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Abstract  

Introduction:  Effective training involves the accumulation physical stresses in an effort to 

produce overload and effect physiological change.  The ability to quantify the balance of training 

stress and recovery on an individual basis is lacking, as is the ability to identify athletes who are 

not fully recovered in order to make changes earlier in their training.  Evaluating recovery on a 

regular basis has the advantage of indicating an increased need for rest prior to performance 

declines allowing the athlete to resume normal training and competition following a brief respite.  

The method of collecting this data should be easy and readily available to the athlete, be 

validated against existing methods and allow for changes that are clinically relevant even if they 

are not statistically significant.  Four separate studies were used to evaluate recovery methods in 

Collegiate Student athletes using subjective and objective measures. 

Methods:  Heart rate variability was assessed using traditional ECG methods of data collection 

as well as with photoplethysmography using the flash form a smartphone and a smartphone 

application.  Subjective stress levels were assessed using the RESTQ-Sport and evaluation of 

training load, the product of minutes trained times RPE.   

Conclusions: While time domain and frequency domain measures cannot be used 

interchangeably, the HF power of AR is an acceptable alternative to RMSSD, the preferred time 

domain measure.  There is a clear curvilinear relationship between HRV measures and stress in 

collegiate athlete however there is not one measure that best associates to any one RESTQ-Sport 

scale.  The use of a smartphone application is acceptable for evaluating the time domain 

measures of HRV but not the frequency domain measures as the application uses different 

methods of calculation.  The RR intervals obtained from the smartphone can be assessed using 

Kubios HRV software in order to determine HRV measures.  The SRM is an appropriate 
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statistical measure for evaluating change in daily HRV measures for collegiate football players.  

The 0.5 SD of change appears too conservative of a measure to evaluate change and a 90% CI is 

more appropriate, especially in athletes who primarily undergo anaerobic training.    
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Chapter 1 

Comparing the Frequency Domain measures of fast Fourier Transformation and 
Autoregressive Analysis in NCAA Division I Collegiate athletes 
 
INTRODUCTION 

  The parasympathetic and sympathetic pathways of the autonomic nervous system (ANS) 

regulate heart rate variability (HRV), modulation of the interbeat intervals and the oscillations 

between consecutive instantaneous heartbeats [1-4].  Because the sympathetic and 

parasympathetic nervous systems have differing response characteristics on HR modulations, 

analysis of HRV is used to determine how the systems regulate sympathovagal balance [2].  

Analysis of HRV is done through the examination of electrocardiographic (ECG) recordings of 

the intervals between the peaks of successive QRS complexes (R-R intervals) using time domain 

and frequency domain measures [1, 3]. Time domain measures use statistical analyses involving 

the standard deviation of the rate between successive normal-to-normal (NN) intervals such as 

the square root of the mean squared difference of those intervals (RMSSD) to reflect variance, 

the mathematical equivalent of power [1, 5-9].  Frequency domain measures are a function of 

how power (variance) distributes as a function of frequency, and are expressed in absolute values 

of power (m2) or normalized units (nu) where the influence of the thermoregulatory effect is 

removed from the absolute value [1].  In this measure the patterns of oscillation divide the 

spectral components of HRV into bands, very low frequency (VLF) influenced by 

thermoregulatory effects, low frequency (LF) under influence of the sympathetic and 

parasympathetic systems, and high frequency (HF) modulated by the parasympathetic nervous 

system [1, 2, 10].  The sympathetic tone reflected in LF is hypothesized to come from vaso- and 

thermoregulatory mechanisms while the variations in HF occur during normal respiration from 

increased parasympathetic activity with expiration and inhibited activity during inspiration [10, 
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11].  The LF/HF ratio is then used as a reflection of the sympathovagal balance [1, 2].  Time and 

frequency domain measures do have a high degree of multicollinearity however they do not 

allow for direct comparisons and caution must be used if measures are taken under differing 

methodologies as variations in positioning and length of recording time lead to differing results 

[1, 4, 12]. 

 Frequency domain measurements can be expressed in either non-parametric fast Fourier 

transformation (FFT) or parametric autoregressive (AR) analysis [1].  In FFT the RR interval 

series are decomposed into a spectrum of sinusoidal components where LF and HF are estimated 

into specific ranges [13].  The FFT method employs a simple algorithm and a high processing 

speed, and has the advantage of good reproducibility however there is often an overlap in the 

bands that increase the values of the LF and HF power, placing LF measures in HF bands and 

HF measures in LF bands, potentially overestimating the parasympathetic modulations during 

HRV analysis [1, 14, 15].  The parametric AR method fits the RR interval series into an AR 

model and estimates the spectrum from the model parameters giving it a smoother spectral 

component making it easier to distinguish peaks between the HF and LF components in order to 

identify the central frequency of the spectra [13]. At low breathing frequencies the peaks broaden 

increasing the overlap between HF and LF preventing a clear separation into components thereby 

increasing the LF/HF ratio resulting in an increased value for sympathetic activity as well as 

overestimating the parasympathetic modulation, however this is only if AR is used during 

methodologies involving paced respiration. [1, 13, 14, 16]  In direct comparison of the two 

techniques, active individuals at rest had a significantly higher total power (TP) and HF absolute 

power using FFT analysis compared to AR while during recovery from exercise the same 

individuals continued to have a higher HF absolute power in FFT but also yielded a higher 
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LF/HF in AR which was different from what was found at rest [17].  While there is often a 

strong correlation between the two methods, a Bland-Altman plot revealed a large discrepancy 

for all the frequency domain indices at rest and during orthostatic testing confirming that the 

measures are different [15]. The FFT and AR analyses cannot be used interchangeably or 

compared directly and there is no consensus as to which is the appropriate method of analysis for 

athletes [14-17].   

 Time domain measures are the preferred measure for evaluating athletes as the saturation 

of the sino-atrial (SA) node by acetylcholine (AcH) can distort the frequency domain measures 

in individuals with a resting heart rate below 60 beats per minute [7, 8, 18]. With vagal 

stimulation there is an increase in AcH leading to a prolonged conduction time of the SA node, 

resulting in a decreased firing rate of the node and a decrease in the contractile forces of the 

cardiac cells [19].  The dose response of AcH is linear until concentration reaches levels where 

an increase in dose no longer changes the response of the SA node and levels no longer diminish 

during inspiration thereby blunting HF output and decreasing HRV even as parasympathetic tone 

continues to increase [10, 20].  Modulation of HF power decreases with the increased AcH 

lowering the HF measure even in the presence of increased parasympathetic activity [21-23]. 

This leads to time domain measures being more reliable than HF measures in evaluating the 

parasympathetic contributions to HRV in athletes with bradycardia [8].  When HF in FFT is 

compared with RMSSD, the time domain measure equivalent for parasympathetic modulation, 

the HF overestimates parasympathetic activity expressed as greater HF power, thereby reducing 

the LF/HF ratio, underestimating sympathetic modulation [8, 14].  There is no research using 

HRV measures with athletes to determine which of the frequency domain measures best 

correlates to the preferred measure, RMSSD [8]. 
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 With athletes, HRV is used to evaluate training and recovery and is one of the 

physiological indicators of overtraining syndrome (OTS) [24-26].  Typically OTS is 

characterized by an increase in sympathetic activity, however endurance athletes with 

overtraining syndrome (OTS) presented with a lower LF/HF and a stronger correlation between 

RR interval length and HF power, reflecting diminished sympathetic activity [27, 28].  These 

parasympathetic changes are associated with a parasympathetic form of OTS, which differs from 

the normal parasympathetic changes that occur with endurance training, as the OTS changes are 

associated with fatigue and diminished performance and more closely resemble the exhaustion 

phase of the fight or flight reaction [29].  It is therefore important to consider an HRV measure 

that will accurately display the parasympathetic modulation in athletes with bradycardia in order 

to distinguish between parasympathetic changes that occur along with normal training and 

parasympathetic changes that may occur from OTS [29, 30].  Previous research deems the 

normalized power spectra of the AR method more sensitive than FFT to the effects of dynamic 

exercise, specifically to the reduction in vagal modulation and shift toward sympathetic 

dominance [17].  The increased sensitivity may be because AR analysis corresponds more 

distinctly to the specific oscillating bands of each HRV component and is better able to filter the 

vagal tone than the FFT analysis thereby making AR analysis a more appropriate measure than 

FFT analysis in those athletes with bradycardia or SA node saturation [8, 15, 17].  The 

advantages of AR analysis are especially important to consider for evaluating HRV in the 

endurance athlete who is at risk for a parasympathetic form of OTS [28, 29]. 

 Therefore the purpose of this study is twofold.  The first purpose is to compare the results 

between the frequency domain methods of FFT and AR for resting HRV in Division I Collegiate 

athletes.  It is hypothesized that the correlation between frequency domain measures will be 



	 5	

strong, but the measures will be significantly different.  The second purpose is to compare the 

frequency domain measures with the time domain RMSSD measure.  It is hypothesized that the 

AR analysis will have a stronger correlation and smaller discrepancy with the RMMSD values 

compared to the FFT analysis. 

 

METHODS 

Research Design	

This study employed a cross-sectional design to examine resting time domain and 

frequency domain HRV variables in NCAA Division I athletes.  All participants underwent a 

resting ECG data collection session.  Data were filtered to remove ectopic beats and run through 

Kubios Heart Rate Variability software for analysis.  The natural log transformation of the time 

domain measure of RMSSD and the frequency domain measures of LF power, HF power, and 

LF/HF and the normalized units of LF and HF were used as the HRV outcome measures.  

Data collection 

Participants	

Sixty-seven participants (n=63 female, n=4 male, mean resting HR =54±9.22), ranging in 

age from 18 to 25 years old (mean =19±1.36) training with NCAA Division I athletic teams were 

recruited.  Prior to inclusion in the study, participants filled out Health History Questionnaires 

and informed consent form approved by the University of Hawaii Human Study Program.  

Participants that self-identify in the health history questionnaires as having an allergy to 

adhesives or suspected pregnancy were not eligible for inclusion in this study.  	
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Instruments	

The ECG data were collected using CARDIO-CARDTM ver. 6.01ia software (Nasiff 

Associates, Inc., Brewerton, NY, USA).  Anthropometric data collected included height (cm) 

measured by wall-mounted stadiometer, body mass (kg) measured by Detecto Certifier scale 

(Detecto, Webb City, MO, USA), and age.  The ECG data were exported to Kubios Heart Rate 

Variability ver. 2.1 software (Biosignal Analysis and Medical Imaging Group, Dept. of Physics, 

University of Kuopio, Finland) to obtain time and frequency domain measures.  Prior to 

electrode application, the skin was cleaned and prepped.  The right and left arm electrodes were 

placed below the right and left clavicles, respectively.  The right and left leg electrodes were 

attached to the right and left sides of the trunk, below the tenth rib on the anterior axillary line.  

The V5 chest electrode was placed on the left side of the fifth intercostal space on the anterior 

axillary line.  

Experimental Procedures	

 The testing session was conducted in the Human Performance Laboratory at the 

University of Hawaii at Manoa.  Participants were asked to refrain from any vigorous activities, 

such as playing sports and riding a bicycle as well as ingesting any caffeine, three hours prior to 

the data collection.  Following the verbal explanation of the study procedure, all participants 

were asked to sign an informed consent form and fill out the Health History Questionnaire to 

identify exclusionary criteria.  	

 A Board of Certification Certified Athletic Trainer collected all data.  Anthropometric 

data were collected and recorded prior to the testing session.  Following anthropometric 

measurements, the participant was instructed to lie down supine or semi-reclined in a 
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comfortable position in which they could remain throughout the data collection.  The investigator 

cleaned the electrode placement sites and the electrodes were applied to designated positions.  

After 10 minutes of resting in comfortable position, the ECG was recorded for 15 minutes.  The 

participant was instructed to relax and breathe at their normal, self-determined pace, remain as 

steady as possible, and not to fall asleep during the data collection period. 

 Following the data collection procedure, the ECG output was used to calculate heart rate 

variability.  CARDIO-CARDTM data were filtered and ectopic beats were removed prior to 

analysis.  Electrocardiographic data were exported into Kubios Heart Rate Variability Software 

Version 2.0 (University of Kuopio, Kuopio, Finland) to assess time and frequency domain 

measures.  Data were smoothed using the low-level artifact correction.  Trend components were 

removed using a Smooth n Priors to remove the influence of the VLF and filter any artifact.  

Frequency bands for HRV analysis were set as follows:  VLF (0-0.04 Hz), LF (0.04-0.15 Hz), 

and HF (0.15-0.4 Hz).  Interpolation of the interbeat intervals (RR series) was set at 4 Hz.  

Window width for FFT was set at 256 seconds with the window overlap set at 50%.  The AR 

spectrum used model order 16 with no factorization.  The most stable five minute data period 

was selected for analysis. [1]	

Statistical Analysis 

The SPSS version 24 with a significance level set at p<0.05 was used for all statistical 

analyses (IBM Inc., Chicago, IL).  The RMSSD, LF FFT power, LF AR power, HF FFT power, 

HF AR power, LF/HF FFT and LF/HF AR data were transformed using natural log 

transformation in order to obtain normal distribution.  The LF FFT nu, LF AR nu, HF FFT nu 

and HF AR nu were normally distributed and were therefore used without transformation.  A 

paired-samples t-test was used to compare the Log LF FFT power and Log LF AR power, LF 
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FFT nu and LF AR nu, the Log HF FFT power and Log HF AR power, HF FFT nu and HF AR 

nu, and LF/HF FFT and LF/HF AR.  Pearson product correlation was used to compare Log LF 

power, LF nu, Log HF power, HF nu and Log LF/HF between the FFT and AR analyses.  

Intraclass Correlation Coefficient (ICC) and standard error of the measurement (SEM) were 

reported using the methods outlined by Shrout and Fleiss for ICC (1,1) [31].  A Bland-Altman 

plot was calculated with limits of agreement reported and linear regression analysis was used as 

a diagnostic procedure to determine if there was any proportional bias between the residuals 

[32].  Pearson product correlation was used to compare the time domain measure of Log RMSSD 

with the frequency domain measures of Log LF, LF nu, Log HF, HF nu and Log LF/HF ratio for 

both FFT and AR.  

Table 1.1: Descriptive statistics of the non-transformed Heart Rate Variability (HRV) data 
As the data are not normally distributed, the minimum, median and maximum are presented 
along with the mean and standard deviation.  The time domain measure is the root mean square 
of the standard deviation of the RR intervals (RMSSD).  The frequency domain measures are 
presented as both fast Fourier transformation, indicted with FFT, and autoregressive analysis, 
indicated with AR.  The frequency domain measures include low frequency power (LF) in m2, 
LF in normalized units (nu) where the very low frequency is removed, high frequency power 
(HF) in m2, HF in normalized units (nu) with the very low frequency removed, and the ratio of 
LF/HF. 
Descriptive Statistics 
 Minimum Median Maximum Mean Std. Deviation N 
RMSSD 15.7 86.2 240.1 93.0269 47.65242 67 
LF FFT m2 54 994.0 12805 1684.52 2298.443 67 
LF AR m2 80 996.0 12011 1856.13 2211.653 67 
LF FFT nu 6.1 35.3 68.6 35.81343 16.160998 67 
LF AR nu 6.0 40.0 71.6 37.80896 16.188106 67 
HF FFT m2 85 2154.0 12330 2966.79 2767.891 67 
HF AR m2 87 2490.0 13482 3216.63 2948.614 67 
HF FFT nu 31.4 64.6 93.4 64.07612 16.121020 67 
HF AR nu 28.3 59.9 93.8 62.07463 16.169719 67 
LF/HF FFT .065 .546 2.189 .67390 .486343 67 
LF/HF AR .064 .670 2.528 .74039 .541345 67 
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Table 1.2:  Test of Normality for the log transformed HRV data   
The normalized units were normally distributed and were therefore not log transformed and 
reanalyzed using Shapiro-Wilk Statistic.  The log transformed time domain measure used is the 
root mean square of the standard deviation of RR intervals (Log RMSSD) and frequency domain 
measures used include low frequency (Log LF) power, LF normalized units (nu), high frequency 
(Log HF) power, HF nu and LF/HF (Log LG/HF) for both the fast Fourier transformation (FFT) 
and autoregressive analysis (AR). 
Tests of Normality 

 
Shapiro-Wilk 
Statistic df Sig. 

Log RMSSD .977 67 .251 
Log LF FFT .989 67 .823 
Log LF AR .987 67 .697 
LF FFT nu .968 67 .085 
LF AR nu .980 67 .335 
Log HF FFT .971 67 .115 
Log HF AR .967 67 .070 
HF FFT nu .968 67 .078 
HF AR nu .979 67 .320 
Log LFHF FFT .972 67 .130 
Log LFHF AR .978 67 .265 
 

RESULTS 

 Descriptive statistics for the non-transformed data are presented in Table 1.1. A paired-

samples t-test (Table 1.4) indicated that scores were significantly higher for the AR measures of 

Log LF power  (t(66)=-2.76, p=.007), LF nu (t(66)=-2.39, p=.020) and the Log LF/HF (t(66)=-

2.49, p=.015) compared to the FFT measurements.  The HF nu was the only measure that was 

significantly higher with FFT (t(66)=2.39, p=.020).  There was no significant difference between 

the Log HF power (t(66)=-1.62, p=.110).  Even with the significantly different scores, the 

Pearson product correlations between the frequency domain measures were both strong and 

significant (p<.001)  (table 1.3).  Intraclass correlation coefficient and standard error of the 

measurement are presented in table 1.5.  Bland Altman plot is presented in Figure 1.1. 
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Table 1.3:  Paired Samples Correlations  
The frequency domain measures of fast Fourier technique (FFT) and autoregressive analysis 
(AR) are compared using the log transformation of the low frequency power (Log LF), high 
frequency power (Log HF) and LF/HF (Log LF/HF).  The LF and HF normalized units (nu) are 
normally distributed therefore they were not log transformed.  Correlations are strong and 
significant. 
Paired Samples Correlations 
 N Correlation Sig. 
Log LF FFT & Log LF AR 67 .891 .000* 

LF FFT nu & LF AR nu 67 .911 .000* 

Log HF FFT & Log HF AR 67 .955 .000* 

HF FFT nu & HF AR nu 67 .910 .000* 

Log LFHF FFT & Log LFHF AR 67 .914 .000* 

*.  Correlation is significant at the 0.05 level (2-tailed) 
 

 

Table 1.4:  Paired Samples Test  
Comparisons are made between the Frequency Domain Measures of fast Fourier technique (FFT) 
and autoregressive analysis (AR) for the log transformation of the low frequency power (Log 
LF), high frequency power (Log HF), and LF/HF (Log LF/HF).  The LF and HF normalized 
units (nu) are normally distributed therefore they are not log transformed.  Only the HF was not 
significantly different between FFT and AR analyses.  Only the HF nu was higher with FFT 
compared to AR. 
Paired Samples Test 

 

Paired Differences 

t df 

Sig. 
(2-
tailed) Mean 

Std. 
Deviation 

Std. 
Error 
Mean 

95% Confidence 
Interval of the 
Difference 
Lower Upper 

Log LF FFT - Log LF AR -.07220 .21407 .02615 -.12441 -.01998 -2.761 66 .007* 

LF FFT nu – LF AR nu -1.9955 6.8283 .8342 -3.6611 -.3300 -2.392 66 .020* 

Log HF FFT – Log HF AR -.02819 .14238 .01739 -.06292 .00653 -1.621 66 .110 
HF FFT nu – HF AR nu 2.0015 6.8457 .8363 .3317 3.6713 2.393 66 .020* 

Log LFHF FFT – Log LFHF AR -.04399 .14435 .01764 -.07920 -.00878 -2.494 66 .015* 

* significant at the 0.05 level (2-tailed). 
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Table 1.5:  ICC and SEM   
Intraclass correlations (ICC) and standard error of the measurement (SEM) are presented for the 
Frequency Domain Measures of fast Fourier technique (FFT) and autoregressive analysis (AR) 
for the log transformation of the low frequency power (Log LF), high frequency power (Log 
HF), and LF/HF (Log LF/HF).  The LF and HF normalized units (nu) are normally distributed 
therefore they are not log transformed. 
 ICC SEM 
Log LF FFT- Log LF AR .879 0.07 
LF nu FFT – LF nu AR .905 2.10 
Log HF FFT-Log HF AR .954 0.03 
HF nu FFT – HF nu AR .904 2.12 
Log LF/HF FFT – Log LF/HF AR .907 0.04 

 

Figure 1.1:  Bland Altman plot for log transformation of the high frequency power (Log HF) 
shows seven outliers and strong limits of agreement.  Based on linear regression of the residuals 
there was no significant difference (p=.617). 

 

 

Pearson product correlations between Log RMSSD and the frequency domain measures 

for both FFT and AR were also significant (Table 1.6).  The Log HF power measures showed the 

strongest correlation to Log RMSSD with the AR Log HF power, Pearson’s r(67)=.967, p<.001, 

slightly better than the FFT HF power Pearson’s r(67)=.935, p<.001.  The other measures, while 

significant, did not display strong correlations with RMSSD. 
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Table 1.6:  Correlations between the time domain and frequency domain measures 
Correlations between the log transformation the root mean square of the standard deviation of 
RR intervals (Log RMSSD) and the fast Fourier transformation (FFT) and autoregressive (AR) 
analysis for the log transformation of low frequency power (Log LF), high frequency power 
(Log HF) and the LF/HF (Log LF/HF).  The LF and HF normalized units (nu) are normally 
distributed and therefore not log transformed.  All Correlations are significant however the HF 
has the strongest correlation with RMSSD.  The LF/HF is supposed to be a measure of 
sympathetic activity however it does not show a very strong negative relationship with the 
parasympathetic RMSSD. 
 Correlations 

 

Log 
LF 
FFT 

LF 
FFT 
nu 

Log 
HF 
FFT 

HF 
FFT 
nu 

Log 
LFHF 
FFT 

Log 
LF 
AR 

LF AR 
nu 

Log 
HF 
AR 

HF 
AR nu 

Log 
LFHF 
AR 

Log 
RMSSD 

Pearson 
Correlation 

.662** -.306* .935** .302* -.364** .708** -.378** .967** .376** -.449** 

Sig. (2-tailed) .000 .012 .000 .013 .002 .000 .002 .000 .002 .000 
N 67 67 67 67 67 67 67 67 67 67 

*.  Correlation is significant at the 0.05 level (2-tailed). 
**. Correlation is significant at the 0.01 level (2-tailed). 
 

DISCUSSION  

 As the interest in using HRV measures for training and recovery studies continues to 

increase there is an increased need for research into methodological considerations, such as FFT 

and AR, to determine appropriate outcomes of HRV in highly trained athletes.  Typically, the HF 

power in FFT has an increase in the amount of “noise” as it does not provide clear peaks 

associated with respiration which results in higher HF power measures in FFT compared to AR 

however no statistically significant difference was indicated in this study [13-15, 17, 20, 33, 34].  

As the parasympathetic modulation decreases with AcH saturation, the peaks may be less clear 

in the trained athlete for both the AR and FFT measures, which would explain why HF power 

was the only measure not significantly different between FFT and AR in the current study [13]. 

Our data showed that the removal of the thermoregulatory effects of the VLF on the HF power 
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produced significantly lower measures of HF nu in AR, which has been demonstrated by Silva et 

al. in normotensive and hypertensive patients [14].  In the current study, this is the only measure 

where the FFT was higher than AR possibly because the FFT noise overestimated the 

contribution of the HF or underestimated the value of the VLF in athletes who typically have 

more muscle mass and a higher resting metabolism.  As a result, the LF/HF measure was 

significantly lower in the FFT compared to that of AR, also consistent with previous research 

[33, 34].  As this is a ratio of the LF to HF power, if the AR and FFT measures were consistent 

in terms of power distribution, and LF/HF was truly able to reflect sympathovagal balance, any 

differences would not be statistically significant because overestimation in both LF and HF by 

one measure would be eliminated in the ratio calculation, especially in a methodology that does 

not involve paced respiration, therefore the value of the LF/HF remains questionable [12, 35].  

The mean Log LF value for FFT was significantly lower compared to that of AR, as seen in the 

literature [33, 34].  The untransformed data range for LF power in FFT was from 54m2 

(minimum) to 12805m2 (maximum) while the AR data was 80m2 (minimum) to 12011m2 

(maximum).  The wider range in the FFT measure could indicate a greater overlap between the 

LF and HF bands where bands that should have been considered in HF were calculated into the 

LF measures thereby inflating the maximum measure, however this only lead to a significant 

difference in the LF power measures, not the HF power.  Therefore either the HF power was not 

overestimated or the overestimation in the HF power from lack of separation in the bands 

resulted in similar measures for the FFT and the AR.  Pearson product correlation between the 

two measures was strong and significant, however the AR and FFT techniques produced 

significantly different results in an athletic population that has high HRV and low RHR.  This 

finding is consistent with the conducted on healthy individuals with high levels of HRV and 
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further support the recommendation of not using the frequency domain measures of AR and FFT 

interchangeably [13].   

The time domain measure of RMSSD and the frequency domain measure of HF power 

are both associated with parasympathetic modulation, of which RMSSD has been recommended 

for highly trained athletes [8].  The RMSSD is calculated such that the higher the number the 

greater the amount of variance between the squares of the mean difference of the RR intervals.  

As the frequency domain measures explain the variance in terms of power by placing the RR 

intervals into corresponding frequency bands, the HF and RMSSD should yield strong 

correlations [1].  The HF power FFT (r2=.935) and AR (r2=.967) measures are both strongly 

correlated to RMSSD with the AR measure having a slightly higher correlation confirming AR 

as having an advantage in the assessment of parasympathetic measures of HRV in athletes at rest 

[15].  The accompanying bradycardia that is associated with training will increase vagal activity 

lengthening RR intervals, therefore the ability of the AR technique to smooth and separate the 

frequency bands would explain the larger correlation to RMSSD [27].  As the LF power is a mix 

of sympathetic and parasympathetic influence, it was expected that the correlations with the 

parasympathetic RMSSD were not strong.  Interestingly the removal of the VLF to normalize the 

LF (LF nu) resulted in a negative correlation with RMSSD similar to that of LF/HF, which 

would make the LF nu as an indicator for sympathetic modulation [1, 12].  It is possible that the 

higher metabolism and higher muscle mass of an athlete resulted in higher VLF, which once 

removed decreased the LF however this cannot be confirmed as no metabolic analysis or body 

composition analysis were obtained.  Previous research by Esco, et al. has highlighted the 

relationship between skinfold thickness and cardiovascular autonomic control, however those 

studies did not use highly trained athletes and LF nu was not an HRV outcome measure therefore 
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no direct comparisons can be made to our study [36, 37].  While our study was the first to report 

a negative correlation between LF nu and RMSSD, the correlation was not strong (r2= -.306 for 

FFT, r2=-.378 for AR) and therefore the LF nu should not be interpreted as a strong measure of 

sympathetic activity.  While a negative correlation between the LF/HF ratio and RMSSD found 

in the current study was expected based on the consensus of LF/HF ratio as an indicator of 

sympathetic modulation, the correlation was not as strong as would be expected (r2=-.364 for 

FFT, r2=-.449 for AR) [35].  Caution should be taken when using LF/HF ratio as a measure of 

sympathovagal balance in an athletic population.  Based on the current study, the HF power in 

AR is the most appropriate frequency domain measure of parasympathetic modulation, as 

indicated by the highest correlation with RMSSD in a highly trained athletic population. 

Training studies continue to use either the AR or FFT measures without further 

explanation as to the justification for choosing the appropriate measure.  As the use of HRV to 

monitor training and recovery becomes more prevalent in practice as well as in the literature, it is 

important to have consistency in the data collection method as well as the measures used.  Since 

the AR and FFT measures cannot be used interchangeably, it is important not only to make 

comparisons within frequency domain measurements that use the same technique but also for 

researchers to indicate the method used to obtain the results to avoid misrepresentation.  The 

time domain measure of RMSSD remains the preferred method of examining daily HRV change 

and parasympathetic modulation levels in athletes as it can be used in conjunction with SA node 

saturation and has the least amount of variation between studies.  Should an alternative 

frequency domain measure be required, the HF power AR measure is recommended for this 

population, however it should be used with caution as the peaks may not be as clearly defined 

and an underestimation of parasympathetic modulation may be made. 
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Chapter 2 

Examining the Relationship between the Recovery-Stress Questionnaire and Heart Rate 
Variability in NCAA Division I Collegiate Athletes 
 
INTRODUCTION 

 In an effective training program, the accumulation of physical stresses are intended to 

produce overload resulting in physical adaptations that would lead to an increase in 

parasympathetic activity at rest [30, 38].  However if the accumulation of stresses is too great, 

continued for too long or is combined with psychological stressors it can lead to overtraining [24, 

25, 28].  Overtraining syndrome (OTS) is typically characterized by a decline in performance 

with a loosely defined set of physiological and psychological markers, lacking a defined set of 

diagnostic criteria [24, 26, 39].  Though OTS is typically associated with maladaptation to 

training it is really the accumulation of stresses without adequate recovery that leads to the 

inability to meet the training demands [38, 40, 41].  Evaluating recovery on a regular basis can 

identify the increased need for rest prior to performance declines allowing an athlete to resume 

normal training and competition, following a brief respite [42, 43].  Examination of the stress-

recovery balance for an individual should rely on subjective measures such as rating of perceived 

exertion (RPE) and fatigue as well as objective measures of physiological changes especially 

those associated with autonomic function [24, 25, 28].  Current tools used in research and 

clinical settings to evaluate recovery include the Recovery-Stress Questionnaire for Athletes 

(RESTQ-Sport) to monitor levels of general as well as sport specific stresses and recovery, and 

heart rate variability (HRV), a noninvasive tool for assessing the balance of the autonomic 

nervous system (ANS) [4, 24, 28, 44].  

 The RESTQ-Sport, a validated questionnaire sensitive to training and non-training 

stresses and recovery, evaluates the athlete using nineteen different scales divided into general 
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and sport-specific stress and recovery scales [38].  The questionnaire assesses potential stressors 

related to life, performance and the physiological aspects of stress, their subjective consequences 

and the frequency of the events over the past three days and nights [44].  Of the general stress 

scales, the scale specifically labeled general stress, correlates high with the remaining stress 

scales and is considered to be most reflective of the stress level of the athlete with those scoring 

high having larger amounts of stress [44].  This questionnaire is sensitive to the ebb and flow of 

a normal training cycle providing a conceptual framework best suited to identify those at risk for 

OTS when combined with other indicators such as physiological changes in HRV, which also 

undergoes changes during the training cycle based on the physical demands required to produce 

supracompensatory changes, however the relationship between the RESTQ-Sport and any 

specific physiological variable has not been identified [30, 38, 45].   

Heart rate variability is evaluated using time domain measures, the rate between 

successive R-R intervals, and frequency domain measures, a function of how power (variance) 

distributes as a function of frequency [1].  The use of time domain measures such as the root 

mean square of the standard deviation of normal RR intervals (RMSSD) are more sensitive to the 

parasympathetic changes in highly trained athletes.  The frequency domain measure of high 

frequency power (HF), associated with parasympathetic modulation, can be blunted under 

training induced bradycardia as acetylcholine (AcH) saturation of the sinoatrial node and 

heightened vagal activity occur without the associated reflection of increased HF spectral 

analysis. [7-9]  The frequency domain measure of LF power reflects both sympathetic and 

parasympathetic modulation, making the low frequency to high frequency ratio (LF/HF) a 

measure of sympathetic activity [1].  The ANS response to both objective and subjective stresses 

involves the same mechanism of parasympathetic withdrawal and sympathetic activation, 
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however the slow rate of metabolism of norepinephrine by the cardiac tissue may cause a slower 

withdrawal of sympathetic activity following exercise if there is an increase in epinephrine from 

the presence of non-exercise stressors [4, 19, 46].  Normal HRV fluctuates from day to day based 

on stress state where a decrease in daily parasympathetic HRV measures may reflect a lack of 

recovery from the previous day’s training or indicate an increased stress state [47, 48].  Increases 

in the RMSSD or HF power measures could reflect adequate recovery, a positive adaptation to 

training or a readiness to compete, or occur because the athlete is experiencing a lower amount 

of non-training stress [21, 47].  In order to determine if these changes are related to training or 

non-training stresses, additional information about the previous day’s training or a subjective 

questionnaire would improve the use of HRV as a measure of ANS activity [4, 47, 49, 50].   

Physiological changes in OTS are typically those associated with an increase in 

sympathetic modulation including a reduction in HRV and an increase in resting HR [24, 25].  

There is also the potential for a parasympathetic form of OTS in which there is an increase in 

parasympathetic modulation therefore one measure alone cannot be used to diagnose OTS [24, 

25, 29, 39].  Endurance athletes are at the greatest risk for parasympathetic OTS presenting with 

a lower LF/HF ratio indicating diminished sympathetic activity along with an increase in fatigue 

and subjective reporting of diminished recovery [27, 29, 51].  Without the inclusion of subjective 

information, changes in HRV that reflect improved parasympathetic modulation alone could be 

mistaken for positive changes in training and a readiness to increase activity instead of the ANS 

response to the alarm stage of the fight or flight response [19, 29].  As HRV is sensitive to 

changes in the cardiac ANS regardless of mechanism subjective data can be used in conjunction 

with HRV to determine if these changes are related more to the objective stress or subjective 

stresses [24, 28, 39, 52, 53].  The ability to validate an established questionnaire that 
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differentiates objective and subjective stressors with HRV would be useful in determining 

appropriate training and recovery however a questionnaire like the RESTQ-Sport that has been 

used with endurance athletes may not produce the same results in non-endurance athletes [38, 54, 

55].   

 Therefore the purpose of this study was to examine the relationship between the 19 

established RESTQ-Sport scales and the physiological variables, RHR, RMSSD, HF power and 

LF/HF for NCAA Division I Collegiate athletes.   A secondary purpose was to determine if 

endurance trained athletes and non-endurance trained athletes have the same relationship 

between the RESTQ-Sport and the physiological variables. 

 

METHODS 

Research Design	

This study employed a cross-sectional design to examine objective and subjective factors 

associated with training stresses.  All participants took the RESTQ-Sport prior to undergoing a 

resting HRV data collection session.  Resting heart rate, the time domain measure of RMSSD, 

the fast Fourier transformation (FFT) frequency domain measures of HF power and LF/HF and 

the autoregressive (AR) analysis frequency domain measures of HF power and LF/HF were used 

as the HRV outcome measure.  Subjective stress levels assessed using the RESTQ-Sport served 

as the independent variable.  The entire participant group was evaluated together to determine 

the relationship between the RESTQ-Sport scores and the physiological variables.  Participants 

were then further divided into two groups based on their training type, endurance or non-

endurance to determine if the relationship between the RESTQ-Sport scores and the 

physiological measures was different among athletes with different types of training. 
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Cross-sectional data collection 

Participants	

Sixty-Six participants, ranging in age from 18 to 25 (19.7±1.36) years old training with 

NCAA Division I athletic teams were recruited (table 2.1).  Prior to inclusion in the study, 

participants filled out Health History Questionnaires, Training questionnaire, RESTQ-Sport [51], 

and informed consent form approved by the University of Hawaii Human Study Program.  

Participants that self-identify in the health history questionnaires as having an allergy to 

adhesives or suspected pregnancy were not eligible for inclusion in this study.   

Table	2.1:		Demographics:		Demographics	including	age	in	years	(yrs)	and	resting	heart	
rate	(RHR)	in	beats	per	minute	(bpm)	for	the	full	data	set	as	well	as	the	endurance	and	
non-endurance	group	members	are	listed.	

	 	 Age	(yrs)	 RHR	(bpm)	

Full	data	set	 N=66	(4	male)	 19.8±1.39	 54±9.22	

Endurance	athletes	 N=35	(0	male)	 19.2±1.40	 51±9.14	

Non-endurance	athletes		 N=31	(4	male)	 20.3±1.17	 58±8.00	

 

Instruments	

The ECG data were collected using CARDIO-CARDTM ver. 6.01ia software (Nasiff 

Associates, Inc., Brewerton, NY, USA).  Anthropometric data collected included height (cm) 

measured by wall-mounted stadiometer, body mass (kg) measured by Detecto Certifier scale 

(Detecto, Webb City, MO, USA), and age.  The ECG data were exported to Kubios Heart Rate 

Variability ver. 2.1 software (Biosignal Analysis and Medical Imaging Group, Dept. of Physics, 

University of Kuopio, Finland) to obtain time and frequency domain measures.  Prior to 

electrode application, the skin was cleaned and prepped.  The right and left arm electrodes were 
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placed below the right and left clavicles, respectively.  The right and left leg electrodes were 

attached to the right and left sides of the trunk, below the tenth rib on the anterior axillary line.  

The V5 chest electrode was placed on the left side of the fifth intercostal space on the anterior 

axillary line.  

The RESTQ-Sport (appendix D) is a 77 item questionnaire that assess the previous three 

days and nights using a six point Likert Scale.  Each Likert choice is given an associated 

numerical value from zero to six and the score from four items are added together to obtain a 

score for one of the stress or recovery scales.  The items associated with each scale are non-

consecutive and are outlined with the scoring instructions in the accompanying scoring key.  The 

seven life stress or general stress scales include the following scales: general stress, emotional 

stress, social stress, conflicts-pressures, fatigue, lack of energy and physical complaints.  The 

five general recovery scales include:  success, social recovery, physical recovery, general well-

being and sleep quality.  The three sport-specific stress scales include disturbed breaks, 

emotional exhaustion and injury.  The four sport-specific recovery scales include:  being in 

shape, personal accomplishment, self-efficacy and self-regulation. [44] 

Experimental Procedures	

 The testing session was conducted in the Human Performance Laboratory at the 

University of Hawaii at Manoa.  Participants were asked to refrain from any vigorous activities, 

such as playing sports and riding a bicycle as well as ingesting any caffeine, three hours prior to 

the data collection.  Following the verbal explanation of the study procedure, all participants 

were asked to sign an informed consent form, fill out the Health History Questionnaire and the 

RESTQ-Sport to identify exclusionary criteria and current stress level, respectively.  	
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A Board of Certification Certified Athletic Trainer collected all data.  Anthropometric 

data were collected and recorded prior to the testing session.  Following anthropometric 

measurements, the participant was instructed to lie down supine or semi-reclined in a 

comfortable position in which they could remain throughout the data collection.  The investigator 

cleaned the electrode placement sites and the electrodes were applied to designated positions.  

After 10 minutes of resting in comfortable position, the ECG was recorded for 15 minutes.  The 

participant was instructed to relax and breathe at their normal, self-determined pace, remain as 

steady as possible, and not to fall asleep during the data collection period.	

 Following the data collection procedure, the ECG output was used to calculate heart rate 

variability.  The RR intervals were visually inspected to remove any ectopic beats.  The filtered 

ECG data were exported into Kubios Heart Rate Variability Software Version 2.0 (University of 

Kuopio, Kuopio, Finland) to assess time and frequency domain measures.  Data were smoothed 

using the low-level artifact correction.  Trend components were removed using a Smooth n 

Priors to remove the influence of the VLF and filter any artifact.  Frequency bands for HRV 

analysis were set as follows:  VLF (0-0.04 Hz), LF (0.04-0.15 Hz), and HF (0.15-0.4 Hz).  

Interpolation of the interbeat intervals (RR series) was set at 4 Hz.  Window width for fast 

Fourier transformation was set at 256 seconds with the window overlap set at 50%.  The AR 

spectrum used model order 16 with no factorization.  The most stable five minute data period 

was selected for analysis. [1] 

Statistical Analysis 

The SPSS version 24 with a significance level set at p<0.05 was used for all statistical 

analyses (IBM Inc., Chicago, IL).  The RESTQ-Sport Likert scale was altered from “zero to six” 
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to “one to seven” in order to assure that none of the scores were zero [44].  The physiological 

variables were transformed using natural log transformation to assure normality. 

Linear and Quadratic regression were used to examine the effect of the stress and 

recovery level as determined by the 19 RESTQ-Sport scales on the natural log transformation of 

the physiological variables RHR, RMSSD, the FFT and AR measures of HF power and the 

LF/HF.  Participants were then divided into group based on training type, endurance trained 

(n=35) and non-endurance trained (n=31) and the regression analyses were reexamined. 

