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ABSTRACT

Many applications in science and engineering today are structured as scientific workflows, i.e.,

task graphs with data dependencies between graphs, where tasks are implemented as stan-

dalone executables and data dependencies are via files read/written from/to stable storage.

For many relevant application domains, these workflows are both large and data-intensive.

Therefore, optimizing data accesses is crucial for efficient scientific workflow executions.

Typical HPC (High Performance Computing) platforms used to run scientific workflows

are commodity clusters, in which each compute node has access to private, small, high-

bandwidth “local” storage, and to shared, large, low-bandwidth “global” storage. To date,

production Workflow Management Systems (WMs), software infrastructures for executing

workflows in practice, only use global storage. There is thus an opportunity to improve

workflow performance by exploiting local storage. The difficulty, however, is twofold. First,

the capacity of local storage is limited and often allows holding only a few workflow files.

Second, storing data in local storage reduces parallelism because storage is private to a single

node. In this thesis, we design scheduling heuristics to orchestrate workflow execution in this

context, with the objective of minimizing workflow execution time. These heuristics decide

which files should be stored in which level of storage (local or global) and replicate tasks so

as to increase the availability of data across compute nodes and thus maintain parallelism.

We implement a simulation framework to evaluate and drive the design of these heuristics

using both real-world and synthetic workflow configurations. We also implement a software

prototype for using these heuristics on HPC platforms. From experimental results obtained

in simulation and on an actual HPC cluster we are able to evaluate the relative merit of

our heuristics and draw conclusions about the most promising approaches and remaining

challenges.

iii



TABLE OF CONTENTS

Acknowledgments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ii

Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii

List of Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . viii

List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ix

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

2 Problem Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2.1 Platform Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2.2 Application Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.3 Execution Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.4 Objective . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

3 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

3.1 Locality Aware Scheduling . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

3.2 Our Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

4 Heuristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

4.1 Overall Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

4.2 Task Replication Strategy . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

4.3 Hosts Selection Strategy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

4.4 Storage Selection Strategy . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

4.4.1 S W RATIO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

iv



4.4.2 INV S W RATIO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

4.4.3 THREE PASS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

5 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

5.1 Simulation Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

5.1.1 Simulation Software . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

5.1.2 Simulated Workflows . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

5.1.3 Simulated Platform Parameters . . . . . . . . . . . . . . . . . . . . . 23

5.2 Simulation Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

5.2.1 Base Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

5.2.2 Impact of num conns . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

5.2.3 Impact of CCR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

5.2.4 Impact of h . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

5.3 Real-World Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

5.4 Real-World Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

5.4.1 Base Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

5.4.2 Simulation vs. Real-World Results . . . . . . . . . . . . . . . . . . . 38

5.4.3 Impact of CCR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

5.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

6.1 Summary of Contribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

6.2 Future Work Directions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

v



A Workflow Types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

A.1 Genome . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

A.2 Cybershake . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

A.3 Outtree . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

A.4 Intree . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

A.5 Montage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

A.6 ForkJoinSeq1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

A.7 ForkJoinSeq2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

B Simulation Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

B.1 Impact of num conns . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

B.1.1 Intree Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

B.1.2 Montage Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

B.1.3 ForkJoinSeq1 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

B.1.4 ForkJoinSeq2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

B.2 Impact of CCR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

B.2.1 Intree Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

B.2.2 Montage Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

B.2.3 ForkJoinSeq1 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

B.2.4 ForkJoinSeq2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

B.3 Impact of h . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

B.3.1 Intree Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

vi



B.3.2 Montage Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

B.3.3 ForkJoinSeq1 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

B.3.4 ForkJoinSeq2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

vii



LIST OF TABLES

5.1 Average simulated application makespan differences relative to ALL IN GLOBAL
for all heuristics (Base Results: num conns = 1, CCR = 1, h = 10). . . . . 25

5.2 Average real-world application makespan differences relative to ALL IN GLOBAL
for all heuristics (Base Results: num conns = 1, CCR = 1, h = 10). . . . . 37

5.3 Average makespan differences relative to ALL IN GLOBAL for all heuristics
run with UHHPC cluster parameters. . . . . . . . . . . . . . . . . . . . . . . 39

viii



LIST OF FIGURES

2.1 Platform Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.2 An workflow with two tasks T1 and T2 with I1 = {F1, F2} , I2 = {F3, F4} and
O1 = {F3, F4}, O2 = {} and run in w1, w2 seconds respectively. . . . . . . . . 7

4.1 A simple example for which S W RATIO and INV S W RATIO make the
“wrong” choice. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

5.1 An example instance of the Genome workflow. . . . . . . . . . . . . . . . . . 26

5.2 A scenario where S/W and W/S heuristics do not perform well. . . . . . . . 27

5.3 An example instance of the Cybershake workflow. . . . . . . . . . . . . . . . 28

5.4 An example instance of the Outtree workflow. . . . . . . . . . . . . . . . . . 29

5.5 Average simulated application makespan vs. num conns for Genome workflows 30

5.6 Average simulated application makespan vs. num conns for Cybershake work-
flows . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

5.7 Average simulated application makespan vs. num conns for Outtree workflows 31

5.8 Average simulated application makespan vs. CCR for Genome workflows . . 32

5.9 Average simulated application makespan vs. CCR for Cybershake workflows 33

5.10 Average simulated application makespan vs. CCR for Outtree workflows . . 33

5.11 Average simulated application makespan vs. h for Genome workflows . . . . 34

5.12 Average simulated application makespan vs. h for Cybershake workflows . . 35

5.13 Average simulated application makespan vs. h for Outtree workflows . . . . 36

5.14 Average real-world application makespan vs. CCR for Genome workflows . . 40

ix



5.15 Average real-world application makespan vs. CCR for Cybershake workflows 41

5.16 Average real-world application makespan vs. CCR for Outtree workflows . . 42

A.1 An example instance of the Genome Workflow . . . . . . . . . . . . . . . . . 46

A.2 An example instance of the Cybershake Workflow . . . . . . . . . . . . . . . 46

A.3 An example instance of the Outtree Workflow . . . . . . . . . . . . . . . . . 47

A.4 An example instance of the Intree Workflow . . . . . . . . . . . . . . . . . . 47

A.5 An example instance of the Montage Workflow . . . . . . . . . . . . . . . . . 47

A.6 An example instance of the ForkJoinSeq1 Workflow . . . . . . . . . . . . . . 48

A.7 An example instance of the ForkJoinSeq2 Workflow . . . . . . . . . . . . . . 48

B.1 Average simulated application makespan vs. num conns for Intree workflows 49

B.2 Average simulated application makespan vs. num conns for Montage workflows 50

B.3 Average simulated application makespan vs. num conns for ForkJoinSeq1
workflows . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

B.4 Average simulated application makespan vs. num conns for ForkJoinSeq2
workflows . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

B.5 Average simulated application makespan vs. CCR for Intree workflows . . . 51

B.6 Average simulated application makespan vs. CCR for Montage workflows . . 52

B.7 Average simulated application makespan vs. CCR for ForkJoinSeq1 workflows 52

B.8 Average simulated application makespan vs. CCR for ForkJoinSeq2 workflows 53

B.9 Average simulated application makespan vs. h for Intree workflows . . . . . 53

B.10 Average simulated application makespan vs. h for Montage workflows . . . . 54

B.11 Average simulated application makespan vs. h for ForkJoinSeq1 workflows . 54

x



B.12 Average simulated application makespan vs. h for ForkJoinSeq2 workflows . 55

xi



CHAPTER 1

INTRODUCTION

Scientific workflows have become mainstream for conducting large-scale scientific re-

search [30]. Workflows allow scientists to express multi-step computational tasks, for ex-

ample: retrieve data from an instrument or a database, reformat the data, run analyses, and

post-process results. Astronomers are using workflows to generate science-grade mosaics

of the sky [6, 4, 27] and to search for extrasolar planets using data collected by NASA’s

Kepler mission [5, 33]. The Laser Interferometer Gravitational-Wave Observatory (LIGO)

uses workflows to search for binary inspiral gravitational waves [9]. Earthquake scientists

use workflows to develop shakemaps of Southern California [11, 10, 12]. Researchers in

bioinformatics have embraced workflows for protein folding [14], DNA and RNA sequenc-

ing [7, 21, 24], and disease-related research [19, 20]. Given the above and countless other

efforts, efficient execution of workflow applications is crucial for scientific advances. These

workflow applications consist of computational tasks, provided as opaque executables, that

take input from files and produce output to files. Tasks thus have data dependencies, and

a workflow can be seen as a Directed Acyclic Graph (DAG) in which vertices are tasks and

edges are data dependencies. .

