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Abstract 

Sonoporation and Impedance Spectroscopy for the Assistance with and 

Observation of Development of Healthier Embryos and Fetuses 
 

by 

 

Kainalu Matthews 

 

Master of Science in Electrical Engineering 

 

University of Hawaiʻi, Mānoa 

Aaron Ohta, Chair 

 

 

This thesis presents two separate research projects with an emphasis on developmental biology.  

Maternal obesity increases the risk for perinatal complications and predisposes for adult 

disease. Glucose is one of the main nutrients for a fetus, and it has been shown that the placental 

Glut1 glucose transporter is upregulated (produced in greater quantities) in obese mothers. By 

employing sonoporation, we can deliver plasmids directly to placental cells to regulate the Glut1 

transporter. This work highlights the steps that were taken to optimize the experimental condition 

such as the ultrasound parameters used for placental sonoporation in mice. 

Viability testing of embryos for bovine and human in vitro fertilization remains a 

challenge. The current procedure is to biopsy the blastocyst cells by first puncturing a hole in the 

embryo, then cultivating two cells from the blastocyst. The cells give information about the 

possible aneuploidi’s, or an irregular number of chromosomes within a cell, which may exist 

within the blastocyst. Impedance spectroscopy is a possible alternative to this highly invasive 

technique. This work looks at impedance spectroscopy employed for the Artemia cysts.  
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CHAPTER 1 DEVELOPMENT OF BIOLOGY 

Developmental biology is the study of the “development, differentiation, and growth in 

animals and plants at the molecular, cellular, genetic and evolutionary levels” [1]. Embryogenesis 

is a small part of developmental biology; however, it is the beginning stage of life for animals 

therefore is perhaps one of the most important areas of research. For animal development 

embryogenesis is the study of a fertilized egg cell.  

Advances in technology have greatly benefitted the medical field over the course of history. 

In-vitro fertilization (IVF) [2], magnetic resonance imaging (MRI) [3], and cardiac defibrillators 

[4] are just several examples of this. IVF is a powerful tool for embryogenesis because it enables 

for a greater genetic selection prior to development of an embryo. For example, IVF is currently 

used in the bovine industry to produce cattle which are either optimal for producing milk (e.g. in 

the dairy industry) or highest quality grade beef (e.g. in the meat industry).  

Ultrasound has been used since the 1940’s and commonly serves as a diagnostic imaging 

tool [5]. Recently, the application of ultrasound has been expanded into a different area - as a 

therapeutic tool. For example, to enable gene transfection of cells within a host or to ablate tissues. 

Using ultrasound to deliver DNA molecules into cells is known as sonoporation. 

The technique of using ultrasound to enable gene transfection is known as sonoporation. 

In brief, lipid microbubbles coated with DNA are delivered through the bloodstream of a host. 

Ultrasound is then applied over the target organs or tissue. With optimal pressure and frequency, 

these waves induce oscillations of the microbubbles and can eventually lead to cavitation of the 

microbubble. The energy released through the cavitation process releases the DNA, and induces 

pores on the membrane of cells near the microbubbles. The DNA then enters these cells, resulting 
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in gene transfection. The goal of this project was to deliver plasmids to the placental cells 

(trophoblasts) of C57BL/6 mice. 

A significant tool in electrical engineering is the development of impedance spectroscopy 

(IS). This technique generates an electrical signal which is swept over a preset frequency range to 

identify certain characteristics of the target substrate, device, or object. The goal of IS is to 

characterize the target material, medium, or object with a specific impedance and phase 

measurement over the swept frequency range. This characterization of impedances then can be 

compared to specific properties of the target. Here we discuss the application of IS to correlate the 

varying impedance measurement to the developmental changes of different organisms. These two 

projects are detailed in this work and they cover just a small part of the early stages of development 

in mice and Artemia. Sonoporation was used in experiments for pregnant mice, specifically to 

deliver genes to trophoblasts and IS was used to characterize the condition of Artemia cysts until 

their hatching. The last chapter in this thesis summarizes the two projects and concludes with some 

future improvements and ideas. 
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CHAPTER 2 GENE DELIVERY WITH THE SONOPORATION 

TECHNIQUE 

 In America one in three adults are obese, and one in 20 have extreme obesity [6]. A study 

conducted by the National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK) from 

1962 to 2010 has found that there has been an increase of people who are either obese or have 

extreme obesity (Fig. 2.1) [6].  

 

Approximately 38.25% of women between the ages of 20 to 59 were obese in America 

from 2011 to 2014, according to the US Department of Health and Human Services [7]. If these 

women are pregnant, they present increased health risks not only to themselves, but to their babies 

as well. Examples of these health risks include pregnancy loss, birth defects, stillbirth, and fetal 

overgrowth [8]. Furthermore, children born to obese mothers are at higher risk of developing 

diabetes, obesity, and heart disease [9].  

 

Figure 2.1: The percentage of the US population that is overweight, obese or extremely obese. The 

prevalence of obesity and extreme obesity has been increasing since 1962. Figure reproduced from ref. [6]. 
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Controlling the amount of nutrients a fetus receives during gestation can counter the 

negative effects of maternal obesity. One way to achieve this goal is to regulate glucose transport 

within the placenta. There are some potential treatment options for obese mothers such as diet and 

exercise [10], bariatric surgery [11], and viral gene delivery [12]. In this thesis, a non-viral 

approach, utilizing ultrasound, is explored for gene therapy to regulate glucose transport in the 

placentas of obese mothers. 

2.1 ANIMAL MODEL 

Glucose has been found to be one of the most significant nutrients necessary for fetal 

development [13]. It is well known that in mammals the mother delivers nutrients via the blood 

stream to the fetus; and the intermediary step in this nutrient transfer process is the placenta [13]. 

If a fetus receives too many nutrients, from his or her overweight or obese mother, it may lead to 

fetal overgrowth. This may not only lead to complications at delivery but can also be particularly 

perilous for the newborn as she/he is more likely to develop Type 2 diabetes later in life. Therefore, 

there exists the challenge of regulating the glucose transporters within the placenta. This can be 

achieved using gene transfection. There are mouse models for obesity during pregnancy; this 

research focuses on pregnant mice and investigates how to efficiently deliver transgenes to the 

placenta of mice.  

 Mice are used in research as their genome shares many similarities with the human genome, 

they are easy to work with, and are relatively inexpensive [14]. Of the 4,000 studied genes in mice 

and humans, less than 10 are uniquely found in one but not the other [15]. Thus, mice are a suitable 

animal model for testing ultrasound for gene delivery.  
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There are many different breeds and strains of mice; the most commonly used is the 

C57BL/6 strain [16]. Fig. 2.2a depicts a Swiss Webster (SW) mouse, while Fig. 2.2b shows a 

C57BL/6 mouse. The C57BL/6 has black fur whereas SW mice have a white coat. These two types 

of mice were used during this research project, and it is very obvious to tell them apart from their 

previously noted physical characteristics. 

 

Mice were bred at approximately three months of age, with two female mice per one male 

mouse. Placental experiments were then conducted when the mice reached day 14 of their 

pregnancy, or two weeks after initially breeding them. A mouse placenta has a diameter roughly 

equivalent to that of a dime, varying in size between 4 mm and 8 mm from 10 days to 18 days of 

gestation [17]. 

2.2 ULTRASOUND 

 To facilitate gene transfection, ultrasonic energy is used. Ultrasound describes acoustic 

waves with frequencies above 20 kHz (Fig. 2.3).  

 

Figure 2.2: The SW mouse (a) and C57BL/6 mouse (b). SW are naturally 

bigger than the C57BL/6, and have much different physical characteristics. 
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In non-destructive testing ultrasound is used to detect and identify abnormalities within 

uniform solids [18]. This is carried out by placing an ultrasound transducer over the target object, 

applying ultrasound pulses, and detecting the reflected ultrasound. Abnormalities such as cracks 

in the material cause mechanical impedance mismatches, and can thus be detected. Ultrasound is 

widely used in the medical profession today as an imaging tool [19]. Pregnant mothers commonly 

undergo routine ultrasonic imaging to visualize the development of their baby. 

 The practice of using ultrasound for imaging within a body is called ultrasonography. In 

ultrasonography sometimes contrast agents are used to assist in imaging of organs, arteries, or 

tissues of interest. Initially discovered in the 1960’s by Dr. Charles Joiner, microbubbles were 

found to have been beneficial in providing a transient ultrasound signal [20]. This means that the 

gradient between received acoustic signals from the microbubbles, and the interior organs and/or 

 

Figure 2.3: Relevant acoustic parameters for human hearing. Infrasound are acoustic frequencies 

below 20 Hz, human hearing are frequencies between 20 Hz to 20 kHz, and ultrasound are 

frequencies above 20 kHz. 
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tissues was large and improved the quality of the ultrasound image. There are several pieces of 

equipment in ultrasonography which will be discussed, one of the most important being the 

ultrasound transducer. 

 A transducer is a device which converts one form of energy to another. In ultrasonography, 

a transducer converts electricity to mechanical motion (Fig. 2.4). This process is achieved using 

piezoelectric material.  

 

Piezoelectric materials have been used for a variety of applications in sensors, oscillators, 

micro-electromechanical systems (MEMS), filters, and actuators. These materials have crystal 

structures that induce an electric potential when a force is applied, and that conversely physically 

deform when an electric potential is applied to them. The resultant current from an applied force 

is given by Eq. (2.1) where q is the displacement current (C), k is the piezoelectric constant (C/N), 

and f is the applied force (N). The induced current is therefore directly proportional to the applied 

force, and k is a material property [21].  

 

Figure 2.4: An ultrasound transducer manufactured by General Electric (GE). This 

transducer has a 6.35-mm-diameter face, and is approximately 76.2 mm long. The 

black tape on this transducer is to prevent any water leakage during the ultrasound 

characterization process. 
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 𝑞 = 𝑘𝑓 (2.1) 

 By comparing a piezoelectric to an equivalent parallel plate capacitor, the voltage of a 

piezoelectric can be mathematically represented by Eq. (2.2), where v is the induced voltage, x is 

the distance between the parallel plates used to measure the voltage, C is the capacitance, 0 is the 

permittivity of free space, r is the permittivity of the target material, and A is the area of overlap 

between the two parallel plates [21].  

 𝑣 =
𝑘𝑓

𝐶
=

𝑘𝑓𝑥

𝜀0𝜀𝑟𝐴
 (2.2) 

 Eq. (2.2) shows that a voltage across a piezoelectric material can cause a material 

deformation x. Although these equations give a fundamental view of the induced current and 

voltage in piezoelectric materials, to accurately depict the induced current and voltage a matrix-

based approach must be analyzed. For applications in the real world this will require simulation 

tools such as COMSOL™ and Matlab™. A mathematical relationship for these matrix calculations 

are not discussed in this paper but can be found in [19].  

 In addition to the applied current and voltage, the operating environment of the transducer 

is important to consider. For example, a transducer used in air will behave differently than a 

transducer immersed in water, due to the differences in the impedances of the environment. In 

acoustics, there are four key types of impedance, which are defined in [22]:  

1. Characteristic Impedance Z0 (
𝑁𝑠

𝑚3) 

2. Sound Field Impedance (or Specific Acoustic Impedance) ZS (
𝑁𝑠

𝑚3)  

3. Acoustical Impedance ZA (
𝑁𝑠

𝑚5
)  
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4. and Mechanical Impedance ZMI (
𝑁𝑠

𝑚
).  

Furthermore, the characteristic impedance can be found as a product of ρ, the density of the 

medium, and c, the speed of sound, Z0 = ρ0c0. The sound field impedance for a plane wave can 

then be shown by Eq. (2.3) and Eq. (2.4) [22]: 

 
𝑝+

𝑢𝑥+
= ρ0𝑐0 = Z0 (2.3) 

 
𝑝−

𝑢𝑥−
= −ρ0𝑐0 = −Z0 (2.4) 

  In electromagnetic theory, the transmission 𝑇̂ and reflection coefficient 𝑅̂ are given by Eq. 

(2.5) and (2.6) where 1 + 𝑅̂ = 𝑇̂ [23].  

 𝑇̂ =
2η̂2

η̂1+η̂2
 (2.5) 

 𝑅̂ =
η̂2−η̂1

η̂1+η̂2
 (2.6) 

The transmission and reflection coefficients are similar in the case of acoustics if the intrinsic 

impedance term η is replaced with the acoustic equivalent impedance Z0. The boundary condition 

at the point of intersection between two different materials is that the wave velocity 𝑢 as well as 

pressure 𝑝 must be continuous, or 𝑝1 = 𝑝2 and 𝑢1 = 𝑢2 at x = 0. This fact can be leveraged to find 

the respective transmission and reflection coefficient for a pressure front as shown in Eq. (2.7) and 

Eq. (2.8) [22].  

