where x̂n+k computed using equation (3.4). The instantaneous estimate of gradient vector

computed by the following equations.

∇Ĵ = [
∂Ĵ

∂α0

,
∂Ĵ

∂α1

, ...,
∂Ĵ

∂αm
]T (3.32)

To compute the gradient, define function g(x) using the following equation

g(x) =



C1 if x < d1

...

Ci if di−1 ≤ x < di.

...

Cp if dp−1 ≤ x

(3.33)

The partial derivatives are calculated using

∂Ĵ

∂α0

= cos θz(n+ k)g(x̂n+k − xn+k). (3.34)

In the same way, for j = 0, 1, 2, ...,m− 1,

∂Ĵ

∂αj+1

=
xn−j cos θz(n+ k)

cos θz(n− j)
g(x̂n+k − xn+k). (3.35)

Let α = [α0, α1, ...αm]T . Then α is iteratively updated by following equation.

αn+1 = αn − η∇Ĵ (3.36)

The total cost up to time J(n) is the cumulative sum of instantaneous cost, Ĵ , So

J(n) = J(n− 1) + Ĵ(n) (3.37)

3.4.2 LinEx Cost Function

Similarly, instantaneous LinEx cost is given by

Ĵ = LinEx(x̂n+k − xn+k) (3.38)
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where x̂n+k computed using equation (3.4). The instantaneous estimate of the gradient

vector is computed by the following equations.

∇Ĵ = [
∂Ĵ

∂α0

,
∂Ĵ

∂α1

, ...,
∂Ĵ

∂αm
]T (3.39)

∂Ĵ

∂α0

= ab[cos θz(n+ k)(ea(x̂n+k−xn+k) − 1)] (3.40)

Similarly for j = 0, 1, 2, ...,m− 1,

∂Ĵ

∂αj+1

= ab[
xn−j cos θz(n+ k)

cos θz(n− j)
(ea(x̂n+k−xn+k) − 1)] (3.41)

The α is iteratively updated by the following equation.

αn+1 = αn − η∇Ĵ (3.42)

Adding a momentum term to the learning rule could increase the learning rate; however,

a constant momentum factor (γ) results in oscillation in the learning curve [83]. For this

reason we tried decreasing the momentum factor such that at initial iterations the momen-

tum factor is high and leads to faster learning but in later iterations the momentum factor

decreases to zero to avoid over learning. We found the following time varying momentum

term worked well

γn =
γ0

(1 + n
N

)
(3.43)

where N is the number of samples per year.

The learning algorithm with a momentum term is implemented using the following

equations:

∆αn+1 = γn∆αn − η∇Ĵ (3.44)

αn+1 = αn + ∆αn+1
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3.5 Simulation Results

For simulation, we retrieved solar irradiance data for three sites from a National Renew-

able Energy Lab (NREL) website, www.nrel.gov/midc/. The names and details of the sites

are shown in Table 3.1. In order to concentrate on hours of the day with significant solar

radiation, we removed night hours and only considered nine hours per day. To compute

generated power from solar radiation and meteorological information (temperature, wind

speed), we first estimate solar module temperature using equation(3.45) [84].

Tmod = Tamb + I
TNOCT − T0

I0 + h(ν − ν0)(TNOCT − T0)
(3.45)

where T0 = 25◦C is reference temperature, ν0 = 1m/s is reference wind velocity, I0 =

800W/m2 is reference irradiation, h = 6.62W/◦Cm2 is a convection parameter, TNOCT

is the temperature of the module under reference conditions. Tabm, ν and I are ambi-

ent temperature, wind speed and solar radiation. Then we derate the nominal conversion

coefficient according to the maximum power temperature coefficient of the solar module

(≈ −0.44%/◦C) as given in the data sheet for Sharp ND-R250 module.

In order to get comparable results, we report per unit cost for each forecast method,

which is the ratio of the annual cost when using that forecast method to the annual cost if

no forecast is used (renewable generation assumed to be zero).

3.5.1 Results of Batch Methods

To compare the benefit of forecasts using both indirectly biased forecast and directly

biased forecasts, we used one year of data for training and the next year for testing. In

each case, we prepared hour-ahead forecasts, using one to nine taps (number of weight
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Table 3.1: The names and details of the sites used for simulations

Sites Loactions Recored Time Resolution

Latitude:20.76685 N 12/14/2009

Hawaii Longitude:156.92291 W to 1 minute

La Ola Lanai Elevation: 381 meters AMSL 12/14/2012

Latitude:36.28 N 1/1/2005

North Carolina Longitude:76.22 W to 5 minutes

Elizabeth City Elevation: 26 meters AMSL 12/31/2013

California Latitude:33.966674 N 1/1/2011

Los Angeles Longitude:118.42282 W to 1 minute

27 meters AMSL 12/31/2014
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Figure 3.2: With the CPWL cost function, the directly biased (linear programming) method

is more efficient than the indirectly biased forecast. If the original unbiased forecast is used,

the per unit cost becomes around 2 which is worse than the trivial no forecast cost.

parameters in equation (3.4)). The per unit cost for the CPWL cost function is shown in

Fig. 3.2 and for the LinEx cost function is shown in Fig. 3.4. As is clear from the figures,

in both cases the cost for directly biased forecasts is significantly less than from indirectly

biased forecasts.

The graphs in Fig. 3.2 are the result of averaging per unit annual cost of 2005-2013 of

the Elizabeth City data set using the CPWL cost function. Although increasing the number

of taps reduces the training cost for the direct method (linear programming), the cost for

test data slightly increases for more than one tap due to over-fitting. So by using the direct

approach we decrease the cost to 22% of the no-forecast cost, which is less than the 27%

achieved by an indirectly biased forecast.

In Fig. 3.3 both the distribution of errors and the CPWL cost function are shown (the
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Figure 3.3: Histograms of forecast errors for three different scenarios for the CPWL cost

function (unbiased, indirectly biased, and directly biased using linear programming)

total in each case is the product of the probability and the cost). For unbiased forecast

we have many positive errors as well as negative errors since there is no cost difference

between positive and negative errors in the training phase. Most errors are close to 0. By

adding bias (negative number) to the unbiased forecast, the distribution of errors is shifted

to the left since cost for large overestimations is huge. Now, most of errors are close to

-0.25. On the other hand, the directly biased method shifts errors to the left so that a very

small portion of errors are in the steep penalty zone. We also note that the directly biased

method also has fewer large-magnitude negative errors than the indirectly biased forecast

method.

Three sets of graphs are shown in Fig. 3.4 to show per unit cost in 2005-2013 for

Elizabeth City using a LinEx cost function. The dotted line graphs are for the case that

one year is used for training and another year used for test. Training costs decrease by

increasing the number of taps while the test costs increase for more than one tap. The
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Figure 3.4: The direct biased forecast method has more benefit than indirectly biased fore-

cast. A more complex model gives better performance but needs more training data (LinEx

cost function)

dashed and solid line graphs respectively show the cases for two and three years of data used

for training. In both direct and indirect methods the use of more training data decreases the

difference between test and training and the use of a more complex model increases risk of

over fitting.

By using a cross validation technique, we use eight years for training and one other year

for testing. The results of the cross validation are shown in Fig. 3.5. In this way there is

fair agreement between training and test. We have achieved about 43% of the no-forecast

cost using a directly biased forecast, which is significantly less than the 54% achieved by

an indirectly biased forecast. In Fig. 3.6 the distribution of errors for an unbiased forecast

is given and most of the errors are close to 0. By adding bias (negative number) to the

unbiased forecast the total distribution is shifted to the left since underestimation has less

cost than overestimation. Now, most of the errors are close to 0.25 due to the bias. On
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Figure 3.5: More training data gives better agreement between training and testing results

(nine fold cross validation)

the other hand, the directly biased forecast shifts errors to the left so that a small portion

of errors are positive. This is achieved with the asymmetric cost function that severely

penalizes positive errors. We again note that the directly biased method also has fewer

large-magnitude negative errors than the indirectly biased forecast method. Fig. 3.7 shows

that the directly biased method performs much better than the indirectly biased method as

the shape factor (asymmetry) of the LinEx cost function increases, although costs increases

for both methods.

3.5.2 Results of Online Methods

In the steepest descent algorithm, several iterations are required to reach the optimal

weight vectors and in each iteration all training samples are used; so each sample is used

several times. In order to use each sample multiple times in the online method, we use a

resampling technique i.e. we use nine yearly datasets of Elizabeth City seven times, then
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function (unbiased, indirectly biased, and directly biased forecast)
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Figure 3.8: The per unit cost of online method for CPWL cost function is slightly less than

corresponding batch method due to tracking ability of the online method.

the total 63 yearly datasets are randomly ordered and used as input to the online learning

algorithm.

Fig. 3.8 shows the per unit average annual cost for the CPWL cost function using the

online forecast method with different taps. It reveals that increasing the number of taps

beyond four does not give any performance improvement. The per unit cost is 20% for

four taps, which is 2% less than the 22% test cost of the corresponding batch method. This

slight improvement arises from the tracking ability of the online method.

Online algorithms are interesting especially for the cases where there is no recorded

data and the operator is just starting to record. In these cases, the online algorithm at each

iteration receives a new data sample and improves its model. Fig. 3.9 shows the learning

curves of the online method with one and four taps under a CPWL cost function; at initial

iterations the cost is around 100% since data is not enough for good forecast. As more data

are obtained the forecast model is tuned better, so the cost decreases over time. The four
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Figure 3.9: Learning curves for methods with different taps under CPWL cost function

tap method learns faster, so it gives slightly better results.