The most common High Performance Computing (HPC) platform on which workflow

applications are executed are clusters: (large) numbers of compute hosts (or nodes, servers)

interconnected via a fast network. Many of these clusters are commodity clusters, i.e.,

they use commodity hosts and commodity interconnects. As of November 2017, 87.4% of

platforms on the Top500 list [31] are commodity clusters. In all these clusters, each compute

host is connected to a global storage system with enormous capacity. There are various ways

in which this connection is implemented (e.g., a separate “storage area network”, dedicated

“I/O nodes”). But conceptually, the compute hosts all share some bandwidth to the storage

system. In addition, in many clusters, each compute host also is connected to a local storage

device (i.e., a disk). The bandwidth to this local storage is typically orders of magnitude

higher than that to the global storage. However, the local storage has much smaller capacity

and is accessible only by one compute host.

Executing scientific workflows on HPC platforms, and thus on HPC clusters, is done via

software infrastructures termed Workflow Management Systems (WMSs). Several WMSs

have been developed [16, 15, 18, 36, 37, 3, 2] that allow scientists to construct and execute

workflows on a broad range of software/hardware stacks. These systems, to date, when
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executing a workflow on an HPC cluster, only use global storage, i.e., all input/output

files are read/written from/to global storage. Increasingly, workflow applications are being

constructed that are data-intensive. In other words, when executed on a cluster and using

global storage only, the execution time of these applications can be dominated by I/O time

rather than compute time (in part due to the performance gap between I/O systems and

processors).

In this thesis, we explore how local storage in HPC clusters could be used effectively to

improve the performance of data-intensive scientific workflows. Even though local storage

capacity is limited, due to its high bandwidth placing even only a few files in local storage

judiciously could reduce I/O time significantly. More specifically, we wish to solve an off-line

scheduling problem in which for each workflow task we must decide when and on which

host to execute it, and for each file it produces whether this file should be written to global

storage (which is always possible) or to local storage (which is not always possible). The

objective is to minimize application execution time, or makespan.

Besides the challenge of limited capacity, use of local storage can actually increase

makespan, in spite of higher I/O bandwidth. This is because using local storage can lead

to reduction in parallelism. This occurs when independent ready tasks cannot execute con-

currently on multiple available compute hosts because each task requires some input that

is only available in the local storage of the same host. The execution of these tasks is then

serialized, unless necessary files are copied from local storage to global storage, which not

always practical in current HPC clusters. The way in which we mitigate this challenge, so

that we can exploit high local storage bandwidth, is by using task replication. Executing

replicas of a task onto multiple compute hosts allows multiple copies of its output files to be

stored in local storage at those compute hosts. Consequently, this task’s children tasks will

be able to execute concurrently on those compute hosts.

Unsurprisingly, the above scheduling problem is NP-hard. We thus propose polynomial-

time heuristics for scheduling tasks, deciding how to replicate tasks, and deciding where

output files should be written, with the objective of minimizing overall application execution

time, or makespan. We then evaluate these heuristics, and in particular compare them to

the “use only global storage” approach implemented in current WMSs, for representative

workflow applications both in simulation and on a real-world testbed. Based on experimental

results, we draw conclusions about the potential performance benefits of using local storage,

and about which heuristic ideas seem most promising.

This thesis is organized as follows. In Chapter 2 we formally define our problem, in terms

2



of application, platform, and objective, and state and justify our assumptions. In Chapter 3,

we discuss relevant related work. In Chapter 4, we present our proposed heuristics. In

chapter 5, we discuss simulation and real-world experimental results. Finally, in Chapter 6

we summarize our findings and discuss relevant future work directions.
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CHAPTER 2

PROBLEM DEFINITION

In this chapter we define our target scheduling problem. We describe and justify our plat-

form model (Section 2.1), application model (Section 2.2), and execution model (Section 2.3).

We then define our objective function (Section 2.4).

2.1 Platform Model

We consider a compute platform with h identical hosts: H1, . . . , Hh. Each host Hi has access

to a local (i.e., private) storage device with I/O bandwidth b (in bytes/sec) and capacity C

(in bytes). For simplicity we assume that the I/O bandwidth is the same for reading and

writing. In practice these may differ, but it is straightforward to extend our work to account

for different read and write bandwidths. Each host also has access to a global (i.e., shared)

storage system with I/O bandwidth B and capacity∞. Here again we assume identical read

and write bandwidths. This model is representative of most HPC cluster platforms.

Because global storage is shared, hosts may contend for global storage bandwidth. Ide-

ally, real-world clusters would provide dedicated network links from each host to the global

storage. In the worst case, there could could be a single (bottleneck) such link. Some clusters

in practice provide in-between solutions in which some number of hosts may read/write data

from global storage without decreases in bandwidth (e.g., due to the use of dedicated I/O

nodes, due to the use of storage area networks). Since the degree of global storage bandwidth

sharing among the hosts can vary, to keep this work general we simply define a number of

concurrent full-bandwidth connections that can be supported: num conns. For instance, if

num conns = 3, then 3 hosts could each read/write data concurrently with transfer rate B.

If a 4-th hosts reads/writes data, then each host would experience a 3 B/4 bandwidth (i.e.,

hosts share the bandwidth and at most the bandwidth is num conns ∗B).

We actually ran simple “concurrent access to global storage” benchmark on two real-

world clusters: the Catalyst cluster at Lawrence Livermore National Laboratory 1 and the

UHHPC Cray cluster at the University of Hawai‘i at Mānoa 2. In both cases, benchmark

results show that num conns = 1 (i.e., the “worst-case scenario” mentioned above).

We assume that B < b. On the Catalyst cluster mentioned above, simple benchmarking

show that b/B is around 20. To be specific, on the Catalyst cluster, simple benchmarking

1https://computation.llnl.gov/computers/catalyst
2https://www.hawaii.edu/its/ci/hpc-resources/
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tests show that b is around 2GB/s and B is around 100MB/s. On the UHHPC cluster above,

b/B is around a factor 4. To be specific, on the UHHPC cluster, b is around 400MBps and

B is around 100MBps. In general, this factor could be very large, e.g., if local storage is on a

Solid State Drive (SSD). Note that we ignore storage latencies, and simply compute the time

to read or write s bytes of data as s divided by the bandwidth. Our target applications are

data-intensive workflows that read/write large files and I/O time is thus bandwidth-bound.

A simple illustration of our platform model is shown in Figure 2.1.

Figure 2.1: Platform Model

2.2 Application Model

We consider a workflow application with t tasks, T1, . . . , Tt, and f files, F1, . . . , Ff . Task

Ti can only be executed on a single host on the platform (i.e., it is sequential task), and

executes in wi seconds (recall that hosts in our platform are homogeneous). Task Ti takes

a set of input files Ii ⊂ {F1, . . . , Ff} and produces a set of output files Oi ⊂ {F1, . . . , Ff}
(Ii ∩Oi = ∅). We assume that the input files needed by any non-entry task of the workflow

are produced as output by other tasks in the workflow, and we assume no circular data

dependencies. Input files required by entry-tasks are assumed available in global storage at

the onset of the workflow execution. Note that in the literature workflow application are

typically modeled as Directed Acyclic Graphs (DAGs), in which vertices are tasks and edges

are files. However, this notion of task dependencies is vague as a task can generate more than
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one file that is used by another task (in which case one must consider two edges between both

vertices), and a file can be used as input by multiple tasks (in which case a single file can

lead to multiple edges). To avoid this confusion, in this work we simply consider a workflow

as a DAG in which vertices are either tasks or files, and edges represent input/output file

usage by tasks. Figure 2.2 shows an example workflow.

We assume that a task can only start once all its input files are available in stable storage,

and that a task always writes its output files to stable storage. In other words, we do not

consider “in-memory” data, even if a task produces a file and another task using this file

happen to execute in sequence on the same host. This assumption corresponds to the reality

of most scientific workflow applications in which tasks are “opaque” executables (i.e., legacy

code) in which input and output is from and to files. Note that researchers are investigating

“in-situ” workflow executions in which application data is held in RAM and file I/O can

be avoided [39]. But in-situ executions require modifying the implementation of the tasks,

which is often not feasible.

Finally, we assume that a task can only start when all its input files are available in stable

storage, and that a task’s output files are only available in stable storage once the tasks as

completed. Again, this corresponds to the reality of real-world workflow applications in which

tasks are opaque executables, and there is no feedback from these executables regarding which

produced data files may have been finalized although the task is still executing.

2.3 Execution Model

We assume a workflow execution environment in which, when running a task, for each of

the task’s output file we can specify either to write it in local storage or to global storage.