 

RESULTS 

 For the entire group, using linear regression with RHR as the dependent variable, the 

conflicts and pressures (F(1, 64) = 11.375, p=.001, R2 =.151), fatigue (F(1,64) = 9.469, p=.003, 

R2 = .129), physical complaint (F(1,64) = 4.206, p=.044, R2=.062), disturbed breaks (F(1,64) 

=4.995, p=.029, R2=.072), injury (F(1,64) = 7.382, p=.008, R2=.103), and emotional exhaustion 

(F, (1,64) = 11.266, p=.001, R2=.150) scores were significant.  Emotional exhaustion was also a 

significant predictor of RMSSD (F(1,64) = 5.108, p=.027, R2=.074).  For HF FFT, emotional 

stress  (F(1,64) = 4.770, p= .033, R2= .069) and social stress (F(1,64) = 4.779, p=.032, R2= .069) 

were significant predictors.  Similarly for HF AR, emotional stress (F(1,64) = 5.641 p= .021, R2= 

.081) and social stress (F(1,64) = 4.105, p= .047,R2= .060) were significant predictors.  Table 2.2 

outlines the significant relationships by RESTQ-Sport category and 3 outlines the significant 

relationships by HR variable for the full group.  Additional non-significant linear regression 

results for each of the RESTQ-Sport scales can be seen in tables 2.14 and 2.15 at the end of this 

document.   
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Table 2.2:  Full Data Set significant linear relationship by RESTQ-Sport category   
Significant linear relationships for the heart rate (HR) variables include resting heart rate (RHR), 
the root mean square of the standard deviation of RR intervals (RMSSD), the ratio of low 
frequency to high frequency power (LF/HF) and the HF power.  The LF/HF and HF are 
frequency domain variables analyzed using either the fast Fourier technique (FFT) and 
autoregressive analysis (AR). The Recovery-Stress Questionnaire for athletes (RESTQ) defines 
the scales of either stress or recovery. 
 

RESTQ Category HR Variable R R2 Adjusted 
R2 

Sig F 
Change 

Β Variable 

Emotional Stress HF FFT .263 .069 .055 .033 .046 
 HF AR .285 .081 .067 .021 .051 
Social Stress HF FFT .264 .069 .055 .032 .041 
 HF AR .246 .060 .046 .047 .039 
Conflicts-Pressures RHR .388 .151 .138 .001 .007 
Fatigue RHR .359 .129 .115 .003 .006 
Physical Complaint RHR .248 .062 .047 .044 .006 
Disturbed Breaks RHR .269 .072 .058 .029 .007 
Emotional Exhaustion RHR .387 .150 .136 .001 .007 
 RMSSD .272 .074 .059 .027 .016 
Injury RHR .322 .103 .089 .008 .005 

 

Table 2.3:  Full data set significant linear relationship by HR Variable   
The heart rate (HR) variables include resting heart rate (RHR), the root mean square of the 
standard deviation of RR intervals (RMSSD), the ratio of low frequency to high frequency power 
(LF/HF) and the HF power.  The LF/HF and HF are frequency domain variables analyzed using 
either the fast Fourier technique (FFT) and autoregressive analysis (AR).  The Recovery-Stress 
Questionnaire for athletes (RESTQ) defines the scales of either stress or recovery. 

HR Variable RESTQ Category R R2 Adjusted R2 Sig F 
Change 

Β Variable 

RHR Conflicts-Pressures .388 .151 .138 .001 .007 
 Fatigue .359 .129 .115 .003 .006 
 Physical Complaint .248 .062 .047 .044 .006 
 Disturbed Breaks .269 .072 .058 .029 .007 
 Emotional 

Exhaustion 
.387 .150 .136 .001 .007 

 Injury .322 .103 .089 .008 .005 
RMSSD Emotional 

Exhaustion 
.272 .074 .059 .027 .016 

LF/HF FFT NONE      
LF/HF AR NONE      
HF FFT Emotional Stress .263 .069 .055 .033 .046 
 Social Stress .264 .069 .055 .032 .041 
HF AR Emotional Stress .285 .081 .067 .021 .051 
 Social Stress .246 .060 .046 .047 .039 
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With quadratic regression, for the entire group sleep quality was found to be a significant 

predictor of LF/HF FFT (F(2,63) = 3.515, p=.036, R2=.100).  The emotional exhaustion score 

was found to be a significant predictor of HF FFT (F(2,63) = 5.278, p=.037, R2=.144) and HF 

AR (F(2,63) = 5.842 p= .050, R2= .103).  There were no significant relationships with RHR, 

RMSSD or LF/HF AR.  Table 2.4 outlines the significant curvilinear relationships by RESTQ-

Sport scale and table 2.5 outlines the significant curvilinear relationships by HR variable.  

 

Table 2.4:  Full data set significant curvilinear relationship by RESTQ-Sport category  
Full data set significant curvilinear relationships by Recovery-Stress Questionnaire for athletes 
(RESTQ) scale.  The heart rate (HR) variables include the frequency domain measures of high 
frequency power (HF) for the fast Fourier technique and autoregressive (AR) analysis and the 
ratio of low frequency to HF (LF/HF) 

RESTQ Category HR Variable R R2 Adjusted R2 Sig F 
Change 

Β Variable 

Emotional 
Exhaustion 

HF FFT .379 .144 .116 .037 .183 
-.007 

 HF AR .396 .156 .130 .050 .181 
-.007 

Sleep Quality LF/HF FFT .317 .100 .072 .028 -.102 
.003 

 
Table 2.5:  Full data set significant curvilinear Relationship by HR Variable  
Significant curvilinear relationships by heart rate (HR) variables including resting heart rate 
(RHR), the root mean square of the standard deviation of RR intervals (RMSSD), the ratio of 
low frequency to high frequency power (LF/HF) and the HF power.  The LF/HF and HF are 
frequency domain variables analyzed using either the fast Fourier technique (FFT) and 
autoregressive analysis (AR).  The Recovery-Stress Questionnaire for athletes (RESTQ) defines 
the scales of either stress or recovery. 

HR Variable RESTQ Category R R2 Adjusted 
R2 

Sig F 
Change 

Β Variable 

RHR NONE      
RMSSD NONE      
LF/HF FFT Sleep Quality .317 .100 .072 .028 -.102 

.003 
LF/HF AR NONE      
HF FFT Emotional 

Exhaustion 
.379 .144 .116 .037 .183 

-.007 
HF AR Emotional 

Exhaustion 
.396 .156 .130 .050 .181 

-.007 
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When subjects were divided into groups based on the type of training, endurance and 

non-endurance, the endurance group had a greater number of significant predictors.  The 

significant linear regression results by RESTQ-Sport scale for the endurance group is presented 

in table 2.6 and for the non-endurance group is presented in table 2.7.  With linear regression 

using RHR as the dependent variable, the emotional stress, (F(1,33) = 8.138, p=.007, R2=.198), 

conflicts-pressures (F(1,33) = 9.311, p=.004, R2=.220), fatigue (F(1,33) = 10.203, p=.003, 

R2=.236), physical complaint (F(1,33) = 5.476, p=.025, R2=.142), disturbed breaks (F(1,33) 

=8.324 , p=.007, R2=.201) and emotional exhaustion (F(1,33) = 17.147, p<.001, R2=.342) scores 

were significant for the endurance group while for the non-endurance group only success 

(F(1,29) = 10.440, p=.003, R2=.265) was significant for RHR.  With RMSSD as the dependent 

variable for the endurance group general stress (F(1,33) = 6.670 , p=.014, R2=.168), lack of 

energy (F(1,33) = 7.468, p=.010, R2=.185), and emotional exhaustion (F(1,33) = 8.178, p=.007, 

R2=.199) were significant predictors while the non-endurance group had no significant predictors 

of RMSSD.  With LF/HF FFT as the dependent variable for the endurance group general stress 

(F(1,33) = 5.602, p=.024, R2=.145), social recovery (F(1,33) = 18.723, p<.001, R2=.362), and 

general well-being (F(1,33) = 9.555, p=.004, R2=.225) were significant predictors while injury 

(F(1,29) = 4.513, p=.043, R2=.135), and self-regulation (F(1,29) = 7.811, p=.009, R2=.212) were 

significant predictors of LF/HF FFT for the non-endurance group.  For LF/HF AR in the 

endurance group general stress (F(1,33) = 5.919, p=.021, R2=.152), social recovery (F(1,33) = 

16.563, p<.001, R2=.334), and general well-being (F(1,33) = 7.839, p=.008, R2=.192) were also 

significant however only self-regulation (F(1,29) = 8.489, p=.007, R2=.226) was significant for 

LF/HF AR with the non-endurance group.  With HF FFT in the endurance group general stress 

(F(1,33) = 4.201, p=.048, R2=.113), lack of energy (F(1,33) = 4.343, p=.045, R2 = .116) and 
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emotional exhaustion (F(1,33) = 6.646, p=.015, R2=.168) were significant predictors and with 

HF AR general stress (F(1,33) = 7.057, p=.012, R2=.176), lack of energy (F(1,33) = 10.392, 

p=.003, R2=.239) and emotional exhaustion (F(1,33) = 10.501, p=.003, R2=.241) were significant 

predictors.  In the non-endurance group, there were no significant predictors of HF FFT or HF 

AR.  The significant linear regression results by HR variable can be seen in table 2.8 for the 

endurance group and in table 2.9 for the non-endurance group. 

 

Table 2.6:  Endurance athlete significant linear relationship by RESTQ-Sport category 
The heart rate (HR) variables include resting heart rate (RHR), the root mean square of the 
standard deviation of RR intervals (RMSSD), the ratio of low frequency to high frequency power 
(LF/HF) and the HF power.  The LF/HF and HF are frequency domain variables analyzed using 
either the fast Fourier technique (FFT) and autoregressive analysis (AR).  The Recovery-Stress 
Questionnaire for athletes (RESTQ) defines the scales of either stress or recovery. 

RESTQ Category HR Variable R R2 Adjusted 
R2 

Sig F 
Change 

Β 
Variable 

General Stress RMSSD .410 .168 .143 .014 .032 
 LF/HF FFT .381 .145 .119 .024 -.038 
 LF/HF AR .390 .152 .126 .021 -.041 
 HF FFT .336 .113 .086 .048 .052 
 HF AR .420 .176 .151 .012 .067 
Emotional Stress RHR .445 .198 .174 .007 .013 
Conflicts-Pressures RHR .469 .220 .196 .004 .008 
Fatigue  RHR .486 .236 .213 .003 .008 
Lack of Energy RMSSD .430 .185 .160 .010 .036 
 HF FFT .341 .116 .090 .045 .056 
 HF AR .489 .239 .216 .003 .084 
Physical Complaint RHR .377 .142 .116 .025 .008 
Social Recovery LF/HF FFT .602 .362 .343 .000 .042 
 LF/HF AR .578 .334 .314 .000 .042 
General Well-Being LF/HF FFT .474 .225 .201 .004 .041 
 LF/HF AR .438 .192 .167 .008 .039 
Disturbed Breaks RHR .449 .201 .177 .007 .013 
Emotional Exhaustion RHR .585 .342 .322 .000 .013 
 RMSSD .446 .199 .174 .007 .031 
 HF FFT .409 .168 .142 .015 .055 
 HF AR .491 .241 .218 .003 .069 
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Table 2.7:  Non-endurance athlete significant linear relationship by RESTQ-Sport 
Category 
The heart rate (HR) variables include resting heart rate (RHR), the root mean square of the 
standard deviation of RR intervals (RMSSD), the ratio of low frequency to high frequency power 
(LF/HF) and the HF power.  The LF/HF and HF are frequency domain variables analyzed using 
either the fast Fourier technique (FFT) and autoregressive analysis (AR).  The Recovery-Stress 
Questionnaire for athletes (RESTQ) defines the scales of either stress or recovery. 

RESTQ Category HR Variable R R2 Adjusted R2 Sig F 
Change 

Β Variable 

Success RHR .514 .265 .239 .003 .009 
Injury LF/HF FFT .367 .135 .105 .043 -.031 
Self-Regulation LF/HF FFT .461 .212 .185 .009 -.042 
 LF/HF AR .476 .226 .200 .007 -.040 

 

Table 2.8:  Endurance athlete significant linear relationship by HR Variable 
The heart rate (HR) variables include resting heart rate (RHR), the root mean square of the 
standard deviation of RR intervals (RMSSD), the ratio of low frequency to high frequency power 
(LF/HF) and the HF power.  The LF/HF and HF are frequency domain variables analyzed using 
either the fast Fourier technique (FFT) and autoregressive analysis (AR). The Recovery-Stress 
Questionnaire for athletes (RESTQ) defines the scales of either stress or recovery. 

HR Variable RESTQ Category R R2 Adjusted 
R2 

Sig F 
Change 

Β 
Variable 

RHR Emotional Stress .445 .198 .174 .007 .013 
 Conflicts-Pressures .469 .220 .196 .004 .008 
 Fatigue .486 .236 .213 .003 .008 
 Physical Complaint .377 .142 .116 .025 .008 
 Disturbed Breaks .449 .201 .177 .007 .013 
 Emotional Exhaustion .585 .342 .322 .000 .013 
RMSSD General Stress .410 .168 .143 .014 .032 
 Lack of Energy .430 .185 .160 .010 .036 
 Emotional Exhaustion .446 .199 .174 .007 .031 
LF/HF FFT General Stress .381 .145 .119 .024 -.038 
 Social Recovery .602 .362 .343 .000 .042 
 General Well-Being .474 .225 .201 .004 .041 
LF/HF AR General Stress .390 .152 .126 .021 -.041 
 Social Recovery .578 .334 .314 .000 .042 
 General Well-Being .438 .192 .167 .008 .039 
HF FFT General Stress .336 .113 .086 .048 .052 
 Lack of Energy .341 .116 .090 .045 .056 
 Emotional Exhaustion .409 .168 .142 .015 .055 
HF AR General Stress .420 .176 .151 .012 .067 
 Lack of Energy .489 .239 .216 .003 .084 
 Emotional Exhaustion .491 .241 .218 .003 .069 
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Table 2.9:  Non-endurance athlete significant linear relationship by HR Variable 
 The heart rate (HR) variables include resting heart rate (RHR), the root mean square of the 
standard deviation of RR intervals (RMSSD), the ratio of low frequency to high frequency power 
(LF/HF) and the HF power.  The LF/HF and HF are frequency domain variables analyzed using 
either the fast Fourier technique (FFT) and autoregressive analysis (AR).  The Recovery-Stress 
Questionnaire for athletes (RESTQ) defines the scales of either stress or recovery.  

HR Variable RESTQ Category R R2 Adjusted R2 Sig F 
Change 

Β Variable 

RHR Success .514 .265 .239 .003 .009 
RMSSD None       
LF/HF FFT Injury .367 .135 .105 .043 -.031 
 Self-Regulation .461 .212 .185 .009 -.042 
LF/HF AR Self- Regulation .476 .226 .200 .007 -.040 
HF FFT None      
HF AR None      

 

Using quadratic regression, the endurance group had significant relationships with all of 

the dependent variables while the non-endurance group only had significant relationships with 

RMSSD, HF FFT and HF AR.  With RHR as the dependent variable self-regulation (F(2,32) = 

6.238, p=.006, R2=.281) was significant predictors in the endurance group.  With RMSSD as the 

dependent variable the endurance group had significant curvilinear relationships with emotional 

stress (F(2,32) = 6.929, p=.006, R2=.302), conflicts-pressures (F(2,32) = 7.072, p=.005, 

R2=.307), physical complaint (F(2,32) = 4.097, p=.014, R2=.204), success (F(2,32) = 3.080, 

p=.019, R2=.161), and self-efficacy (F(2,30) = 5.847, p=.007, R2=.268), while the non-endurance 

group had significant relationships with fatigue (F(2,28) = 3.420, p=.018, R2=.196) and sleep 

quality (F(2,28) = 4.053, p= .022, R2= .225).  The LF/HF FFT (F(2,32) = 3.331, p=.020, R2= 

.172) and LF/HF AR (F(2,32) = 3.804, p=.010, R2=.192) had a significant relationship with 

physical complaint in the endurance group.  With HF FFT, the endurance group had a significant 

curvilinear relationship with emotional stress (F(2,32) = 5.535, p=.029, R2=.257), conflicts-

pressures (F(2,32) = 4.895, p=.033, R2=.234), physical complaint (F(2,32) = 3.685, p=.029, 
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R2=.187), success (F(2,32) = 4.459, p=.006, R2=.218), and self-efficacy (F(2,30) = 4.608, 

p=.008, R2=.225) while the non-endurance group had a significant relationship only with fatigue 

(F(2,28) = 3.035, p=.024, R2=.178).  With HF AR the endurance group had a significant 

curvilinear relationship with emotional stress (F(2,32) = 7.551, p=.009, R2=.321),  conflicts-

pressures (F(2,32) = 7.857, p=.008, R2=.329), physical complaint (F(2,32) = 3.113, p=.041, 

R2=.163), success (F(2,32) = 3.752, p=.013, R2=.190), and self-efficacy (F(2,30) = 5.132, 

p=.008, R2=.243), while the non-endurance group had a significant relationship only with fatigue 

(F(2,28) = 2.644, p=.033, R2=.159). Tables 2.10 and 2.11 outline the significant curvilinear 

relationships for the endurance group by RESTQ-Sport scale and HR variable respectively.  

Tables 2.12 and 2.13 outline the significant curvilinear relationships for the non-endurance group 

by RESTQ-Sport scale and HR variable respectively. 
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Table 2.10:  Endurance athlete significant curvilinear relationship by RESTQ-Sport 
category  
The HR variables include resting heart rate (RHR), the root mean square of the standard 
deviation of RR intervals (RMSSD), the ratio of low frequency to high frequency power (LF/HF) 
and the HF power.  The LF/HF and HF are frequency domain variables analyzed using either the 
fast Fourier technique (FFT) and autoregressive analysis (AR). The Recovery-Stress 
Questionnaire for athletes (RESTQ) defines the scales of either stress or recovery. 

RESTQ Category HR Variable R R2 Adjusted R2 Sig F 
Change 

Β Variable 

Emotional Stress RMSSD .550 .302 .259 .006 .252 
-.011 

 HF FFT .507 .257 .211 .029 .414 
-.017 

 HF AR .566 .321 .278 .009 .493 
-.020 

Conflicts-Pressures RMSSD .554 .307 .263 .005 .146 
-.004 

 HF FFT .484 .234 .186 .033 .232 
-.007 

 HF AR .574 .329 .287 .008 .286 
-.008 

Physical Complaint RMSSD .451 .204 .154 .014 .163 
-.007 

 LF/HF FFT .415 .172 .121 .020 -.195 
.008 

 LF/HF AR .438 .192 .142 .010 -.216 
.009 

 HF FFT .433 .187 .136 .029 .290 
-.012 

 HF AR .404 .163 .111 .041 .283 
-.011 

Success RMSSD .402 .161 .109 .019 .195 
-.006 

 HF FFT .467 .218 .169 .006 .442 
-.013 

 HF AR .436 .190 .139 .013 .421 
-.012 

Self-Efficacy RMSSD .517 .268 .222 .007 .178 
-.005 

 HF FFT .473 .225 .175 .008 .357 
-.010 

 HF AR .493 .243 .196 .008 .361 
-.011 

Self-Regulation RHR .530 .281 .236 .006 .075 
-.002 
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Table 2.11: Endurance athlete significant curvilinear relationship by HR Variable   
The heart rate (HR) variables include resting heart rate (RHR), the root mean square of the 
standard deviation of RR intervals (RMSSD), the ratio of low frequency to high frequency power 
(LF/HF) and the HF power.  The LF/HF and HF are frequency domain variables analyzed using 
either the fast Fourier technique (FFT) and autoregressive analysis (AR).  The Recovery-Stress 
Questionnaire for athletes (RESTQ) defines the scales of either stress or recovery. 

HR Variable RESTQ Category R R2 Adjusted R2 Sig F 
Change 

Β Variable 

RHR Self-Regulation .530 .281 .236 .006 .075 
-.002 

RMSSD Emotional Stress .550 .302 .259 .006 .252 
-.011 

 Conflicts-Pressures .554 .307 .263 .005 .146 
-.004 

 Physical Complaint .451 .204 .154 .014 .163 
-.007 

 Success .402 .161 .109 .019 .195 
-.006 

 Self-efficacy .517 .268 .222 .007 .178 
-.005 

LF/HF FFT Physical Complaint .415 .172 .121 .020 -.195 
.008 

LF/HF AR Physical Complaint .438 .192 .142 .010 -.216 
.009 

HF FFT Emotional Stress .507 .257 .211 .029 .414 
-.017 

 Conflicts-Pressures .484 .234 .186 .033 .232 
-.007 

 Physical Complaint .433 .187 .136 .029 .290 
-.012 

 Success .467 .218 .169 .006 .442 
-.013 

 Self-efficacy .473 .225 .175 .008 .357 
-.010 

HF AR Emotional Stress .566 .321 .278 .009 .493 
-.020 

 Conflicts-Pressures .574 .329 .287 .008 .286 
-.008 

 Physical Complaint .404 .163 .111 .041 .283 
-.011 

 Success .436 .190 .139 .013 .421 
-.012 

 Self-efficacy .493 .243 .196 .008 .361 
-.011 
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Table 2.12:  Non-endurance significant curvilinear relationship by RESTQ-Sport Category   
The heart rate (HR) variables include resting heart rate (RHR), the root mean square of the 
standard deviation of RR intervals (RMSSD), the ratio of low frequency to high frequency power 
(LF/HF) and the HF power.  The LF/HF and HF are frequency domain variables analyzed using 
either the fast Fourier technique (FFT) and autoregressive analysis (AR).  The Recovery-Stress 
Questionnaire for athletes (RESTQ) defines the scales of either stress or recovery. 

RESTQ Category HR Variable R R2 Adjusted R2 Sig F 
Change 

Β Variable 

Fatigue  RMSSD .443 .196 .139 .018 -.104 
.004 

 HF FFT .433 .178 .119 .024 -.186 
.007 

 HF AR .399 .159 .099 .033 -.182 
.007 

Sleep Quality RMSSD .474 .225 .169 .022 -.177 
.005 

 

Table 2.13:  Non-endurance significant curvilinear relationship by HR Variable   
The heart rate (HR) variables include resting heart rate (RHR), the root mean square of the 
standard deviation of RR intervals (RMSSD), the ratio of low frequency to high frequency power 
(LF/HF) and the HF power.  The LF/HF and HF are frequency domain variables analyzed using 
either the fast Fourier technique (FFT) and autoregressive analysis (AR).  The Recovery-Stress 
Questionnaire for athletes (RESTQ) defines the scales of either stress or recovery. 

HR Variable RESTQ Category R R2 Adjusted R2 Sig F 
Change 

Β Variable 

RHR None       
RMSSD Fatigue .443 .196 .139 .018 -.104 

.004 
 Sleep Quality .474 .225 .169 .022 -.177 

.005 
LF/HF FFT None       
LF/HF AR None      
HF FFT Fatigue .433 .178 .119 .024 -.186 

.007 
HF AR Fatigue .399 .159 .099 .033 -.182 

.007 
 

DISCUSSION 

 The RESTQ-Sport has previously been used to assess stress and recovery with sports 

such as swimming, rowing, soccer and rugby while in preparation for The Olympic Games and 

World Championships, it has not been widely used in with collegiate student athletes who have 
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additional stressors such as academics [38, 44, 51].  The general stress scale under the general 

stress component was reported to be the most reflective of the overall stress level of the athlete; 

however it did not show a significant relationship to any of the physiological variables for the 

entire group of NCAA Division I Collegiate athletes [44].  Among the general stress component, 

the scales of conflicts-pressures, fatigue and physical complaint had a positive linear relationship 

with RHR where a higher score in the scale was associated with a higher RHR.  Figures 2.1-2.3 

show the positive linear relationship with the RHR on the y-axis and the adjusted RESTQ-Sport 

score on the x-axis.  While fatigue (12.9%) could potentially be a result of lack of recovery from 

training, it could have been influenced by non-training stresses such as academics or travel.   

Increases in fatigue and conflicts/pressures (15.1%) may result in an increase in non-training 

stress which would increase epinephrine secretions, thereby raising RHR [19].  The injury scale 

(10.3%), under the sport-specific stress component, also had a weak correlation with RHR for 

the entire group as seen in figure 2.4.  As fatigue has been shown to lead to chronic injury, these 

scales might be associated as shown in similar correlation to RHR and should be considered 

together [56].  In addition the RHR of the entire group had a significant positive linear 

relationship with the scales of emotional exhaustion (15%) and disturbed breaks (7.2%) under 

the sport-specific stress component (figures 2.5 and 2.6).  The increased training load during the 

course of a season would be reflected in the higher scores for the sport-specific stress 

component.  The positive linear relationship of these scores with RHR indicates that both non-

training and sport-specific stresses may contribute to increase in RHR.  None of the scales under 

the sports recovery component were correlated with RHR therefore decreases in RHR may not 

be interpreted as increased recovery.  Regardless, the correlations found in non-training and 
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sport-specific stresses with RHR were weak and must be used in association with other factors 

such as training RPE and training load for a more complete picture [38, 45, 49].   

 
Figure 2.1:  Linear regression for the Recovery-Stress Questionnaire (RESTQ) category 
conflicts-pressures on the x-axis and the resting heart rate (RHR) on the y-axis for the full data 
set. 

 
Figure 2.2: Linear regression for the Recovery-Stress Questionnaire (RESTQ) category fatigue 
on the x-axis and the resting heart rate (RHR) on the y-axis for the full data set. 
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Figure 2.3:  Linear regression for the Recovery-Stress Questionnaire (RESTQ) category 
physical complaints on the x-axis and the resting heart rate (RHR) on the y-axis for the full data 
set. 

 

Figure 2.4:  Linear regression for the Recovery-Stress Questionnaire (RESTQ) category injury 
on the x-axis and the resting heart rate (RHR) on the y-axis for the full data set. 
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Figure 2.5:  Linear regression for the Recovery-Stress Questionnaire (RESTQ) category 
emotional exhaustion and the resting heart rate (RHR) for the full data set. 

 
Figure 2.6:  Linear regression for the Recovery-Stress Questionnaire (RESTQ) category 
disturbed breaks on the x-axis and the resting heart rate (RHR) on the y-axis for the full data set. 

 

Our results indicated that the LF/HF measure, a measure of sympathetic activity, and 

RMSSD, the recommended predictor of parasympathetic modulation in athletes, were poor 

predictors of stress level in the entire group.  Previous literature has recommended validating the 
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RESTQ-Sport against physiological variables such as HRV in order to better diagnose OTS 

however more research is needed to determine if the RESTQ-Sport can be applicable to student 

athletes or if there are different physiological variables that would be more appropriate 

depending on sport and training [24]. 

The current evidence suggests that the type of training/sport (i.e. endurance vs. non-

endurance) does not influence resting HRV in the elite athletes; however it was also suggested 

that the subjective information such as the RESTQ-Sport might reveal different responses 

between these groups to training stress and the amount of recovery [18, 57, 58].  When analyses 

were conducted separately for the endurance group in our study, the general stress score became 

a weak but significant predictor for all of the HRV measures.  The parasympathetic measures of 

RMSSD (16.8%) and HF AR (17.6%) had strong positive linear relationships with the general 

stress score while the LF/HF AR (15.2%) and LF/HF FFT (14.5%) had strong inverse linear 

relationships with the general stress score. A lower general stress score would indicate lower 

sympathetic activity, which should correspond with the lower LF/HF and higher RMSSD and/or 

HF power indicating higher parasympathetic modulation, however the relationships found in this 

study are opposite [44].  Figures 2.7 to 2.11 show the linear relationships for each of these 

variables with the adjusted general stress scale score on the x-axis and the HR variable on the y-

axis.  The nature of the endurance training could have resulted in the endurance athletes 

experiencing a parasympathetic form of OTS where the increases in HF and RMSSD measures 

would be related to an increase in stress levels however OTS was not diagnosed for any of these 

athletes therefore this assumption cannot be confirmed [29].  Based on no relationships found 

with the entire group, and opposite relationships found in the endurance group, it is possible that 

the general stress score is not reflective of the stress-state of student athletes thus not related to 
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any of the HRV measure.  The non-endurance group had no significant linear relationships with 

any of the stress scales however there was a significant negative linear relationships with the 

sport-specific recovery scales of self-regulation for LF/HF FFT (21.2%) and LF/HF AR (22.6%).  

Higher recovery scores and lower LF/HF measures both indicate parasympathetic modulation 

thus a readiness to perform; however with only one of four sport-specific recovery scales 

showing a relationship it is also possible that the status of sport-specific recovery has minimal 

influence on HRV [59, 60].  With no significant relationships for any of the parasympathetic 

HRV measures for the entire group or the non-endurance group, the relevance of using the 

general stress scale as a measure of global stress as well as the ability of HRV to determine 

recovery for NCAA Division I Collegiate athletes were not confirmed in the current study.   

 
Figure 2.7:  Linear regression for the Recovery-Stress Questionnaire (RESTQ) category general 
stress on the x-axis and the HRV time domain variable root mean square of the standard 
deviation of RR intervals (RMSSD) on the y-axis for the endurance group. 
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Figure 2.8:  Linear regression for the Recovery-Stress Questionnaire (RESTQ) category general 
stress on the x-axis and the fast Fourier technique of the HRV frequency domain measure of the 
ratio of the low frequency to high frequency power (LF/HF FFT) on the y-axis for the endurance 
group. 

 

Figure 2.9:  Linear regression for the Recovery-Stress Questionnaire (RESTQ) category general 
stress on the x-axis and the autoregressive analysis of the HRV frequency domain measure of the 
ratio of the low frequency to high frequency power (LF/HF AR) on the y-axis for the endurance 
group. 
 

 



	 41	

Figure 2.10:  Linear regression for the Recovery-Stress Questionnaire (RESTQ) category 
general stress on the x-axis and the fast Fourier technique of the HRV frequency domain 
measure of high frequency power (HF FFT) on the y-axis for the endurance group. 
 

 

Figure 2.11:  Linear regression for the Recovery-Stress Questionnaire (RESTQ) category 
general stress on the x-axis and the autoregressive analysis of the HRV frequency domain 
measure of high frequency power (HF AR) on the y-axis for the endurance group. 
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A quadratic model was included in the analysis, as it has been suggested to have a 

superior fit in analyzing HRV measures for those with bradycardia [20].  The parasympathetic 

HRV measures continue to increase as AcH increases until a saturation point is reached where 

despite increases in parasympathetic stimulation the measures will plateau, a characteristic that 

may not fit the linear model [10, 20].  The characteristic of the parasympathetic measures, such 

as HF power and RMSSD, in response to increasing parasympathetic modulation is traditionally 

concave down, and for sympathetic measures, such as LF/HF, in response to increasing 

sympathetic modulation, is traditionally concave up [20].  The curvilinear relationship between 

stress level and the parasympathetic measures of HRV, RMSSD and HF, was apparent with the 

endurance group having significant curvilinear relationships between RMSSD, HF FFT and HF 

AR and emotional stress, conflicts/pressures and physical complaints.  There was a linear 

increase in HRV levels and stress score as there was sufficient stress to invoke change however 

as the stress increased past a certain level, the HRV levels began to decrease with the increased 

stress resulting in the curvilinear graph as seen in figures 2.12 to 2.17.  Emotional stress (32.1%) 

and conflicts-pressures (32.9%) had the greatest influence on HF AR with similar levels apparent 

with RMSSD (30.2% and 30.7% respectively). The emotional stress and conflicts-pressures 

could also result in an increase in epinephrine and an increase in sympathetic modulation 

indicating that the changes in physiological variables may not be solely training related [59]. 
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Figure 2.12:  Curvilinear regression for the Recovery-Stress Questionnaire (RESTQ) category 
emotional stress on the x-axis and the HRV time domain variable root mean square of the 
standard deviation of RR intervals (RMSSD) on the y-axis for the endurance group. 

 

Figure 2.13:  Curvilinear regression for Recovery-Stress Questionnaire (RESTQ) category 
emotional stress on the x-axis and the fast Fourier technique of the HRV frequency domain 
measure of high frequency power (HF FFT) on the y-axis for the endurance group. 
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Figure 2.14:  Curvilinear regression for the Recovery-Stress Questionnaire (RESTQ) category 
emotional stress on the x-axis and the autoregressive analysis of the HRV frequency domain 
measure of high frequency power (HF AR) on the y-axis for the endurance group. 
 

 

Figure 2.15:  Curvilinear regression for the Recovery-Stress Questionnaire (RESTQ) category 
conflicts-pressures on the x-axis and the HRV time domain variable root mean square of the 
standard deviation of RR intervals (RMSSD) on the y-axis for the endurance group. 
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Figure 2.16:  Curvilinear regression for the Recovery-Stress Questionnaire (RESTQ) category 
conflicts-pressures on the x-axis and the fast Fourier technique of the HRV frequency domain 
measure of high frequency power (HF FFT) on the y-axis for the endurance group. 

 
 
Figure 2.17:  Curvilinear regression for the Recovery-Stress Questionnaire (RESTQ) category 
conflicts-pressures on the x-axis and the autoregressive analysis of the HRV frequency domain 
measure of high frequency power (HF AR) on the y-axis for the endurance group. 
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With just the non-endurance athletes, the RMSSD, HF FFT and HF AR had a significant 

curvilinear relationship with fatigue with RMSSD being accounted for by the largest amount of 

variation, 19.6%.  The curve was concave up indicating increase in the parasympathetic HRV 

measure as the fatigue levels increase, which is opposite to the expected relationship.  These 

results highlight that the subjective component and physiological component may respond 

differently to stress in the non-endurance athletes.  One of the concerns with overreaching, a 

precursor to OTS, is an increase in fatigue leading to a lack of motivation to perform.  Our 

results demonstrated that the subjective information on fatigue were not reflected in HRV 

measures which suggests the inclusion of both subjective and physiological measures when 

examining the athletes’ fatigue related stress level [61].  Sleep quality, a measure of recovery, 

had a strong curvilinear relationship with RMSSD accounting for 22.5% of the variance in the 

non-endurance athletes.  This was characterized by a concave up relationship with a distinct bend 

in the curve at where RMSSD levels increase as recovery levels increase, highlighting the 

influence of sleep quality on the parasympathetic modulation of HRV in college student athletes 

[6, 60, 62, 63].  
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Figure 2.18:  Curvilinear regression for the Recovery-Stress Questionnaire (RESTQ) category 
fatigue on the x-axis and the time domain HRV measure of the root mean square of the standard 
deviation of the RR intervals (RMSSD) on the y-axis in the non-endurance group. 

 

Figure 2.19:  Curvilinear regression for the Recovery-Stress Questionnaire (RESTQ) category 
fatigue on the x-axis and the fast Fourier technique of the HRV frequency domain measure of 
high frequency power (HF FFT) on the y-axis for the non-endurance group. 
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Figure 2.20:  Curvilinear regression for the Recovery-Stress Questionnaire (RESTQ) category 
fatigue on the x-axis and the autoregressive analysis of the HRV frequency domain measure of 
high frequency power (HF AR) on the y-axis for the non-endurance group. 

 

Figure 2.21:  Curvilinear regression for the Recovery-Stress Questionnaire (RESTQ) category 
sleep quality on the x-axis and the time domain HRV measure of the root mean square of the 
standard deviation of the RR intervals (RMSSD) on the y-axis in the non-endurance group. 
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The RESTQ-Sport is purported to identify training and non-training stress and recovery 

via the 19 scales therefore the HRV variables of RMSSD and HF power, associated with 

parasympathetic modulation, were expected to have a negative linear relationship with the stress 

scales and a positive linear relationship with the recovery scales.  The results do not always 

support this relationship as there were significant positive linear relationships with the stress 

scales and significant negative linear relationships with the recovery scales.  The LF/HF ratio, 

presumed to measure sympathetic activity, had no significant linear relationships with any of the 

variables for the entire group, however when divided into the endurance and non-endurance 

groups there were significant negative relationships where decreased sympathetic activity was 

associated with increased RESTQ-Sport scores which was appropriate for the recovery scales but 

not for the stress scales.  According to the manual for the RESTQ-Sport the general stress scale 

has been determined to be reflective of the individual’s subjective measure of overall stress; 

however our data indicated that the general stress scale was not associated with any of the HRV 

measures in the NCAA Division I Collegiate athletes [44].  As most of the research with the 

RESTQ-Sport has not included football, baseball, basketball and water polo, it is possible that 

inclusion of these non-endurance athletes, as well as stress related to academics may have altered 

some of the sensitivity of the RESTQ-Sport, however it should not have influenced the HRV.  In 

addition, the non-normal distribution of HRV variables necessitated the log transformation, a 

common procedure used in the literature, which may have altered the results in regards to the 

relationship with the RESTQ-Sport questionnaire.  The need for further research into subjective 

monitoring to include non-training stresses for the NCAA Division I Collegiate student athlete is 

highlighted by the results of this study, as there was a consistent influence by most of the general 

non-training stress scales on HRV.  Moreover, the interpretation of the RESTQ-Sport with 
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collegiate student athletes should be taken with caution as some relationships were inverse.  

Additional research would be needed to determine the most appropriate combination of HRV 

measures and RESTQ-Sport scales in monitoring the stress and recovery levels of college 

student athletes over the course of the academic period and the athletic season. 
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Table 2.14:  Full data set non-significant linear results by RESTQ-Sport Category 
The heart rate (HR) variables include resting heart rate (RHR), the root mean square of the 
standard deviation of RR intervals (RMSSD), the ratio of low frequency to high frequency power 
(LF/HF) and the HF power.  The LF/HF and HF are frequency domain variables analyzed using 
either the fast Fourier technique (FFT) and autoregressive analysis (AR).  The Recovery-Stress 
Questionnaire for athletes (RESTQ) defines the scales of either stress or recovery. 

RESTQ Category HR Variable R R2 Adjusted R2 Sig F Change Β Variable 
Emotional Stress RHR .340 .058 .043 .052 .007 

 RMSSD .239 .057 .042 .054 .022 
 LF/HF FFT .011 .000 -.015 .928 -.001 
 LF/HF AR .056 .003 -.012 .656 -.007 

Social Stress RHR .166 .027 .012 .184 .004 
 RMSSD .234 .055 .040 .059 .019 
 LF/HF FFT .033 .001 -.015 .793 -.004 
 LF/HF AR .034 .001 -.014 .784 -.004 

Conflicts-Pressures RMSSD .080 .006 -.009 .525 .005 
 LF/HF FFT .128 .016 .001 .304 -.011 
 LF/HF AR .126 .016 .000 .314 -.010 
 HF FFT .096 .009 -.006 .442 .011 
 HF AR .121 .015 -.001 .335 .014 

Fatigue RMSSD .082 .007 -.009 .511 .004 
 LF/HF FFT .085 .007 -.008 .498 -.006 
 LF/HF AR .039 .002 -.014 .756 -.003 
 HF FFT .086 .007 -.008 .492 .008 
 HF AR .096 .009 -.006 .443 .009 

Physical Complaint RMSSD .060 .004 -.012 .630 .004 
 LF/HF FFT .051 .003 -.013 .682 -.005 
 LF/HF AR .003 .000 -.016 .981 .000 
 HF FFT .099 .010 -006 .429 .013 
 HF AR .083 .007 -.009 .509 .011 

Sleep Quality RHR .131 .017 .002 .294 -.002 
 RMSSD .165 .027 .012 .186 -.008 
 LF/HF AR .165 .027 .012 .186 .011 
 HF FFT .135 .018 .003 .281 -.013 
 HF AR .151 .023 .007 .228 -.014 

Disturbed Breaks RMSSD .129 .017 .001 .302 .010 
 LF/HF FFT .062 .004 -.012 .621 -.007 
 LF/HF AR .033 .001 -.015 .791 -.004 
 HF FFT .118 .014 -.001 .343 .019 
 HF AR .123 .015 .000 .327 .020 

Emotional Exhaustion LF/HF FFT .147 .022 .006 .240 -.013 
 LF/HF AR .139 .019 .003 .272 -.012 

Injury RMSSD .140 .019 .004 .263 .007 
 LF/HF FFT .171 .029 .014 .170 -.013 
 LF/HF AR .071 .005 -.011 .573 -.005 
 HF FFT .144 .021 .005 .248 .014 
 HF AR .155 .024 .009 .213 .016 
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Table 2.15: RESTQ-Sport categories with no significant relationships for the full data set 
These Recovery-Stress Questionnaire (RESTQ) scales have no significant relationship with any 
dependent variable for the entire data set.  The heart rate (HR) variables include resting heart rate 
(RHR), the root mean square of the standard deviation of RR intervals (RMSSD), the ratio of 
low frequency to high frequency power (LF/HF) and the HF power.  The LF/HF and HF are 
frequency domain variables analyzed using either the fast Fourier technique (FFT) and 
autoregressive analysis (AR).  The RESTQ defines the scales of either stress or recovery. 