As shown in Fig. 3.10 the per unit average annual cost for the LinEx cost function

using the online forecast method is around 40% which is 3% better than the 43% for the

corresponding batch methods. Also, the number of taps does not have a significant effect.

The learning curves of the online method with different tap numbers under the LinEx

cost function are shown in Fig. 3.11. While there is not a significant difference in final

performance, the method which uses more taps learns faster than others.

We repeated the same simulations for the datasets for Hawaii and Los Angeles with

three years of data. For all of these datasets the savings using directly biased methods are

substantially more than the indirect method as shown in Table 3.2.
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Iterations (one per hour) ×105
0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

A
ve

ra
ge

 C
os

t (
p.

u.
)

0.4

0.5

0.6

0.7

0.8

0.9

1
Learning Curves for Online Methods under LinEx Cost Function

Single Tap Method
Two Tap Method
Three Tap Method

Figure 3.11: Under LinEx cost function, the method which has more taps learn faster than

others, however, the final performance is similar to others.

55



Table 3.2: Average annual per unit cost for datasets using different methods

Cost Function CPWL LinEx

Method
Batch Online Batch Online

Indirect Direct Direct Indirect Direct Direct

Elizabeth City 27% 22% 20% 54% 43% 40%

Hawaii 36% 26% 25% 57% 44% 42%

Los Angeles 17% 14% 14% 38% 31% 31%

3.6 Conclusion

While many researchers have studied the problem of forecasting solar radiation, they

usually evaluate their methods using symmetric criteria like root mean square error (RMSE)

or mean absolute error (MAE). However, grid operators have more concern about shortage

of production rather than its abundance, i.e. overestimation of resources has more serious

consequences than underestimation. So in the BA’s view the cost function is not symmetric.

For this reason we discussed solar radiation forecast under CPWL and LinEx as asymmet-

ric cost functions which are better fitted to the grid operator problem. For each of these cost

functions we used two scenarios i.e. adding bias to an unbiased forecast or formulating a

directly biased forecast which considers the cost function from the outset. Under CPWL

cost the forecast is formulated as a linear program and for LinEx cost we formulated the

problem as a convex optimization and solved it by a gradient descent algorithm. Our simu-

lations show that directly biased forecasts have a significant advantage. Simulation results

also show that this difference becomes greater as asymmetry in the cost function increases.
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We also implemented the least mean square (LMS) algorithm according to CPWL and

LinEx cost functions to create an online method. Using a decaying momentum term in the

learning rule increases the rate of learning. The proposed online method gives an improve-

ment over batch solutions due to better tracking ability.

We have shown the necessity of using asymmetric cost functions directly in the training

phase of simple autoregressive forecast models. More sophisticated learning algorithms

based on other methods such as neural networks or wavelets might potentially give better

performance, and use of asymmetric cost function when training these models needs further

investigation.

Point forecasts only give a single value for prediction of a random variable; on the other

hand, probabilistic forecasts give more information using a probability distribution over

future quantity (for example one CDF function for a random variable). When a probabilistic

forecast is given, for each prediction we can solve equation (3.14) for the CPWL cost

function or use equation (3.25) for the LinEx case to compute an optimal value for that

prediction.

Here we discussed forecast methods for single sites using their past solar radiation

observations. Forecast methods for multiple sites and incorporating exogenous data like

weather forecasts are also interesting and left for future research.
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Chapter 4

Probablistic Forecast of Solar

Irradiation

4.1 Introduction

Traditionally, solar forecasting methods have a single output value for each prediction

which is usually called a point forecast. The performance of point forecasts are usually

evaluated based on a symmetric cost function of the errors (the difference between pre-

dicted and observed values). For example root mean square (RMSE), mean absolute error

(MAE) and mean absolute percentage error (MAPE) are commonly used [50]. Many re-

searchers proposed point forecast for solar irradiation prediction which includes machine

learning algorithms [56–58], artificial neural networks [59–61], fuzzy systems [62], hybrid

methods [63, 64], auto-regressive models [65], auto-regressive moving average (ARMA)

models [66], and auto-regressive integrated moving average (ARIMA) [67]. Point forecasts

can also be used when the cost function is asymmetric and approaches for direct predic-
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tion under asymmetric cost functions like convex piecewise linear, LinLin and LinEx are

proposed in [33–35].

However, for many decision makers point forecasts that only give a single value for pre-

diction of a random variable is not enough and more information about future quantity is

required. Probabilistic forecasts can give a more complete stochastic characterization using

probability distribution over future quantity (for example predicting a CDF function for a

random variable). Considering the limitations of point forecasts, a few papers have recently

proposed probabilistic forecast for solar radiation prediction. For example, [7] suggests a

Bayesian method to estimate parameters of the predictive distribution which was assumed

to be a modified Gamma distribution. Three different stochastic differential equation mod-

els are proposed by [8]. These models are first fitted to a training data set and subsequently

evaluated on a one-year test set. [9] uses a quantile regression forest to obtain a set of quan-

tile values from observed solar power and corresponding numerical weather prediction. An

analog ensemble method proposed in [10] is based on a set of historical numerical weather

forecasts and corresponding observed solar power. A combination autoregressive moving

average (ARMA) and generalized autoregressive conditional heteroskedasticity (GARCH)

models are used in [11] to obtain probabilistic forecast of solar irradiance from historical

observations. Extreme learning machines (ELM) are used for regression purposes and are

trained to obtain nonparametric probabilistic forecast by predicting quantiles [12]. Quan-

tile regression is used in [13] as a competitive indirect method for solar forecasting under

asymmetric cost function. However, probabilistic solar forecast is still immature and re-

quires more in depth research [14, 15].

This chapter proposes two parametric probabilistic forecast methods using beta and

power distribution and improves their performance metrics by a combining procedure based
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on beta transformed linear opinion pool. The proposed approach can be used to extend the

results of many different point forecast methods which are minimizing RMSE or MSE.

The rest of the chapter is organized as follows. The probabilistic forecast and evaluation

metrics are described in Section 4.2. Methods for obtaining probabilistic forecast using beta

and power distribution as well as the procedure of combining forecasts are given in Section

4.3. In Section 4.4 simulation results are shown and discussed. A summary of results and

conclusion is given in Section 4.5.

4.2 Problem Statement

4.2.1 Probabilistic Forecast

The objective of a probabilistic forecast is to find a predictive distribution to predict

stochastic characterization of response variable when information about explanatory vari-

ables is given. When the response variable is a binary event the conditional probability of

success given the explanatory variable is a probabilistic forecast. Logistic regression is a

method that is commonly used for probabilistic forecast of the binary events. When the

response variable is a continues random variable (which solar irradiation is), a conditional

pdf can describe complete stochastic characterization. Let (y1,x1), (y2,x2), ..., (yn,xn) be

training observations where xi is explanatory variable (in general a vector), yi is response

variable and n is number of observations. The goal is to use training data and obtain the

conditional pdf fY |X(y|x) or equivalently predictive CDF :

FY |x(y) = P(Y ≤ y|X = x) =

∫ y

−∞
fY |X(u|x)du (4.1)
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There are nonparametric and parametric approaches for obtaining probabilistic forecast.

Nonparametric methods do not make any assumptions about shape of the density and con-

centrate on finding a set of quantile values [13, 85]. On the other hand, parametric methods

assume a parametric distribution (like truncated Gaussian or Weibull [86]) in order to esti-

mate predictive distribution.

4.2.2 Evaluation of Probalistic Forecasts

In point forecasts there are metrics like RMSE or MAE which are used to evaluate

performance of different methods on train and test set. Similarly, metrics are required

to evaluate performance of probabilistic forecasts. In this section some scoring rules are

explained.

Logarithmic Score is a local scoring rule used to evaluate performance of a predictive

pdf on a realized observation. Let f be the predictive pdf and x be an observation the

logarithmic score is given by

LogS(f, x) = − log(f(x)) (4.2)

In fact, it is negative of log likelihood function and the smaller score is better performance.

Average logarithmic score can be used for multiple observations and multiple predictive

pdfs, which is again related to negative of log likelihood when observations are indepen-

dent.

Continuous Ranked Probability Score is one of the most widely used accuracy met-

rics for probabilistic forecasts. Let F be predictive CDF and after the fact observation x is

realized. The CRPS given by :

CRPS(F, x) =

∫ ∞
−∞

(F (y)− I(y − x))2dy (4.3)
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Where I is the step function i.e. equals zero when y < x and equals one when y ≥ x. The

notion behind CRPS is integration of squared difference between predictive CDF and CDF

of the best predictor which determines the outcome surely i.e. a CDF that jumps form zero

to one at the value that will be observed later.

The CRPS is a generalization of the mean absolute error (MAE) for the case of proba-

bilistic forecasts. It has been showed that equation (4.3) is equivalent to : [87]

CRPS(F, x) = EF |X − x| −
1

2
EF |X −X∗| (4.4)

where X and X∗ are two independent copies from distribution F with finite mean. The

unit for CRPS is same as unit for the observation.

Calibration means statistical consistency between forecast and realized observations.

Probability integral transform histogram and empirical distribution are two useful tools for

evaluating calibration.

For a CDF-valued random quantity F and the observation Y , the PIT of probabilistic

Forecast F is given by

ZF = F (Y−) + (F (Y )− F (Y−))V (4.5)

where V is a standard uniform random variable that is independent of F and for all y ∈ R,

F (y−) = limx↑y F (x) [87]. If F is continuous, the probability integral transform (PIT) is

the random variable :

ZF = F (Y ) (4.6)

Let F be CDF-valued random quantity with PIT ZF :

Forecast F is marginally calibrated if E[F (y)] = P(Y ≤ y) for all y ∈ R.