To the best of our knowledge, this capability is currently not available in current Workflow

Management Systems (WMSs), and one of the objectives of this work is to make a case that

it should be. We assume that I/O to/form the global storage is fully concurrent across hosts

(but with bandwidth sharing).

We also assume that tasks running on different hosts can only “communicate” using files

stored in global storage, i.e., as opposed to explicit network communications or explicit file

copies from local storage to global storage. Recall that workflow tasks are typically opaque

executables that do not perform network communication /or file copies. Therefore, allowing

network communication and/or file copies would entail modifying the tasks’ implementations

and/or using some runtime system to orchestrate these communications/copies. While this

6



Figure 2.2: An workflow with two tasks T1 and T2 with I1 = {F1, F2} , I2 = {F3, F4} and
O1 = {F3, F4}, O2 = {} and run in w1, w2 seconds respectively.

is conceivable, it is not necessarily practical on current HPC systems and with current WMS

implementations. In this work, we simply assume the typical workflow application scenario

in which the behavior of the task implementations cannot be modified, and we assume no

particular capabilities beyond the ability to redirect files produced by tasks to global or local

storage.

Finally, we also assume that a task can be replicated on multiple hosts. This implies

that the WMS is capable of submitting multiple replicas of a task to different hosts. This

capability is available in most WMS, e.g., for the purpose of fault-tolerance.

2.4 Objective

Given the model and constraints above, our scheduling objective is to minimize the overall

workflow execution time, or makespan (i.e., the maximum completion time over all tasks in

the workflow).

Unsurprisingly, this scheduling problem is NP-complete. A special case of it, DAG

scheduling without considering data locality, is already NP-complete. Considering data
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locality and limited storage capacities makes the problem even more combinatorial. As a

result, in this thesis we attack the problem by proposing (polynomial-time) heuristics.
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CHAPTER 3

RELATED WORK

DAGs (Directed Acyclic Graphs) are a general model of computation, and therefore the

issue of DAG scheduling has received an enormous amount of attention. DAG scheduling

is known to be an NP-Complete problem even with restricted assumptions, and thus many

polynomial-time scheduling heuristics have been proposed (see [26] for a survey of standard

static DAG scheduling heuristics), typically with objective being to minimize makespan.

Many variations of the DAG scheduling problem have been considered, and in particular

variations in which there are communications between tasks (i.e., data dependencies in addi-

tion to control dependencies). Considering communication further complicates the schedul-

ing problem. A typical assumption is that if a parent task generates data for a child task

that is scheduled on the same host, then the communication cost is zero (note, however,

that in case the child execution is not immediately after the completion of the parent, then

the data would have to persist locally, in RAM or on disk). Otherwise, explicit inter-task

communication has to be done on a network with some overhead. Although in a different

setting, the work in this thesis is related to these communication-aware efforts because we

consider tasks that communicate via files, and the global (high overhead) vs. local (low

overhead) storage trade-off is akin to the “not on the same host” (high overhead) vs. “on

the same host” (low overhead), albeit with a data locality component. Other works do con-

sider file-based inter-task communication, and in this sense are more related to this work.

We review relevant previous work that consider locality for DAG scheduling hereafter (Sec-

tion 3.1), and then highlight how work differs and yet targets a setting directly relevant to

practice (Section 3.2).

3.1 Locality Aware Scheduling

Many authors have considered minimizing workflow makespan assuming that each host has

only local storage but data can be explicitly communicated (i.e., copied) between local storage

at different hosts. In this case, the general idea is to promote data locality by attempting

to schedule a task on a host that has in local storage as much of the input data needed by

a task as possible, so as to reduce communication overhead. We describe three example of

such works hereafter.

Horiuchi et al. [23] propose a straightforward list-scheduling method in which ready tasks
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are simply scheduled dynamically on idle hosts, always picking the host that has in its local

storage the largest amount of input data needed by the task. Note that a bigger part of the

contribution in [23] is the discovery of the workflow DAG based on profiling runs, while in

this work we assume the workflow DAG is known (e.g., created explicitly by the end-user).

Bozdag et al. in their work [8] propose a greedy heuristic that attempts to schedule

parent-child task pairs on the same host, prioritizing task pairs based on the amount of data

that would be communicated were the two tasks executed on different hosts.

Vydyanathan et al. [34] target a version of the problem in which workflow tasks are paral-

lel. They propose a heuristic called Locality Conscious Processor Allocation and Scheduling

(LCPAS). LCPAS computes the critical path of the workflow and iteratively reduces both

the communication and computation cost along the critical path. At each iteration, it re-

duces either the computation cost of a task or the communication cost between a pair of

tasks. Computation costs are reduced by allocating more hosts to a task. Communication

costs are reduced in two ways. First, more hosts are allocated to tasks so that they can

benefit from parallel data transfer mechanisms, thus increasing communication bandwidth.

Secondly, data locality is considered by striving to schedule tasks in free time slots on hosts

that hold the largest amount of input data in their local storage. Note that in this work we

do not consider workflow task that execute on multiple hosts.

Another idea for improving data locality is to partition a task graph into subgraphs. The

subgraphs can be scheduled either on a single host or on a group of hosts that have fast inter-

host communication bandwidth. The subgraphs are formed so that intra-subgraph edges

have heavy weights (i.e., large data amounts) and inter-subgraph edges have light weights

(i.e., low data amounts). Tanaka et al. [29] propose a multi-constraint graph partitioning

method to obtain a balanced partitioning. Rather than simply partitioning the graph into

same-size subgraphs based on edge weights (i.e., being purely data-conscious), their method

produces subgraphs that have the same parallelism, as much as possible. This then makes it

straightforward to schedule the subgraphs efficiently on groups of hosts. Ahmad et al. [1] also

propose an algorithm to partition the graph such that the inter-subgraph data movement is

minimal, but they assign tasks so different subgraphs based on edge weights. Once subgraphs

have been computed, tasks are mapped to hosts so as to minimize inter-subgraph data

movement. Note that they assume that the communication between tasks is done via direct

data transfer and not via files stored in stable storage.
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3.2 Our Approach

The previous works discussed in the previous section all attempt to maximize notions of data

locality. In some cases locality means presence of files in stable storage (if tasks communicate

via files), and in others it means network proximity (if tasks perform direct network commu-

nications). In this work, we only consider inter-task communication via files, and thus our

notion of locality is whether a file is present in local storage at a host. This corresponds to

current practice for scientific workflows, our target application domain.

One important factor is that relevant previous works in the workflow/DAG scheduling

literature do not consider capacity limitations for local storage. Yet, in practice, local storage

capacity is limited. For instance, in [32] the authors discuss the impact of limited local storage

capacity, and thus motivate the use of “object stores” close to the hosts to help accommodate

the necessary input files and intermediate data. Consequently, in this work we do consider

limited local storage capacity. It is, thus, important to make careful and efficient storage

decisions as there is both a notion of locality and of limited storage.

In this work, again motivated by the current practice of executing workflow applications

on HPC platforms (see Chapter 2), we do not consider explicit data copies between local

storage and global storage. This is a drastic difference with previous work and the implication

is that if a file has been stored in local storage at a particular host, then it is only visible at

that host. As a result, application parallelism can be reduced (i.e., all tasks needing that file

can only run on that particular host). To address this issue we employ task replication. Task

replication has been used in the context of DAG scheduling for reducing task start times

(e.g., the 7 “Task-Duplication-Based” scheduling algorithms surveyed in [25] or to increasing

reliability [35], but in this work we use it to mitigate parallelism loss due to local storage

usage.

To the best of our knowledge, our target scheduling problem, which is relevant to current

practice (see Chapter 2 for full details and further justifications), has not been previously

studied.
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CHAPTER 4

HEURISTICS

As explained in Chapter 2 our target problem is trivially NP-Complete. We thus approach

the problem with heuristics. More specifically we design heuristics that use both local storage

(because it is fast) and global storage (because it is of infinite capacity and the fact that it

is accessible by all hosts) with the goal of minimizing workflow execution time.

We face a trade-off when using both types of storage. The use of higher bandwidth local

storage reduces I/O time but, if we look on the other side of the coin, it may result in

reduction of parallelism. This reduction in parallelism, assuming that a file is stored only in

the local storage of a host, can occur for two different reasons. First, a task using that file

will have to wait for that host to become idle before it can begin execution. Second, and

related to the first reason, all the tasks using this file can only be executed on that particular

host, and thus their executions will be serialized.

By contrast, storing a file in global storage is good because no constraint is imposed on

where a task using this file can be executed. But, the use of global storage is also not good

because of its lower bandwidth. Recall that state-of-the-art WMSs use solely global storage,

and thus suffer from high I/O overhead for data-intensive workflows.