 𝑇̂ =
2Z2

Z1+Z2
 (2.7) 

 𝑅̂ =
Z2−Z1

Z1+Z2
 (2.8) 
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 As previously mentioned, ultrasound transducers must be carefully designed to not reflect 

the generated acoustic wave. Therefore, to achieve the greatest transmission the impedance of the 

transducer must be matched to the target medium. If the impedances are not matched, then an 

attenuated signal is either received or transmitted from the transducer, which could potentially be 

below the threshold of ambient noise. 

 Noise is an environmental condition which is inescapable and manifests itself from the 

random processes of nature. Noise may arise from thermal fluctuations, material defects, and other 

environmental interference (e.g. power lines). To quantify the effect of noise, the signal-to-noise 

ratio is commonly used. In terms of acoustics, this can be shown in Eq. (2.9) where S𝐶  is the 

combined noise and desired signal and S𝑁 is the noise only. 

 𝑆𝑁𝑅 =
S𝐶−S𝑁

S𝑁
 (2.9) 

Most times in controlled environments, such as a lab, noise can be either controlled or accurately 

accounted for through various means depending on the application and/or experiment. 

 Attenuation is another key factor in ultrasound. Sound intensity in a spherical wave 

decreases by a factor of 1/r2 and sound pressure decreases by a factor of 1/r, where r is the distance 

from a point source, and this is known as geometrical attenuation. In addition, as an acoustic wave 

propagates through space it experiences loss due a variety of factors which transform the acoustic 

wave into heat energy, which is a process known as absorption [22]. The resulting intensity of the 

wave is therefore proportional to an exponentially decaying term, which is shown in Eq. (2.10) 

where I(x) is the intensity of the wave propagating across a distance x, and 𝛂 is the attenuation 

coefficient [22]. 
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 𝐼(𝑥) ∝ 𝑒−𝛂𝑥/2  (2.10) 

The attenuation coefficient 𝛂 is defined for varying media and/or substrates, and will be shown 

later in this paper to have some value when quantifying the health risks for ultrasound-related 

experiments. 

 Directivity is a measure of how focused an ultrasound wave is. For example, a simple point 

source has a directivity of 1 as it generates a sound wave in a spherical shape. On the other hand, 

a source which concentrates the output to 1/8 of a sphere will have a directivity factor of 8. This 

is shown in Eq. (2.11) where W is the sound power, and Q is the directivity factor. There are 

applications where directive sources are preferred, e.g. high-intensity focused ultrasound or 

headphones, or where less directive sources are preferred, e.g. sonar or music speakers. 

 𝐼 =  
𝑊∙𝑄

4𝜋𝑟2 (2.11) 

An optimal design of a transducer for ultrasonography is typically designed and built with 

a characteristic impedance value roughly equivalent to that of water. This is because the 

characteristic impedance of blood and ultrasound gel, which is generally applied to a person’s skin 

to reduce losses, is roughly equivalent to that of water. Also, attenuation must be considered to 

accurately gauge the signal which will be transmitted from the ultrasound transducer. Table 2.1 

summarizes several selected acoustic properties of human tissues and materials which are taken 

from [24]. In Table 2.1, 𝛂 refers to the attenuation coefficient. 
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Table 2.1: A summary of selected acoustic parameters from [24]. 

Tissue or 

Material 

Density 

 

(
𝒈

𝒄𝒎𝟑
) 

Speed of 

Sound 

 

(
𝒎

𝒔𝒆𝒄
) 

Specific Acoustic 

Impedance 

 

(
𝑵

𝒎𝟑
) 

𝛂 

 

(
𝒅𝒃

𝒄𝒎
) 

@f MHz 

 

𝛂 = 𝒂 ∙ 𝒇𝒃 

𝒂 

 

(
𝒅𝒃

𝒄𝒎 ∙ 𝑴𝑯𝒛
) 

 

b 

Water 1 1480 1.48 - 0.002 2 

Blood 1.055 1575 1.66 - 0.15 1.21 

Fat 0.95 1450 1.38 - 1 1 

Liver 1.06 1590 1.69 - 0.9 1.1 

Kidney 1.05 1570 1.65 - 1 1 

Heart 1.045 1570 1.64 2 @ 1 MHz - - 

Axial Bone 

(Longitudinal 

Waves) 

1.9 4080 7.75 
2-15  

@ 0.2-1 MHz 
- - 

Axial Bone 

(Transverse/Shear 

Wave) 

1.9 2800 5.32 
2-15  

@ 0.2-1 MHz 
- - 

  

 Mechanical Index (MI) and Thermal Index (TI) are terms in ultrasonography which are 

used to identify the safe levels of ultrasound use. The MI is based on a relationship between the 

mechanical or shear stress introduced to the target host from the output pressure waves of the 

ultrasound transducer whereas the TI observes the relationship between heat generation and the 

output power from the ultrasound transducer. There are also other methods which the output 

energy of the transducer can convert to such as movement of internal fluids or even cavitation, and 

these are undesirable side effects in a given experiment [25]. Eq. (2.12) shows the MI as the ratio 

between the peak negative pressure 𝑝− and root of the applied frequency 𝑓𝑐. Eq. (2.13) then shows 

the TI as the ratio between the output power 𝑊  and the power it takes to raise the tissue 

temperature by 1̊ C 𝑊𝑑𝑒𝑔 [19]. 
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 𝑀𝐼 =
𝑝−

√𝑓𝑐
 (2.12) 

 𝑇𝐼 =
𝑊

𝑊𝑑𝑒𝑔
 (2.13) 

These parameters establish a basis for which the potential negative effects of ultrasound due to 

pressure, frequency, and output power are often quantified. A value of 0.7 for the MI is defined as 

the threshold for inertial cavitation, and although it has been suggested that tissue damage 

correlates to the applied frequency experimental evidence has yet to prove this [26]. The TI can be 

applied to three different types of tissue models: soft-tissue thermal index (TIS), bone-at-focus 

thermal index (TIB), and the cranial-bone thermal index (TIC) [26]. The use of TIS, TIB, and TIC 

determine the value of 𝑊𝑑𝑒𝑔 in Eq. (2.13), and the derating factor corresponding to an allowable 

pressure input. TIB assumes half the input power is absorbed, TIC assumes that a majority of the 

ultrasonic energy is reflected (e.g. 0 transmitted power), and TIS is then given a derating factor of 

0.3 dB cm-1MHz-1. 

There are some ultrasonography systems which provide on screen values for the MI and 

TI, but they should not be used to quantitatively determine the exposure parameters for an 

experiment. Instead the transducers should be individually characterized, a process which we 

discuss later. From the characterization scheme, a more accurate calculation for the MI and TI can 

then be processed to ensure a more reliable and safe use of the ultrasound equipment. 

 The near-field distance is identified as a place where the waves generated by the ultrasound 

transducer are at a peak value, however this parameter changes depending on the mode of operation 

and whether a pulsed wave (PW) or continuous wave (CW) is used. Therefore, this will not be 

discussed in this paper and the reader is directed to [19]. 
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2.3 ULTRASOUND CHARACTERIZATION/OPTIMIZATION 

Prior to beginning the sonoporation experiments a characterization for the ultrasound 

equipment is necessary. This is done to ensure that a safe, efficient, and reliable experiment can 

be performed. The following equipment was needed for the ultrasound characterization process 

that was performed in this study: 

1. 5 metal pipes (roughly 9.5 mm diameter) 

2. 2 knockout boxes 

3. 1 five-sided acrylic tank (no top) 

a. 9.525 mm thick walls 

b. 25.4 cm (width) by 25.4 cm (height) 40.64 cm (length) 

4. Arbitrary waveform generator (Tektronix) 

5. Digital oscilloscope 

6. RF amplifier 

7. Hydrophone (Onda) 

8. Polytetrafluoroethylene (PTFE) tape 

9. Manual handheld calipers 

10. Adhesive velcro strips 

11. Electrical tape  

12. Laptop with Matlab 

13. Ultrasound transducers (focused and unfocused) 

The setup for the characterization process is illustrated in Figure 2.5. The blue area 

indicates that water was added to the plexiglass tank to fully submerse both the ultrasound 



15 

 

transducer and the hydrophone. Specific ultrasound parameters are input into the arbitrary 

waveform generator (e.g. pulse duration, pulse repetition period, input voltage). The amplifier 

connects to the waveform generator to increase the overall power output to finally drive the 

ultrasound transducer. Although the specification of the amplifier states a 53-dB gain (gain of 

approximately 450) the characterization showed that the amplifier had a saturated gain of 

approximately 400. Although the amplifier was not exactly operating as stated by the 

manufacturer’s specifications, the amplifier did have a stable gain of 400 across a range of voltage 

inputs (from 50 mVpp to 200 mVpp with a step increment of 10 mVpp) so it was deemed usable 

for this study.  

 

There were three main ultrasound transducers that were used in this study, and all of them 

were immersion based. Two unfocused transducers were used, one from GE (part number 113-

221-340) and the other from Olympus (I4-0108-S-SU U8420054 Olympus). The major difference 

  
Figure 2.5: Ultrasound characterization setup. A function generator connects to an 

amplifier, which generates enough power to drive the transducer. A hydrophone 

converts the mechanical impulses to a voltage which is read on the oscilloscope.  
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in these transducers is that the GE model has a face diameter of 12.7 mm and the Olympus 

transducer has a face diameter of 25.4 mm. Therefore, it takes much more power to not only drive 

the Olympus unfocused transducer but to achieve the same pressure output as the GE transducer 

due to the large difference in piezo material that is subject to the input voltage signal sweeps. The 

third transducer which was used in this study was a focused Olympus transducer. The voltage 

necessary to achieve the same pressure output is much less than either unfocused transducer due 

to the focusing of the ultrasound pulses, however this is a trade-off in terms of the area which is 

impacted by this pressure output. The focused and unfocused transducers are discussed in more 

detail later in this section. 

The hydrophone receives incoming acoustic pulses and converts this mechanical energy 

into an electric signal. The sensitivity of the hydrophone used in this study at 1 MHz was -281 dB 

relative to 1 
𝑉

𝜇𝑃𝑎
. This value was calculated to be 89 

𝑚𝑉

𝑀𝑃𝑎
, which was used in the Matlab code to 

acquire data points from the digital oscilloscope. Using this sensitivity, and knowing that the 

oscilloscope will provide a voltage reading from the hydrophone, the pressure input can be found. 

Eq. (2.15) details an equation which summarizes this relationship: 

 𝑃𝐻𝑦𝑑𝑟𝑝ℎ𝑜𝑛𝑒 =
𝑉𝑜𝑙𝑡𝑎𝑔𝑒

𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦
 (2.15) 

For example, if the input voltage was 0.89 V then the resulting pressure could be calculated as 

follows: 

 𝑃𝐻 =
890 𝑚𝑉

89
𝑚𝑉

𝑀𝑃𝑎

= 10 𝑀𝑃𝑎 

In the ultrasound transducer characterization setup, an oscilloscope is connected directly 

to the hydrophone. A laptop was then connected to the oscilloscope via a USB cord, and a Matlab 
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executable file was run to acquire the data points from the oscilloscope and stored in an excel file 

on the laptop. Details of the Matlab file is explained in detail later in this section. 

The characterization setup was custom-built, and used sliding cameras on metal pipes. 

Metal pipes were chosen over PVC because they are more durable and were cheaper. The knockout 

boxes, PTFE tape, and the metal pipes were purchased at a local store for under $30. The largest 

cost of the initial setup was the acrylic tank, which cost about $300.  

The pipes were cut to an appropriate size using a hack saw, and indelible ink was used to 

mark tick marks on the pipes, spaced 2.5 mm apart. This system was used for characterization of 

the various ultrasound transducers during the two-year duration of this project, and will be used 

by researchers in this lab in the future. Figure 2.6 shows the final ultrasound characterization setup. 

Several transducers were purchased through Olympus and GE which varied in size. One 

focused transducer was used in the present study and the rest were unfocused transducers. A 

focused transducer has a concave face to focus the emitted ultrasound pulses at a specific distance 

from the transducer, based on the curvature of the concavity. These pulses are meant to intersect 

at a point, meaning that the total volume of intersection for these pulses is intended to be as small 

as possible. 

 The initial characterization process necessitated the use of a characterization map, or a 

coordinate system with detailed ultrasound parameters under investigation for a specific 

transducer. Over the course of the study the characterization process improved, and customized 

studies were performed at specific coordinates and ultrasound parameters. Therefore, for 

characterization there were two major schemes: a full characterization or a custom 

characterization.  



