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ABSTRACT 

Six proteins, ORC1-6, make up the origin recognition complex (ORC) that initiates 

licensing of the DNA replication origin. We have previously shown that subunit ORC1, ORC2, 

ORC3, and ORC5 are localized between the separating maternal chromosomes at anaphase II 

just after fertilization. During investigation, we identified ORC4 as having an unexpected 

localization in the polar body wherein ORC4 surrounds one set of chromosomes during both 

female meiotic divisions. The ORC4 structure, or ORC4 cage as we have termed it, eventually is 

discarded in the polar bodies while the chromosome set that does not interact with ORC4 

segregate into the oocyte.  Interestingly, none of the other five ORC proteins were found to be 

involved in this structure. In Zygotic G1, ORC4 surrounds the nuclei of the polar bodies, but was 

not detectable in the pronuclei. When the zygote entered mitosis, ORC4 was only detected in the 

polar body. At this point, the ORC4 that was in the polar body also migrated into the nuclei, 

suggesting that ORC4 or an associated protein is modified during the first embryonic cell cycle 

to allow it to bind DNA. We experimentally forced oocytes to extrude sperm chromatin as a 

pseudo-polar body and found that under these conditions, the sperm chromatin did become 

enclosed in an ORC4 cage. Next, we attempted to prevent the formation of the ORC4 cage by 

injecting peptides that contained sequences of different ORC4 protein domains into metaphase II 

oocytes just before typical cage formation. Our rationale was that the ORC4 peptides would 

block protein-protein interactions required for cage formation. Two out of six tested peptides 

prevented the ORC4 cage formation and simultaneously inhibited polar body extrusion, resulting 

in the formation of two pronuclei that were retained in the oocyte. Our previous results 

demonstrated that recombinantly expressed ORC4, which contained histidine tag at the C 

terminus, could be utilized by oocytes to form the ORC4 cage at one set of chromosomes. Using 

immunocytochemistry (ICC), we were able to show that ORC4-His tags incorporated with 

endogenous ORC4. However, we could not use these tags to study on live cells because they 

required cell fixation to identify by ICC. To test the localization of ORC4 in live cells, we 

generate a fusion ORC4-eGFP and ORC4 labeling with FlAsH. These constructs were then used 

to synthesize mRNA and microinjected into MII oocyte. Through confocal fluorescence 

fluctuation spectroscopy (FFS) measurements, we are able to record the movement of ORC4 

signals moving forward to form a cage or PB. This work provides the first evidence that the 

ORC4 plays a necessary role for polar body extrusion. 
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CHAPTER 1. INTRODUCTION 

1.1 DNA replication:  

The process of cellular division is an essential event for all living organisms whereby a 

cell splits into identical cells. Production and replication of cellular components is required 

during this event as the daughter cell gains genetic identity. DNA is a molecule consisting of a 

double helix of two DNA strands composing of four types of nucleotide subunits. When DNA 

replicates, these strands are separated and each strand of the original DNA serves as a template 

for producing a replica strand. In eukaryotic cells, the mechanisms that control DNA replication 

evolved to contain stringent regulations thus ensuring the maintenance of genome integrity (1). 

DNA replication is initiated at origin sites (i.e., specific sites wherein DNA replication initiates) 

in the chromosomes which serve to recruit essential protein components for initiation of DNA 

replication. The first known complex to bind to DNA replication initiation sites is the origin 

recognition complex (ORC), which functions by binding to chromosome origin sites in an ATP-

dependent manner. ORC consists of six subunits (ORC1, ORC2, ORC3, ORC4, ORC5, and 

ORC6) that play an essential role in the initiation of DNA replication by identifying the DNA 

sequences that will serve as origins. The ORC serves to bind an unlicensed origin and to recruit 

Cdc6 and Cdt1 to chromatin sites generating the pre-replication complex (pre-RC). This pre-RC 

allows the bound DNA site to transition from unlicensed to a licensed origin by loading of the 

Mcm2-7 double hexamer. The binding of Mcm2-7 destabilizes and releases ORC, Cdc6, and 

Cdt1 at that site in the interphase nucleus. The ORC, Cdc6, and Cdt1 can then be exposed to a 

new origin site on the chromosome (2). The pre-RC assembly is required for replication 

licensing of chromosomes prior to DNA synthesis during S phase of meiosis. While this 

simplified description can serve as a general model for the initiation of DNA replication, origin 

licensing is actually rather complex and can have variations depending on the cell type (Fig. 1.1). 

In Eukaryotic cells, DNA replication initiates at multiple origins distributed throughout the entire 

genome. This process is a necessary event in evolution allowing the genome to increase in 

complexity and size (3). The initial regulation of DNA replication occurs at two different time 

points. The first-time point is called “Origin licensing” in which proteins essential for replication 

assemble unto DNA and form pre-RC complexes. The second-time point is called “Origin firing” 

in which the DNA is involved in the subsequent activation of helicases. Both Origin licensing 

and firing occur separately during the cell cycle to ensure that these events occur once per cell 
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cycle (4). The origin licensing occurs at mitosis and G1 phase. The process begins with the 

loading of pre-RC, which consists of proteins ORC1-6, Cdc6, and Cdc1 bound to chromatin 

sites. It is then followed by the loading of the Mcm2-7 double hexamer. The binding of Mcm2-7 

destabilizes and releases ORC, Cdc6, and Cdt1 at that site in the interphase nucleus (2). After the 

release, the following proteins Sld5, Psf1, Psf2, and Psf3 bind and form the GINS complex.  In 

association with the pre-RC, this complex helps to recruit Mcm10 and Cdc45 which starts the 

process of DNA replication (4). In reproduction, the replication of the mammalian zygote’s DNA 

is the recombination of parental genomes (5), and this ensures the offspring inheritance of both 

paternal and maternal genetic phenotypes. Each genome is replicated independently in its 

pronuclei before the maternal and paternal pronuclei fuse together to become a single nucleus. 

This occurs just before zygotic mitosis and prepares DNA for replication at different stages of 

chromatin configuration (6). Maternal DNA exits from MII stage, but paternal DNA exits at G0 

and exchanges its protamines for histones (6) (7). DNA replication in mouse is potentially a good 

model to use and help us understand mammalian zygotic replication, because of their similarities 

in cell development. More specifically, somatic cells initiate licensing with five different proteins 

called ORC1L, ORC2L, ORC3L, ORC4L and ORC5L (2). In the first step, ORC2L-5L bind to 

many origins in the genome, which is followed by ORC1L binding to this complex (8). This 

initiates the recruitment of Cdc6 and Cdt1 to form pre-RC. This primes it and licensing can begin 

once of Mcm2-7 complexes to pre-RC. DNA replication is initiated following the recruitment of 

Mcm10, Cdc45, and DNA polymerase-α, and DNA primase (9). 

Not only is the process complex but initiation is also varied.  Analysis of ORC licensing 

in the mouse zygote revealed that ORC2 was localized at the metaphase II spindle poles 1-2 

hours after fertilization and then between the separating chromosomes at anaphase II (10). Four 

hours after activation, ORC2 was bound on DNA and remained until S phase. This showed that 

the licensed origins occur at early anaphase II and G1 after fertilization or egg activation, but 

may continue during G1 phase. Licensing occurs in an environment of low cyclin-dependent 

protein kinase (CDK) activity. Prevention of DNA replication depends on CDKs activity during 

S, G2 and M phases, resulting in inactivation of replication licensing factors changes in gene of 

licensing factors, and expression of a repressor. 

In addition to their roles in DNA replication, each protein of the ORC also plays a unique 

role in development: ORC1 in embryo growth (11); ORC2 in cell cycle regulation (12); ORC3 in 
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neuronal maturation (13); ORC5 in uterine leiomyomas and malignant myeloid diseases (14); 

ORC6 in chromosome condensation and segregation in Drosophila (15); and ORC4 in Meier-

Gorlin syndrome in human (16). During my research to investigate the localization of the ORCs 

during the two meiotic divisions in mouse oocytes and in the first cell cycle of the zygote, we 

found that ORC1, ORC3, and ORC5 has similar patterns of localization to ORC2 at anaphase II 

(17). We do not detect ORC6 at metaphase or anaphase until early G1 of the mouse zygote by 

immunocytochemistry.  

1.2 Mitosis and Meiosis 

1.2.1 Mitosis  

Mitosis is a process that follows the completion of S phase and transition through G2 in 

which a single cell with replicated chromosomes divides equally to form two new daughter cells 

containing identical cellular components, such as the cell membrane, cytoplasm, and organelles. 

The major purpose of mitosis is to induce cellular growth, repair, and reproduction to ensure that 

old, worn-out cells are replaced by new ones (18). Mitosis is divided into five phases: interphase, 

prophase, metaphase, anaphase, and telophase. 1) During interphase, the DNA has already been 

replicated into two identical full sets of chromosomes called sister chromatids in preparation for 

cell division. At this stage, the chromosomes cannot be seen very clearly because they exist in 

the de-condensed form. 2) During prophase, the chromosomes condense into X-shaped structures 

and can be easily seen under a microscope. This makes them easier to separate in the following 

phase. At the same time, the mitotic spindle a structure made of microtubules binding to the 

chromosome’s kinetochore on the centromere of each sister chromatid begins to form. At this 

phase, we also see that the membrane around the nucleus disappears, indicating that the nucleus 

is preparing to break down in preparation for metaphase. 3) During metaphase, the spindle 

attaches to all the chromosomes and aligns them neatly (from end to end) along the center of the 

cell. The two kinetochores of each chromosome are attached to microtubules from opposite 

spindle poles. Before this occurs during metaphase, the cell must pass through the spindle 

checkpoint. During this time, the cell uses a check-pathway to ensure that all chromosomes are 

on the metaphase plate and that their kinetochores are correctly attached to microtubules. If the 

chromosome is not properly aligned or attached, the cell will pause division until the problem is 

resolved. 4) During anaphase, the sister chromatids are separated from each other by the mitotic 

spindle pulling one chromatid to one pole and the other chromatid to the opposite pole. This 
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results in one chromosome per cell, which has maximum condensation to help with segregation 

and reformation of the nucleus. 5) During telophase, the mitotic spindle breaks down, the 

chromosomes begin to de-condense, and the nuclear membranes and nucleoli re-form. The 

cytokinesis undergoes to overlap with the final stage of mitosis. This cytokinesis divides the 

cytoplasm to form two daughter cells. Each daughter cell contains the same number 

chromosomes as the mother cell (19) (Fig. 1.2).  

 The mitotic process occurs under cell-cycle control of a protein M-Cdk. In addition to 

triggering chromosome condensation, this protein also induces the assembly of the mitotic 

spindle. This ensures that each sister chromatid in a pair is attached to the opposite pole of the 

spindle. M-Cdk also plays a role in animal cells by promoting the breakdown of the nuclear 

envelop and rearrangement of the actin cytokinesis and the Golgi apparatus (19).  

1.2.2 Meiosis 

Meiosis, a process to create genetic diversity, is a specialized type of cell division in 

which a single cell divides twice to produce four haploid cells. Each haploid cell contains half 

the original amount of genetic information, which is distinct from the parent cell. The genetic 

differences of four haploid cells arise by two mechanisms (19). (1) Each gamete contains either 

the maternal or paternal form of each chromosome. Because the choice of maternal and paternal 

occurs independently and randomly for each pair of homologs, each daughter cell has a unique 

mixture of maternal and paternal origin chromosomes. (2) The maternal and paternal forms of 

each chromosome have similar DNA sequences, but they are not identical, and they undergo 

genetic recombination during meiosis, a process called crossing over to produce new hydride 

forms of each chromosome. Meiosis can be divided into meiosis I, including interphase, 

prophase I, metaphase I, anaphase I, and telophase I and cytokenesis and meiosis II, including 

prophase II, metaphase II, anaphase II, and telophase II and cytokinesis (Fig. 1.3). The process of 

cell division in meiosis is similar to mitosis. However, meiosis has to reduce the number of 

chromosomes by half as many chromosomes as their diploid precursor cells. During prophase I, 

the chromosomes have replicated and consists of two sister chromatids joined tightly together. 

These homolog then pairs up side by side and undergoes genetic recombination process forming 

crossovers, occurring at metaphase I. This process plays an important role in producing off-

spring with genetic differences from each other. Like mitosis, the pair of crossover chromosome 

are pulled apart by the meiotic spindle, pulling each chromosome to one pole of the cell and 
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complete telophase and cytokinesis. After meiotic I, meiotic II occurs rapidly without DNA 

replication (Fig. 1.3). This process is resemble to mitosis (19). 

1.3 Polar body Extrusion 

During early embryogenesis, primordial germ cells migrate to the developing gonad. 

These cells proliferate through mitotic cell division before initiating symmetric cell division 

during Meiosis I and II. Two rounds of meiotic division generate a large haploid oocyte, which 

maintains most of the maternal stores in addition to two very small cells called polar bodies (20). 

During the first meiotic division, homologous chromosomes are segregated, and genetic diversity 

is created by crossing over at the chiasmata (21). When homologous chromosome separation is 

triggered, the Meiotic I (MI) spindle has reached a subcortical location. This results in the first 

asymmetric division the extrusion of one set of chromosomes in the first polar body (PB1). The 

remaining chromosomes in the oocyte then form the metaphase II (MII) plate. Upon fertilization, 

meiosis triggers and a second asymmetric cell division that leads to the formation of the second 

polar body (PB2) (22). During the second meiotic division, sister chromatids are segregated in a 

form that resembles mitotic cell division (23). Mouse oocytes are one of the best models for 

studying and understanding this meiotic process (Fig. 1.4).  

Polar body extrusion is dependent on the positioning of the metaphase plate near the 

oocyte membrane, or cortex. Following germinal vesicle breakdown (GVBD), the meiotic I 

chromosome-spindle is aligned in the center of the oocyte, but shortly afterwards, the 

chromosome-spindle initiates a migration towards the nearest cortical region of one side of the 

cortex. This process establishes cortical polarity by an actin-enriched domain surrounded with a 

myosin ring (24). Actin is essential for the survival of most cells, and the protein actin forms 

filaments that provide cells with the internal mechanical support and driving force needed for 

movement to the cortex. Actin polymerization also contributes to the internalization of 

membrane vesicles to control the composition of the cell membrane and the interface of the cell 

with the environment. Interaction of actin filaments with myosin proteins yields two types of 

movements. First, myosin generates force between actin filaments, producing contractions that 

pull up the rear of moving cells, pinch these cells in two, and induce a change in cellular shapes 

to form tissue. Second, myosin associated with subcellular organelles and macromolecular 

complexes of proteins and RNA moves these cargos along actin filaments over short distances 

(25). During Anaphase II, coordinated protrusion of the actin-enriched domain and constriction 
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of the myosin ring lead to extrusion of the first polar body which contains one set of homologous 

chromosomes (22, 26). Following the first polar body extrusion, the oocytes proceed into 

metaphase of meiosis II (MII) where an MII spindle is assembled near the first division site 

beneath the cortex. A cortical actomyocin domain similar to that in MI is again established above 

the spindle. The oocyte is now fully mature and arrested in this stage, awaiting fertilization. Both 

spindle positioning and cortical polarization rely on actin filaments but not microtubules. The 

mechanism of this cortical polarization is poorly understood. Deng et al (27) reported that the 

role of the GTPase Ran involves chromatin signaling to control cortical polarity during polar 

body extrusion in mouse. Ran (RAs-related Nuclear protein), GTP-binding nuclear protein Ran, 

is a small G protein essential for translocation of RNA and proteins through the nuclear pore 

complex. The Ran protein is also involved in the control of DNA synthesis and cell cycle 

progression (27). Dehapiot et al, 2013 reported that generating mutations in Ran has been shown 

to disrupt DNA synthesis. The GTP/GDP activates Ran via exchanging factor RCC1 that is 

bound to chromatin. This results in the generation of a Ran-GTP gradient concentrated on the 

meiotic chromosomes in mouse oocytes. Disruption of Ran-GTP in mouse blocks chromatin-

induced cortical polarization (28) . Moreover, Halet et al, 2007 found that the mechanism of the 

asymmetric meiotic divisions generating one large oocyte and two small polar bodies involves 

Rac. Polarization of Rac activation occurs during spindle migration and is concentrated at the 

chromatin nearest to the cortex. Inhibition of Rac during oocyte maturation blocks pro-

metaphase I and spindle migration. This inhibition also caused the spindle to detach from the 

cortex and prevented polar body extrusion in metaphase II arrested oocytes (29). In addition, 