In this chapter we describe our approach for designing heuristics that attempt to address

this trade-off. First we describe the overall skeleton of our heuristics (Section 4.1), which

performs task replication, host selection, and storage selection. Heuristics for making these

decisions are detailed in Sections 4.3-4.4, respectively.

4.1 Overall Approach

As described in chapter 2, our objective is to schedule all the tasks in a workflow onto hosts

in a homogeneous cluster. This scheduling problem is off-line, in that we have full knowledge

about each task (i.e., runtime, input/output files and their sizes). This knowledge is used

by our scheduling heuristics, all of which perform “list scheduling” (i.e., whenever there is

at least one idle host and there is at a least one ready task, then at least one instance of

this ready task is started on one idle host). However, our heuristics do not compute a static

schedule ahead of execution but instead maintain a list of ready tasks and schedule the tasks

as they become ready and as hosts become idle. Simply put, we do dynamic scheduling

rather than static scheduling.
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As we dynamically schedule tasks, we perform task replication and make decisions about

storage location of the output files produced by each task. We do task replication in order

to alleviate the loss of parallelism due to the use of local storage. Replication of a task on

multiple hosts allows its output files to be stored on local storage at each of these hosts. As

a result the task’s children can execute concurrently on these hosts.

Overall our approach proceeds in the following steps: (i) sort the list of ready tasks;

(ii) pick the first task in the list; (iii) compute the maximum desired number of instances of

this task to be scheduled; (iv) schedule some or all the instances on idle hosts that have the

maximum number of bytes of the task’s needed input data in their local storage; (v) decide

which output files of the task (and each of its scheduled replicas) should be written to local

storage and which should be written to global storage. These steps are implemented in the

ExecuteWorkflow procedure shown in Algorithm 1, which takes as input a workflow

and a set of hosts.

Algorithm 1 ExecuteWorkflow procedure

1: procedure ExecuteWorkflow(workflow, hosts)
2: file locations← {{global}, . . . , {global}}
3: while workflow has uncompleted tasks do
4: ready tasks← ReorderReadyTasks(workflow.getReadyTasks())
5: for each task in ready tasks do
6: num task instances← PickNumTaskInstances(task, ready tasks, hosts)
7: if num task instances = 0 then
8: continue
9: end if
10: candidate hosts← pickHosts(task, num task instances, hosts)
11: for each host in candidate hosts do
12: file locations←MakeStorageDecisions(file locations, host, task)
13: LaunchTaskInstance(task, host, file locations)
14: end for
15: end for
16: Wait for any task completion
17: Mark task as completed, mark its children as ready
18: end while
19: end procedure

First, Algorithm 1 initializes a map data structure, file locations, that specifies for each

file in the workflow where it should be written and thus will be available for subsequent

task executions (line 2). Values in this map are sets, since a file can be at multiple loca-

tions. Elements of these sets are either global or h.local, which denotes the local storage
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on host h, for all hosts h. Initially, all files are set to be written to global storage. Then

the algorithm iterates until all workflow tasks are completed (line 3). At each iteration,

ReorderReadyTasks is called (line 4). This procedure (pseudo-code not shown) simply

reorders the tasks in the list of ready tasks by non-decreasing number of their children. The

rationale is that prioritizing those tasks that have more children will increase the number of

ready tasks, and thus potentially reduce workflow execution time. This is actually a well-

known list-scheduling principle (e.g., see [28]) when computing a schedule dynamically at

runtime. For each ready task, in this order, the algorithm then decides whether and how to

launch it. First, in line 6, it calls procedure PickNumTaskInstances, which implements

our task replication strategy and returns a number of task instances to be launched (see

Section 4.2). If this procedure returns 0, then no instances of the task is launched (lines

7-9). Otherwise, procedure pickHosts is called (line 10). This procedure implements our

host selection strategy (see Section 4.3) and returns a list of candidate hosts on which task

instances should be launched. For each such candidate host, procedure MakeStorageDe-

cisions is called (line 13). This procedure implements our storage selection strategy (see

Section 4.4) and thus updates the file locations map. Finally, procedure LaunchTaskIn-

stance (pseudo-code not shown) is called to start an instance of a task on a given host,

writing output files as specified in the file locations map.

4.2 Task Replication Strategy

Given an ordered list of tasks, for each task in this order we must decide on the number of

instances of this task to execute. This task replication strategy is implemented as procedure

PickNumTaskInstances (see Algorithm 2, called in line 6 of Algorithms 1). Procedure

PickNumTaskInstances determines the number of idle hosts (line 2), and computes the

number of “extra” idle hosts, i.e., the number of hosts that would remain idle after one

instance of each ready task is launched on one idle host (line 3). This number is then divided

by the number of extra hosts by the number of ready tasks (line 4). The rationale is that

each ready task should have at least one instance started if possible, and that “extra hosts”

are given out as fairly as possible to tasks for the purpose of replication. Note, however, that

a task can never have more instances than its number of children as more instances would

not be useful (line 5).
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Algorithm 2 Algorithm to decide the number of instances of a task

1: procedure PickNumTaskInstances(task, ready tasks, hosts)
2: num idle hosts← number of hosts currently idle
3: extra hosts← (num idle hosts− ready tasks.size()− 1)
4: num instances← max(1, dextra hosts/ready tasks.size()e)
5: num children← max(1, task.getNumChildren())
6: return min(num children, num instances)
7: end procedure

4.3 Hosts Selection Strategy

Given a decided number of instances of a task, procedure pickHosts (called in line 9 of

Algorithms 1) is used to pick a set of hosts on which to execute these instances. pickHosts

is shown in Algorithm 3. The rationale in pickHosts is to pick those hosts that have the

maximum number of bytes of input data for the task in their local storage. The goal is to

take advantage off the high I/O bandwidth of local storage. Procedure pickHosts creates

a list of idle hosts and for each such host computes how many bytes of input data is stored

in local storage (lines 2-8). This list is sorted by non-decreasing order of number of bytes

stored (line 9). It then computes how many hosts should be returned, num, as the minimum

of the number of hosts in the list and the number of task instances desired. Note that it may

thus return fewer hosts than the decided number of instances, in which case fewer instances

will be started (line 10). The first num hosts in the list are returned (line 11).

Algorithm 3 Algorithm to pick a set of hosts on which to execute instances of a task

1: procedure pickHosts(task, num task instances, hosts)
2: picked hosts← an empty list
3: for each host in hosts do
4: if host is idle then
5: picked hosts← picked hosts ∪ {host}
6: numBytes[host]←#bytes of input data for task in local storage at host
7: end if
8: end for
9: sort picked hosts by non-decreasing numBytes value
10: num← min(picked hosts.size(), num task instances)
11: return first num hosts in picked hosts
12: end procedure
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4.4 Storage Selection Strategy

Given a decided number of task instances and the set of hosts on which to launch these in-

stances, for each task instance we need to decide where it should write its output files: global

storage or local storage at the host on which it is launched. For this purpose, we formulated

three related heuristics, as described hereafter, to implement procedure MakeStorageDe-

cisions (called in Algorithm 1 at line 12).

4.4.1 S W RATIO

The main intuition behind this heuristic is that a file should be stored in local storage if it

is large (as local storage has higher bandwidth than global storage) and/or if it is used by

tasks with relatively short execution times (as these tasks could then become I/O-bounded

if the file were to be stored in global storage). Algorithm 4 shows the pseudo-code for this

heuristic. It first initializes a list called file list with all the output files of the task to be

scheduled (line 2), and then sorts this list so as to determine which of these files should have

priority for being written to local storage (lines 2-3).

Formally, consider a task Ti, an instance of which is to be started on a host host. Let

{F1, . . . , Fni
} be the files produced by Ti. For each file Fj, let us define the set of indices of

tasks that uses Fj as input:

I(Fj) = {k|Tk uses Fj as input} .

For each file Fj we then compute its “S/W ratio” SWj as:

SWj = max
k∈I(Fj)

sj
wk

where sj is the size in bytes of file Fj and wk is the execution time in seconds of task Tk.

Intuitively, this ratio corresponds to the worst I/O-boundness among the tasks that use file

Fj as input. We then sort all output files of Ti, {F1, . . . , Fni
}, by non-decreasing SWj values.

For each file thus sorted (line 4), if the task has children (line 5), and if the file can fit

on the local storage at host (line 6), then we attempt to place the file on that local storage

(line 7). Note that if a task has no children then it is an exit task of the workflow and its

output files should always be written to global storage.