Forecast F is probabilistically calibrated if PIT of ZF has standard uniform distribution.
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A forecast that is ideal relative to some information is both marginally calibrated and

probabilistically calibrated[87].

Calibration can be quantified by Kolmogorov-Smirnov test which is used to compare

an empirical distribution with a reference distribution (one sample KS) or to compare two

empirical distributions. So the one sample KS is used to test if PIT has uniform distribu-

tion and two sample KS is used to determine if average of predictive CDF (first empirical

distribution) and marginal distribution of samples have same underlying distribution.

Probabilistic calibration can be quantified by variance of the PIT values. For the ideal

calibrated forecast, PIT has standard uniform distribution so the variance is 1/12. The

forecast is called under-dispersed when the variance of PIT is more than 1/12 and over-

dispersed if the variance of PIT is less than 1/12. The PIT histogram of an under-dispersed

forecast is U shape which means it predicts extreme probabilities more often than it should.

For an over-dispersed the PIT histogram is inverse U shape which means central probabil-

ities are predicted more often than they should.

Sharpness is concentration of a probabilistic forecast. The goal of probabilistic fore-

cast is to maximize its sharpness while maintaining calibration metrics at acceptable level.

Sharpness is usually reported by average width of a specific prediction intervals for exam-

ple average difference between 25% and 75% quantiles or average difference between 5%

and 95% quantiles.
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4.3 Methods

4.3.1 Using Beta Distribution

We can assume that each predictive CDF is a beta distribution. Beta distribution is

chosen since solar irradiation is continuous and restricted between zero and clear sky irra-

diation (which can be normalized to the interval (0,1)). It also can effectively model the

density of different sky conditions by choosing appropriate shape factors. In Fig 4.1 prob-

ability density function (pdf) of different shape factors are shown. The green curve is for

situation that a bright sunny day with a small possibility of clouds is predicted. On the other

hand the purple curve predicts a thick cloud with small chances for clear sky. Beta distribu-

tion is mostly a unimodal density and only can model two modes if the modes are located

at extreme points but is still useful for our application. The pdf for a beta distribution is

given by

f(x) =
xα−1(1− x)β−1

B(α, β)
x ∈ (0, 1) (4.7)

where B(α, β) =
∫ 1

0
xα−1(1− x)β−1dx.

While Maximum likelihood estimation of beta parameters requires solving nonlinear

equations using numerical methods or approximating solution, the parameters can be es-

timated using method of moments[88]. Let x̄ be the sample mean and v̄ be the sample

variance. The estimated parameters are given by :

if v̄ < x̄(1− x̄) (4.8)

α̂ = x̄(
x̄(1− x̄)

v̄
− 1) (4.9)

β̂ = (1− x̄)(
x̄(1− x̄)

v̄
− 1) (4.10)
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Figure 4.1: Beta distribution with different shape parameters

Equation (4.8) must be satisfied in order to get a valid solution (α̂ > 0 and β̂ > 0).

Hence the probabilistic forecast using beta distribution can be reduced to estimation of con-

ditional mean and conditional variance. Estimation of conditional mean is straightforward

using LS technique. We also use LS to directly find the conditional variance, however this

method is tricky as direct calculation of conditional variance sometimes lead to a negative

number. Therefore we adjust the conditional variance to a constant minimum value if the

method gives an invalid conditional variance.
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4.3.2 Using Two Sided Power Distribution

Standard two sided power distribution is a generalized version of triangular distribution

which is defined by following probability density function on interval (0,1)

f(x) =



k(x
c
)k−1 0 < x ≤ c

k( (1−x)
(1−c) )

k−1 c < x < 1

0 otherwise

(4.11)

where c is mode of the distribution and k > 0 is the order. This is designed to have the

simplicity of a triangular distribution but also allow thiner tails than the standard triangular

distribution. For a given c and k, the mean of the distribution is given by

mX =
(k − 1)c+ 1

k + 1
(4.12)

A few examples of probability density function for this distribution are shown in Fig. 4.2.

Similar to the beta distribution, power distribution can model different sky conditions.

Let X1, X2, ...Xn be iid observations from a standard two sided power distribution.

The procedure for estimation of parameters using maximum likelihood as well as method

of moment is well explained in [89]. In the maximum likelihood method, first the mode

is estimated by sorting observation and finding the observation that maximize the likeli-

hood function without concern about the order and in the second step order parameter is

estimated based on the estimated mode. However, this procedure is not applicable to our

problem as we can not sort observations conditionally.

The method of moment uses sample mean and sample variance for making a third

order polynomial equation. Positive and real roots of this third order equation are potential

solution for the order parameter; the mode parameter for the potential solutions is computed
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Figure 4.2: Two sided power distribution for different darameters

by obtaining inverse of equation (4.12) and finding the valid solution which leads to the

mode parameter in interval (0,1). This procedure is applicable to probabilistic forecast

problem as we can find the conditional mean and conditional variance then follow this

method to find the parameters of predictive distribution. However, there will be systematic

dependency between results of power distribution and the results of the beta distribution

method as they use the same input. For example, if there is an error in estimation of

conditional variance both methods will pass the error to their output and therefore the error

also remains in the combined result.

In order to boost improvement when two methods are combined we propose to estimate

67



mode and order of the distribution (i.e. c, k), using an iterative method which combines the

method of moments and maximum likelihood. For a given ci, we find the order parameter

which maximizes log likelihood function (which is concave and differentiable with respect

to k) by taking derivative and set it equal to zero. We obtain

ki =
−n∑

Xj<ci
log(

Xj

ci
) +

∑
Xj>ci

log(
1−Xj

1−ci )
(4.13)

where Xj are observations and i is the iteration number. For the obtained ki, we use second

step of the method of moments which estimate the mode by obtaining inverse of equation

(4.12) and bounding the results between zero and one.

ci+1 = max(0,min(1,
(ki + 1)x̄− 1

ki − 1
)) (4.14)

where x̄ = 1
n

∑n
j=1Xj is the sample mean. Then we again tune the order parameter in next

iteration. After few iterations the equations approaches its fixed point i.e. the solution. We

may have convergence issue when k is close to one but this is less of a concern as k = 1

resembles a standard uniform distribution which does not have a unique mode.

Hence, to obtain a probabilistic forecast, we first estimate the conditional mean using

LS then above method is used to compute conditional mode and the order of the predictive

distribution.

4.3.3 Combining Probabilistic Forecasts

In many cases, there are several probabilistic forecasts that use dependent or indepen-

dent information and each of them has its advantages. It is useful to combine the forecasts

and get one with superior performance. The most popular aggregation method is the linear

pool [90]. The linear pool is successfully applied in many applications. However, it has
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been shown that the output of a linear pool is more dispersed than the most dispersed input

forecast [91, 92]. Therefore, it is good to aggregate under-dispersed forecasts to obtain a

more calibrated forecast; however, if several calibrated forecast are aggregated by a linear

pool, the output is uncalibrated.

Gneiting and Ranjan proposed to use a beta-transformed linear pool to combine multi-

ple probabilistic forecast [91]. The method adds a mapping using a beta distribution to the

traditional linear pool. Let F1, F2, ...Fm be m different CDF-valued probabilistic forecast.

The CDF of aggregated forecast is given by :

G(y) = Bα,β(
m∑
k=1

wkFk(y)) (4.15)

whereBα,β is the CDF of beta distribution with α and β parameters and wk are nonnegative

weights which add up to one. α and β parameters and wk weights are optimized to mini-

mize the average logarithmic score of the aggregated forecast on training data. We can use

the same method for improving an uncalibrated forecast which is a special case of when

there is only one input.

Here, there are two probabilistic forecasts, F1 is CDF-valued forecast using beta dis-

tribution and F2 is CDF-valued forecast using standard power distribution. We find three

parameters α, β and w1 (We note that w2 = 1 − w1.) that minimize logarithmic score of

the combined forecast by using Newton-Raphson method.

4.4 Simulation Results and Discussion

For simulation, we again use the same datasets of chapter 3. For each of the sites one

year is used for training and another year is used for test. We have tried different possible
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Figure 4.3: Performance in term of logarithmic score in LaOla

combinations based on the dataset size and the average performance is reported here. In

order to make the comparison easier we report the normalized result (so the data is first

normalized using zenith angle [32] and then scaled to the interval (0,1)) unless otherwise

stated.

Fig.4.3, Fig.4.4 and Fig.4.5 respectively show the average logarithmic score of proba-

bilistic forecasts for LaOla, Los Angeles and Elizabeth City. Solid lines show the training

score whereas the test score are shown by dashed line. The beta method has lower logarith-

mic score i.e. predicts better than power method and the combined forecast is the best. We

note that the training logarithmic scores do not monotonically decrease as number of taps

increases. This is justified since both beta and power method use LS to find conditional

mean by tuning the weight of each tap. However, more taps tend to indirectly decrease the

training logarithmic score. The test logarithmic score may increase due to over-fitting.

Fig.4.6, Fig.4.7 and Fig.4.8 show the average CRPS as a function of number of taps.