Dehapiot et al, 2013 showed that polar body extrusion occurs via a functional Cdc42/N-WASP 

pathway. The activated Cdc42 (Cdc42-GTP) concentrates at restricted cortical regions on 

meiotic chromosomes. This activation form is required for recruitment of N-WASP and the 

formation of F-actin-rich extrusion during polar body formation. Inhibition of Cdc42 in MII 

oocytes caused the release of N-WASP into cytosol, a loss of the polarized F-actin cap, and a 

failure to form a second polar body. The inhibition of Cdc42 also results in defection of central 

spindle in activated MII oocytes (22). In mouse oocytes, activators Arp2/3, Cdc42 and Rac are 

essential for oocyte polarization, spindle formation and migration during meiosis (30). The 

Arp2/3 complex, upstream of N-WASP, has been shown to regulate actin nucleation and actin 

filament networks required for various cellular processes, including cell migration and adhesion, 
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endocytosis, and establishment of polarity during oocyte meiosis (30). Sun et al, 2011 

demonstrated that disruption of Arp2/3 complex by a newly-found specific inhibitor CK666 as 

well as iRNA-Arpc2 and iRNA-Arpc2 resulted in the failure of asymmetric division, spindle 

migration, and the formation and completion of oocyte cytokinesis (31). Rohatgi et al, 1999 also 

demonstrated that the C terminus of N-WASP binds to Arp2/3 complex and stimulates its ability 

to nucleate actin polymerization therefore they contain a core mechanism that directly connects 

signal transduction pathways to the stimulation of actin polymerization (30). Moreover, 

Dynamin 2 is also involved in spindle migration and polar body extrusion (32). Dynamin 2, 

located at the cortex and around the spindles of the cell, is involved in actin recruitment and 

actin-based vesicle mobility. Wang and colleagues (32) showed that actin cap formation was 

disrupted using iRNA dynamin 2. In general, cortical structure is established depending on 

signals from chromosomes (Fig. 1.5). The cortical actomyosin cap is a structure necessary for 

polar body extrusion. When the spindle is located at the vicinity of the cortex, the chromatin-

mediated Ran gradient activates N-WASP, the Arp2/3 complex, and dynamin 2 via Cdc42 at the 

cortex to nucleate actin polarization to suppress premature myosin II ring contraction and to 

drive cytoplasmic streaming keeping the chromosomes and spindle in place (24). 

The result of two rounds of meiotic division generates two polar bodies. The first polar 

body contains two sets homologous chromosomes, whereas the second polar body contains a 

haploid set of chromatids. The two polar bodies are degraded shortly after formation, but they 

provide beneficial genetic information about the egg’s genetic background. Therefore, many in 

vitro fertilization’s clinics have used polar body biopsies in pre-implantation genetic diagnosis to 

detect genetic and chromosomes abnormalities, which may be inherited by the offspring (33). 

Moreover, the two polar bodies have also been applied in research to prevent transmission of 

inherited mitochondrial disease (34).  In humans, the mutated mitochondrial DNA (mtDNA) may 

develop many severe diseases such as diabetes, heart disease, liver failure, infertility, deafness, 

blindness, and cancer, but the presentation and treatment of mtDNA are less efficient because of 

the genetic revolution, as the mutated mtDNA and normal mtDNA present on cell. The pre-

implantation genetic diagnosis (PGD) can detect mutated mtDNA which may choose mtDNA 

with a low risk of mutation to transfer into the uterus (34). Another method is also applied on 

mouse model to eliminate mutated mtDNA using nuclear transfer. The first and the second polar 

bodies are used as donor genomes to replace the genome of the recipient oocytes which carried 
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mtDNA disease following two reasons. (1) The PB carries few mitochondrial, but it has the same 

genome as the oocyte. (2) The PB are also separated from the oocyte, which can be easier to 

manipulate. This method can reconstruct genetic of offspring from the first and the second PB 

(33). 

We discovered that the DNA replication ORC4 forms a cage surrounding one set of 

chromosome which will be extruded in both polar bodies during anaphase and G1. This unique 

cage is necessary to help cells reduce the 4N meiotic genome to the haploid stage, which is 

necessary for normal fertilization. Understanding the role of ORC4 on PBE will provide us 

different aspects of PBE mechanism. Several mechanisms have been shown to be important for 

PBE, including Ran gradient, N-WASP (35), Cdc42 (22), Formin-2 (36), Arp2/3 (31), and actin 

polarization (37) and others, but none of these mechanisms is unique to PBE and to asymmetric 

cell division. In addition, our preliminary data showed that the ORC4 also surrounds extruded 

chromosomes in erythrocyte cells. This implies that ORC4 may play roles in other asymmetric 

cell divisions. In assisted reproductive technologies, it is possible that ORC4 deletion can cause 

the generation of aneuploidy. The PBE has clear significance on human assisted reproduction, 

but we cannot perform this study on human embryo because of ethical concerns. However, 

murine ORC4 protein has a high degree of homology with the human ORC4, so the mouse 

embryo may be a good model to study this aspect on human in vitro fertilization. 

1.4 Project goals and hypotheses 

In the initial work, we have shown that ORC4, a 45-kDa, is a member of origin 

recognition complex, localizes like a cage surrounding one set of chromosomes, which will 

extrude to become the first or second polar body, respectively, at both meiotic divisions. ORC4 

remains in the polar body cytoplasm for a short time. Then, it translocates into the nucleus of the 

polar body during zygotic G1 and binds to the embryo chromatin at zygotic anaphase. This 

suggests that the function of ORC4 changes during zygotic G1 from a role in polar body 

segregation to its originally defined contribution to DNA synthesis initiation. Because ORC4 is 

associated with DNA replication (17), its asymmetrical positioning with the set of chromosomes 

that will be ejected suggests a potential relationship between the regulation of DNA synthesis 

and polar body emission. This is the first chromatin-associated protein that is asymmetrically 

associated with only the extruded set of chromosomes. 
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I therefore hypothesized that ORC4 forms a cage surrounding extruded chromosomes in 

both polar bodies during female meiosis. In chapter 2 of this dissertation I present the results 

obtained while testing this hypothesis. These data are published: 

Nguyen H, Ortega MA, Ko M, Marh J, and Ward WS. (2015) ORC4 Surrounds Extruded 

Chromatin in Female Meiosis. J Cell Biochem. 116(5):778-86 

In this first page of the work, we found that ORC4 surrounds one set of chromosomes 

based on immunofluorescent localization. We next wanted to eliminate the possibility that our 

ORC4 antibodies cross reacted with a different protein. Our attempts to inhibit ORC4 production 

with siRNA failed, but this is not surprising since immunofluorescence demonstrated that even 

GV oocytes have a large store of ORC4 localized to just below the oolemma. We therefore 

generated His-tagged murine ORC4 protein to test whether His-ORC4 injected into oocytes 

could incorporate into the ORC4 cage.  Since the ORC4 cage does not form until anaphase, we 

injected the His-ORC4 protein into MII oocytes and then activated the oocytes. Moreover, our 

previous work demonstrated that when PBE was disrupted with brefeldin, the ORC4 cage did not 

form. However, when sperm were induced to create ectopic sperm polar bodies by delayed 

activation, the ORC4 cage did form.  These data suggested that the ORC4 cage was associated 

with PBE, but it was not clear whether it was required for PBE.  To disrupt the ORC4 cage, we 

designed six 18-amino acid long peptides that represented parts of ORC4 that were on the 

exterior face of the protein, based on a predicted three-dimensional structure of ORC4. We 

reasoned that the ORC4 cage required some form of polymerization of ORC4, either with itself 

or with another protein(s), and the peptides that faced the exterior of the protein might disrupt the 

ORC4 cage by competitive binding with the polymerization sites.  

I hypothesized that the higher order oligomerization of the licensing ORC4 protein is 

required for polar body extrusion in murine meiosis. Chapter 3 of this dissertation discusses the 

following results obtained during experimental analysis. These data are published: 

Nguyen H, James NG, Nguyen L, Nguyen TP, Vuong C, Ortega M, Jameson, DM, and 

Ward WS. (2017) Higher order oligomerization of the listening ORC4 protein is required 

for polar body extrusion in murine meiosis. J Cell Biochem. 118(9):2941-2949. 

Our previous results demonstrated that recombinantly expressed ORC4, which contained 

histidine tag at C terminal of orc4 sequences, could be utilized by oocytes to form the ORC4 

cage at one set of chromosomes or PB. Using ICC, we were able to show that ORC4-His tags 

https://www.ncbi.nlm.nih.gov/pubmed/28230328
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incorporated with endogenous ORC4. However, we could not use this tags to study on live cells 

because of fixed cell preparations. We wanted to test whether enhanced green fluorescent protein 

(eGFP) or FlAsH would have the best method for determining the self-associated of ORC4 

protein to form a cage or polar body extrusion in living cells. Expanding upon this observation, 

we used mORC4 variant 1 plasmids (full length of orc4) to create two plasmids. (1) The first 

plasmid we created was ORC4 with GFP fused at the C-terminus, ORC4-GFP. (2) The second 

plasmid we created was a mutation of the ORC4 plasmid containing six-amino acids (Cys-Cys-

Pro-Gly-Cys-Cys) that replaced six amino acids at 407- 412.The ORC4-GFP and ORC4 

mutation plasmids were transcribed to mRNA and then microinjected into MII oocytes.  

I hypothesized that spatial and temporal resolution of ORC4 fluorescent variants reveals 

structural requirements for maintaining higher order self-association and pronuclei entry. In 

Chapter 4, the results obtained from testing the hypothesis were presented. These results have 

not yet been published and the investigations are ongoing.  

1.5 Contributions 

Theoretical design: Hieu Nguyen  

Contributed to writing: Hieu Nguyen 
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Figure 1.1: A model of replication licensing in live Caenorhabditis elegans embryos. The DNA 

licensing and replication occur during anaphase and S phase. (A) ORC complexes and cdc6 bind to 

unlicensed origin on DNA. (B) The origin is licensed by loading a Mcm2-7 double hexamer (M). (C) The 

ORC complexes, Cdc6, and Cdt1 are destabilized because of the binding of Mcm2-7. (D) The ORC 

complexes and Cdc6 are exported out of the interphase nucleus, whereas Cdc45 is recruited to Mcm2-7 

when replication forks initiate.  
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Figure 1.2: A diagram of mitosis stages: Prophase: the chromosomes pair up and each chromosome is 

consists of two identical sister chromatids. Metaphase: The chromosomes line up along the center of the 

cell. Anaphase: The sister chromatids pull apart by the mitotic spindle. Telophase and cytokinesis: Cell 

pinches in the middle to form two separate daughter cells each containing a full set of chromosomes. 
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Figure 1.3: A diagram of meiotic stages. After DNA replication, cell is required to produce haploid 

gametes. The duplicated homologs pair up and are segregated into different daughter cells in meiosis I. At 

this stage, the homolog pairing leads to genetic recombination (crossing-over). The diploid cell enters the 

second meiotic II following with meiotic I. The final outcome is to produce four genetically different 

haploid. 
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Figure 1.4: A model of meiotic maturation of a mouse oocyte. Meiotic maturation of a mouse oocyte. 5 

hours after germinal vesicle breakdown (GVBD), the MI spindle is assembled and migrates towards one 

side of the cortex. Then, the MII spindle is formed beneath the cortex after a first polar body extrusion. 

Later, fertilization occurs to trigger meiosis II resulting a second polar body formation.  
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Figure 1.5: mechanism of polar body extrusion on mouse. The chromatin-mediated RanGTP gradient 

activates N-WASP and the Arp2/3 complex via Cdc42 at the cortex to nucleate actin polymerization. 
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CHAPTER 2. ORC4 SURROUND EXTRUDED CHROMATIN IN FEMALE MEIOSIS 

2.1 Background 

Origins are marked by ORC (origin recognition complex) proteins during the M-G1 

transition to ensure all DNA is only replicated once during S-phase (38-41). This is the first step 

of a process called licensing that serves as a bookkeeping mechanism for the cell to monitor it 

progress in duplicating the chromosomes. The ORC is made up of six proteins, ORC1-6 ranging 

from 95 to 29 kD (NCBI database). The ORC complex proteins, which are found in all types of 

cells, from bacteria, in which DnaA is structurally and functionally homologous to ORC to 

mammals and are part of a group of proteins termed replication initiators (42). The six ORC 

proteins were originally discovered in yeast and named according to size, with ORC1 being the 

largest, and the subunits in other species names according to the homology with their yeast 

counterparts (43). More studies have been done on human ORC than mouse, but the close 

homology between these two species suggests that similar mechanisms are involved in both (44-

46). Previous models for human ORC proposed that in actively dividing somatic mammalian 

cells, ORC2-5 remain associated with DNA replication origins throughout the cell cycle while 

ORC1 is recruited to the ORC complex only during G1 (38, 39, 47, 48). However, more recent 

work has suggested that it is possible all the ORC proteins are recruited to the origins during 

each cycle (49). Moreover, the DNA binding patterns of ORC to DNA vary during 

differentiation (50). 

Licensing patterns during fertilization and subsequent early embryo development are 

particularly unique.  Sonneville et al. (2) demonstrated that ORC2, one of the first ORC proteins 

to bind to naïve DNA origins in the C. elegans zygote, binds DNA only transiently, long enough 

to recruit the MCM7 helicases that represent the final step of licensing. We previously 

demonstrated that the maternal DNA is likely to be licensed before fertilization but the paternal 

DNA is licensed de novo in the embryo (10). We also identified unexpected roles for ORC2 in 

the first cell cycle. We demonstrated that ORC2 binds to the DNA in both pronuclei in late 

zygotic G1 as expected for its role in licensing.  However, just after fertilization in anaphase II, 

ORC2 localized between the two separating sets of maternal chromosomes. While the original 

role of ORC proteins was to mark DNA replication origins, it has now been suggested that they 

also play more diverse roles that coordinate DNA replication with other cell division events (42, 

51).   



17 
 

Here, we examined the roles of the other five ORC proteins in the first cell cycle. We 

found that ORC1, ORC3, and ORC5 had similar patterns of localization to ORC2 at anaphase II, 

but ORC6 and ORC4 exhibited surprisingly different patterns. In particular, the data suggest that 

ORC4 may play a role in polar body extrusion. 

2.2 Materials and Methods 

2.2.1 Animals  

Eight-week old B6D2F1 (C57BL/6N X DBA/2) mice were used.  Mice were obtained 

from National Cancer Institute (Raleigh, NC), and used at 8 – 12 weeks of age. Animal care and 

experimental protocols for handling and the treatment procedures were reviewed and approved 

by the Institutional Animal Care and Use Committee at the University of Hawai’i. 

2.2.2 Preparation of Spermatozoa  

Spermatozoa were obtained from B6D2F1 male mice (8- 12-week-old). A caudal 

epididymis was extracted, suspended in HEPES-CZB, and incubated for 45 minutes at 37°C 

under 5% CO2 in air to allow the spermatozoa to disperse in the medium. The spermatozoa 

suspension for Intracytoplasmic sperm injection (ICSI) was mixed with PVP-saline (0.9% NaCl 

containing 12% w/v polyvinyl pyrolidone 360 kDa; ICN Biochemicals) 

2.2.3 Preparation of Oocytes  

To obtain mature metaphase II (MII) oocytes, mature female, 8 – 10-week-old, were 

induced to superovulate by injections of 5 IU PMSG and 5 IU hCG given 48h apart.  Oviducts 

were removed 14 -15 hours after the injections of hCG and placed in CZB free Ca+2. The 

cumulus cells were released from the oviducts into 0.1% bovine testicular hyaluronidase/CZB 

medium for 10 minutes to disperse cumulus cells.  The cumulus-free oocytes were washed and 

kept in CZB at 37o C under 5% CO2 in air.  These oocytes were used for immunocytochemistry 

and ICSI. 