Placing the file in local storage may actually increase the overall execution time. This is

because of the loss of parallelism caused by the use of local storage. For instance, consider a
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Algorithm 4 MakeStorageDecisions, using the S W RATIO heuristic

1: procedure MakeStorageDecisions(file locations, task, host)
2: file list← task.getListOfOutputF iles()
3: sort file list by S/W ratio . See Section 4.4.1
4: for each file in file list do
5: if task.getNumChildren() > 0 then
6: if file can fit in host.local storage then
7: file locations[file].add(host.local) . Tentatively use local storage
8: for each task′ that has file as input do . Check if local storage is useful
9: if task′ would complete earlier using global storage then
10: file locations[file] = {global}
11: end if
12: for each file′ 6= file in file list do . Check if it is safe to use local
13: if file locations[file′] ∩ {global, host.local} = ∅ then
14: file locations[file] = {global}
15: end if
16: end for
17: end for
18: end if
19: end if
20: end for
21: return file locations
22: end procedure

task with n children, each with an execution time of t seconds, and all using one output file

from their parent stored in local storage. These n children are then necessarily serialized.

Therefore, some of these children may complete later than if the file had been stored in

global storage instead (because children could execute in parallel). Consequently, we check

if any child would complete later using local storage, due to serialization, than using global

storage, in spite of lower I/O bandwidth (line 9). If so, we decide to write the file to global

storage (line 10). Note that this is merely an estimation that ignores resource contention

due to the execution of other tasks in the workflow.

Writing the file to local storage, even if it reduces the overall execution time, may lead

to a situation where a task would have to read input files from local storage at two or more

different hosts. Given our model and assumptions in Chapter 2 the execution of this task

is then not feasible. We find such situations by checking if each file′ of file list (different

from the file under consideration) is present in global or in host.local storage (line 13). If

not, i.e., file′ is stored on local storage at another host, we then decide to store the file to
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global storage (line 14). The procedure then terminates and returns an updated file location

map.

4.4.2 INV S W RATIO

This heuristic is just the inverse of the S W RATIO heuristic. Instead of computing the

S/W ratio, we compute the W/S ratio for all the output files of each task. The file having

the highest W/S ratio is prioritized and thus stored in local storage if possible. The basic

intuition behind this heuristic is to quickly execute a task that has a higher runtime and

uses relatively small files. This could be a sensible choice especially when this task lies on

the DAGs’ critical path.

4.4.3 THREE PASS

The basic goal of this heuristic is to load balance the execution of the ready tasks in addition

to using local storage sensibly. The motivation for this heuristic stems for our observation

that the two previous heuristics sometimes unnecessarily use local storage for tasks that are

not makespan “bottlenecks.” More specifically, if a ready task would finish much earlier than

other ready tasks, it may be a good idea to let that task read input files from global storage,

thus slowing it down.

Figure 4.1: A simple example for which S W RATIO and INV S W RATIO make the
“wrong” choice.

In Figure 4.1, we show a case where S W RATIO and INV S W RATIO do not necessarily

choose the best task that should use local storage. In the figure, a task T0 has three children
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tasks, T1, T2, T3 that have runtimes of 203, 200, 196 seconds and task as input files f1, f2,

f3, respectively. The size of file f1, f2, f3 is 4, 10, and 12 GiBs, respectively. Also assume

that local storage can hold only one file (e.g., its capacity is 12 GiBs). Therefore, these files

have S/W ratio of (4 · 1024 · 1024)/203, (10 · 1024 · 1024)/200, and (12 · 1024 · 1024)/196.

So, S W RATIO will prioritize task T3 because its input file has the highest S/W ratio of

(12 · 1024 · 1024)/196. Conversely, INV S W RATIO will prioritize task T1 because its input

file has the highest W/S ratio of 203/(4 · 1024 · 1024). Assuming I/O bandwidth to global

storage is 1 GiB per second, then the total estimated completion time of T1, T2, T3 will be

207, 210 and 208 seconds, respectively. So, the task that finishes the latest, when not using

local storage, would be T2. And, neither S W RATIO nor INV S W RATIO will place T2’s

input file in local storage.

In this section we propose the THREE PASS heuristic, which would make the right choice

for the case in Figure 4.1, by recognizing that the task that would complete the latest if using

global storage should most likely be made to use local storage. More generally, THREE PASS

attempts to make storage decisions that will slow down fast tasks and thus potentially speed

up slow tasks, thus achieving better load balancing. This is done by pre-processing the DAG

in three different passes before execution:

1. Compute task top-levels;

2. Based on top-levels, make putative storage decisions for good load-balancing;

3. Fix storage decisions as necessary to make execution feasible.

We detail each pass hereafter.

First Pass – In the first pass, we traverse the DAG from top to bottom and for each task

we compute its estimated completion time (ECT). This is done by computing the task’s

top-level, i.e., the length (in seconds) of the longest path from the DAG’s entry task to this

task, excluding this task’s execution time. In other words, the top-level is the sum of all the

computational runtime of the tasks from the entry task to this task plus the sum of the I/O

times between those tasks. Since files may be stored in global or local storage, we do not

know exact I/O times beforehand. However, we know that I/O time between a parent task t1

and a child task t2 is directly proportional to the number of bytes (i.e., files sizes) produced

by t1 and consumed by t2. Thus, while calculating the ECT of a task t, we assume that the

I/O time is directly proportional to the sum of all the input file sizes of task t. Also, while

computing the top-level of each task, we assume an infinite number of hosts, and that all

hosts are connected to a hypothetical global storage with a bandwidth equal to that of our
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hosts’ local storage. Note that similar assumptions are commonly used in DAG scheduling

heuristics [26].

Second Pass – In the second pass, we traverse the DAG again from top to bottom, and

process tasks level by level. A level is defined as the set of tasks that are at the same distance

(in maximum number of edges) from the DAG’s entry task. For each level we use a simple

heuristic. We assume that all files are available in local storage, and based on this assumption

we compute the execution time (including I/O) of each task. We then select the task with

the slowest execution time. For each task that has a faster execution time, then we “slow

down” its execution by forcing it to use global storage instead of local storage. This achieves

some approximate load-balancing of the execution. More sophisticated decisions are possible

(to truly load-balance the execution via some iterative process, or by selecting only subsets

of input files to be stored in global storage). But it is important to note that while making

such decisions we do not know what the actual schedule will be and/or what the available

local storage capacity will be on the hosts that end up executing particular tasks. Therefore,

it is unclear whether more sophisticated load-balancing heuristics would be effective. Our

results in Chapter 5 showcase instances in which the approximate load-balancing strategy

above is effective.

Third Pass – In the third pass, we repair infeasible executions. This is because, for the

same reasons as for the S W RATIO heuristic, the storages decisions may create a situation

where a task would have to read input files from local storage on two distinct hosts, which

is prohibited by our execution model (see justification in Chapter 2). In such cases, as in

S W RATIO, we force some of the parent tasks to write their output files to the global

storage. This is done by traversing the DAG from top to bottom one last time.

These three passes are executed instead of the initialization at line 2 in the Execute-

Workflow procedure (Algorithm 1). The execution of this procedure is unchanged, but

for the MakeStorageDecisions procedure. This procedure, simply implements the stor-

age decisions made by the three passes, but may fail to use local storage due to capacity

constraints encountered at runtime. In this case, global storage is used instead.
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CHAPTER 5

RESULTS

In this chapter we evaluate and compare the effectiveness of the heuristics described in

Chapter 4. Our broader goal is to quantify the workflow execution time reduction due to

the judicious use of local storage. We obtain results both in simulation and on a real-world

HPC cluster. We use simulation because it allows us to run large numbers of hypothetical

application and platform scenarios, which would be time-intensive, labor-intensive, and/or

infeasible for the real-world applications on real-world platforms at our disposal. Neverthe-

less, we also obtain real-world results for selected experimental scenarios, in part to verify

that our simulation results are representative of real-world settings.

This chapter is organized as follows. Section 5.1 details our simulation experimental

methodology and Section 5.2 discusses simulation results. Section 5.3 details our real-world

experimental methodology and Section 5.4 discusses real-world results. Finally Section 5.5

provides a synthesis of our findings.

5.1 Simulation Methodology

5.1.1 Simulation Software

We use the WRENCH [38] simulation tool to implement in C++ a simulator of workflow

executions using our heuristics. WRENCH is a scientific instrument designed as a software

framework for simulating workflow executions on arbitrary (simulated) platforms, and a large

part of its intended use is the investigation of scheduling strategies. WRENCH is built on top

of SimGrid [13], which provides core simulation capabilities and is used to study distributed

systems and applications that occur in the Grid, Cloud, HPC or P2P computing domains.

The simulation models implemented in SimGrid have been developed for over a decade

and have been thoroughly validated. Furthermore, SimGrid makes it possible to execute

simulations on a single computer (i.e., it has low execution time and low memory footprint).