18 

 

 

  It was empirically determined for the Olympus focused ultrasound transducer that the focal 

point was approximately 15.24 mm away from the transducer face, and had a cylindrical 

convergence profile with a radius of 2.5 mm and length of 2.5 mm. The unfocused transducers 

create ultrasound pulses which behave similarly to the equations that were presented earlier in this 

chapter. 

 An advantage of focused ultrasound is that the isolation of ultrasound pulses is possible 

but at the same time a complication that is introduced is the complexity of the setup increases as 

the positioning of the transducer becomes paramount to ensuring a successful experiment. 

Conversely the advantage of unfocused ultrasound is that the experiment setup process is much 

simpler but all tissues and organs beneath the face of the transducer are subject to the ultrasound 

pulse energy.  

 
Figure 2.6: The realized ultrasound characterization setup. This characterization process was less 

expensive than sending the transducers to be calibrated at a certified lab or company. 



19 

 

 The Matlab file which was programmed to connect to the oscilloscope, acquire data points 

from the ultrasound pulses, and then store and save them to a Microsoft Excel file, became an 

essential part to working with the ultrasound setup. By implementing a Matlab executable, the 

ultrasound characterization process became streamlined and easy enough for everyone to operate, 

if given brief instructions.  

Over time the peak pressure output of the ultrasound transducer decayed. This effect was 

apparent during CW modes of operation during characterization and was minimized during PW 

modes of operation. The underlying reason is that the piezo material of the transducer may have 

been experiencing over saturation, and in some initial experiments this led to the degrading and 

failure of some of the transducers. Only PW modes of operation were used in the characterization 

process of the ultrasound transducers to reduce the effects from oversaturation of the piezoelectric 

material. Matlab code was used to obtain 2500 sample points from the oscilloscope for several 

different times during the interrogation of the ultrasound transducer. The time points in which 

2500 sample points were taken were at 1.7, 3.4, 5.1, 6.8, 8.5, 10.2, and 11.9 seconds after the 

ultrasound transducer was initially excited for one characterization. The spacing between time 

points was determined by using the tic toc command in Matlab which records how long it takes to 

run particular instances of code, depending on the spacing between tic and toc. It took 

approximately 1.7 seconds to run the entirety of the Matlab code, which increased to 11.9 after the 

7 iterations. The oscilloscope is called within the Matlab code via the USB port, and data points 

were saved to two separate matrices, h and k. The raw data from the experiment lie within the h 

matrix whereas k contains information regarding the oscilloscope parameters (e.g. the time 

between two sample points). The next lines searches for the peak and the minimum voltage values, 

and converts this to a pressure value using Eq. (2.15). The benefit of using the Matlab executable 
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is that both the raw data, and the pressure converted data can be stored simultaneously within 

approximately 15 seconds (11.9 seconds to run the code and a few extra seconds to finally save 

the excel file). The code is provided in Appendix A. 

 The first transducer to be characterized was the Olympus unfocused transducer. All 

characterizations started with the center coordinate on the characterization map, and moved on the 

X and Z axis with a resolution of 2.5 mm (the tick marks on the metal pipes). The largest 

characterization map for this transducer was a 5 by 5 array with voltages between 50 mVpp and 

850 mVpp with 50 step increments. There were two unfocused Olympus transducers, so both were 

characterized consecutively. The characterization of the Olympus transducer showed that a 

majority of the input voltages did not produce an output greater than or equal to 1 MPa, which 

meant that little to no successful sonoporation could actually be conducted. Thus, the Olympus 

unfocused transducer was not used for sonoporation; instead the Olympus focused transducer and 

the GE transducer were used. The Olympus transducer outputs are summarized in Table 2.2. 

Next, a characterization map for the GE unfocused transducer was performed and is shown 

in Figure 2.7. The imagesc tool was used in Matlab to color the changing pressure value as a 

function of time, and as can be seen the pressure decreases over time. The output pressures are 

then displayed in Table 2.3 for both the GE 1 and GE 2 transducers which were used in this study. 

It was also discovered that the unfocused transducers from both GE and Olympus could be 

characterized by the peak pressure, which was usually around the center of the transducer face. 

From this finding, it was determined that for routine checks with the transducer a custom 

characterization can be performed which involved finding the peak pressure point in relation to 

the transducer face and doing an input sweep from a low to high voltage. The full characterization 
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map is therefore only necessary every six months, or when the peak pressure is significantly 

different than previously recorded. This is an important finding because it enabled the current 

study to quickly characterize purchased transducers and implement them in the sonoporation 

experiments.   

 

Table 2.2: Testing points for the Olympus focused and unfocused transducer. The induced pressure 

greatly differs for the focused and unfocused transducer. 

Time (s) 

Pressure (MPa) with a 650 mVpp Input 

Olympus Unfocused Olympus Focused 

1.7 0.58 4.58 

3.4 0.56 4.40 

5.1 0.58 4.85 

6.8 0.58 5.48 

8.5 0.58 4.85 

10.2 0.59 5.48 

11.9 0.58 4.94 

 



22 

 

  

Table 2.3: Testing points for the GE unfocused transducers. Much like the Olympus unfocused 

transducers, the GE transducers were found to have similar pressure outputs. 

Time (s) 

Pressure (MPa) with a 650 mVpp input to the amplifier 

GE 1 GE 2 

1.7 1.71 1.55 

3.4 1.66 1.48 

5.1 1.59 1.43 

6.8 1.57 1.41 

8.5 1.55 1.39 

10.2 1.53 1.32 

11.9 1.50 1.37 

13.6 1.50 1.37 

 
Figure 2.7: Characterization map of GE 1 unfocused transducer plotted using the 

Matlab imagesc command. Initially the transducer has a transient pressure output, 

but at 11.9 seconds it reaches a steady-state output. 
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 After characterization of the ultrasound transducers, the overall aim of gene transfection 

into cells could be carried out. Microbubbles were used as carriers for plasmids because they could 

flow through the bloodstream, thus being able to penetrate any organ or tissue within the body that 

blood is able to. This technique is known as sonoporation. 

2.4 SONOPORATION 

 Sonoporation is the induction of the transient porosity of cells using ultrasound. 

Sonoporation, to deliver genes to an organ or tissue, uses ultrasound induced cavitation of plasmid 

coated microbubbles to achieve targeted gene transfection. The use of the sonoporation technique 

with microbubbles is illustrated in Fig. (2.8). Several processes (e.g. pushing, pulling, jetting, 

shearing, translation), occurring most likely simultaneously during microbubble cavitation induces 

gene transfection, and are summarized in [19]. 

 

 

 

Figure 2.8: The sonoporation technique with microbubbles. As ultrasound pulses are emitted from the 

transducer, they induce microbubble oscillations. The force from this process leads to pores on the 

cellular membrane. The plasmids which once coated the microbubbles enter the cell through these pores 

and gene transfection results. Figure reproduced from ref. [27]. 

 



24 

 

2.5 BUBBLES AND DNA 

 A plasmid is DNA which has been formed into a circle. Plasmids, also called vectors, can 

be bioengineered to enable cells to perform specific tasks [28]. Hence these plasmids are used to 

deliver transgenes by mechanisms such as sonoporation. Another benefit of using plasmids is that 

they can be rapidly generated using bacteria, which are able to generate a large supply if needed 

[28].  

In the experiments presented here, there were three plasmid types which were used: pGL3, 

Genie3-GINbb-Ept1 (Ept1), and Genie3-GINbb-TRE3G-LUC-CYP-TRCN0000311403 (Glut1). 

Table 2.4 highlights the major characteristics of each of these plasmids. 

Table 2.4: Key characteristics of the plasmids used in this work. 

Plasmid Name Doxycycline Injection Required Tissue Specific 

pGL3 No No 

Ept1 Yes No 

Glut1 Yes Yes, placental 

  All three plasmids were engineered to contain the luciferase assay reporter. Luciferase is 

an enzyme which converts the substrate luciferin, here delivered by intraperitoneal injection. 

Bioluminescence is a byproduct of this process, and an example of this is the firefly. To quantify 

the intensity of this light, as well as the gene delivery effectiveness, an integrated imaging system, 

known as the In Vivo Imaging System (IVIS) was used. This method allowed for a repeatable, 

simple, and quick verification of gene delivery.  
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 Doxycycline is commonly used for humans as an antibacterial drug. It is a derivative of 

tetracycline, and most importantly allows for the activation or de-activation of target genes through 

the mechanisms known as TET-system [29]. Two plasmids, Ept1 and Glut1, contained the TET-

system and required doxycycline to activate the expression of luciferase.  

Contrast agents are sometimes used in ultrasonography to improve image quality [20]. 

These contrast agents increase the backscatter, or the amount of reflections back to the imaging 

transducer, from blood, allowing imaging of smaller features such as capillaries within the body 

[24]. The contrast agents can be identified as gas filled microbubbles with an outer layer consisting 

of a specific material. These microbubbles can also act as more than a contrast agent, as they can 

also be used for gene delivery.  

Microbubbles approximately 1 to 3 µm in diameter were used in this study [30]. A blood 

vessel is a part of the circulatory system that transports blood, and thereby red blood cells (RBCs) 

throughout the human body. RBCs vary in size from 6 µm to 8 µm [31], and the similarity of sizes 

between microbubbles and RBCs allow the microbubbles to the same pathways that RBCs take 

throughout the body. Examples of blood vessels are capillaries, arteries, and veins. The largest 

blood vessel in the body is the aorta artery with a diameter of 25 mm, and the smallest blood vessel 

is the capillary with the smallest diameter of 8 µm [32]. The varying sizes of these blood vessels 

can drastically impact the flow profile of the RBCs and microbubbles and in turn the amount of 

pressure that they experience. 

The microbubbles used in this study are filled with a gas called octofluoropropane, an inert 

gas which is heavier than gases found in the atmosphere, a lipid outer shell, and a plasmid 

construct. As DNA is negatively charged, it adheres to the positively charged lipid shell of the 
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microbubble through electrostatic forces [33, 34, 35]. These microbubbles are introduced into the 

bloodstream through cardiac injection, and then cavitation of the microbubble is induced with a 

targeted ultrasound pulse. For this work, microbubbles were created as shown in Figure 2.9. 

 

2.6 CURRENT SONOPORATION RESEARCH 

A recent PubMED search for sonoporation yielded 100 publications. The transducer 

parameters were extracted from each paper and organized in Table 2.5. These parameters 

determine the characteristics of the ultrasound used in each experiment and consist of the 

following: frequency (MHz), mode of operation (pulsed wave, PW, or continuous wave, CW), 

intensity or peak pressure (W/cm2 or MPa), pulse repetition rate/period, pulse repetition frequency 

 

Figure 2.9: A graphic showing the generation of microbubbles. 1 mg of plasmids were used 

which would typically amount to 500 µL, and the remaining volume would be topped off 

at 1 mL with phosphate buffered saline (PBS) which typically was 200 µL. The microtube 

was then vigorously shaken at 5000 revolutions per minute for 15 seconds using a dental 

amalgamator, and put on ice. This would ensure quality microbubbles for approximately 2 

hours. The microbubble is shown to be coated with plasmid constructs. 
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(sec or Hz), duty cycle (%), MI, and exposure time (s). In addition to these parameters, the target 

organ and method of delivery were recorded. The target organ influences the chosen ultrasound 

parameters and includes the depth and physical characteristics of the organ (e.g. size and 

orientation relative to a mouse abdomen). The method of delivery was also recorded because the 

infusion point may impact the sonoporation experiment by affecting the initial pressure 

experienced by the microbubbles (e.g. the tail vein will induce a larger exterior pressure on the 

microbubble than a heart injection). In addition, the location of entry for the microbubbles may 

dictate whether the bubbles are immediately delivered to the target organ or tissue (e.g. direct 

muscular injection) or must go through the body, into the heart, and finally to the target organ (e.g. 

tail vein injection to heart to target organ). If the pressure is too large, the microbubbles may 

rupture and never reach the desired organ. The literature review revealed two common methods of 

injection: direct and tail vein. Direct injections included injecting microbubbles, via a needle and 

syringe, into the target organ and then continuing the sonoporation experiment. A tail vein 

injection relied on intravenously injecting microbubbles through the tail of the mouse. Another 

method reported was a cardiac injection of microbubbles, followed up with ultrasound to the target 

organ. This third method involved injecting microbubbles to the left atrium of the heart and then 

allowing both the blood stream and blood vessels to transport microbubbles to the desired organ 

where sonoporation was then performed. 