There is fair agreement between test and training results. The training score decreases when

more taps are used. There are clear decreases for 9 tap, 18 tap, and 27 tap preditors that

70



Number of Taps
0 5 10 15 20 25 30

A
ve

ra
ge

 L
og

 S
co

re

-1

-0.9

-0.8

-0.7

-0.6

-0.5
Power - Train
Power - Test
Beta - Train
Beta - Test
Combined - Train
Combined - Test

Figure 4.4: Performance in term of logarithmic score in Los Angeles
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Figure 4.5: Performance in term of logarithmic score in Elizabeth City
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Figure 4.6: Performance in term of average CRPS in LaOla

shows that the same time of the day in past days has more information than other times. In

terms of CPRS, the beta method has advantages over power method and combining them

marginally improves the CRPS in Los Angeles and Elizabeth City but marginally increases

CRPS in LaOla dataset.

Fig.4.9 shows marginal calibration of LaOla which reveals the good marginal calibra-

tion as the maximum CDF difference of the methods is small enough to pass the two sample

KS test at 1% confidence. In Fig.4.10 marginal calibration of Los Angeles is shown. While

combined forecast and beta method are significantly better calibrated than the power one,

none of the methods can pass the KS test and therefore all of them are not marginally

calibrated.

In Fig.4.11 marginal calibration of Elizabeth City is shown. While both combined

forecast and beta method are calibrated and pass KS test at 5% confidence, the power

method is not marginally calibrated.

Fig.4.12 shows probabilistic calibration of LaOla. The probabilistic calibration tends

to improve with higher number of taps. Since maximum CDF difference of between PIT
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Figure 4.7: Performance in term of average CRPS in Los Angeles
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Figure 4.8: Performance in term of average CRPS in Elizabeth City
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Figure 4.9: Performance in term of marginal calibration in LaOla
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Figure 4.10: Performance in term of marginal calibration in Los Angles
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Figure 4.11: Performance in term of marginal calibration in Elizabeth City

and uniform distribution one sample KS test must be used i.e. a lower critical value with

respect to marginal calibration. The beta method has better calibration and with more than

17 taps can pass the one sample KS test at 5%confidence whereas others can only pass the

test at 1% confidence.

Fig.4.13 shows probabilistic calibration for Los Angeles. The combined method gives

the best calibration; however, none of the methods can pass the one sample KS because of

large difference between the CDF between PIT and uniform distribution. The probabilistic

calibration for Elizabeth City is shown Fig.4.14. The combined method gives the best

calibration and pass the one sample KS but other two methods can not pass it.

The PIT histograms for LaOLa, Elizabeth City and Los Angeles are shown in Fig. 4.15,

Fig. 4.16 and 4.17. The PIT for LaOLa is very close to uniform distribution so the forecast

is probabilistically calibrated. While the PIT for Elizabeth city has more density in the

center. This inverse-U shape histogram indicates that the forecast is over-dispersed. The

probabilistic forecast for Los Angeles is the most over-dispersed.

A forecast is marginally calibrated if expected predictive CDF converges to the true
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Figure 4.12: Performance in term of probabilistic calibration in LaOla
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Figure 4.13: Performance in term of probabilistic calibration in Los Angeles
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Figure 4.14: Performance in term of probabilistic calibration in Elizabeth City
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Figure 4.15: PIT histogram for LaOla
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Figure 4.16: PIT histogram for Elizabeth City
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Figure 4.17: PIT histogram for Los Angeles
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Figure 4.18: Average predictive CDF vs empirical marginal CDF in LaOla

CDF of the observation. We estimate true CDF of observations by empirical CDF of the ob-

servations and expected predictive CDF by averaging predictive CDF of each observation.

In Fig.4.18, Fig.4.19 and 4.20 average predictive CDF of each method and empirical CDF

of the observations for LaOla, Elizabeth City and Los Angeles are compared. Consistent

with previous observation, the beta and combined method have better marginal calibration

than power method. Also, forecasts for Los Angeles have the worst marginal calibration.

The simulations show strong agreement with test and training results. The results are

summarized in Table 4.1. Marginal distribution of the observations is the ideal probabilis-

tic forecast if no more information is given. Therefore, we use the empirical marginal

distribution as a baseline for comparison. Marginal calibration is reported by maximum

CDF difference between empirical marginal CDF and average predictive CDF. Similarly,

Probabilistic calibration is reported by maximum CDF difference between empirical CDF

of PIT and CDF of uniform distribution. We normalize dispersion to be the reported vari-

ance of the PIT multiplied by 12 so one shows neutral dispersion and less than one means

over-dispersion.
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Figure 4.19: Average predictive CDF vs empirical marginal CDF in Elizabeth City
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Figure 4.20: Average predictive CDF vs empirical marginal CDF in Los Angeles
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Figure 4.21: An hour ahead forecast for Elizabeth City on March 8 - March 14- 2009

Despite failing in calibration, the forecast for Los Angeles predicts the outcomes better

as it has the lowest logarithmic score, smallest CRPS and sharpest interval. On the other

hand, the calibrated forecast for LaOla has the worst CRPS and sharpness metric. This is

consistent with the observations using point forecasts [32]. Having many partly sunny days

in Hawaii, it is harder to predict solar radiation with respect to more stable weather in Los

Angeles.

The average logarithmic score for empirical marginal distribution is an estimate of dif-

ferential entropy and for the ideal forecast is an estimate of conditional differential entropy.

By conditioning on past observation, the uncertainty decreases and the lower band for log-

arithmic score is conditional differential entropy. Hence Los Angeles with -0.59 score

intrinsically has less uncertainty with respect to Elizabeth City and LaOla with -0.176 and

-0.168 scores. The combined method significantly reduces the logarithmic score for Eliza-

beth City from -0.168 to -0.669 and for Los Angeles from -0.588 to -0.963. However, there

is a lower decrement from -0.176 to -0.338 for LaOla. This can be justified by stronger

dependency on past in Los Angeles and Elizabeth City with respect to LaOla.

As an example, an hour ahead predictive probability density for one week after denor-
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Table 4.1: Evaluation of different aspects of the probablistic forecast for different sites

Site Method
Log Score CRPS Sharpness Marginal Cal. Probabilistic Cal. Dispersion

train test train test Central 50% Central 90% train test train test train test

LaOla

Empirical Marginal -0.1760 -0.1536 0.1279 0.1298 0.4067 0.6933 0 0.0815 0 0.0814 1.00 0.9932

Power Method -0.2778 -0.2743 0.1046 0.1046 0.2973 0.6611 0.0692 0.0711 0.0452 0.0527 0.8942 0.8961

Beta Method -0.3139 -0.3069 0.1006 0.1014 0.2677 0.5936 0.0496 0.0636 0.0290 0.0441 0.9435 0.9429

Combined -0.3378 -0.3215 0.1009 0.1017 0.27 0.61 0.0503 0.0612 0.0532 0.0535 0.9019 0.9014

Los Angeles

Empirical Marginal -0.5878 -0.5479 0.1096 0.1101 0.2367 0.7100 0 0.0786 0 0.0788 1.000 0.9998

Power Method -0.6461 -0.6337 0.0706 0.0710 0.2053 0.4871 0.1920 0.1913 0.1687 0.1678 0.7001 0.7019

Beta Method -0.7846 -0.7450 0.0599 0.0607 0.1659 0.3804 0.0908 0.0903 0.0936 0.1023 0.7530 0.7650

Combined -0.9630 -0.9341 0.0594 0.0602 0.1447 0.3523 0.0818 0.0770 0.0854 0.0923 0.8202 0.8308

Elizabeth City

Empirical Marginal -0.1682 -0.1299 0.1409 0.1423 0.4078 0.8044 0 0.0576 0 0.0579 1.000 0.9978

Power Method -0.5254 -0.5213 0.0792 0.0798 0.2291 0.5357 0.0904 0.0904 0.0779 0.0795 0.7670 0.7731

Beta Method -0.5802 -0.5349 0.0727 0.0740 0.1922 0.4412 0.0301 0.0361 0.0643 0.0637 0.8719 0.8803

Combined -0.6691 -0.6365 0.0726 0.0738 0.1792 0.4354 0.0336 0.0410 0.0423 0.0495 0.8977 0.9056

malization of the probabilistic forecasts are shown in Fig. 4.21. The probability density

is shown by gray scale color where darker color shows higher probability density. The

realized outcomes are shown using ”o” symbols.

4.5 Conclusion

Solar forecasting methods in the literature usually use point forecasts which have a sin-

gle output value for each prediction, but a single value for prediction of a random variable

is not enough for many decision makers and more information about uncertainty of future

quantity is required. Probabilistic forecasts can give a more complete stochastic character-

ization using probability distribution over future quantity (for example predicting a CDF

function for a random variable). Recently some papers have discussed probabilistic fore-

cast for solar radiation. However, probabilistic solar forecast is still immature and requires

more contributions as combination of different probabilistic forecasts could lead to better a
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performance.