2.2.4 Intracytoplasmic Sperm Injection (ICSI)  

 ICSI was carried out as described by Kimura and Yanagimachi (52). ICSI was 

performed using Eppendorf Micromanipulators (Micromanipulator TransferMan, Eppendorf, 

Germany) with a piezoelectric actuator (PMM Controller, model PMAS-CT150; Prime Tech, 

Tsukuba, Japan). A single sperm head was sucked, tail first, into the injection pipette and moved 

back and forth until the head-mid piece junction (the neck) was at the opening of the injection 

pipette. The head was separated from the mid piece by applying one or more piezo pulses. An 
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oocyte was held to the holding pipette at the 9 o'clock position, and the sperm head was redrawn 

into the pipette and injected immediately into an oocyte. After discarding the mid piece and tail, 

the sperm head was redrawn into the pipette and injected immediately into an oocyte. After ICSI, 

oocytes were cultured in CZB at 37o C under 5% CO2 in air. 

2.2.5 Preparation immature oocytes 

To collect immature metaphase I and anaphase I oocytes, females were induced to super-

ovulate by injections of 5 IU of PMSG. Oviducts were removed 48 hours after PMSG injections 

and placed in HEPES-CZB in a petri dish. The biggest follicles were break to release germinal 

vesicle stage (GV) oocytes. GV oocytes with surrounded cumulus cells were placed in CZB 

drops under mineral oil and cultured for 2 hours.  After 2 hours, cumulus cells were removed by 

pipetting.  The oocytes that underwent germinal vesicle breakdown were collected and cultured 

for 4 and 9 hours to reach metaphase I and anaphase I, respectively. Oocytes were then used for 

ICC. 

2.2.6 Antibodies 

Polyclonal goat anti-ORC1 (N-17, catalog no. sc-13231; Santa Cruz Biotechnology), 

polyclonal goat anti-ORC2 (C-18, catalog no. sc-13238; Santa Cruz Biotechnology), Polyclonal 

goat anti-ORC3 (K-17, catalog no. sc-21862; Santa Cruz Biotechnology), Polyclonal goat anti-

ORC4 (C-15, catalog no. sc-19726; Santa Cruz Biotechnology), Polyclonal goat anti-ORC5 (T-

15, catalog no. sc-19728; Santa Cruz Biotechnology), Polyclonal goat anti-ORC6 (2679C2b, 

catalog no. sc-81646; Santa Cruz Biotechnology) and monoclonal mouse-MCM7 (H-5, catalog 

no. sc-374403; Santa Cruz Biotechnology) primary antibodies were used. The Secondary 

antibodies included Alexa Fluor 488 rabbit anti-goat and Alexa Fluor 546 rabbit anti-mouse 

(Invitrogen, Grand Island, NY). 

2.2.7 Immunocytochemistry (ICC) 

Embryos were cultured in CZB until they reached the desired stage after ICSI, and fixed 

in 2% paraformaldehyde for 30 minutes at room temperature. After fixing, cells were washed 

three times with 0.1% Tween/PBS (PBSw) for 10 minutes. Cells were permeabilized in 0.5% 

Triton X-100 for 15 minutes, after that the cells were washed three times with PBSw contained 

10% volume of 5% BSA. Cells were blocked with 5% BSA for 1 h at room temperature, then 

incubated in primary antibody at 1:50 dilution overnight at 4 o C. Again, the cells were washed 

three times with PBSw contained 10% volume of 5% BSA, then incubated in secondary antibody 
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at 1:1500 dilutions at room temperature for 45 minutes. Cells were again washed three times 

with PBSw contained 10% volume of 5% BSA then mounted with ProLong Gold antifade 

reagent with DAPI (catalog no. P-36931; Invitrogen).  ICC was analyzed with an FV1000-IX81 

confocal microscope from Olympus using Fluoview v. 2.1 software.  For each stage of 

embryonic development, at least 20 embryos were examined by ICC, and the results were only 

reported if they were consistent in all embryos. 

2.3 Results 

2.3.1. ORC1, ORC3, ORC5 and ORC6 localize between the chromosomes at anaphase II 

similar to ORC2 

We recently examined the expression pattern of ORC2 during the first two cell cycles of 

the mouse embryo. ORC2 localizes at the area between the separating chromosomes in anaphase 

II just after fertilization, then moves into the pronuclei where it becomes resistant to salt 

extraction, indicative of DNA binding (10). To complete the analysis of the expression patterns 

of all six ORC proteins, we examined ORC1, and ORC3-6 during the first cell cycle of the 

mouse zygote. We found that ORC1, ORC3, and ORC5 behave similarly to ORC2 in that they 

localized between the separating chromosomes at anaphase II (Fig. 2.1) and to the spindle poles 

zygotic metaphase. ORC1 surrounded the chromosomes at zygotic anaphase, but did not 

significantly overlap with the chromosomes, just as we had previously seen for ORC2 (10). This 

suggests that ORC1, ORC2, ORC3 and ORC5 may play structural roles during mitosis. ORC1, 

ORC3 and ORC5 could not be detected in the zygotoc pronuclei, however (data not shown). This 

differs from ORC2, which is easily detectable in the zygotic pronuclei at all stages (10). ORC6, 

on the other hand, was found only in the periphery of the nucleoli at all stages between zygotic 

G1 and 2-Cell G1 (Fig 2.2). During zygotic telephase, ORC6 was present around the nucleoli of 

the polar body, but was not detectable on the chromosomes (data not shown). 

2.3.2 ORC4 surrounds the polar body chromatin at anaphase II 

We were surprised to find that ORC4 behaves in a very different manner than the other 

ORC proteins. At anaphase II, ORC4 formed a ring, as visualized by confocal microscopy, 

around the set of chromosomes that would eventually segregate into the second polar body (Fig. 

2.3B). Two different antibodies gave us the same result. This was a consistent finding in every 

zygote at anaphase II for which ORC4 staining was clear. ORC4 always surrounded the 

chromosomes that were nearest the zygotic membrane, and therefore presumed to be those 
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destined to segregate into the second polar body. This assumption is supported by the fact that in 

zygotic G1 after the polar body had been extruded, ORC4 was localized to the nuclear periphery 

of the polar body nucleus (Fig. 2.3L).  ORC4 was not detectable in the pronuclei in the zygote at 

this stage.  The decondensing sperm chromatin in the zygote after fertilization was initially not 

associated with ORC4 (Fig. 2.3B), but as decondensation progressed, ORC4 was found to be 

associated with sperm chromatin in a 3/12 zygotes (Fig. 3G, inset).  At this point, ORC4 also 

bound to both sets of maternal chromatin, the one that would contribute to the maternal 

proncleus (Fig. 2.3G, arrow) and one that would be segregated into the polar body (Fig. 2.3G, 

arrowheads). The fact that so few zygotes had ORC4 bound to the sperm chromatin suggested 

that this binding seemed to be transient. Neither of the two pronuclei at zygotic G1 had 

detectable ORC4 (Fig. 2.3L). 

2.3.3 ORC4 also surrounds first polar body chromatin 

 The results described above suggested that ORC4 may play a role in polar body extrusion. 

To test this, we examined whether ORC4 localized to the chromatin or perinuclear cytoplasm 

during the first division of female meiosis. We isolated oocytes at the germinal vesicle (GV) 

stage which is the point just before metaphase I, and cultured them for 8 to 9 hours until they 

reached metaphase I and anaphase I. At both the GV and GVBD (germinal vesicle breakdown) 

stages, ORC4 was present in a thin shell just below the cell membrane (Figs. 2.4A-D). At 

metaphase I, this layer became more diffuse (Figs. 2.4E and F). At anaphase I, ORC4 surrounded 

the polar body chromosomes, but not the oocyte chromosomes (Figs. 2.4G and H), just as in 

anaphase I (Fig. 2.3G).  Because ORC4 seemed to play similar roles in anaphase I and anaphase 

II, we tested whether the same was true for ORC2. We found that ORC2 localized between the 

separating chromosomes of anaphase I, just as it does in anaphase II (10).  Once the first polar 

body was extruded, at metaphase II, ORC4 surrounded the polar body nucleus (Figs. 4I and J). 

These data support the possibility that ORC4 plays a role in the extrusion of both polar bodies. 

Because the ring-like structures for the ORC4 complex were seen by confocal microscope 

sections, we tested whether the three dimensional structure was actually an ovoid sphere that 

completely enclosed the polar body chromatin. Figure 2.5 shows serial confocal sections of polar 

body chromatin in late anaphase I that clearly demonstrate that ORC4 forms a sphere that 

surrounds one set of chromosomes (Figs. 2.5C-G) but not the other (Figs. 2.5A-B). 
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2.4 Discussion 

This work represents the completion of our study on the localization of the six ORC 

proteins during the first cell cycle of the mouse zygote. The data from this and our previous 

study (10) are summarized in Fig. 8.   

2.4.1 ORC1-3, 5 and 6 

 In the zygote, perhaps more than in other cell types, ORC proteins seem to play roles in 

addition to their well-documented function in DNA replication. ORC1-3 and 5 all localize to the 

area between the separating chromosomes in anaphase II just after fertilization, and to the 

spindle poles in zygotic metaphase. It is not clear what role these four ORC proteins play in these 

structures, but it is intriguing that all four localize at both. A recent study has suggested that 

ORC2-5 assemble in the cytoplasm before being translocated to the nucleus (49). The co-

localization of ORC1-3 and 5 at the mitotic spindle and between the separating chromosomes at 

anaphase II suggest that these are storage sites for the initial ORC complexes in close proximity 

to the newly forming nucleus. A similar localization of ORC2 between separating chromosomes 

at mitosis was previously noted in HeLa cells (53). Interestingly, ORC2 was also found at the 

spindle poles in the oocyte at metaphase I and between the separating chromosomes of anaphase 

I (10). Because both structures disappear and then re-establish in the second mitotic division of 

maternal meiosis, this suggests that ORC2 plays a role in mitosis other than licensing (54). We 

also demonstrated that ORC1 surrounded the separating chromosomes in zygotic metaphase (Fig 

2.1) just as we had previously shown for ORC2 (10). ORC2 was constantly found around the 

DNA during telophase before it moved into the nucleus, and ORC1 seems to follow this pattern. 

We found that ORC6 was localized to the nucleoli of both pronuclei and the polar body, which 

agrees with studies in Drosophila (15) and human cells (39).   

We were not able to visualize ORC1-3 or 5 co-localized with the DNA at any time.  

However, recent models for ORC suggest it might be more transiently associated with DNA than 

previously thought (43), so it is possible that we missed time points in which ORC subunits were 

associated with DNA. Our own data for ORC4 (discussed below) and ORC2 (discussed in ref. 

(10)) suggest that this is particularly true for the zygotes.  Additionally, the fully formed ORC is 

a circular complex in which the six subunits are closely associated (55). This may provide steric 

hindrance from the other ORC subunits that prevents the antibodies from finding their epitopes.   
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2.4.2 ORC4 and the Polar Body 

 The most unexpected finding in our study was the association between ORC4 and the 

polar body chromatin. We have shown that ORC4 is part of a structure that surrounds the 

chromatin as an ovoid sphere that is destined to become the first and second polar bodies in both 

female meiotic divisions.  It does not appear that any of the other ORC subunits are involved in 

this. ORC2 is located adjacent to the ORC4 sphere between the separating chromosomes in both 

divisions, and ORC1, ORC3, and ORC5 are similarly located there in anaphase II. This is 

consistent with the recent demonstration that in the first step of the formation of the ORC is the 

formation of the ORC2-5 complex, to which ORC4 binds before being transported into the 

nucleus (49). This suggests that ORC4 is capable of existing in the cytoplasm separately from the 

other ORC subunits as observed during polar body formation where an ORC4 sphere was present 

as soon as the chromosomes began to separate. In the first meiotic division, ORC4 was clearly 

present in a thin layer just below the oolemma then moved to the separating chromosomes in 

anaphase. In metaphase II, ORC4 was visible only in the cytoplasm of the first polar body, where 

it remained during anaphase II in those cases where the first polar body survived. These results 

raise the intriguing question that cytoplasmic ORC4 plays a role in the separation of the polar 

bodies from the oocyte. 

 Polar body extrusion is tightly coupled with the movement of the mitotic plate close to 

the oolemma during metaphase I and metaphase II in the maturing oocyte (56). A cortical 

domain forms over the spindle near the oolemma, and the mitotic plate is oriented perpendicular 

to the membrane (57, 58). Formin-2, a microfilament binding protein, directs the migration of the 

mitotic plate to the oolemma (59). A myosin ring helps to define the polar body cytoplasm, and 

the final emission (27).  From these studies, it would appear that the chromatin that is destined to 

be extruded in the polar body is defined not by a molecular signal but by the orientation of the 

mitotic plate in the cytoplasm:  the chromatin that is nearest to the oolemma will be extruded.  

The role that ORC4 may play in this, therefore, is not readily apparent. One possibility is that the 

ORC4 sphere stabilizes the polar body cytoplasm that will form the polar body.  In support of 

this, it is interesting to note that the de-condensing sperm nucleus also forms a cone, similar to 

the polar body that is subsequently not extruded and reabsorbed back into the oocyte (27).  It is 

not clear why the sperm cone is not extruded but the polar body cone is. We only found the 

ORC4 sphere around the polar body chromatin, and never around the sperm nucleus, and it is 
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possible that the ORC4 in the polar body cytoplasm plays a role in the eventual extrusion of the 

polar body cone.  Another possibility is that it helps to segregate the polar body chromatin from 

nuclear factors that would activate genes inappropriately. We are currently testing whether 

ablation of ORC4 will prevent polar body formation. 

2.4.3 ORC4 and Zygotic Chromatin 

 The role that ORC4 plays in polar body emission seems to be separate from its role in 

DNA replication. We have previously shown that the second polar body occasionally undergoes 

visible DNA replication (60) so it is likely that enough ORC4 binds to the DNA of the polar 

body to ensure at least partial licensing. We found that ORC4 undergoes two cytoplasmic to 

nuclear translocations in the first two embryonic cell cycles. We found three examples of ORC4 

being associated with the sperm chromatin and both sets of separating maternal chromosomes at 

anaphase II (Fig. 2.3). In all three cases, ORC4 bound to the DNA of the chromatin at the same 

time in that it formed the ORC4 sphere that surrounded the chromosomes destined to become the 

polar body. Interestingly, at this point in fertilization, the maternal chromosomes are in anaphase 

and are not contained within a nuclear membrane therefore these chromosome sets are directly 

associated with the cytoplasm. It should be noted, the decondensing sperm nucleus also does not 

have a fully formed nuclear envelope (61). This association appeared to be short-lived, consistent 

with recent studies suggesting that the ORC complex forms transient structures in some cases (2, 

43). Another possibility, mentioned above, is that ORC4 remains on the chromatin structures but 

is no longer available for antibody binding in the fully formed ORC.  In this latter case, the data 

would suggest that ORC4 plays a role in establishing the fully formed ORC as observed in S. 

pombe (62). 

 The second obvious association of ORC4 with the chromatin was in late zygotic 

anaphase. The chromosomes became coated with ORC4 as they were separating from the mitotic 

plate (Fig. 2.6). This was preceded by a clear translocation of the cytoplasmic ORC4 in the 

second polar body into the nucleus just before zygotic metaphase (Figs. 2.6B and E).  

Interestingly, in those cases where the first polar body survived unit zygotic metaphase, ORC4 

translocated into the nucleus of second polar body, but not the first (Fig. 2.6). In this case, the 

polar body DNA is sequestered inside nuclear envelope, but the zygotic anaphase chromosomes 

are not. The data suggest that the roles of ORC4 in the cytoplasm, within the nucleus, and in 

mitotic chromosomes are regulated both spatially and temporally.  It is likely that the association 
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of ORC4 with the chromatin is related to licensing. ORC4 is the only ORC subunit that we have 

localized to the zygotic anaphase chromosomes. ORC1 (Fig 2.1) and ORC2 (10) surround the 

chromosomes but do not appear to bind directly to the DNA at this point. This raises the 

intriguing possibility that ORC4 directs the formation of ORC on the chromatin. Most current 

work on human ORC suggests that it is ORC1 that directs the binding of the final complex to 

DNA.  However, in the yeast S. pombe, ORC4 has a unique domain that directs the binding of 

the ORC to the DNA (62). It is possible that mouse ORC4 plays a greater role in ORC binding to 

DNA that human ORC4. 

2.4.4 Conclusions 

 Our data suggest that the ORC subunits play important roles in the mouse zygote other 

than licensing DNA replication origins. ORC1-3, 4 and 5 may all be involved in the separation of 

chromosomes during meiosis, and ORC4 may play a role in polar extrusion. Both functions are 

related to the proper segregation of the chromosomes just before and after fertilization.   