RESTQ Category HR Variable R R2 Adjusted R2 Sig F Change Β Variable 
General Stress RHR .033 .001 -.015 .796 -.001 

 RMSSD .176 .031 .016 .158 .014 
 LF/HF FFT .143 .020 .005 .253 -.017 
 LF/HF AR 157 .025 .009 .208 -.018 
 HF FFT .110 .012 -.003 .378 .017 
 HF AR .156 .024 .009 .211 .025 

Lack of energy RHR .160 .026 .010 .199 .004 
 RMSSD .156 .024 .009 .210 .013 
 LF/HF FFT .007 .000 -.016 .954 .001 
 LF/HF AR .004 .000 -.016 .974 .000 
 HF FFT .119 .014 -.001 .343 .018 
 HF AR .200 .040 .025 .107 .032 

Success RHR .269 .072 .058 *.029 .006 
 RMSSD .034 .001 -.014 .784 -.002 
 LF/HF FFT .085 .007 -.008 .498 .008 
 LF/HF AR .081 .007 -.009 .519 .008 
 HF FFT .024 .001 -.015 .848 .003 
 HF AR .029 .001 -.015 .816 .004 

Social Recovery RHR .200 .040 .025 .108 .003 
 RMSSD .085 .007 -.008 .497 -.005 
 LF/HF FFT .232 .054 .039 .061 .018 
 LF/HF AR .234 .055 .040 .059 .018 
 HF FFT .074 .006 -.010 .553 -.008 
 HF AR .063 .004 -.012 .616 -.007 

Physical Recovery RHR .239 .057 .042 .053 .051 
 RMSSD .228 .052 .037 .066 -.022 
 LF/HF FFT .001 .000 -.016 .996 9.308E- 
 LF/HF AR .020 .000 -.015 .871 .003 
 HF FFT .237 .056 .041 .055 -.044 
 HF AR .218 .047 .032 .081 -.041 

General Well-being RHR .017 .000 -.015 .893 .000 
 RMSSD .129 .017 .001 .304 -.007 
 LF/HF FFT .135 .018 .003 .279 .011 
 LF/HF AR .131 .017 .002 .296 .011 
 HF FFT .131 .017 .002 .296 -.014 
 HF AR .120 .014 -.001 .338 -.013 

Being in-shape RHR .000 .000 -.016 .998 -4.815E-6 
 RMSSD .198 .039 .024 .111 -.012 
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 LF/HF FFT .144 .021 .005 .250 .013 
 LF/HF AR .129 .017 .001 .303 .011 
 HF FFT .093 .009 -.007 .460 -.011 
 HF AR .164 .027 .012 .188 -.020 

Personal 
Accomplishment 

RHR .080 .006 -.009 .522 .002 

 RMSSD .013 .000 -.015 .919 .001 
 LF/HF FFT .115 .013 -.002 .359 -.010 
 LF/HF AR .092 .008 -.007 .464 -.008 
 HF FFT .078 .006 -.009 .535 .009 
 HF AR .034 .001 -.014 .785 .004 

Self-efficacy RHR .026 .001 -.015 .835 .000 
 RMSSD .219 .048 .033 .077 -.013 
 LF/HF FFT .143 .021 .005 .251 .012 
 LF/HF AR .127 .016 .001 .308 .010 
 HF FFT .162 .026 .011 .194 -.018 
 HF AR .203 .041 .026 .102 -.023 

Self-Regulation RHR .264 .070 .055 *.032 .005 
 RMSSD .032 .001 -.015 .798 -.002 
 LF/HF FFT .156 .024 .009 .212 -.013 
 LF/HF AR .115 .013 -.002 .356 -.009 
 HF FFT .003 .000 -.016 .983 .000 
 HF AR .030 .001 -.015 .809 .003 

*Residuals are homoscedastic 
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Chapter 3 

Validation of the Photoplethysmographic Technique using a Smartphone Application with 
an Electrocardiograph in Assessing Autonomic Nervous System Function Among 
Collegiate Female Athletes  
 

INTRODUCTION 

 Heart Rate Variability (HRV), the ability of the heart to modulate interbeat intervals and 

oscillations between consecutive instantaneous heartbeats, is used as a non-invasive method of 

analyzing the autonomic nervous system (ANS) [1-4].  In general, parasympathetic activity leads 

to an influx of acetylcholine that increases the firing threshold of the sinoatrial node resulting in 

a decreased HR and an increase in the variability between successive R to R intervals.  

Conversely, sympathetic activity results the presence of epinephrine or norepinephrine leading to 

an increased HR and less variability between heartbeats. [3, 4]  Because each branch of the ANS 

has different response characteristics on HR modulation, analysis of HRV is used to determine 

autonomic balance with electrocardiographic (ECG) recording analysis serving as the gold 

standard for assessing change [1, 2, 4].  Time domain measures are calculated from the interval 

between successive normal complexes, either as direct measures of HR or statistical measures 

derived from the differences in intervals to reflect variance.  Common time domain measures 

include the standard deviation of the RR intervals (SDNN), the square root of the mean squares 

of successive RR intervals (RMSSD) and the proportion of successive RR intervals greater than 

50ms (pNN50). [1]  Frequency domain measures display how power (variance) distributes as a 

function of frequency where the low frequency (LF) and high frequency (HF) vary in relation to 

the changes in autonomic function and the very low frequency (VLF) is indicative of 

thermoregulatory activity [1, 3].  The sympathetic nervous system can only affect the LF 

components of HRV, while parasympathetic activity can modulate both the LF and HF 
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components [2].  The ECG data is transformed into numerical data of the R to R intervals, 

filtered to remove ectopic beats and analyzed with HRV analysis software such as Kubios HRV 

software (ver. 2.1, Kuopio Finland) [1, 3].   

 Interest in utilizing HRV measurements as a field assessment has led to the development 

of smartphones applications for monitoring HRV data as an alternative to the traditional ECG 

lab-based data collection [64-66].  One example of smartphone technology foregoes the use of a 

traditional chest strap to monitor the heart’s electrical activity by using an optical recording of 

the pulse wave, referred to as photoplethysmography (PPG), as an alternative measurement of 

cardiac cycles [67].  Instead of measuring changes in the electrical activity as with the ECG, PPG 

measures the relative blood volume changes of peripheral circulation through non-invasive pulse 

oximetry, based on light absorption [67, 68].  The PPG waveform consists of a direct current 

component that is based on a non-pulsatile blood volume that produces a slowly changing signal 

and an alternating current component that is attributed to the arterial pulse [68].  The same 

autonomic changes that influence HRV can be extracted from PPG to determine pulse rate 

variability (PRV), the variation between successive arterial pulse beats, with both measures 

highly correlated in both stationary and non-stationary conditions [67, 68].  Simultaneous 

analysis of ECG data and PPG shows accuracy in raw data as well as time domain and frequency 

domain analysis when HRV is measured during psychological tasks and basic exercise tasks, 

however it has not been validated at rest in athletes who have lower heart rates and increased 

parasympathetic activity secondary to training [30, 67]. 

 Substituting PRV data for the traditional ECG data with the use of a smartphone provides 

benefits to researchers as well as to athletes and coaches [64, 67].  Current trends in training 

adopt the use of daily or weekly HRV changes in determining recovery from exercise [8, 69].  



	 56	

Most research protocols use morning HRV data collection taken within a few minutes of waking 

and voiding of the bladder, prior to activity, eating, drinking caffeinated beverages or using 

tobacco products [6, 47, 66, 70].  As most college student athletes have smartphones with a 

camera and flash component, the use of an application that has compatible technology provides a 

convenient method for daily HRV monitoring [66, 71].  In order for this technology to be useful, 

it must be validated against the gold standard ECG recording for this population [64, 67]. 

 Therefore the purpose of this study was to test the reliability of the smartphone 

application against HRV data collected simultaneously from resting ECG data.  It was 

hypothesized that the smartphone application data would not be significantly different from the 

traditional ECG laboratory based data and that the smartphone application R-R intervals would 

not be significantly different from the ECG R-R intervals. 

 

METHODS 

Research Design	

This study employed a cross-sectional design to validate the smartphone application 

against the gold standard ECG.  All participants underwent one resting data collection session.  

The time domain measure of RMSSD, SDNN and pNN50 and the fast Fourier transformation 

(FFT) frequency domain measure of LF peak, HF peak and LF/HF ratio were used as the HRV 

outcome measure, which was compared between data collected via the ECG data collection and 

the smartphone application, using the capability of the application to measure R to R intervals 

and to produce its own time domain and frequency domain measures.  The three measurements 

of data compared were:  the R-R intervals collected via the ECG and analyzed using Kubios 

software (ECG-Kubios), the R-R intervals collected via the smartphone application and analyzed 
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using Kubios software (smartphone-Kubios) and via the smartphone application output 

(smartphone-output). 

Cross-sectional data collection 

Participants	

Thirty-two female participants (mean age = 19.3±0.95 years, mean ECG RHR =52±9) 

training with NCAA Division I athletic teams were recruited.  Prior to inclusion in the study, 

participants filled out Health History Questionnaire and informed consent form approved by the 

University of Hawaii Human Study Program.  Participants that self-identify in the health history 

questionnaires as having an allergy to adhesives or suspected pregnancy were not eligible for 

inclusion in this study.   

Table 3.1:  Descriptive Statistics:  Descriptive statistics presented for the 32 female NCAA 
Division I Collegiate athletes including age, height, body mass and resting heart rate (RHR). 

N=32 female Mean±SD 

Age (yrs) 19.30±0.92  

Height (m) 1.67±0.08 

Body Mass (kg) 60.29±10.54 

RHR (bpm) 52.24±9.4  

 

Instruments	

The ECG data was collected using CARDIO-CARDTM ver. 6.01ia software (Nasiff 

Associates, Inc., Brewerton, NY, USA).  Anthropometric data including height (cm) measured 

by wall-mounted stadiometer, body mass (kg) measured by Detecto Certifier scale (Detecto, 

Webb City, MO, USA) and age were collected and plugged into the CARDIO-CARDTM.  Prior 
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to electrode application, the skin was cleaned and prepped.  The right and left arm electrodes 

were placed below the right and left clavicles, respectively.  The right and left leg electrodes 

were attached to the right and left sides of the trunk, below the tenth rib on the anterior axillary 

line.  The V5 chest electrode was placed on the left side of the fifth intercostal space on the 

anterior axillary line.  Additional HRV data collection occurred simultaneously by a smartphone 

using the Camera HRV iPhone application ver 4.5.7.  This application allowed for the recording 

both time domain and frequency domain measures using PPG, a technique that detects changes 

in blood volume during the cardiac cycle by illuminating the skin and measuring changes in light 

absorption [68, 72].  CardioCardTM converts the ECG data into a comma separated value (.csv) 

file of the time in milliseconds between consecutive R to R intervals.  The smartphone 

application also converts the PPG data into a .csv file of the time in milliseconds between 

consecutive R to R intervals.  To obtain time and frequency domain measures, the ECG and PRV 

RR interval data were then exported to reliable software for calculating HRV measures, Kubios 

Heart Rate Variability ver. 2.1 software (Biosignal Analysis and Medical Imaging Group, Dept. 

of Physics, University of Kuopio, Finland) [3].  The smartphone application produces its own 

calculations of time and frequency domain HRV measures which are stored in the phone in one 

to five minute intervals and can be exported as an Excel file.  The smartphone application was 

set to store the data in approximately one minute intervals for ease of extrapolating the resting 

data from the fifteen minute data collection.  The Kubios analysis of the ECG R to R interval 

data (ECG-Kubios) was compared to the smartphone R to R interval data (smartphone-Kubios) 

to determine if both methods of data collection could produce similar results when analyzed via 

the heart rate variability software.  Both the ECG-Kubios and the smartphone-Kubios data were 
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then compared against the smartphone-output to determine if the smartphone calculations 

produced similar results to the software. 

Experimental Procedures	

 The testing sessions were conducted in the Human Performance Laboratory at the 

University of Hawaii at Manoa.  Participants were asked to refrain from any vigorous activities, 

such as playing sports and riding bicycle as well as ingesting any caffeine, 3 hours prior to the 

data collection.  Following the verbal explanation of the study procedure, all participants were 

asked to sign an informed consent form and fill out the Health History Questionnaire to identify 

exclusionary criteria.  	

 A Board of Certification Certified Athletic Trainer collected all laboratory data.  

Anthropometric data were collected and recorded prior to the testing session.  Following 

anthropometric measurements, the participant was instructed to lie down supine or semi-reclined 

in a comfortable position in which they could remain throughout the data collection.  The 

investigator cleaned the electrode placement sites and the electrodes were applied to designated 

positions.  The participant’s hand was placed comfortably with one finger over the flash for the 

smartphone application collection.  After 10 minutes of resting in comfortable position, the ECG 

and PRV were recorded for 15 minutes.  The participant was instructed to relax and breathe at 

their normal, self-determined pace, remain as steady as possible, and not to fall asleep during the 

data collection period. 

 Following the data collection procedure, raw R to R interval data from the ECG and the 

smartphone application were used to calculate HRV.  The R to R intervals were visually 

inspected to remove any ectopic beats and insure that high T-waves were not mistaken for an R-
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wave.  The filtered data were exported into Kubios Heart Rate Variability Software Version 2.0 

(University of Kuopio, Kuopio, Finland) to assess time and frequency domain measures based on 

the recommendations set forth by the Task Force.  Data was smoothed using the low-level 

artifact correction and trend components were removed using a Smooth n Priors to remove the 

influence of the VLF and filter any artifact.  Frequency bands for HRV analysis were set as 

follows:  VLF (0-0.04 Hz), LF (0.04-0.15 Hz), and HF (0.15-0.4 Hz).  Interpolation of the 

interbeat intervals (RR series) was set at 4 Hz.  Window width for fast Fourier transformation 

was set at 256 seconds with the window overlap set at 50%. [1] In the Kubios software, the most 

stable five minute data period of ECG R to R interval data was selected for analysis.  The same 

five minute curve was then matched in Kubios for the smartphone application R to R interval 

data.  Because the smartphone-output does not produce a curve, the ECG-Kubios output time 

was matched to the nearest minute on the excel spreadsheet from the smartphone-output and 

averaged for five minutes.   

Statistical Analysis 

The SPSS version 24 with a significance level set at p<0.05 was used for all statistical 

analyses (IBM Inc., Chicago, IL).  Descriptive statistics were calculated for each subject. 

A one-way analysis of variance (ANOVA) and Pearson product correlation were used to 

validate the smartphone-output against the smartphone-Kubios and the ECG-Kubios.  Means and 

standard deviations were calculated for the time domain measures of SDNN, RMSSD and 

pNN50 and the FFT frequency domain measures of LF peak, HF peak, and LF/HF as calculated 

by Kubios Heart Rate Variability software for the same five minute period of data collected via 

ECG recording and the RR intervals collected by the smartphone application.  In addition, effect 

size was calculated as the same participants were used for all three measures.  The same five 
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minute period was closely matched to the data output collected by the smartphone application.  

The Inter-Class Correlations (ICC) using the ICC (1,1) as outlined by Shrout and Fleiss with the 

appropriate standard error of the measurement (SEM) and Bland-Altman plots were calculated 

with limits of agreement reported [31, 32].  Linear regression analysis was used as a diagnostic 

procedure to determine if there was any proportional bias between the residuals [32]. 

 

Table 3.2:  Analysis of Variance comparing the ECG and Smartphone data analyses 
Analysis of Variance (ANOVA) comparing the time domain HRV measures standard deviation 
of NN intervals (SDNN), root mean square of the standard deviation of NN intervals (RMSSD) 
and proportion of successive NN intervals greater than 50 (pNN50) and the fast Fourier 
transformation frequency domain HRV measures of low frequency peak (LF), high frequency 
peak (HF) and ratio of low frequency to high frequency (LF/HF) for the three conditions, 
smartphone-Kubios, smartphone-output and ECG-Kubios.  The time domain measures are not 
significantly different between the three measures. 

 N Smartphone-
Kubios 

(Mean±SD) 

Smartphone- 
output 

(Mean±SD) 

ECG-Kubios 
(Mean±SD) 

F Sig ηp
2 

SDNN (ms) 32 75.55±24.64 78.68±23.59 69.76±31.99 .899 .411 .019 
RMSSD (ms) 32 99.71±35.21 94.19±32.96 91.22±43.20 .424 .655 .009 
pNN50 (%) 32 52.99±19.50 50.78±20.16 46.48±23.16 .795 .455 .017 

LF (ms2) 32 .109±.027 .079±.057 .101±.030 4.550 .013* .089 
HF (ms2) 32 .232±.048 .071±.056 .222±.056 92.279 .000** .665 
LF/HF 32 .755±.451 1.421±.562 .963±.587 20.827 .000** .309 

*. Significant at the 0.05 level. 
**. Significant at the 0.001 level. 

 

RESULTS 

 A one-way ANOVA (table 3.2) between the ECG-Kubios data, the smartphone-Kubios 

and the smartphone-output indicated no difference between the time domain measures of SDNN 

(F(2,93) =.899, p=.411, ηp
2= .019), RMSSD (F(2,93) = .424, p=.655, ηp

2= .009) and pNN50 

(F(2,93) =.795, p=.455, ηp
2= .017).  There were differences for the frequency domain measures 

of LF peak (F(2,93) = 4.550, p=.013, ηp
2= .089), HF peak (F(2,93) = 92.279, p<.001, ηp

2= .665) 
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and LF/HF (F(2,93) = 20.827, p<.001, ηp
2= .309).  Post hoc analysis using Least Significant 

Difference indicated that the frequency domain measures were significantly different between 

the calculations obtained via Kubios and the calculations done by the smartphone application.  

The LF power measures were significantly different for the smartphone-output data compared to 

the ECG-Kubios (p=.035) and the smartphone-Kubios data (p=.005).  The HF power measures 

were significantly different for the smartphone-output data compared to the ECG-Kubios 

(p<.001) and the smartphone-Kubios data (p<.001).  The LF/HF ratio measures were 

significantly different for the smartphone-output data compared to the ECG-Kubios (p<.001) and 

the smartphone-Kubios (p<.001).  There was no significant difference between the ECG-Kubios 

or the smartphone-Kubios (table 3.3). 

 
Table 3.3:  Least Squares Differences Post-Hoc Analysis  
Post-Hoc Analysis was performed using the Least Squares Difference comparing the time 
domain HRV measures standard deviation of NN intervals (SDNN), root mean square of the 
standard deviation of NN intervals (RMSSD) and proportion of successive NN intervals greater 
than 50 (pNN50) and the fast Fourier transformation frequency domain HRV measures of low 
frequency peak (LF), high frequency peak (HF) and ratio of low frequency to high frequency 
(LF/HF) for the three conditions, smartphone-Kubios, smartphone-output and ECG-Kubios. The 
frequency domain measures were significantly different between the smartphone-output and the 
ECG-Kubios and smartphone-Kubios.  The smartphone-Kubios and ECG-Kubios data was not 
significantly different. 

 Smartphone-
Kubios vs 

Smartphone-
output (mean±SD) 

Sig Smartphone-
Kubios vs ECG-

Kubios 
(mean±SD) 

Sig Smartphone-output 
vs ECG-Kubios 

 
(mean±SD) 

Sig 

SDNN (ms) -3.131±6.750 .644 5.7875±6.750 .393 8.919±6.750 .190 
RMSSD (ms) 5.512±9.346 .577 8.484±9.346 .366 2.972±9.346 .751 
pNN50 (ms) 2.204±5.251 .676 6.509±5.251 .218 4.305±5.251 .414 

LF (ms2) .029±.010 .005* .008±.010 .453 -.022±.010 .035* 

HF (ms2) .162±.013 .000** .010±.013 .471 -.152±.013 .000** 

LF/HF -.666±.123 .000** .042±.123 .732 .709±.123 .000** 

*. The mean difference is significant at the 0.05 level. 
**. The mean difference is significant at the 0.001 level. 
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There correlations between the time domain measures for all of the analyses were strong 

and significant (p<.001).  The smartphone-Kubios and the smartphone-output data showed the 

strongest correlations.  The correlations were significant for the frequency domain measures 

when comparing the smartphone-Kubios and the ECG-Kubios analysis but were not significant 

when the smartphone application was compared to the smartphone-Kubios or the ECG-Kubios 

(table 3.4).   

Table 3.4:  Pearson’s Product Correlations comparing the ECG and Smartphone data 
analyses 
The Pearson’s Product Correlation comparing between the three conditions, smartphone-Kubios, 
smartphone-output and ECG-Kubios for the time domain HRV measures standard deviation of 
NN intervals (SDNN), root mean square of the standard deviation of NN intervals (RMSSD) and 
proportion of successive NN intervals greater than 50 (pNN50) and the fast Fourier 
transformation frequency domain HRV measures of low frequency peak (LF), high frequency 
peak (HF) and ratio of low frequency to high frequency (LF/HF). 
 Correlation Significance 
Smartphone-Kubios SDNN vs Smartphone-output SDNN .876 .000** 

Smartphone-Kubios SDNN vs ECG-Kubios SDNN .638 .000** 

Smartphone-output SDNN vs ECG-Kubios SDNN .721 .000** 

Smartphone-Kubios RMSSD vs Smartphone-output RMSSD .935 .000** 

Smartphone-Kubios RMSSD vs ECG-Kubios RMSSD .605 .000** 

Smartphone-output RMSSD - ECG-Kubios RMSSD .600 .000** 

Smartphone-Kubios pNN50 vs Smartphone-output pNN50 .975 .000** 

Smartphone-Kubios pNN50 vs ECG-Kubios pNN50 .778 .000** 

Smartphone-Output pNN50 vs ECG-Kubios pNN50 .778 .000** 

Smartphone-Kubios LF vs Smartphone-output LF .279 .123 
Smartphone-Kubios LF vs ECG-Kubios LF .495 .004** 

Smartphone-output LF vs ECG-Kubios LF .185 .123 
Smartphone-Kubios HF vs Smartphone-output HF -.051 .781 
Smartphone-Kubios HF vs ECG-Kubios HF .589 .000** 

Smartphone-output HF vs ECG-Kubios HF .010 .956 
Smartphone-Kubios LF/HF vs Smartphone-output LF/HF .059 .747 
Smartphone-Kubios LF/HF vs ECG-Kubios LF/HF .710 .000** 

Smartphone-output LF/HF vs ECG-Kubios LF/HF .100 .587 
**. The mean difference is significant at the 0.01 level. 
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Table 3.5:  ICC and SEM Comparing the ECG and Smartphone data analysis 
The intraclass correlations and the standard error of the measurement comparing between the 
three conditions, smartphone-Kubios, smartphone-output and ECG-Kubios for the time domain 
HRV measures standard deviation of NN intervals (SDNN), root mean square of the standard 
deviation of NN intervals (RMSSD) and proportion of successive NN intervals greater than 50 
(pNN50) and the fast Fourier transformation frequency domain HRV measures of low frequency 
peak (LF), high frequency peak (HF) and ratio of low frequency to high frequency (LF/HF). 

 ICC SEM 
Smartphone-Kubios SDNN vs Smartphone-output SDNN .871 9.69 

Smartphone-Kubios SDNN vs ECG-Kubios SDNN .610 16.84 
Smartphone-output SDNN vs ECG-Kubios SDNN .655 15.84 

Smartphone-Kubios RMSSD vs Smartphone-output RMSSD .922 10.38 
Smartphone-Kubios RMSSD vs ECG-Kubios RMSSD .584 23.97 
Smartphone-output RMSSD - ECG-Kubios RMSSD .587 23.88 

Smartphone-Kubios pNN50 vs Smartphone-output pNN50 .969 3.69 
Smartphone-Kubios pNN50 vs ECG-Kubios pNN50 .733 10.83 
Smartphone-Output pNN50 vs ECG-Kubios pNN50 .760 10.27 
Smartphone-Kubios LF vs Smartphone-output LF .110 0.04 

Smartphone-Kubios LF vs ECG-Kubios LF .478 0.03 
Smartphone-output LF vs ECG-Kubios LF .104 0.04 

Smartphone-Kubios HF vs Smartphone-output HF -.719 0.12 
Smartphone-Kubios HF vs ECG-Kubios HF .579 0.06 
Smartphone-output HF vs ECG-Kubios HF -.643 0.12 

Smartphone-Kubios LF/HF vs Smartphone-output LF/HF -.251 0.66 
Smartphone-Kubios LF/HF vs ECG-Kubios LF/HF .714 0.31 
Smartphone-output LF/HF vs ECG-Kubios LF/HF -.250 0.66 

 

There was a high degree of reliability with the time domain variables.  Between the 

smartphone-Kubios and the smartphone-output, there was a high degree of reliability for SDNN 

(ICC = .871, SEM = 9.69), RMSSD (ICC = .922, SEM =10.38) and pNN50 (ICC=.969, SEM = 

3.69).  Between the smartphone-output and ECG-Kubios, the reliability was not as strong for the 

SDNN (ICC = .655, SEM = 15.84), RMSSD (ICC = .587, SEM = 23.88) and pNN50 (ICC = 

.760, SEM = 10.27) however this reliability was similar when the smartphone-Kubios was 

compared to the ECG-Kubios for the SDNN (ICC =  .610, SEM = 16.84), RMSSD (ICC = .584, 

SEM = 23.97) and pNN50 (ICC = .733, SEM = 10.83).  The frequency domain variables did not 
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have a high degree of reliability between the smartphone-output and the smartphone-Kubios or 

ECG-Kubios (table 3.5). 

 In regards to the time domain variables, the Bland Altman plot shows there was one 

outlier from the limits of agreement of the SDNN between the smartphone-Kubios and the 

smartphone-output (figure 3.1) however the means were not statistically significant (p=.385).  

There was proportional bias as seen by the significance (p=.034) in the linear regression analysis 

of SDNN data between the smartphone-Kubios and ECG-Kubios (figure 3.2), indicating that the 

methods do not agree equally throughout the range of measurements. A log transformation of the 

data was done in an attempt to resolve the proportional bias, however this still did not resolve.  

There were two outliers from the limits of agreement for the RMSSD between the smartphone-

Kubios and the ECG-Kubios (figure 3.3) however the means were not statistically significant 

(p=.082).   For the RMSSD, between the smartphone-output and the ECG-Kubios (figure 3.4) 

there were three outliers and the means were not statistically significant (p=.063).  There were 

two outliers from the limits of agreement for pNN50 between the smartphone-output and the 

ECG-Kubios (figure 3.5), however the means were not statistically significant (p=.089).     

For the frequency domain variables, a Bland Altman plot (figure 3.6) showed three 

outliers from the limits of agreement for the LF peak between the smartphone-Kubios and the 

ECG-Kubios however the means were not statistically significant (p=.334).  Bland Altman plots 

(Figures 3.7 and 3.8) of the smartphone-Kubios and the ECG-Kubios of HF peak (p=.220) and 

the LF/HF (p=.667) had two outliers from the limits of agreement.   
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Figure 3.1: Bland-Altman plot assessing the limits of agreement for the time domain measure of 
the standard deviation of successive NN intervals (SDNN) between the smartphone-Kubios and 
the smartphone-output.  Based on linear regression of the residuals there was not significant 
difference (p=.385). 
 

 

 

Figure 3.2:  Bland-Altman plot assessing the limits of agreement for the standard deviation of 
NN intervals (SDNN) between the smartphone-Kubios and the ECG-Kubios.  Linear regression 
of the residuals showed a significant difference indicating a proportional bias in the 
measurements (p=.034). 
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Figure 3.3: Bland-Altman plot assessing the limits of agreement for the root mean square of the 
standard deviation of NN intervals (RMSSD) between the smartphone-Kubios and the ECG-
Kubios.  Based on linear regression of the residuals there was not significant difference (p=.082). 
 

 

 
Figure 3.4:  Bland-Altman plot assessing the limits of agreement for the root mean square of the 
standard deviation of NN intervals (RMSSD) between the the smartphone-output and the ECG-
Kubios.  Based on linear regression of the residuals there was not significant difference (p=.063). 
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Figure 3.5:  Bland-Altman plot assessing the limits of agreement for the proportion of NN 
intervals over 50 (pNN50) between the smartphone-output and the ECG-Kubios.  Based on 
linear regression of the residuals there was not significant difference (p=.089). 
 

 

 
Figure 3.6:  Bland-Altman plot assessing the limits of agreement for the proportion of NN 
intervals over 50 (pNN50) between the smartphone-Kubios and the ECG-Kubios.  Based on 
linear regression of the residuals there was not significant difference (p=.334). 
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Figure 3.7: Bland-Altman plot assessing the limits of agreement for frequency domain measure 
of high frequency peak (HF) between the smartphone-Kubios and the ECG-Kubios.  Based on 
linear regression of the residuals there was not significant difference (p=.220). 
 

 

Figure 3.8: Bland-Altman plot assessing the limits of agreement for the frequency domain 
measure of the ratio of the low frequency to high frequency (LF/HF) between the smartphone-
Kubios and the ECG-Kubios.  Based on linear regression of the residuals there was not 
significant difference (p=.667). 
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DISCUSSION 

Resting time domain measures were not statistically different between the ECG-Kubios 

(Kubios analysis of R to R intervals obtained via a standard 5-lead ECG), smartphone-Kubios 

(Kubios analysis of R to R intervals obtained via PPG from a the rear-facing camera flash of a 

smartphone), and the smartphone-output (HRV calculations made via the smartphone application 

made from the R to R intervals), making the PRV data collection a valid substitute for ECG data 

collection when time domain variables are of interest.  Further analysis using ICC and Bland-

Altman plots showed strong relationships and no significant differences between the means for 

the three measures.  The ECG data is considered the gold standard because the clear waveform 

allows the ability to exclude data not originating from the SA node and the five lead set-up 

allowed the researchers to choose the clearest waveform for analysis [1].  The PRV has a short 

delay in the time it takes for the signal to travel from the heart to the arteries in the finger that 

can overestimate the length of proportionally long heart rate periods as seen in highly trained 

athletes, which may account for the lower strength in the correlations between the smartphone-

Kubios and ECG-Kubios measures, although there was no significant difference in the 

correlation or the ANOVA results [67, 68, 72].  In addition, athletes with bradycardia will have a 

higher firing threshold of the sinoatrial node resulting in the high T-waves in the ECG data 

which required filtering to correct for T-waves being incorrectly identified as the QRS complex 

[1].  While care was taken to preserve the integrity of the data, it is possible that intervals were 

added incorrectly or inadvertently deleted leading to unmatched data sets.  On the other hand, the 

smartphone application default setting automatically corrected for artifacts due to ectopic beats 

or motion with an RR interval correction set to 20% where any successive interval that is greater 

than 20% of the previous interval is removed.  The stronger correlation between the time domain 
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measures taken via the smartphone-output and the smartphone-Kubios are most likely because 

they come from the same RR interval series however because the time could not be synched 

exactly, the correlation was not perfect.  The decreased level of agreement between the SDNN 

measures for the smartphone-Kubios and the ECG-Kubios data are most likely due to a 

combination of the delay in PRV signal, the inability to synch the time for the smartphone-output 

to Kubios and the filtering of the ECG data as these methodological concerns can lead to 

discrepancies in the data [1, 67, 72].  The correlations between the smartphone-output and the 

ECG-Kubios were not as high as the data published on the developers website, r=.98 for SDNN, 

r=.78 for RMSSD and r=.87 for pNN50 however the developer compared the phone to ECG data 

collected via a chest strap polar heart rate monitor with blue tooth capability, not the five lead 

ECG data collection used in this methodology and no indication was given as to the population 

or the number of participants for the data [http://www.marcoaltini.com/blog/heart-rate-

variability].  The preferred parasympathetic measure for daily HRV analysis in athletes is 

RMSSD, as it remains consistent even when high levels of acetylcholine as found with 

bradycardia can lead to diminished levels of HF power, the frequency domain measure 

associated with parasympathetic modulation [8, 20].  The RMSSD has previously shown strong 

agreement between ECG data collection and simultaneous smartphone derived ECG measures 

(r=.99, for the iThlete using a chest strap, r=.92 for the Elite HRV smartphone application using 

a chest strap) or PRV measures (r≥.99 for 9 of 10 series for the iThlete finger sensor); however 

the agreement is not as strong in this data set [64, 67].  The strong agreement between the time 

domain results from the data of these three data sets would allow some comparisons to be made 

between studies using five minutes of resting data from this smartphone application and an ECG 

recording. 
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The differences between the frequency domain measures of LF peak, HF peak, and 

LF/HF were statistically significant between the measures produced by Kubios and the 

smartphone application perhaps as a result of differing calculations.  According to the 

manufacturer, the PRV data were analyzed using fast Fourier Transformation (FFT) with the 

frequency bands for LF (0.04-0.15Hz) and HF (0.15-0.40Hz) set to the same levels as with the 

analysis of the ECG -Kubios and the smartphone-Kubios.  There was no indication that VLF 

(<0.04Hz) was included in calculations by the smartphone application.  The smartphone 

application calculation involved linear interpolation of the RR intervals, then applying a 

hamming window before frequency analysis with FFT.  The lack of agreement between 

frequency domain results is similar to what has been seen in other studies that compare different 

methodologies of calculating HRV data, including systematic reviews [67, 73, 74].  Caution is 

advised when comparing frequency domain data from studies using different software for 

calculations, thereby making direct comparisons of HRV data limited [74].  However the 

majority of HRV research utilizes Kubios Heart Rate Variability Software with standard 

methodologies therefore as there was no significant difference for the time domain and 

frequency domain measures with either the smartphone-Kubios or ECG-Kubios data in this 

study, analysis of the PRV intervals by Kubios would be acceptable for comparison to ECG data.   

From a methodological standpoint, it was important that the analyses matched the time 

frame of the most stable period as closely as possible [1].  Kubios software allows for matches to 

be made to the exact time period, however the ECG data and the smartphone data were rarely 

started simultaneously resulting in a delay that was accounted for via matching the curve [73].  

The removal of ectopic beats from the ECG data was accomplished by visual inspection while 

the PRV data was automatically filtered by the application potentially resulting in unmatched 
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time frames.  Additionally the output for the smartphone, while set up to provide analysis in one 

minute intervals, often gave intervals differing time lengths, up to 120 seconds apart, and without 

the ability to match curves as with the Kubios analysis of the data may have resulted in differing 

time frames that could not be adjusted [1, 73].  Caution was taken to match the time frame as 

close as possible between the Kubios output and the smartphone spreadsheet but they could not 

be matched to the exact second.  This may have accounted for some of the error in the time 

domain variables however the frequency domain differences are most likely due to the 

differences in calculations.    

Smartphone applications allow for ease of data collection of RR intervals for research 

and for HRV monitoring of training and recovery.  The close limits of agreement and lack of 

significant difference between the time domain measures for the ECG-Kubios, smartphone-

Kubios and smartphone-output make the use of this smartphone application acceptable for data 

collection.  The frequency domain measures as calculated by the smartphone application, 

however, do not show strong agreement and are significantly different from both the ECG-

Kubios and smartphone-Kubios measures and therefore the use of the application for these 

measures is questionable.  As HRV monitoring relies on repeated measures from the same 

subject, as long as the same instrument is used for data collection and the participant collects 

data in the same manner every time, the amount of error can be limited and the differences can 

be attributed to the normal fluctuations in HRV.  Comparisons cannot be made between the 

frequency domain measures obtained via differing software and for best results the same method 

of data collection and analysis should be used to ensure the least amount of error.   
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Chapter 4 

Identifying Appropriate Statistical Measures for Calculating the Daily Change in HRV in 
NCAA Division I Collegiate Football Players during Off-season Conditioning 
 
INTRODUCTION 

 Current trends in training involve the use of daily heart rate variability (HRV) 

measurements as a means for determining the effectiveness of training and to examine the 

cumulative effects of training stress on the autonomic nervous system (ANS) [7, 8, 69, 75].  

Athletes can use daily HRV measurements and training load, calculated as the length of training 

multiplied by the rating of perceive exertion (RPE), to examine the effects from the previous 

day’s training [69, 76].  Heart Rate Variability is a non-invasive method for evaluating the ANS 

where an increase in variation of the beat to beat intervals represents an increase in 

parasympathetic activity and a more steady rhythmic HR represents an increase in sympathetic 

activity [1, 2].  The time domain measure of root mean square of the standard deviation 

(RMSSD), a statistical measure of the rate between the peaks of successive QRS complexes (R-

R intervals) displays the mathematical variance in HR and is the preferred measure of HRV for 

athletes who typically present with a lower resting HR (RHR) [1, 4, 8].  In response to stress, 

both physical and psychological, the ANS initiates withdrawal of the parasympathetic nervous 

system and stimulation of the sympathetic nervous systems resulting in less variance between R-

R intervals and a lower RMSSD [4].  As a positive response to the stresses imposed by training, 

the athlete will undergo adaptations related to an increased parasympathetic response that 

includes lower RHR and an increase in resting HRV [38, 40].  While ANS levels fluctuate from 

day to day, college student athletes are influenced by additional factors such as the type, intensity 

and length of the previous day’s training and the academic pressures, such as from exams, which 

could result in a decrease in HRV and higher in RHR, reflective of increased sympathetic 
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activity above the level of what would be considered a typical fluctuation [4, 24, 25, 28, 39, 77].  

However, there is no clear consensus as to what is a relatively normal fluctuation for the college 

student athlete and what could indicate a lack of recovery from training or increases in non-

training stressors [1, 8].   

 Methodologies for evaluating daily HRV change have used 0.5 Standard Deviation (SD) 

of the RMSSD or 0.5 of the individual baseline coefficient variation of the log of the RMSSD 

(LNRMSSD) and confidence limits (CL) of 90% in order to determine the smallest worthwhile 

change (SWC), the smallest change that is not due to error or normal daily fluctuations [8, 65, 

66, 69, 78].  This can be interpreted that any negative change greater than 0.5 SD is indicative of 

increased sympathetic activity while any positive change over 0.5 SD indicates a 

parasympathetic adaptation and a readiness to increase activity [69].  These methods are 

presented in multiple studies; however the efficacy of the SWC determined by these methods has 

not been explored [5, 8, 69, 79, 80].  It is also important to consider the athlete’s fitness level as 

well as the type, duration and intensity of training when examining the a level of change as 

recovery is unique to each individual [75].  For example, anaerobically trained athletes typically 

have a longer recovery time from high training loads, and for these athletes the 0.5 SD methods 

may be too conservative as the athletes may present with increased sympathetic activity for 48 to 

72 hours post-exercise before returning to baseline [80]. 

 In addition to the 0.5 SD driven method, several different SWC models exist as the SWC 

is commonly used in clinical practice to define evidence-based change [81, 82].  The SWC 

should account for measurement error as well as normal daily fluctuations, where a change 

greater than the SWC can be considered a “true” change, yet also be sensitive enough to 

determine a change that is clinically relevant [78, 81, 83].   To our knowledge three SWC models 
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used in evidence-based research are identified as applicable methods to HRV data. These three 

statistical measures, the reliable change index (RCI), the responsiveness statistic (RS) and the 

standardized response mean (SRM) are deemed suitable since the measures are not based on 

statistical significance, are independent of sample size and are expressed as a per subject 

variation around a mean value [81].  The RCI, calculated as a ratio of the change to the standard 

error of the measurement difference, establishes confidence intervals that can be adjusted to 

show more conservative measures of change or as a sliding scale based on the amount of 

recovery from the previous day’s training [81-83].  The RS, considered to be a more 

conservative measure, divides the change by the SD of a stable group, which takes into account 

normal fluctuations in HRV but does not account for individual differences. The SRM, based on 

the variability of individual change, is a ratio of the individual change to the SD of that change. 

[81]  Unlike the other measures, this examines the change based on fluctuations in SD occurring 

as HRV changes within the athlete by utilizing not only the mean daily change of the individual 

but their own SD of that change, thereby accounting for differences in physiology, fitness level, 

recovery and even non-training stresses [75, 81].  However, the applicability of these methods 

for HRV data to determine the SWC has not been explored. 

Athletes who continue to train without adequate recovery could experience declines in 

performance, and are at risk for overtraining syndrome and injury [24, 38].  If the athlete exhibits 

signs of a substantial increase in sympathetic activity based on the HRV measurement, training 

may be altered until an appropriate increase in parasympathetic activity demonstrates signs of 

recovery; however there is no published research quantifying the amount of change in HRV as 

“signs of recovery” [54, 69].  A more comprehensive analysis of the daily HRV changes in 

athletes would be useful to assess the efficacy of the SWC [8, 81].   
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 Therefore the purpose of this study was to examine the daily HRV measurements in 

NCAA Division I Collegiate football players to assess the applicability of different SWC models.  

It was hypothesized that the 0.5 SD would be not be appropriate for the daily fluctuations in 

HRV in athletes who primarily undergo anaerobic training and may have a prolonged recovery. 

 

METHODS 

Research Design 

A repeated measures design was conducted to obtain daily training load and HRV for five 

weeks during the participants’ off-season conditioning program.  Participants used a smartphone 

application to record HRV measures each morning.  A minimum of seven consecutive baseline 

data points was needed to calculate change.  The strength and conditioning coach provided the 

length of time and participant RPE for each training session for calculation of the training load.  

The HRV change as calculated by the change in RMSSD from the mean of the previous seven 

days was plugged into three formulas, the SRM, RS and RCI, and plotted against the previous 

day’s training load.  The three measures were then compared against 0.5 SD and 90% CL to 

assess the efficacy of these measures in determining the SWC. 