Of the 98 manuscripts reviewed, 73 used a frequency in the range 1 of 2 MHz. Thirty-eight 

papers reported microbubble delivery using the tail vein, 33 papers used direct injections, and the 

remainder used another type of injection. Seventy-nine publications reported whether they used a 

CW or PW mode of operation. Of the papers that reported CW or PW operation, 73 (92 %) used 

only a PW input and 76 (96.2%) used both PW and CW operation. Nineteen papers reported the 
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ultrasound pulse duration, but there were no patterns in the reported findings. Seventy-two 

manuscripts indicated either a peak pressure (28 papers) or peak intensity (48 papers) for the 

ultrasound transducer. A peak pressure from 1 to 2 MPa was reported six times, while 16 studies 

used less than 1 MPa of pressure, and six reported a pressure above 2 MPa. Thirty-one papers 

recorded an intensity value from 1 to 2 
𝑊

𝑐𝑚2, with 12 reporting less than 1 
𝑊

𝑐𝑚2, and 11 reporting 

more than 2 
𝑊

𝑐𝑚2. Of the 48 publications that reported a duty cycle value, which varied greatly, all 

remained below 50%. The pulse repetition period (PRP) was reported in 40 papers and was under 

100 ms in 18 papers, between 100 to 250 ms in 12 papers, and over 250 ms in 11 papers. Most 

studies (84 papers) reported an exposure time for their experiment. The exposure time in seven 

papers was less than 1 minute, 54 papers reported an exposure time between 1 and 5 minutes, and 

24 papers reported exposure times longer than 5 minutes. 

It was unclear whether the method of microbubble injection was a significant factor in 

determining whether a sonoporation experiment was successful as several delivery routes for the 

same organs or tissues were described. We noted that a PW mode of operation shows a stronger 

relationship to a successful sonoporation experiment than both a CW and/or combined CW/PW 

mode of operation. The peak pressure or intensity output values showed that a lower pressure 

output yielded a much more successful sonoporation experiment (less than 1 MPa), and the optimal 

intensity varies from 1 - 2 
𝑊

𝑐𝑚2. The PRP was split evenly between 3 groups: below 100 ms, 

between 100 ms and 250 ms, and above 250 ms. There is no clear indication as to how significant 

the PRP is to a successful sonoporation experiment. Duty cycle has been shown in these papers to 

be best below 50%. The exposure time plays a more significant role in a successful sonoporation 

experiment, and is more likely to be associated with the method of infusing or injecting 
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microbubbles into the bloodstream. It was reported that longer exposure times were correlated to 

longer durations for microbubble infusion methods (e.g. intravenous infusion had an exposure time 

of roughly 31.5 minutes), whereas for quicker microbubble infusions, such as direct injections, the 

exposure time was seen to be in the 1 to 5-minute range. 

In summary, our literature review revealed that the key ultrasound parameters for a 

successful sonoporation experiment are as follows: 

1. A frequency between 1 to 2 MHz 

2. PW mode of operation 

3. Peak negative pressure of 1 MPa (or less than) 

4. Duty cycle less than 50% 

5. And an exposure time between 1 to 5 minutes which varies depending on the 

microbubble infusion duration. 

Data from the literature findings are summarized in two different tables, Table 2.5 and Table 2.6. 
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Table 2.5: Literature search for sonoporation experiments. PNP stands for peak negative pressure and is a 

parameter commonly associated with characterization of the ultrasound transducer. In this table the target 

organ or model of study, delivery route for microbubbles, frequency for the transducer, mode of operation 

(whether continuous or pulsed wave), and pulse duration are recorded. 

Reference 
Target Organ 

or Model 
Delivery Route Frequency 

Mode 

(CW/PW) 

Pulse 

Duration 

[30] Liver Heart 1 MHz PW 200 µs 

[36] Liver Heart 1 MHz PW 100 ms 

[37] Liver Portal Vein 1.17 MHz PW 
0; 17; 34; 

285; 571 µs 

[38] Liver Portal vein 1.17 MHz PW 17.1 µs 

[39] Kidney 

Inferior vena 

cava, 

laparotomy 

3 MHz PW  

[40] Well plates Well plates 100 Hz PW  

[41] Retinas 
Intravitreal 

injection 
1 MHz PW 20 ms 

[42] Hindlimbs Tail vein 1 MHz PW 5 ms; 50 ms 

[43] Brain Direct injection 1 MHz PW 10 ms 

[44] In vitro In vitro 1 MHz PW  

[45] Skin cancer Jugular vein 1.3 MHz PW  

[46] Breast cancer  3 MHz PW  

[47] Breast cancer  
3 Mhz, 1 

Mhz 
PW  

[48] Brain Direct Injection 14 MHz   

[49] Heart Tail vein 
1.4 – 4 

MHz 
PW  

[50] 
Murine limb 

ischemia 

Intravenous 

infusion 
1.6 MHz PW 400 µs 

[51] 
Squamos cell 

carcinoma 
Jugular vein 1.3 MHz PW 4 to 6 bursts 

[52] Arthritis 
Foot, tail, and 

back 
10 MHz CW  

[53] Thigh muscle 
Muscular 

injection 
1.4 MHz PW 100 cycles 

[54] Brain Tail vein 1.5 MHz PW 
100 to 1000 

cycles 

[55] Tumor Tail vein 1 MHz PW  

[56] Skeletal muscle 
Intra-arterial 

injection 
1 MHz CW  

[57] Skeletal muscle 
Intravenous 

infusion 
1.3 MHz   

[58] Pancreatic islets Jugular vein 
1.3 MHz, 

3.6 Mhz 
PW  
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Reference 
Target Organ 

or Model 
Delivery Route Frequency 

Mode 

(CW/PW) 

Pulse 

Duration 

[59] Tumor 
Retroorbital 

injection 
1.5 MHz PW  

[60] Skeletal muscle Tail vein 1 MHz PW 0.3 ms 

[61] Skeletal muscle Direct injection 1 MHz PW  

[62] Kidney tumor Tail vein 1 MHz PW  

[63] Varying Subcutaneous 1 MHz PW  

[64] 

Chronic 

hindlimb 

ischemia 

Intravenous 

infusion 
   

[65] Coronary injury Tail vein 1 MHz PW  

[66] 
Hindlimb 

ischemia 

Intravenous 

infusion 
1.3 MHz   

[67] Tumor Tail vein 1 kHz   

[68] Tumor Tail vein 1 MHz PW  

[69] Tumor Tail vein 1 MHz PW  

[70] 
Myocardial 

infarcation 
Tail vein 8 MHz PW 1 burst 

[71] 
Cardiac gene 

transfer 
Jugular vein 1.3 MHz   

[72] 
Tibialis muscle, 

skin, and kidney 

Direct, 

intradermal and 

intrarenal-

parenchymal 

injection 

2 MHz PW  

[73] 

Liver, spleen, 

lung, kidney, 

heart 

Tail vein 1.045 MHz PW  

[74] Cardiac Direct injection    

[75] Cardiac 
Intravenous 

infusion 

1.3 MHz, 

3.6 MHz 
PW  

[76] 
Liver, skeletal 

muscle, pancreas 
Jugular vein 

1.3 MHz, 

3.6 MHz 
PW  

[77] Myocardium Jugular vein 
1.3 MHz, 

3.6 MHz 
PW  

[78] Cardiac Jugular vein 
1.3 MHz, 

3.6 Mhz 
PW  

[79] 
Video intensity 

study 

Aortic root 

catheter 

2 MHz, 4 

MHz, 6 

MHz 

Both Varying 

[80] Tumor Femoral artery 1 MHz PW  

[81] 
Hindlimb 

ischemia 
Tail vein 1 MHz PW  
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Reference 
Target Organ 

or Model 
Delivery Route Frequency 

Mode 

(CW/PW) 

Pulse 

Duration 

[82] 

Cardiac 

microbubble 

desctruction 

Right jugular 

vein 
1.3 MHz PW  

[83] 
Myocardial gene 

transfer 

Infusion via left 

heart ventricle 

1.3 MHz, 

3.6 MHz 
PW  

[84] 

Mesenteric 

vasculature gene 

delivery 

Intravenous 

bolus 

retroorbital 

injection 

1 MHz PW  

[85] 
Squamos cell 

carcinoma 
Jugular vein 1.3 MHz   

[86] Liver Tail vein 1 MHz PW 33 µs 

[87] Liver tumor Tail vein 
5 to 12 

MHz 
PW  

[88] Breast cancer  
1 MHz, 10 

MHz 
  

[89] 

In vitro 

endothelial cell 

study 

 1 MHz  

500 µs; 1 ms; 

2 ms; 5 ms; 

10 ms; 20 

ms; 50 ms 

[90] Skeletal muscle Direct injection 1 MHz Both  

[91] Prostate cancer Tail vein 
5 to 12 

MHz 
  

[92] Colon cancer Tail vein 1.8 MHz PW Various 

[93] 
Lymph node 

tumors 
Tail vein 970 kHz CW 200 pulses 

[94] Liver Tail vein 1.54 MHz PW 
1.6 µs (2.5 

cycles) 

[95] 
Head and neck 

cancer 

Subcutaneously 

injected 
1 MHz   

[96] Salivary gland 

Submandibular 

duct 

cannulation 

1 MHz PW  

[97] Kidney tumor 
Left renal artery 

catheter 

5 to 12 

MHz 
  

[98] Kidney Tail vein 1 MHz   

[99] Malignant ascite 
Intraperitoneal 

injection 
1.056 MHz PW  

[100] 
Lymph node 

tumor 
Tail vein 1 MHz PW 200 pulses 

[101] Liver Direct injection 1.1 MHz PW 20 cycles 

[102] Tumor Direct injection 2.069 MHz PW  

[103] Oral tumor 
Intraperitoneal 

injection 
1 MHz PW  
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Reference 
Target Organ 

or Model 
Delivery Route Frequency 

Mode 

(CW/PW) 

Pulse 

Duration 

[104] Arthritis Direct injection 3 MHz PW  

[105] 

Ectopic and 

orthotopic 

models 

 1 MHz Both  

[106] Tumor  3 to 9 MHz PW 2.42 ms 

[107] Adenocarcinoma 
Intramuscular 

injection 
1 MHz PW  

[108] 
Pancreatic 

cancer 

Intravenous 

infusion 

1.3 to 2.4 

MHz 
PW 0.21 ms 

[109] Muscle 
Intramuscular 

injection 
1 MHz PW  

[110] Tumor 
Intramuscular 

injection 
1 MHz PW  

[111] Ciliary muscle 
Intramuscular 

injection 
1 MHz PW 5 ms 

[112] 
Peritoneal 

macrophages 

Intraperitoneal 

injection 
2.5 MHz   

[113] Tumor Tail vein 
28 kHz; 3 

MHz 
  

[114] Melanoma Direct injection 1.011 MHz PW  

[115] Skeletal muscle 
Intramuscular 

injection 
1 MHz PW  

[116] Skeletal muscle 
Intramuscular 

injection 
973.65 Hz PW  

[117] Tumor 
Intraperitoneal 

injection 
1 MHz PW  

[118] Lung 
Nasal 

instillation 

30.5 to 35.5 

Hz 
PW  

[119] 
Tumor and 

muscle 

Direct 

injections 
1 MHz PW  

[120] Parotid 
Intraperitoneal 

injection 
1 MHz PW  

[121] Hepatic cancer Direct injection 1 MHz PW  

[122] Femoral artery  1 MHz PW  

[123] Osteogenesis 
Intramuscular 

injection 
1 MHz PW  

[124] Joint tiissue Direct injection 3 MHz PW  

[125] 

Gingival 

squamous 

carcinoma 

Direct injection 1MHz PW  

[126] Heart 

Intercostal 

muscle and tail 

vein 

1 MHz PW  

[127] Tumor Intra-arterial    
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Reference 
Target Organ 

or Model 
Delivery Route Frequency 

Mode 

(CW/PW) 

Pulse 

Duration 

[128] 
Reproductive 

system 

Direct ovary 

injection 
 PW  

[129] Vein graft 
Intravenous 

infusion 
1 MHz PW  

[130] 
Hepatocellular 

carcinoma 
Direct injection 1 MHz PW  

[131] Dental pulp Direct injection 1 MHz PW  

[132] Muscle 
Intramuscular 

injection 
1 MHz PW  
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Table 2.6: Summary of the PubMED literature search on sonoporation. The intensity/pressure of the 

transducer, pulse repetition period (PRP) or pulse repetition frequency (PRF), duty cycle, MI, and 

exposure time are tabulated. 