2.5 Contributions 

Research design: Hieu Nguyen and W. Steven Ward. 

Conducted experiments: Hieu Nguyen, Michael A. Ortega, Myungjun Ko, Joel Marh. 

Contributed to writing: Hieu Nguyen and W. Steven Ward 
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Figure 2.1. ORC1-3 and ORC5 are adjacent to the chromosomes at anaphase II.  ICSI generated 

zygotes were fixed and stained for ORC1 (A), ORC2 (B), ORC3 (C) and ORC5 (D) and visualized by 

confocal microscopy. All four ORC subunits localize to the area between separating maternal 

chromosomes in anaphase II. The decondensing sperm nucleus had no visible staining in any oocyte. 

Insets in (B) and (D) represent areas in different confocal planes than the maternal chromatin. Sp, de-

condensing sperm nucleus.  All images are shown at the same magnification, bar = 10 m. 
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Figure 2.2. ORC6 in the first zygotic cell cycle.  ICSI generated zygotes were fixed and stained for 

ORC6 at zygotic G1 (A), zygotic telophase (B), and 2-cell G1 (C) and visualized by confocal microscopy. 

Inset in (C) is the area in different confocal plane from the main image that contained the second nucleus. 

PB, second polar body. All images are shown at the same magnification, bar = 10 m.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



27 
 

 

Figure 2.3. ORC4 surrounds the polar body chromatin during anaphase II. ICSI generated zygotes 

were fixed and stained for ORC4 at early anaphase II (A-J), early zygotic G1 (K-O) and late zygotic G1 

(P-T), and visualized by confocal microscopy.  ORC4 surrounds the chromatin that is closest to the 

oolemma (B and G), and the nucleus of the polar body at G1 (L). ORC4 was also visible in the 

decondensing sperm nucleus (G, inset) but not in a sperm that was less decondensed (B). ORC4 

translocates to the nucleus of the second polar body in late G1 (Q).  All insets show areas from different 

confocal planes than the rest of the figure. All images are shown at the same magnification, bar = 10 m. 
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Figure 2.5. ORC4 forms an ovoid 

sphere around the polar body 

chromatin at anaphase.  A GV oocyte 

was matured in vitro until it reached 

anaphase I and then fixed and stained for 

ORC4. The images are serial confocal 

planes starting at one chromosome set at 

anaphase I (A). The second set of 

chromosomes appears in (B). ORC4 

begins as a small oval shape (B and C) 

then becomes a ring (D and E) then 

becomes a solid oval, again (F to G), 

indicating that ORC4 surrounds only one 

set of chromosomes as an ovoid sphere at 

anaphase I. All images are shown at the 

same magnification, bar = 10 m. 

Figure 2.4. ORC4 in maturing oocytes. GV 

oocytes were isolated and cultured in vitro, then 

stained for ORC4 and visualized by confocal 

microscopy. GV (A and B), and GVBD oocytes 

(C and D) contained ORC4 in the cell periphery.  

Metaphase I oocytes (E and F) had more diffuse 

patterns of ORC4 distribution.  At anaphase I (G 

and H), ORC4 surrounded the chromatin nearest 

the oolemma, and this was maintained in 

metaphase II (I and J). All images are shown at 

the same magnification, bar = 10 m. 
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Figure 2.6. ORC4 translocates to the DNA during zygotic metaphase. ICSI generated zygotes were 

fixed and stained for ORC4 at different stages of zygotic metaphase. In zygotic metaphase, ORC4 is 

present in the nucleus of the second polar body (2nd PB) but not on the zygotic metaphase chromosomes 

(A-C). By early telophase, both sets of chromosomes are coated with ORC4 (D-F), and this persists to 

late telophase (G-I). All images are shown at the same magnification, bar = 10 m. 
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Figure 2.7. ORC4 is present in early G1 2-cell embryo nuclei.  ICSI generated 2-cell G1 embryos were 

fixed and stained for ORC4 and MCM7. In early 2-cell G1, ORC4 is detectable in both nuclei (A-D).  

Later in G1, MCM-7 is visible in both pronuclei, but ORC4 is absent (E-H).  The polar body (PB) 

retained ORC4, and did not accumulate MCM7. Insets show areas from different confocal planes than the 

rest of the figure. All images are shown at the same magnification, bar = 10 m. 
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Figure 2.8. Diagram of ORC subunit distribution during the first two cell cycles of the mouse 

embryo.  The distribution of the ORC subunits were determined in both this study and our previous 

publication for ORC2 (10). 
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CHAPTER 3. Higher Order Oligomerization of the Licensing ORC4 Protein is required 

for Polar Body Extrusion in Murine Meiosis 

3.1 Introduction 

 During mammalian, female meiosis, developing oocytes reduce the number of 

chromosomes to 1N by ejecting them in two polar bodies in a process called polar body 

extrusion (PBE) (57, 63). Polar bodies arise from asymmetric divisions in which most of the 

cytoplasm is retained in the oocyte (Fig. 3.1-1). To achieve this unequal division, actin filaments 

associated with Rab11 containing vesicles reposition the germinal vesicle chromosome plate to 

the cortex of the oocyte before cytokinesis (64, 65).  It is not clear how the set of chromosomes 

that will be ejected is chosen. In the first meiotic division, it could simply be the chromosomes 

that are more proximal to the cortex, but in the second division the metaphase plate is not 

originally aligned perpendicular to the oolema (56). Also, the oocyte is not simply discarding 

damaged DNA since it appears that the chromosomes in both the first or second polar body are 

intact because they can both be used to substitute for oocyte DNA and produce live pups in mice 

(66, 67).   

 We recently discovered an unexpected link between PBE and the DNA licensing protein 

ORC4 (17). ORC4 is one of six proteins that bind to DNA replication origins during the G1 stage 

of the cell cycle to establish the start sites for DNA synthesis (68). While the primary roles for 

the ORC proteins are well established to be in DNA replication, recent evidence suggests that 

many of them have additional functions that are related to the cell cycle, possibly to help 

coordinate the timing of DNA synthesis with other cellular processes (42, 51). While studying 

the roles of the six ORC proteins in early mammalian embryogenesis, we found that ORC4 

forms a cage that surrounds the set of chromosomes that will be extruded during anaphase in 

both meiotic divisions of murine oogenesis, but not around the set of chromosomes that remains 

in the oocyte (17) (Fig.1-1C & E). We termed this structure the ORC4 cage.  Here, we tested 

whether this ORC4 cage was required for PBE. We found that when the ORC4 cage formation 

was experimentally inhibited prior to second meiotic division, the oocytes did not extrude a 

second polar body. 
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3.2 Material and Methods 

3.2.1 Animals 

B6D2F1 mice obtained from National Cancer Institute (Raleigh, NC) were used as sperm 

and oocyte donors. Animal care and experimental protocols for handling and the treatment 

procedures were reviewed and approved by the Institutional Animal Care and Use Committee at 

the University of Hawai’i. 

3.2.2 Preparation of Spermatozoa and Oocytes   

Swim-up spermatozoa were prepared from the cauda epididymis as described (69). The 

spermatozoa suspension was used for intracytoplasmic sperm injection (ICSI).  Metaphase II 

(MII) oocytes were prepared from superovulated mice as described previously (10). Briefly, 

oviducts were removed 14 -15 hours after the injections of hCG and and the cumulus cells were 

released from the oviducts into 0.1% bovine testicular hyaluronidase in CZB (70) medium for 10 

minutes to disperse cumulus cells. The cumulus-free oocytes were washed and kept in CZB 

under a controlled environment (37ºC and 5% CO2).  

 To collect immature metaphase I and anaphase I oocytes, females were induced to 

superovulate by injections of 5 IU of eCG, as described (71). Oviducts were removed 48 hours 

after eCG injection and placed in HEPES-CZB (52) medium in a petri dish at room temperature.  

Germinal vesicle (GV) oocytes with surrounding cumulus cells were placed in CZB drops under 

mineral oil and cultured for 2 hours.  The oocytes that underwent germinal vesicle breakdown 

were collected and cultured for 4 and 9 hours to reach metaphase I and anaphase I, respectively. 

3.2.3 Intracytoplasmic Sperm Injection (ICSI) 

ICSI was carried out as described (52). Briefly, ICSI was performed using Eppendorf 

Micromanipulators (Micromanipulator TransferMan, Eppendorf, Germany) with a piezoelectric 

actuator (PMM Controller, model PMAS-CT150; Prime Tech, Tsukuba, Japan). After ICSI, 

oocytes were cultured in CZB at 37C under 5% CO2. 

3.2.4 Immunocytochemistry (ICC) 

 ICC was performed as described previously (10). Embryos were cultured in CZB until 

they reached the desired stage after ICSI or parthenogenesis activation, and fixed in 2% 

paraformaldehyde for 30 minutes at room temperature.  After fixing, cells were washed, blocked 

with 5% BSA for 1 h at room temperature, then incubated in primary antibody [Polyclonal goat 
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anti-ORC4 (L-15, catalog no. sc-19725 and C-15, catalog no. sc-19726; Santa Cruz 

Biotechnology, Santa Cruz, CA ), monoclonal mouse anti-HIS (catalog no. CGAB-HIS-0050; 

Genecopoeia) at 1:50 dilution overnight at 4C. The cells were washed again, then incubated in 

secondary antibody at 1:1500 dilutions at room temperature for 45 minutes. Cells were washed 

again, and mounted with ProLong Gold antifade reagent with DAPI (catalog no. P-36931; 

Invitrogen).  Images were collected on an Olympus FV1000 confocal microscope using 

Fluoview v. 2.1 software.   

3.2.5 mORC4-his tagged protein expression 

Recombinant plasmid containing hexahistidine (His6) tagged mORC4 (Genecopiea), with 

a T7 promoter, was transformed into E. coli (BL21(DE3)pLysS; Inivtrogen) to induce protein 

overexpression.  An individual colony of transformed E. coli plated on LB (containing 150 

µg/mL ampicllin and 35 µg/mL chloramphenicol) was picked to inoculate a 50 mL overnight 

culture (TB + Amp and chloraphenicol). After 18 hours 5 mLs of the overnight culture were 

added to 1 L of Terrific Broth (+150 µg/mL ampicllin and 35 µg/mL chloramphenicol). 

Induction of ORC4-his expression was started when the OD600 reaches 0.8 – 1.0. To induce 

protein expression, bacteria was cooled to ~18C, induced with 0.5 mM IPTG and incubated at 

room temp with 300 RPM shaking for 18h. Coomassie staining and western blot was used to 

monitor mORC4 expression and track purity of the sample following NiNTA and SEC 

purification.  

3.2.6 Microinjection of mORC4-his tagged protein into oocyte 

Recombinant mORC4-his6 protein was microinjected into the cytoplasm of MII oocytes, 

as described (72). In all experiments 10 pl of 1.8 µg/ml of peptide was injected into each oocyte. 

Following microinjection for different times, the oocytes were incubated in CZB free calcium 

medium contained 10 mM of SrCl2 with varying time points. ICC were used to visualize ORC4 

cage formation and overlap between His6 and endogenous ORC4 antibody staining. 

3.2.7 Induction of ectopic sperm polar body formation 

 Sperm were washed with 0.5% SDS for 1 min, then heated at 95C for 5 minutes, and 

finally incubated with Tx-100 for 10 minutes. A single SDS-washed, heated sperm head was 

picked up into the injection pipette.  An oocyte will be held to the holding pipette at the 9 o'clock 

position and then rotated until it reaches the metaphase II spindle. The prepared sperm head was 

redrawn into the pipette and microinjected immediately into the oocyte in the vicinity of the 
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membrane. Following ICSI, injected oocytes were cultured in CZB 37C under 5% CO2 in air 

for three hours and then activated with SrCl2 for desired time points (1h, 2h, and 3h, 

respectively). Phase microscopy and ICC were used to evaluate ORC4 cage formation. 

3.2.8 Brefeldin treatment of oocytes and embryos 

GV and MII oocytes were incubated with BFA (10 mM/ml) supplemented with 10 mM 

of SrCl2 at desired time points (12h and 2h or 5h, respectively) to inhibit polar body formation. 

All oocytes and embryos were incubated at 37C in a humidified atmosphere of 5% CO2 in air. 

3.2.9 Microinjection of Peptides into oocytes 

Six different peptides were injected into the cytoplasm of MII oocytes 1 hr before 

activation. In all experiments, 10 pl of 2.0 µg/µl RNA was injected into each oocyte. Following 

microinjection, the oocytes were incubated in CZB free calcium medium containing 10 mM of 

SrCl2 for one hour. Phase microscopy and ICC were used to evaluate polar body extrusion. 

3.2.10 mORC4-his Fragment Deletions 

mORC4-His6 plasmids were used to create assembly vectors by using NdeI and AvaI 

enzymes. Fragmented inserts with desired sequences were amplified by PCR reactions. The 

primers used to amplify the desired sequences included homology arms at the beginning and at 

the end of the assembly vectors. Gibson assay was then used to join vector and fragmented 

inserts together and the Gibson products were electrophoresed into bacteria.  Fragments were 

confirmed by single PCR colony and sequencing.  

3.2.11 mRNA synthesis 

 Plasmids containing the mORC4- and ORC4-His6 fragment mRNAs were linearized by 

an enzyme downstream of the ORC4 gene. mMESSAGE mMACHINE T7 transcription kit from 

Thermo Scientific was used to synthesize mRNA ORC4-His6 constructs. Agarose (1%) 

electrophoresis was used to confirm mRNA product, and isolate mRNA by Direct-zol RNA 

miniprep (Zymo Research). ORC4-His6 mRNA constructs were stored at -20°C prior to 

microinjection. 

3.2.12 Injection of mRNA 

Each ORC4-His6 mRNA constructs was used to microinject into the cytoplasm of MII 

oocytes. A microinjection volume of 10 pl/oocyte was used in all experiments. Following 

microinjection, the oocytes were incubated for 6 hours before parthenogenesis activation by 
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using CZB free calcium medium contained 10 mM of SrCl2 for three hours. ICC and Phase 

microscopy were used to visualize polar body extrusion.  

3.3 Results 

3.3.1 HIS-ORC4 Integrates Into the ORC4 Cage.  

We wished to first ascertain that the ORC4 cage, observed previously by our lab using 

ICC, truly contained ORC4 and was not an off-target effect of the antibodies (17). These 

experiments used two different commercial antibodies to identity ORC4 as a major component 

of the chromosome cage. We therefore made mouse ORC4 constructs with histidine tags for two 

variants of ORC4:  variant 1 that represents the full length version of ORC4, 433 amino acids in 

length (his-v1-mORC4) and variant 2 (73) that encodes the first 121 amino acids of the full 

length ORC4 (his-v2-mORC4). Both his-mORC4 transcripts were expressed in bacteria and the 

proteins isolated on a nickel column.  The purified protein, HIS-v1-mORC4 was electrophoresed 

and assayed with the ORC4 antibody we used for ICC and with an antibody to the HIS tag 

(Fig.2). The antibody we used for ORC4 ICC recognized a protein at an identical molecular 

weight as the antiHis ab, verifying that our prior ICC experiments  identified ORC4 (17). 

We next attempted to inject each variant into MII oocytes to determine if they become 

incorporated into the ORC4 cage as it forms after MII oocytes are activated. Our previous results 

demonstrated that the ORC4 cage is formed after metaphase is completed, during anaphase of 

both meiotic divisions (17). Oocytes were injected with our recombinant ORC4-His6 protein and 

stimulated to MII to examine if the His protein intergrates with native ORC4 in the cage 

structure. The full length, HIS-v1-ORC4 proved to be too difficult to solubilize for injections, 

but the smaller variant 2, HIS-v2-ORC4, could be injected. When oocytes were subsequently 

activated them with SrCl2 then stained with an antibody to the HIS-tag, we found that HIS-v2-

ORC4 did incorporate into the ORC4 cage (Fig. 3.3). This supported the conclusion that the 

DNA replication associated protein was part of the ORC4 cage that extruded chromosomes from 

the cytoplasm.  