Participants 

Twenty NCAA Division I football players (18-25 years of age) were recruited to 

participate in this study during their offseason strength and conditioning workouts.  Prior to 

inclusion in the study, participants filled out a Health History Questionnaire and informed 

consent form approved by the University of Hawaii Human Studies Program.  Inclusionary 

criteria included being medically cleared to participate and currently being involved in the 
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team’s off-season training program.  Exclusionary criteria included any unresolved cardiac 

issues. 

Instruments 

 Daily HRV measurements were taken using the Camera Heart Rate Variability iPhone 

application (A.S.M.A., Eindhoven, The Netherlands) and emailed to the researcher weekly.  

Kubios Heart Rate Variability Software Version 2.0 (University of Kuopio, Kuopio, Finland) 

was used to assess time and frequency domain analysis.  The Borg Ratings of Perceived Exertion 

scale was used along with a daily recording of the approximate length of training time to 

calculate training load.   

Procedures 

HRV Analysis 

Heart rate variability data were collected daily via photo plethysmography (PPG) each 

morning upon waking and before practice using a smartphone application designed to measure 

pulse rate variability (PRV), which is analogous to HRV [68, 72].  Participants were instructed 

on how to use the application according to manufacturer’s recommendations and completed all 

collections in a supine, resting position.  The arterial pulse was detected using a flash on the rear-

facing camera of a smartphone interfaced with an application designed to obtain signals based on 

blood light absorption.  Participants gently placed their left index finger over the phone’s camera 

for five minutes while signals were obtained.  The smartphone application stored the data in a 

spreadsheet, which was then emailed directly from the phone to the strength and conditioning 

coach and forwarded to the researcher on a weekly basis. 

The RR intervals were filtered with any ectopic beats removed prior to being imported 

into Kubios Heart Rate Variability Software where low-level artifact correction was applied and 
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the sample length set to one minute and adjusted to find a stable pattern.  Trend components 

were removed using a Smooth n Priors method.  Window width for fast Fourier transformation 

was set at 256 seconds with the window overlap set at 50%.  Interpolation of the inter-beat 

intervals (RR series) was set at 4 Hz.  Frequency bands for HRV analysis were set as follows:  

very low frequency (VLF=0-0.04 Hz), low frequency (LF=0.04-0.15 Hz), and high frequency 

(HF=0.15-0.4 Hz).  The time domain parameters (RR series) address the magnitude of variability 

and provide information about the vagal (parasympathetic) modulation of the heart.  The 

frequency domain parameters provide information about parasympathetic modulation (HF), 

sympathovagal balance (LF), and sympathetic modulation (LF/HF).  Only the time domain 

measure of RMSSD was used for analysis. [1] 

Daily Training Load	

Practice duration and intensity, as represented by self-reported RPE, was collected daily 

for determination of training load [76].  Participants were involved in organized conditioning 

activities under the direction of the strength and conditioning coach who recorded length of time 

of each workout as well as the intensity of that activity as reported by each participant.  This 

information was shared with the researcher at the end of the five week training period.  

Calculations of RCI and RS 

The RCI and RS required data from a stable group, which was not found in the literature; 

therefore the calculations for the RCI and the RS relied on repeated measures data taken from 

another unpublished study in our lab and from participants who did not provide enough 

consecutive data points to be used in this study.  The PRV data were collected via the same 

resting procedures using the Camera HRV iPhone application and analyzed using the Kubios 

measures outlined above with the most stable one minute period from two separate data 
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collection sessions being used for analysis.  Data were analyzed using SPSS version 24 (IBM 

Inc., Chicago IL) with a significance level set at p<0.05.  A paired t-test was used to compare the 

RMSSD of resting data from two sessions taken a minimum of one week apart to calculate the 

SD of change.  The SD of change from this stable group (n=25), 40.14, was used as the 

denominator in the RS for all data points.  The standard error of the measurement (SEM) was 

calculated from the SD and the ICC of .665 then the square root of two times the SEM2, 32.85, 

was used as the denominator in the RCI formula. The formulas are outlined in table 4.1. 

 
Table 4.1:  Formulas for calculating the measures of change  
Formulas for the reliable change index (RCI), responsiveness statistic (RS) and standardized 
response mean (SRM).  The numerator represents the current day’s RMSSD minus the mean of 
the RMSSD over the previous seven days.  The denominator changes for each statistic with the 
RCI and RS relying on data from a stable group while the SRM relies on the standard deviation 
of change over the previous seven days and will be different for each participant and for each 
data point. 
 Formula 

RCI 

 

RS 

 

SRM 

 

 

Statistical Analysis 

The mean of the RMSSD for previous seven days was subtracted from the current day to 

evaluate change [70].  This change in the RMSSD was then plugged into three different 

statistics, the RCI, SRM, and RS to assess daily changes in HRV (see table 4.1).  The RCI 
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Table 2
Distribution-based methods of determining individual change

HRQOL evaluated in
Method Reference relation to: Calculation Advantages Disadvantages

Paired t-statistic Husted et al., Standard error of the None Increases with sample sizex1!x0

!"(di!d̄)2

n(n!1)

2000 [74] mean change

Growth curve Speer and Standard error of the Not limited to pre-test and Increases with sample sizeB

!Vanalysis Greenbaum, slope post-test scores
1995 [77]

Requires large sample
Uses all of the available data sizes

Assumes data missing at
random

Effect size Cohen, 1988 [80] Pre-test standard Standardized units Decreases with increasedx1!x0

!"(x0!x̄0)2

n!1

Kazis et al., deviation baseline variability of
1989 [81] sample

Benchmarks for
interpretation

Does not consider
variability of change

Independent of sample size

May vary widely among
samples

Standardized Stucki et al., Standard deviation Standardized units Varies as a function ofx1!x0

!"(di!d̄)2

n!1

response mean 1995 [58] of change effectiveness of
treatment

Independent of sample size
Based on variability of

change

Responsiveness Guyatt et al., Standard deviation of Standardized units Data on stable subjectsx1!x0

!"(di stable!d̄stable)2

n!1

statistic 1986 [87] change in a stable frequently not available
group

More conservative than
effect size

Independent of sample size
Takes into account spurious

change due to
measurement error

Standard error of Wyrwich et al., Standard error of Relatively stable across Assumes measurementx1!x0

!"(x0!x̄0)2

(n!1)
(!1 ! r)

measurement 1999 [88] measurement populations error to be constant
across the range
of possible scores

Takes into account the
precision of the measure

Cutoffs based on confidence
intervals

Reliable change Jacobson and Standard error of the Relatively stable across Assumes measurementx1!x0

!2(SEM)2index Truax, 1991 measurement populations error to be constant
[55] difference across the range

of possible scores
Takes into account precision

of measure
Cut-offs based on confidence

intervals

Abbreviation: HRQOL, health-related quality of life.
Key: x0 " pre-test score

x1 " post-test score
di " pre-to-post difference score for subject i
d̄ " mean difference score
n " sample size
r " reliability of the measure
B " empirical Bayes estimate of the individual slope
!V " empirical Bayes estimate of the Standard error of the slope
SEM " Standard Error of Measurement

referred to as the responsiveness-treatment coefficient [82] or
the efficacy index [83]. Whereas the effect size is the ratio
of individual change to the baseline SD of the sample, the
SRM is the ratio of individual change to the SD of that
change [3]. A large SRM indicates that the change is large

relative to the background variability in the measurements.
The effect size ignores the variation in the change, whereas the
SRM does not. Similar to the effect size, SRM values of
.20, .50, and .80 have been proposed to represent small,
moderate, and large change, respectively [84–86]. One
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divides the change in RMSSD by the SEM from a stable group of participants using the same 

data collection procedures.  The RS divides the change in RMSSD by the SD of change of a 

stable group using the same data collection procedures.  The SRM divides the change in RMSSD 

by the SD of change for that individual, which was calculate based on the previous seven days of 

data. [81]  All of the calculations result in a Z-score where 0.5 represents half of a SD and 1.645 

would represent a 90% confidence interval.   

 

RESULTS 

 Tables 4.2-4.8 show the results for the six participants (two defensive backs, one 

linebacker, one defensive lineman and two quarterbacks) who completed a minimum of eight 

consecutive days of data collection, missing no more than one in the previous seven, necessary to 

determine daily RMSSD change from the mean of the previous seven days.  The days indicated 

on the table begin with day eight.  One participant (DB2) has two separate data collection 

periods as he missed consecutive days at the end of week 3 and resumed collection for weeks 4 

and 5.  Because of the missing data points the days are not continuous and therefore to avoid 

confusion the graphs were not combined. 

 From the six participants, a total of 57 data points were included in the analysis based on 

the criteria.  Because each of the statistical measures converted the change into a Z-score, 

comparisons can be made between the scores of the SRM, RS and RCI to see how each 

measured the individual change.  If the 0.5 SD were used as a cut-off for recovery any change in 

RMSSD that fell below -0.5 SD as indicated by the three statistical measures would indicate a 

lack of readiness for the next workout.  Of the 27 negative change scores, 18 showed a drop of 

greater than 0.5 SD with the SRM and the RS while 20 showed a drop of greater than 0.5 SD 
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with the RCI.  Of the 30 positive change scores, 21 showed a greater than 0.5 SD of 

improvement with the SRM, 16 with the RS and 19 with the RCI.  When the 90% CI was used, 

there were four scores with the SRM, four scores with the RS and six scores with the RCI that 

fell below -1.645.  Of the positive change scores there were nine SRM scores, four RS scores and 

eight RCI scores that fell above 1.645.  

 Each data collection period has three figures graphing the SRM, RS or RCI against the 

previous day’s training load (figures 4.1 through 4.7).  If the previous day was a recovery day 

there is no accompanying bar as the training load would be zero.  Participants had training on 

Monday, Tuesday, Thursday and Friday with Wednesday, Saturday and Sunday as designated 

days off from formal training.  The participants underwent a standard training protocol 

developed by the strength and conditioning coach with adjustments made to the weight training 

based on the abilities of each participant.  Any additional outside training or recreational 

activities were not restricted and were not included in the training load.   
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Figure 4.1a: Plotting the standardized response mean (SRM) on the left y-axis against the 
previous day’s training load (PDTL), the product of the minutes trained times the Rating of 
Perceived Exertion (RPE) on the right y-axis for subject DB1 for 6 days.  On days where there 
was no formal practice, the PDTL is zero.  

 
 
Figure 4.1b: Plotting the responsiveness statistic (RS) on the left y-axis against the previous 
day’s training load (PDTL), the product of the minutes trained times the Rating of Perceived 
Exertion (RPE) on the right y-axis for subject DB1 for 6 days.  On days where there was no 
formal practice, the PDTL is zero. 

 

Figure 4.1c:  Plotting the recovery change index (RCI) on the left y-axis against the previous 
day’s training load (PDTL), the product of the minutes trained times the Rating of Perceived 
Exertion (RPE) on the right y-axis for subject DB1 for 6 days.  On days where there was no 
formal practice, the PDTL is zero. 
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Figure 4.2a:  Plotting the standardized response mean (SRM) on the left y-axis against the 
previous day’s training load (PDTL), the product of the minutes trained times the Rating of 
Perceived Exertion (RPE) on the right y-axis for subject DB2 for 12 days.  On days where there 
was no formal practice, the PDTL is zero. 

 
 
Figure 4.2b: Plotting the responsiveness statistic (RS) on the left y-axis against the previous 
day’s training load (PDTL), the product of the minutes trained times the Rating of Perceived 
Exertion (RPE) on the right y-axis for subject DB2 for 12 days.  On days where there was no 
formal practice, the PDTL is zero. 

 

Figure 4.2c:  Plotting the recovery change index (RCI) on the left y-axis against the previous 
day’s training load (PDTL), the product of the minutes trained times the Rating of Perceived 
Exertion (RPE) on the right y-axis for subject DB2 for 12 days.  On days where there was no 
formal practice, the PDTL is zero. 

 

0	

500	

1000	

1500	

2000	

-5	

-4	

-3	

-2	

-1	

0	

1	

2	

1	 2	 3	 4	 5	 6	 7	 8	 9	 10	 11	 12	 PDTL	

SRM	

0	

500	

1000	

1500	

2000	

-5	

-4	

-3	

-2	

-1	

0	

1	

2	

1	 2	 3	 4	 5	 6	 7	 8	 9	 10	 11	 12	 PDTL	

RS	

0	

500	

1000	

1500	

2000	

-5	

-4	

-3	

-2	

-1	

0	

1	

2	

1	 2	 3	 4	 5	 6	 7	 8	 9	 10	 11	 12	 PDTL	

RCI	



	 85	

Figure 4.3a: Plotting the standardized response mean (SRM) on the left y-axis against the 
previous day’s training load (PDTL), the product of the minutes trained times the Rating of 
Perceived Exertion (RPE) on the right y-axis for subject DB2 for 8 days.  On days where there 
was no formal practice, the PDTL is zero. 

 

 
Figure 4.3b:  Plotting the responsiveness statistic (RS) on the left y-axis against the previous 
day’s training load (PDTL), the product of the minutes trained times the Rating of Perceived 
Exertion (RPE) on the right y-axis for subject DB2 for 8 days.  On days where there was no 
formal practice, the PDTL is zero. 

 

Figure 4.3c: Plotting the recovery change index (RCI) on the left y-axis against the previous 
day’s training load (PDTL), the product of the minutes trained times the Rating of Perceived 
Exertion (RPE) on the right y-axis for subject DB2 for 8 days.  On days where there was no 
formal practice, the PDTL is zero. 
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Figure 4.4a:  Plotting the standardized response mean (SRM) on the left y-axis against the 
previous day’s training load (PDTL), the product of the minutes trained times the Rating of 
Perceived Exertion (RPE) on the right y-axis for subject DL1 for 5 days.  On days where there 
was no formal practice, the PDTL is zero. 

 

Figure 4.4b:  Plotting the responsiveness statistic (RS) on the left y-axis against the previous 
day’s training load (PDTL), the product of the minutes trained times the Rating of Perceived 
Exertion (RPE) on the right y-axis for subject DL1 for 5 days.  On days where there was no 
formal practice, the PDTL is zero. 

 

Figure 4.4c:  Plotting the recovery change index (RCI) on the left y-axis against the previous 
day’s training load (PDTL), the product of the minutes trained times the Rating of Perceived 
Exertion (RPE) on the right y-axis for subject DL1 for 5 days.  On days where there was no 
formal practice, the PDTL is zero. 
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Figure 4.5a:  Plotting the standardized response mean (SRM) on the left y-axis against the 
previous day’s training load (PDTL), the product of the minutes trained times the Rating of 
Perceived Exertion (RPE) on the right y-axis for subject LB1 for 18 days.  On days where there 
was no formal practice, the PDTL is zero. 

 

Figure 4.5b:  Plotting the responsiveness statistic (RS) on the left y-axis against the previous 
day’s training load (PDTL), the product of the minutes trained times the Rating of Perceived 
Exertion (RPE) on the right y-axis for subject LB1 for 18 days.  On days where there was no 
formal practice, the PDTL is zero. 

 

Figure 4.5c:  Plotting the recovery change index (RCI) on the left y-axis against the previous 
day’s training load (PDTL), the product of the minutes trained times the Rating of Perceived 
Exertion (RPE) on the right y-axis for subject LB1 for 18 days.  On days where there was no 
formal practice, the PDTL is zero. 

 

0	

500	

1000	

1500	

2000	

2500	

-4	
-3	
-2	
-1	
0	
1	
2	
3	
4	

1	 2	 3	 4	 5	 6	 7	 8	 9	 10	 11	 12	 13	 14	 15	 16	 17	 18	

PDTL	

SRM	

0	

500	

1000	

1500	

2000	

2500	

-4	
-3	
-2	
-1	
0	
1	
2	
3	
4	

1	 2	 3	 4	 5	 6	 7	 8	 9	 10	 11	 12	 13	 14	 15	 16	 17	 18	

PDTL	

RS	

0	

500	

1000	

1500	

2000	

2500	

-4	
-3	
-2	
-1	
0	
1	
2	
3	
4	

1	 2	 3	 4	 5	 6	 7	 8	 9	 10	 11	 12	 13	 14	 15	 16	 17	 18	

PDTL	

RCI	



	 88	

Figure 4.6a:  Plotting the standardized response mean (SRM) on the left y-axis against the 
previous day’s training load (PDTL), the product of the minutes trained times the Rating of 
Perceived Exertion (RPE) on the right y-axis for subject QB1 for 5 days.  On days where there 
was no formal practice, the PDTL is zero. 

 

Figure 4.6b:  Plotting the responsiveness statistic (RS) on the left y-axis against the previous 
day’s training load (PDTL), the product of the minutes trained times the Rating of Perceived 
Exertion (RPE) on the right y-axis for subject QB1 for 5 days.  On days where there was no 
formal practice, the PDTL is zero. 

 

Figure 4.6c:  Plotting the recovery change index (RCI) on the left y-axis against the previous 
day’s training load (PDTL), the product of the minutes trained times the Rating of Perceived 
Exertion (RPE) on the left y-axis for subject QB1 for 5 days.  On days where there was no 
formal practice, the PDTL is zero. 
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Figure 4.7a:  Plotting the standardized response mean (SRM) on the left y-axis against the 
previous day’s training load (PDTL), the product of the minutes trained times the Rating of 
Perceived Exertion (RPE) on the right y-axis for subject QB2 for 3 days.  On days where there 
was no formal practice, the PDTL is zero. 

 

Figure 4.7b:  Plotting the responsiveness statistic (RS) on the left y-axis against the previous 
day’s training load (PDTL), the product of the minutes trained times the Rating of Perceived 
Exertion (RPE) on the right y-axis for subject QB2 for 3 days.  On days where there was no 
formal practice, the PDTL is zero. 

 

Figure 4.7c:  Plotting the recovery change index (RCI) on the left y-axis against the previous 
day’s training load (PDTL), the product of the minutes trained times the Rating of Perceived 
Exertion (RPE) on the right y-axis for subject QB2 for 3 days.  On days where there was no 
formal practice, the PDTL is zero. 
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DISCUSSION 

Daily HRV measurements can be used to track overall change in the sympathovagal 

balance as training will produce fluctuations in HRV from day to day based on the demands of 

the session, type of training and the level of fitness of the individual; however there is no clear 

consensus as to the what level of change is appropriate and what could reflect a lack of recovery 

[8, 49].  The three statistical analyses proposed here are used in other disciplines to bridge the 

gap between research and clinical practice and are being evaluated for their potential with HRV.  

The RS and RCI are all based on normative values, typically from large data sets, to determine 

the amount of appropriate change [81].  While this may be appropriate in other areas of 

evidence-based practice where measures can be used for comparison against large groups, 

gender, age, type of exercise, and fitness level can all influence HRV recovery time making the 

use of “normative” data from different sports or genders questionable [80, 84, 85].  In addition, 

HRV comparisons can only accurately be made if there is similar methodologies of data 

collection, including the length of recording time, calculation of frequency domain variables and 

data collection instrument [1].  To allow for these differences, the SD of change and the SEM 

calculations for the RS and RCI used one-minute of stable HRV data collected via the same 

smartphone application used in the daily data collections and used only NCAA Division I 

athletes, however males and females participating in endurance and non-endurance sports were 

included which may have altered the SD and SEM measures. Therefore using the SD of the 

mean change of that individual as in the SRM would allow for an equation that would be more 

applicable than the RS or the RCI unless normative values and normative change measures can 

be established in collegiate male football players. 



	 91	

Based on the comparison of the SWC models, the traditional 0.5SD model seemed too 

conservative for the amount of fluctuation experience by NCAA Division I football players 

during off-season strength and conditioning sessions.  Of the 57 data points outlined in tables 2-

8, only 18 from the SRM, 23 from the RS and 18 from the RCI fell between -0.5 SD and 0.5 SD 

which could be interpreted as the majority of the workouts being either too difficult, producing a 

greater than -0.5 SD decrease in HRV, or too easy, producing a greater than 0.5 SD increase in 

HRV.  The workouts being too hard or too easy is not supported by the subjective assessment of 

the workouts as the RPE measures taken after each session were typically from 14 to16 for the 

first four weeks and from 9 to 11 for the fifth week and there was no consistency in the amount 

of change to HRV and the previous day’s training load.  As most of the research related to daily 

HRV focuses on endurance athletes who typically undergo aerobic, steady-state training the 

0.5SD level may be too sensitive for the anaerobic based strength and conditioning workouts of 

the football players.  When 0.5 SD was used as a cutoff to decrease training in female 

recreational endurance runners, only one participant was unable to complete the training because 

her SWC was consistently below the -0.5 SD cutoff point; however the HRV measures for 

female recreational endurance athletes (age 34±8 years) and collegiate male football players are 

not comparable and therefore these differences may account for the difference in results [69]. 

The neuromuscular repair after muscle-damaging exercise such as strength training can demand 

more energy than recovery from aerobic training which could lead to prolonged sympathetic 

activity and therefore it is suggested to use the data two days after an intense strength training 

session to obtain change rather than the next day [80].   

The 90% CI was less sensitive to the daily fluctuations as only ten of the SRM points, 

eight of the RS and fourteen of the RCI fell outside of the interval of -1.645 to 1.645 as 
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determined by the z-score in each of the statistical measures.  While multiple participants had 

back-to-back days with changes outside 0.5 SD, only participant LB1 had negative changes 

outside of the 90% CI on two consecutive days with the RS and RCI but not with the SRM.  This 

negative change was associated with the highest recorded RPE, 17, therefore having the 

additional subjective information along with the HRV measures helps explain the delay in 

recovery.  The changing SD with the SRM explains why there was no negative change outside of 

the 90% CI for this measure, making it more adaptive to the normal fluctuations of training.  

Training sessions in this study featured both strength and conditioning activities appropriate for 

football, which does not require an extended period in steady-state.  Interval training and training 

above the lactate threshold, as seen in football related conditioning exercises, can lead to a delay 

in the return to autonomic balance as opposed to steady-state endurance training combined with 

strength training, which has been shown to improve parasympathetic activity [48, 85].  The lack 

of steady-state would require the ANS to continually balance between the sympathetic and 

parasympathetic systems, which may result in the delayed return of parasympathetic levels.  The 

results of this study are similar to what was reported by Flatt, et al., where female soccer players 

had greater change above the 90% CI with a hard training load week compared to a low training 

load week [66]. 

Coaches are seeking an easy way to interpret the most relevant information about the 

subjective and objective data from the athlete in order to monitor training on a daily or a weekly 

basis [86].  The SRM transforms the change score into an easily interpretable z-score calculated 

using an excel spreadsheet.  When graphed against the previous day’s training load, as illustrated 

in the figures, athletes and coaches can track the progress and the amount of change from day to 

day.  The HRV measures will fluctuate on a daily basis, therefore return to baseline is not 
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expected, however the degree of change, positive or negative, and the ability to track that change 

over time is what is important.  For example, if the intent of a particular week is produce 

overload it can be displayed graphically comparing the training load against HRV changes which 

when taken in context does not necessarily mean that the participant is at risk for overtraining 

however if the increased sympathetic activity occurs, adjustments to training or recovery can be 

made [87].  This would also allow for easier comparison between athletes during training as each 

person has their own z-score graphed against the training load that includes individual RPE 

measures and does not rely on a “normative” value table.  

This research presents three statistical analyses that have the potential to be used to track 

changes in HRV during training although defining the SWC likely depends as much on the 

training context as the statistical measure being used to evaluate the level of change.  While the 

appropriate amount of change cannot be determined from this small sample size, the 0.5SD 

appears to be too conservative of a measure on which to evaluate change.  The 90% CI appears 

to be a more appropriate measure of change in collegiate male football players during off-season 

conditioning.  In addition, it is important to consider the level of change over consecutive days 

when evaluating anaerobic exercise, and looking at the change at two days post-training instead 

of one day.  These statistics may provide a methodology for which future research can be based, 

however more research into the efficacy of these measures with a variety of athletes and sports is 

needed. 
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Table 4.2:  Daily HRV changes for Subject DB1 for 6 days  
Subject Mean 

HR 
RMSSD 7-day 

mean 
RMSSD 

Daily 
change 

from 7-day 

SRM RS RCI Previous 
Day’s 

Training 
Load 

DB1.D1 53.61 101.5 76.96 25.67 1.09 0.64 0.78 0 
DB1.D2 68.17 94.3 74.01 17.34 0.70 0.43 0.53 1950 
DB1.D3 63.71 90.6 79.70 16.59 0.82 0.41 0.50 1540 
DB1.D4 66.95 112.8 85.40 33.10 1.83 0.82 1.01 1750 
DB1.D5 77.68 45 81.07 -40.40 -1.87 -1.01 -1.23 1650 
DB1.D6 58.18 141.9 94.67 60.83 2.30 1.52 1.85 0 
 
Table 4.3: Daily HRV changes for Subject DB2 for 12 consecutive days 

Subject Mean 
HR 

RMSS
D 

7-day 
mean 

RMSS
D 

Daily 
change 

from 7-day 

SRM RS RCI Previous 
Day’s 

Training Load 

DB2.D1 50.37 108.3 107.83 0.83 0.03 0.02 0.03 0 
DB2.D2 62 74.6 104.33 -33.23 -1.01 -0.83 -1.01 0 
DB2.D3 51.49 91 95.59 -13.33 -0.38 -0.33 -0.41 1652 
DB2.D4 63.84 121.7 100.30 26.11 0.93 0.65 0.79 1400 
DB2.D5 51.69 89.6 92.86 -10.70 -0.36 -0.27 -0.33 0 
DB2.D6 53.4 95.2 90.64 2.34 0.10 0.06 0.07 1664 
DB2.D7 55.24 100.1 97.21 9.46 0.43 0.24 0.29 1575 
DB2.D8 73.53 35.2 86.77 -62.01 -4.15 -1.54 -1.89 0 
DB2.D9 56.35 68.6 85.91 -18.17 -0.68 -0.45 -0.55 0 
DB2.D10 52.96 100.2 87.23 14.29 0.52 0.36 0.43 1860 
DB2.D11 49.17 106.6 85.07 19.37 0.70 0.48 0.59 1575 
DB2.D12 49.26 98.3 86.31 13.23 0.53 0.33 0.40 0 

 
Table 4.4: Daily change for subject DB2 for 8 consecutive days 

Subject Mean 
HR 

RMSS
D 

7-day 
mean 

RMSS
D 

Daily 
change from 

7-day 

SR
M 

RS RCI Previous Day’s 
Training Load 

DB2.D20 60.43 79.9 83.79 -6.79 -0.40 -0.17 -0.21 0 
DB2.D21 65.72 82.1 80.29 -1.69 -0.11 -0.04 -0.05 1750 
DB2.D22 57.09 134.2 85.41 53.91 4.43 1.34 1.64 1650 
DB2.D23 59.73 148.1 97.59 62.69 2.68 1.56 1.91 0 
DB2.D24 58.86 100.2 102.20 2.61 0.09 0.07 0.08 0 
DB2.D25 51.38 132.9 108.24 30.70 1.10 0.76 0.93 770 
DB2.D26 72.05 82.1 108.50 -26.14 -0.89 -0.65 -0.80 0 
DB2.D27 51.48 68.3 106.84 -40.20 -1.38 -1.00 -1.22 480 
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Table 4.5:  Daily change for subject DL1 for 5 consecutive days 
Subject Mean 

HR 
RMSSD 7-day 

mean 
RMSS

D 

Daily 
change from 

7-day 

SR
M 

RS RCI Previous Day’s 
Training Load 

DL1.D1 60.79 158.9 102.83 60.80 2.74 1.51 1.85 1235 
DL1.D2 69.29 94.6 91.73 2.89 0.16 0.07 0.09 1470 
DL1.D3 71.97 72.2 89.60 -19.53 -1.06 -0.49 -0.59 2048 
DL1.D4 62.42 71 110.96 -34.89 -0.65 -0.87 -1.06 0 
DL1.D5 62.59 115 116.89 4.04 0.09 0.10 0.12 520 

 
Table 4.6:  Daily change for subject LB1 for 18 consecutive days 
Subject Mean 

HR 
RMSSD 7-day 

mean 
RMSSD 

Daily 
change 

from 7-day 

SRM RS RCI Previous Day’s 
Training Load 

LB1.D1 46.66 203.4 153.21 51.16 1.09 1.27 1.56 0 
LB1.D2 54.13 94.9 156.97 -58.31 -1.22 -1.45 -1.78 1888 
LB1.D3 55.01 62.9 149.21 -94.07 -2.31 -2.34 -2.86 1400 
LB1.D4 47.28 127.4 147.39 -21.81 -0.41 -0.54 -0.66 0 
LB1.D5 54.03 118.3 140.03 -29.09 -0.54 -0.72 -0.89 1920 
LB1.D6 49.46 110.9 130.49 -29.13 -0.54 -0.73 -0.89 1365 
LB1.D7 46.24 102.3 117.16 -28.19 -0.55 -0.70 -0.86 0 
LB1.D8 42.29 169 112.24 51.84 1.20 1.29 1.58 0 
LB1.D9 43.55 185.7 125.21 73.46 2.26 1.83 2.24 1860 
LB1.D10 44.68 185.6 142.74 60.39 1.46 1.50 1.84 1470 
LB1.D11 44.29 255.7 161.07 112.96 3.12 2.81 3.44 0 
LB1.D12 46.7 197.3 172.36 36.23 0.66 0.90 1.10 2048 
LB1.D13 50.95 102.3 171.13 -70.06 -1.33 -1.75 -2.13 1650 
LB1.D14 48.23 88.3 169.13 -82.83 -1.52 -2.06 -2.52 0 
LB1.D15 45.96 157.9 167.54 -11.23 -0.20 -0.28 -0.34 0 
LB1.D16 60 63.5 150.09 -104.04 -1.80 -2.59 -3.17 2210 
LB1.D17 52.62 121.5 140.93 -28.59 -0.42 -0.71 -0.87 0 
LB1.D18 49.52 156.5 126.76 15.57 0.23 0.39 0.47 2000 
 
Table 4.7: Daily change for subject QB1 for 5 days 

Subject Mean 
HR 

RMSS
D 

7-day 
mean 

RMSSD 

Daily 
change 

from 7-day 

SRM RS RCI Previous Day’s 
Training Load 

QB1.D1 56.31 73.6 92.33 -24.30 -0.83 -0.61 -0.74 0 
QB1.D2 52.03 165.7 107.26 73.37 2.46 1.83 2.23 0 
QB1.D3 57.3 64.5 102.56 -42.76 -1.16 -1.07 -1.30 1652 
QB1.D4 49.52 121.3 98.31 18.74 0.46 0.47 0.57 0 
QB1.D5 50.25 82.5 99.77 -15.81 -0.44 -0.39 -0.48 2048 
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Table 4.8: Daily change for subject QB2 for 3 days 
Subject Mean 

HR 
RMSSD 7-day 

mean 
RMSSD 

Daily 
change 

from 7-day 

SRM RS RCI Previous 
Day’s 

Training Load 
QB2.D1 52.04 82.8 94.87 -8.09 -0.27 -0.20 -0.25 1770 
QB2.D2 50.14 100 91.89 5.13 0.19 0.13 0.16 0 
QB2.D3 47.76 164.7 96.24 72.81 3.01 1.81 2.22 2048 
 
Tables 4.2 to 4.8:  All data are presented as a one-minute average taken from the most stable 
sixty second period of a five minute morning data collection.  Presented variables include the 
mean heart rate (HR), the root mean square of the standard deviation of the RR intervals 
(RMSSD), the mean RMSSD of the previous seven days, the daily change presented as the 
previous seven day mean subtracted from the current day, the standardized response mean 
(SRM), the response statistic (RS), the recovery change index (RCI) and the previous day’s 
training load, the product of the minutes trained times the rating of perceived exertion (RPE).  
On days of no formal practice the previous day’s training load was calculated as zero. 
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Review of Literature 

Overtraining and Underrecovery  

Effective training must provide a combine training loads that will balance improvement 

in performance with recovery [24, 30, 38, 55]. Without appropriate recovery, overtraining will 

occur [30, 38, 55].  The consensus is that overtraining begins with a state of overreaching, both 

function and nonfunctional, before an overtraining syndrome (OTS) were to occur [24, 38, 40].  

There is no specific diagnostic criteria for overtraining, however the European College of Sport 

Science and the American College of Sports Medicine have recognized various physiological, 

biochemical and psychological symptoms that may be of use by coaches, athletes and athletic 

trainers in the diagnosis of overtraining [24, 25, 28].  The development of appropriate diagnostic 

criteria would need to involve both quantitative and qualitative symptoms [30, 45].  Current 

research agrees that daily monitoring of training load is the best way to determine the effects of 

training on physiological and psychological changes, but has not yet determined which stressors 

are a normal part of adaptation and which will lead to OTS [24, 25, 61]. 

 The goal of a training program is to improve function and optimize performance through 

repetitive exercise.  Repetition improves motor skills and provides physiological adaptations to 

the structural and metabolic functions of the body.  Training involves increasing intensity, 

duration and frequency but must also allow for recovery from a previous excessive or trainable 

load.  Periodization allows for an athlete to peak at a particular event with a taper period set prior 

to an event to allow for recovery and enhance performance.  Overreaching occurs as an 

accumulation of training and non-training stresses result in a decrease in performance, which 

should reverse in one to two weeks with adequate recovery, leading to a supercompensation 

state.  Unlike overreaching, overtraining is when these training stresses are not balanced with 

adequate recovery and leads to a decrease in performance and an altered mood state.  Strategies 
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for avoiding overtraining involve a progressive increase in training with a particular event or 

events delegated for peak performance.  Training can be monitored by physiological variables 

and should have for adequate recovery time periods built in. [30] 

 Training leads to physiological changes to the heart, typically evaluated as the left 

ventricular adaptations, in order to adapt to the stresses put on it.  In a review of meta-analyses 

on the chronic left ventricle changes found in the athlete heart, there were clear differences 

among subgroups of dynamic athletes.  Male distance runners, compared to sedentary controls, 

had a lower HR, larger left ventricular internal diameter and thicker posterior and septal walls.  

Ultra endurance athletes had a more pronounced left ventricular mass than amateur distance 

runners and the increase in thickness to the ventricular walls was more pronounced than expected 

for a purely eccentric left ventricular hypertrophy.  Swimmers also had a significant increase in 

left ventricle diameter and mass compared to controls, however the small differences in wall 

thickness were not significant, indicating eccentric left ventricle hypertrophy.  Competitive 

cycling is associated with an increase in internal diameter and a disproportionate increase in wall 

thickening compared to sedentary controls and recreational cyclists.  This change can be related 

to both the static positioning of the upper body during cycling and to the larger training quantity 

of these athletes.  Sprinting, a dynamic anaerobic exercise resulted in male and female athletes 

with cardiac changes associated with eccentric left ventricular hypertrophy.  Athletes competing 

in ball sports such as basketball, softball and field hockey had results compatible with eccentric 

left ventricular hypertrophy.  Those athletes where strength training is a large component did 

have absolute and relative wall thickness that was higher than controls, but also had a higher left 

ventricle internal diameter.  However, because most collegiate athletes engage in training that 

has both static and dynamic components, their relative changes may not be reflective of just one 
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type of training.  These changes not only improve performance but may also help to improve 

recovery. [88] 

 Disruption to the balance of training stress and recovery can lead to an abnormal training 

response.  Overreaching is an accumulation of stress that results in a short-term decrease in 

performance, with or without related psychological and physiological symptoms.  If left 

untreated, the long-term overtraining response may occur which would require a recovery taking 

weeks to months.  Overtraining syndrome refers to the multifactorial etiology and emphasizes 

that training is not the sole causative factor of the syndrome.  There is currently no relevant tool 

for the diagnosis of overtraining, however a variety of factors have been identified.  As the 

inability to sustain performance is a hallmark of OTS, performance tests, which are sport 

specific, intense and reproducible, can be used to evaluate for OTS.  In the event that these tests 

are not available, training journals and competition results could potentially be substituted.  The 

psychological component of OTS can be assessed using validated questionnaires, such as the 

Recovery-Stress Questionnaire for Athletes (REST-Q Sport), which monitors for levels of 

general as well as sport specific stresses.  Physiological variables, such as heart rate variability 

(HRV) can be utilized, however it has not provided consistent results.  Combining psychological 

and physiological measures has the potential to be more effective.  Other factors to consider in 

OTS include sleep and rest, nutrition, hormonal changes and immunological considerations.  

There is a complex set of psychological and physiological factors that must be considered in 

OTS and the use of a checklist has been recommended for diagnosis. [24] 

 The borderline between optimal performance and performance impairment from OTS is 

subtle.  In diagnosis of OTS it is important to exclude organic diseases, infections and other 

factors such as nutritional concerns.  Athletes and coaches would benefit from a specific and 
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sensitive test for the diagnosis of OTS, yet one does not exist.  This lack of definitive diagnostic 

criteria is reflected in the research by a lack of consistent findings.  The position statement 

includes assessment of physical performance, mood state, biochemistry, hormonal data and 

immunological testing.  Prevention, by monitoring the balance of training loads and recovery, 

seems to be one of the ways to overcome the lack of clear diagnostic testing.  Journaling and 

using training logs seems to show the most promise.  Athletes and coaches can keep track of 

subjective parameters such as soreness and mental and physical well-being as well as subjective 

training data, including heart rate (HR), training loads, rating of perceived exertion (RPE) and 

recovery time.  [25] 

 The most common signs of OTS include pronounced fatigue and decline in performance 

despite continued training.  Other symptoms should not be discounted such as changes in 

motivation and anxiousness.  Changes in mood are typically noted with OTS, however it can be 

difficult to quantify and has not been validated against physiological measures.  Depending on 

the type of training, the associated physical symptoms of OTS may be different.  Endurance or 

aerobic sports include more parasympathetic alterations such as fatigue and resting HR changes 

while anaerobic sports include more sympathetic alterations such as increased HR and blood 

pressure (BP).   Specific biomarkers for autonomic nervous system (ANS) changes remain to be 

identified.  Typically an increase in resting HR and a reduction in maximal HR are associated 

with OTS, however this has not been consistent in the literature possibly due to differing 

methodologies.  With a standardized methodology, the use of HRV may be a better noninvasive 

tool for predicting OTS as it can reflect the balance of the sympathetic and parasympathetic 

nervous systems.  Because OTS has components of mental and emotional factors along with 
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physical physiological symptoms, diagnosis of OTS should use components that can assess 

multiple factors.  [28] 

 Numerous hypotheses have been postulated to explain the pathophysiology of OTS.  The 

microtrauma to the muscles that may occur with intense training can stimulate a local 

inflammatory response triggering cytokine recruitment.  Acute inflammation without appropriate 

recovery could lead to chronic inflammation as seen with overuse injuries, however there is little 

evidence to support the cytokine theory with OTS.  Decreased glycogen levels can negatively 

effect performance as the athlete does not have enough stored energy to complete their training 

leading to fatigue, however just consuming enough carbohydrates is not enough to prevent OTS.  

Blood lactate levels, which have an inverse relationship to glycogen levels and can therefore be a 

potential marker of OTS however lactate levels alone cannot be used to diagnose OTS.  

Monitoring HR before and during activities as well as HRV levels at rest and making 

comparisons to baseline levels can be useful in determining OTS assuming the abnormalities in 

HR are not attributed to another cause.  The use of questionnaires such as the RESTQ-Sport and 

the Profile of Mood States (POMS) could provide an indication of increased stress levels.  

Combining the questionnaire with physical measures may give the best indication of OTS as well 

as the potential methods for appropriate recovery. [39] 

 Typically, OTS mainly affects endurance athletes and is associated with frequent 

infections and depression with no identifiable medical cause following hard training and 

competition.  These symptoms will fail to resolve despite adequate rest.  Underrecovery as a 

result of excessively prolonged and/or intense exercise, stressful competition or other stresses 

leads to progressive fatigue and underperformance.  The main complaint of OTS is 

underperformance, with the athlete often ignoring fatigue, heavy muscles and depression.  
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Additional physiological responses include raised resting pulse rate, excessive sweating, frequent 

minor infections, reduced VO2max, reduced maximum power and increased submaximal oxygen 

consumption with a slow heart rate recovery (HRR).  As there is no specific diagnostic test 

available for OTS, it is best to first rule out any other causes of pathology.  Careful monitoring of 

athletes and their training may help to prevent the syndrome.  The best treatment involves 

complete rest, which may be difficult for many endurance athletes to comply therefore a 

reduction in training or just allowing for light exercise may be the better approach. [52] 

 If sufficient rest is not included in a training program, optimal balance cannot be 

maintained between training sessions and recovery, regeneration fails to occur and as a result 

performance plateaus and eventually decreases.  Sports with greater workloads such as running, 

swimming, cycling and rowing show a higher rate of OTS.  The highly motivated and dedicated 

athlete is often the most susceptible as they will continue to train despite extreme fatigue.  

Females are also more likely to experience OTS than males, however there are no studies related 

to gender differences in overtraining.  Single sport specialization in the adolescent athlete often 

leads to overtraining and overuse injuries.  Those young athletes who participate in a variety of 

sports involving different body parts have fewer injuries and are less susceptible to overtraining.  