Two parametric probabilistic forecast methods based on beta and power distribution are

presented to predict solar irradiation and their performance are evaluated. A combining

procedure using the beta transformed linear opinion pool is utilized to improve the initial

forecasts. Our simulations on three different sites show that these methods reduce the

uncertainty by providing lower logarithmic score with respect to baseline forecast which

uses the marginal distribution. Calibration metrics shows that these methods despite the

simple structure accurately describe the stochastic characterization of solar irradiation. We

obtained this result by using simple zenith angle normalization and tap delay filters to find

conditional mean and conditional variance. Many other point forecast methods which are

minimizing RMSE or MSE can be used for estimation of conditional mean and variance to

obtain a probabilistic forecast based on the approach proposed here.
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Chapter 5

An Optional Insurance Policy for

Reliability of the Electric Grid

5.1 Introduction

In the last several decades there have been many major blackouts. Each particular

blackout can be explained with an initial failure followed by a chain of causal events which

ultimately leaded to a major system collapse [93]. For example, the 2011 Southwest black-

out initiated by the loss of a single 500kV transmission line. The power redistributions,

voltage deviations and resulting overloads created a domino effect tripping transformers,

transmission lines, and generation units in a very short time. The whole power grid col-

lapsed within eleven minutes after initial failure. The blackout left more than 2.5 million

consumer without power and it took about 12 hours to reconnect consumers[94]. Similarly,

northeast blackout in 2003 that affected 55 million people can be explained by an initial

cause and a chain of cascading events [93].
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When a consumer is connected to the electric grid it is the Utility’s responsibility to

provide continuous power available to the consumers. The costumers may suffer losses

due to interruption of the electricity. The annual cost of power interruption to the electricity

consumers in the US is estimated to be around $79 billion and due to uncertainty in analysis

it could be as high as $133 billion or as low as $22 billion[47].

While each black out occurrence could be explained by an initial failure and a chain

of causal events, it is impossible to determine the initial failure beforehand. Hence the

initial failure usually is modeled as a random event. Of course, 100% reliability cannot be

achieved as human errors or acts of nature like hurricanes, earthquakes and other weather

related events cannot be eliminated. However, provisions to provide adequate levels of

reliability is possible at a certain cost [95].

Generally, provisions of higher levels of reliability costs more for the Utility; on the

other hand, it reduces aggregate losses by the costumers. The reliability level is optimum

if total cost of provision and aggregate costumers’ losses are minimized[96].

For efficient allocation of reliability two aspects must be investigated. The first aspect is

the cost of providing reliability. Generally speaking, having more reserves and upgrading

infrastructure (for reliability purpose) will result in higher reliability levels and the cost

associated with them could be clearly determined. The second aspect is reliability worth

or how much the society is willing to pay for the reliability. Since reliability services are

currently combined with electric energy as a private good, its value can not be determined

directly using market transactions[75–77, 97]. The methods for estimation of outage costs

can be categorized by three general approaches; macroeconomic, survey based and market

based approaches [98].

The macroeconomic approaches consider dependency of macroeconomic indicators
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such as the gross domestic product to the electricity and make conclusions based on value

added to society and the amount electricity usage. One advantage of this approach is that

the conclusions reached by these studies are not limited to specific blackout circumstances

and the results are applicable to more general situations. However, different individual

blackout factors are not generally taken into account and direct damages are neglected in

these studies [97].

The survey based approaches rely on surveys from interviewed consumers to evaluate

outage costs by analyzing responses to questions. In these surveys, hypothetical power

outage scenarios are used to collect the necessary data. The consumers are asked to either

directly estimate outage cost or to select between different scenarios and interruption costs

are later calculated from their choices[99, 100]. The advantage of survey-based studies is

in the freedom of the hypothetical scenarios. In these survey-based studies, it is possible to

take different outage conditions and consumer damage factors into consideration without

being restricted to available alternatives or actual power outages. However, the results of

these studies suffer since they do not consider actual choices and in real situation people

may show different choices.

Market-based approaches estimate the economical value of the power not delivered to

the consumer (value of lost load or VoLL) by analyzing consumer preferences on the basis

of observations of real consumer choices made in the past regarding service reliability.

The observations can be either before or after of power outages. According to Sullivan

and Keane [101] results of market-based studies has high validity since they rely on actual

economic choices. However, the degree of freedom in market-based studies is limited

because results are derived from choices based on available alternatives.

There are many factors that influence outage costs. For example duration of outages,
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time of outage, prior notice. Different individuals also have different cost factors as the

discomfort level is different based on age, gender and income [75–77, 97].

Currently, electricity and reliability service are bundled together and enforce costumers

to pay for the bundled price. It is clear that there is a trade-off between immediate operating

cost and the long term goal of reliability as electricity and reliability are bundled together.

Since the Utility hardly receives any signal about consumers’ preferences on reliability, the

immediate cost of operation is the winner and reliability levels maintained (hopefully) at

minimum mandated standards (for example N-1 secure constraint). So the reliability up-

grades are postponed to the future and the reliability of the system constantly decreases as

infrastructure deteriorates and demand increases over time. The degradation of the system

continues until a big blackout happens in the over stressed system and the deficiencies of

the power system are highlighted requiring immediate substantial upgrades. The cycles

of degradation and substantial upgrades create a double paradox effects since the societies

who are used to high levels of reliability experience more losses due outages as they are

less prepared for it and less concerned about it [16].

In this chapter, we argue that reliability of electric grid is a public good and we use an

insurance framework to implement a benefit taxation mechanism that provides a framework

to achieve optimal reliability levels.

5.2 Terms and Definitions

— Rival: a good is rival if its consumption by one consumer prevents simultaneous

consumption by other consumers.

— Excludable: a good or service is excludable if it is possible to prevent consumers
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who have not paid for it from having access to it.

— Public Good is a good that is both non-excludable and non-rival in that individuals

cannot be effectively excluded from use and where use by one individual does not

reduce availability to others.

— Private Goods are goods which are both excludable and fully rival.

— Congestible Public Good are public goods where, after a point, the enjoyment re-

ceived by the consumer is diminished by crowding or congestion. For example

parks and highways.

— Willingness to Pay (WTP) is the maximum price at or below which a consumer will

definitely buy one unit of the product.

— Pareto Efficiency is a state of allocation of resources in which it is impossible to

make any one individual better off without making at least one individual worse

off.

— Benefit Taxation is a form of taxation system conceived by Erik Lindahl in which

individuals pay for public goods according to their marginal benefits.

— Strict Liability is a form of liability that makes a person legally responsible for

the damage and loss caused by his/her acts and omissions regardless of culpability.

Under strict liability, there is no requirement to prove fault, negligence or intention.

— Negligence Liability is a form of liability that makes a person legally responsible if

he/she has failed to use reasonable care, resulting in damage or injury to another.

— N-1 secure is situation of the system in which service is still provided under any

single contingency event.

— N-2 secure is situation of the system in which service is still provided under any

combination of two single contingency events.
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In the current electric system, once a costumer is connected to the electrical grid, it

is not possible to disconnect her/him from the grid and system operators can only

disconnect loads on emergencies at substation levels rather than customer level. The

system operators are also mandated by law to provide continuous power to all the

customers. (In the future, if system operator can communicate and/or disconnect

at the customer level using smart meters then the reliability service also becomes

excludable i.e. a private good. However, this idea is currently impractical.)

In the normal conditions, the usage of one consumer has infinitesimal effect on the

other consumers, however, in emergency conditions (when insufficient generation

is available due to a contingency event or extremely high demand) the consumption

of one consumer has adverse effects on the usages of others. Therefore, reliability

of the power system is a congestible public good.

5.3 Limitations of Bundled Pricing

Electricity service is provided as a package to the consumers including all generation,

transmission, distribution, ancillary and other services necessary to deliver and measure

useful electric energy and power to consumers. The total cost of providing the package

is usually distributed between the consumers based on their consumption. Therefore, all

costumers pay for a bundled price. While the power and energy in the package are private

goods, the services like voltage stability, frequency stability and reliability are considered

as public goods. Therefore the bundled pricing has several limitations.

Using a bundled pricing policy, the reliability will not increase, no matter how much the

utility receive money from customers. This fact has been shown in [102, 103]. Kirschen
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and Strbac showed that unless the governing rules of the system usage is changed, addi-

tional transmission capacity would be available to all users of the transmission network.

Hence they demonstrated using a simple example that these investments do not decrease

blackout probability [102]. Reppen also states that under N-1 criteria the reliability of the

system constantly degrades without showing itself in the criteria [103]. This means that

over the time the existing reliability margins in the system are utilized which increases

the probability of black out; however, no investment will be done since system is still N-1

secure.

Bundled pricing policy is not optimal for either customer or for the Utility. Considering

the benefits for the Utility when costs are raised. Those customers who have lower WTP

for reliability decrease their electricity consumption which reduces expenditure on both

electricity and reliability and those who have higher WTP for reliability may still be paying

less than what they are willing to pay. If those consumers who use more electric energy

are also demanding more reliability, we can make a connection between energy usage and

reliability demand as a possible proxy to estimate willingness to pay so the bundled price

becomes socially optimum for both reliability and electricity. However, the demand for

electricity and reliability are not always connected together. Some firms may use small

amount of energy while they require high reliability; on the other hand, some firms may use

large amount of energy but are less concerned about reliability. For example, for agriculture

crops a large amount of energy is used for irrigation purposes but the crops can easily

tolerate energy outages by rescheduled watering. Similarly, water supply and sewage sector

demands for high energy quantities but is less vulnerable to potential outages. On the other

hand, construction and wholesale sector need high reliability [16].

Bundled pricing is not optimal for customers, as well. When a consumer is connected
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to the power grid it is the responsibility of the Utility to provide continuous power avail-

able to the consumers. The costumers may suffer losses due interruption of the electricity.

Consumers may claim compensation for the damages and losses and the Utility is often

mandated (for example Rule 16 in Hawaiian Electric Company) to compensate the con-

sumers losses if it is under their control. However most of the time, the main cause of

the blackout is an initial failure which is usually out of control of the Utility company and

hence the customer will not get any compensation. Many court cases are reviewed in [104].