Reference 
Intensity/Peak 

Pressure 
PRP/PRF Duty Cycle MI 

Exposure 

Time 

[30] 1.3 MPa (PNP) 10 Hz   5 min 

[36]  
100 ms for 20 

cycles 
 1.3 to 1.5 5 min 

[37] 0; 4.3 Mpa 
0 Hz; 3 Hz; 

50 Hz 

0%; 0.09%; 

0.17%; 

0.09%; 

0.17% 

  

[38] 4.5 Mpa 50 Hz    

[39]   50%  1 min 

[40] 1 
𝑊

𝑐𝑚2
  20%  1 min 

[41]  100 Hz 50%  5 min 

[42] 1.25 MPa (PNP) 30 sec   
8.5 min; 

16.5 min 

[43] 

In vitro 0.5 MPa 

(PNP); In vivo 

0.7 MPa (PNP) 

200 ms 5%  1 min 

[44]  10 ms 
10%, 20%, 

30% 
 

40 sec, 50 

sec, 

60 sec 

[45]    1.6 MI 30 min 

[46] In vivo 0.24 MPa 

In vitro 1 Hz, 

1.2 Hz, 1.4 Hz, 

1.7 Hz, 2 Hz, 

2.5 Hz, 4 Hz, 10 

Hz; In vivo 4 

Hz 

50%  In vivo 2 min 

[47] 
0.28 MPa; 

0.15 MPa 

4 Hz; 

1 Hz 

50%; 

12% 

0.18; 

0.11 

2 min; 

1 min 

[48]     

10 sec 

(repeated 3 

times) 

[49]    1.3 20 min 

[50]  5 sec  
0.6; 1.3; 

2.4 
 

[51]  1.5 to 2.5 sec  1.6 30 min 

[52]    1.3 10 min 

[53] 200 kPa 540 Hz   0.5 to 10 min 

[54] 225 to 600 kPa 5 Hz   1 min 
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Reference 
Intensity/Peak 

Pressure 
PRP/PRF Duty Cycle MI 

Exposure 

Time 

[55] 2 
𝑊

𝑐𝑚2
 50%   5 min 

[56] 
0.32 and 0.41 

MPa (PNP) 
   3 min 

[57] 2.1 MPa (PNP) 5 sec    

[58] 
Triggered at 80 ms after peak of R 

wave. 4 frames per 4 cardiac cycles 
  30 sec 

[59] 0.88 MPa 1 kHz 20%  30 sec 

[60] 
0.8 or 0.6 MPa 

(PNP) 
100 ms   12 min 

[61] 3 
𝑊

𝑐𝑚2
 100 Hz 20%  60 sec 

[62] 1 
𝑊

𝑐𝑚2
  10%  10 min 

[63] 2 
𝑊

𝑐𝑚2
  20%  30 sec 

[65] 134 kPa (PNP)  20%  3 min 

[66] 0.9 W 5 sec   10 min 

[67] 1.5 
𝑊

𝑐𝑚2
    2 min 

[68] 2 
𝑊

𝑐𝑚2
 20 sec 50%  6 min 

[69] 2 
𝑊

𝑐𝑚2
  50%  5 min 

[70]  500 ms  1.6 20 min 

[71] 1.8 MPa (PNP)   1.6  

[72] 2.5 
𝑊

𝑐𝑚2
 2 Hz 50%  60 sec 

[73] 1 
𝑊

𝑐𝑚2
 10 Hz 50%  2 min 

[75] 

Four bursts of 

ultrasound 

delayed of 45 to 

70 ms after R 

wave peak 

  1.4  

[76]    1.2 to 1.4 5 min 

[77]    1.6 20 min 
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Reference 
Target Organ 

or Model 
Delivery Route Frequency 

Mode 

(CW/PW) 

Pulse 

Duration 

[78] 

Four bursts 80 

ms after peak of 

R wave 

  1.5 20 min 

[79] 0.7 MPa; 1 MPa     

[80] 1 
𝑊

𝑐𝑚2
 2 Hz 50%  2 min 

[81] 1 
𝑊

𝑐𝑚2
 2 Hz 50%  2 min 

[82] 
1 MPa and 1.2 

MPa (PNP) 
  1.6 20 min 

[83] 2.16 MPa (PNP)   1.6 4 min 

[84] 5 
𝑊

𝑐𝑚2
 (optimal)    5 min 

[85]    1.6 30 min 

[86] 250 kPa (PNP) 3 kHz   5 min 

[87]  1 kHz  0.4 to 0.45 20 min 

[88] 1 MPa  50%  20 min 

[89] 
150, 300, 500 

kPa (PNP) 
    

[90] 2 
𝑊

𝑐𝑚2
  20%  5 min 

[91]    0.47 5 min 

[92] 6 MPa (optimal) 100 Hz   1 min 

[93] 0.21 MPa 970 kHz 20%  1 min 

[94]    
0.4 and 

1.3 
 

[95] 1 
𝑊

𝑐𝑚2
    10 sec 

[96] 2 
𝑊

𝑐𝑚2
  50%  160 sec 

[97]    0.61 5 min 

[98] 
0.125, 0.25, 0.5, 

and 1 
𝑊

𝑐𝑚2
 

10 Hz 50%  

0, 5, 10, 15, 

30, and 60 

sec 

[99] 1 
𝑊

𝑐𝑚2
 10 Hz 50%  2 min 

[100] 3 
𝑊

𝑐𝑚2
  20%  60 or 120 sec 



38 

 

Reference 
Target Organ 

or Model 
Delivery Route Frequency 

Mode 

(CW/PW) 

Pulse 

Duration 

[101] 2.7 MPa (PNP) 13.9 Hz   90 sec 

[102] 4 
𝑊

𝑐𝑚2
 10 Hz   2 min 

[103] 0.5 
𝑊

𝑐𝑚2
  20%  10 sec 

[104] 2 
𝑊

𝑐𝑚2
  50%  1 min 

[105] 2 or 4 
𝑊

𝑐𝑚2
  

25% or 

50% 
 3 or 9 min 

[106] 0.43 
𝑊

𝑐𝑚2
    10 min 

[107] 3 
𝑊

𝑐𝑚2
  20%  1 min 

[108] 0.27 MPa 21 ms 1% 0.2 31.5 min 

[109] 0.4 
𝑊

𝑐𝑚2
 200 Hz 20%  5 min 

[110] 0.4 
𝑊

𝑐𝑚2
 200 Hz 20%   

[111] 0.7 MPa (PNP) 100 Hz 50%  2 min 

[112]    1 45 sec 

[113] 
0.02, 0.04, 1, and 

2 
𝑊

𝑐𝑚2
 

   2.5 min 

[114] 0.064 
𝑊

𝑐𝑚2
 0.5 Hz 50%  2 min 

[115] 3 
𝑊

𝑐𝑚2
  20%  1 min 

[116] 0.21 MPa   0.21 1 or 2 min 

[117] 1 
𝑊

𝑐𝑚2
  20%  5 min 

[118] 
0.0182 and 0.026 

MPa 
100 ms   10 min 

[119] 0.4 
𝑊

𝑐𝑚2
 200 Hz 20%  10 min 
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Reference 
Target Organ 

or Model 
Delivery Route Frequency 

Mode 

(CW/PW) 

Pulse 

Duration 

[120] 2 
𝑊

𝑐𝑚2
  50%  2 min 

[121] 2 
𝑊

𝑐𝑚2
  50%  10 min 

[122] 1 
𝑊

𝑐𝑚2
 2 Hz 50%  2 min 

[123] 5 
𝑊

𝑐𝑚2
  50%  1 min 

[124] 0.5 to 2 
𝑊

𝑐𝑚2
  50%  1 min 

[125] 2 
𝑊

𝑐𝑚2
  50%  1 min 

[126] 1 to 2 
𝑊

𝑐𝑚2
  10% to 50%  1 min 

[127]    1  

[128] 2 
𝑊

𝑐𝑚2
  20%  5 min 

[129] 2 
𝑊

𝑐𝑚2
  20%  5 min 

[130] 2 
𝑊

𝑐𝑚2
  50%  10 min 

[131] 0.5 
𝑊

𝑐𝑚2
    30 sec 

[132] 2 
𝑊

𝑐𝑚2
  50%  5 or 10 min 

 

As previously mentioned, sonoporation is the use of plasmid coated microbubbles paired 

with ultrasound. The microbubbles are transported throughout the various regions in the body 
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through blood vessels, and then are forced to undergo cavitation with ultrasound pulses which in 

turn results in the transfers of the plasmid constructs into the targeted organ and tissue cells.  

Transfection is a process where DNA or RNA is delivered to cells [133]. The processes 

within the cell then take the DNA/RNA and use them to create proteins. These proteins then enable 

the cell to perform various functions. Transfection for the present work was used to regulate the 

glucose transfer across the placenta. The aim was to regulate glucose transport across the placenta 

to prevent fetal overgrowths. To accomplish this, the specific Glucose 1 Transporter (Glut1) was 

identified, and a specific plasmid construct was built to down-regulate the Glut1 gene. 

The overall goal of this project was to develop successful strategies for preventing fetal 

overgrowth by manipulating the Glucose 1 transporter (Glut1) in the placenta in vivo. The work 

presented here shows the refining of sonoporation techniques to ensure a successful experiment. 

The following are key ultrasound parameters that should be identified when performing 

sonoporation, which is graphically displayed in Figure 2.10: 

1. Ultrasound Frequency (MHz) 

2. Pulse duration (µs) 

3. Pulse repetition period (ms) 

4. Exposure time (s) 

5. Duty Cycle, as a substitute for either the pulse duration or pulse repetition rate. 

Additionally, when conducting sonoporation experiments there are many other factors that may 

affect the experiment of which key parameters are noted below: 
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1. Mouse breed 

2. Plasmid characteristics 

3. Microbubble characteristics (e.g. shell composition, average size) 

4. Experiment protocol (e.g. injection of dox) 

5. Microbubble delivery route. 

 

2.7 SONOPORATION DESIGN AND RESULTS 

 As previously mentioned, the sonoporation experiment process began with a DNA type 

that could be expressed in every tissue and organ. However, during the study the plasmid was 

switched to plasmids where the expression of the transgene is placenta-specific and inducible by 

doxycycline. The starting strategy when switching to any new DNA was to test whether expression 

within the liver was achievable. The liver was the first benchmark because we had previously 

established sonoporation experiments in mouse livers and both female and male mice could be 

 

Figure 2.10: A visual representation of ultrasound parameters. The period is the inverse of the 

ultrasound frequency, and the exposure time is a summation of the total pulse repetition periods.  
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used for this experiment. Livers were also used because it is much easier to locate their position 

than a placenta.  

There were three major plasmid types that were used throughout these experiments: pGL3, 

Genie3-GINbb-Ept1 (Ept1), and Genie3-GINbb-TRE3G-LUC-CYP-TRCN0000311403 (Glut1). 

Each plasmid served a different purpose. The pGL3 plasmid was used initially because we had 

established that microbubbles coated with it can be successfully delivered to a mouse liver. 

Additionally, it is not organ specific, meaning we can deliver pGL3 to any organ or tissue. Next 

the Ept1 plasmid was used because it is like pGL3 in the sense that it is not organ specific, however 

in order to induce the luciferase expression, an intraperitoneal (IP) injection of doxycycline must 

be added on the day of the sonoporation experiment. The Glut1 plasmid was used last because it 

was a placenta specific plasmid and we also needed to do an IP injection of doxycycline on the 

day of the sonoporation experiment. For both the Ept1 and Glut1 plasmid types we also tried to do 

IP injections of doxycycline the day before the sonoporation experiment to reduce the amount of 

doxycycline delivered per injection. 

A typical sonoporation experiment involved the following steps: 

Day one: 

1. Preparation of microbubbles 

2. Nair or shaving of mouse 

3. Injection of microbubbles into mouse 

4. Ultrasound treatment 
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Day two: 

1. Intraperitoneal injection of luciferin into mouse 

2. IVIS Imaging 

3. Extraction if there is luciferase expression 

4. Storage of data 

In the case of using the Ept1 or Glut1 plasmid, there was an extra step prior to and on day 

one which involves the injection of doxycycline. The concentration of doxycycline was varied 

throughout testing as it was found higher levels often posed significant health risks to the mice. 

Fig. 2.11 shows the process flow for each plasmid type used in these experiments. 

 

Initially microbubbles were infused via a tail vein injection. However, the poor efficiency 

of this technique became apparent, and was confirmed through comparative experimental trials. 

Therefore, it was determined that the best way to inject the microbubbles throughout the body was 

then to first inject the microbubbles into the cavity of the heart, specifically the left ventricle. The 

VisualSonics Vevo 2100 Imaging System was used to assist in imaging of the real time in vivo 

 

Figure 2.11: The typical sonoporation process. Ept1 and Glut1 needed doxy injections on day zero and 

one, however pGL3 did not need any doxy injection. In order to visualize the plasmids, 200 µL of 

luciferin needed to be injected into the mice intraperitoneally.  
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injection of microbubbles. The transducer used in imaging operates with the same physics 

principles to the one that is used for cavitation, however the imaging transducer that was used in 

our experiments operates at frequencies that range from 32 MHz to 52 MHz, and is a phased array 

transducer, meaning there are many smaller transducers built into a single device. These individual 

transducers in summation provide a resolution and discernable image which can be interpreted by 

a sonographer. Fig. 2.12 shows the step by step imaging process of microbubbles being injected 

into the mouse heart. 