Excessive training alone is rarely responsible for OTS without having personal, medical, or 

psychological stressors.  Monitoring training loads and allowing for sufficient recovery is the 

best way to prevent overtraining.  Should overtraining occur, more recent evidence shows that 

proper nutrition and low-level exercise may help speed recovery, with an emphasis on gradual 

return to volume rather than intensity. [89] 

 Overtraining or staleness is one of the most feared complications in competitive athletes.  

While some coaches think that it is necessary to force a short-term over-reaching as part of 
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training, consensus is that this should be avoided because of the unpredictable nature of the 

results.  Parameters for diagnosing overtraining include evaluating resting HR, HRV, creatine 

kinase levels and T-cells.  During training, blood lactate, HR, respiratory exchange ratio (RER) 

and RPE levels can be used to determine OTS along with performance results.  However, a need 

for consistent and measureable tools still needs to be explored. [26] 

 Monitoring training load is viewed as an important tool to determine how the athlete is 

adapting to their training and to minimize the risks of illness, injury and overreaching.  This data 

can be used to examine load-performance relationships for future training and to determine 

readiness for competition.  One of the concerns with overreaching is an increase in fatigue, a 

failure to complete a once achievable task, which brings about a concern in using maximal 

testing as a marker of overreaching as the fatigued athlete may lack the motivation to perform 

and testing may add to existing fatigue.  Little information about the athlete can be determined 

from maximal testing in terms of overreaching.  Monitoring of training load should include 

external load, such as speed, power and neuromuscular function while internal load monitoring 

should include RPE, HR, lactate, HRR, HRV, questionnaires and sleep.  Current practices for 

monitoring often include combinations of these factors.  In team sports the monitoring can be 

more challenging due to the diverse training activities, the influence of team tactics, playing 

time, position and social factors.  Typically athletes involved in individual sports such as cycling, 

swimming and triathlon are more involved in load monitoring and are utilized in many of the 

research protocols, however it is important to monitor team sport athletes individually as well.  It 

is also important to consider the smallest worthwhile change (SWC) and typical error to allow 

confidence prior to acting on any observed changes.  Using appropriate scientific principles and 
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accurate monitoring of training can help reduce the risks associated with negative outcomes.  

This will help the athlete to maintain optimal physiological and psychological health. [61] 

 A prospective study of male European professional football players (n=22) was done to 

examine the contributions of stress and recovery variables as assessed by the RESTQ-Sport to 

the risk of injury.  It was hypothesized that high stress and low recovery values in the recovery- 

and stress-related scales would increase the risk of a later injury.  Injury was defined as occurring 

during a match or training and leading to an absence of the next training session or match (time 

loss injury).  Both traumatic and overuse injuries were considered together because of the low 

number of injuries and time loss due to illness was also document but was excluded from 

statistical analysis.  The RESTQ-Sport was administered monthly, two days before the first 

league match of the month.  Injured players did not take the questionnaire during an injury and 

the results from their previous questionnaire were used as predictors.  The RESTQ-Sport scales 

served as the independent variables and injury risk was the dependent variable.  The general 

stress scales for Fatigue (P=0.007) and the sport-specific scales Disturbed Breaks (P=0.047) and 

Injury (P<0.001) were significantly positively related to injury risk.  In addition, low values on 

the Sleep Quality scale were associated with a higher risk of injury (P=0.01).  Acute stress and 

coping ability were predicted to contribute to injury risk by the model.  Muscle stiffness and 

feeling to be prone to an injury were highly related, indicating a potential relationship between 

how the athlete feels subjectively and their concern about injury.  Based on the fatigue, sleep 

quality and disturbed breaks having a strong association with injury, cognitive and concentration 

deficits were a potential concern for the increased risk of injury.  While this longitudinal study 

provided evidence of stress and recovery relating to injury in professional athletes, no training 

data or physiological data was used to support the findings. [90] 



	 105	

 In order to identify physiological, cognitive and biomechanical parameters that could 

potentially identify athletes at risk for overreaching or OTS, well-trained triathletes underwent an 

overload training program.  Subjects were divided into a control group (n=8), which maintained 

a training level and an intensified training group (n=16), which underwent a 40% increase in 

training for three weeks.  Those in the intensified group who showed a decrease in performance 

at the end of the increased training load (n=11) were considered for a true overreaching group.  

The overreaching group demonstrated a significant decrease in performance from a baseline data 

collection prior to the intensified period (P<0.001).  Following the overload this group 

demonstrated a decrease in HR and blood lactate concentration at submaximal intensities and at 

exhaustion (P<0.01).  Cognitive changes were assessed using the Stroop test during exercise 

with a significant decrease in performance at exhaustions for the overreaching group compare to 

the control group (P=0.04).  Biomechanical parameters were not significant.  Further 

discriminant analysis found that change in HR and blood lactate were the most important factors 

to discriminate between control and overreaching, consistent with changes in the autonomic 

nervous system and a downregulation of the sympathetic nervous system.  Cognitive changes 

were only apparent at exhaustion and subjects in the overreaching group also had a large increase 

in perceived fatigue at rest whereas there was no variation in the control group.  This seems to 

support the theory of central fatigue in OTS as the cognitive deficits occurred at a slower running 

speed compared to baseline levels and those in the control group.  However, physiological 

parameters still showed to be the most discriminant factors in overreaching and have the 

potential to be the best determinants of OTS.   [54] 

 A slower HRR is associated with impaired recovery and can be a potential marker for 

functional overreaching in athletes undergoing endurance training.  Experienced triathletes were 
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divided into training groups of control, no change in training, (n=10) and overload, overload 

training, groups, with those in the overload group who preserved performance level being 

considered for an acute fatigue subgroup (n=11) and those who decreased performance being 

considered in the functional overreaching subgroup (n=10).  During the overload period, those in 

the functional overreaching group had a larger decrease in peak HR compared to the control and 

acute fatigue groups.  At the midpoint of the overload period, the functional overreaching group 

had a large increase in HRR and a reduced peak power output (demonstrated by a lower peak 

HR).  These were suggested to be from a decrease in central command, reduced chemoreflex 

activity from a lower accumulation of metabolites post-exercise and a change in the ANS control 

during immediate recovery.  Following the taper phase, however, HRR was restored to baseline 

values.  Neither the control group nor the acute fatigue group had any clear changes in HRR.  By 

utilizing information about fatigue state and training phase along with HRR, a more complete 

perspective for monitoring training may be achieved. [91]  

 It has been estimated that 20% to 60% of athletes experience overtraining at least once in 

their career.  Since the only effective cure for OTS is complete rest for several weeks or months, 

prevention is of utmost importance.  It is argued that usable markers should be objective, not 

manipulable, applicable in training, not too demanding for the athlete, affordable and based on 

sound theoretical framework.  It is hypothesized that psychomotor speed is reduced in athletes 

with OTS.  Overtrained athletes often report concentration problems, cognitive complaints and 

memory problems.  Computerized tests such as the Stroop Color Word Test have been used to 

compare healthy athletes and those with OTS.  The preliminary evidence for psychomotor speed 

as an early marker for OTS is promising. [92] 
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 Instead of considering the athlete as overtrained, a more appropriate terminology may be 

underrecovery as overtraining is a product of both the work-out and the failure to recover.  

Training recovery is believed to hold promise for improving performance even more than the 

short term recovery between training sessions or the immediate recovery such as that between 

sprints or sets.  Regardless of the type, adequate recovery is expected to improve total work 

capacity and in turn future performance.  Improved performance is typically assumed to be the 

best marker of recovery, confirming that the recovery modality has indeed done its job.  

However, other indicators of recovery seem to be much less useful, especially if performance is 

not improved.  Because both training and recovery are different for each athlete, it is difficult to 

use the current research model to evaluate both effectively and make general statements that will 

hold true for each athlete.  In many cases the changes with a recovery modality fail to reach 

significance leading many researchers to declare that they do not work even if the athlete shows 

improvements in subjective measures.  Few of the studies utilize a long-term measure therefore it 

is difficult to translate improvements from short-term or immediate recovery to improvements in 

training recovery.  Additionally, research models make it difficult to individualize the recovery 

needs of the athlete.  Coaches and athletes would need to seek out different recovery techniques 

to be effective for the individual athlete in order to prevent overtraining.  [41] 

 The avoidance of overtraining and the achievement of optimal performance can only be 

realized when athletes are able to balance training stress and recovery.  Overtraining is not only 

from training errors but also from a high frequency of competitive events that do not allow for 

sufficient recovery.  Symptoms of overtraining include depressed mood, general apathy, 

decreased self-esteem, impaired performance, restlessness, disturbed sleep, weight loss, loss of 

appetite, increased resting HR and increased vulnerability to injury.  Recovery depends on the 
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individual athlete, their training and situational conditions.  Types of recovery can be passive, 

active or pro-active.  The scissor model has been proposed to explain the balance of the demands 

between stress-states and recovery.  As the stress-state increases, recovery must increase 

proportionally in order to avoid overtraining.  Optimal performance is associated with a balance 

between stress and recovery.  Monitoring the stress and recovery levels can be done using 

questionnaires such as the RESTQ-Sport, which evaluates seven general stress scales, five 

general recovery scales, three sport-specific stress scales and four sport-specific recovery scales.  

The RESTQ-Sport has been validated with a 24 hour test-retest reliability of all general scales as 

high (r>0.79) and has been used in various sports and for various nations.  Changes in training 

volume as well as stresses in the life of an athlete have been reflected in the RESTQ-Sport.  The 

RESTQ-Sport is also sensitive to modifications in the training schedule throughout the course of 

a training program.  Athletes who completed the RESTQ-Sport six times over the course of a 24 

week training period reflected conflicts and pressures that increased over the preparation phase 

and throughout the season, peaking before championships and declining during the tapering 

phase.  The RESTQ-Sport however does not provide the final diagnosis of overtraining but is 

better suited to identify those at risk for overtraining when combined with the other indicators of 

overtraining. [38] 

 The RESTQ was developed to measure stress in a general sense and therefore supports a 

conceptual framework of overtraining and recovery along with other parameters.  It is unclear 

how non-physiological, non-training stresses will affect the athlete in relation to the overtraining 

spectrum.  If psychological and social stress factors are high amongst an athlete, the cumulative 

effect of overtraining may prevail.  An imbalance in the total stressors, training and non-training, 

with diminished total recovery may lead to negative overtraining.  Treatment of the stressors 
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should be matched with interventions related the cause.  For physical stressors, active rest, 

massage, yoga and stretching during the day and increased sleep at night would be appropriate.  

Mental training, relaxation, counseling and massage are potential strategies as interventions for 

psychological stressors.  While training requires periods of intense activity, which may result in 

increased physiological stress, if it is met with adequately matched recovery, the athlete would 

be able to better tolerate the increase in stress.  [45] 

 For classification purposes, OT research can be divided into single stressor and 

multistressor approaches.  Single stressor research focuses on too much training and/or 

insufficient recovery as the cause of OTS whereas the multistressor approach suggests that 

excessive life stressors along with training stressors are the cause of OTS.  It is believed that 

overtraining begins with a state of overreaching as a short-term maladaptation.  Overreaching 

can be either a functional overreaching, responses to an incremental increase in training load, or 

a nonfunctional overreaching, a state of more chronic maladaptation, with signs of training 

distress, including performance declines and psychological disturbances.  It is the prolonged 

maladaptation that leads to OTS.  Markers of OT are mostly physiological parameters, but none 

stand out as a single predictive marker.  Also the research on various overtraining studies lack a 

standardized approach.  Performance may be considered the gold standard for the diagnosis of 

overtraining, however it is often difficult to distinguish between functional and nonfunctional 

overreaching using only performance as a criteria.  It is impossible to ignore additional life 

stressors that may become part of overtraining and controlling for those stressors is not possible 

in most research studies with athletes.  Therefore an integrated approach that emphasizes an 

exposure to various stressors as potential causes of OT should be utilized.  Measuring stressors, 

performance and physiological responses will result in more knowledge about stress-related 
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processes such as OT and can help contribute to timely identification by athletes and athletic 

trainers.  [40] 

 Various hypotheses have been proposed as the cause of OTS, however for the most part 

each explains only one aspect.  Most investigators do agree that OTS is related to an increase in 

volume and/or intensity of training or a consistent volume of high training over an extended 

period of time with insufficient recovery and that there is an association between injury and 

OTS.  Mild tissue trauma is an integral part of training and with appropriate recovery the body 

will heal with improved performance via adaptive microtrauma (AMT).  Without sufficient 

recovery, such as with OTS, a more diffuse, widespread, low-grade trauma more similar to an 

overuse injury may occur and it is this that directly impacts performance.  The presence of 

inflammation in the body can be the cause of the psychological changes in mood and behavior 

and cell-mediated immunity may be compromised, rendering the athlete susceptible to infection.  

Most of the changes occurring with OTS should be regarded as adaptive in that they promote 

withdrawal from activity and encourage rest and recuperation. [93] 

 In endurance sports, the metabolic aspects of training fatigue appear to be the most 

relevant parameters to characterize overtraining, with a combination of inadequate recovery and 

dietary habits that do not allow for replenishment of substrate stores.  To optimize training it is 

very tempting to reduce recovery periods with an increase in training as long as fatigue is 

bearable, however this combination can lead to an increased risk of overtraining.  Endurance 

training loads of repetitive long-duration exercises are necessary to enhance the metabolic 

pathways for energetic supply to skeletal muscles.  Myocyte alterations induced during intense 

exercise either via mechanical or metabolic pathways.  An imbalance between reactive oxidative 

species (ROS) actions and antioxidant defense capacities of skeletal muscle has been suggested 
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to be a potential factor in overtraining occurrence.  It seems unlikely that overtraining might 

appear as a consequence of successive alterations in the skeletal muscle system, but rather that 

skeletal muscle cell damage may participate in the overtraining process.  During endurance 

exercise, as glycogen stores are depleted and/or there is a failure in glycogenolytic metabolic 

flux, fatigue may induce a transient hypoglycemia.  If glycogen depletion is chronic, and 

carbohydrate (CHO) intake is not adequately increased, subsequent performance will be 

diminished.  Long-term glycogen depletion can lead to an increase branch chain amino acid 

(BCAA) oxidation, which is more likely to be responsible for a central fatigue process.  

However, ingestion of BCAA during or after endurance exercise has not been shown to 

significantly improve loss of performance due to metabolic fatigue induced by glycogen store 

depletion.  But the link between BCAA oxidation during training exercises and serotonin 

secretion is a factor that may increase susceptibility to OTS when combined with other central or 

peripheral fatigue factor inducers.  No metabolic parameters may be considered individually as a 

standard for the diagnosis of OTS and no study has been able to define the shift towards 

overtraining in endurance athletes although variations in energy metabolism appear highly 

relevant. [94] 

 One single bout of physical exercise of sufficient intensity and duration generates ROS, 

however continual training has been shown to enhance antioxidant status and decrease the 

generation of ROS.  Conversely, overtraining results in impaired antioxidant capacity and 

increased oxidative stress, a state in which the production of ROS overwhelms antioxidant 

defenses.  Increased oxidative stress and disrupted redox balance in response to heavy physical 

training has therefore been hypothesized as a predisposing factor and marker for overreaching.  

Male Soldiers were evaluated for physical performance (maximal and submaximal testing), and 
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oxidative and antioxidant status three times during an eight week basic training sessions with the 

psychological makers, via questionnaire, determined five times during the same duration.  

During this time period at least three of five overreaching criteria were met by 31% (n=11 of 35) 

of the subjects.  The criteria included: a reduced VO2max of >5% or non-performance of the test; 

an increase in mean RPE during submaximal exercise >1.0 from the lowest value until the end of 

basic training; increase in somatic symptoms of OTS >15% from weeks 4 to 7 remaining the 

same or increasing from weeks 7 to 8; admitted feeling physically or mentally overloaded weeks 

7 or 8; sick leave >10% of daily service, which was the upper third of all sick leave.  As day 

activity time increased and rest time decreased during the first four weeks of training, all 35 

subjects showed a decreased oxidative stress at rest, explained by either attenuated generation of 

ROS or enhancement of tissue protections and antioxidant systems because of adaptations to 

regular exposure to a small amount of ROS.  During the second half of the training, although 

activity and rest remained constant, the training load was too strenuous causing oxidative stress.  

These results suggest that increased oxidative stress may be associated with overreaching during 

longer duration, over four weeks, of training. [95] 

 Two general models are used to study overtraining in athletes, assessing the athlete at 

various times throughout a competitive season, comparing physiological and psychological 

responses during training levels, and intentionally intensifying training to levels of overreaching 

for up to four weeks and examining physiological and psychological variables before and after 

this training session.  While it has been difficult to establish prevalence of overtraining, those 

thought to be at risk are endurance sports requiring high volume intense training for four to six 

hours per day, six days per week for several months with minimal time off.  It is easier to 

identify the symptoms of overreaching in the short duration studies compared to long-term 
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studies, however the dramatic increase in training during these studies does not adequately 

represent a normal increase in training load.  Theses studies can only be done for a short period 

of time and do not adequately reflect upon non-training stresses, which are believed to contribute 

to OTS, though the mechanism is unclear.  Athletes that have OTS typically show a decrease in 

performance, a decrease in maximal HR, lower maximal blood lactate concentration and frequent 

illness such as upper respiratory tract infections.  Because the best indicators of OTS, poor 

performance and persistent fatigue, occur too late to be a benefit to the athlete, early predictors or 

indicators are needed.  Preventing OTS should be the focus and can be done using routine 

monitoring of training logs, performance, HR after standardized maximal effort and athlete self-

analysis of stress, fatigue, sleep and soreness. [43] 

 A systematic review of literature was done in order to determine if subjective measures 

accurately reflect changes in the athlete’s well-being and whether these measures are responsive 

to acute changes in training load and chronic changes.  The most commonly used subjective 

measures in the studies were the POMS, RESTQ-Sport and Daily Analyses of Life Demands of 

Athletes (DALDA).  The findings support the use of subjective measures to accurately reflect 

acute and chronic training-related changes to the well-being of the athlete.  The RESTQ-Sport 

accurately reflected measures of perceived stress and recovery and seems to be useful in 

monitoring these levels.  The POMS was useful in measuring mood disturbances while the 

DALDA was useful in measuring symptoms of stress.  Within the studies, subjective measures 

were more sensitive and consistent compared to objective measures, including comparisons 

between and within studies.  As for performance measures, VO2max had a moderate relationship 

with subjective measures, perhaps indicating a psychological readiness to perform as opposed to 

an improvement in physiological measures.  Of the questionnaires examined, only the RESTQ-
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Sport was responsive to both acute and chronic training load with the fatigue (stress) and 

physical recovery, general well-being and being in shape (all recovery) subscales responding to 

both types of training.  Because of the superior responsiveness to subjective measures over 

objective measures, there was negligible evidence for an association between the two measures.  

However, the majority of the studies had a small subject size and the objective measures may not 

reflect the smallest worthwhile change. [53]  

 A comparison was made between a systematic literature review on monitoring training 

loads of endurance athletes and a focus group discussion with coaches to see how the scientific 

literature meshed with the coaches’ requirements for monitoring training.  Training load can be 

calculated a variety of ways and most often utilized some combination of duration, RPE and HR.  

Long-term HRV monitoring is another reliable measure, however results are highly 

individualized and cannot be applied to every athlete.  Blood lactate concentrations has the 

disadvantage of involving blood draws and being invasive.  Hormones and proteins can 

potentially be analyzed via saliva, however further research is needed into the methods.  

Subjective self-reported scales and questionnaires, when combined with physiological measures 

seem to be the most applicable method.  Coaches agree that this combination is most relevant, 

however they would like only the most relevant information given to them.  Therefore, it was 

suggested that a database that can collect and analyze the essential information for the coach and 

athlete would be most beneficial.  This, however, has not been developed and would take time to 

accomplish. [86] 

 The pre-season training phase for athletes is often designed with an immediate increase in 

training load in order to prepare the body for the upcoming season.  One of the challenges of this 

time period is to provide enough stimuli to create physiological change without inducing an 
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overreaching or overtraining state.  During an intense 14 day pre-season training camp, 18 

professional Australian Rules Football players underwent the documentation of various 

physiological and psychometric variables to examine their usefulness for monitoring training 

responses during their normal training camp period.  Training load, calculated by the product of 

the training session duration (minutes) times the session RPE, showed significant daily variations 

(P<0.001).  The changes in training load were related to day-to-day changes in exercise heart 

rate, log transformation of the standard deviation of successive R-to-R intervals (LnSD) and 

changes in individual wellness based on the large to very large correlations.  As expected mood 

and training load were negatively correlated, the larger the training load the worse the wellness 

score was the next day.  While acute training load is expected to result in an increase in 

sympathetic activity, daily exercise heart rate decreased and LnSD increased during this period 

of time.  Since fitness changes do not occur with one session, it was recommended that these 

measures be monitored over a week before making any distinct changes to training.  It was also 

recommended to monitor daily training loads along with physiological variables over the course 

of a week or more in order to better assess the training.  Despite high training loads, the athletes 

coped well with the demands, displaying an increase in performance measures and an absence of 

injury. [87] 

 The stress and recovery of elite Olympic rowers (n=6 female, n=5 male) was monitored 

during a high-altitude preparation camp.  The rowers completed the RESTQ-Sport on a regular 

basis as a subjective monitor of their recovery and stress levels over the training camp.  It was 

hypothesized that increases in endurance training would lead to higher stress levels and lower 

recovery levels with the opposite effects being reflected during the decrease in endurance 

training.  For these athletes as the average number of minutes of daily extensive endurance 
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training increased the trend for somatic components followed course.  The greater the time spent 

in training, the greater the stress.  However, the subjects also had an increase in social relaxation 

during this time as it included various team-building activities of training camp.  In comparison 

of performance results the athlete in the boat that won a medal had a more positive recovery-

stress state as indicated by lower scores of fatigue, lack of energy and somatic complaints.  The 

results for fitness/being in shape, burnout/personal accomplishments, self-efficacy and self-

regulation were higher than for a rower that finished 13th.  These results give a clear picture of 

the events of the past few days for the subject than the more generic POMS, which just assesses 

current mood state without giving an indication about potential intervention. [51] 

 Physiological parameters of HRV, BP variability and baroreflex sensitivity were used to 

potentially detect overtraining in 10 healthy athletes during a two week training camp.  During 

that time training, sleep and mood (via POMS) were monitored.  Subjects underwent two daily 

training sessions, a morning stepwise cycling test in the morning and afternoon running for 40 

minutes and cycling for 80 minutes, both at 85 to 90% of their anaerobic threshold.  These loads 

were above the normal level to which they were adapted.  During the training camp there were 

significant decreases in performance (P<0.05) with recovery performance returning to above the 

baseline levels (P<0.01), indicating that subjects were in an overreaching state with a 

supracompensation after recovery.  Physiological variables were assessed prior to training camp, 

at the midpoint of training camp and a few days post-training camp.  Mean HR increased 

significantly during training camp and then normalized during recovery.  The only HRV variable 

to change significantly during training was RMSSD, which was reduced with the increased 

training before recovering.  Baroreflex sensitivity was reduced with the increased training yet 

there were no changes in BP variability.  The only POMS variable that was significantly 
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different was vigor, which had significant difference between pre-training and recovery 

measurements and between the mid-point and recovery measurements (P<0.05).  Accompanying 

the change in vigor was an inverse but not significant increase of fatigue.  There was an 

indication of increased sympathetic activity with the overload of training, however the study 

involved a very low sample size and lacked of gender specific analysis.  Also the POMS scores 

were not consistent enough to show change. [96] 

 Even though it is believed that sleep disruption could compromise athletic performance, 

the effects of sleep loss on athletic performance is poorly understood.  A neurometabolic theory 

suggests that sleep assists in recovery of the nervous system and the metabolic cost of a wakeful 

state that occurs with the non-rapid-eye movement (NREM) sleep time.  Time spent in this cycle 

seems to be important for the preventing some of the causes of OTS.  There is not enough 

information on the effects of elite training on the quantity or quality of sleep in athletes.  

However, it has been reported that university students demonstrate poor sleep patterns and suffer 

from chronic sleep problems and disruptions.  It is therefore important to distinguish if it is the 

stress of athletics versus the stress of being a college student that is leading to sleep disruptions.  

Sleep disruption, characterized as a loss of sleep, is associated with increased sympathetic and 

decreased parasympathetic cardiovascular modulation.  Whether this is a result of the OTS status 

of the athlete or contributes to the status cannot be determined as there is no research available 

on the effects of chronic training adaptations on sleep.  Preliminary evidence does suggest that a 

functional over-reaching state is associated with sleep disturbances. [63]   

 It was proposed that the physical and psychological demands of military training resulted 

in a significant prevalence of overtraining symptoms such as fatigue and underperformance 

which was concerning because of the increased risk of injury associated with the effects of 
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overtraining.  Physical fitness, physiological, psychological and biochemical measurements were 

taken throughout a 45 day Australian Army Common Recruit Training course.  The recruits 

experiences symptoms of overtraining during this time. The negative psychological symptoms 

including mental fatigue, sleep disturbances and confusion were evaluated via questionnaire.  

Accumulated sleep deprivation was believed be a major contributor to the overtraining effect.  

While performance did not deteriorate considerably, Soldiers had a less than desired 

improvement in overall fitness.  The increase in minor infections based on a decline in immune 

function was believed to be the greatest risk of overtraining during this period.  A conclusion 

was made that a minor adjustment in the rest schedule could be used to prevent overtraining in 

these Soldiers. [42] 

 The cardiovascular response to functional overreaching via prolonged overtraining was 

monitored in well-trained male triathletes.  Subjects were divided into a control group (n=11), 

and an overload training group (n=24) with those in the overload group who experienced a 

decrease in performance, followed by a supercompensation were then put into the functional 

overreaching group (n=12).  Those in the functional overreaching group demonstrated a decrease 

in cardiac output after the overload period, which returned to pre-training values at the post-

training data collection session.  These decreased values were associated with a decreased heart 

rate and stroke volume at mid-training.  The cardiac response was attributed to the reduced 

adrenergic response to intense exercise from a downregulation of the sensitivity of the sinus 

node’s β-adrenergic receptors to norepinephrine.  Subjects in the functional overreaching group 

also had a decrease in performance and lower VO2max suggested to be related to the decrease in 

cardiac output and a lowered capacity to produce energy at the muscular level.  All of the 

subjects did return to pre-exercise levels following taper period. [46] 
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 Athletes in a normal training cycle will undergo bouts of increased activity in order to 

improve performance.  These athletes will recover normally from training stress within a few 

weeks of appropriate recovery, will see improved performance and should be considered in a 

state of overreaching.  The term overtraining is proposed to be reserved for those athletes who 

take months or even years to recover from a training load and also experience more severe 

changes fatigue and mood, however there is no scientific evidence to confirm or refute this.  

Some problems with overtraining studies include the following:  cross-sectional studies of 

athletes are rare, studies on overtraining lack evidence on the development of overtraining, 

performance levels are often not included and information on the symptoms are either lacking or 

inconsistent.  Performance based studies intended to induce an overreaching state lack 

consistency in the measurement of decreased performance and if the intervention actually led to 

a decline in performance.  It is also debatable how well laboratory-induced exercise to fatigue 

can accurately reproduce the environment of competition.  Changes in mood state are a clear 

indication of overtraining, however increases in the global POMS scores during periods of 

increased training do not always result in an overtrained state and would need to be combined 

with an objective measure.  Autonomic nervous system changes resulting in parasympathetic 

overtraining, as characterized by increased fatigue, apathy and altered mood state is most 

frequent and represents the current form of overtraining.  Measures that examine the balance of 

the ANS are the most appropriate physiological markers of OTS along with performance and 

subjective information from questionnaires and information about the quality and quantity of 

training and recovery.  This information will help to differentiate between the overreaching 

necessary to provide physiological adaptations and the accumulation of training and/or non-

training stress that leads to overtraining. [55] 
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 The pre-event taper is a particular phase of the training cycle where there is a reduction in 

the training stresses in an effort to allow for physiological and psychological recovery with the 

goal of peaking for competition.  Cardiac changes do not typically occur with the taper.  Resting 

HR, submaximal exercise HR, maximal exercise HR, BP and cardiac dimensions either do not 

change with taper or the changes that are reported in the literature are inconsistent.  Hormonal 

changes during the taper, especially testosterone and cortisol levels also have inconsistent 

findings in the literature.  It may be the influence of the hypothalamus in integrating the different 

stress influences among the ANS and the endocrine system that affects the hormonal response.  

Physiological changes alone cannot explain the performance changes in athletes following taper.  

As positive performance changes have been accompanied by positive changes as indicated by the 

REST-Q Sport, the stress accompanying training may or may not be solely training related.  

Tapering has been reported to induce positive mood changes based on the POMS questionnaire.  

Typically decreased levels of perceived fatigue, depression, anger and confusion accompany 

increased levels of vigor during the taper period.  The elevated tension related to pre-

performance anxiety may be revealed in accompanying physiological data explaining the lack of 

or inconsistent change in cardiac variables.  The training changes with the taper are often 

accompanied with a decrease in RPE.  This inverse relationship between HR and RPE means that 

the greatest improvement in performance following taper accompanies a decrease in HR for a 

given RPE.  Forced reduction in activity and increased rest time also relate to an improvement in 

the quantity of sleep to help reduce fatigue.  The fatigue and adaptation model associate the taper 

with recovery of physiological markers that had previously been impaired.  [59] 

 While many studies offer information about training strategies to enhance performance 

with the goal of forestalling fatigue, leading to decreased performance and increased risk of 
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chronic injury, few have actually linked injury to perceived training intensity and fatigue to 

injury among college athletes.  A survey instrument was used to obtain information from current 

NCAA Division II athletes (n=149) about training frequency, training intensity, injury incidence 

and feelings of exhaustion and apathy.  The female athletes (n=68) surveyed showed a 

significant negative relationship for chronic injury incidence and noncompetitive season physical 

exhaustion (r=-0.33, p<0.01) while the male athletes (n=81) surveyed had a significantly 

negative correlation for incidence of acute injury and vigorous intensity training (r=-0.22, 

p<0.05).  Increased physical stress, related to overreaching or overtraining, puts the athlete at risk 

for fatigue, which can lead to chronic injury.  While the results were not significant, 44% of the 

male athletes had a chronic injury in the previous 12 months.  The female athletes had a 

significant positive correlation for noncompetitive season physical exhaustion and vigorous-

intensity training (r=0.24, p<0.05) while male athletes had a significant positive correlation for 

competitive season physical exhaustion and vigorous-intensity training (r=0.57, p<0.01).  The 

female athletes had significant positive correlations for competition season mental exhaustion 

and physical season (r=0.666, p<0.01) while male athletes had significant positive correlations 

for competition season mental exhaustion and vigorous-intensity training (r=0.421, p<0.01), 

competitive season physical exhaustion (r=0.456, p<0.01) and noncompetition physical 

exhaustion (r=0.267, p<0.05).  Both mental and physical exhaustion are signs of overtraining and 

are a cause of decreased performance in athletes and these results highlight the need for more 

rest or recovery in the training program.  Daily activity logs were suggested to track the RPE of 

the practice that day as well as assessment of acute mental and physical fatigue as ways to 

monitor training and allow for increased recovery. [56] 
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A prospective study aimed to measure the effect of recovery and stress on illness and 

injury for 53 elite youth soccer players.  The medical staff tracked injuries and illnesses using the 

definition set forth by FIFA as “any physical complaint sustained by a player that results from a 

soccer match or soccer training, irrespective of the need for medical attention or time loss from 

soccer activities.”  Injuries were reported based on the inability to take part in a training or 

match, receiving medical attention for more than one day even with full participation.  Time loss 

injuries were divided up by the number of days missed.  Additional categories were used for 

overuse injuries caused by repeated trauma and traumatic injuries resulting from a specific event.  

Illness was distinguished by the symptoms presented.  Physical stress was measured by the sum 

of the duration of training and matches and each player’s RPE for the session.  The product of 

the duration and the RPE for each session was defined as the training session load.  Psychosocial 

stress and recovery were monitored using a monthly administration of the RESTQ-Sport.  

Physical stress was related to traumatic injuries but not overuse injuries.  The weekly duration 

over the preceding week was higher for those with an illness than for those that were healthy.  

No clear relation was found between specific components of the RESTQ-Sport for stress and 

recovery and the occurrence of injury but the subscale for fitness/injury was significantly higher 

for those with an overuse or traumatic injury.  Illness was related to the general stress, emotional 

stress, fatigue, social recovery, general well-being, and sleep quality scales.  Monitoring stress, 

recovery and training on a daily basis gave better insight into the players at risk for illness and 

injury.  This gives insight into future studies for monitoring training load and subjective factors.  

This study could be strengthened with the addition of physiological variables and a calculation of 

the SWC for training load that would put someone at risk for illness and injury. [60] 
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 The research about overreaching, overtraining and effective recovery typically focuses on 

individual athletes involved in professional and endurance sports, however the majority of youth 

and collegiate athletes are involved in team sports [46, 51, 54].  Multiple subjective tools exist 

for assessing the mood and stress levels in athletes with the POMS and RESTQ-Sport being the 

most popular [24, 38, 45, 51, 53, 90].  Physiological variables that can be monitored for 

assessing stress include HR, HRV, BP and blood lactate [24, 52, 61, 89].  Additional daily 

monitoring can include training load, RPE, sleep and fatigue levels [53, 56, 59, 86].  However 

since subjective and objective variables have not been validated against one another, more 

research is needed to determine the appropriate method to determine OTS [24, 26, 53]. 

 

Heart Rate Variability 

Standards of Measurement 

 Heart Rate Variability (HRV) is the ability of the heart to modulate the interbeat intervals 

as well as the oscillations between consecutive instantaneous heartbeats [1, 2].  Heart rate (HR) 

is initiated via the sinoatrial (SA) node with action potentials being generated at a fairly 

consistent frequency in healthy individuals [2]. The autonomic nervous system (ANS) regulates 

HRV occurs through parasympathetic and sympathetic pathways making HRV analysis an 

appropriate non-invasive method for analyzing the ANS [2-4].  Changes are communicated from 

the medulla via the vagus nerve for parasympathetic changes and sympathetic efferents for 

sympathetic changes [4].  In general parasympathetic activity decreases HR by releasing 

acetylcholine thereby increasing the threshold of the SA and the variability between successive R 

to R intervals while sympathetic activity and the presence of epinephrine increases HR and 

decreases HRV [3, 4].  Analysis of HRV can be done with the analysis of electrocardiographic 
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(ECG) recordings using readily available software for the computer and has been developed for 

smart phone applications using photoplethysmography (PPG) [3, 62, 64]. 

  Heart rate variability is evaluated using time domain and frequency domain measures.  

Time domain measures determine the rate between successive normal-to-normal (NN) intervals 

between the peaks of successive QRS complexes (R-R intervals).  The calculation of statistical 

time domain measures includes standard deviation of the NN interval (SDNN).  As this measure 

equates to the square root of variance, it is also equal to the total power of spectral analysis and 

therefore reflects all of the cyclic components responsible for variance.   The square root of the 

mean squared difference of successive NN intervals (RMSSD) and standard deviation of the 

average NN interval (SDANN) are other commonly used statistical measures.  With time domain 

measures, it is important to only compare measurements taken over similar time periods as long-

term (24 hour) and short-term (5 minute) intervals cannot be compared.  Frequency domain 

measures, a function of how power (variance) distributes as a function of frequency, are 

calculated as non-parametric and parametric.  The non-parametric fast Fourier transformation 

(FFT) method employs a simple algorithm and a high processing speed while the parametric 

autoregressive (AR) method has a smoother spectral component, which can be distinguished 

independently of preselected frequency bands.  Short-term recordings of two to five minutes 

consist of very low frequency (VLF), low frequency (LF) and high frequency (HF) components, 

with the LF and HF varying in relation to changes based on the modulations of the ANS.  The 

HF component is driven by vagal activity while the LF component in normalized units (nu) is 

considered to be a marker of sympathetic activity by some and as a parameter of both 

sympathetic and vagal activity by others.  The LF/HF ratio is then considered to be either a 

reflection of the sympathovagal balance by those who consider the LF to be sympathetic and to 
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reflect sympathetic modulations if the parasympathetic is reflected in both the LF and HF 

components.  Measurements are typically made in absolute values of power (m2) or nu, 

representing the relative value of each component with the VLF removed.  Standardization of the 

ECG recordings is paramount for research, especially studies investigating clinical applications 

of HRV.  For short-term recordings, frequency domain measures are preferred over time domain 

measures with recordings lasting at least 10 minutes and a minimum of five minutes being used 

to assess the HF and LF components and minimize error.  In addition, manual editing of RR 

intervals will also reduce the chance of error.  Larger prospective studies are needed to determine 

values for various age and gender subsets. [1] 

 It is often implied that the heart beats a constant rhythmic rate however low HRV is can 

be used as a marker for cardiovascular disease.  The importance of HRV is highlighted in cardiac 

transplant patients where denervation leads to a reduced HRV.  In normal circadian rhythm 

patterns of the body the ANS will contribute to circadian HRV patterns, which appear on the 

spectrum as ultra-low frequency.  Thermoregulatory effects of the body affect the VLF waves 

and fluctuations in body temperature during illness or injury would need to be considered.  The 

sympathetic nervous system activity, which accelerates heart rate, can only affect the LF 

components of HRV while parasympathetic nervous system activity can modulate both LF an 

HF components.  Because of the different frequency response characteristics of sympathetic and 

parasympathetic nervous systems on HR modulation, analysis of HRV is often used to determine 

autonomic balance. [2] 

 The HF components of physiologic HRV are predominantly modulated by the 

parasympathetic nervous system whereas the LF components are under the influence of both the 

parasympathetic and the sympathetic systems.  However these specific spectral components 
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should not be used as measures of autonomic tone.  The efferent vagal impulses of cardiac 

parasympathetic tone have higher intrinsic frequencies than that of the HF component of HRV, 

which corresponds to the modulation of vagal tone.  It is the modulations of vagal efferent 

activity, not the tone that causes the alterations that increase the HF components of HRV.  

Therefore when the SA node becomes saturated with AcH although there is still a corresponding 

decrease in HR, the overstimulation causes constant vagal activity, which does not alter the 

interbeat intervals and leads to a diminished HF.  Physiologic modulation of the sympathetic 

tone is driven by vaso- and thermocontrol regulatory mechanisms therefore while moderate 

exercise will increase the sympathetic tone within a physiological range, maximal exercise will 

lead to a saturated sympathetic tone, losing the potential of being modulated by the subtle 

physiologic control mechanisms.  It is thereby correct to associate the frequency domain 

measures with modulation of ANS tone but incorrect to assume that it represents a particular 

shift in ANS tone from sympathetic to parasympathetic. [10] 

 Changes in HF come from respiratory modulations such that parasympathetic activity 

increases in exhalation and decreases with inhalation.  In order to evaluate the magnitude of the 

fluctuations in parasympathetic activity the vagus nerve in anesthetized, vagotomized and spinal 

cord anesthetized dogs underwent either constant or fluctuating stimulation and the resulting 

power spectral components of HRV were analyzed.  Constant frequency vagal stimulation 

increased HRV slightly however when adjusted for mean RR intervals, the changes in TP and 

HF were not statistically significant.  Moderate and strong modulation increased the total HRV 

and the HF components significantly before and after the RR interval adjustment.  Strong 

modulation increased HRV and power HF significantly compared to control and moderate 

modulation when the mean RR interval was taken into account.  It was concluded that the HF 
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component is related to the magnitude of the fluctuations in parasympathetic outflow and not 

parasympathetic tone. [11] 

 The LF/HF ratio and normalized units of LF and HF are of interest because they are have 

been used to been purported to have a degree of interpretability between studies as proportional 

change in these values as well as allowing for direct comparison between AR and FFT.  