In such a framework there is no incentive for the Utilities to invest against events outside

their control for example investing in underground transmission lines rather than overhead

transmission lines in areas with higher storm probability. Strict liability for the Utility may

also seem a solution for this problem. However, in that case the Utility will over invest on

reliability to minimize its own cost and force the costumers to pay for it, which leads to a

non-efficient solution[105].

Customers with higher WTP may buy their own back up generation and pay for the

capital and maintenance of it to get to reliability they need. However considering skill

and specialization factor of the Utility and economies of scale this solution is not efficient.

Another way for costumers with higher WTP is to buy an insurance from independent

insurers and transfer risk of business interruption due to power outages, but in such cases

insurer cannot fight against the outage causes. The insurer only estimates the distribution of

losses and based on that computes and collects the premiums and compensate the losses if

it happens. So both of aforementioned solutions are not optimal. We propose an “optional

insurance policy” in the following section.
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5.4 Decoupling Reliability and Electricity

Let us assume the Utility has an account to insure against outages by collecting optional

premiums from the consumers. If no one wants to pay the premium it means that current

reliability situation is acceptable and extra care and investment is not required. On the other

hand if some consumers are willing to pay the premiums, this means that current reliability

situation needs to be improved and the Utility company has incentive to spend some of

accumulated premiums for reliability upgrade in order to reduce outage probability and

keep the rest for compensation of potential future outages.

Let us consider a simple example, assume we have two areas A and B which are con-

nected using three transmission lines with each having 300MW capacity. There is an effi-

cient generator at area A with marginal cost equal to $20 per MWh and another generator

at area B with marginal cost equal to $50 per MWh. A load equal to 1200MW is located at

area B and both generators have enough capacity to serve entire load. The cheapest opera-

tion is to assign full transmission capacity (3*300MW=900MW) to the cheap generator and

the remaining 300MW to the expensive generator (Fig. 5.1). This scenario costs $33000

per hour but if for any reason one of the transmission lines get tripped both other lines are

overloaded and get tripped and the system collapses. To provide more reliability, 600MW

is assigned to the cheap generator and 600MW to the expensive generator (Fig. 5.2). In this

case if one of the lines fails, its power is transferred to the other two lines and system con-

tinue to work but this scenario costs $9000 per hour more. We use the N-1 secure system

as the baseline.

Let assume that capital invested to increase capacity of all three lines from 300MW to

400MW. In this case, system operators consider new N-1 scenario and assign 800MW to
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Figure 5.1: Cheapest but non-secure scenario.

Figure 5.2: N-1 secure operation.

94



Figure 5.3: When reliability is mandated by N-1 criteria, increasing transmission capacity,

decreases the operation costs but reliability does not improve.

the cheap generator and 400MW to the expensive one as this scenario is the cheapest way

which is consistent with the standards. It is clear that operation cost is decreased but the

reliability stays the same as before.

If instead of increasing capacity of existing lines a new transmission line with 300MW

capacity is created. In this case system operator assigns 900MW to cheap generator and

300MW to the expensive one as the cheapest way to operate the system in compliance with

the standards. In this case, addition of new line decreases operating cost and N-1 security

stays the same, however, the reliability is decreased since probability of outage of more

than one line among four lines is more than probability of outage of more than one line

among three lines. We note that if new line is exclusively used for the reliability purpose

(i.e. four lines each carries 150MW as shown in Fig.5.5) system become N-2 secure and

reliability substantially increases.

If system (without any improvement) runs with N-1 secure strategy and p0 is probability

of a line outage during a 30 days billing time. The system will collapse if two or more

line get tripped so it happens with 3p20 − 2p30 but for N-2 secure scenario the blackout
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Figure 5.4: When reliability is mandated by N-1 criteria, adding a new transmission line

will decrease the operating cost; however, the reliability percentage become worse as more

lines will be subject to a possible failure.

probability is only p30. So upgrading to a N-2 secure system decreases the risk by a factor of

p0/(3−2p0). Hence upgrading system to N-2 secure system is justified if the total collected

premium times 1− p0/(3− 2p0) is more than the extra cost for operating system with N-2

secure scenario ($6480000 here). If the total premiums is not enough to immediately run

the system with N-2 scenario, the Utility keeps the money in an account to accumulate

for potential loss compensation or future reliability upgrade. If a new line is built only for

reliability improvement, the risk of blackout decreases by a factor of (3p0 − 4p20)/(3 −

2p0). Therefore if the accumulated money times 1 − (3p0 − 4p20)/(3 − 2p0) is more than

construction cost of a new transmission line, the Utility will build a new line and use it only

for the reliability purpose (i.e. runs the system with four lines with N-2 secure as shown in

Fig.5.5).

Compensations are computed by amount of premium that is paid by each customer

divided by outage probability in the base case. Risk neutral decision makers compute their
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Figure 5.5: If a transmision line is built only for reliability purpose.

premium based on their expected losses and risk adverse decision makers willing to pay

even more. So the total collected premiums is a measure of expected aggregate losses.

Based on results of extensive surveys, people do not consider reliability as a new service

and value it based on expected (direct and indirect) losses [99, 100]. Therefore the total

collected premiums is aggregate willingness to pay for reliability of power system. Those

who are not willing to pay premiums will not compensated when outage losses occur.

Reliability worth also depends on time and different consumers evaluate it differently

based on time. For example, some business may value it more during working days others

may value it more during weekends and holidays. In the optional insurance policy, the

customers can distribute the premiums according to their desires and therefore we can

address variation of the optimal reliability accordingly.

Coming up with an optional insurance policy for reliability may seem similar to de-

mand response problems since in both cases flexible costumers will pay less than others.

But optional insurance policy is different in many aspects. In demand response programs,

consumers respond to a price signal and decide whether to consume power or not. The
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participation in demand response programs are usually low as people have more important

things to decide and so they usually disregard the price signal unless an automatic decision

making system is available. But in the insurance framework, people only make a long term

decision once and forward their decisions to the Utility. The aggregate premiums show

the willingness to pay for the reliability. The Utility could spend part of this money for

improving reliability and the remaining part will be accumulated for reimbursing future

outage losses. In fact by considering this insurance framework, the customer actively par-

ticipates in the Utility investments, rather than active participation in demand management.

5.5 Conlusion

While the active and reactive power which is delivered by the power grid is a private

good because it is both excludable and rival, other characteristics of this private good such

as voltage and frequency stability and system reliability are considered as public goods. So

a method is required to make the social optimal decision about quantity of these services.

The commonly used rule of thumb is that outages should happen less often than 1 day in

10 years. However this rule of thumb may be different than the social optimal decision;

hence, researchers defined an economic criteria called value of lost load or VOLL which is

used to estimate the marginal social cost of unserved loads. VOLL can be used by decision

makers to decide on optimal quantity of electricity reliability however with current pricing

method which bundles the price of electricity and other services and a unique price is for

this mixed good is not efficient as the VOLL varies for different firms.

The proposed insurance insurance policy is a way to decouple electricity and reliability

and a proxy for implementation of benefit taxation which can achieve both optimal quantity
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and optimal price. The premium of the insurance is optional but depends on two factors,

outage probability and losses by the costumers if they experience an outage. The proba-

bility of the outage is computed by the Utility and need to be approved by Public Utilities

Commission. Each costumer pay the premium he or she will to pay but the compensa-

tion is based on amount of premium divide by the probability of an outage. Therefore, a

risk neutral decision maker will to pay a premium equal his/her losses times the outage

probability.
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Chapter 6

Energy Efficient Scheduling Algorithms

for Pumping Water in Radial Networks

6.1 Introduction

Electricity cost of pumping water is a large part of the total operation costs of water

supply networks [17]. In recent years research has been conducted in [18–22] to model

the water network and to reduce costs. Different optimization algorithms (linear Program-

ming [22, 23], quadratic programming, dynamic programming, genetic algorithm[24], ant

colony[25], heuristics [26]), various hydraulic modeling (nonlinear hydraulic[27], simpli-

fied hydraulic[28, 29], mass transfer[30]), and different decision variables (pump operating

time, tank levels) [31] have been explored. In most of the past research, users do not

have any active participation and demands are either modeled as a deterministic model or

a stochastic process that is predicted using a time series model. In this chapter we consider

active participation for the users of a radial network and we show that suitable collaboration
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of users can reduce the required energy to pump the desired amount of water for all users.

We use a nonlinear hydraulic model for the pump (both fixed speed and variable speed)

and pipes and we find the most energy efficient schedule for two users using nonlinear op-

timization. The solution for the two user case, is used to find an approximate solution for

more than two users.

6.2 Modeling

6.2.1 Model for the Pumps

The amount of power that a pump uses depends both on pump parameters such as

efficiency and the Q-H curve associated with the pump, as well as the operating point of

the pump (that, in turn, depends on the fluid demand, network characteristics, and supply

schedule). We begin with the characterization of the pump parameters. A Q-H curve

for a pump relates the amount of flow (Q) through the pump to the head, or the pressure

difference between the input and the output of the pump. A common approximation is to

assume the Q-H curve to be considered is a quadratic function of Q and H for a specific

rotation speed:

H(Q) = H0 −KDQ
2, (6.1)

where H0 is maximum head which the pump can generate and KD is a parameter that

determines the trade off between head and flow rate and is obtained through curve fitting.