The in vivo imaging system (IVIS), (Visualsonics Vevo 2100), is an imaging system which 

was purchased from Fujifilm, Toronto, ON, Canada. There are two main components to the IVIS, 

one being the software which controls the camera properties, and the other being the chamber 

where unconscious mice are placed to be imaged. The IVIS contains a camera and integrated 

system which has a sensitivity to light between 300 to 900 nm in wavelength. This allows for the 

imaging of visible light, and is also where the wavelength of firefly bioluminescence resides (at 

approximately 600 nm). The bioluminescence that the mice expressed due to luciferin injections 

was the same wavelength as the firefly. On the Living Image control panel (the software 

component of the IVIS system), properties such as the exposure time, binning, F/Stop, subject 

height, imaging mode, and field of view can be adjusted. These are summarized in Table 2.6. 
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Table 2.7: The Living Image control panel parameters and their definitions. By adjusting these 

parameters, the resulting display could be adjusted. 

Parameter Definition 

Exposure Time 
Duration that the IVIS measures photon activity 

from luminescence.  

Binning 

Grouping of luminescent pixels on an image, e.g. 

there are 4 medium binning groups in 1 large 

binning group. 

F/Stop 
Controls the shutter opening, the larger this value 

the more light allowed through. 

Subject Height 
Determines the stage height, or how near or far 

the objects are from the camera. 

Imaging Mode 

Luminescent and Fluorescent are the two 

different types of imaging methods available, a 

photograph option is also available but is best 

left as a checked box. 

Field of View (FoV) 

Adjusts image depending on how many subjects 

are being imaged. For example, an image with 5 

mice requires a FoV of E but an image with one 

mouse or specific organs might only require an 

FoV of D or smaller. 

 
Figure 2.12: A microbubble injection procedure. In a the left atrium of the heart is 

circled, in b the 27 G needle is circled, in c the needle has just punctured the mouse 

heart and is ready to inject 100 µL of microbubbles, and in d the heart is shown with 

the microbubbles injected. Also, in d there are trailing air gaps in the ultrasound gel 

as well as some leakage of microbubbles which is circled. 
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2.8 RESULTS 

 The first trials of sonoporation focused on getting the pGL3 plasmid to work within the 

liver of SW mice. This task was accomplished in approximately 2 months, and Fig. 2.13 shows 

the results from some of these trials. Each SW mouse was injected with 200 µL of luciferin, and 

after 10 minutes were imaged for a duration of 2 minutes. Initially tail vein injections for the 

microbubbles were attempted, however these proved to be much too difficult and time consuming. 

Therefore, the heart injection method was performed for the microbubble injections. The 

concentration required for a single heart injection, a total yield of 800 µL of microbubbles per 

preparation, and the preparation of the mice for the experiments were constraints which lead the 

study to find four mice per experiment to be optimal. The goal of this process was to replicate 

previous results [YY], and once establishing gene transfection within the placenta incorporate the 

technique in placental gene delivery. 
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 Fig. 2.14 shows two mice which were used as controls and both injected with 200 µL of 

luciferin. In Fig. 2.14a the mouse had no microbubble injection and no sonoporation treatment, 

however in Fig 2.14b the mouse had a microbubble injection and an injection of luciferin. The 

luciferin concentration also impacted the experiments and a time lapsed image is shown in Fig. 

2.15 and Fig. 2.16 for the C57BL/6 mice. Fig. 2.15 shows a concentration of 20 mg of luciferin 

substrate per 1 mL of PBS, and Fig. 2.16 shows a concentration of 50 mg of luciferin substrate per 

1 mL of PBS. There was a two-minute exposure time for each image, and the first image for Fig. 

2.15 and Fig. 2.16 began ten minutes after luciferin injection. 

  

  

 Figure 2.13: SW liver trials using the pGL3 plasmid images. Following these initial promising results 

from the SW trials, the C57BL/6 strain was used going forward. 
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Figure 2.14: C57BL/6 control images with the pGL3 plasmid. Image (a) shows a mouse with no 

microbubble and luciferin injection as well as no sonoporation. Image (b) shows a mouse with 

microbubbles injected into the mouse, no sonoporation, and a 200 µL injection of luciferin. 

 
Figure 2.15: C57BL/6 liver trial pGL3 imaged with a luciferin concentration of 20 mg per mL. There 

is a three-minute separation time between each image. Peak expression was 1.33 M photons/sec/cm2/sr 

and decreased to 0.431 M photons/sec/cm2/sr by the tenth image. 

a b 
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The next experiments were structured to deliver the pGL3 plasmid to the livers of the 

C57BL/6 mice. In addition to proving that similar ultrasound parameters can be used in both 

C57BL/6 and SW mice for liver trials, the pGL3 plasmid was also used as an ultrasound parameter 

check throughout the course of sonoporation experiments. The pGL3 plasmid assisted with 

verifying optimal ultrasound parameters, and throughout the course of this study was used as a 

check when the Ept1 and Glut1 plasmids were used. Some of the results from the pGL3 liver 

experiments are then shown in Fig. 2.17. The highest luciferase expression can be seen to be in the 

general area of the liver, or approximately where the liver should be. The IVIS initially takes a 

photograph of the unconscious mice prior to recording the photon count. After taking the 

photograph, the shutter is left open for a set exposure time while keeping track of the photons 

 
Figure 2.16: SW liver trial pGL3 imaged with a luciferin concentration of 50 mg per mL. This 

was found to be the optimal concentration of luciferin for IVIS imaging. Peak expression was 

1.40 M photons/sec/cm2/sr and decayed to 1.31 M photons/sec/cm2/sr by the tenth image.  
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leaving the target. This bioluminescent image is then overlaid on the original black and white 

photograph. Although making the quantification of luminescent activity much easier, this method 

does present some problems. Most notably, the results could be misinterpreted if a mouse moves 

during the imaging process, thus showing bioluminescent activity in incorrect places prior to 

overlaying the image. To ensure that mice moved as little as possible during the imaging capture 

process, mice were anesthetized three minutes prior to imaging, approximately seven minutes after 

the luciferin injection. Mice were also inspected prior to imaging to ensure proper anesthetization. 

 

 

 
Figure 2.17: C57BL/6 pGL3 liver trial images. These images show that gene delivery to the liver 

using ultrasound was possible and repeatable. The light units are in photons/sec/cm2/sr. The 

bioluminescence was found to be largest in the liver for many of these experiments. 
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 Although Fig. 2.17 showed that liver gene delivery was possible, it did not validate that the 

gene delivery was taking place in the liver. To verify that ultrasound targeted gene delivery to the 

liver the mice were sacrificed and their livers were extracted for subsequent imaging. Some of the 

extracted livers using the pGL3 plasmid are shown in Fig. 2.18, validating that the largest 

luciferase expression was in the liver.   

 

 After achieving successful gene transfection into the livers, gene transfection into the 

placentas of pregnant C57BL/6 mice were performed. Fig. 2.19 shows some of the C57BL/6 mice 

which were used in placental tests with the pGL3 plasmid. Fig. 2.19 shows only one mouse in 

 

 
Figure 2.18: Extraction of livers from the pGL3 experiments. For successful experiments, the 

liver was either the highest expression of bioluminescence or was the only organ which showed 

luciferase expression.
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three separate images and a group of mice in the final image. Experiments of four mice were 

followed up with individual photographs the next day, and were taken to adjust for the luciferin 

expression in each mouse. The initial hypothesis was that the imaging software could only display 

the luciferin concentration from the mouse yielding the largest luciferin activity. However, through 

repeated images it was found that the number of mice in an image does not impact the radiance 

count for each mouse, only the visual intensity compared with the scale bar is impacted.  

 

 The uterine horn of the mouse was first extracted to verify that there was luciferase 

expression in that region of the mouse as shown in Fig. 2.20, and then subsequent images of 

placentas were taken as shown in Fig. 2.22.  A mouse image was first taken to visualize if there 

was any luciferase expression within the placental region of the pregnant mouse. The uterine horn 

 

  
Figure 2.19: Placental trials with the C57BL/6 mouse using the pGL3 plasmid. 

Experiments using the transducer to target specific placentas were not successful, 

however gene transfection to the placenta was established. 
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was then quickly extracted and imaged to provide clues to whether there was bioluminescence 

coming from either the fetuses or placentas, and followed up with images of the fetuses and 

placentas both together and separated.  

 

Following the success of the pGL3 plasmid in the B6 mouse placentas, Ept1 plasmids were 

used. As a reminder, this plasmid will only express luciferase when there is an IP injection of 

doxycycline on the day of the sonoporation experiment. The concentration of doxycycline in the 

IP injection was varied between 1 mg/kg, 25 mg/kg, 50 mg/kg, 100 mg/kg, and 200 mg/kg each 

with a total injection volume of 300 µL. These concentrations amounted to a total of 0.025 mg, 

0.625 mg, 1.25 mg, 2.5 mg, and 5 mg injected doxycycline for each respective concentration. Both 

Ept1 and Glut1 have not yet been successful due to complications with identifying an optimal 

concentration of doxycycline, however work is still being done to do so and some preliminary 

results are shown in Fig. 2.22 for the Ept1 plasmid in use with liver gene transfection. 

 

 
Figure 2.20: Images of the uterine horn using the pGL3 plasmid. If 

luciferase activity was recorded in these images, further extraction 

of both fetuses and placentas were performed.  
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Figure 2.21: Images of the C57BL/6 mouse placentas using the pGL3 plasmid. These 

images show that placental gene delivery with the pGL3 plasmid is possible.  

 
Figure 2.22: Preliminary testing using the Ept1 plasmid for liver trials. The concentration of doxycycline 

was 20 mg/kg in these experiments, however the mice looked in poor health. Experiments are currently 

underway to reduce the concentration of doxycycline but still ensure a successful experiment. 
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2.9 DISCUSSION 

One of the most important factors determining the success of a sonoporation experiment 

was the quality of heart injection. A poor heart injection not only puts the mouse at risk but also 

increases the decreases the likelihood that the microbubbles are properly delivered to the correct 

organ. This was one of the motivating factors for introducing the grading scheme about midway 

through this project. We determined that heart injections of microbubbles are superior to tail vein 

injections not only in terms of the injection difficulty but also in microbubble delivery efficiency. 

Heart injections which scored above a 2 would yield higher success rates than injections scored 

less than 2, however an injection which was scored less than 2 would result in a failed experiment 

or even worse, death of the mouse. Some selected results for both the liver and placental trials 

using the pGL3 plasmid are shown in Table 2.8.  

Table 2.8: Selected results from sonoporation experiments. These experiments used the pGL3 plasmid 

and targeted either the placenta or liver. 