3.3.2 A New ORC4 Cage Is Formed when the Oocyte Expels Sperm Chromatin 

The recruitment of ORC4-His6 to chromosomes during anaphase in meiosis suggests that 

ORC4 has a novel function associated with PBE. If so, the ORC4 cage should not be formed 

when PBE was inhibited, and, conversely, a new ORC4 cage should form if chromatin that was 

normally retained in the zygote was extruded. When we inhibited PBE with brefeldin A (BFA) 
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(20) (Fig. 3.4) or cytochalasin B (Fig. 3.5), parthenogenetically activated oocytes divided into 

two equal sized cells and no ORC4 cage was formed.  This suggested that the ORC4 cage was 

dependent on PBE. We then tested whether a second ORC4 cage formed if sperm chromatin was 

induced to be expelled at metaphase II. During normal fertilization the de-condensing sperm 

nucleus forms a “sperm cone” in which the oolemma around the sperm nucleus blebs outward in 

a manner similar to the initial stages of PBE (74,75)(Fig. 3.1-1E). This blebbing is normally 

resolved and the sperm chromatin is reabsorbed into the zygote. We never found an ORC4 cage 

around the sperm chromatin in normal fertilization (17) (Fig. 3.6A). The sperm cone, however, 

can be experimentally induced to form a complete vesicle that is ejected from the oocyte as an 

ectopic sperm pseudo polar body, similar to PBE (Fig. 3.6B&C). This occurs when sperm are 

washed with an ionic detergent and then injected into oocytes.  These sperm fail to activate the 

oocyte to complete its second meiotic division, but do begin to de-condense. When these 

fertilized oocytes are allowed to incubate for 3 hrs, then activated with SrCl2, the sperm 

chromatin is expelled as in a vesicle that resembles a polar body (26).  We repeated this 

experiment and found that a new ORC4 cage formed around the extruded sperm chromatin.  

ORC4 first localized at the oolemma near the decondensing sperm chromatin (Fig. 3.6B), then an 

ORC4 cage formed around the sperm chromatin (Fig. 3.6C). At G1, the sperm chromatin has 

been ejected as a pseudo polar body with an ORC4 cage (Fig. 3.6D). The ORC4 cage formed 

normally around the maternal chromatin that was extruded in the polar body in these oocytes. 

These data suggested that a second ORC4 cage forms around sperm chromatin when it is 

induced to be expelled by experimental manipulation. 

3.3.3 Disruption of the ORC4 Cage by ORC4 Peptides Prevents PBE 

The experiments above suggested that ORC4 cage formation is disrupted when PBE is 

inhibited, and that a new ORC4 cage can be induced to form around sperm chromatin when it is 

extruded from the oocyte.  This indicates that the ORC4 cage is associated with PBE, but does 

not prove it is necessary for PBE. We first attempted to test whether the ORC4 cage was required 

for PBE by disrupting it with siRNA to Orc4 but this had no effect, presumably because there 

was sufficient ORC4 protein present in the GV oocyte to construct the cage (17). Therefore, we 

disrupted the cage more directly using ORC4 peptides. We reasoned that the ORC4 cage 

required oligomerization, either ORC4 self-association or ORC4 interacting with another protein. 

We generated a putative three-dimensional structure for the full-length mouse ORC4 protein 
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using Phyre II software (Fig. 3.7) and identified six, 18 amino acid peptides that represented 

sequences of the protein that faced external surfaces that could be involved in protein-protein 

interactions to form polymers. The six peptides are shown in relation to the full length, v1-ORC4 

protein in Fig. 3.7. We note that no soluble peptides could be identified for one section of the 

ORC4 protein, between amino acids 210 and 340.   

Individual peptides were synthesized and injected into MII oocytes 1 hr before 

parthenogenetic activation. Four of the peptides that we injected, 6, 9, 14 and 16, had no effect 

on either the ORC4 cage or the production of the polar body (Table 3.1, Fig. 3.9), and were used 

as negative control samples in progressive experiments. Peptides 1 and 10, however, disrupted 

the ORC4 cage in anaphase II (Fig. 3.9B) or not to form at all (Fig. 3.9C) in many of the oocytes 

injected.  Injection of peptides 1 and 10 caused the parthenogenetically activated oocytes to 

produce two pronuclei (2 PN) within the oocyte rather than ejecting half of the chromosomes in a 

polar body in 27% and 13% of the oocytes, respectively (Table 3.1, Fig. 3.9D).  Peptide 1 proved 

to be much less soluble than peptide 10, so we were not able to inject as many oocytes with 

peptide 1, even though it appeared to be more effective. In all cases of 2 PN oocytes, there was 

no evidence of the ORC4 cage (Fig. 3.9D). When the ORC4 cage was disrupted by peptide 1 or 

peptide 10 injection, DNA synthesis still occurred, demonstrating that only one function of 

ORC4 was inhibited. These data suggested that the binding sites for ORC4 polymerization are 

close to the amino acid sequences that were in peptides 1 and 10. 

3.3.4 Disruption of the ORC4 Cage with ORC4 Fragments  

Injecting small, ORC4 peptides proved to be limiting because of solubilization problems.  

The solutions were viscous and sticky causing many of the injected oocytes to die.  Furthermore, 

it was possible that the sites on the ORC4 protein that were responsible for polymerization to 

form the ORC4 cage were larger than 18 amino acids, and larger peptides would have been more 

difficult to inject. We therefore created five ORC4 fragments that contained the gene sequences 

for ORC4 fragments that were 36 to 55 amino acids in length that included those of peptides 1, 

10 and 16 (Table 3.2). This was done by deletion mutation of the original murine v1-ORC4 

plasmid. The ORC4 fragments were inserted into expression plasmids and mRNA for each was 

synthesized. We also created mRNA for the v2-ORC4. To test our ability to inject intact mRNA 

into oocytes and that oocytes would generate protein from our mRNA, we first prepared and 

injected mRNA for GFP into MII oocytes and examined the oocytes by fluorescent microscopy 
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before and after parthenogentic activation. All oocytes fluoresced green indicating that MII 

oocytes are capable of synthesizing protein from mRNA.  Protein synthesis was evident before 

and after activation, and continued for up to 3 hrs after activation.   

 We next injected mRNA for the five ORC4 fragments we had created, and for the v2-

ORC4 variant into MII oocytes, and then parthenogenetically activated them. We found that v2-

ORC4, which was found to be incorporated into the ORC4 cage when injected as recombinant 

protein, caused the oocyte to produce two pronuclei instead of a polar body in 25.1% of oocytes 

(Table 3.2). Similar percentages of 2 PN oocytes resulted from the injection of the four ORC4 

fragment mRNAs that contained peptides 1 and 10. Only 3.9% of the oocytes injected with the 

control ORC4 fragment mRNA that contained peptide 16 progressed to 2PN. These differences 

were highly statistically significant (Tables 3.1&3.2). As with the peptide injections, in all cases 

of 2PN oocytes, there was no visible ORC4 cage.  

3.4 Discussion 

 Our previous work demonstrated that ORC4 forms a cage around the ejected 

chromosomes in both meiotic divisions (17). Here, we provide several lines of evidence to 

support our hypothesis that the ORC4 cage is required for polar body extrusion (PBE). First, 

when parthenogentically activated oocytes are induced to divide into two equal sized cells, rather 

than forming a polar body (Fig. 1-1B & D, Fig. 3.1-2), the ORC4 cage is no longer formed. More 

convincingly, when the sperm chromatin is induced to be extruded as pseudo-polar body, a new 

ORC4 cage is formed (Fig. 3.1-3E & F). Normally, the sperm chromatin which remains in the 

oocyte is not associated with an ORC4 cage (Fig. 3.1-3). The fact that the ORC4 cage forms 

around the sperm chromatin suggests that it is clearly associated with extrusion of the chromatin.  

 The most direct evidence that the ORC4 cage is required for PBE is that ORC4 peptides 

and ORC4 fragments that were injected into the oocyte prevented the formation of the ORC4 

cage, and when this happened both maternal sets of chromatin were retained within the oocyte, 

rather than one being ejected in a polar body (Fig. 3.9, Tables 3.1&3.2). As discussed above, the 

premise for this experiment was that peptide fragments that contained ORC4 sequences would 

inhibit the polymerization of ORC4 that is required to form the cage. We focused on MII oocytes 

rather than GVBD oocytes because the ORC4 cage does not form until after activation, so we 

could inject the peptides before the cage was formed. MII oocytes are also stronger and survive 

injection more easily. The peptide sequences that were chosen were based on a putative ORC4 
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3D structure (Fig. 3.7), but the results do not depend on the accuracy of this particular structure.  

We found that of the six peptides we tested, only two prevented ORC4 formation and caused the 

oocyte to retain both sets of chromatin producing two pronuclei (2 PN) rather than the normal 

one pronucleus and one polar body (1PN + PB) (Table 3.1).  Because the other four peptides 

were also ORC4 sequences, they served as good controls for this experiment.  These experiments 

specifically targeted the ORC4 cage, and this disrupted PBE, demonstrating that the ORC4 cage 

is required for PBE.   

 Two areas of ORC4 appeared to be involved in oligomerization, as judged by their ability 

to prevent ORC4 cage formation, the sequences defined by peptides 1 and 10 (Fig. 3.8).  Neither 

peptide, nor the larger versions of these sequences that were injected as mRNA, were able to 

inhibit PBE all of the time, but the percentages of 2PN parthenogenetically activated oocytes that 

were formed (13% to 27%) were all very statistically different from controls (Tables 3.1 & 3.2).  

There are many possible reasons for this, including the stability of the peptides injected, the limit 

on the amount of peptide or mRNA that could be injected, and the efficiency of the peptides and 

ORC4 fragments to inhibit the cage. When we attempted to lengthen the ORC4 domain that 

inhibited cage formation with mRNA, we did not increase the percentage of oocytes that 

developed to 2 PN for peptide 1. For peptide 10, however, increasing the number of amino acids 

from 18 to 46 increased the percentage of 2 PN oocytes from 13% to 25%, a statistically 

significant increase (p = 0.005, Table 3.1 & 3.2). This suggests that at least one of the putative 

polymerization domains for ORC4 is larger than 18 AA.  It is clear that of the six areas of the 

ORC4 protein that were injected, two of them were able to prevent ORC4 cage formation and in 

every instance that the cage was inhibited, so was PBE.   

 One interesting apparent paradox in the data may provide some insight into how the 

ORC4 cage is formed.  One would expect that the ORC4 cage which is a three dimensional 

sphere (17), would include not only simple polymerization but some kind of branching to link 

the polymers. We showed that HIS-v2-ORC4 becomes part of the ORC4 cage (Fig. 3.3) but 

excessive amounts of this ORC4 variant can also prevent its formation (Table 3.2). One 

explanation for these results is that v2-ORC4 plays a role in branching to form the cage, but too 

much will prevent the cage from forming by recruiting all the available full length v1-ORC4 for 

branching instead of polymerization. 
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 The more usual function of ORC4 is to participate in the ORC complex that identifies 

origins of replication (14, 41). ORC4 is part of the core that forms the ORC (48), and it binds 

directly to DNA and can form non-canonical structures with DNA (16, 76). ORC4 exists in the 

cytoplasm before it forms the ORC (48), so its presence in the cytoplasm of the oocyte (17) is 

consistent with its behavior in somatic cells.  It is possible that the sequestration of ORC4 in the 

ORC4 cage also functions to delay DNA replication during the two mitotic divisions of the 

meiotic oocyte. There is also an accrual of ORC1, ORC2, ORC3 and ORC5 in the area between 

the separating chromosomes at anaphase I and anaphase II in oogenesis (10, 17) that may serve a 

similar function.  The ability of ORC4 to bind directly to DNA, itself, may contribute to the 

formation of the ORC4 cage that coats the extruded chromatin.  It is also possible that ORC4 

cage formation participates in asymmetric divisions of other cell types and in the extrusion of 

chromatin from developing erythroblasts (77, 78).   

 This work demonstrates that the DNA licensing protein ORC4 forms a large cytoplasmic 

structure, the ORC4 cage that is required for PBE.  This is the first example of a functional 

structure formed by the ORC proteins. Current work is focused on understanding the 

mechanisms of how the ORC4 cage coordinates PBE and DNA replication. 

3.5 Contributions 

Research design: Hieu Nguyen, Nicholas Grant James, David M. Jameson, Michael A. Ortega, 

and W. Steven Ward. 

Conducted experiments: Hieu Nguyen, Nicholas G. James, Lynn Nguyen, Thien P. Nguyen, and 

Cindy Vuong. 

Contributed to writing: Hieu Nguyen, Nicholas G. James and W. Steven Ward. 
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Figure 3.1: Diagram of ORC4 in mouse early embryonic development. (1) Normal fertilization: 

ORC4 is present in the cortex of GVBD oocytes (A), and coalesces near the chromosomes in metaphase I 

(B). ORC4 forms a cage around the chromosomes that are ejected in the first (C, D) and second (E, F) 

polar bodies. (E) The sperm chromatin forms a “sperm cone” which can be thought of as an abortive polar 

body that is reabsorbed by the oocyte by G1. (2) parthenogenesis: ORC4 behaves the same way in 

parthenogenetically activated oocytes. BFA treatment of metaphase I (B) and metaphase II (D) oocytes 

results in the oocytes dividing into two equal sized cells and no polar body. The effects of BFA and 

Peptide injection are also shown. (3) Delayed activation: Detergent washed sperm do not activate oocytes 

when injected. If activation by SrCl2 is delayed, the sperm chromatin is surrounded by ORC4 and ejected 

as a pseudo-polar body (F). 
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Figure 3.2: Confirmation of Antibody Recognition of ORC4. The his-v1-mORC4 transcript was 

expressed in bacteria and the protein isolated on a nickel column, then by size exclusion chromatography 

(SEC).  Fractions from the final SEC column are shown below. The isolated HIS-v1-ORC4 was analyzed 

by western blot using the antibody for ORC4 (C-15 from Santa Cruz Biotechnology) used in this study. 

The isolated HIS-v1-ORC4 was recognized by the antibody (lane 7). Lane 1, post induction fraction; lane 

2, void volume (~90 mLs);  lane 3, peak at 120 mLs;  lane 4, peak at 130 mLs; lane 5, peak at 150 mLs; 

lane 6, peak 170 mLs; lane 7, 205 mLs (~ 47 kDa MW based on calibration of the column).  
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Figure 3.3. Incorporation of v2-ORC4-HIS6 into the ORC4 cage. Purified v2-ORC4-HIS6 protein was 

injected MII oocytes prior to activation. The oocytes were developed to G1 with the second polar body, 

then fixed and immunostained for ORC4 (green), and for the Histidine tag (red). The figure showed 

confocal sections of one oocytes with filters for DAPI (A), ORC4 (B), His-tag (C), and merge (D). Imaris 

software was used to identify where the v2-ORC4-HIS6 was localized (E and F). Bar =10 um. 
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Figure 3.4. Effect of Brefildin A (BFA) on Polar Body Extrusion and ORC4 Cage Formation. MII 

oocytes were treated with Cytochalasin B (10 µg/ml) for 2 hrs, then activated with SrCl2 in the presence 

of 10 µM EdU.  The parthenogenetically activated oocytes were then incubated for up to 24 hrs, then 

stained for ORC4 and EdU incorporation.  No ORC4 cages were formed (data not shown). At 8 hrs post 

activation, two pronuclei were formed inside the oocyte (A, B) and EdU staining indicated that DNA 

synthesis was not inhibited. By 24 hrs, the oocyte had four pronuclei that were all positive for EdU 

staining, suggesting that even though cytochalasin B inhibited polar body extrusion and oocyte 

cytokinesis, DNA synthesis and nuclear division was not. This supports the different roles of ORC4, one 

in DNA synthesis and one for DNA replication. 
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Figure 3.5. Effect of Cytochalasin B on Polar Body Extrusion and ORC4 Cage Formation. MII 

oocytes were treated with Cytochalasin B (10 µg/ml) for 2 hrs, then activated with SrCl2 in the presence 

of 10 µM EdU. The parthenogenetically activated oocytes were then incubated for up to 24 hrs, then 

stained for ORC4 and EdU incorporation.  No ORC4 cages were formed (data not shown).  At 8 hrs post 

activation, two pronuclei were formed inside the oocyte (A, B) and EdU staining indicated that DNA 

synthesis was not inhibited.  By 24 hrs, the oocyte had four pronuclei that were all positive for EdU 

staining, suggesting that even though cytochalasin B inhibited polar body extrusion and oocyte 

cytokinesis, DNA synthesis and nuclear division was not. This supports the different roles of ORC4, one 

in DNA synthesis and one for DNA replication. 
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Figure 3.6.  A New ORC4 Cage Forms with Ectopic Sperm Pseudo Polar Bodies. (A) Confocal image 

of a normal ICSI fertilized oocyte at anaphase II. The ORC4 cage surrounds the maternal chromosomes 

that will be extruded, and the DNA in the first polar body (lower inset).  The sperm chromatin is devoid 

of ORC4 cage (upper inset). (B-D) An embryo injected with a detergent washed spermatozoa and 

activated 2 hrs later. (B) The delayed embryo in metaphase II before activation. ORC4 begins to 

accumulate at the oolemma new the decondensing nucleus. Tubulin (red) accumulates around the poles of 

the chromatin mass. (C) By anaphase II, ORC4 has completely surrounded the sperm chromatin. (D) At 