Given this curve, the power usage of the pump is then given by

P =
ρgQH(Q)

η
(6.2)
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where ρ is the specific gravity of the fluid being pumped, η is the efficiency of the pump

and g is the gravitational constant. The efficiency of the pump is not a constant; rather it

depends on the operating point of the pump. Thus, a pump is associated with both a Q-H

curve and additionally the efficiency or equivalently braking horse power (BHP) curves. In

a BHP curve, the total power consumption of the pump as a function of discharge flow is

measured and plotted (see, e.g. Fig. 6.1). The BHP curve is usually modeled as a cubic

function of the flow [106]:

BHP (Q) = P0 + P1Q+ P2Q
2 + P3Q

3 (6.3)

where P0 is the shut off power (power consumption when the outlet of the pump is com-

pletely shut off), which measures constant losses such as disk friction and intercept for

other hydraulic losses such as recirculation [107]. P1, P2 and P3 are coefficients that ac-

count for the useful power of the pump and changes in the hydraulic losses (flow friction,

shock, leakage and recirculation) as flow increases. We note that P3 is negative which re-

sults in the power consumption decreasing when the pump is operated at high flows but low

heads.

The Q-H and BHP curves of the pumps are obtained through experiments for various

values of the rotation speed of the pump. If the electric motor which drives the pump ro-

tates at a nominal speed, the Q-H curve is constant. However, if the motor is equipped

with variable speed drive (VSD), both braking horse power and head-flow curves change

according to rotation speed (see Fig. 6.2). If equation (6.1) and (6.3) give the pump per-

formance curves at nominal speed, the performance curves at new speed can be computed
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Figure 6.1: Performance curves of a 12” pump at 1180 rpm
based on affinity laws [107, 108].

H(n,Q) = H0(n/n0)
2 −KDQ

2 (6.4)

BHP (n,Q)=P0(n/n0)
3+P1(n/n0)

2Q+P2(n/n0)Q
2+P3Q

3 (6.5)

where n is rotation speed and n0 is nominal rotation speed (usually is maximum rotation

speed).

6.2.2 Model for the pipe networks

Modeling the power loss due to friction as the fluid is pumped through a pipe is a

complicated function of the pipe parameters and the operating conditions. This power loss

is usually modeled through the head loss. The Hazen-William equation empirically relates
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the flow of water in the pipe and the head loss. While it is a simple formulation, it is

known to be rather inaccurate. Due to its limitations, however we use the more general

(and usually preferred [109]) Darcy-Weisbach equations in this paper. According to this

equation, the amount of head loss is proportional to square of the flow in the pipe.

Hloss(Q) = KQ2, (6.6)

where K is a coefficient which is determined by parameters such as the length, diameter and

shape of the pipe and the Reynolds number of the fluid being pumped 1. It is interesting to

note that a network of pipes can be modeled as a resistive electric circuit, in which the role

of current is played by the flow and that of voltage by the head. However, while analogies

of Kirchoff current and voltage laws hold, the linear Ohm’s law in the electric circuit needs

to be replaced by the non-linear relation in (6.6). We note that with this analogy, power is

given by head times flow.

6.3 Problem Statement

Consider a radial network of N users. The network can be described by a linear graph

with N + 1 nodes. Let the nodes be numbered 0, 1, 2, · · · from one end with the node 0

denoting the pump. Let node i correspond to user i who requires a certain volume Vi of

water over a time period T . This volume can correspond, e.g., to water needs over a day

that begins at time T . Any water supplied over the time [0, T ] can be stored in a local tank

and used over the day.

1. We note that dependency of the coefficient to the Reynold number makes it dependent to flow, so

several recalculations are required to tune the final solution
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Figure 6.3: Scheduling problem

We assume that the pump supplies water from a well with water level at an elevationHw

under the ground. The pump performance curves are given by equations (6.1) and (6.3).

Given the non-linear dependence of head loss in a pipe and power usage of the pumps

on the flow, it is clear that scheduling of water for various users will have a significant

effect on the total energy consumption. The optimization problem that we seek to solve is

to design the water supply schedule to minimize the total energy consumption at the pump

while meeting all the user demands in terms of the volume of water needed by time T .

6.3.1 Model for required energy to supply a radial network with a

fixed speed pump

If the pumps is not equipped by variable speed drive it turns at relatively constant speed

and operating point is on the Q-H curve. This may create more head than the required head

for a specific pipe and flow. The extra head wastes the energy in the pipes and can cause
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higher pressure at the outlets. The total energy usage is given by:

Etotal=

∫ T1

0

P0+P1

N∑
i=1

qi(t)+P2(
N∑
i=1

qi(t))
2+P3(

N∑
i=1

qi(t))
3dt (6.7)

where qi(t) is the flow for the i-th user at time t and T1 is total time that pump is on in the

period T . The schedule should satisfy demand of all users:∫ T1

0

qi(t)dt = Vi 1 ≤ i ≤ N (6.8)

Also, the head which is generated by the pump should be greater than head required by the

pipe networks at all times:

H0 −KD(
N∑
i=1

qi(t))
2 ≥ Hw +

N∑
j=1

Kj(
N∑
i=j

qi(t))
2 0 ≤ t ≤ T1 (6.9)

We also assume that users only consume water and cannot return water to the pipe so

demand is nonnegative for all users at all time.

qi(t) ≥ 0 1 ≤ i ≤ N 0 ≤ t ≤ T (6.10)

We therefore have a constrained nonlinear optimization and the discharge flow at different

outlets are the decision variables. The pump turns off if there is no discharge flow and turns

on if one of the decision variables become positive.

6.3.2 Model for required energy to supply a radial network with a

pump with VSD

If the pump is equipped by a variable speed drive (VSD), a controller adjusts the ro-

tation speed of the pump to avoid creating excess pressure on the pipes. So we have a
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different optimization since we have both rotation speed (n(t)) and discharge flows as de-

cision variables.

min
qi(t),n(t)

∫ T1

0

P0(n(t)/n0)
3 + P1(n(t)/n0)

2

N∑
i=1

qi(t)+

(n(t)/n0)P2(
N∑
i=1

qi(t))
2 + P3(

N∑
i=1

qi(t))
3dt (6.11)

s.t.
∫ T1

0

qi(t)dt = Vi 1 ≤ i ≤ N (6.12)

H0(n(t)/n0)
2 −KD(

N∑
i=1

qi(t))
2 ≥ Hw+

N∑
j=1

Kj(
N∑
i=j

qi(t))
2 0 ≤ t ≤ T1 (6.13)

qi(t) ≥ 0 1 ≤ i ≤ N 0 ≤ t ≤ T (6.14)

6.4 Solution formulation

6.4.1 Fixed speed pump

Optimal schedule for one user: The optimal solution is to fill the capacity of the pump

so that there is no excess pressure created and the task is done in minimum time.

q1(t) =

 qmax =
√

H0−Hw

KD+K1
0 ≤ t ≤ V1/qmax

0 otherwise
(6.15)

If qmax is smaller than the best efficiency flow, the solution is intuitive since in addition

to using the pump for less time, we also approach the best efficiency point. When qmax is

larger than the best efficiency flow, the pump works at a less efficient point but turns on

for less time and this results in lower pressure loss at discharge outlet which overcomes the

decrease in efficiency.
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Optimal schedule for two users: In a radial network the users jointly own the pump

and pipe and they should determine how to share their usage. Each sharing strategy has its

own benefit and cost. For example, if users use the pipe and pump together power loss in

second pipe decreases and pump may operate at more efficient point, but power loss due to

extra pressure at the first discharge outlet is unavoidable. In this section we find a partial

sharing strategy that solves the trade off between sharing or no-sharing to find the schedule

that minimizes energy usage of the pump. In this partial sharing strategy first user partially

opens its valve and the second user completely opens its valve until the first user needs are

satisfied, then the second user uses all the flow until the second user needs are completely

satisfied. For extreme points the partial sharing corresponds to a full share or no share.

q1(t) =

 Qp
V1

V1+αV2
0 ≤ t ≤ V1+αV2

Qp

0 otherwise
(6.16)

q2(t) =


Qp

αV2
V1+αV2

0 ≤ t ≤ V1+αV2
Qp

Q2
V1+αV2
Qp

< t ≤ V1+αV2
Qp

+ V2(1−α)
Q2

0 otherwise

(6.17)

where Qp is flow of the pump when both users use the water, α is fraction of V2 which is

shared with first user and Q2 is maximum flow if only the second user uses water. Then,

the optimization problem becomes:

min
Qp,α

(P0 + P1Qp + P2Q
2
p + P3Q

3
p)

(V1 + αV2)

Qp

+

(P0 + P1Q2 + P2Q
2
2 + P3Q

3
2)

(1− α)V2
Q2

(6.18)

s.t. H0 −KDQ
2
p = Hw + (K1 +K2

αV2
αV2 + V1

2

)Q2
p (6.19)

0 ≤ α ≤ 1 (6.20)
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Optimal schedule for more than two users: Similarly we can continue to compute

optimal solution for three and more users but the number of solution shapes and complexity

of conditions increases rapidly. For example, we can assume 2n−n different scenarios that

fill the pump capacity and based on the Kis and Vis values one of the scenarios is optimal.

So we need to find heuristic or approximate solution. In a heuristic way we recursively use

two users solution to determine the optimal scenario.

Ck :=
N∑
j=k

Vj (6.21)

Kprei :=
i∑

j=1

Kj (6.22)

Kposti :=
N∑

j=i+1

Kj(Cj/Ci + 1)2 (6.23)

Let α∗(K1, K2, V1, V2) be the solution to optimize equation (6.18) for the given param-

eters. Then, the algorithm shown in flowchart of Fig. 6.4 is used to find an approximate

solution.