Key 

Score - quality of heart 

injection 

From 0 to 3, 0 being a poor injection and 3 being an optimal 

injection of microbubbles 

Luciferase expression – did 

the mouse express 

bioluminescence 

No = N 

Yes = Y 

Mouse breed 
Swiss Webster = SW 

C57BL/6 = C 

Target organ 
Liver = L 

Placenta = P 

Transducer 
GE unfocused = GE 

Olympus focused = O 

Date 

Input 

Voltage 

(mVpp) 

Pressure 

(MPa) 

Score 

(0 to 3) 

Luciferase 

expression 

Mouse 

Breed 

Target 

Organ 
Transducer 

4/4/16 650 1.55 3 Y 0 L GE 
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3 Y L 

3 Y L 

3 Y L 

8/3/16 650 1.55 

3 Y 

1 

P 

GE 

1 Y L 

3 N L 

3 Y L 

3 Y L 

2 N L 

9/5/16 650 1.55 

3 Y 

1 

L 

GE 

0 N L 

3 Y L 

3 Y L 
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12/19/16 250 3.42 

3 Y 

1 

L 

O 

2 Y L 

3 N L 

3 N L 

3 N L 

12/24/16 350 3.5 

2 Y 

1 

P 

O 

2 N P 

2 N L 

3 Y L 

2 Y L 

12/26/16 250 3.42 

3 Y 

1 

L 

O 3 Y L 

3 Y L 
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3 Y L 

3 Y L 

1/10/17 2.5 3.42 

1 Y 

1 

L 

O 

1 N P 

1 N L 

1 Y L 

1 Y L 

1/25/17 250 3.42 

3 Y 

1 

L 

O 3 Y L 

3 Y L 

1/26/17 250 3.42 

3 Y 

1 

L 

O 3 Y L 

3 Y L 
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3 Y L 

1/27/17 250 3.42 

3 Y 

1 

L 

O 

3 Y L 

3 Y L 

3 Y L 

2/1/17 250 3.42 

3 Y 

1 

L 

O 

3 Y L 

2/6/17 

  3 Y  L 

GE 

  3 Y  L 

  3 N  L 

  3 Y  L 

2/7/17 

  3 N  P 

GE 

  3 Y  L 
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  3 Y  P 

  3 Y  P 

2/8/17 700 3 

3 Y 

1 

L 

GE 

3 Y L 

3 Y L 

3 Y L 

3 Y L 

2/9/17 700 3 

3 Y 

1 

L 

GE 

3 Y L 

3 Y L 

3 Y L 

2/12/17 

  3 N  P 

GE 

  3 Y  P 
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  3 Y  P 

  1 N  P 

2/13/17 

  3 N  P 

GE 

  3 Y  P 

  3 Y  P 

  3 Y  L 

2/14/17 700 3 

3 Y 

1 

L 

GE 

3 N P 

3 Y L 

3 Y L 

2/15/17 700 3 

3 Y 

1 

L 

GE 3 N P 

3 Y L 
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3 Y L 

2/17/17 700 3 

2 Y 

1 

L 

GE 

2 Y L 

2 Y L 

0 N L 

2/19/17 700 3 

3 N 

1 

P 

GE 3 N P 

3 Y L 

2/21/17 700 3 

2 N 

1 

P 

GE 

2 Y L 

3 Y L 

2 Y L 

2/22/17 700 3 3 Y 1 L GE 
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3 Y L 

3 Y P 

3 Y L 

2/23/17 700 3 

3 Y 

1 

L 

GE 

2.5 N P 

3 Y L 

3 Y L 

2/27/17 700 3 

2 N 

1 

P 

GE 

3 Y P 

3/15/17 700 3 

3 N 

1 

P 

GE 

3 N P 

3 Y P 

3 Y P 
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3/16/17 700 3 

2 Y 

1 

P 

GE 

2 Y P 

3 Y P 

3 Y P 

3 N P 

3/22/17 700 3 

2 Y 

1 

P 

GE 

3 Y P 

5/3/17 700 3 2.5 Y 1 P GE 

5/8/17 700 3 2.7 Y 1 P GE 

5/15/17 700 3 

1 N 

1 

P 

GE 2 Y P 

2 N P 

5/17/17 700 3 2.9 Y 1 P GE 
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2.9 Y P 

6/28/17 700 3 

2.4 Y 

1 

L 

GE 2.4 Y L 

2.4 Y L 

 

 Throughout the course of these experiments the exposure time for sonoporation was best 

below 5 minutes to ensure that there would be no negative effects from either heating or shear 

stress from the transducer. The other ultrasound parameters which were found to be optimal was 

an input voltage of 700 mV, a 15 ms pulse duration, a 375 ms pulse repetition period, and a one-

minute exposure time. The luciferin concentration (delivered via IP injection) used in IP injections 

was also determined to be optimal at a concentration of 75 mg per mL in a total volume of 200 

µL. The lowest luciferin concentration that was found to be feasible for use in imaging was 30 mg 

per mL, and the only difference between this and the optimal luciferin concentration was the 

duration at which the luciferase expression persisted.  As illustrated in Table 2.7, for the liver 

experiments a 88.67% success rate was achieved, and for placental trials a 57.89% success rate 

was achieved using the pGL3 plasmid. 
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CHAPTER 3 IMPEDANCE SPECTROSCOPY FOR THE 

QUANTIFICATION OF ARTEMIA CYST DEVELOPMENT  

Embryos are formed when an oocyte (egg) has been fertilized with sperm. The process of 

fertilizing oocytes out of the body and in a controlled lab environment is called in vitro fertilization 

(IVF). Currently, a technique known as intracytoplasmic sperm injection (ICSI) is used to insert a 

single sperm into an oocyte to create an embryo [134]. The embryos are then subjected to a 

morphological grading process which separates the low-quality and high-quality embryos. The 

higher-grade, high-quality embryos are then implanted in the womb, which ideally leads to 

pregnancy. 

There are two major industries which use IVF, namely human and bovine IVF. In both 

industries, the morphological grading procedure is used for embryos. For human embryos, a biopsy 

is also performed in addition to the morphological grading [135]. Human embryos are slightly 

punctured when they are in the two- to four-cell stages, and when they reach the blastocyst stage 

the cells permeate out of the shell. Approximately two cells are extracted from the blastocyst, and 

cut from the other cells with a laser. The biopsy provides crucial information such as the genetic 

abnormalities (aneuploidy) that may exist within the blastocyst. Although it is a crucial step in 

IVF, this procedure is highly invasive to the developing embryo. Therefore, a non-invasive 

viability test for these embryos is necessary.  

In the human IVF market, the Embryoscope takes images every five minutes during 

embryo incubation [135]. The clinician and patient can then look over these incremental photos to 

interrogate the development of these embryos. The Embryoscope also provides detailed files which 

contain matrices of information about the embryo’s growth. However, the Embryoscope fails to 
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provide an alternative to the golden standard of biopsies because IVF doctors are still relying on 

the biopsy, and often provides the clinician and patient with too much data on the embryo’s growth, 

leading to some confusion [135].  

Impedance spectroscopy (IS) is a possible alternative to biopsies which could also possibly 

be integrated within the Embryoscope. This technique measures the impedance of an embryo over 

a range of frequencies. In this chapter, the correlation of developmental changes of Artemia cysts 

to impedance changes are discussed [136].  

 CELLS USED IN IMPEDANCE SPECTROSCOPY 

 There have been some studies with IS with cells [137, 138, 139, 140]. [137], [138], and 

[139] used IS as a tool for differentiation between cells, and employed the use of a differential cell 

impedance measurement. [140] is a review paper which showed the various methods of using IS 

to investigate different various characteristics about cells such as the opacity (the ratio between a 

high-frequency impedance and lower-frequency impedance), membrane capacitance, and 

cytoplasm conductivity. In these publications, the cells which were studied included red blood 

cells, white blood cells, erythrocytes, lymphocytes, and monocytes, among others. We investigated 

embryos of the Artemia brine shrimp. This study aimed to build on these works by investigating 

the possible correlations between IS and the embryological developments of the Artemia.   

  EXPERIMENTAL DESIGN 

 The animal model that was used for the IS experiments was the Artemia. This model was 

chosen because of the low cost and ease of accessing the cysts.  
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The Artemia is a type of brine shrimp which undergo a process known as diapause. In 

extreme environmental conditions, such as extreme heat or cold, the diapause cycle of the Artemia 

cysts protect them from dying by reducing metabolic activity to a near zero value. These cysts are 

often subjected to dehydration when the pools of water that they live in go dry, however if water 

returns to these pools then the cysts go through a rehydration process which eventually leads to 

their hatching. We acquired our cysts through a local grocery store, and could successfully carry 

out experiments with them.  

  MODEL 

 The equivalent circuit model for a cell is shown in Fig. 3.1. This equivalent circuit includes 

a double layer capacitance on each electrode, impedances and capacitances for the cell and interior 

of the cyst, and the capacitance and impedance of the liquid media. This model of the experimental 

environment provides insight into the impedance as a function of frequency for the cyst and the 

surrounding liquid media. 
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The circuit elements shown in Fig. 3.1 are characterized by Equations (3.1) to (3.6) below  

[141, 142, 143]. In these equations, Cdl, Csh and Rsh, Cem and Rem, and Cmed and Rmed are the 

capacitances and resistances of the electrical double-layer, shell, embryo, and media, respectively. 

 

Figure 3.1: Equivalent circuit model for a cell, adapted from [136]. This circuit 

is a simplification of the cell and models the impedance contributions from the 

shell, inner embryo, and surrounding media. 
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 The double layer capacitance, Cdl, at the electrode contacts depends on the Debye length, 

as shown in Equation 3.6. The Debye length can be solved for using 

   

where ε is the permittivity, kB is Boltzmann’s constant, T is the absolute temperature, z is the count 

of valence ions in the solution, qe is the elementary charge value, and C0 is the molar concentration 

of ions. 
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 The Artemia cysts were smaller than the electrodes used in the study, making the 

impedance contribution from the media an important factor consider. The 100 µm radius cyst was 

placed between two 250 µm radii conductors, and can be replaced by a circuit equivalent Zcyst 

between nodes A and B. Zmed is then the modeled impedance contribution from the surrounding 

media, which in this case was salinized natural spring water. Zmed is in parallel to Zcyst, and has a 

significant contribution to the overall impedance changes of the circuit. Another contribution to 

the overall impedance stems from the electric double layer, Zdl. This term cannot be negated since 

the media used had a significant ionic concentration of salts. Therefore, the circuit modeled in Fig. 

3.1 provides an understanding of each circuit element and their underlying contribution to the 

overall impedance as measured using the electrodes. Two separate measurements were then taken 

in the experiments, one with the cyst between the electrodes and one with only the aqueous media 

between the electrodes. The differential impedance was then calculated by subtracting the media-

only measurement from the cyst measurement. Fig. 3.2 shows the measured change of impedance 

as the frequency of a 1 Vpp ac signal was swept from 1 kHz to 1 MHz. The impedance changes as 

a function of frequency as different impedances dominate (from the cyst or the surrounding media). 

A frequency of 1 kHz was selected for impedance measurements over the cyst development period, 

as it has a high magnitude, and the impedance values near that frequency vary linearly over a 

smaller range than at the higher measured frequencies. 
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  DESIGN AND FABRICATION 

 Rapid prototyping is a procedure involving a quick fabrication of a model of a final product. 

This model provides insight into the various properties of the final product, such as the material 

type, durability, and strength. We employed this methodology into our construction of microfluidic 

channels for the Artemia experiments. 

 Polydimethylsiloxane (PDMS) is a type of elastomer which was used to construct the 

microfluidic channels used here. The elastomer comes in two parts, a base and a curing agent. To 

make the PDMS, 10 parts of the base agent was mixed with one part of the curing agent (weight 

ratio) for approximately 15 minutes to 30 minutes depending on the consistency of the mixture. 

The combined mixture was then placed into a vacuum chamber to remove any gas impurities in 

 

Figure 3.2: Experimentally measured data from a single cyst measured during the pre-

emergence development phase. Experimentally measured data from a single cyst measured 

during the pre-emergence development phase. A frequency of 1 kHz was selected for the 

measurement of impedance over the embryo development period, as it has a high impedance 

magnitude, and the impedance has a relatively small linear variance about this frequency. 
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the mixture for one hour. Depending on the type of channel that was built, the PDMS was then 

either poured into a mold or added as a sealant between the glass slides as well as channel cover. 

This step ensured that the channel remained airtight. The PDMS was then placed into an oven at 

80 ̊ C to cure. To bond PDMS to glass or other PDMS constructs, a corona treatment was employed 

[144] and a light pressure applied to the two sides of materials until they were completely bonded. 

Initially, a PDMS mold was used for the Artemia channel, however this was later 

abandoned for several reasons. Making a full PDMS channel took a significant amount of time 

compared to a rapidly prototyped channel, and the secondly there were constant leaks in the PDMS 

channel compared to the rapidly prototyped channel.  

The rapidly prototyped channel had a bottom layer consisting of a 1-mm-thick glass 

substrate. Four 38.1 mm x 25.4 mm x 1 mm-thick glass microscope slides were bonded to the glass 

substrate using clear double-sided tape, and a 500-µm-diameter copper wire was embedded 

between each pair of glass slides along the x-direction, as illustrated in Fig. 3.3. The channel 

dimensions were built to accommodate the Artemia cysts which range from 200 µm to 230 µm in 

diameter. 
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 EXPERIMENTAL SETUP 

 The Artemia cysts undergo a process called dormancy when they encounter extreme 

environmental conditions such as dehydration. Dormancy can be further looked at as two separate 

events: diapause and quiescence. During diapause, the cyst resists hatching by stunting biological 

growth, even under favorable circumstances [141, 145]. Quiescence occurs when the cyst is 

exposed to extreme environmental conditions terminating diapause, and forcing the cyst to enter a 

hypometabolic state [141, 145]. In this state, the cyst can survive for months to several years [141, 

145, 146, 147]. The measurements in this work took place between the period of quiescence and 

the eventual hatching of the Artemia larva. 