G1, the sperm of the delayed activated zygote has been ejected into an ectopic pseudo polar body in 

which the chromatin is surrounded by an ORC4 cage. Bar = 10 µm.   
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Figure 3.7.  Putative 3D Structure of Murine ORC4.  Using the Phyre2 software 

(http://www.sbg.bio.ic.ac.uk/phyre2/html/page.cgi?id=index) we generated a predicted 3D model for the 

full length murine v1-ORC4 protein.   The position of the six peptides used in this study are shown. 
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Figure 3.8. ORC4 peptides and fragments. The full-length version 1 ORC4 with 433 amino acids is 

shown in relation to the six peptides and five ORC4 fragments used in this study. The peptides are shown 

in blue (peptides with no effect on PBE) and red (the two peptides that prevented PBE). The positions of 

the five ORC4 fragments that mRNA sequences used in this study coded for are shown in purple. 
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Figure 3.9. Injection of ORC4 peptides disrupts ORC4 cage and inhibits PBE. MII oocytes were 

injected with ORC4 peptides 1 hr before parthenogenetic activation. The oocytes were stained at 

anaphase II or G1 for ORC4. (A) An oocyte with peptide 1 that formed a normal ORC4 cage at anaphase 

II. (B) An oocyte with the ORC4 cage didrupted at anaphase II. (C) An oocyte with peptide 1 with no 

visible ORC4 cage. (D) An oocyte injected with peptide 1 that did not extrude a polar body. Both 

maternal sets of chromosomes formed pronuclei. Some ORC4 staining was visible at the cortex. (E) An 

oocyte injected with peptide 1 that formed a normal polar body with an ORC4 cage. (F) An oocyte 

injected with control peptide 16 that progressed to PBE. Oocytes were stained with an antibody for ORC4 

(green) and DAPI (blue. Bar=10mM). 

 

 

 

 

 

 

 

 



51 
 

Peptide 
AA Position in 

ORC4 
No. Oocytes 2 PN 

1 12 to 29 68 15 (22.1%)*  

6 102 to 119 122 0  

9 138 to 155 96 0 

10 191 to 208 139 16 (11.5%) 

14 352 to 369 123 2 (1.6%) 

16 382 to 399 88 2 (2.3%)  

 

Table 3.1. Injection of ORC4 Peptides. Peptides were injected into MII oocytes before parthenogenetic 

activation. The percentages of oocytes that progressed to having two pronuclei (2 PN) instead of the 

normal development to one PN and a polar body, are shown. For each peptide, at least two independent 

experiments were performed. There was no statistically significant difference between the individual 

experiments within each peptide, or between peptides 6, 9, 14 and 16 using, using the Fisher’s Exact Test 

(p < 0.05). There was no statistical difference between peptides 1 and 10, but both were statistically 

different from all other peptides. All p values are listed in Table 1. 
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ORC4 Frag 
AA Position in 

ORC4 
No. AAs 

No. 

Oocytes 
2 PN 

v2-ORC4 1 to 121 121 128 32 (25%)* 

Peptide 1 12 to 47 36 120 32 (26.7%) 

Peptide 1 Lg 2 to 47 46 152 40 (26.3%) 

Peptide 10 190 to 235 46 158 29 (18.4%) 

Peptide 10 Lg 180 to 235 55 140 35 (25.0%) 

Peptide 16 374 to 413 40 127 5 (3.9%) 

 

Table 3.2.  Injection of mRNA for ORC4 Fragments. mRNA for five different ORC4 fragments were 

injected into oocytes before parthenogenetic activation, and the progression to 2 PN was assessed. For 

each ORC4 fragment mRNA that was injected, two experiments were performed. There was no statistical 

significantly difference between experiments for each peptide, or between v2-ORC4, Peptide 1, Peptide 1 

Lg, Peptide 10, or Peptide 10 Lg. Peptide 16 was highly statistically significant for all other peptides. All 

p values are listed in Table 2. 
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CHAPTER 4: Spatial and Temporal Resolution of ORC4 Fluorescent Variants Reveals 

Structural Requirements for Maintaining Higher Order Self-association and Pronuclei 

Entry  

4.1 Introduction 

The combined results from Chapters 2 and 3 provide evidence that ORC4 has a role 

outside of DNA licensing, namely that ORC4 undergoes large scale reorganization from the 

plasma membrane to self-association into a cage-like structure that surrounds chromosomes 

destined for extrusion. The essential regions required for higher order cage formation were 

identified as the N-terminus and the middle domain through injection of peptides designed to 

occupy surface exposed regions of ORC4 (Chapter 3). Injection of embryos with peptide 

sequences from amino acids 12 - 29 and 191 - 208 were found, via immunocytochemistry, to 

prevent ORC4 cage formation whereas peptides designed from other regions (such as 102 - 119 

and 138 - 155) failed to prevent ORC4 self-association. Inhibiting the higher order assembly of 

ORC4 was found to prevent PBE resulting in injected embryos forming 2 pronuclei (PN) during 

maturation instead of dividing into two cells (79). Interestingly, prevention of higher order 

ORC4 complex formation did not disrupt licensing for DNA replication. This demonstrates that 

the dichotomy functions ascribed to ORC4 within embryos are not mutually exclusive and, thus, 

likely involve interactions within different regions of the protein.    

While our results have provided a unique look at ORC4 activity during oocyte 

development and identified its role in PBE, we are still missing critical events associated with the 

dynamic switch in function of ORC4 during oocyte activation. Advance fluorescence 

methodology like Fluorescence Lifetime Imaging (FLIM) has been previously utilized to track 

the activity of proteins down to the low nanomolar concentration and, therefore, could be utilized 

for providing methods to track ORC4 dynamics in live embryos (80), (81), (82). Fluorescence is 

a process whereby light is emitted from a molecule subsequent to absorption of light. Absorption 

of a photon promotes a ground-state electron, typically from a π orbital, to an excited state 

wherein it will relax down to the lowest vibrational level within the lowest excited state. The 

electron will then remain in the excited state for a period of time, at which point it will return to 

the ground state and emit a photon of light (i.e. fluorescence). The average time in which the 

electron remains within the excited state is called the lifetime (83). This property is unique 

among each fluorophore and is often times obtained using time- or frequency domain 

measurements.  
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Excited state lifetime measurements are powerful as they can provide unique information 

about the molecular environment that is not observed from intensity measurements. To obtain a 

quantitative lifetime values requires fitting the time-resolved data, obtained using the methods 

mentioned above, to a model until the best is obtained as determined via reduced χ2 value. 

Simple decay, such as obtained for the fluorophore fluorescein in a basic solution, is straight 

forward and can often times be modeled using a single exponential decay. Heterogeneous 

emission requires more complex analysis, such as multiple exponential models. However, this 

type of analysis is only able to resolve multiple components when your sample has high emission 

(<2000 counts). The lifetime data was converted to a phasor plot to determine temporal property 

of each fluorophore tested. Lifetime measurements have become popular in microscopy as it can 

provide a spatial and temporal map thus detailing organization of fluorophores within a cell and 

alterations in microenvironment. One difficulty in this is the lack of counts per pixel. Therefore, 

extraction of lifetimes requires significant statistical analysis to obtain average lifetime values. In 

1984, a model-less method of analysis was introduced, called the phasor plot, which has gained 

popularity among microscopist as it only requires the raw data. The phasor analysis graphical 

representation where the modulation is a vector with an angle equal to the phase delay (83). The 

x and y coordinates of the vector derive from: x = G = Mcosϕ; y = S = Msinϕ. For a single 

exponential decay, this vector describes a semicircle which is referred to as the universal circle. 

Single fall on it. Complex decays fall inside the universal circle. Thus able to graphically 

represent complex decay emission and spatially separate components within a sample on the 

phasor plot (Fig. 4.1). In this section of the dissertation, we constructed fluorescent variants of 

ORC4 generated by fusing it to a fluorescent protein (FP), enhanced green fluorescence protein 

(eGFP), as well as a variant containing a unique amino acid sequence for site-specific labeling. 

eGFP is a ~ 26 kDa protein that displays green fluorescence when it is excited with blue light 

(84). It has been shown that ORC fusion with GFP at either N- or C-termini, retain their DNA 

replication function (2). However, we cannot predict how fusion of eGFP onto ORC4 will affect 

its function(s) in oocytes as the addition of this protein will increase the total mass to 158% of 

the original construct. We have also generated an ORC4 containing a FlAsH sequence inserted 

within the C-termini as a means to circumvent these potential issues from the eGFP fusion 

construct.  FlAsH-EDT2 is a derivative of fluorescein and used in site-specific labeling of 

proteins in live cells wherein it binds with high affinity to proteins containing the tetra-cysteine 
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motif cys-cys-pro-gly-cys-cys (85), (86) (Fig. 4.5). FlAsH-EDT2 is cell membrane permeable 

and is smaller than 1 kDa (87) compared to eGFP (26 kDa) and would therefore not be expected 

to cause large perturbations within the protein due to the significantly smaller mass increase. 

Herein we demonstrate the injection of mRNA of each fluorescent variant of ORC4 can provide 

a unique signal allowing for the quantification of ORC4 dynamics at different stages of oocyte 

activation. Lifetime imaging indicates the licensing function has probably not been altered for 

both constructs as each variant could be spatially resolved within the PN. Furthermore, we 

provide compelling evidence that the ORC4-FlAsH variant can be recruited to the ORC4 cage 

during PBE and was shown to be consistently associated with PB. These results demonstrate that 

fluorescent variants of ORC4, specifically those labeled with small molecules, could be useful 

for future single molecule dynamic studies for ORC4. 

4.2 Materials and Methods  

4.2.1 Animals  

Eight-week of age mice, B6D2F1 (C57BL/6N X DBA/2), were used.  Mice were 

obtained from National Cancer Institute (Raleigh, NC), and used at 8 – 12 weeks of age. Animal 

care and experimental protocols for handling and the treatment procedures were reviewed and 

approved by the Institutional Animal Care and Use Committee at the University of Hawai’i. 

4.2.2 Creating the orc4-egfp construct 

mORC4 variant 1 plasmids (full length of orc4) bought from genecopoeia were used to 

create assembly vectors by using AvaI enzyme. eGFP sequences was amplified by PCR 

reactions. The primers used to amplify the eGFP sequences included homology arms at the 

beginning and at the end of the assembly vectors. Gibson assembly was then used to join vector 

and eGFP together and the Gibson products were electrophoresed into bacteria.  The orc4-egfp 

constructs were confirmed by single PCR colony and sequencing.  

4.2.3 Creating the construct of orc4 for FlAsH labeling 

mORC4 variant 1 plasmids (full length of orc4) bought from genecopoeia were used to 

create a mutation construct containing six-amino acid sequences (Cys-Cys-Pro-Gly-Cys-Cys). 

First, we deleted six amino acids at amino acid number 407- 412 and replaced them with Cys-

Cys-Pro-Gly-Cys-Cys sequences by using Gibson. The mutation products were confirmed by a 

single PCR colony and sequencing. 
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4.2.4 mRNA-ORC4-eGFP synthesis 

Plasmids containing the mORC4- eGFP and ORC4-FlAsH mutation constructs were 

linearized by an enzyme downstream of the ORC4 gene. mMESSAGE mMACHINE T7 

transcription kit from Thermo Scientific was used to synthesize mRNA ORC4-eGFP constructs. 

Agarose (1%) electrophoresis was used to confirm mRNA product, and isolate mRNA by Direct-

zol RNA miniprep (Zymo Research). ORC4-eGFP mRNA constructs were stored at -20°C prior 

to microinjection. 

4.2.5 Injection of mRNA-eGFP 

Each ORC4-eGFP mRNA and ORC4-FlAsH mutation constructs were used to 

microinject into the cytoplasm of MII oocytes. A microinjection volume of 10 pl/oocyte was 

used in all experiments. Following microinjection, the oocytes were incubated for at least 4 hours 

and checked for eGFP signal under microscope. When eGFP signal expressed on oocytes, we 

activated oocyte development via parthenogenesis activation by using CZB free calcium medium 

contained 10 mM of SrCl2 for two hours (AII) and three hours (G1). These AII and G1 embryos 

were imaged and tracked eGFP movement by using fluorescence microscopy.  

4.2.6. FlAsH labeling 

After microinject mRNA-ORC4 mutation containing of the Cys-Cys-Pro-Gly-Cys-Cys 

amino acids for at least 4 hours before parthenogenesis activation injected oocytes to develop AII 

and G1 stages. Solid FlAsH-EDT2 was provided by Dr. Nicholas James. Following 

microinjection, the oocytes were incubated with SrCl2 2 hours and 3 hours for anaphase II and 

G1, respectively. Activated oocytes were then incubated with FlasH-EDT2 for 30 minutes. Next, 

the activated oocytes were washed with EDT + DMSO and PBS + glucose to remove FlAsH. 

The activated oocytes labeled with FlAsH were analyzed with a confocal fluorescence 

fluctuation spectroscopy. 

4.2.7. Dynamics of fluorescent ORC4 in Oocytes  

Confocal fluorescence fluctuation spectroscopy (FFS) measurements were recorded on an 

Alba fluorescence correlation spectrometer (ISS, Champaign, IL), equipped with x-y scanning 

mirror, connected to a Nikon TE2000-U inverted microscope (Nikon, Melville, NY) with a 

PlanApo VC 60 x 1.2 NA water objective.  Two-photon excitation of enhanced eGFP was 

provided by a Chameleon Ultra (Coherent, Santa Clara, CA) tuned to 920 nm with < 1 mM laser 

power.  Fluorescence emission was collected through a 535/50M bandpass filter (Chroma, 
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Bellows Falls, VT) in front of a photo multiplier detector (H7422P-40, Hamamastu, Hamamastu 

City, Japan). Cells were imaged in a humidified enclosed chamber kept at 37ºC (Tokai Hit, 

Fujinomiya, Sizuoka, Japan). An objective heater wrapped round the neck of the objective was 

used to minimize temperature drifts (with a 20 minute delay to equilibrate the temperature prior 

to imaging) and the collar of the objective was adjusted to compensate for temperature and 

thickness of the coverslip.   

Diffusion and concentration of ORC4 constructs was determined using Raster Imaging 

Correlation Spectroscopy (RICS) (85). Briefly, 12.8 micron (50 nm pixels) regions of interest 

were selected from the fluorescence image. The pixel sampling time was 12.5 μs, each frame had 

256 x 256 pixels, and each measurement lasted ~ 1 min (100 frames). The beam waist (ω0) 

calibration was achieved by measuring the autocorrelation curve of fluorescein (~ 20 nM) in 0.01 

M NaOH, and fitted with a diffusion rate of 430 µm2/sec, which were performed before each 

day’s measurement (85). The typical values of ω0 were at the range of 0.35 – 0.4 µm. 

FLIM (Fluorescence-lifetime imaging microscopy) measurements were recorded through 

an ISS A320 Fast FLIM box coupled to the Ti:Sapphire laser, which produces 80-fs pulses at a 

repetition rate of 80 MHz, and photo multiplier detector (H7422P-40, Hamamastu, Hamamastu 

City, Japan).  Fluorescein, which was used as the lifetime reference (4.0 ns), and FlAsH was 

excited at 780 nm and the fluorescence signal was filtered away from excitation light through a 

520 nm bandpass filter (FF01-520/35; Semrock Rochester, NY) mounted in front of the detector.   

4.3. Results:  

4.3.1 Biophysical Characterization of ORC4-eGFP 

Oocytes injected with mRNA ORC4-eGFP were observed to have a homogenous 

distribution, including in the PB, of fluorescence during all activation stages imaged (Fig. 4.2). 