In the end, the WRENCH framework provides us simple abstractions that allow us to focus

mostly on implementing our heuristics and, because WRENCH builds on SimGrid, makes

it possible to evaluate our heuristics accurately and scalably for arbitrary application and

platform configurations of interest.
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5.1.2 Simulated Workflows

Workflow Structures

We wish to simulate the execution of workflow configurations that are representative of

actual scientific workflow applications. To this end, we consider seven types of of workflow

structures so as to test our heuristics on a wide variety of application scenarios. Three

of these structures are based on real-world applications: Genome (from the bioinformatics

domain) [17], Cybershake (from the earthquake engineering domain) [22], and Montage (from

the astronomy domain) [27]. Please refer to Appendix A for example visual representations

of these workflows. We also consider four synthetic workflow structures: Outtree, Intree,

ForkJoinSeq1, and ForkJoinSeq2. Outtree and Intree are simple out-tree and in-tree graphs.

ForkJoinSeq1 corresponds to a sequence of fork-join graphs in which the sink of a fork-join

graph is the source of the next fork-join graph in the sequence. ForkJoinSeq2 also corresponds

to a sequence of fork-join graphs, but in this case the sink of a fork-join graph is the parent of

the source of the next fork-join graph in the sequence. These synthetic workflow structures

often occur as part of larger workflow structures encountered in real-world scientific workflow

applications.

We keep the numbers of tasks fixed (but we do vary the scale of the platform on which

the workflow executions are simulated). Specifically, we generate workflows for each above

structures with 1,000 tasks. To generate Genome, Cybershake, and Montage workflows we

rely on the workflow generated provided by the Pegasus project [15]. This generator outputs

workflow structures that are based on actual workflow instances for these applications. It

turns out that this generator cannot generate structures for arbitrary numbers of tasks for

all applications. In particular, we are only able to generate Genome workflows with 997. For

our synthetic workflows, because of the 1,000-task constraint we vary arities accordingly. For

instance, we generate Intree, resp. Outtree, workflows with branching factor 4, but the first,

resp. last, level of the workflow contains tasks with fewer than 4 children, resp. parents.

For each workflow structure, we generate 10 workflow instances with task execution times

sampled from a uniform random distribution with range [0, 3600] (in seconds), and file sizes

are sampled from a uniform random distribution with range [10KiB, 2GiB]. These ranges

are somewhat arbitrary (even though they correspond to some real-world applications), but

hereafter we explain how we vary the data-intensiveness of our generated workflow instances.
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Data Intensiveness

A key characteristic of scientific workflows, in particular for the purpose of studying schedul-

ing strategies, is data-intensiveness. The data-intensiveness of a workflow is defined as the

ratio of the total time spent computing to the total time spent doing I/O, or CCR (Compu-

tation to Communication Ratio). The time spent doing I/O, in our case, depends on whether

the I/O is to/from local or global storage, which will vary between executions depending

on the actual schedule, which is computed at runtime. Therefore, we simply compute the

time spent doing I/O as the time to read all files in the workflow from global storage (see

Section 2.1 for how we pick a realistic global storage bandwidth value).

For each workflow instance generated as described above, we scale the files sizes by a single

factor so as to generate instances with given CCR values. We wish to experiment with low

CCR values because many real-world workflow application are data-intensive, which provides

motivation for this work in the first place. We consider CCR values between 1 (roughly equal

time-consuming to perform I/O and to compute) and 20 (roughly 20x less time-consuming

to perform I/O than to compute).

5.1.3 Simulated Platform Parameters

Number of Hosts

While we keep the number of tasks in our workflows at 1,000, we vary the number of compute

hosts, h. The number of hosts is an important parameter because as it increases there is

more opportunity for task replication. We, thus, vary the number of hosts from 2 to 200.

Storage system

Recall from Chapter 2 that, based on measurements on real-world clusters, we set the local

storage bandwidth to 2 GBps and the global storage bandwidth to 100 MBps. Recall also

that an important parameter, num conns, is the degree of sharing of the global storage

bandwidth among the compute hosts. Conceptually num conns is the number of individual

links that connect the compute hosts to the global storage. In the real-world clusters at our

disposal, we have found that num conns = 1. However, in some other storage systems there

are dedicated “I/O nodes” that provide larger aggregated bandwidth to the storage, because

they allow concurrent accesses. Therefore, for completeness, in our experiments we consider

num conns ranging from 1 to 50. A larger num conns value would in general lessen the

performance penalty of using global storage relative to using local storage.
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5.2 Simulation Results

We first obtain a set of “base” results using particular values of the CCR, num conns,

and the number of hosts h. Namely, we use CCR = 1 (perfect balance between I/O and

computation times, which implies a data-intensive workflow), num conns = 1 (a single

link to the global storage, as seen in our real-world HPC clusters), and h = 10 (a small

typical allocation obtained on an HPC cluster, but sufficient for task replication to have

some benefits).

To evaluate our heuristics we also consider two baseline heuristics:

ALL IN GLOBAL: Since, state-of-the-art WMSs only use global storage, we con-

sider a simple ALL IN GLOBAL heuristic, which simply never uses local storage. A

broad practical objective of this work is to quantify potential workflow makespan re-

ductions due to using local storage.

RANDOM: We also consider a heuristic that randomly decides whether a file should

be written to local or to global storage. However, this heuristic also checks whether

storing the file in local storage is “worth it” in terms of loss in parallelism as done

in the S W RATIO and INV S W RATIO (see lines 9-11 of Algorithm 4). A reason

for including this heuristic is that it should allow to evaluate whether our proposed

heuristics make good decisions when using local storage. Furthermore, for complex

combinatorial scheduling problems such as ours, purely random heuristics are known to

produce, sometimes unexpectedly, good results. Note that, like our proposed heuristics,

RANDOM may make decisions that make task executions infeasible. So, RANDOM

prevents infeasible task executions while making storage decisions.

Through this chapter we use ALL IN GLOBAL as our reference and discuss improvement

achieved by other heuristics, including RANDOM, relative to ALL IN GLOBAL.

5.2.1 Base Results

For each workflow structure, we simulate the execution of each of 10 instances with each

of our 5 heuristics, with our base parameter values: num conns = 1, CCR = 1, h = 10.

Each simulation outputs a makespan, for Table 5.1 shows makespan differences relative to

ALL IN GLOBAL, averaged over the 10 instances. The average, however, is not biased by

any outliers in the data which is supported by the fact that maximum coefficient of variation

ranges to 7 in our individual executions of each workflow.
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DAX ALL IN
GLOBAL

S W RATIO INV S W
RATIO

THREE PASS RANDOM

Cybershake 0% 17.149% 17.174% 14.763% 17.191%
Montage 0% 2.080% 2.080% -0.439% 2.079%
Genome 0% -51.463% -29.736% -48.209% -41.598%
Intree 0% -48.243% -46.487% -43.986% -47.379%
Outtree 0% -9.351% -19.109% -14.903% -13.010%
ForkJoin
Seq1

0% -9.322% -10.169% -9.322% -10.169%

ForkJoin
Seq2

0% -0.704% -0.169% -4.890% -0.340%

Table 5.1: Average simulated application makespan differences relative to ALL IN GLOBAL
for all heuristics (Base Results: num conns = 1, CCR = 1, h = 10).

The main observation from the results in Table 5.1 is that many values are negative,

meaning that ALL IN GLOBAL is typically outperformed by heuristics that use local storage

(i.e., these heuristics lead to lower makespans). This is not surprising overall, since in general

using local storage should improve performance (which motivates this work), but hereafter

we discuss these results for each workflow structure.

Cybershake – This workflow structure is the only one for which no heuristic outper-

forms ALL IN GLOBAL. The reason why any of our heuristic could be outperformed by

ALL IN GLOBAL is loss of parallelism due to the use of local storage. Our solution to rem-

edy this loss of parallelism is to use task replication. However, depending on the structure of

the workflow itself, task replication may be only rarely possible, especially when the number

of hosts is small. In the case of Cybershake, after a few entry tasks have completed, there

is then an extremely large number (about 500) of ready tasks. Given that only 10 hosts

are available, there is almost never any opportunity for task replication given that our task

replication strategy of using only “extra hosts” for task replication. It follows that, due to

no task replication, subsequent levels in the workflow suffer from loss of parallelism. This

explanation is confirmed by experiments with Cybershake workflows with only 200 tasks

executed on 10 hosts and workflows with 1,000 tasks but executed on 100 hosts. In both

cases, all our heuristics outperform ALL IN GLOBAL. In Section 5.2.4 we show results for

various numbers of hosts in the platform. We conclude that for very shallow workflows

like Cybershake, and unless the number of hosts is sufficiently large, our task replication

approach is not sufficiently aggressive to warrant not using the standard ALL IN GLOBAL

strategy.
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Montage – For this workflow structure only the THREE PASS heuristic outperforms

ALL IN GLOBAL, and it does not outperform it by a large margin (under .5% improve-

ment). The reason why THREE PASS is the best among the heuristics is due to the presence

in Montage workflows of a commonly found sub-structure: a parent task with a single child

that has many independent children. See the discussion of the results for the ForkJoin-

Seq2 workflow structure hereafter. The reason why the improvement of THREE PASS over

ALL IN GLOBAL is only marginal is the same as for the Cybershake workflow structure,

as discussed above. Therefore, similarly, reducing the number of tasks and/or increasing the

number of hosts increase the improvement of THREE PASS relative to ALL IN GLOBAL.