 

Figure 3.3: The microfluidic device used for measuring impedance changes in brine shrimp cysts, adapted 

from [136]. The channel was fabricated taping four 38.1 mm x 25.4 mm x 1 mm glass slides on top of a 

glass substrate. Two copper electrodes were embedded along the channel. The channel ceiling is made of 

500-μm-thick PDMS. The channel floor was coated with PDMS to create a channel depth of 600 μm. The 

brine shrimp cyst was injected through the opening at one end of the channel. 
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 All Artemia cysts in this study were purchased in the quiescent stage. Under favorable 

conditions, a healthy cyst can rehydrate and hatch within 24 hours [148, 149]. After acquiring the 

cysts, they were placed in a 100-mm-diameter petri dish with a salt mixture. Store-bought natural 

spring water was then mixed with the salt and the cysts, and 20 cysts were visually inspected and 

separated into individual petri dishes using handheld tweezers. Floating cysts, empty cysts, and 

cysts with irregular morphology were not used in this experiment. The experiments were carried 

out at approximately 25 ˚C, and the cysts were illuminated by an incandescent desk lamp. The 

combination of the temperature and illumination created a favorable hatching environment for the 

cysts.  

 After carefully placing a single cyst at the cyst injection port using stainless-steel tweezers, 

the cyst was then positioned between the electrodes with a syringe pump. The impedance was then 

measured using an impedance analyzer (Hioki IM 3570). The positioning of the brine shrimp cyst 

was observed with a CMOS camera (Point Grey Flea3-U3-20E4C) mounted on a camera lens 

(Nikon Micro Nikkor 60 mm). The Artemia cysts were suspended in salt water at a pH of 

approximately 7.6. 

 The magnitude and phase were measured with a 1 Vpp ac signal sweeping from 1 kHz to 1 

MHz at 400 discrete frequencies. The impedance measurements were conducted at varying time 

intervals over a period of 24 hours, or until hatching of the brine shrimp was visually observed. 

The reported impedance and phase data were calculated by taking the difference of an impedance 

measurement with the cyst between the electrodes and an impedance measurement with no cyst 

(only the salinized water). The first measurements were taken when the cyst looked like the image 

in Fig. 3.4A, and the last measurements were taken when the cyst looked like the image in Fig. 

3.4C. Fig. 3.4A shows a dehydrated cyst, and it what the cyst initially looked like. Fig. 3.4B shows 
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a fully hydrated cyst which would typically be seen at 12 hours into the experiment. Fig. 3.4C and 

3.4D then show the Artemia larva emerging and eventually hatching from the cyst, respectfully. A 

total of 20 cysts were measured in this experiment.  

 

 RESULTS 

 The Artemia cysts are hypometabolic if their hydration levels are below 10% and can be 

stored for long periods of time without losing viability [150]. In the presence of water, the cysts 

begin to hydrate, and if favorable conditions are present, hatch. The metabolic processes with the 

 

Figure 3.4: Artemia cyst development during this study, adapted from [136]. Most of the cysts began 

with a shape like the one shown in (a). These cysts are deformed due to the dehydration of the cyst. The 

engorged cyst shown in (b) is typical as the cyst approaches complete hydration. A cyst hatching is 

shown in (c), and an almost completely hatched Artemia is shown in (d). All scale bars are 500 μm. The 

green arrow in each image points to the Artemia cyst. 20 total cysts underwent interrogation during this 

experiment. Air bubbles, as illustrated in (d), did not significantly affect measurements however they 

were difficult to remove once they were introduced into the microfluidic channels. Some ways that they 

got into the channels were either through leaks within the electrode channels themselves, accidental 

injection through the syringe, or from the poor sealing of the microfluidic channel (e.g. electrode 

channels or poor sealant for tubing connected to syringe pump). Fortunately, the channels presented in 

this paper are relatively simple and can be quickly reproduced in under four hours. Additionally, several 

channels can be fabricated for a maximum of five microfluidic channel every four hours. 
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cyst start if the hydration level is over 10%. Metabolism increases significantly as the hydration 

level increases, and hydration can reach 140% of the initial level within an hour [150]. 

There are three developmental phases of the Artemia cysts, and they occur after reaching 

the 140% hydration level: 1) a preparatory phase that is 20% of the total hatch time; 2) a pre-

emergence development (reversible) phase that lasts for 50% of the total hatch time; and 3) a non-

reversible phase that lasts for approximately 30% of the total hatch time [150]. Specific details of 

cellular activities at each stage are mentioned elsewhere [150]. 

Fig. 3.5 shows the differential impedance magnitude (Ω) of the brine shrimp cysts prior to 

hatching. Zero hours represent the time when the cysts were initially deposited into the saline 

solution. There was a measured increase of impedance from zero hours to the second data point at 

1.4 hours which corresponds to the hydrating phase of the cysts. A hydrated cyst will have a higher 

reactance compared to the same cyst when dehydrated [151].  

The change in differential impedance magnitude measured in the non-reversible phase 

corresponds to an increase of water content in the cysts. At the end of this phase, the osmotic 

pressure inside the cysts increases to a critical level, resulting in the breaking of the cyst shell. 

Figs. 3.5a, 3.5b, and 3.5c correspond to different cysts, however similar trends of impedance 

changes over time suggest this method is suitable for monitoring cyst development. 
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a  

b  

c  

Figure 3.5: The results for impedance measurements correlating to major phases of cyst 

development. Differential impedance magnitude from 0 hours (when the cyst was first 

placed in media) until the approximate hatching time, for three separate cysts, adapted from 

[136]. The three major stages of development are outlined: the preparatory phase, the pre-

emergence development phase, and the non-reversible phase. 
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 DISCUSSION 

The trend from the plots in Fig. 5 is that in the preparatory phase there is a low impedance 

which corresponds to a change in biological activity for the cyst, in the pre-emergence phase a 

large increase in impedance refers to another change in biological activity, and finally in the non-

reversible phase there is a significant decrease in impedance which means another biological event 

has happened. Specifically, these events are marked through hydration of the cyst, ending the 

quiescence period and leading up to full hydration of the cyst, and finally hatching. The non-

reversible phase indicates the end of dormancy, and if the cyst does not hatch then it will die. Three 

separate cysts had peak impedances in the preparatory, pre-emergence development, and non-

reversible phases of 75 Ω, 300 Ω, and 100 Ω for the first cyst, 25 Ω, 225 Ω, and 50 Ω for the 

second cyst, and 250 Ω, 600 Ω, and 100 Ω for the third cyst. 

A major concern was to also not severely impact the health of the Artemia cyst by 

interrogating it with electrical impulses. The effects of electric fields were previously investigated 

for freely swimming Artemia, and it was found that they could withstand 100 50-ns pulses of a 7 

kV/cm field, 10 50-ns pulses of a 12 kV/cm field, and 2 50-ns pulses of a 20 kV/cm field before 

being immobilized [152]. The interrogation voltage in the experiments performed here is 1 V 

across a 500-μm gap, corresponding to an electric field of 20 V/cm, although the cysts are exposed 

to this electric field for a longer period than the higher fields tested in [152]. For the 17 other 

embryos that hatched in this study, 10% hatched within a day (less than 16 hours), 15% hatched 

within the experiment duration (24 to 72 hours, however did not yield similar impedance trends), 

30% hatched after the experiment finished (more than 72 hours), and 40% did not hatch at all.  
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CHAPTER 4 CONCLUSION AND FUTURE WORK 

 Gene delivery was achieved for the placenta based plasmid constructs presented in this 

paper. The plan for optimizing these experiments allowed the use of previously proven constructs 

to verify the new plasmids for each experiment which included pGL3, Ept1, and Glut1.  

 Impedance changes during the development of Artemia cysts were presented in this paper. 

The cysts went through three phases: the preparatory phase, pre-emergence development phase, 

and the non-reversible phase. The peak impedances were found to be measured within the pre-

emergence development phase, and are likely attributed with embryo activity in preparation for 

hatching from the cysts. These results show the feasibility of using impedance spectroscopy to 

measure activity in a hatching cyst. 

In the current setup, the cyst is relatively small to the dimensions of both the microfluidic 

channel as well as the electrodes used. Reducing the channel size and increasing the electrode size 

relative to the size of the cyst can help to increase the signal-to-noise-ratio of the measurement. 

Further improvements on channel design as well as an automated data acquisition will also help to 

improve the quality of future tests.  
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APPENDIX 

A. Matlab Executable titled SSD 

%    
%   SSD Code for communicating with an instrument.  
%   
%   This is the machine generated representation of an instrument control  
%   session using a device object. The instrument control session comprises   
%   all the steps you are likely to take when communicating with your   
%   instrument. These steps are: 
%        
%       1. Create a device object    
%       2. Connect to the instrument  
%       3. Configure properties  
%       4. Invoke functions  
%       5. Disconnect from the instrument  
%   
%   To run the instrument control session, type the name of the file, 
%   SSD, at the MATLAB command prompt. 
%  
%   The file, SSD must be on your MATLAB PATH. For additional information 

%   on setting your MATLAB PATH, type 'help addpath' at the MATLAB command 

%   prompt. 
% 

%   Example: 
%       SSD; 
% 

%   See also ICDEVICE. 
% 

 

%   Creation time: 22-Dec-2015 14:55:12  
 

%To open up matlab instrumentation toolbox type in the following 

%tmtool 
 

clear all 
close all 
clc 

 

% Initialize variables 

h = [1:2500]'; 
k = []; 
pressh = [];%MPa 

sensh = 89/1000;% V/MPa 

mxh = [];% mVpp 
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mnh = [];% mVpp 

hloops = 7; 
hdata = []; 
 

% htime are approximate times the waveforms were taken at. 
htime = []; 
 

for a = 1:hloops 

   htime(a) = 1.7*a; 
end 

 

htime = htime'; 
 

% Create a VISA-USB object. 
interfaceObj = instrfind('Type', 'visa-usb', 'RsrcName', 
'USB0::0x0699::0x03B3::C010413::0::INSTR', 'Tag', ''); 
 

% Create the VISA-USB object if it does not exist 
% otherwise use the object that was found. 
if isempty(interfaceObj) 
   interfaceObj = visa('NI', 'USB0::0x0699::0x03B3::C010413::0::INSTR'); 
else 

   fclose(interfaceObj); 
   interfaceObj = interfaceObj(1); 
end 

 

% Create a device object.  
deviceObj = icdevice('tektronix_tds2024.mdd', interfaceObj); 
 

% Connect device object to hardware. 
connect(deviceObj); 
 

% Execute device object function(s). 
% The first for loop enables the capturing of multiple waveforms, with a  
% period of 1.7 seconds per capture. 
%   Concatenate h so we have ld columns of 2500 points. 
%   h and k are y (time points) and x (pressure outputs) coordinates from the 
oscilloscope, respectively. 
groupObj = get(deviceObj, 'Waveform'); 
 

tic 

for ld = 1:hloops 

   [y,x] = invoke(groupObj, 'readwaveform', 'channel1'); 
   h = [h, y']; 
   k = [k, x']; 
end 
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toc 

 

% Delete objects. 
delete([deviceObj interfaceObj]); 
 

% We convert the raw data into pressure outputs. 
mxh = max(h); 
mnh = min(h); 
pressh = (abs(mxh - mnh)/sensh)'; 
 

% To write to an excel file use the xlswrite command.  
% We will store both the raw data as well as the pressure converted data. 
header = {'Time','700 mVpp Input'}; 
hdata = [htime,pressh(2:hloops+1)]; 
 

% Store raw data. 
xlswrite('700 mVpp PW Input Olympus Focused Transducer raw data', h,1) 
xlswrite('700 mVpp PW Input Olympus Focused Transducer raw data', k,2) 
 

% Store pressure data. 
xlswrite('700 mVpp PW Input Olympus Focused Transducer Pressure data in MPa', 
header,1) 
xlswrite('700 mVpp PW Input Olympus Focused Transducer Pressure data in MPa', 
hdata,1, 'A2') 
 

% Storing data from oscilloscope directly hooked up with amplifier. 
 

% We convert the raw data into a max and min voltage. 
mxh = max(h); 
mnh = min(h); 
pressh = (abs(mxh - mnh)/sensh)'; 
 

% To write to an excel file use the xlswrite command.  
% We will store both the raw data as well as the pressure converted data. 
header = {'Time','700 mVpp Input'}; 
hdata = [htime,pressh(2:hloops+1)]; 
 

% Store raw data. 
xlswrite('700 mVpp PW Input Olympus Focused Transducer raw data', h,1) 
xlswrite('700 mVpp PW Input Olympus Focused Transducer raw data', k,2) 
 

% Store pressure data. 
xlswrite('700 mVpp PW Input Olympus Focused Transducer Pressure data in MPa', 
header,1) 
xlswrite('700 mVpp PW Input Olympus Focused Transducer Pressure data in MPa', 
hdata,1, 'A2') 
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