The movement of ORC4-eGFP was analyzed using a technique called fluorescence-lifetime 

imaging microscopy, or FLIM. FLIM provides a pixel analysis on the lifetime of the fluorescing 

species; thus allowing for the resolution of pixels that contained eGFP versus autofluorescence. 

FLIM was recorded for each oocyte. FLIM data were analyzed by a mathematical process 

termed FLIM-phasor, which calculates the shift in wavelength between the excitation and 

emission signals, and the intensity of the fluorescent signal. FLIM-phasor is a modeless plot 

wherein the phase shift and demodulation (raw data) are plotted on X (G) and Y (S) coordinate 

system. Signals from eGFP have a known phasor point based on the lifetime of the fluorophore 
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(~ 3 ns), while background “autofluorescence” is composed of a more complex mixture of 

molecules. As such, eGFP phasor points should lie near the arc, or universal circle, of the FLIM-

phasor analysis (Fig. 4.2D; Table 4.1).  

FLIM-Phasor analysis of ORC4-eGFP injected oocytes showed phasor points that were 

shifted inside the universal circle indicating a more complex lifetime compared to non-fused 

eGFP injected into oocytes (Fig. 4.2D). This suggests that ORC4 alters eGFP fluorescence or 

that the fusion proteins interact with the same result. Nearly all images collected contained a 

large number of pixels within the autofluorescence region when injected with the ORC4-eGFP 

variant. The majority of oocytes analyzed (No 6/10) were found to have pixels within their PBs 

that corresponded to the autofluorescence region (Fig. 4.3). Essentially, ORC4-eGFP was 

prevelant throughout the oocyte with no visible accumulation at any site. The phasor points of 

ORC4-eGFP showed no major changes in location at different stages of oocyte activation. 

However, phasor points associated with the PN at zygotic G1, though very low in intensity, were 

found to be shifted more towards the universal circle than ORC4-eGFP throughout the embryo, 

suggesting that PN ORC4-eGFP was closer to that of free eGFP. This suggests that ORC4 

proteins in the PN have a different protein-protein interaction than those in the cytoplasm (Fig. 

4.3).     

The dynamics of ORC4-eGFP were determined by analyzing fluctuation data collected 

from oocytes containing a strong signal from eGFP. RICS (Raster imaging correlation 

spectroscopy) analysis, which allows for a spatial observation of molecular fluctuations, 

produced an average diffusion of ORC4-eGFP of 5.0 ± 0.5 μm2/sec. This rapid speed usually 

indicates untethered, soluble proteins. Visual inspection of the collected frames indicated that the 

diffusion might be more complex as we observed areas containing large fluorescent spots (Fig. 

4.5A and 4.5B).  Analysis of regions containing these spots produced diffusion values that were 

~ 10x slower than regions containing no spots (0.8 ± 0.3 vs. 7.5 ± 1.0 μm2/sec). These data 

suggest that there are two populations of ORC4-eGFP in the cytoplasm, a rapidly moving, 

untethered population and another one that is self-associated, moving more slowly. These results 

are in line with our observation that ORC4 can self-associate.  However, we were unable to 

observe large self-association, like cage formation, from the fluorescence signal during PB 

formation and the FLIM-phasor analysis did not identify spatially resolved structures for ORC4-

eGFP.  
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4.3.2 Biophysical Characterization of ORC4-FlAsH  

The lack of ORC4 cage appearance from our eGFP fusion construct suggests that this 

modification may have limited ORC’s ability to self-associate; potentially inhibiting it from 

recruitment during cage formation. Therefore, we created a mutated protein, ORC4-FlAsH, that 

has no additional amino acids and only has six amino acids substituted in an alpha-helix portion 

of the protein.  These include four cysteine residues that interact with a compound, EDT2, to 

generate a fluorescent signal in cells (Fig. 4.6). We characterized the dynamics of ORC4-FlAsH, 

which was fluorescently labeled after the protein was produced by the embryo using the site-

specific FlAsH-EDT2 compound, to determine if we could obtain better spatial resolution of 

ORC4.  Non-mRNA injected embryos that were treated with FlAsH-EDT2 showed a high 

number of pixels with phasor points similar to the unbound fluorophore (Fig. 4.7A and B).  

Nevertheless, we were able to detect some accumulation of ORC4 in the area where we expected 

to see the ORC4 cage (Fig. 4.7C). Note the total fluorescence was low, but the excited state 

properties that were determined by FLIM were indicative of FlAsH as compared to 

autofluorescence.  This indicated that our washing protocol was not fully effective at removing 

non-specific bound FlAsH-EDT2; however, we were unable to modify the current protocol due to 

the sensitivity of the embryos to the wash conditions.  FLIM-phasor analysis of embryos injected 

with ORC4-FlAsH mRNA, and treated with the FlAsH-EDT2 compound, produced phasor points 

that were shifted away from the non-specific bound phasor points (Fig. 4.8B). These results are 

in line with previous reports that observed modified fluorescent properties of this fluorophore 

when bound to the FlAsH sequence (86). Even though they were off the universal circle, they 

appear closer to the expected FlAsH phasor point than autofluorescence signal. Therefore, the 

use of FLIM-phasor analysis allowed us to resolve non-specific versus specific binding of 

FlAsH-EDT2 within the embryos. For our experiments we only used embryos with the majority 

of their phasor points associated with ORC4-FlAsH.  We also note that there were fewer phasor 

points in the autofluorescent region when working with ORC4-FlAsH compared to ORC4-eGFP.    

Intensity images of ORC4-FlAsH (Fig. 4.7A) showed non-homogenous emission 

distribution throughout the embryo, unlike ORC4-eGFP, with intensity patterns also being 

observed in the PB (Fig. 4.5B and C).  Images appeared to have bright decorations along the 

plasma membrane and distinct circular, or cage like, structures near the plasma membrane during 

PBE (Fig. 4.7C), which is in line with previously characterized spatial organization of ORC4 
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(79).  Fluctuation analysis produced nearly identical diffusion properties as our ORC4-eGFP 

construct (average diffusion 6.0 ± 1.0 μm2/sec; individual components 7.0 ± 0.8 and 0.6 ± 0.2 

μm2/sec). The concentration of ORC4-FlAsH, which was determined by analysis of the 

autocorrelation function was found to be higher (160 ± 50 nM) than the eGFP variant (40 ± 10 

nM) from our sampled embryos (n = 10).  This variation might be caused from alterations in the 

actual amount of mRNA injected into each oocyte or might indicate alterations in protein 

production/degradation for each construct.  Much like ORC4-eGFP, the phasor points of ORC4-

FlAsH were slightly shifted within the PN, as well as around the PM, compared to the points that 

resolved ORC4-FlAsH with the embryo.  These correlated results are indicative that these 

constructs are not excluded from the PN and that licensing from both variants likely still occurs.    

4.4 Discussion  

Herein we present a study aimed at characterizing the dynamics of ORC4, following cage 

formation up to PBE, in live, activated oocytes using advance fluorescence microscopy.  

Fluorescence methodologies are extremely sensitive which can allow for the examination of 

target molecules down to the single molecule level (87), (88).  However, this sensitivity can only 

be achieved in systems that contain a bright signal above the background.  In the case of cells 

there is always contaminating emission from the system, or autofluorescence, and it is critical to 

not only minimize this signal but also to confirm that the origin of emission being reported is in 

fact associated with the molecule of interest (89), (90).  Our system, activated oocytes, are highly 

dynamic cellular systems that undergo large fluctuations in proteins and membranes (79). As 

expected from such a complex system, we observe a large amount of autofluorescence signal 

even when exciting with an infrared laser. Therefore, time resolved measurements were 

prioritized over intensity-based measurements as we were uncertain to the amount of signal that 

would be originating from ORC4-eGFP or ORC4-FlAsH compared to the embryo 

autofluorescence.  Using FLIM-phasor analysis we were able to spatially resolve the lifetime of 

our fluorescent markers, both eGFP and FlAsH, from the autofluorescence signal thus allowing 

for the resolution of ORC4 protein in live oocytes during different states of maturation (Fig. 

4.2A and 4.7A).  To simplify our interpretation, sample analysis was constrained to embryos 

wherein the majority of phasor points (> 90) were originating from our fluorescent molecule.   

The essential questions that we sought to address within this study were: 1) does 

modification of ORC4 at the C-terminus, with eGFP or the FlAsH sequence, alter its activity? 
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and 2) could we observe cage formation and PBE with either of these constructs? Our 

experiments demonstrated that activated embryos that were injected with our mRNA could still 

undergo PBE and division.  Each embryo tested contained endogenous ORC4 which makes it 

difficult to make any conclusive statements regarding the functionality of these variants towards 

development. As such, we focused on known biophysical properties and qualitative 

characterization from confocal imaging.  For example, our model of ORC4 cage formation 

predicts higher order self-association of ORC4 and we should be able to quantify this via 

diffusion characteristics of labeled ORC4. Our fluctuation data yielded multiple rate constants: ~ 

6 and ~ 0.5 μm2/sec to which we assign the monomer form and to a self-associated state of 

ORC4, respectively; demonstrating self-association can occur with both variants.  The lack of 

spatial resolution of higher order self-association of ORC4-eGFP (i.e. no visualization of a cage 

at any stage of activation) is indicative that this variant is not recruited for chromosome selection 

nor involved in PBE.  Further evidence of this lack of higher order assembly for ORC4-eGFPs is 

the non-essential requirement of eGFP and lack of structured emission from within the PB 

whereby only 40% of cells examined contained eGFP within the PB (Fig. 4.1C and D).  

Therefore, we speculate that the addition of eGFP at the C-termini introduces steric hindrance on 

higher order ORC4 structure formation thus preventing this variant from being tightly associated 

for cage formation during chromosome selection or PBE. Comparison with the ORC4-FlAsH 

produced in embryos provided us a means to test our hypothetical model as this construct 

contains only minor perturbation within the C-termini. Images from this variant were drastically 

different whereby distinct concentration patterns of ORC4 where observed under intensity 

measurements, unlike ORC4-eGFP, indicating that this variant can be segregated to unique areas 

of the embryo (Fig. 4.4B and C).  Likewise, the majority (>90%) of PBs imaged had phasor 

points corresponding to bound FlAsH, they presented with unique structures (Fig. 4.7C and 

4.8C). This comparison provides more support that ORC4-eGFP is not used by embryos for PBE 

and that the phasor points observed inside PB likely originate from stochastic diffusion of the 

construct.  It is our conclusion then that the addition of eGFP causes disruption of higher order 

self-association of ORC4 that is required for cage formation.  This model also states that the lack 

of significant modifications of the ORC4-FlAsH variant would cause minimal, if any, alterations 

in structure or energy of interaction; thus allowing for it to be integrated with endogenous protein 

during activity.   
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The most characterized function of ORC4 is DNA licensing which occurs inside the PN 

during cell division (17). We interrogated the lifetime of our constructs at different points during 

embryo maturation to see if our constructs could be found within the PN (Fig. 4.3 and 4.8). 

Phasor points corresponding to ORC4-eGFP and ORC4-FlAsH were spatially resolved within 

the PN, however, the points from both variants were not identical to the points found inside the 

embryo.  The lifetime, which is being represented by the phasor points, is a measurement of the 

time it takes for the excited electron to return to the ground state in the presence of all the 

deactivation rates acting on the fluorescent molecule at that time.  Phasor point differences 

observed for both eGFP and FlAsH indicates that the environment around the fluorescent 

molecule, which can be inferred to ORC4 as well, is not identical when located between the PN 

and embryo.  Also, the phasor points that spatially and temporally resolve for the PN was also 

found to highlight regions around the PM (Fig. 4.8).  FLIM-phasor analysis establishes that not 

only can both constructs enter the PN but the forces acting upon ORC4 within the embryo is not 

identical to when bound to the PM or within the PN. The requirements for binding to the PM or 

complex formation during licensing within the PN are likely different.     

This work demonstrates that the addition of a large polypeptide to the C-termini 

negatively impacts higher order self-association of ORC4, specifically affecting structured 

organization required for cage formation, and ORC4 activity in PBE. Our ultimate goal is to use 

single particle tracking and nano-imaging to provide a detailed molecular mechanism of ORC4 

dynamics beginning with activation of the oocyte up to cell division. Fluorescent tracking of 

ORC4 will, therefore, require the use of constructs that do not significantly alter the mass of the 

protein to ensure the dual functions assigned to ORC4, PBE and DNA licensing, are not altered 

during embryo maturation.  Herein we describe a possible ORC4 construct, namely ORC4 with a 

FlAsH sequence at site Cys-Cys-Pro-Gly-Cys-Cys, which allows for site-specific labeling and 

minimal background signal from nonspecific binding within live embryos.  This work also 

represents the first step towards establishing a transgenic mouse model expressing endogenous 

levels of a trackable variant of ORC4.   

4.5 Contributions 

Research design: Hieu Nguyen, Nicholas G. James, and W. Steven Ward 

Conducted experiments: Hieu Nguyen, Nicholas G. James, and Brandon Nguyen 

Contributed to writing: Hieu Nguyen and Nicholas G. James 
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Figure 4.1. Graphical representation of Phasor plot. The phasor point location is a vector with a length 

equal to the modulation (M) at an angle equal to the phase delay (ϕ). For a fluorophore with a single 

exponential, this vector describes a semicircle of 0.5 with a center at (0.5, 0); this semicircle is referred to 

the universal circle.   

 

 

 

 

 

 

 

 

 

 

 



64 
 

 

Figure 4.2. Spatial and temporal analysis reveals minimal self-association of ORC4-eGFP in 

embryos. (A-C) Representative intensity image of non-injected embryos (A; maximum intensity 10 

counts at a single pixel), mRNA eGFP injected embryos (B; maximum intensity 100 counts at a single 

pixel), and ORC4-eGFP mRNA injected embryos (C; maximum intensity 50 counts at a single pixel). 

Scale bar is 15 microns. (D) Phasor points of reprehensive embryos with no mRNA injected (red), eGFP 

mRNA injected (green), and ORC4-eGFP mRNA injected (blue).  
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Figure 4.3. FLIM-phasor method demonstrates minimal amount of ORC4-eGFP entering the PB. 

(A) Phasor plot of an embryo injected with ORC4-eGFP mRNA.  The blue circle correlates with Phasor 

points for ORC4-eGFP while the red points are more indicative of autofluorescence excited state 

properties. (B) Spatial organization of the phasor points from (A). The green points are found located 

within the cytosol and the red is located within the areas near the PB.  Scale bar is 15 microns.                  
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Figure 4.4. FLIM-phasor method during G1 phase indicates that ORC4-eGFP can enter the PN. 