Figure 5.1: An example instance of the Genome workflow.

Genome – For this workflow structure we see that all heuristics do significantly better than

ALL IN GLOBAL, with S W RATIO leading to the best results, and THREE PASS being

a close second. The reason for these large improvements is the particular structure of the

Genome workflow. As seen in Figure 5.1, Genome workflows contain many single-parent-

single-child structures. This allows in significant use of local storage while not negatively

impacting parallelism.
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Intree – Here also we see significant improvement in average makespan achieved by heuristics

relative to ALL IN GLOBAL. Specifically, S W RATIO is the best heuristic for this workflow

type, although it leads to results very similar to RANDOM and S W RATIO. For these

heuristics, due to the in-three structure, storage decisions do not hurt parallelism (because

for task executions to be feasible, many parents are forced to write the global storage). Yet, a

significant number of files are written to local storage, leading to potentially large makespan

reductions when compared to ALL IN GLOBAL. Because the workflow has a large number

of entry tasks, THREE PASS attempts to load-balance the first level of the workflow, thus

causing many entry tasks to write to global storage (“slowing them down”). Local storage

is thus not fully used for these entry tasks, which explains why THREE PASS does not do

as well.

Outtree – Here again all heuristics are better than ALL IN GLOBAL, with INV S W RATIO

leading to the best results. Overall improvement magnitudes are lower than for Intree work-

flows. This is due to loss of parallelism due to using local storage (which, for Intree never

occurs, as explained above).

ForkJoinSeq1 – For this workflow structures all heuristics perform similarly, leading to

about 10% improvement over ALL IN GLOBAL. This seems to indicate that for this struc-

ture using local storage helps reduce I/O overhead, but selecting which files should be written

to local storage is not important.

Figure 5.2: A scenario where S/W and W/S heuristics do not perform well.

ForkJoinSeq2 – For this workflow structure THREE PASS leads to the best results, out-
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performing ALL IN GLOBAL by almost 5%. Rest of the heuristics are not significant enough

when compared to ALL IN GLOBAL. The reason behind this is the structure of the ForkJoin

Seq2. In this workflow type, we have frequent repetitions of the pattern as shown in Fig-

ure 5.2. This pattern in Figure 5.2 corresponds to a structure in ForkJoinSeq2 workflow type

where every fork-join sequence is followed by a single task. In Figure 5.2, the first task T1,

having only one child, is decided to perform its I/O from local storage by S/W and W/S

heuristics. Consequently, the task T2, having many children, cannot be replicated as its

input files are present in only one host where its parent task T1 was executed. This decision

greatly reduces parallelism as all the children tasks of task T2 will have to execute on the

same host where T2 was executed. In this particular situation, to prevent this parallelism

loss, instead of one step look-ahead to count the number of children, we can do a two step

look-ahead to count the number of grand children of task T1 and decide to have multiple

instances of task T1. However, this is just a particular case. We can have situations where

to make correct decisions we may have to look until the very end of the graph and this

hugely complicates our heuristics. And so both S W RATIO and INV S W RATIO simply

do a single step look-ahead that assigns task T1 to use local storage and thus suffers from

loss in parallelism. However, THREE PASS, in an attempt to load-balance the tasks at

every level assigns the first task T1 to perform its I/O from global storage. As as result, the

THREE PASS heuristic outperforms all other heuristics for this workflow type. Generally,

such patterns are frequent in many workflow types and the THREE PASS heuristic can help

improve the makespan for those workflows.

All of these above results provide a measure of the performance of all our heuristics for our

base scenario, i.e., num conns = 1, CCR = 1, h = 10. We now turn to exploring how these

parameters impact the performance of our heuristics. The following three sections explore

the impact of num conns, CCR and h), respectively. We select representative results for

three particular workflows: Genome, Cybershake, and Outtree. See Figures 5.1, 5.3, and 5.4

for example instances of these workflows.

Figure 5.3: An example instance of the Cybershake workflow.
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Figure 5.4: An example instance of the Outtree workflow.

5.2.2 Impact of num conns

In this section, we discuss the impact of varying num conns. All the plots shown in this

section show average simulated application makespans (in seconds) on the vertical axis, and

num conns on the horizontal axis, which ranges from 1 to 50. In all these results, CCR is

equal to 1, h is equal to 10, and the number of tasks is 997 for Genome and 1000 for the

other workflows as described in Section 5.1.

Genome Results

Figure 5.5 shows results for the Genome. We can see from the figure that at lower values of

num conns, i.e., when there is more bandwidth contention to global storage, ALL IN GLOBAL

is significantly worse than all the other heuristics. However, as num conns increases, ALL IN GLOBAL

eventually outperforms all the other heuristics. This is an expected result as increasing

num conns allows hosts to have a bigger share of global storage bandwidth. As a result,

ALL IN GLOBAL does better when num conns is high, i.e., when I/O to/from global stor-

age is not as expensive and there is no loss of parallelism due to simply not using local

storage. All other heuristics see their makespans decrease as num conns increases. The

reason behind this is that other heuristics do not only use local storage at the hosts but also

make use of global storage whenever necessary.

Cybershake Results

Figure 5.6 shows results for the Cybershake workflow. Recall from Section 5.2.1 that in Cy-

bershake workflows, using our base simulation parameter configuration, ALL IN GLOBAL

outperforms all other heuristics. This is because with only 10 hosts, other heuristics cannot
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Figure 5.5: Average simulated application makespan vs. num conns for Genome workflows

perform effective task replication. Expectedly, as num conns increases, ALL IN GLOBAL

further improves. Also, recall from the base results that S W RATIO, INV S W RATIO and

RANDOM, all had the same percentage runtime difference when compared to ALL IN GLOBAL.

So, expectedly these three heuristics coincide on the same line even for higher values of

num conns. This is because of a particular feature of Cybershake workflows. These three

heuristics are only different from one another in choosing the order of files to store in local

storage. However, in Cybershake workflows, many tasks produce a single file. As a result,

the order of choosing the files does not impact the schedule and thus in overall makespan.

By contrast, THREE PASS heuristic performs well compared to other heuristics though it

is still outperformed by ALL IN GLOBAL at higher values of num conns.

Outtree Results

Figure 5.7 shows results for Outtree workflows. Similar to Genome results, we can see that

for lower values of num conns, the application makespan achieved by ALL IN GLOBAL

is significantly larger than that for other heuristics. As seen for Genome, as num conns

increases, ALL IN GLOBAL do significantly better compared to all other heuristics. One

important difference that we see in this Outtree workflow compared to Genome is that the

increase in num conns does not help the other heuristics perform better. The reason behind

this is that the other heuristics make significant use of local storages and use global storage

sparingly. So, increasing num conns to improve the network connection to the global storage
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Figure 5.6: Average simulated application makespan vs. num conns for Cybershake work-
flows

helps ALL IN GLOBAL significantly, but helps the other heuristics only marginally.

Figure 5.7: Average simulated application makespan vs. num conns for Outtree workflows

5.2.3 Impact of CCR

In this section, we describe the impact of varying CCR. All the plots shown in this section

show average simulated application makespans (in seconds) on the vertical axis, and CCR

on the horizontal axis, which ranges from 1 to 20. In all these results, num conns is equals
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to 1, h is equal to 10, and the number of tasks is 997 for Genome and 1000 for the other

workflows as described in Section 5.1.

Genome Results

Figure 5.8 shows results for Genome workflows. We can see from the figure that at lower val-

ues of CCR, i.e., when communication is very costly compared to computation, ALL IN GLOBAL

leads to worse results than all other heuristics. This is because with low CCR values the use

of global storage is a bottleneck. However, as CCR increases, i.e., as I/O becomes relatively

cheaper, ALL IN GLOBAL eventually outperforms RANDOM and INV S W RATIO. If the

value of CCR were to be increased further, ALL IN GLOBAL would eventually outperform

all other heuristics.