However this assumes some level of redundancy between the measures.  Very rarely does the 

LFnu and HFnu calculations combined to represent 100% of total in the AR method.  Also, a 

change in LF does not linearly correspond to a change in HF should the VLF measure or TP be 

used in the calculation.  Therefore it is important to consider the calculations used in obtaining 

these measures before declaring that they are interchangeable between studies.  The LF/HF ratio 

usually has a positively skewed distribution resulting in a log transformation of the measures for 

statistical analyses while the LF nu and HF nu are typically normally distributed.  Because of the 

skewed distribution, the mean of the LF/HF is not identical to the LF nu and reporting just the 

normalized units or the LF/HF without considering the absolute power values will obscure the 

interpretation and is not recommended by the Task Force [1].  All of the HRV measures, time 

and frequency domain, show some degree of multicollinearity however the changes in HRV are 

not necessarily proportional.  Changes in RMSSD are not necessarily reflected to the same level 

in HF power and significance with LF nu and not with LF/HF ratio does not mean that one is 

better at measuring sympathovagal balance.  The nature of HRV is still not well understood and 

the ability to recommend a particular measure is beyond the scope of this review article.  [12] 

 To test parameters that provide the best indicator of sympathovagal balance, the RR 

interval, time domain HRV measures of mean RR intervals, RMSSD, SDNN, pNN50 and the 

AR frequency domain measures of LF, HF LF/HF as well as the natural log of LF and HF, and a 



	 128	

ratio of the RR interval to the intrinsic RR interval of the SA node were measured in healthy 

volunteers (n=14).  The LF/HF ratio had the lowest r2 value when the subjects were not included 

as a factor in the model, suggesting that it is not an ideal measure of sympathovagal balance 

while the natural log of the LF power was deemed the best predictor.  The RR intervals serve as 

indexes of the net effect of the sympathetic and parasympathetic influence on the SA node but 

cannot provide assessment of overall autonomic tone.  The most appropriate characterization of 

HRV is assessment of the modulation of the ANS.  It cannot be used to determine autonomic 

tone. [35] 

 In order to assess the relationship between RR interval length and HR variability healthy 

subjects (n=83) underwent ambulatory 24 hour Holter recordings.  Time domain measures 

included mean HR, mean RR interval length and SDNN.  The parametric AR analysis was used 

for the frequency domain measures VLF, LF and HF.  The mean RR interval length and 

corresponding HF power were analyzed in five minute segments over the 24 hour recording.  

The five minute values of HF power were plotted as a function of the corresponding mean RR 

interval values and a quadratic regression model was used to study the relationship between RR 

interval length and the magnitude of HF variability to determine if the relationship was linear or 

saturated.  Saturation is considered to be the point when an increase in AcH levels no longer 

produces a change in the HRV response during inspiration, thereby blunting any changes in HF 

power.  The majority of the saturation effect was seen during sleeping hours and subjects with a 

saturated relationship also had a tendency toward higher aerobic capacity as determined by a 

graded exercise.  There was no consistency in the HR as some subjects were about 60 beats per 

minute while others were about 40 beats per minute. [97] 
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 Initially HRV will increase as parasympathetic activity increases however there is a 

curvilinear relationship where HRV will decrease even with an increase in parasympathetic 

effect once a certain threshold is reached.  Healthy volunteers (n=14 male, n=15 female) 

underwent resting baseline HRV data collection prior to pharmacological interventions to 

establish parasympathetic stimulation, parasympathetic withdrawal and intrinsic RR intervals.  

From each of the three sessions, five minutes of HRV was analyzed in relation to each subject’s 

individual intrinsic RR interval values for the time domain measures of SD, RMSSD and pNN50 

and the AR frequency domain measures of LF and HF with natural logarithmic transformation.  

Linear regression was used to explore the relationship between HRV measures and 

parasympathetic effect using both linear and quadratic model coefficients.  In all cases the 

quadratic fit was better than the linear fit confirming that the relationship between HRV and the 

parasympathetic effect is best described as curvilinear with a decrease in HRV once a 

parasympathetic plateau is reached.  For most individuals, peak RR interval value does not 

correspond with the peak HRV value.  In situations where large quantities of AcH are released 

during expiration, a large enough dose of AcH will be present during inhalation thereby blunting 

the expected drop in parasympathetic activity.  Without this drop in parasympathetic activity, 

there will not be any change to the HF power, demonstrating that the individual has low HRV.  

While this study confirms that the quadratic model is superior to the linear model, it does not 

confirm that the quadratic model is the best model with which to display this change.  In 

addition, it is noted that the individual variations in HRV must be considered. [20] 

 During stress, such as the stress of exercise, the cardiovascular system makes dynamic 

adjustments in response to changes in heart rate and blood pressure.  The use of ECG analysis 

allows for the measurement of the dynamic changes in the ANS via HRV measurements.  The 
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parasympathetic effects originate in the dorsal vagal nuclei of the medulla, are relayed through 

muscarinic receptors and modulated via the right and left vagus nerves that innervate the SA and 

the atrioventricular (AV) nodes, respectively.  The sympathetic efferents also originate in the 

medulla but are mediated via alpha and beta adrenoreceptors and are present throughout the atria 

and ventricles.  Exercise causes a withdrawal of the parasympathetic nervous system and an 

increase in sympathetic activity.  Heart rate variability analysis can be used to analyze the stress 

of training and recovery.  Changes in HRV with exercise are dependent upon the type of 

exercise, the intensity of the exercise, gender, age, prior training and current fitness levels.  Any 

changes in HRV can be used to monitor training programs in order to prevent or diagnose 

overtraining or over-reaching states. [4] 

 Analysis of ECG data for time domain and frequency domain can easily be done via 

Kubios HRV software (ver. 2.1, Kuopio, Finland).  Time domain methods are computed from 

successive R-R intervals and include SDNN, RMSSD and pNN50.  In frequency domain 

methods, spectral estimates are divided into VLF (0-0.04Hz), LF  (O.04-0.15Hz) and HF (0.15-

0.4Hz) bands.  From these bands normalized powers for LF and HF, LF/HF power ratio and total 

spectral power can be obtained.  Kubios HRV supports both binary and ASCII text files of raw 

ECG data or R-R intervals.  Once the data is run through Kubios HRV, artifact correction, 

sample selection and trend removal options can be utilized to filter the data.  Artifact correction 

allows for correction on parameters that reflect HF variability and removal of peaks in the data 

can prevent artificially inflating HF power.  Trend removal corrects removal of VLF when only 

HF and LF are of interest.  This software is a solution for HRV analysis. [3] 

 The influence of the spectral indices of FFT and AR were compared on the characteristics 

of HRV in a seated resting condition (n=56) and during orthostatic stress (n=15) in healthy adults 
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aged 18-66 using the criteria established by the Task Force [1].  All of the absolute values of the 

HRV indices calculated for both methods were significantly correlated (P<0.01).  In the seated 

condition the AR and FFT produced significantly different results for HF power, HF nu, LF/HF 

ratio and TP.  A Bland-Altman plot showed a large discrepancy for all HRV indices both seated 

and during the orthostatic stress conditions.  This agrees with previous results that a strong 

correlation between the indices does not necessarily mean that they are interchangeable or can be 

used in direct comparison.  The FFT overestimates HF and as the HF and LF components 

increase the difference between the two techniques increases as well.  This could be related to 

the wide-band noise being isolated and suppressed by the AR that is then evident in the TP of the 

FFT analysis or because of the lack of clear separation in the bands by the FFT causing an 

overlap that increases the values of the LF and HF power.  The AR could perhaps have an 

advantage in HRV assessment however more research is needed. [15] 

 In a comparison of healthy volunteers (n=9) and patients who had received a heart 

transplant (n=9), the FFT and AR methods of analysis were compared from five minutes of 

resting ECG data.  Utilizing a paired t-test for statistical analysis between methods, there was no 

significant difference in the comparisons of LF measures however HF was significantly higher 

with FFT (p=.003) in the normal group.  In the transplant group LF power was not measurable 

and while HF was higher with AR it was not significant.  When the participants were pooled, the 

two techniques were comparable however any differences were at higher values of LF and HF 

power.  The AR tended to underestimate HF and overestimate LF relative to FFT. [13] 

 The HRV results for seated and standing data were compared between two frequency 

ranges of FFT and the AR method in a large population (n=614, age range 25 to 89) of healthy 

and non-healthy volunteers.  The LF and HF powers were lower with AR than FFT in both 
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normalized and absolute units.  Limits of agreement were wide with the AR measure of LF nu 

between -26% and +18% of the FFT value.  The AR had higher LF/HF (p<.001) with the 

differences being more pronounced in the standing rather than the supine position.  While the 

qualitative results of the two methods were deemed similar, the quantitative results were 

significantly different.  These results would need to be taken with caution as the data were 

analyzed with different methodologies than those outlined in the Task Force [1] 

recommendations. [33] 

 There is no consensus on whether FFT or AR is the appropriate method for frequency 

analysis therefore the agreements between the two methods were examined during postural 

changes in healthy volunteers (n=8) as well as with patients with arterial hypertension and an 

experimental model of hypertension in rats and pharmacological blockade of the ANS in control 

rats.  Approximately 43% of the data did not agree between the two frequency domain 

techniques and in the experimental models the LF component did not agree.  The FFT method 

showed greater power in the HF component when both frequency domain measures were 

compared relating to an increase in the vagal indices.  Normalized HF values were overestimated 

in FFT for the R-R intervals in normotensive and hypertensive subjects.  The AR method showed 

a significant increase (P=0.042) in LF/HF ratio after postural change in the healthy controls, 

relating to an increase in the sympathovagal balance.  Advantages of FFT are the simplicity of 

the algorithm, good reproducibility, and high processing speed.  Advantages of the AR method 

are good performance in time series with reduced number of points, smooth spectral components 

making it easier to distinguish between the HF and LF components, easy identification of the 

central frequency of the component and an accurate estimation of power spectrum density even 

for a small number of samples.  In pathological conditions both methods seem to be adequate 
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measures of autonomic index estimation however the same conclusion cannot be made in healthy 

controls under orthostatic changes. [14] 

 The two frequency domain analyses cannot be used interchangeably or compared 

directly.  The aim of this study was to assess the differences in LF/HF between the spectral 

methods and to determine the appropriate analysis under controlled breathing conditions.  A 

paired t-test between FFT and AR showed significance (p<0.05) at four, seven, thirteen, 

nineteen, twenty-two and twenty-five breaths per minute.  With paced respiration the AR is more 

of a disadvantage because the broader LF peaks overlap with the HF thereby increasing the 

LF/HF ratio.  Therefore in paced breathing FFT is the preferred method of analysis. [16] 

 The sensitivity of the FFT and AR data processing were examined at rest, during 

submaximal and maximal exercise intensities and during recovery from maximal exercise for 16 

healthy individuals (n=9 male, n=7 female).  In addition, raw and normalized LF and HF powers 

were compared between FFT and AR using a paired Wilcoxon test.  The FFT calculations of TP 

and HF raw power were significantly higher at rest (p<0.05) but there was no difference for LF 

raw power (p>0.05).  During submaximal and maximal exercise TP in FFT was higher than AR 

while in submaximal exercise HF power, both raw and normalized, was higher in FFT compared 

to AR.  Conversely, LF normalized power and LF/HF in AR was higher than FFT during 

exercise.  During recovery LF powers did not differ but HF from FFT was higher and LF/HF was 

from AR was higher.  The AR method was more sensitive to the effects of dynamic exercise but 

both approaches were insensitive to the increase in exercise intensity.  As these two methods 

provide different results, they cannot be used interchangeably.  Differences may depend on the 

intrinsic effects of exercise on the modulation of the ANS however no conclusion has been made 

about which is more appropriate in exercise or at rest. [17] 
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 While an ECG recording is a valid tool for assessing HRV, it is not practical for field 

assessment and everyday use by athletes and coaches.  With the prevalence of smart phones, 

applications have been developed for monitoring HRV data.  The ithleteTM smart phone 

application underwent cross-validation with simultaneous ECG recordings to determine ultra-

short-term RMSSD data in the supine position for 25 healthy college students.  The RMSSD 

values were not significantly different (p=0.91), the effect size was negligible (partial 

eta2=0.001) and correlation was near perfect (r=0.99, p<0.001, SEE of 1.47).  Repeated trials 

were not performed and the ithleteTM is only capable of recording RMSSD data.  However the 

ithleteTM values did mirror the values of traditional laboratory HRV data collection and smart 

phone applications may prove to be a valuable tool for HRV data collection in athletes. [64] 

 The ithleteTM HRV smartphone application was used to evaluate ultra-short the log-

transformed root mean squared of successive R-R intervals (Ln RMSSD) measures across three 

weeks of off-season training load in female collegiate soccer players.  Daily HRV recordings 

were taken in the supine and standing position after waking, however only the supine values 

maintained an acceptable level of relationship between HRV and training load.  Additional self-

reported data for sleep, mood, fatigue, stress and soreness was collected three times a week.  The 

weekly measures of Ln RMSSD were more sensitive to training adjustments than the mean HRV 

values and daily fluctuations were greater during a week of high training load versus a week of 

low training load.  Monitoring Ln RMSSD changes throughout training may provide an objective 

physiological marker to assess the individualized effects of training impact and adaptation.  The 

average of a minimum of five consecutive days of recordings are recommended for effectively 

monitoring training. [62] 



	 135	

 The Elite HRV smartphone application was compared to HRV analysis of RR intervals 

using Kubios HRV software.  The Elite HRV application uses a personal HR monitor to collect 

RR intervals and extrapolate the data to compute HRV measures.  In addition, the RR intervals 

can be exported and run through HRV analysis software such as Kubios.  Data were log 

transformed and analyzed using a Bland Altman plot to assess Limits of Agreement and 

Pearson’s Product moment correlation.  While correlations were strong (r=.092; p<.001), a 

negative bias with larger discrepancies was identified.  One of the concerns is that the entire 

sampling period for the Elite HRV must be used in analysis.  While the participants were 

instructed to use a specific timeframe, if they lost track of time the data could not be edited.  

Previous research has indicated that the methodologies must be kept consistent included the time 

frame of recording.  In addition, comparisons could not be made between artifact correction 

techniques, as the Elite HRV does not publish their artifact correction technique and level.  The 

recommendation from this study was to use the RR intervals collected for analysis through 

known software such as Kubios and not to rely on the calculations from the smartphone 

application for research.  However, as the Pearson’s Product Moment Correlation was 

significant, it is possible that this application can be used for daily HRV measurements as long as 

comparisons are made only between the individual with this instrument. [73] 

 Smartphone technology uses an optical recording of the pulse wave, referred to as pulse 

PPG, as an alternative to ECG measurement for approximating beat-to-beat intervals for use in 

calculating HRV.  At rest the smartphone pulse rate variability (PRV) system and ECG 

collections corresponded, however the smartphone overestimated the length of proportionally 

longer heart rate periods and underestimated shorter periods.  Corrections were made using a z-

score transformation.  When a second experiment was utilized to examine the smartphone HRV 



	 136	

analysis under physical and mental tasks, similar error was verified and again effectively 

corrected.  The addition of tasks did not alter the accuracy of the system.  This system provides 

an advantage over laboratory-based data collections especially when larger sample sizes are 

utilized. [67] 

 The PPG signals can be used to extract PRV as a potential surrogate to HRV.  The main 

difference between PRV and HRV is the time in which it takes for the signal to travel from the 

heart to the arteries in the finger, called the pulse transit time (PTT).  The variability in the PTT 

reflects the interbeat interval changes that are then noted by the PRV.  The use of PRV in place 

of HRV was examined during a head-up tilt table test (n=17), going from supine for four minutes 

to head-up at 70° for five minutes and then back to supine for four minutes.  Measurements of 

ECG and PPG were taken simultaneously.  Similar indices were derived from the HRV and PRV 

measurements obtained from the ECG and PPG collections, respectively.  Time domain and 

frequency domain indices derived from PRV had no statistically significant differences from 

those obtained with the HRV measurements (p>0.05) and there was a strong linear correlation 

(p>0.09).  The supine indices had a higher similarity than the head-up position.  The agreement 

between the physiological analyses of the PRV with the HRV makes it a plausible substitute.  

Slight differences occur, the PPG pulse wave is less sharp than the R wave in an ECG, and the 

spectral analyses related to the respiratory bands differ, however neither of these differences is 

statistically significant.  In both the supine and head-tilt position PRV can be used in place of 

HRV. [68] 

 The PPG technology involves analysis of a pulse to pulse interval (PPI) to produce PRV, 

compared to the R to R interval (RRI) used to produce the HRV.  Pulse wave analysis involves 

the anacrotic phase, the rising due to ventricular systole generating a pulse wave distally, and the 
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catacrotic phase, the decline that corresponds to cardiac diastole.  The anacrotic phase occurs 

shortly after the QRS complex appears on an ECG, which would be the delay adjusted for by the 

PTT.  Any deviations from the RRI by the PPI could result from artifacts or a physiological 

variability in the PTT.  Good agreement between HRV and PRV has been found for younger 

subjects during rest.  Other studies have found PRV to overestimate HRV especially the HF 

domain measures.  More research is needed to clarify the agreement on PRV in relation to HRV 

and to provide a consistent methodology for comparison. [72] 

Changes in HRV are a non-invasive method to determine the balance between the 

sympathetic and parasympathetic nervous systems and can identify any cardiovascular 

abnormalities [2, 4].  Analysis of HRV data includes time domain and frequency domain 

measures, however the two methods cannot be used to make direct comparisons [1, 4].  Data has 

traditionally been collected in a laboratory using ECG and analyzed using software such as the 

Kubios HRV tool to filter and correct for any artifacts in the data [3, 4].  Advances to technology 

have led to the development of cell phone applications that can be used to collect and analyze 

HRV in a non-laboratory condition, assuming that the methods are valid [62, 64, 67].  

Alternatives to traditional ECG data collection utilize the camera of a smartphone and 

photoplethymographic technology to detect PRV changes, which are comparable to HRV 

changes [62, 64, 67, 68, 72].  Athletes can use HRV analysis to determine the effects of training 

on the resting levels and during recovery and the use of smartphone technology can make this 

collection readily available without a laboratory setting [4, 62, 64, 67]. 

Heart Rate Variability with Exercise and Training 

 Athletes who undertake endurance training typically have lower resting HR and higher 

vagal tone [21].  Resting levels of anaerobic and aerobic trained athletes showed sinus 
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bradycardia compared to healthy controls and sedentary controls of the same age [98, 99].  In 

addition, following exercise trained individuals have a quicker return to parasympathetic tone 

and a more pronounced sympathetic withdrawal [21, 100].  An increase in HRV, indicative of 

increased parasympathetic activity, would reflect adequate recovery as well as a positive 

adaptation to training and allow for an increase in training load [21, 47].  Vagal outflow may be 

diminished following heavy cardiovascular training loads, with this reduction being even longer 

for those with poorer cardiovascular fitness [101].  Because of the slow rate of metabolism of 

norepinephrine by the cardiac tissue, the withdrawal of sympathetic activity following exercise 

may be slowed by an increase in other accumulated stresses that may have lead to an increase in 

norepinephrine output [19, 46].  The intensity of exercise is a bigger predictor of diminished 

HRV post exercise and a slower return of parasympathetic activity than the duration of the 

exercise session [50].  Understanding the changes that occur in laboratory tests of HRV would 

then need to be brought to field testing to determine if HRV can be used to adjust training [47].   

 Compared to healthy non-athletes (n=50), both anaerobic (n=20) and aerobic (n=30) 

trained athletes had significantly lower resting HR and resting blood pressure (BP).  There was 

no observed difference in HRV between the groups, however the RMSDD was higher in both the 

static and dynamic groups (P=0.06).  Static athletes also presented with a tall R-wave, consistent 

with findings in previous research.  While the control group consisted of healthy non-athletes, no 

information was given as to whether these subjects were active therefore comparison with the 

professional athletes may be misleading. [98] 

 Following exercise, HRV dynamics can be used to evaluate parasympathetic return and 

sympathetic withdrawal.  The rate of vagal reactivation is dependent upon the type and intensity 

of exercise.  As lower intensity exercise involves less sympathetic activation, recovery is 
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assumed to be different than from high intensity exercise that involves a greater sympathetic 

response.  The loss of central command and baroreflex activity following exercise combined 

with changes in cardiovascular function are believed to contribute to parasympathetic 

reactivation following exercise.  However the increase in sympathetic activity of moderate and 

high intensity activity during exercise mean slower sympathetic withdrawal following exercise.  

Using short-term Fourier transformation, while HF power reflected slower changes following 

moderate and high intensity activity compared to quicker changes following low intensity 

exercise, TP, which reflects LF power as well, varied.  Because LF reflects sympathetic changes 

as well as parasympathetic changes, the contributions of the sympathetic changes would be 

reflected in TP.  While intensity of exercise influenced HRV, the length of distance of the 

exercise did not, meaning that the same exercise intensity sustained over a longer period of time 

does not significantly affect HRV levels. [50] 

 The recovery of HRV was evaluated within one hour, 24 and 48 hours following a single 

bout of either interval training or constant exercise to determine how moderately trained subjects 

(n=10) respond to routine training sessions.  The interval exercise consisted of one minute 

periods of maximal intensity exercise followed by four minutes of submaximal base exercise 

repeated nine times for a total of 45 minutes while the constant exercise was of an adjusted 

duration to allow subjects to perform the same total work as in the interval exercise.  Cardiac 

autonomic control prior to the exercise sessions was not significantly different.  Within the first 

hour following the interval exercise there was a slower return to parasympathetic activity 

compared to the constant exercise as expressed by the higher total power values after cessation 

of exercise and high HF values during the 20 minute post exercise period (P<0.05).  Lower mean 

R-R values at the end of the interval exercise compared to the constant exercise were reflected 
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via a higher heart rate, continued parasympathetic withdrawal and sympathetic dominance.  

Because subjects underwent the same amount of work for both exercise sessions, the difference 

in ANS response could be related to the type and the intensity of work and not the total physical 

work performed.  Recovery 24 and 48 hours after the exercise resulted in no significant 

differences between the groups for HRV values for either type of exercise, potentially indicating 

that the total power of the exercise may have more influence over recovery than the type of 

exercise. [102] 

 The time course of parasympathetic reactivation was examined in 15 moderately trained 

individuals following repeated sprint exercise, equivalent net energy expenditure of moderate 

and continuous exercise and equivalent anaerobic energy interval exercise.  The HRR for 60 

seconds following exercise as well as the SDNN, RMSSD, AR HF and HR for the five to ten 

minutes post-exercise were significantly lower in the repeated sprint and interval exercise 

sessions when compared to the moderate and continuous exercise (P<0.001).  Compared to the 

moderate and continuous exercise of similar energy expenditure, repeated sprint exercise led to a 

significantly more delayed parasympathetic reactivation.  This indicates that the factors 

associated with anaerobic contribution to exercise are more important than aerobic power or 

energy expenditure with parasympathetic reactivation.  Increased anaerobic contributions, such 

as metabolites and the increased influence of central command during anaerobic exercise, were 

significantly related to all post exercise parasympathetic reactivation indices (P<0.001).  

Autonomic control of HR appears to be dependent upon the intensity of the exercise and not the 

duration or the amount of energy utilized.  Heightened sympathetic activity, elevation in 

adrenergic factors and local metabolites accumulated during sprinting is similar to what is seen 

during strength training. [5] 
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 The acute ANS recovery from three different training intensities was quantified via HRV 

and compared between highly trained endurance athletes (n=9) and recreationally trained 

subjects (n=8).  Both groups performed a preliminary test to exhaustion to determine baseline 

characteristics and training levels.  The highly trained subjects performed a four week training 

period by replacing one normal workout with a session at intensities below their first ventilatory 

threshold (one at 60 minutes and one at 120 minutes), at threshold (30 minutes) or above second 

ventilatory threshold (30 minutes of intervals).  The highly trained group performed one session 

of intervals at the second ventilatory threshold.  Prior to exercise HRV measurements were taken 

at rest and post-exercise HRV measurements were taken during a four hour session.  The 

exercise below the first ventilatory threshold demonstrated little or no delay in return to 

parasympathetic tone regardless of length.  For many athletes, this level represents the majority 

of their training, which means that recovery from activity at this intensity should prove to return 

the athlete to homeostasis prior to their next training session.  When the intensity was moved to 

threshold, there was a significant delay in ANS recovery.  The interval exercise above the second 

ventilatory threshold resulted in a significant delay in return to autonomic balance and was 

significantly lower when the recreationally trained group was compared to the highly trained 

athletes.  There was no significant difference in the return to autonomic balance between 

sessions above the first ventilatory threshold indicating that once activity is above the lactate 

threshold there will be a delay in return to homeostasis during recovery.  Athletes who fail to 

recover from exercise sessions of increased load may be at risk for overreaching or overtraining 

if adequate recovery were not introduced therefore the recovery would need to reflect intensity of 

the exercise. [48] 
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 Exercise load is perceived to be a contributing factor to HRV.  Healthy subjects were 

divided into groups based on the Baecke sport score, sedentary (n=12) who participate in less 

than two hours a week of activity, moderately trained (n=10) who participated in four to six 

hours a week of aerobic training and highly trained (n=9) who participated in over 18 hours a 

week of intensive aerobic training.  All subjects suspended activity for two days prior to resting 

data collection.  The moderately trained subjects had an increase in vagal related indices that was 

not seen in the sedentary or the highly trained subjects.  Even rested and with the highly trained 

subjects having no indication of overtraining, lower HRV levels were found, reflecting the bell-

shaped relationship between exercise load and HRV.  The highly trained subjects did display a 

lower resting HR, most likely related to left ventricle remodeling and not the parasympathetic 

influence.  Since these subjects were selected based on a quantitative training dose basis and 

were not under specific training loads monitored for intensity and duration, there is limited 

interpretation that can be made from this study.  Although higher amounts of training seem to be 

related to reduced vagal indices, those conclusions cannot be made from this study. [103] 

 The changes in vagal-related indices were assessed for healthy male runners (n=14) over 

an eight week training period.  The physical assessment utilized was maximal aerobic speed as it 

is thought to be a superior predictor of endurance performance than VO2peak and also has a 

stronger link between changes in HRV indices.  Prior to training resting HRV indices had large 

to very large correlations with maximal aerobic speed and 10km run time.  Following training 

there was a moderate relationship between changes in LN RMSSD at rest and changes in 

maximal aerobic speed (P<0.01) as well as a very large relationship between LN RMSSD at rest 

and changes in 10km performance time (P<0.010).  The very large relationship between vagal 

indices and the 10km performance suggest that cardiac autonomic activity may be a better 
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predictor of aerobic endurance than aerobic power.  Analysis of pre and post-training results 

showed a main training effect for HR at rest (P<0.01) and LN RMSSD at rest (P=0.03).  Vagal-

related indices showed a trend throughout the training intervention toward higher 

parasympathetic levels.  There was also a large correlation between LN RMSSD at rest and LN 

RMSSD post-exercise (P=0.05, r=0.61).  It is difficult to make comparisons between these 

measures and those of other studies because of differing methodologies such as exercise intensity 

and positioning of the subject during the HRV data collection.  During the study time to HRR 

continued to decrease for the first three weeks as cardiovascular adaptations improved.  It 

remained steady until data collection following the taper week when there was a further 

decrease.  There was a strong interdependency of ANS functioning an aerobic performance 

among these subjects following an eight week training program. [104]  

 Long-term ECG recordings for male elite distance runners (n=16) taken over a 48 hour 

period compared to a control group of sedentary males (n=13) revealed a pronounced 

bradycardia associated with increased vagal tone.  The higher time domain measures of RMSSD 

and pNN50, associated with parasympathetic influence, correspond to the increased bradycardia 

and may be an effect of the increased cardiovascular training of the elite runners.  All recordings 

were taken in the subjects’ normal surroundings and not in a laboratory setting, which may have 

had a positive influence on the HRV measures for all subjects.  The AR frequency domain 

measures of HF and LF power were both higher in the runners compared to the controls with the 

differences more pronounced at night.  Based on the recordings being over a 48 hour period, 

direct comparison to shorter laboratory sessions cannot be made. [22] 

 Endurance training leads to improvements in many cardiovascular and metabolic 

variables and may also lead to increases in heart rate variability at rest.  Twenty-four physically 



	 144	

active subjects were divided by gender into four age groups, 20 year-old males, 20 year-old 

females, 40 year-old males and 40 year-old females.  Following a standardized 12-week training 

program there was a significant total group mean decrease in heart rate at rest and during 

submaximal exercise.  The FFT total spectral power and HF power using increased at rest for 

both age groups, with subjects in the 20 year-old age group having a larger autonomic 

adjustment to training, and the 40 year-old females having the smallest.  This supports the theory 

that training decreases sympathetic activity of the heart and increases parasympathetic activity 

allowing for an increased parasympathetic control at rest and contributing to resting bradycardia. 

[21]   

 A similar study of HRV changes at rest and during post-exercise recovery examined 12 

healthy males undergoing a six week endurance training program.  The endurance training group 

(n=7) underwent cycle endurance training for six weeks while the healthy control group (n=5) 

continued with their normal activities of daily living during that time.  Each group underwent a 

VO2max test prior to the intervention and then had periodic follow-up sessions involving resting 

HRV, submaximal cycle exercise protocol and post-exercise HRV.  At rest the endurance trained 

group had a significant decrease in HR and increase in FFT HF power and SDNN, agreeing with 

previous research that enhanced vagal tone contributes to resting bradycardia and increased 

parasympathetic dominance in these athletes.  As this study length may have been too short to 

determine physiological changes to the heart muscle, it was speculated that the changes in 

cardiac ANS modulation contributed to the decrease in resting HR. [23]  

 With the additional consideration of subject training load via the Baecke sport score 

along with VO2max results, four groups of male participants of similar ages and body mass index 

scores were assessed for pre-exercise HRV indexes and post-exercise HRR.  Vagal related 
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indexes were significantly associated with VO2max, regardless of training load as fit subjects 

(VO2max > 55ml*kg-1*min-1) had the highest HRV indexes even if they expressed low levels of 

physical activity (mean Baecke sport score 3.6 ±0.3).  Conversely, HRR was negatively 

correlated with training load but not associated with VO2max as the unfit subjects (VO2max < 

50ml*kg-1*min-1) moderately trained subjects (mean Baecke sport score 8.9±0.7) had a 

significantly shorter recovery time than the fit low trained subjects.  This suggests that training 

adaptations have a greater association with training load and a lesser association with 

cardiorespiratory fitness levels.  It is, however, difficult to assume intensity of the training of the 

subjects from the Baecke sport score, as recovery time is not considered in the duration of self-

reported activity. [105] 

 As there is a lack of information on the link between ANS modulation and weight 

training performance, male weightlifters (n=7) underwent HRV testing during a 72-hour 

recovery period after an acute strength training program following 10 days of detraining.  The 

FFT frequency domain measures of VLF, LF and HF power as well as the LFnu measures were 

used in the natural logarithmic form.  The weightlifting performance recovered along with a 

parasympathetic rebound defined by a plateau of the HF values between 48 and 72 hours post-

exercise.  This suggesting an increase in parasympathetic activity can mirror the degree of 

performance recovery after weightlifting.  Physiologically, delay in parasympathetic activity 

after anaerobic exercise may be explained by the increased energy requirement to repair muscle 

damage.  However this does not seem to be associated with an increase in sympathetic activity as 

seen in endurance exercise. [80] 

 Comparing resistance-trained (n=15) and aerobically-trained (n=14) athletes to sedentary 

subjects (n=18) of similar age, body mass index, percent body fat and VO2peak, there was no 
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significant difference in HRV at rest.  While training load did not have any influence on HRV at 

rest, subjects in both the resistance and aerobic training groups did have a significantly greater 

heart rate recovery (HRR) at 60 seconds post-exercise and a shorter time constant of heart rate 

recovery.  There was no significant difference in HRV following maximal exercise testing for 

any of the groups.  It is believed that the reduction in HRV following maximal exercise or 

supramaximal protocols are a result of increased accumulation of metabolism by-products and 

the influence of the metabaroreflex in the post-exercise condition.  Vagal reactivation was 

observed with an increase on RMSSD during the recovery period in the aerobically trained group 

but not in the resistance trained or sedentary group. [99] 

 Reduced HRV in older subjects may be an indication of increased mortality, however 

endurance exercise training has been shown to have a cardioprotective effect.  The normal 

reduction in HRV that occurs with age may be partially offset with regular exercise.  Endurance 

trained masters athletes experienced a reduced FFT HF component and an elevated heart rate 

during recovery from high intensity exercise.  This suggested an increase in parasympathetic 

withdrawal during the autonomic control of post-exercise tachycardia.  However, it was 

purported that this sustained elevation in post-exercise heart rate may be required to maintain 

arterial blood pressure because of a reduction in total peripheral resistance.  As reduced 

variability may predispose the heart to arrhythmias, reduced variability following exercise in 

older subjects may indicate an elevated risk of abnormal cardiac events and may be a better 

indicator of mortality rate compared to resting HRV levels. [100] 

 In older untrained men (n=93; age=55.6±7.4)), the effects of combined endurance and 

strength training were compared with endurance or strength training alone on HR dynamics at 

rest and during exercise.  The AR analysis of the frequency domain variables HF power and LF 
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power were used as HRV outcome measures.  Those in the endurance group (n=23) and strength 

group (n=25) worked out two times per week while those in the combined group (n=29) worked 

out four times per week using the same protocols as the strength and endurance groups.  The 

combined strength and endurance training enhanced the positive effects of endurance training on 

HR dynamics while strength training only led to minor insignificant changes to HR dynamics at 

rest.  The non-significant results of the strength group should be interpreted with caution as 

males over 40 years old show less improvement than those 20 years old. [85] 

 Changes in HRV for 48 hours following an endurance cross-country skiing race were 

compared to pre-event levels collected 24 hours prior to the race.  The ten healthy male subjects 

that participated underwent regular aerobic training prior to the study, however this training did 

not follow a specific protocol.  For several hours following the exercise, vagal outflow was 

reduced yet rebounded on the second day after.  Those with better cardiorespiratory fitness, per 

pre-exercise VO2max testing, had a more rapid recovery.  Changes in cardiovascular autonomic 

function following maximal exercise reflect the altered cardiac changes needed after exercise.  

Sympathetic dominance is needed to maintain adequate blood flow with reduced cardiac 

performance.  As the body is able to return to its pre-exercise state, sympathetic withdrawal 

begins and vagal tone returns to pre-exercise levels.  The rebound effect on the second day may 

be a reflection of increased sympathetic activity in anticipation of the upcoming race, however 

this has not been verified. [101] 

 The delayed post-exercise effect on HRV may differ with exercise of different intensities. 

Heart rate variability of 16 healthy experienced runners (n=2 female and n=14 male) was 

assessed via repeated measures ANOVA at one hour prior to and then one hour, 24 hours, 48 

hours and 72 hours following moderate and severe intensity aerobic exercise sessions.  The 
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severe exercise sessions showed an increase in sympathetic activity and a decrease in 

parasympathetic activity at one hour post exercise, however the changes were reversed by 24 

hours and remained constant for 48 and 72 hours post exercise for the pre-exercise level.  Also 

present following the severe exercise session was a reduction in systolic BP.  This reduction in 

BP may have been lead to the compensatory increase in sympathetic influence and decrease in 

parasympathetic influence immediately following exercise, which was reversed by the 24 hour 

data collection session.  The moderate aerobic exercise sessions however resulted in no change 

in the ANS activity of the heart at any of the post-exercise times.  [106] 

 The majority of post-exercise HRV studies focus on the cardiovascular response to 

endurance exercise which is different from the cardiovascular response to resistance exercise.  

Resistance exercise exerts an intermittent pressor response on the cardiovascular system rather 

than the volume load that endurance exercise exerts however little is known about the recovery 

of the ANS following endurance exercise.  Autonomic recovery was not fully regained 30 

minutes after either acute endurance or resistance exercise.  While AR HF power was reduced, 

LF power was increased and the LF/HF ratio increased in similar fashion following both exercise 

bouts suggesting a shift toward sympathetic dominance, the greatest reduction in total power was 

seen after the resistance exercise.  This suggests a greater reduction in parasympathetic 

modulation following resistance exercise. [79] 

Pre and post-season evaluations were used to assess elite athletes for changes in strength 

and aerobic power as well as quantitative and qualitative changes in HRV measures.  Resting 

heart rate and AR LF power (in m/s2) in these subjects were significantly lower following seven 

months of training.  Total and HF powers were not significantly changed however those subjects 

with increased VO2max following the training presented with higher HF (m/s2 and normalized) 
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and total power compared to those with reduced VO2max.  Strength measures showed an 

increased in torque and a reduction in contraction velocity.  Changes in muscle performance 

were related to changes in LF power.  While the results of this study support the theory that those 

who are trained have higher parasympathetic activity it is possible that higher parasympathetic 

activity is the cause of improved fitness rather than the result. [107] 

 Resting HRV changes were examined in cross-country skiers (n=8 male, n=9 female) 

before and after seven months of competitive training.  Monthly subjective reports of training 

load were also recorded.  There were no significant differences between tests when separated by 

gender group, however as an entire group the total variability was significantly higher after the 

training period than before, possibly indicating an increase in parasympathetic modulation of 

HR.  There was a non-significant effect for the increase in AR HF power, typically a better 

indication of parasympathetic activity, and the LF power taken in an upright tilted position was 

significantly lower, which could be explained by the combined gender group or could represent 

overtraining in some of the athletes.  Only taking pre and post season HRV measurements, and 

not examining HRV during the season may have complicated this. There was a significant 

between-subject effect for gender on HF and total variability with females showing higher levels 

than males, indicating that some measures at rest may be influenced by gender.  The influence of 

training load on HRV was not examined in this study and therefore makes no conclusions about 

the influence of training load on the post-season results. [108] 

 It was hypothesized that there would be a weakened relationship between R-R interval 

length and vagally mediated R-R interval variability in endurance athletes with OTS, indicative 

of abnormal cardiac autonomic function.  This study included male (n=4) and female (n=5) 

endurance athletes who had been diagnosed with OTS and male (n=5) and female (n=5) 
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endurance athletes to serve as controls.  The study protocol included a 24-hour ECG monitoring 

during which a maximal exercise stress test and other clinical assessments (not presented in this 

study) were examined.  Following six months of recovery for the OTS subjects and six months 

of no intervention for the controls the study protocol was repeated.  Baseline measures showed 

differences in performance measures and maximal HR between the groups but no differences in 

mean HR and R-R interval variability.  A moderate effect size for OTS (ES=1.01) on AR LF/HF 

ratio was found.  Within subjects quadratic R2 between HR power and R-R interval was 

significantly higher in the OTS group (P=0.034) at baseline and there was a large but non-

significant decrease at the follow-up (P=0.11; ES=1.44).  The relationship between R-R interval 

and vagally mediated R-R interval variability was stronger in OTS athletes, normalizing after 

recovery.  This was different than expected, however the hypothesis was based on vagal 

modulation studies done with cardiac patients, not healthy subjects.  Because this study involved 

a 24 hour ECG recording with maximal testing, the comparison to other studies is difficult. [27] 

 The specificity of training, endurance training versus power or anaerobic training, should 

elicit differing adaptations in muscle mass and in cardiac remodeling.  Therefore it was 

hypothesized that elite track and field athletes would have differing resting HRV measures.  

Prior to the 2004 Olympic track and filed trials, 145 male and female athletes participated in 

resting HRV data collections.  While it was hypothesized that the aerobically trained individuals 

would have significantly elevated levels of parasympathetic tone compared to the anaerobically 

trained group, a 2-factor analysis of variance (ANOVA) failed to show any significant higher 

level of interactions.  The only significant differences were found between gender (n=58 

females, n=87 males), indicating either differing adaptations for the genders or inherent 

differences in HRV.  Because no information was included about training regiments, no 
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conclusions about training intensity for either gender can be made.  It is also possible that the 

elite level of the subjects made for similar resting HRV levels regardless of the type of training.  

Another potential limitation of the study is that data were collected prior to a national event and 

therefore emotional stress or the decrease in HRV associated with taper may have been factors.  

[57] 

  In order to remove the potential bias of precompetitive anxiety, 20 elite male track and 

field athletes participated in resting HRV data collections during the initial phase of 

periodization for the 2012 London Olympics.  Athletes were divided into speed and power 

athletes (n=10) and endurance athletes (n=10).  Endurance athletes had a lower resting HR than 

the power athletes, however the RMSSD lacked significant difference and the effect size was 

low.  There were no significant differences in any of the frequency domain variables.  Saturation 

of the parasympathetic nervous system, where the increase in acetylcholine saturates the 

sinoatrial node, is one explanation for the increase in R-R intervals without the associated 

increase in vagal activity that would be expected.  Symbol analysis of the data, used to detect 

nonreciprocal autonomic changes, such as a decreased vagal modulation and increased 

sympathetic modulation not corresponding, did show differences between the two groups.  If 

saturation is present, the increase in parasympathetic activity may not correspond with a decrease 

in sympathetic activity.  Data were only collected at once session during the pre-competitive 

period, which did not allow for changes and adjustments in HRV that may occur during different 

times of the training cycle. [18] 

 Non-elite recreational male long-distance runners (n=8) underwent four assessments at 

eight week intervals prior to participation in the 2008 Roma Marathon.  Subjects underwent pre-

training testing to determine their individual training load as established by a modified training 
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impulse (TRIMPi) method.  Both volume and intensity of training was determined for each 

subject individually based on their own physiological systems.  The ANS adaptations to training 

shifted from vagal to sympathetic as the subjects approached the maximum training as assessed 

via and increase in the AR LF, BP and the AR LF/HF ratio and a decrease in AR HF, consistent 

with sympathetic activation.  A curvilinear dose-response relationship between training load and 

ANS parameters was present.  An increase in the LF component at peak training was able to 

predict individual athletic achievement.  Direct comparison to other studies cannot be made 

based on these results as other training studies do not develop individual training plans which 

control for the physiological adaptations of the subjects.  In addition, this study used highly 

trained subjects (VO2max=51.3±0.8 ml*kg-1*min-1) who had a lifelong history of exercise.  