(A) Intensity image of embryos injected with ORC4-eGFP mRNA during blank phase.  Scale bar is 10 

microns. (B) Corresponding phasor points from (A). Points circled in blue represent phasor points in 

similar proximity as those obtained for ORC4-eGFP at previous stages of division while the other circle 

indicates phasor points that appear in embryos that highlight the PN. (C) Spatial organization of the 

phasor points from (B) organized within the image from (A). The blue points are found located within the 

PN and are shown to be shifted away from the phasor point population of ORC4-eGFP within embryos.                  
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Figure 4.5. Visual observation of ORC4-eGFP self-association in embryos with RICS analysis. The 

intensity image of embryos injected with ORC4-eGFP mRNA (A) reveals a population wherein ORC4-

eGFP is self-associated (B) when the pixel size is set to 50 nms. Scale bar for (A) 10 microns and from 

(B) is 3 microns.   
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Figure 4.6: Formation of FlAsH-tetracysteine adduct. The stability of FlAsH-EDT2 has been shown by 

the binding of cysteine residues to arsenic compounds via strong sulfur-arsenic bond. FlAsH-EDT2 is a 

pale yellow color and it becomes fluorescent via the binding of tetracysteine motif. 
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Figure 4.7. ORC4-FlAsH confocal images demonstrate unique structural organizations during cell 

division. Representative intensity images of embryos with laser excitation at 780 nm. A) No mRNA 

injected and no FlAsH added. Autofluorescence had a maximum intensity (red pixels) of 6 counts. B) No 

mRNA injected and FlAsH added.  Nonspecific bound FlAsH was found to have a maximum intensity 

(red pixels) of 15 counts. C) ORC4-FlAsH mRNA injected and FlAsH added.  FlAsH was found to have 

a maximum intensity (red pixels) of 100 counts. Scale bars represent 15 microns. D) Phasor plot showing 

representative phasor points from embryo Autofluorescence (red), embryos incubated with FlAsH without 

mRNA injected (green), and embryos incubated with FlAsH and injected with ORC4-FlAsH mRNA. 
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Figure 4.8. ORC4-FlAsH phasor points demonstrate entry within the PN and different properties 

when bound to the plasma membrane. Spatial distribution of FlAsH lifetime during GI phase.  A) 

Intensity image during blank phase after mRNA injection and Treatment with FlAsH.  B) Phasor points of 

each pixel obtained from FLIM of image A.  Circle were created to center around areas with a large 

number of phasor points as calculated from SimFCS. Green circle highlights PN and the plasma 

membrane; Red and Dark Green circles highlight pixels within the cytosol.  C) Spatial distribution of 

phasor points overlayed onto A.  Scale bars represent 15 microns. 
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Embryo (920 nm)* G S 

Autofluorescence 0.31 (± 0.01) 0.21 (± 0.01) 

eGFP  0.31 (± 0.01) 0.45 (± 0.01) 

ORC4-eGFP 0.33 (± 0.02) 0.33 (± 0.01) 

Embryo (780 nm)* G S 

Autofluorescence 0.38 (± 0.01) 0.21 (± 0.01) 

FlAsH  (no mRNA) 0.23 (± 0.03) 0.39 (± 0.01) 

ORC4-FlAsH 0.36 (± 0.02) 0.33 (± 0.02) 

 

Table 4.1.  Statistical analysis of Phasor point locations for ORC4-eGFP and ORC4-FlAsH.  * N = 

10; G and S values are an average from all embryos imaged and represent the area within the phasor plot 

that contains the highest number of pixels for each condition.  Calculations were performed using the 

FLIM program on SimFCS4.0 (Gratton, UCI).    
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CHAPTER 5: CONCLUSION  

5.1 ORC4 involves in polar body extrusion 

The observations described in this dissertation raised the intriguing question that 

cytoplasmic ORC4 plays a role in the separation of the polar bodies from the oocyte. Contrary to 

common knowledge of ORC4 and its role in DNA licensing, this unusual behavior of ORC4 lead 

to my focus for my dissertation, which was to explore the new function of this protein and its 

role in polar body extrusion. In this section, we would like to summarize evidence we observed 

through our experiments that suggest ORC4 is involved in polar body extrusion, and to speculate 

on what it means for the cell biology of meiosis. In our initial work using ICC to observe the 

ORC4 signals, due to the possibility of off-target effect of the antibodies we were unsure that the 

ORC4 signal is true. To address this, we expressed the ORC4-HIS protein using mouse ORC4 

with histidine tag constructs. This result demonstrated that our prior ICC experiments identified 

ORC4. As mentioned, the ORC4 surrounds the first and second polar bodies. When we induced a 

pseudo-polar body using inactivated sperm, an ORC4 cage then formed around the sperm 

chromatin that was expelled (Fig. 3.6, chapter 3). During normal fertilization sperm chromatin 

does not extrude a polar body because its chromatin must fuse with maternal chromatin for 

normal development.  This is the reason why we did not observe any ORC4 cage-like structure 

form around the paternal chromosome.  It is only when we induce the paternal chromosomes to 

develop a pseudo-polar body that we observed the formation of this structure. Following with 

this result, it is clear that the ORC4 cage is associated with the extruded chromatin or PB, 

however further investigation was needed to understand it role in polar body extrusion.  The 

most direct evidence that the ORC4 cage is required for PBE is that ORC4 peptides that were 

injected into the oocyte prevented the formation of the ORC4 cage (Fig. 3.8, chapter 3). Future 

work will be focused on understanding the mechanisms of how the ORC4 cage coordinates PBE 

and DNA replication. 

5.2 Possible mechanisms that ORC4 may act 

We have shown that ORC4 has a new function in polar body extrusion; however, the 

findings from this research are relatively new, and the exact mechanism of ORC4 plays during 

polar body extrusion is not yet known.  With continued efforts, we hope to understand its role. 

There are some theories we have regarding its mechanism that we believe should be tested to 
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determine the exact pathway. The mammalian oocyte undergoes two rounds of asymmetric 

division to generate a large oocyte in addition to two smaller polar bodies. The asymmetric 

division results from oocyte polarization including cortical polarity, migration, and spindle 

position. This process is essential for fertilization and maintenance of maternal genetic 

information in the early stages of embryo development (91). The asymmetric spindle positioning 

plays a critical role in polar body formation. In each meiotic division, the meiotic spindle has to 

be positioned on one particular side of the cortex. After GVBD, the meiotic spindle is located 

near the cell center and migrates towards one side of the cortex shortly after. The meiotic spindle 

formation is then completed at metaphase I. The spindle migrates to near cortex and arranges 

itself perpendicular to the cortex prior to anaphase and cytokinesis. The migration of the spindle 

to the cortex is necessary for asymmetric division. It is followed by the transition of anaphase I 

to telophase I. In the mature oocyte, the spindle is arrested in metaphase II. Further process will 

not proceed prior sperm entry (56) (92). During our observation of ORC4 in two meiotic 

divisions, the ORC4 cage seems to appear at the same time during which spindle transition 

occurs. The following question is raised: does the ORC4 play a role in spindle positioning? The 

BFA, a fungal toxin which is used to inhibit Golgi-based membrane vesicle fusion, has been 

shown to disrupt spindle position in the mature oocyte. When mature oocyte was treated with 

BFA, the spindle failed to arrest perpendicular position; additionally, the chromosome separated 

to develop two half-size oocytes without the formation of PB (20). In our work, when we 

incubated oocyte in the presence of BFA, we found that BFA inhibits the ORC4 cage-like 

structure from forming (Fig. 3.4, chapter 3) (79). This hinted toward the theory that the ORC4 

might play a role in spindle position. However, to understand whether the ORC4 involves in 

spindle position, more study is required.  

The asymmetric divisions rely on the spindle positioning. This process is also induced by 

the establishment of cortical polarity which is characterized by an actin domain under the control 

of a myosin ring. At anaphase, the actin domain protrudes, combining with constriction of the 

myosin ring that leads to the formation of the two polar bodies (24). The mechanism and role of 

this cortical polarity model are not completely understood. A recent report has shown that the 

establishment of cortical polarity depends on chromosome signals. Deng and colleagues have 

shown that the injected sperm head or DNA-coated beads at the cortex of MII oocytes helped to 

induce a cortical actin cap that is surrounded by a myosin ring (27). These findings suggest that 
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the cortical cap formation is regulated by chromatin induction based on a distance between 

chromatin and the cortex. This model is similar to various factors, such as the Ran guanine 

nucleotide exchange factors (GEF) and Ran GTPase activating protein, that mediate the 

chromosome signal to the cortex to induce spindle formation (93), (94). A mutant Ran in MII 

oocyte disrupts cortical polarization (95). In addition to spindle positioning and cortical 

polarization, the critical involvement of actin in this system is present in several varieties of 

species ranging from mouse to human (96), (97). During spindle migration, the actin filaments 

remained associated with spindle and was able to push the spindle toward the cortex (37). These 

literature may provide us with a possible explanation as to why ORC4 surrounds only one set of 

chromosome that will be extruded to form PB. Our unpublished data showed that ORC4 

disappeared to be associated with DNA at anaphase I and anaphase II when it was extracted with 

100 mM NaCl (Fig. 5.1). This demonstrated that ORC4 does not bind directly to DNA at these 

stages prior DNA synthesis; rather, ORC4 may bind to actin filaments or the meiotic spindle. 

When the meiotic spindle arrests and migrates to the cortex, actin polarization is induced. We 

propose that the ORC4 which plays a new function in PBE may follow this actin-based 

mechanism; however, this would not explain the phenomena of the ORC4 cage formation 

surrounding extruded chromatin and PB. Dynamic actin networks have a known function in the 

processes of cortical flows (98), tissue morphogenesis (99), cell migration (100), and 

cytoplasmic organization (101). These networks are driven by the vesicles that recruit myosin to 

reorganize actin filaments (65). Schuh and colleagues showed that vesicles, which are positive 

for the small GTPase Rab11a, function as cytoskeletal modulators. Asymmetric spindle 

positioning, the morphology and the polarization of the oocyte were affected by deletion of 

Rab11a-positive vesicles (65). The Rab11a-positive vesicles were found to interact closely with 

the exocyst, an 8-protein complex modulating budding in yeast and some types of polarized 

exocytosis in mammalian cells (102). Moreover, PARD6B, a homolog of par-6 genes and a 

member of aPCK/par polarity complex along with Par3, aPKC, and CDC42, has been shown to 

play an important role in cell polarity in many cell types (35). PARD6B is first localized on the 

spindle microtubules and accumulates at the nearest pole where the cortex is located. It was also 

found to associate with the spindle during spindle migration and to re-localize on the 

chromosomes (103). Fogelgren’s lab reported that the Par complex interacted with the exocyst 

complex to guide exocyst-mediated trafficking in some cell types (104). These interesting 
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findings in the literature might help us to understand and continue our future study the 

mechanism of ORC4 (Fig. 5.2). 

5. 3 Future plans 

 Based on our results, we can conclude that the licensing protein ORC4 is required for 

polar body extrusion; however, future research should be conducted to help clarify the exact role 

of ORC4 on PBE.  

  Firstly, our preliminary data showed that using immunocytochemistry and peptide 

disruption strongly support the idea that ORC4 is involved in PBE. We also visualized ORC4-

GFP and ORC4 labeled with FlAsH studied on live cells, but the excessive brightness of the 

ORC4-GFP signals proved to be an obstacle in tracking ORC4 cage formation. We are currently 

in the process of creating a fusion Hisidine protein with ORC4, IRES and GFP protein in the 

same plasmid (Fig. 5.3) in addition to a transgenic line by using an eGFP (ORC4-His-IRES-

GFP) at the C terminus of ORC4. This should not interfere with its role in DNA replication or in 

ORC4 cage formation. We use the fusion GFP protein that co-expression with ORC4-His to 

determine whether the ORC4-His-IRES-GFP will be transfected into mouse based on GFP 

signals, but we plan to use His tags to target ORC4 due to problems previously inherent in the 

live ORC4-GFP cells. To better understand the role of ORC4, (1) we will create the ORC4-His-

IRES-GFP construct under control of the CAG promoter (Fig. 5.3). This plasmid will then be 

transfected into HEK cells to determine whether over-expression of ORC4 causes harm to cells 

that will be used to grow in the future. If the cells survive, we will use this construct to express 

ORC4-His-IRES-GFP in all transgenic mouse cells. This method will be a useful tool for future 

studies related to the function of the DNA licensing ORC4. If the HEK cells which will be 

transfected do not survive, we will conclude that the over-expression of ORC4-His-IRES-GFP is 

lethal. In this case, we will generate a construct ORC4-His-IRES-GFP under control of ZP3 

promoter, a recognized promoter for oocyte specific expression. (2) We will create ORC4-GFP 

transgenic knock-in mice (Fig. 5.3) to insert this eGFP gene into the last exon 14 of the mouse 

ORC4 which includes 14 exons. By doing this, we will design a CRISPR guide RNA that targets 

the stop codon of ORC4 that is found after the first 186 bp of exon 14. A donor template will be 

synthesized containing a GFP gene flanked by homology arms to facilitate homology directed 

repair and insertion before the ORC4 stop codon. This will result in GFP fusion to the C-terminal 

end of endogenous ORC4 in which we expect endogenous ORC4-GFP to be expressed at its 
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normal levels because it is the endogenous gene. Thus it will not over-express to kill cells as 

ORC4 has known function on DNA replication. This method will be unlikely to harm the oocyte 

and will enable examination of ORC4 biology on mouse model. 

 Secondly, an additional direction to take in the future is to determine the mechanism of 

ORC4 cage formation on mouse model. Yi et al demonstrated that the mechanism of polar body 

extrusion on mouse is involved in actin located at the site of cytokinesis, but we propose that the 

mechanism of the ORC4 cage formation might follow another mechanism related to exocyst. As 

mentioned above, The Rab11a-positive vesicles interact closely with the exocyst and PARD6B is 

associated with exocyst-mediated trafficking in some cell types (104), while the mutation of sec, 

made of exocyst, and has been showed to prevent budding on yeast (102). When we tested 

PARD6B localization on mouse oocytes via ICC, we found that PARD6B has the same 

localization where ORC4 localization is on the oocyte during anaphase II and G1 stages (Fig. 

5.4). This result led us to propose that the mechanism of ORC4 might follows the mechanism of 

exocyst-mediated trafficking. To prove this, we will carry out some experiments. (1) We will 

perform ICC of PARD6B and exocyst proteins at meiosis II stage on mouse oocyte. (2) We will 

also test whether the siRNA-PARD6B and PARD6B peptides inhibit ORC4 cage formation and 

PBE. (3) Finally, we will determine the role of the exocyst in PBE by knocking out Pard6b and 

sec10; one of the proteins is necessary for the formation of the exocyst (104).  

 Finally, our published data found that the ORC4 surrounds the chromatin that will be 

extruded in both polar bodies during meiotic I and II on mouse oocyte. This suggests that ORC4 

might involve in asymmetric cell divisions on other cell types. The most similar cellular process 

to PBE that we found is the extrusion of the erythrocyte cell’s chromatin during the development 

of the erythroblast cell. Our preliminary data showed that ORC4 was in the cytoplasm of 

erythroblast and surrounds the ejected nucleus (Fig. 5.5). This led us to hypothesize that the 

ORC4 cage mechanism is used in other cell types for chromatin expulsion. To prove this, we will 

carry out two experiments. (1) We will test whether the ORC4 cage forms during chromatin 

expulsion by erythroblast, and (2) we will determine the role of ORC4 in erythroblast 

enucleation using transgenic mice study. 

 The experiments listed here are all future directions in which we plan to take our 

experiments. I hope to continue this work during my post-doctoral research. 
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5.4 Contributions 

Theoretical design: Hieu Nguyen, Ben Fogelgren, Stefan Moisyadi, Vernadeth Alarcon, and W. 

Steven Ward 

Contributed to writing: Hieu Nguyen  
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Figure 5.1: ORC4 does not bind directly on DNA at anaphase II. MII oocytes were extracted with 100 

mM NaCL to remove soluble ORC4. DAPI (Blue) and ORC4 (Green). 
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Figure 5.2: A model for ORC4 mechanism in polar body extrusion. (A) A model for Actin and ORC4 

interaction in the egg. (B) We suggests that ORC4 may interact with actin via Cdc42 and exocyst 

complex. Actin (red); ORC4 (green); and Exocyst complex (brown). 
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Figure 5.3. Generation of transgenic mouse constructs: In experiment 1, we will generate transgenic 

mice that overexpress ORC4-His-GFP under control of either the CAG or ZP3 promoters. The full length 

mRNA-orc4-his fused with eGFP will be transfected into mouse zygotes. In the experiment 2, we will 

generate transgenic mice that express the endogenous Orc4 fused with eGFP. This construct will knock-in 

into the last exon of the exon 14th of Orc4 gene. 

 

 

 

 

 

Experiment 1: Generation of Transgenic Mice Expressing ORC4-His-GFP 

  Experiment 2: Generation of Transgenic Mice Expressing Endogenous ORC4-GFP 

CAG ORC4-His GFP pA IRES ZP3 ORC4-His GFP pA IRES 

1) 2) 
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Figure 5.4. PARD6B localization on PBE. An MII oocyte (A-C) and a parthenogenetically activated 

oocytes (D-F) were stained with PARD6B (green) and ORC4 (red). Both of proteins were found at the 

site of the cortex where the first and the second polar bodies formed (double arrows). DAPI (Blue). Bar = 

10 m (unpublished data). 
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Figure 5.5. ORC4 cage formation on erythroblast chromatin ejection cells. (A-C) Normoblast stage is 

a stage just before chromatin ejection. (D-F) A normoblast ejecting the chromatin. (G-I) Ejected 

chromatin capsule. (J) MEL cell. (K-L) Enucleated MEL cell with 15M Vacuolin-1. Cells were stained 

with ORC4 (green). DAPI (blue). Bar=2 m (unpublished data). 
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