6.4.2 Pump with VSD

Optimal schedule for one user: For a single user, we should find the optimum pump

speed and for the optimum speed, optimal flow is maximum possible flow due to head-flow

constraint.

q∗1(t) =

 qmax =
√

H0n∗/n0
2−Hw

KD+K1
0 ≤ t ≤ V1/qmax

0 otherwise
(6.24)
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Figure 6.4: Flowchart for more than two users
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We find the optimal speed by solving the following nonlinear optimization using Lagrange

multipliers.

n∗=argmin
n

V1
q1

(P0(n/n0)
3+P1(n/n0)

2q1+P2(n/n0)q
2
1+P3q

3
1) (6.25)

s.t. H0(n/n0)
2 −KDq

2
1 = Hw +K1q

2
1 (6.26)

q1 ≥ 0 n ≤ n0 (6.27)

From optimization of equation (6.25), we find the most efficient operation point which does

not depend on demand volume (V1). V1 shows itself in time required to finish the task.

Optimal schedule for two users: Similar to fixed speed solution we define a partial

share scenario

q1(t) =

 qp
V1

V1+αV2
0 ≤ t ≤ V1+αV2

qp

0 otherwise
(6.28)

q2(t) =


qp

αV2
V1+αV2

0 ≤ t ≤ V1+αV2
qp

q∗2
V1+αV2
qp

< t ≤ V1+αV2
qp

+ V2(1−α)
q∗2

0 otherwise

(6.29)

where qp is flow of the pump when both user use the water, α is fraction of V2 which is

shared with first user, q∗2 and n∗2 are solutions of single user case (since it does not depend

on volume). Then, the optimization problem becomes:

min
qp,n1,α

BHP (qp, n1)
(V1 + αV2)

qp
+BHP (q∗2, n

∗
2)

(1− α)V2
q∗2

s.t. H0(n1/n0)
2 −KDq

2
p ≥ Hw + (K1+K2

(αV2)
2

(αV2 + V1)2
)q2p

0 ≤ α ≤ 1 (6.30)

Even though the optimization of equation (6.30) becomes complex, but we can solve it

using KKT conditions. For three users or more we can use same approximation algorithm
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of fixed speed pump but the solution of optimization of equation (6.30) is used to determine

α∗(Kprei, Kposti, Vi, Ci+1).

6.5 Simulation results

In this section we consider 12” pump in Fig.6.1 and we assume static head (water level

+ minimum required pressure at discharge outlets) is 100 feet. Values of pipe coefficient

varies based on the length and diameter of the pipe.

In Fig. 6.5 the required energy for single user versus different pipe coefficient is shown

and in Fig.6.6 schedule for using fixed speed and variable speed pump are compared to-

gether. The figure clearly shows that VSD pumps perform their tasks more slowly, but

with more energy efficiency. VSD pumps also are better for water pipes as they require

less pressure and this increases the longevity of the pipes and decreases water leaks. In

Fig. 6.7 required energy for pumping 0.5 million gallon of water to each of users based on

various pipe coefficient is shown. In both fixed speed and various speed pumps, the partial

sharing scenario gives up to 10% improvement with respect to the no share scenario.

6.6 Conclusion

In this chapter, we considered the problem of scheduling water usage for pumping water

in a radial water network. For both fixed speed and variable pumps, we derived the exact

solution for a two user network. The solution for the two user case is then used to find

an approximate solution for networks with more users. Our simulation shows that active

participation of users could reduce the energy consumption up to 10%. Finding solution
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Figure 6.5: Energy required for pumping one million gallons of water using a 12” pump

from a 100 feet well
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Figure 6.6: Optimal flows for pumping one million gallons to one user (K1 = 15)
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Figure 6.7: Solutions for two users case with various pipe coefficients

for tree networks, performance bounds for the approximate solution of networks with more

users, and decentralized algorithm are also interesting but left for future research.
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Chapter 7

Summary and Further Dirsctions

Environmental issues such as global warming and climate change have changed peo-

ple’s perception as new more efficient and more sustainable energy sources are being ex-

amined and more energy efficient technologies are being developed to reduce energy con-

sumption. To this end this dissertation is mainly related to optimizing energy usage. In

Chapter 2-4 we discussed solar forecasting methods which is a requirement for efficient

integration of solar generation into the power grid. Significant penetration of intermittent

generation like wind and solar in the power grid introduces concerns about reliability of the

grid due to stochastic nature of these energy sources. Therefore, in Chapter 5 we discussed

reliability of the electric grid using an insurance framework. Finally, an important prob-

lem for the energy / water nexus is discussed in Chapter 6. We discussed energy efficient

scheduling algorithms for pumping water in water networks.

In the second chapter, we implemented and evaluated simple forecasting methods for

predicting solar radiation. Simulation results for three different sites show that normaliza-

tion using cosine of zenith angle is an effective way for removing both seasonal and daily
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effects.

Solar forecasting methods are usually evaluated using symmetric criteria like RMSE

or MAE. However, grid operators have more concern about shortage of production rather

than its abundance, i.e. overestimation of resources has more serious consequences than

underestimation. So in the BA’s view the cost function is not symmetric. For this reason

we discussed solar radiation forecast under CPWL and LinEx as asymmetric cost functions

which are better fitted to the grid operator problem. For each of these cost functions we

used two scenarios i.e. adding bias to an unbiased forecast or formulating a directly biased

forecast which considers the cost function from the outset. Under CPWL cost the forecast is

formulated as a linear program and for LinEx cost we formulated the problem as a convex

optimization and solved it by a gradient descent algorithm. Our simulations show that

directly biased forecasts have a significant advantage. Simulation results also show that

this difference becomes greater as asymmetry in the cost function increases.

We also modified the least mean square (LMS) algorithm according to CPWL and

LinEx cost functions to create an online method. A decaying momentum term is used

in the learning rule to increase the rate of learning. The proposed online method gives an

improvement over batch solutions due to better tracking ability.

We have shown the necessity of using asymmetric cost functions directly in the training

phase of simple autoregressive forecast models. More sophisticated learning algorithms

based on other methods such as neural networks or wavelets might potentially give better

performance, and use of asymmetric cost function when training these models needs further

investigation. Here we discussed forecast methods for single sites using their past solar

radiation observations. Forecast methods for multiple sites and incorporating exogenous

data like weather forecasts are also interesting and left for future research.
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Solar forecasting methods in the literature usually use point forecasts which have a

single output value for each prediction, but a single value for prediction of a random vari-

able is not enough for many decision makers and more information about uncertainty of

future quantity is required. Probabilistic forecasts can give a more complete stochastic

characterization using probability distribution over future quantity (for example predicting

a CDF function for a random variable). So, two parametric probabilistic forecast methods

based on the beta and standard two sided power distributions are presented to predict so-

lar irradiation and their performance are evaluated. A combining procedure using the beta

transformed linear opinion pool is utilized to improve the initial forecasts. Our simula-

tions on three different sites show that these methods reduce the uncertainty by providing

lower logarithmic score with respect to baseline forecast which uses the marginal distribu-

tion. Calibration metrics show that these methods despite their simple structure accurately

describe the stochastic characterization of solar irradiation. We obtained this result by us-

ing simple zenith angle normalization and tap delay filters to find conditional mean and

conditional variance. Many other point forecast methods which are minimizing RMSE or

MSE can be used for estimation of conditional mean and variance to obtain a probabilistic

forecast based on the approach proposed here.

In addition to this work, some papers have recently discussed probabilistic forecast

for solar radiation. However, probabilistic solar forecast is still immature and requires

more contributions as combination of different probabilistic forecasts could lead to better a

performance. A potential direction is to use support vector conditional density estimation

for probabilistic forecast of solar radiation.

Forecasts can be used to make decisions in controlling the electric power grid. In order

to make a suitable decision, the influence of intermittent generation on reliability of the
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power grid as well as reliability cost and reliability worth should be investigated. To have

deeper insights, we discussed challenges related to the reliability of the power grid. Sys-

tem reliability is considered as a public good and a method is required to make the social

optimal decision about quantity of reliability level. The commonly used rule of thumb is

that outages should happen less often than 1 day in 10 years. However this rule of thumb

may be different than the social optimal decision; hence, researchers defined an economic

criteria called value of lost load or VOLL which is used to estimate the marginal social cost

of unserved loads. VOLL can be used by decision makers to decide on optimal quantity of

electricity reliability, however, with current pricing method which bundles the price of elec-

tricity and other services, a unique price for this mixed good is not efficient as the VOLL

varies for different firms. We proposed an insurance policy as a way to decouple electricity

and reliability and a proxy for implementation of benefit taxation which can achieve both

optimal quantity and optimal price. The premium of the insurance is optional but depends

on two factors, outage probability and losses by the costumers if they experience an outage.

The base probability of the outage is computed by the Utility and need to be approved by

Public Utilities Commission. Each costumer pay the premium he or she will to pay but the

compensation is based on amount of premium divided by the base probability of an outage.

Therefore, a risk neutral decision maker will to pay a premium equal to his/her losses times

the outage probability. The Utility use part of the collected premium for compensating

losses and can use the rest for improving the reliability level more than the baseline. This

research is preliminary work where we have introduced ways reliability and insurance can

be used in the operation of the electric power grid.

Finally, we considered the problem of scheduling water usage for pumping water in

a radial water network. For both fixed speed and variable pumps, we derived the exact
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solution for a two user network. The solution for the two user case is then used to find

an approximate solution for networks with more users. Our simulation shows that active

participation of users could reduce the energy consumption up to 10%. Finding solution

for tree networks, performance bounds for the approximate solution of networks with more

users, and decentralized algorithm are also interesting but left for future research.
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