These results may not be transferable to sedentary subjects, female subjects or subjects involved 

in different types of training programs. [109] 

 The majority of studies focus on subjects involved in individual sports such as running, 

swimming and cycling that may not be comparable to those competing in team sports where 

activity is not always continuous.  In order to examine the effects of training on physical 

performance, cardiovascular variables of exercise HR, HRR and post-exercise HRV were 

monitored in 92 highly trained young soccer players over an entire competitive season.  Data 

were collected prior to the season, at the mid point and at the end of the season.  It was 

hypothesized that a substantial decrease in HR during submaximal exercise and/or and increasing 

HRR and vagal related HRV indices would indicate improvements in cardiorespiratory and 

neuromuscular fitness-related performance variables.  A within-player decrease in exercise HR 

and/or an increase in LN RMSSD, both improved vagal-related changes, were associated with 

improvements in maximal running velocity during an incremental running test.  Baseline levels 
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of submaximal exercise HR were moderately-to-largely correlated to improvements in maximal 

running velocity over the season.  It can potentially be inferred that those who start with greater 

initial parasympathetic tone, as indicated by a faster HRR, can show the greatest improvements, 

however further research is warranted.  Previous research has found a possible link to increased 

parasympathetic activity and the increased capacity to adapt to higher training loads.  Baseline 

HRR and LN RMSSD were moderately correlated to changes in maximal sprinting speed and 

performance in repeated springs.  Also, baseline LN RMSSD was moderately correlated to 

changes in acceleration.  It is possible that the HRV measures were affected by acute fatigue, 

hydration, stress or the exercise load placed upon the athlete in testing.  None of these factors 

were controlled for in the study therefore it is possible that some of the athletes were in a state of 

overreaching or overtraining at the time of the data collection. [110]   

 A prospective longitudinal design was used to determine the possibility of using HRV 

parameters during training to predict non-functional overreaching in female wrestlers (n=34).  

Based on meaningful results from a pilot study, HRV measures were taken no later than six 

weeks preceding international wrestling competitions to obtain valuable markers and reference 

thresholds of HRV parameters.  Weekly HRV measures were taken using the OmegaWave sport 

technology system on Sunday evenings following a day of full recovery.  Time domain variables 

of SDNN and RMSSD and frequency domain parameters of TP, LF, HF and LF/HF were 

analyzed.  Weekly training load was described as either high, medium or low based on the 

number and intensity of the training sessions.  Those characterized as having non-functional 

overreaching had associated HRV changes for three or more weeks with a concurrent decrease in 

physical performance.  Athletes who were in a state of overreaching had fluctuations in HRV 

parameters during recovery however that response was either an increase (n=32 measurements) 
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or a decrease (n=29 measurements) in HRV compared to the normal response (n=216 

measurements).  As there are two types of OTS, involving both sympathetic and parasympathetic 

changes, subjects fitting either change were considered to be at risk.  A Pairwise comparison for 

time domain indices was significant (p < 0.0001), however TP, HF, LF and VLF were significant 

only between increased and normal responders (p < 0.0001).  The LF/HF ratio was significant 

between decreased and normal responders (p=0.002) but not between increased and normal 

responders (p=0.662).  The non-invasive method of HRV makes it an easily obtainable early 

warning sign for OTS, which could then be followed with blood work or other invasive tests if 

symptoms persist.  One limitation of this study is that by taking only weekly measurements 

following the recovery day there was no indication of lack of recovery during the week or way to 

calculate normal daily fluctuations. [111] 

Elite male soccer players (n=8) underwent nighttime HRV analysis and ultra-short-term 

HRR analysis during weekly small-sided games in practice in order to examine the relationship 

among these autonomic indices during eight weeks of preseason training.  The workload of the 

small-sided games was tacked via GPS monitoring.  The HRR was determined via HR monitors 

with HRR defined as any sudden and consistent decrease in HR over a predetermined period of 

time of ≥ 20s following a peak of ~85% of predicted maximum HR.  In those with no difference 

in workload from week one to week eight (n=6), HRR parameters were not significantly 

different among the slope of the regression line at five, ten, fifteen and twenty seconds of 

recovery but when expressed as a percentage of peak HR, the difference was significant from 

three seconds onward.  For nightly HRV analysis the players wore HR monitors to assess the 

mean of four daily, continuous three hour night-time recordings with the days randomly selected 

for each player.  The changes in HRV from week one to week eight were significant for SDNN 



	 155	

and SD of the long-term continuous RR variability and not the short term SD or RMSSD.  The 

coefficient of variation (CV) of the RMSSD over the preseason was found despite no evident 

changes in RMSSD.  It is possible that the training design of the preseason, which was intended 

to induce supracompensatory changes, may have affected the CVRMSSD.  A continuation of the 

data collection during the season may produce different changes.  As the data were collected 

overnight for four days out of the week, it is difficult to compare these to single weekly data 

collections or morning data collections as are found in other research studies. [112] 

In a review of the literature the value of assessing cardiac parasympathetic reactivation 

following exercise was examined in order to make recommendations for training.  Exercise 

intensity influences acute recovery and for up to 90 minutes post activity parasympathetic 

activity does not return to pre-exercise values.  The lower intensity exercise shows the quickest 

return and high intensity exercise shows the slowest.  Intermediate recovery for low intensity 

exercise can be seen at 24 hours however threshold and high intensity exercise can take up to 48 

hours or more.  These effects are dependent upon the fitness level of the individual as highly 

trained individuals recover the quickest.  When strength training was examined, there were 

differing results indicating that more research is needed for resistance based exercise and cardiac 

parasympathetic activity monitoring.  It is noted that individual difference are paramount and 

therefore age, gender, fitness level and type of training must be taken into consideration.  It was 

recommended to use daily measures taken upon wakening using the RMSSD measure and 

training logs to determine level of intensity, sleep quality, stress, fatigue, soreness and duration 

of exercise as all of these factors have been deemed necessary to evaluate recovery.[75] 

 In athletes, HRV is often used to determine recovery from exercise, adaptations to 

training load and fatigue; all possible concerns for overtraining [5, 104, 110].  Having a standard 
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protocol and established norms would allow for athletes to utilize an HRV protocol without 

requiring each athlete to establish their own baseline values [1, 28].  The majority of HRV 

analysis focuses studies have focused on endurance athletes, however direct comparisons cannot 

be made with athletes who undergo interval or anaerobic training [23, 79, 99].  Endurance 

athletes will often train at levels below anaerobic threshold allowing for a faster recovery 

compared to training that is done at a higher intensity [48, 50].  With interval training immediate 

recovery may be delayed because of increased sympathetic activity and parasympathetic 

withdrawal necessary to maintain blood flow whereas the continuous training at one intensity 

may result in just parasympathetic withdrawal and not an increase in sympathetic activity [5, 99, 

102, 106].  The ANS response is different with acute sessions of anaerobic compared to aerobic 

training therefore it can be presumed that the HRV norms for athletes will reflect their dominant 

training [18, 79, 107].  In elite athletes, however the difference in HRV levels between aerobic 

and anaerobic athletes has not proved to be significant, although at that level the differences may 

be so small that significance cannot be detected [18, 57].  Additional considerations should also 

be made for athletes in team sports as very little research has been done on these subjects [110].  

It is important to consider the athlete’s sport and training type, intensity and fitness level along 

with other factors such as age and gender when evaluating recovery [27, 49].  Because there are 

normal fluctuations of HRV, utilizing data obtained during differing intervals of training may 

provide differing results and therefore the current trend is to look at multiple consecutive days of 

HRV data [70, 110-112]. 

Daily HRV measurements 

 Daily HRV measures have been used to determine the effects of normal and overtraining 

on competitive athletes as well as to assess the potential for injury risk [6, 65, 66, 70, 113].  
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Using daily measures of HRV as well as information about the previous day’s training load or 

type of training and the subjective RPE from the athlete can give an accurate description as to 

how the athlete is tolerating the activity [6, 49, 66, 113].  Analysis of the daily HRV seems to 

indicate that the daily change is most relevant when compared to the average of the previous five 

to seven days rather than compared to the change of just the previous day [6, 47, 70].  Using 

HRV to guide training can give a better indication of recovery and how well the athlete is 

tolerating the imposed training load [6, 47].  When compared to traditional training, HRV 

training resulted in improved endurance performance [114]. 

 Two elite triathletes (n=1 male, n-1 female) underwent longitudinal HRV monitoring 

over a 25 week high volume training period prior to a key event and as a result a potential new 

way of using HRV to monitor stress and recovery was presented.  The athletes used a training 

journal to record the duration of daily training, psychometric questionnaire to record daily levels 

of sleep quality, muscle soreness, stress and fatigue on a Likert scale, and HRV analysis using a 

heart rate monitor.  The RMSSD was chosen as the HRV measure, which was then log-

transformed with the LNRMSSD plotted as a function of the corresponding mean R-R interval 

value on the same day.  Differences were considered on an isolated day (day seven of each 

week), on a rolling seven day average, the total of a one week period (Monday to Sunday) and a 

seven day rolling coefficient of variation (CV).  The SWC was calculated from individual CV in 

LNRMSSD, RHR, training volume and psychometric indices data over the first to weeks of 

recording.  A change of more or less than 0.5 of the CV was considered the SWC.  The 

magnitude of change between weeks was expressed as standardized mean differences or effect 

size and linear regression was used to examine the rate of change in RHR, RMSSD as well as 

selected psychometric indices.  The female athlete developed non-functional overreaching 
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(NFOR) around day 37 however she continued to train and attempted to compete but did not 

finish the event and subsequently diagnosed with the herpes zoster virus, which can be linked to 

immunosuppression and chronic fatigue in younger individuals.  The male athlete finished third 

with a personal best result.  Daily and rolling values for RHR gradually increased while 

LNRMSSD gradually increased for the NFOR athlete while for the control athlete the values 

decreased and increased respectively.  The results of the competition supported the notion that 

the female athlete was at risk for OTS while the male (control) athlete was effectively prepared 

for competition.  For these athletes the HRV measures were more indicative of change than the 

psychometric indices.  Isolated daily HRV values were meaningless as 63% for the control and 

100% for the NFOR athlete fell outside of the SWC, as determined by the CV, and weekly or 

rolling averages are more meaningful.  The weekly LNRMSSD fell outside of the SWC for both 

the control and NFOR athlete however these were deemed to be a normal part of the training 

cycle.  Further investigation into the appropriate use of HRV and appropriate statistical measures 

for determining SWC are warranted. [70] 

 A prospective study was initiated to test the usefulness of daily HRV measurements to 

dictate individual endurance training where the training was decreased when the HRV decreased 

and increased when HRV remained the same or increased.  Healthy male recreational runners 

(n=30) were placed into one of three training groups, predefined training, HRV-guided training 

and control.  The HRV group used the following reference value to determine training level:  SD 

of the 10-day AR HF power average was subtracted from a rolling 10-day average of HF power.  

Any daily value lower than one SD below the mean resulted in a decrease in training while any 

change within one SD or greater resulted in high-intensity training with a maximum of two high-

intensity days in a row.  Fitness improved with the HRV based training and endurance response 
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was better than that in the pre-determined training group even with less high-intensity training 

days.  [114] 

 The effectiveness of aerobic training guided by HRV was assessed and compared 

between healthy, moderately active men (n=24) and women (n=36).  The participants divided 

into three groups, standard training, HRV training and control with an additional HRV group of 

women undergoing specialized training tailored for women.  The reference value was based on a 

rolling10-day window of RR intervals with a fairly complicated formula of calculating SD 

measures with SD1 defined as a decreased if the daily value was lower than SD subtracted from 

the mean.  Training was decreased if the change was greater than SD1.  The female only HRV 

group only participated in vigorous intensity exercise if the daily mean was above the rolling 

mean and greater than the previous day.  The HRV-based exercise was beneficial for men but did 

not have the same response in the moderately active women.  The female specific training 

resulted in fewer vigorous exercise days and the results of this different training were 

inconclusive, as the women seemed to require a longer period of time to recover from vigorous 

exercise.  As these were moderately training participants no conclusions can be made about elite 

athletes who undergo similar training. [84] 

 Changes in daily HRV parameters were used to differentiate between athletes in a 

protocol to induce functional overreaching (n=16) and controls (n=8), to determine if daily or 

weekly HRV changes would delineate change associated with overreaching and if the changes in 

ANS would be associated with cardiovascular changes in maximal and submaximal exercise.  

Training was monitored for seven weeks during the competitive triathlon season with the 

intervention group undergoing an increase in activity by 40% during weeks five, six and seven 

following a taper in week four.  All subjects measured morning HRV using HR monitors with 
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the last four minutes of eight minutes recorded in the supine position and seven minutes recorded 

in the standing position used for analysis.  The parasympathetic modulations of RMSSD and the 

Goertz algorithm was used for the frequency domain measures of HF and the sympathetic 

modulation of LF/HF were used as outcome measures with both once a week and weekly 

averages considered.  Half of the CV was considered for the SWC.  Thirteen of the subjects in 

the experimental group had decreased running performance compared to pre-training values and 

a high level of perceived fatigue following the overload period followed by a supracompensatory 

increase in performance following the taper.  The differences in groups using the single day 

values for HRV taken in the supine position were unclear while the weekly average values of 

HRV parameters demonstrated a greater increase in LNRMSSD in the experimental group when 

compared to the controls.  Similar trends were seen in the HF and LF/HF in the supine position.  

In the standing position the single day value differences in LNRMSSD and LF/HF were unclear 

but were likely to almost certainly greater using the weekly averages for LNRMSSD and log HF.  

The use of mean weekly values was found to be superior than isolated HRV values in assessing 

training induced adaptations and that day to day fluctuations make HRV analysis of single day 

values insensitive to clearly determine changes associated with functional overreaching.  In these 

athletes resting HR decreased in the experimental group during the overload stage yet remained 

constant in the control group.  This linked the experimental group to an increase in 

parasympathetic activity during that time that when paired with the parasympathetic 

hyperactivity demonstrated by the HRV may reflect a supracompensatory saturation of the 

sinoatrial node.[6] 

 Daily changes in ultra-short HRV measures taken via smartphone application were 

assessed from two weeks of varying training loads during off-season training for collegiate 
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female soccer players (n=10).  Additionally, an association between daily HRV fluctuations and 

additional markers of training status were used to facilitate meaningful interpretation.  Measures 

were taken every morning in the supine position.  Per previous research, one minute of 

measurement was taken following a one minute stabilization period.  Data was then exported to 

the from the smartphone application to the researchers.  Questionnaires using a five point Likert 

scale assessing perceived sleep quality, muscle soreness, mood fatigue and stress were completed 

three days a week and training load was calculated as the ratings of perceived exertion (RPE) of 

the training session multiplied by the training duration for conditioning sessions and RPE 

multiplied by repetitions performed for the strength training sessions.  All daily values of 

LNRMSSD were compared to the baseline, established as the first day of data collection, which 

followed 72 hours of rest, with the effect size serving as the threshold of change.  When the 

confidence limit crossed the threshold of .02, positively or negatively, the effect was unclear.  

The SWC was evaluated as half of the CV as determined by Plews [70].  Correlation coefficients 

were determined between the coefficient of variance of the LNRMSSD and the fitness and 

individual averaged psychometric variables.  The effect of the greater training load in week one 

lead to greater reductions in LNRMSSD from baseline compared to week two with lower 

reductions found in those with a higher level of fitness and lower perceived fatigue.  However 

since the change was only assessed versus the presumed baseline of day one and did not account 

for any accumulated change of HRV.  In addition, there was a decreasing trend for 48 hours 

following more intense days.  Results suggested an individual response was more accurate than a 

group change and confirmed the need for individual analysis of change.  It is plausible that the 

shortened recording period and the questionable ability of the smartphone algorithm to correct 

for irregular heartbeats may have been problematic. [66] 
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 In a case study of a collegiate male cross-country athlete, the association between eight 

kilometer race performance and the smartphone derived HR and LNRMSSD was evaluated 

during one competitive season.  Training load was calculated by multiplying the training session 

in minutes by the RPE, training impulse was calculated by multiplying the average HR of each 

session by the duration in minutes and daily wellness was calculated by psychometric data 

recorded on a Likert scale for perceived levels of fatigue, sleep quality, muscle soreness, stress 

level and mood.  Morning HRV measurements were taken via the ithleteTM smartphone 

application with no less than five recordings taken per week.  Breath rate was standardized to 7.5 

breaths*min-1 and each test consisted of a stable 55 second reading.  The mean and CV 

(calculated as (weekly SD/ weekly mean) X 100) for the HR and LNRMSSD*20 measures were 

determined each week.  The race time was taken from official race results provided by the host 

University.  There was a strong relationship between race time and the CV of weekly HR 

(r=0.86) and LNRMSSD (r=0.92) and a moderate relationship between mean HR (r=0.63) and 

LNRMSSD (r=0.60).  While research supports weekly values over daily values, this case study 

indicates that the level of variability may be a better indicator than mean values alone.  This 

supports the idea that daily fluctuations are normal and may therefore be lost when only mean 

values are examined.[71] 

 Over a 10 week period the training load and psychological stats of elite male gymnasts 

(n=6) was evaluated using HRV, RPE of the previous day’s training and Foster’s psychological 

complaint questionnaire.  Morning HRV monitoring predicted the RPE of the previous day 

session with significant correlations for the Δmean RR, Δmean RR and ΔLF% (p<0.001).  The 

Foster’s index score showed a trend toward correlations and a significant relationship with 

ΔHF%.  With no increase in FFT LF or decrease in HF band over time and no changes in the 
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performance tests (1 repetition max on bench press, standing balance, squat jump, 

countermovement jump and agility T test), it was assumed that the subjects were not overtrained 

during this time.  In this study HRV accurately reflected training load and psychophysiological 

status of young elite male gymnasts and is an objective way to monitor the training load in order 

to reduce the risk of overtraining. [49] 

Ten national level athletes utilized a practical application of daily HRV data to adjust 

training load based on vagal activity.  A reduction in vagal activity resulted in a decrease in 

training load in an effort to enhance recovery while a high vagal activity allowed for an increase 

in training intensity.  Daily HRV data was analyzed using an algorithm based on a minimum of 

the previous five ANS assessments and a maximum of the previous 20 ANS assessments based 

on daily home-based ECG recordings.  Those athletes with high vagal activity in this study had 

an increase in change in performance, defined as a difference between the best sport result in the 

prior six weeks of the HRV-adjusting period and the best result from the previous season, 

expressed as a percentage of change.  The high vagal activity was presumed to enhance the 

quality of training, increase readiness and be a positive influence on performance.  Conversely, 

low vagal activity was associated with deterioration in performance and those subjects were 

assumed to be training above their actual training capacity, potentially putting them at risk for 

overtraining.  All alterations were made on an individual basis and potentially cannot be 

duplicated for other athletes.  In addition, the absence of matched controls and the small number 

of participants are limitations in this study. [47] 

 An observational study was done to investigate the changes in the HRV of professional 

baseball starting pitchers over a five-day pitching rotation schedule and to examine individual 

differences in resting HRV measures between pitchers.  It was hypothesized that the day 



	 164	

following a scheduled pitching start (referenced as Day 2) the resting HRV levels would 

decrease showing signs of increased sympathetic activity and that if resting levels did not 

increase prior to a start (Day 1) the individual would not be fully recovered and might be at risk 

for an overuse musculoskeletal injury.  Eight males competing at the Single-A level participated 

in almost five months of daily resting supine data collection upon their arrival to the team facility 

prior to any activity.  The time of day of data collection varied due to other team, travel and 

personal commitments of the participants.  Data were collected for 10 minutes with the log 

transformation of the RMSSD of the middle five minutes being used for analysis.  Participants 

who suffered an injury, were removed from the starting rotation or released from the team ceased 

data collection at that time therefore not all participants had the same number of data points.  A 

split-plot repeated measures ANOVA was used to examine the influence of pitching rotation day 

on resting lnRMSSD.  The resting lnRMSSD on Day 2 was significantly lower than all other 

rotation days (p ≤0.05) but returned to baseline value by Day 3 of the rotation schedule.  As 

starting pitching has previously been identified as a highly intense physiological task, the 

alteration in HRV is believed to be a response to the intensity of the previous day’s workload 

which was then resolved within 48 hours.  Had the lnRMSSD remained lower beyond Day 2, the 

subjects may have been at risk for OTS or musculoskeletal injury.  This also supports the notion 

that daily measures are needed to best reflect change as the athletes were under a five day 

pitching rotation and not a seven day work week.  There was no significant interaction effect 

between rotation day and pitcher, supporting the need for evaluating and interpreting data 

individually.  Limitations in this study include the inability to alter training load as well as the 

inability to control for the time of the daily data collection and collection may not have occurred 
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for each subject every day.  With the ability of subjects to monitor HRV on their own, the daily 

data collection may have been improved.  [113] 

 With the increase in the use of smartphone technology, daily HRV monitoring can 

effectively be done outside of the laboratory environment [62, 66].  The use of training load, 

based on the type of training as well as the subjective information from the athlete as to how well 

the tolerated the training, along with the objective HRV data the coach and athlete can easily 

adapt training in order to foster an environment that can help prevent OTS and potentially injury 

[6, 49, 70, 113].  Just as adaptations to training are individual, changes in HRV are individual in 

nature therefore each athlete must be compared to his or her own values in order to determine if 

the change in HRV is clinically significant [47, 66].  The most appropriate method for 

determining clinically significant change in HRV has been based on either 0.5 SD or 0.05 CV, 

however there has been no research to justify the use of these values [8, 70, 78]. 

Heart Rate Variability, Heart Rate Recovery, Blood Pressure and Cardiovascular Risks 

 Heart rate variability, BP and HRR can both be influenced by the autonomic nervous 

system [77, 115].  Autonomic dysfunction, characterized by sympathetic dominance is associated 

with cardiovascular disease and is related to poor aerobic fitness and body composition while 

higher heart rate variability has a cardioprotective effect [1, 36, 37].  Regular physical activity 

may protect against arrhythmias by increasing vagal tone both at rest and after activity, with 

females maintaining a higher vagal tone than males with comparable training volumes [116].  

Trained individuals also have a faster HRR compared to untrained subjects and this quicker 

return to normal vagal activity may be a cardioprotective effect to prevent excessive cardiac 

workload [117]. However sudden death due to cardiac abnormalities may occur in young 

competitive athletes as well as older populations competing in endurance events [118].     
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 While HRV and HRR are both used to assess autonomic function post-exercise, the 

relationship between the two has not been verified.  Research often assesses HRR in the standing 

position and HRV in the seated or supine position therefore a relationship must be established in 

order to determine if direct comparison can be made as position influences autonomic function.  

Physically active males (n=31) underwent one data collection session consisting of resting HRV 

data collection in the supine and standing positions prior to maximal exercise testing.  Standing 

HRR was calculated in absolute and relative terms as the HR decrement from the HR peak 

obtained during exercise to the HR at minutes one, three and five of active post-exercise 

recovery and normalized by the initial HR prior to exercise.  An increase in parasympathetic 

withdrawal and sympathetic enhancement was observed between the supine and seated HRV 

measurements.  There was a positive correlation of normalized HRR with indices of combined 

sympathetic and parasympathetic activity of the AR frequency domain HRV measures LF, LFn 

and LF/HF ratio, for the third and fifth minutes in the supine position and the fifth minute in the 

standing position.  For measures related to parasympathetic activity, pNN50, RMSSD, HF and 

HFnu, were negatively correlated in the standing position with HRR in the third and fifth minute.  

Therefore though it is accepted in the literature that the first minute following exercise might not 

be the most appropriate post-exercise time for clinical evaluation of HRR in healthy males.  It 

was concluded that HRR is better evaluated with initial HR and peak HR during exercise than 

resting HRV levels, regardless of positioning. [119]  

 There was no association found between resting HRV and HRR following a maximal 

graded exercise test in healthy college aged males.  The subjects in this study however, were not 

highly trained with a mean VO2max of 46.39 ml*kg-1*min-1.  No information was given about the 

training done by these subjects, only that they were classified as healthy and had no signs of 
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cardiovascular disease.  Significant inverse correlations were found with SDNN and maximum 

heart rate and heart rate recovery one and two minutes post-exercise.  Because previous research 

has determined that higher aerobic fitness levels are associated with greater HRV and HRR, it is 

possible that these subjects did demonstrate a great enough fitness level for improved HRR.  

Also, those with greater cardiovascular-parasympathetic tone at rest have a lower maximal heart 

rate and a greater drop in HRR.  Similar research with highly trained individuals may result in 

different outcomes. [115] 

 Endurance trained athletes with a VO2max above the 99th percentile participated in two 

data collection sessions, one maximal graded exercise test and one resting HRV data collection 

session.  The autonomic activity of the 19 subjects (n=8 male and n=11 female) was assessed via 

resting HRV and HRR post VO2max testing.  The resting HRV of the subjects is poorly 

correlated with aerobic fitness and volume of physical activity for all subjects, but HRR is 

strongly associated.  These findings were attributed to the resting HRV being determined by 

phasic changes in vagal efferent activity and HRR reflecting cholinergic signaling in the SA 

node.  This is consistent with the findings of other studies that also found a lack of relationship 

with VO2max and HRV and between HRV and HRR.  The strong relationship with HRR 

following a maximal exercise test with VO2max (r=0.62) and physical activity (r=0.55) are also 

consistent with previous literature.  Body composition in this group was assessed via body fat 

(underwater weighing), BMI and waist circumference.  Previous research has demonstrated a 

significant relationship between body composition and ANS, with improved ANS in those in a 

healthy body composition range.  This group had relatively low levels of body fat and a poor 

relationship between body composition and autonomic control via both HRV and HRR.   [120] 
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  Autonomic modulation has also been related to body composition.  Poor HRR and HRV 

have been previously associated with increased body mass index (BMI), larger waist 

circumference and higher body fat percentage and improvement in HRR and HRV has been 

found after weight loss interventions and endurance training programs.  A significant negative 

correlation was found with sum of skinfold and HRR one and two minutes post-exercise while a 

significant positive correlation was found between VO2max and HRR two minutes post-exercise.  

This indicates that cardiovascular fitness relates to a faster HRR while increased sum of 

skinfolds relates to a slower HRR following maximal exercise.  Typically, those who are 

aerobically trained have a healthier body composition compared to sedentary populations and the 

addition of aerobic exercise with weight loss has to potential to improve autonomic function in 

those at risk for metabolic syndromes.  While this can give insight to those with risk factors for 

cardiovascular disease, it does not offer any insight for a trained population. [37] 

 The effect of sum of skinfold measurement on HRV following maximal exercise was 

further investigated on healthy male subjects.  Following data collection, the subjects were then 

divided into groups based on their sum of skinfolds, either above or below the mean.  The two 

groups had no significant differences in age, height or VO2max.  Based on the results, it was 

suggested that greater sum of skinfolds was related to delayed return of HRV toward baseline 

following exercise, which indicates either a delay in sympathetic withdrawal or parasympathetic 

dominance.  Because VO2max and post-exercise HRV had no association, it is possible that 

endurance training may result in minimal post-exercise HRV changes and body composition may 

be a more predictive factor.  However the subjects in this study were not highly trained or 

endurance trained individuals making cross-comparison with trained individuals difficult. [36] 
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 Trained, but not elite, distance runners over the age of 30 underwent 24 hour Holter 

monitor HRV analysis.  During that time period females displayed a higher minimum heart rate.  

However males displayed higher FFT frequency domain measures of total power and LF power 

in m/s2. The higher TP in males was attributed to lower minimum heart rate and higher end 

diastolic volumes.  There was no gender difference for HF power in m/s2, however in normalized 

units (n/u), females had higher HF values and lower LF values.  Those with higher training 

hours, both male and female, displayed lower LF power and higher HF power, however for 

females this occurred during the nighttime while for males this was during the daytime.  With 

similar training values females had increased vagal tone, which may offer protection against 

exercise induced ventricular arrhythmias and contribute to a lower risk of sports-related sudden 

cardiac death. [116] 

 Male (n=16) and female (n=19) elite cross-country skiers monitored HRV on a weekly 

basis over a one year training cycle.  All measurements were taken first thing in the morning on a 

day that followed a low-intensity training day.  Additionally, RPE for every training session was 

multiplied by the duration to determine training load, which used to calculate the average weekly 

training load.  For each training period, the average weekly training load data and weekly HRV 

data were averaged.  At this elite level there was no gender difference in HRV at rest.  It was 

speculated that the athletes had reached saturation of the vagal receptors, as there was no 

difference in HRV markers during any of the training periods, despite increases in training load.  

Mean R-R measures, which have the smallest individual variance, did show a significant 

(p<0.05) difference between training sessions, but not between genders.  A limitation could be 

the use of one weekly data collection of HRV compared with a weekly average of training load.  

This could mask the ANS changes.  Weekly measures taken in the standing position, which 
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followed the supine position and presented an orthostatic challenge, showed higher markers of 

sympathetic activation in the males, perhaps indicating that the females do have a 

cardioprotective effect. [76] 

 Cardioprotective effects are not exclusive to endurance-trained athletes.  Strength and 

endurance trained athletes had higher left ventricular internal dimensions and left ventricular 

wall thickness compared to healthy, untrained controls.  As expected in regards to adaptation to 

their specific training, strength-trained athletes had a thicker left ventricular wall than endurance-

trained athletes while the endurance–trained athletes has a larger internal dimensions than the 

strength-trained athletes.  Following exercise, both groups had a faster heart rate recovery 

compared to the controls, with no significant difference between the strength and endurance-

trained groups.  From this information, it can be presumed that vagal adaptations to exercise are 

independent of morphological changes, however the effects of exercise on central command and 

baroreceptor resetting following exercise is unknown.  One limitation to this study is that 

recovery was examined only following aerobic exercise.  The effect of HRR from strength 

exercise in both strength and endurance-trained athletes was not studied.  [117] 

 Following exercise the accompanying decrease in blood pressure may be related to an 

inhibition in sympathetic activity.  Also unknown is whether it is the intensity or the duration of 

the exercise session that influences BP and autonomic indicators in recovery for 10 

recreationally active males.  Each subject underwent four exercise sessions of differing durations 

and intensities, a moderate long session, a moderate short session, a light long session and an 

intense short session.  Individuals with a higher initial BP values showed a more pronounced 

reduction in BP following exercise, however there was no significant differences in the behavior 

of the systolic BP with any of the exercise sessions.  This confirms that pre-exercise BP 
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measurements are more indicative of post-exercise hypotension than the exercise session.  As for 

the HRV measurements, based on the RMSSD, parasympathetic recovery was slower following 

intense and moderate exercise compared to light exercise.  The lack of difference in the FFT 

frequency domain measure of the LF/HF ratio following the sessions may be explained by a 

faster sympathetic withdrawal accompanying the slower parasympathetic recovery.  [77] 

 While those athletes who are highly trained do display a lower resting HR and HRV, 

research has not established a relationship between these measures and VO2max [115, 120].  The 

use of HRV data following maximal exercise is not the best measure of vagal indices with HRR 

post-exercise being a stronger indicator of parasympathetic return and sympathetic withdrawal 

[37, 115, 120].  In addition, physiological measures associated with a sedentary population that 

often displays higher sympathetic activity such as a higher pre-exercise BP as well as higher 

BMI and sum of skin folds are negatively related to a slower sympathetic withdrawal following 

exercise [36, 37, 77].  This further explains the cardioprotective effect of training, both 

endurance and anaerobic, on both the cardiac and ANS [76, 77, 117]. 

Methodological Considerations 

 It is difficult to compare HRV analysis from different studies when the methods and/or 

analysis differ [7].  Protocols involving resting levels utilizing a supine position cannot be 

compared to the results obtained when subjects are in a seated position as the body posture 

changes the effects of gravity on the circulatory system [58].  Athletes with different training 

regiments as well as those with a long history of training can neither be compared to each other 

nor to sedentary individuals [7].  Recovery from maximal exercise, such as a VO2max test, 

cannot be compared to recovery from a submaximal, interval or strength training protocol as the 

metabaroreflexes have a greater influence on the parasympathetic nervous system following 
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maximal exercise than submaximal exercise [8, 99].   The length of time of the data collection 

must also be considered, as shorter durations may not be sensitive enough to detect changes in 

sympathetic activity [7, 9].  For athletes, the data from RMSSD is preferred over spectral 

analysis as shorter duration can be utilized with the influence of respiratory rate removed [7-9].  

The RMSSD is also deemed more reliable than spectral indices in determining sympathovagal 

balance in highly trained athletes [8].  Increased acetylcholine saturation in these athletes can be 

reflected in the high frequency spectral analysis making this analysis insensitive to the effects of 

training [7]. 

 Heart rate variability is often used to study training load.  A moderate increase in training 

might lead to an increase in HRV, however a large increase in training load will cause a decrease 

in HRV.  This may be due to a saturation of acetylcholine (AcH) receptors in the 

parasympathetic nervous system, resulting in a decrease in HRV with a corresponding decrease 

in resting HR in a well-trained athlete.  Conversely, as competition approaches and taper is 

utilized, a decrease in HRV may potentially reflect that an athlete is ready to perform and not 

that they are overtrained for the event.  Methods of analysis of HRV, including length of 

recording and type of analysis (time domain or frequency domain) are an important 

consideration for determining change.  Using both resting HR and the Ln RMSSD to R-R 

interval ratio, which considers changes in both vagal tone and vagal modulation, can determine if 

the changes are due to saturation as opposed to overtraining.  Because HRV will change from 

day to day with an athlete who is training, a one time resting HRV measurement cannot be used 

to determine assess change, be it positive or negative.  It has been suggested that averaging the 

data points of HRV over one training week to give a more meaningful representation of the HRV 

changes.  Morning rested HRV measures taken over one week have been shown to best reflect 
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the status of an athlete’s autonomic balance compared to an isolated measure.  The use of 

consistent tracking can best monitor changes in a single athlete more so than comparisons to 

previous data. [7] 

 Athletes involved in a long competitive season have to choose between recovery from the 

most recent competition and rebuilding fitness or maintaining training to capitalize on 

adaptations.  While many factors go into deciding on the training plan, a lack of full recovery in 

a fatigued athlete can lead to overreaching and potentially to injury.  Daily HRV measures were 

taken for triathletes in a control and an overreaching training program (n= 8 control, n=16 

overreaching) and used to determine if daily or weekly monitoring was more effective for 

investigating potential ANS changes related to overreaching.  Subjects underwent the same 

initial three week training program followed with a one week taper.  Then the control group 

followed the same protocol for another three weeks while the overreaching group underwent a 

three week overload phase of a 40% increase in training.  Both groups ended with another taper 

week.  Recordings of HRV were taken each morning in both the supine and standing position 

after awakening and perceived fatigue was assessed weekly using a scale from 1-100 (no fatigue 

to maximum fatigue).  In the overreaching group, 15 of 16 displayed a decrease in performance 

and a high level of perceived fatigue after the overload period while all 15 showed 

supercompensation with improved performance after the subsequent taper period.  The HR and 

HRV values were taken either in isolation (single day) or as a weekly average.  Weekly averages 

of HRV upon waking indicated a progressive increase in parasympathetic modulation during the 

overload period, which was strengthened by the lower HR values during exercise and a 

progressive decrease in resting HR.  The isolated daily data collections were less sensitive to 
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these changes.  One limitation of this study was the inability to control for additional stressors 

that may have affected the HRV data collection. [6] 

 Utilizing the concept of HRV guided endurance training, 40 subjects were recruited for 

either the experimental group (n=13 completed) or a control group (n=18 completed) of 

traditional training with no adjustments made based on resting HRV.  The HRV guided group 

recorded four minutes of resting levels each morning in the supine position with a rolling seven 

day average being used to guide the changes.  The SWC of ±0.5 SD from established values for 

each subject was used to determine if the subject rested instead of performing their prescribed 

workout.  The subjects in the experimental group improved in 3000m running compared to the 

control group even with performing less moderate and high intensity training sessions.  The 

improvement in maximal running performance was 2.1% in the experimental group and only 

1.2% in the control group, which was not statistically significant however it does have some 

practical significance in terms of performance.  One of the subjects in the experimental group 

failed to improve and consistently presented with RMSSD values below the SWC due to work 

stress.  This was a challenge to the HRV-based training program that did not have any provisions 

for monitoring non-training stresses.  With this protocol improvements in training can be based 

on individual variations, such as those based on age and gender, which may prove more 

successful over traditional training plans.  It was noted that the SWC might need to be updated as 

training adaptations to the ANS and cardiovascular system occur.  A potential limitation of the 

study was that the at home HRV measurement tool may not have been as standardized as those 

performed in a laboratory setting. [69] 

 One of the concerns with daily HRV monitoring of elite athletes is the saturation 

phenomenon and its effect on the LnRMSSD to RR interval relationship.  In those who have a 
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resting HR lower than 50 beats per minute HRV interpretation can be misleading leading to 

misinterpretation of overreaching if the associated vagal saturation response is not considered.  

Elite rowers (n=3 female, n=1 male) were monitored for seven weeks prior to the 2015 World 

Rowing Championships.  All subjects underwent similar volumes of training.  Supine morning 

HR measurements were taken using the Polar Bluetooth H7 heart rate sensor with data 

automatically sent to a smartphone via an iPhone application (Igtimi HRV) then uploaded from 

the smartphone to the researchers for analysis.  Individual baseline data was established in the 

first week of training and change was calculated within-subject as baseline-to-week differences 

expressed as standardized mean differences or effect sizes that were assessed using a magnitude 

of change approach.  The SWC in LNRMSSD and resting HR was considered 0.5 of the 

individual baseline coefficient variation and 2% respectively.  All rowers displayed a decrease in 

LNRMSSD to RR ratio at some point during the training, typically between weeks four, five or 

six yet all rowers were world champions in their respective events.  This highlights in association 

between a decrease in HRV and readiness to perform.  The state of functional overreaching 

contributes to enhanced performance when the training load is reduced.  Low LNRMSSD values 

combined with low resting heart rate can be explained by parasympathetic saturation.  Increases 

in vagal activity are not necessarily indicative of improved performance but of positive 

adaptation to training.  It is also important to consider the type of athlete, their own relationship 

between LNRMSSD and RR intervals and current training regiment.  [65] 

 Another methodological consideration is the appropriate length of recording.  Typically it 

is recommended to take five minutes of resting HRV in athletes in response to rest and physical 

stress.  Previous research on other populations has determined that ultra-short-term Ln RMSSD 

measures agree with a five minute recording and was therefore applied to an athletic population.  
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In the resting, pre-exercise condition, randomly selected 10, 30 and 60 second recordings had no 

significant difference when compared to the five minute recordings for Ln RMSSD (ICC of near 

perfect to very large).  The post-exercise (Bruce protocol, VO2max) condition, the comparisons 

were significantly different, however the effect size was small and the ICC was nearly perfect.  It 

is possible that the shorter time period did not provide an appropriate number of R-R intervals 

for HRV determination in the post-exercise condition and that the lack of steady state in recovery 

provided too little variation in the R-R intervals during the 10 and 30 second conditions.  The 60 

second recording is recommended as an acceptable alternate to a five minute recording in 

athletes both at rest and in post-exercise recovery. [9] 

 When a subject is in the supine position, HRV is regulated predominantly by 

parasympathetic neural influence while the standing position is associated with higher 

sympathetic neural influence.  Elite male (n=7) and female (n=11) sprinters underwent supine 

and orthostatic (standing) HRV data collection.  Collections were taken on the same day during 

the final week of general preparation for Olympic qualifying.  The standing position resulted in 

higher cardiac autonomic stress than the supine position for both genders for both the time and 

frequency domain measures.  The standing position results in baroreflex adjustments to 

accommodate a need for increased blood pressure against gravity and reduces the effect of 

parasympathetic saturation.  Because most HRV studies involving positioning are done on 

endurance athletes, it is difficult to make assumptions about the parasympathetic effects of 

training when the subject is in the standing position, especially for athletes involved in anaerobic 

training.  Training mode is also related to specific autonomic cardiac adaptations.  The increased 

intensity of the training of elite sprinters induces higher autonomic cardiac perturbations, 

contrary to the changes undergone in endurance athletes who maintain a greater training volume 
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but typically a lower intensity.  In this study the males presented more notable changes in 

autonomic stress than females, which is consistent with younger females having a higher HRV 

than males. [58]   

 A systematic review attempted to summarize the literature for the influence of swimming 

on HRV and its use in evaluating training.  A total of 14 articles that examined swimming 

variables and utilized time and frequency domain measures were analyzed for the systematic 

review.  Some methodological considerations in comparing these studies included the use of 

different algorithms for analysis, the use of ambulatory devices for post-exercise recordings as 

opposed to the traditional ECG, thermoregulatory changes that may occur in an athlete related to 

water submersion and choice of swimwear during activity and for data collection.  Studies that 

involve trained and untrained subjects or subjects that may be involved in a variety of training, 

for example triathletes, make cross-comparison difficult.  Additional concerns include training 

load or time period.  The most interesting finding from the studies in the review is that high and 

stable vagal activity during preparation indicates a readiness to train or appropriate recovery in 

swimmers.  Performance in professional swimmers is correlated with ANS activity with 

performance having a significantly negatively related to LF and LF/HF ratio and positively 

related to HF. [74] 

 A systematic review of normal HRV data was done to provide a potential source of 

normative data for a healthy population.  Considerations were made for length of time of 

recording, Task Force recommendations for formats [1] and sample size.  When compared 

between studies, time domain measures showed less variation than frequency domain measures 

with the largest variation in HF power and when log transformed.  Females had lower values for 

time domain measures and males had lower frequency domain measures for LF and HF power 
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but not LF/HF, which was lower in females.  The FFT method had lower LF power, higher HF 

power (log transformed and absolute) and higher LF/HF ratio.  Many studies fail to report mean 

HR and mean RR, which was seen as a fundamental flaw in the reporting of HRV.  Underlying 

factors in HRV analysis that lead to discrepancies include participation in physical activity, 

paced breathing protocols (especially with physically active individuals), age and gender of the 

participant, the use of differing frequency bandwidths, poor RR interval editing and a failure to 

recognize normal or abnormal values in healthy participants.[34] 

 Measures of HRV have been validated under resting conditions and cannot be directly 

compared to measures taken during exercise.  These measures are based on parasympathetic 

activity, which is withdrawn during exercise and baroreflex activity, which is altered in the 

exercise state.  At higher exercise intensities, HRV becomes difficult to interpret as the decrease 

in variability may be limited by the available resolution of the systems used in analysis.  The 

reductions in HF percentage at lower exercise intensities may accurately reflect the withdrawal 

of parasympathetic activity, however with increasing exercise intensity comes an increased 

influence in sympathetic activity.  This should then be reflected in the LF percentage increasing, 

yet higher intensity has been associated with a complete removal of LF from the power 

spectrum, contradicting the findings of pharmacological induced changes in sympathetic activity.  

It is therefore recommended that further validation of correct methodology for exercise measures 

should be made.  Any direct comparison of resting or pharmacological measures and exercise 

measures should be avoided. [121] 

 There are many advantages to using HRV to monitor the ANS status as it is noninvasive, 

not expensive, time-efficient, and can be applied to a large number of athletes.  Ideally HRV data 

collection for athletes should be taken for five to ten minutes, rested with the athlete in the supine 
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position and time domain indices such as RMSSD should be used for analysis.  While research 

has examined HRV during exercise, its use does not appear to have any practical application and 

is not as sensitive to fatigue as resting HRV measures.  Post-exercise HRV analysis is related to 

exercise intensity and becomes redundant with exercise HR.  A better determinant of recovery 

and a more relevant monitoring tool appears to be HRR, however more research is needed for 

confirmation among a wider range of athletes in different sports.  Day-to-day variations in 

training load influence ANS activity with intense exercise decreasing vagal related indices for 

24-48 hours while low-intensity exercise increases vagal tone.  Therefore HRV monitoring can 

be used to guide training as long as care is taken to account for training load.  This monitoring is 

straightforward for endurance sports, however monitoring of athletes involved in team sports 

remains to be evaluated.  In the absence of fatigue or overload, decreases in vagal related indices 

may still occur.  This mechanism is likely related to saturation of the acetylcholine receptors, as 

increased vagal tone gives rise to sustained parasympathetic control of the sinus node thereby 

decreasing vagal related HRV indices which only the magnitude of the modulation in outflow.  

Examining the R-R intervals can determine if the changes are truly sympathetic or are related to 

saturation.  With saturation the R-R intervals will increase indicating a lower HR in contrast to 

increased sympathetic activity, which will be characterized by a higher HR.  Daily HRV 

monitoring can also be beneficial in determining average changes based on training load, 

however these changes are individualized and comparisons cannot be made between athletes, 

especially athletes of different sports.  When it comes to monitoring athletes, the normal 

variation, such as day-to-day variability is measured by typical error TE as expressed by a 

coefficient of variation CV while the changes that have a practical effect are the SWC.  Defining 

the SWC likely depends on the training context, type of adaptations to be monitored and the 
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monitored variable itself.  Examining the effects of training over a few points during the training 

cycle, which represents a bell-shaped curve may result in a wash-out effect of the SWC while 

frequent monitoring will allow for a better estimate of change over time.  The inclusion of home-

based monitoring and the ability to data collect multiple times a week upon wakening may be the 

best option for monitoring the SWC during a training cycle. [8] 

 The HRV measures are becoming more widely utilized in examining training related 

autonomic and cardiovascular changes [6-8, 69].  Current research has examined the use of daily 

HRV recordings to monitor the effects of training on the ANS with weekly training values used 

to alter training sessions [7, 47, 62].  With the current smartphone technology using the proposed 

methodology for collecting HRV data in relation to subject positioning, time of collection and 

duration of the sample, has the potential to make HRV data collection more readily available [8, 

58, 67, 74, 121].  Having the ability to establish the SWC for the RMSSD would allow athletes 

from a variety of sports and training methods to utilize HRV to determine their optimal training 

[8].  Combining physiological data with subjective data would help identify the affect of non-

training stresses on the HRV data [6, 8, 69]. 

 

Recovery 

 In order for training to be effective there needs to be an optimum balance between 

activity and recovery [38, 41].  Athletes often utilize a variety of modalities such as massage, 

water immersion, stretching, and active recovery in order to recover between sets of an exercise, 

between sessions on the same day, or from the stresses of training even though the research has 

not confirmed that these modalities directly lead to any improvement in performance [41, 122-

124].  However even if there is no improvement in performance, it is possible that the athlete 
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would be able to at least maintain their performance with adequate recovery [122].  It is also 

possible that the recovery modalities will have a cumulative effect if consistently utilized during 

recovery from training [123]. 

 The effects of active recovery and static stretching were compared to passive recovery on 

performance of high-intensity intermittent exercise in healthy active but not highly trained 

students (n=10).  For the exercise protocol, subjects performed four bouts of supramaximal 

exercise at 120% of their VO2max with a five minute recovery between bouts for the 

intervention and lactate collection.  During the active recovery subjects pedaled at 20% of their 

VO2max, during the stretching recovery subjects performed static stretches of 20 to 30 second 

for the hamstrings, hip extensors, triceps surae, quadriceps and hip flexors and during the passive 

recovery subjects lay supine without any exercise.  The percentage of recovery from the active 

recovery intervention was higher than with the other two types of recovery (p<0.05) with three 

percent superior work compared to stretching and 4 percent superior work compared to passive 

recovery.  It is important to consider the low intensity of the recovery exercise as well as the 

short duration.  This percentage of gain, while small, does reflect the SWC, which might be 

critical for the outcome of a competition.  [125] 

 Trained female netball players (n=10) followed intermittent-sprint exercise with active 

recovery, cold water immersion, or contrast bath, three common recovery strategies employed 

following team-sport training with little evidence to support their effectiveness.  Subjects 

underwent testing for each intervention plus had a passive recovery session.  Each testing session 

consisted of four repetitions of an intermittent sprint interval exercise circuit designed to mimic 

game conditions.  Performance measures of countermovement vertical jumps and sprints were 

performed before and after each circuit session to determine decrements in speed and power.  A 
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recovery intervention was applied following the first session with the subject returning 24 hours 

after each intervention to repeat the exercise session.  The washout period between modality tests 

was a minimum of five days.  While a large effect size was evident for detriments in vertical 

jump and sprint time prior to the second exercise session with the cold water and contrast bath 

therapies respectively, there was no significant difference in the performance variables.  

However the subjects had less of a decline in the second session compared to the passive and 

active recovery interventions.  Even though the changes were not significant, the subjects did 

report a significantly lower RPE and a significantly lower amount of muscle soreness following 

these recovery modalities compared to active recovery, which performed at 40% of their 

VO2max for 15 minutes may have been too high for these fit but not elite subjects.  As there 

were individual differences in the results of the recovery modalities, it is possible that each 

athlete could find an intervention that is suited for their individual needs.  [122] 

 Conflicting results on performance, biochemical and inflammatory markers from 

hydrotherapy studies lead to further research as to the effects of cold water immersion compared 

to no intervention for endurance trained cyclists (cold water immersion n=10; control n=11) over 

a 39-day training block.  Both groups followed the same training protocol with the cold water 

immersion group performing four 15 minute immersion sessions a week while the control group 

refrained from all hydrotherapy.  Neither group was allowed any massage intervention however 

both groups were allowed to stretch ad libitum.  Sleep/wake patterns were monitored via activity 

monitors in conjunction with a journal and the RESTQ-Sport was utilized to monitor stress and 

recovery.  Performance measures were used as objective measures.  No physiological variables 

were examined.  Neither group had improvements in their global, stress or recovery based on the 

RESTQ-Sport scores however the experimental group reported what were deemed possibly 
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harmful effects from the cold water immersion compared to the controls.  While both groups 

were negatively affected in the sleep measures, following the taper the experimental group 

reported a negative influence in total sleep time and sleep latency categories.  Negative 

influenced of the recovery score was seen in the control group but not in the experimental group.  

The SWC was not calculated for any of the subjective or performance scores.  The performance 

measures of repeat high-intensity sprints, sprint performance and self-selected workloads the 

experimental group demonstrated a greater increase in performance when compared to the 

controls.  As this study was intended to mimic a real world training scenario, the subjects were 

not blinded to their intervention and the subjects were matched for belief in recovery as well as 

fitness, therefore the placebo effect cannot be ruled out.  [123] 

 The simultaneous influence of different recovery methods on professional young soccer 

players (n=12) during their preseason was examined to determine the most effective recovery 

method.  Post-recovery anaerobic performance was used as an objective measure and rating of 

muscle pain was used as a subjective measure.  On four occasions throughout the preseason, 

subjects participated in one of the four recovery interventions, aerobic recovery on land, aerobic 

recovery in the water, seated rest and electrical stimulation, following the morning session of a 

twice a day training.  On the experimental days the coach standardized the morning and 

afternoon sessions and the subject utilized polar heart rate monitor tracking to ensure that the 

training session intensity did not vary.  Performance measures of squat jump, countermovement 

jump, bounce jump, and a 10m sprint were evaluated before the first and second training sessions 

on the experimental days.  Subjective measures included an RPE at the end of morning training 

and a rating of muscle pain (RMP) from 0 to 10 prior to the second session.  Mean recovery 

approached 100% for all of the interventions with the sprint having the lowest percentage.  
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Significantly lower RMP values for the leg were found with the aerobic recovery on land and the 

electrical stimulation but not following the aerobic recovery in the water or the resting recovery.  

Recovery was also evaluated on an individual level with all players showing full recovery on the 

squat jump following the aerobic activity in the water and on the countermovement jump for the 

aerobic activity on land and the electrical stimulation recovery sessions.  Neither passive nor 

active recovery induced any differences in anaerobic performance.  The limitations for this study 

make it difficult to transfer from these elite athletes to athletes in other sports or at other fitness 

levels.  In addition, the one-time use of the recovery modality may not have been enough to elicit 

change, especially the aerobic water recovery that may have been foreign to some individuals.  

While monitoring subjective and objective measures of recovery have value for both the athlete 

and the coach, this study did not provide support for any of the interventions. [124] 

 The use of recovery modalities is highly common among athletes in an attempt to 

improve performance even though much of the research does not support performance 

improvements [41, 125].  Research that does not approach statistical significance could be 

misleading as to the ability of a modality to ensure that the athlete recovers enough to maintain 

performance [122].  More appropriate recovery studies are needed to assess the SWC among 

physiological and psychosocial factors as well as the use of the modalities in conjunction with 

longer training durations as opposed to single exercise sessions [41, 123-125]. 

  

Statistical Considerations 

 The current health model suggests that meaningful change from the patient perspective 

reflects a reduction of symptoms or an improvement of function, even if those changes fail to 

meet the therapeutic threshold for recovery [81, 83].  Changes that are to be examined on an 
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individual basis should therefore be subject to different statistical models than methodologies 

being used to examine group level changes [81, 126].  Choosing the appropriate methodology for 

health related outcome studies would need to include a valid interpretation of the change in terms 

of relevance to the patient [126].  The HRV methodologies refer to the SWC, while healthcare 

measures the minimal important difference, an anchor based measure and the minimal detectable 

change [82].  Many current HRV studies are choosing to utilize daily data collections and 

examining for changes that may be considered to be substantially positive or negative versus 

those that may be unclear [78]. 

 Traditional analysis in evidence-based practice includes inferences that determine if 

something is statistically significant based on a P value, however this does not always accurately 

determine the real-world importance of the effect.  The use of confidence intervals in inferences 

can serve to more realistically evaluate whether the change is harmful or beneficial versus a 

change that may be trivial.  The changes can be assigned qualitative terms such as possibly 

harmful or unclear but likely to be beneficial which would then align with quantitative thresholds 

of for the standard difference in means (the mean difference divided by the between-subject 

standard deviation (SD)).  This calculation has been used recently to calculate daily changes in 

HRV for endurance athletes. [6, 70, 71].  Confidence intervals can easily be calculated via 

spreadsheet with the same assumptions about sampling distribution that are used to derive P 

values.  More research is needed to determine the appropriate thresholds of change in HRV, both 

as athletes in a group as well as individual levels of change, and the qualitative categories that 

would align with the quantitative changes. [78] 

 There is a distinct difference in health care models between physiological measures that 

are clinically significant, showing the presence or absence of a disease, and measures lack 
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clinical significance yet demonstrate meaningful change from the perspective of the patient.  

Measures that do not come directly from the patient fail to accurately assess the health-related 

quality of life.  An individual may see change that is noteworthy in respect to their recovery or 

treatment even if it would be seen as a measurement error when compared to group mean 

changes.  Therefore, different statistical approaches are suggested for individual and group 

analyses.  The standard response mean (SRM) utilizes standardized units, is independent of 

sample size and is based on variability of change.  It is calculated as the ratio of the individual 

change to the standard deviation of that change and does not ignore the variation in the change.  

In this statistic each individual will have different SRM values depending on their own 

variability of change.  The response statistic (RS) is a variation of the SRM that is a bit more 

conservative than effect size and takes into account spurious change due to measurement error.  

It is calculated by dividing the difference between pre-test and post-test change by the standard 

deviation of change among a group of stable patients.  A third statistic, the reliable change index 

(RCI) takes into account the precision of measure and uses cutoffs based on confidence intervals.  

It is calculated as a ratio of the pre and post-test change to the standard error of the measurement 

difference, resulting in a larger denominator and a more conservative measure than the standard 

error of measurement.  A cutoff value for the reliable change index is given as 1.96, however 

modifications have been suggested including an alternate cutoff points to represent a change that 

provides a better representation of clinical change.  The best statistical approach would be one 

that defines clinically meaningful change. [81] 

 Depending on the statistical methodology, a clinically relevant change could be one that 

focuses on the change within the subject from distinct time points or one that focuses on changes 

between the group mean and subjects at a single point in time.  For those in which therapeutic 
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change may not be dramatic, an instrument that is sensitive to change over time would be more 

appropriate.  Measurement of effect size in clinical assessments does not always provide 

meaning behind the observable change.  Improvements in activities of daily living would have a 

greater perception of change in patients than changes in strength measures.  In some cases the 

direction of the change, improvement versus decline, may be just as important to the patients as 

degree of change.  While accurate reporting of results will include the effect size, it should be 

used with caution in studies evaluating clinical change. [126] 

Anchor-based statistical measures of receiver-operating characteristic (ROC) curve and 

mean change approach were compared to distribution-based strategies including RCI and a fixed 

parameter of 0.5 SD.  Each statistical measure was used to evaluate the same data sets from two 

established indices and two established questionnaires for the minimal detectable change and 

minimal important difference.  For these tools the 0.5 SD measure met the criteria for the 

minimal important difference of small change and the RCI had the best result for those clinically 

indices looking for a moderate change.  The benefit of the 0.5 SD measure is that it is simple and 

is independent of sample size and can be effective in calculating the minimal detectable change.  

However, it is difficult to translate this to data with larger or smaller standard deviations.  [82] 

The RCI was introduced to ensure that clinically significant results were also 

representative of a reliable change and has been used effectively with many different variations. 

In chronic patients, consistently detected reliable change resulted in about 0.5 SD from the 

previous score regardless of the size of the SD and even without significance; with RCI the 

cutoff score is 1.96 for 95% confidence.  It is possible that subjects will never reach significance 

in change for either score therefore another recommendation is provide adjustments and fluidity 

when applying the scores clinically.  For example, a cutoff score between 1.96 and 0.84 would 
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indicate that a subject is ready for an adjustment to their plan, although they are not fully 

recovered and ready for return to play whereas a score of -0.84 would indicate a mild 

deterioration.  In the case of HRV, a mild deterioration may indicate that the subject is not fully 

recovered from the previous day’s training, but would not indicate that they are in danger of 

OTS.  [83] 

The RCI is often used in psychotherapy research to predict follow-up scores from a 

baseline score with a potential adjustment for a practice effect.  This methodology allows a 

clinician to determine if the fluctuations in score represent a meaningful change or normal 

variability in performance.  In the absence of a baseline score for the individual, the use of norms 

from a similar reference group can be used.  Comparing RCI to more complex regression models 

in neuropsychological testing, the RCI was more accurate with correction for practice effects.  

While there is no assumption of practice effect in HRV, it is important to consider variations 

based on training type. [127] 

When testing the reliability of a measure it is important not only to determine how well 

the measurement can track change but also the measure will need to be repeated a reasonable 

number of times in order to determine how much random error or “noise” is present.  As a 

general rule, the larger the value, the larger the error that will be present.  In monitoring a single 

individual, it is important to determine how much normal variation is to be expected in order to 

understand the appropriate amount of expected change and what is the appropriate amount of 

error.  This is especially true in monitoring athletes.  One area of concern includes the reliability 

of the equipment to produce similar results under similar conditions.  The error from the 

equipment should be kept to a minimum.  Limits of agreement, as expressed by the Bland 

Altman plot, will give a calculation of the range in which an individual’s score would fall 95% of 
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the time.  Too many measures outside of the limits of agreement would be indicative of a large 

amount of error and an inaccuracy of either the measurement or the instrument.  Changes in the 

mean scores can be due to either sampling error or the learning effect.  Effective studies should 

limit the learning effect in order to observe true measures of error.  The best measure of precision 

can be given by defining confidence limits, the likely range of the true value.  Values that would 

fall outside of the confidence limits can then be deemed to be from actual change by the 

intervention as opposed to normal variations or error. [128] 

 The 0.5 SD measure is often used to establish the SWC in HRV measures, which 

consistently detected reliable change in chronic medical conditions [82, 83].  Based on current 

research in smallest clinical change in other disciplines, the RCI, RS and SRM also have the 

potential to be appropriate statistical measures for recovery [81, 82].  The classification of 

clinically significant change does not necessarily reflect statistical significance, rather a 

movement along a continuum from one category to another, which requires there to be organized 

and defined scores [83].  Consideration to baseline scores, either of the individual or based on 

group norms, may be applicable in HRV data, however these norms have not yet been 

established [127].   
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Appendix A 

INFORMED CONSENT FORM  
 

I. INVESTIGATORS 
Principle Investigators:  Destany D. Gobin, ATC; Kaori Tamura, PhD, ATC, Portia 
Resnick, MA, ATC, LMT 

 
II. TITLE 

HEART RATE VARIABILITY IN COLLEGIATE DIVISION I ATHLETES  
 
III. INFORMED CONSENT 

The purpose of this consent form is to provide you with information about this research 
to help you decide if you would like to participate in this study.  Please take your time to 
review this consent form.  If there are any words or sections in this consent form that you 
do not understand or want to clarify, please do not hesitate to ask the research staff at any 
time.   

IV. WHY IS THIS STUDY BEING DONE? 
This study will try to find out more about Heart Rate Variability for Division I Collegiate 
athletes. It is important to have athletes from all teams and positions because there have 
been no studies to find normal ranges for a large, highly trainer population.  

V. VOLUNTARY PARTICIPATION 
A total of 150 participants will take part in this study.  You are being asked to participate 
because you are between the ages of 18 and 25 years old and are a Division I collegiate 
athlete.  It is important to understand that participation in this study is completely 
voluntary.  You may decide not to participate, or withdraw at any time, and it will not 
affect you in any way.  If you decided to participate in this study, you will be asked to 
sign this consent form.  Upon clearance, you will be scheduled for the data collection 
session. We are asking 50 of the participants to return for a second data collection 
session, which will be exactly the same as the first. If you are willing to return for a 
second session, we will schedule you at the end of your first session.   

VI. STUDY PROCEDURES 

If you decide to participate in this study, you will be asked to attend 1 data collection 
session.  This data collection session will take place in the Human Performance 
Laboratory at the University of Hawai‘i at Mānoa.  You will have one ECG recording 
taken.  We will measure your height, blood pressure, body mass and you will be asked to 
fill out a few forms.  
The investigator will clean the electrode placement sites and then electrodes will be 
applied to designated positions. You will rest supine (on your back) or semi-reclined in a 
comfortable position for 10 minutes and no data will be collected.  Then ECG data will 
be recorded for 15 minutes.  At the same time you will place the finger of one hand over 
the flash of an iPhone in order to capture the same information using the Camera Heart 
Rate Variability smartphone application. 
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Should you have any redness or itching at the site of the electrodes prior to the end of 
data collection, report your symptoms to the investigator immediately and the electrodes 
will be removed. 
 

VII. RISKS 
There is minimal risk of an allergic reaction to the electrodes.  Should any redness, 
swelling, discomfort or irritation occur while wearing the electrodes the electrodes will 
be removed immediately by the research team.  

You will be asked to remain in on your back or semi-reclined position during 1 data 
collection for approximately thirty minutes. If you are not comfortable due to the 
position, you can ask to be re-positioned. A certified athletic trainer is available on site to 
deal with unexpected medical situations that may arise.  

 
VIII. BENEFITS 

You may not receive any direct or immediate benefits. However, your participation will 
help to further understand Heart Rate Variability and the Autonomic Nervous System in 
highly trained division I collegiate athletes, establishing a baseline for future studies. 
 

IX. COSTS 
All clinic and professional fees testing will be provided at no cost to you.  Parking fees 
will be reimbursed to you if needed  

 

X. COMPENSATION 
No compensation will be given for your participation.   

 
XI. CONFIDENTIALITY 

All information about you will be held confidential to the extent allowed by state and 
federal law.  Your personal information will not be given to anyone outside of the 
research team without your written permission.  A code will be used as identifier instead 
of your name for this study.  Research records that contain personal information, 
including code key, will be kept in a secure locked file in the Department of Kinesiology 
and Rehabilitation Science at the University of Hawai‘i at Mānoa.  These documents will 
be permanently destroyed no later than 5 years after the completion of the study. 
Information gathered in this research study may be published or presented in public 
forums, however your name and other identifying information will not be disclosed.  
Agencies with research oversight, such as the University of Hawai‘i Committee on 
Human Studies Program, have the right to review research records.  You would be asked 
to sign an authorization form to allow the researcher to release any of your personal 
information obtained through the research process. 
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XII. INJURY RELATED TO THE STUDY 
 

Should any injury or medical emergency occur during the data collection, first responder 
care (first aid and CPR) is available, and appropriate referral will be made. First 
responder care will be provided for free of charge, however, you will be responsible for 
the cost associated with referral thereafter.  If your insurance will not pay for these costs, 
they will be your responsibility.  The University of Hawai‘i has no program to pay or 
compensate you in any way for your injuries.  
 

XIII. QUESTIONS 
 

If you have any questions related to the study participation, please contact Destany 
Gobin at 251-454-0968 or destany@hawaii.edu.  If you have questions or concerns 
about your rights as a research participant, please contact the Human Studies Program at 
(808) 956-5007. 

XIV. STATEMENT OF CONSENT 
 

I have read the above information, or it has been read to me.  I have had the opportunity 
to discuss this research study with research staff, and I have had my questions answered 
by them in a language I understand.  I take part in this study of my own free will, and I 
understand that I may withdraw from participation at any time and this will not affect me 
in any way.  My consent to participate in this study does not take away any of my legal 
rights in the event of negligence or carelessness of anyone working on this project.  A 
copy of this consent form has been given to me. 

 

XV. SIGNATORIES 
 

I agree to take part in this study. 
 
__________________________________________________________________ 
Print Name  
 
__________________________________________________________________ 
Signature            Date 
 
__________________________________________________________________ 
Researcher Name (print)    
 
__________________________________________________________________ 
Researcher Signature            Date 
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Appendix B 

INFORMED CONSENT FORM HRV APP ONLY PORTION 
 

I. INVESTIGATORS 
 
Principle Investigators: Yukiya Oba, PhD, ATC, CSCS, Portia Resnick, MA, ATC, LMT, 
Nicole Kandra, ATC 

 
II. TITLE 

 
Daily HRV and Training Load Monitoring in NCAA Division I Collegiate Athletes 

 
III. INFORMED CONSENT 

 
The purpose of this consent form is to provide you with information about this research 
to help you decide if you would like to participate in this study.  Please take your time to 
review this consent form.  If there are any words or sections in this consent form that you 
do not understand or want to clarify, please do not hesitate to ask the research staff at any 
time.   

 

IV. WHY IS THIS STUDY BEING DONE? 

This study is being done to track the daily changes in heart rate variability (HRV) and 
training load in NCAA Division I athletes.  The information will be used to develop a 
formula to monitor daily training and recovery. 

 

V. VOLUNTARY PARTICIPATION 

A total of 20 participants will take part in this study.  You are being asked to participate 
because you are between the ages of 18 and 25 years old a Division I athlete.  It is 
important to understand that participation in this study is completely voluntary.  You may 
decide not to participate, or withdraw at any time, and it will not affect you in any way.  
If you decided to participate in this study, you will be asked to sign this consent form.  
Upon clearance, you will be given further instructions. 

 

VI. STUDY PROCEDURES 

If you decide to participate in this study, you will be asked to use a smartphone 
application every morning before practice to measure heart rate variability, a tool used to 
monitor your recovery. You will also be asked to record the duration and type of each 
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practice, along with your rate of perceived exertion and send this information to the 
researcher after practice each day.  

 

VII. RISKS 

The procedures involved in this study no immediate or long-term risks.  

 

VIII. BENEFITS 

You may not receive any direct or immediate benefits. However, you may learn more 
information about your training and recovery from the daily data collection. 

 

IX. COSTS 

The Camera HRV iPhone application will be provided at no cost to you.  Any incurred 
data rates are your responsibility. 

 

X. COMPENSATION 

No compensation will be given for your participation.   

 

XI. CONFIDENTIALITY 

All information about you will be held confidential to the extent allowed by state and 
federal law.  Your personal information will not be given to anyone outside of the 
research team without your written permission.  A code will be used as identifier instead 
of your name for this study.  Research records that contain personal information, 
including code key, will be kept in a secure locked file in the Department of Kinesiology 
and Rehabilitation Science at the University of Hawai‘i at Mānoa.  These documents will 
be permanently destroyed no later than 5 years after the completion of the study. 

Information gathered in this research study may be published or presented in public 
forums, however your name and other identifying information will not be disclosed.  
Agencies with research oversight, such as the University of Hawai‘i Committee on 
Human Studies Program, have the right to review research records.  You would be asked 
to sign an authorization form to allow the researcher to release any of your personal 
information obtained through the research process. 
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XII. INJURY RELATED TO THE STUDY 
 
Should any injury or medical emergency occur during the data collection, if your 
insurance will not pay for these costs will be your responsibility.  The University of 
Hawai‘i has no program to pay or compensate you in any way for your injuries.  
 
 

XIII. QUESTIONS 
 

If you have any questions related to the study participation, please contact Portia 
Resnick at (908) 812-9320 or portia@hawaii.edu.  If you have questions or concerns 
about your rights as a research participant, please contact the Human Studies Program at 
(808) 956-5007. 

 

XIV. STATEMENT OF CONSENT 
 

I have read the above information, or it has been read to me.  I have had the opportunity 
to discuss this research study with research staff, and I have had my questions answered 
by them in a language I understand.  I take part in this study of my own free will, and I 
understand that I may withdraw from participation at any time and this will not affect me 
in any way.  My consent to participate in this study does not take away any of my legal 
rights in the event of negligence or carelessness of anyone working on this project.  A 
copy of this consent form has been given to me. 

 
XV. SIGNATORIES 
 

I agree to take part in this study. 
 
__________________________________________________________________ 
Print Name  
 
__________________________________________________________________ 
Signature            Date 
 
__________________________________________________________________ 
Researcher Name (print)    
 
__________________________________________________________________ 
Researcher Signature            Date 
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Appendix C 
Health History Questionnaire 

	

	

1.  Are you or is there a possibility that you may be pregnant? 
___________________________________ 

2. Do you have any known tape allergies? 
___________________________________________________ 

If you answered “YES” to any or the above question, you will not be allowed to continue this 
study 

 

  

3. Do you have any known cardiac (heart) conditions? 
_________________________________________ 

4. If you answered yes to #4, please explain. 
_________________________________________________ 

5. Are you currently injured? 
_____________________________________________________________ 

6. If you answered yes to #5, please explain. 
_________________________________________________ 

7. Do you have diabetes? 
________________________________________________________________ 

8. Do you have any neurological disorders? 
_________________________________________________ 

9. If you answered yes to #8, please explain. __________________________________________ 

10. Do/did you have practice before or after data collection? If so, when? __________________ 

11. Do you have a game before or after data collection? _________________________________ 

12. Do you have an off day from normal physical activity? ______________________________ 

13. Do you have any academic pressure within a 1-3 days or within 4-7 days? _______________ 
_________________________ 

14. Are you in pre-season, post-season, or in season? ___________________________________ 
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R	E	S	T	Q	–	76	Sport	
	

Single Code: _____________________________      Group Code: 
________________________________ 

Name (Last): ________________________________  (First): 
___________________________________ 

Date: _______________   Time: ______________   Age: _______________  Gender: 
________________ 

Sport/Event(s): _________________________________________________________________ 

 
This questionnaire consists of a series of statements. These statements possibly describe your 
mental, emotional, or physical well-being or your activity during the past few days and nights.  
 
Please select the answer that most accurately reflects your thoughts and activities. Indicate how 
often each statement was right in your case in the past days. 
 
The statement related to performance should refer to performance during competition as well as 
during practice.  
 
For each statement there are seven possible answers. 
 
Please make your selection by marking the number corresponding to the appropriate answer. 
 

Example: 

In the past (3) days/nights 

… I read a newspaper 

0 1 2 3 4 5 6 
never seldom sometimes often more often very often always 

 

In this example, the number 5 is marked. This means that you read a newspaper very often in the 
past three days. 

Please do not leave any statements blank.  

If you are unsure which answer to choose, select the one that most closely applies to you. 

Please turn the page and respond to the statements in order without interruption.  

Appendix D 
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In the past (3) days/nights 

1) …I watched TV 
0 1 2 3 4 5 6 

never seldom sometimes often more often very often always 
 

2) …I did not get enough sleep 
0 1 2 3 4 5 6 

never seldom sometimes often more often very often always 
 

3) …I finished important tasks 
0 1 2 3 4 5 6 

never seldom sometimes often more often very often always 
 

4) …I was unable to concentrate well 
0 1 2 3 4 5 6 

never seldom sometimes often more often very often always 
 

5) …everything bothered me 
0 1 2 3 4 5 6 

never seldom sometimes often more often very often always 
 

6) …I laughed 
0 1 2 3 4 5 6 

never seldom sometimes often more often very often always 
 

7) …I felt physically bad 
0 1 2 3 4 5 6 

never seldom sometimes often more often very often always 
 

8) …I was in a bad mood 
0 1 2 3 4 5 6 

never seldom sometimes often more often very often always 
 

9) …I felt physically relaxed  
0 1 2 3 4 5 6 

never seldom sometimes often more often very often always 
 

10) …I was in good spirits 
0 1 2 3 4 5 6 

never seldom sometimes often more often very often always 
       

11) …I had difficulties in concentrating  
0 1 2 3 4 5 6 

never seldom sometimes often more often very often always 
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12) …I worried about unresolved problems  

0 1 2 3 4 5 6 
never seldom sometimes often more often very often always 

 
13) …I felt at ease  

0 1 2 3 4 5 6 
never seldom sometimes often more often very often always 

 
14) …I had a good time with friends  

0 1 2 3 4 5 6 
never seldom sometimes often more often very often always 

 
15) …I had a headache  

0 1 2 3 4 5 6 
never seldom sometimes often more often very often always 

 
16) …I was tired from work  

0 1 2 3 4 5 6 
never seldom sometimes often more often very often always 

 
17) …I was successful at what I did  

0 1 2 3 4 5 6 
never seldom sometimes often more often very often always 

 
18) …I couldn't switch my mind off  

0 1 2 3 4 5 6 
never seldom sometimes often more often very often always 

 
19) …I fell asleep satisfied and relaxed  

0 1 2 3 4 5 6 
never seldom sometimes often more often very often always 

 
20) …I felt uncomfortable  

0 1 2 3 4 5 6 
never seldom sometimes often more often very often always 

 
21) …I was annoyed by others  

0 1 2 3 4 5 6 
never seldom sometimes often more often very often always 

 
22) …I felt down  

0 1 2 3 4 5 6 
never seldom sometimes often more often very often always 
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23) …I visited some close friends  
0 1 2 3 4 5 6 

never seldom sometimes often more often very often always 
 

24) …I felt depressed  
0 1 2 3 4 5 6 

never seldom sometimes often more often very often always 
 

25) …I was dead tired after work  
0 1 2 3 4 5 6 

never seldom sometimes often more often very often always 
 

26) …other people got on my nerves  
0 1 2 3 4 5 6 

never seldom sometimes often more often very often always 
 

27) …I had a satisfying sleep  
0 1 2 3 4 5 6 

never seldom sometimes often more often very often always 
 

28) …I felt anxious or inhibited  
0 1 2 3 4 5 6 

never seldom sometimes often more often very often always 
 

29) …I felt physically fit  
0 1 2 3 4 5 6 

never seldom sometimes often more often very often always 
 

30) …I was fed up with everything  
0 1 2 3 4 5 6 

never seldom sometimes often more often very often always 
 

31) …I was lethargic  
0 1 2 3 4 5 6 

never seldom sometimes often more often very often always 
 

32) …I felt I had to perform well in front of others  
0 1 2 3 4 5 6 

never seldom sometimes often more often very often always 
 

33) …I had fun  
0 1 2 3 4 5 6 

never seldom sometimes often more often very often always 
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34) …I was in a good mood  
0 1 2 3 4 5 6 

never seldom sometimes often more often very often always 
 

35) …I was overtired  
0 1 2 3 4 5 6 

never seldom sometimes often more often very often always 
 

36) …I slept restlessly  
0 1 2 3 4 5 6 

never seldom sometimes often more often very often always 
 

37) …I was annoyed  
0 1 2 3 4 5 6 

never seldom sometimes often more often very often always 
 

38) …I felt as if I could get everything done  
0 1 2 3 4 5 6 

never seldom sometimes often more often very often always 
 

39) …I was upset  
0 1 2 3 4 5 6 

never seldom sometimes often more often very often always 
 

40) …I put off making decisions  
0 1 2 3 4 5 6 

never seldom sometimes often more often very often always 
 

41) …I made important decisions  
0 1 2 3 4 5 6 

never seldom sometimes often more often very often always 
 

42) …I felt physically exhausted  
0 1 2 3 4 5 6 

never seldom sometimes often more often very often always 
 

43) …I felt happy  
0 1 2 3 4 5 6 

never seldom sometimes often more often very often always 
 

44) …I felt under pressure  
0 1 2 3 4 5 6 

never seldom sometimes often more often very often always 
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45) …everything was too much for me  
0 1 2 3 4 5 6 

never seldom sometimes often more often very often always 
 

46) …my sleep was interrupted easily  
0 1 2 3 4 5 6 

never seldom sometimes often more often very often always 
 

47) …I felt content  
0 1 2 3 4 5 6 

never seldom sometimes often more often very often always 
 

48) …I was angry with someone  
0 1 2 3 4 5 6 

never seldom sometimes often more often very often always 
 

49) …I had some good ideas  
0 1 2 3 4 5 6 

never seldom sometimes often more often very often always 
 

50) …parts of my body were aching  
0 1 2 3 4 5 6 

never seldom sometimes often more often very often always 
 

51) …I could not get rest during the breaks  
0 1 2 3 4 5 6 

never seldom sometimes often more often very often always 
 

52) …I was convinced I could achieve my set goals during performance  
0 1 2 3 4 5 6 

never seldom sometimes often more often very often always 
 

53) …I recovered well physically  
0 1 2 3 4 5 6 

never seldom sometimes often more often very often always 
 

54) …I felt burned out by my sport  
0 1 2 3 4 5 6 

never seldom sometimes often more often very often always 
 

55) …I accomplished many worthwhile things in my sport  
0 1 2 3 4 5 6 

never seldom sometimes often more often very often always 
 
 



	 203	

56) …I prepared myself mentally for performance  
0 1 2 3 4 5 6 

never seldom sometimes often more often very often always 
 

57) …my muscles felt stiff or tense during performance  
0 1 2 3 4 5 6 

never seldom sometimes often more often very often always 
 

58) …I had the impression there were too few breaks  
0 1 2 3 4 5 6 

never seldom sometimes often more often very often always 
 

59) …I was convinced that I could achieve my performance at any time  
0 1 2 3 4 5 6 

never seldom sometimes often more often very often always 
 

60) …I dealt very effectively with my teammates’ problems  
0 1 2 3 4 5 6 

never seldom sometimes often more often very often always 
 

61) …I was in a good condition physically  
0 1 2 3 4 5 6 

never seldom sometimes often more often very often always 
 

62) …I push myself during performance  
0 1 2 3 4 5 6 

never seldom sometimes often more often very often always 
 

63) …I felt emotionally drained from performance 
0 1 2 3 4 5 6 

never seldom sometimes often more often very often always 
 

64) …I had muscle pain performance  
0 1 2 3 4 5 6 

never seldom sometimes often more often very often always 
 

65) …I was convinced that I performed well  
0 1 2 3 4 5 6 

never seldom sometimes often more often very often always 
 

66) …too much was demanded of me during the breaks  
0 1 2 3 4 5 6 

never seldom sometimes often more often very often always 
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67) …I psyched myself up before performance  
0 1 2 3 4 5 6 

never seldom sometimes often more often very often always 
 

68) …I felt that I wanted to quit my sport  
0 1 2 3 4 5 6 

never seldom sometimes often more often very often always 
 

69) …I felt very energetic  
0 1 2 3 4 5 6 

never seldom sometimes often more often very often always 
 

70) …I easily understood how my teammates felt about things  
0 1 2 3 4 5 6 

never seldom sometimes often more often very often always 
 

71) …I was convinced that I had trained well  
0 1 2 3 4 5 6 

never seldom sometimes often more often very often always 
 

72) …the brakes were not at the right times  
0 1 2 3 4 5 6 

never seldom sometimes often more often very often always 
 

73) …I felt vulnerable to injuries  
0 1 2 3 4 5 6 

never seldom sometimes often more often very often always 
 

74) …I set definite goals for myself during performance  
0 1 2 3 4 5 6 

never seldom sometimes often more often very often always 
 

75) …my body felt strong  
0 1 2 3 4 5 6 

never seldom sometimes often more often very often always 
 

76) …I felt frustrated by my sport  
0 1 2 3 4 5 6 

never seldom sometimes often more often very often always 
 

77) …I dealt with emotional problems in my sport very calmly 
 0 1 2 3 4 5 6 

never seldom sometimes often more often very often always 
 
Thank you very much! 
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Appendix E 
Training Questionnaire 

 
Subject: ____________________________________ 
 
Date: ____________________________________ 
 
Sport: _________________________________ 
 
Position/event: __________________________ 
 
Pre-season   In-season   Post-season 
 
 
Number of days per week you practice: _______________ 
 
 
Number of hours per session: ______________ 
 
 
Number of days per week you condition (weight room): ___________ 
 
 
Number of hours per session: _______________ 
 
 
Total number of hours spent training per week: ___________________ 
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Appendix F 

Training Log 

Subject Number 

Date Practice Type or Game Length of Time *RPE 

    

    

    

    

    

    

    

*Rate of perceived exertion (RPE) scale: 
# Level of Exertion 
6 No exertion at all 
7   
7.5 Extremely light (7.5) 
8   
9  Very light 
10   
11 Light 
12   
13 Somewhat hard 
14   
15 Hard (heavy) 
16   
17 Very hard 
18   
19 Extremely hard 
20 Maximal exertion 
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Notes 
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