Figure 5.8: Average simulated application makespan vs. CCR for Genome workflows

Cybershake Results

Figure 5.9 shows results for Cybershake workflows. At lower values of CCR, when I/O

is relatively costly, all the heuristics lead to similar results. However, as CCR increases,

ALL IN GLOBAL outperforms all other heuristics, even more so that for the Genome results.

Again, since all other heuristics attempt to make use of local storage more than global

storage, making I/O cheaper helps ALL IN GLOBAL more than the other heuristics. Note

that, RANDOM, S W RATIO and INV S W RATIO all coincide on the same line, which is

reasonable as described in Section 5.2.2.
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Figure 5.9: Average simulated application makespan vs. CCR for Cybershake workflows

Outtree Results

Figure 5.10 shows results for Outtree workflows. The trend is similar to that of Cybershake

and Genome workflows, and the explanations for these results are also similar.

Figure 5.10: Average simulated application makespan vs. CCR for Outtree workflows

5.2.4 Impact of h

In this section, we describe the impacts of varying h. All the plots shown in this section

show average simulated application makespans (in seconds) on the vertical axis, and h on

the horizontal axis, which ranges from 2 to 200. In all these results, num conns is equals to
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1, CCR is equal to 1, and the number of tasks is 997 for Genome and 1000 for the other

workflows as described in Section 5.1.

Genome Results

Figure 5.11 shows results for Genome workflows. We can see from the figure that ALL IN GLOBAL

is outperformed by all other heuristics across the board. Initially, as h increases, all heuris-

tics lead to lower makespans. But, after some point (h ≥ 20), the makespan achieved by

ALL IN GLOBAL dramatically increases. The reason is that the increase in the number

of hosts helps to enhance the parallelism but at the same time, contention for the global

storage bandwidth (recall that in these results num conns is 1). Global storage bandwidth

becomes a bottleneck, and makespans increase. This behavior is not as pronounced for the

other heuristics because they strive to not use global storage.

Figure 5.11: Average simulated application makespan vs. h for Genome workflows

Cybershake Results

Figure 5.12 shows results for Cybershake workflows. The general trend for ALL IN GLOBAL

is similar as that seen in the Genome results, for the same results. The other heuristics, while

they eventually outperform ALL IN GLOBAL when h becomes large enough, do not lead to

as good relative performance. In fact, when h increases beyond some threshold, all heuristics

see increases in makespan. This is because these other heuristics also mostly used global

storage. The reason is the dense data-dependencies in and width of Cybershake workflows
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(see the example workflow Figure 5.3). More specifically, many of the single-level tasks

(green in the figure) are forced to read their input from global storage because, with only

h =10 hosts, the replicas of the entry tasks must write many of their output files to global

storage.

Figure 5.12: Average simulated application makespan vs. h for Cybershake workflows

Outtree Results

Figure 5.13 shows results for Outtree workflows. These results are similar to those for

Genome workflows, with all heuristics benefiting from more hosts by ALL IN GLOBAL

suffering from the global storage bandwidth bottleneck.

5.3 Real-World Methodology

We implemented a software prototype that drives the execution of workflow applications on a

real-world cluster using our proposed heuristics. This prototype re-uses the “in-simulation”

implementation of the heuristics and translates simulated activities into real-world activities

(to execute computation on the cluster’s compute nodes, and to read/write files to/from

local/global storage, which on our target cluster consists of local disks and of a Lustre

distributed file system).

We use the UHHPC Cray cluster at the University of Hawai‘i at Mānoa as a testbed

to test our heuristics on a real cluster. We attempt to repeat (a subset of) our simulation
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Figure 5.13: Average simulated application makespan vs. h for Outtree workflows

experiments but in real life, for the same seven types of workflows. Note that the goal

here is not necessarily to compare simulated to real makespans, but rather to see whether

trends seen in simulation seem to translate to the real world. Such comparison should

be possible, but unfortunately, we encountered difficulties with the LLNL cluster that we

initially used to perform benchmark experiments. Therefore, although our simulations are

instantiated based on the hardware characteristics of the LLNL cluster, our account on that

machine was abruptly suspended in the middle of us obtaining our real-world results. As

an emergency measure, we have ported our real-world experiments to the UHHPC cluster.

Note that the preliminary, but incomplete, results we obtained on the LLNL cluster, showed

the same trends as our results on the UHHPC cluster. In both of these clusters, benchmark

experiments show that num conns = 1.

In our real-world experiments, so as to feasibly obtain results in a timely fashion, we

set the number of tasks in each workflow types to be 100 and the number of instances of

each workflow types to be 2 with task execution times sampled from a uniform random

distribution with range [0, 3600]. Note that, as a result, there are more opportunities for

task replication than in our simulation results (i.e., the tasks / hosts ratio is smaller). This

modifies some our results, as explained in upcoming sections. Also to make sure that we do

not overload the storage system on compute hosts of UHHPC Cray cluster, we sample file

sizes from a uniform random distribution with range [10KiB, 5MiB]. This means that we are

not executing actual workflow applications, which would be too time consuming and would
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require us to install deep and complex scientific software stacks, but instead execute “mock”

such applications in which data is randomly generated and computation (on space-shared

hosts) is simulated by sleeps.

5.4 Real-World Results

5.4.1 Base Results

DAX ALL IN
GLOBAL

S W RATIO INV S W
RATIO

THREE PASS RANDOM

Cybershake 0% -18.531% -19.801% -11.177% -19.732%
Montage 0% -6.801% -4.274% -3.638% -4.246%
Genome 0% -40.621% -41.291% -39.105% -39.566%
Intree 0% -17.457% -17.340% -1.358% -18.066%
Outtree 0% -36.688% -36.454% -35.349% -34.589%
ForkJoin
Seq1

0% -9.484% -8.593% -6.044% -8.932%

ForkJoin
Seq2

0% -39.588% -40.053% -35.396% -41.310%

Table 5.2: Average real-world application makespan differences relative to ALL IN GLOBAL
for all heuristics (Base Results: num conns = 1, CCR = 1, h = 10).

As in Section 5.2, we first obtain a set of “base”, in this case with CCR = 1, num conns =

1 (which is due to our hardware platform), h = 10. Table 5.2 shows average makespan

differences relative to ALL IN GLOBAL, averaged over 2 instances for each workflow types.

Cybershake – Unlike with the simulation results, on our cluster all heuristics perform better

than ALL IN GLOBAL. Recall that in our base simulation settings, our workflows had 1,000

tasks but the number of hosts was only 10. As a result, and as explained in Section 5.2, our

heuristics could not do enough task replication to alleviate loss of parallelism due to using

local storage. However, in this experiment on our real cluster, executing 100 tasks on 10

hosts allows enough task replication which consequently mitigates this loss in parallelism.

Montage – Again, unlike for simulation results, we see that all the heuristics outperform

ALL IN GLOBAL. The explanation is the same as for Cybershake workflows, i.e., with fewer

tasks task replication can be used more effectively to mitigate the loss of parallelism due to

using local storage.
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Genome – Recall that Genome workflows have many single-parent-single-child structures,

and is thus very amenable to effective use of local storage. For this reason, all heuristics

performed well in our simulation results, and thus with fewer tasks we also see significant

performance improvements for all the heuristics compared to ALL IN GLOBAL on our clus-

ter.

Intree – For these workflows all the heuristics except THREE PASS do significantly well

compared to ALL IN GLOBAL. The reason that THREE PASS does not perform as well

is because of the trade-off THREE PASS encounters while deciding to use global storage

for load-balancing instead of using local storage. Even if all the ready tasks at hand can

use local storages for their I/O, THREE PASS may decide not to do so to load balance

the tasks. This in turn hurts makespan in the case of Intree workflows, which is because

these workflows have first levels that consist of large numbers of independent tasks, and

many of these tasks have a single child. Yet, for load-balancing reasons, THREE PASS may

decide to “slow down” these tasks by forcing them to use global storage. Note that when we

construct Intree workflows for a given number of tasks, the number of single-parent-single-

child structures varies. This is why this effect wasn’t seen as sharply in our simulation results

due to the workflow containing 1,000 tasks (but note that in those simulation results also

THREE PASS did not do as well as the other heuristics).

Outtree and ForkJoinSeq1 – Results for these workflows are in line with simulation

results, i.e., all the heuristics perform significantly well compared to ALL IN GLOBAL.

ForkJoinSeq2 – Unlike in simulation, we see that all the heuristics performing relatively

well compared to ALL IN GLOBAL. In simulation, only THREE PASS had a non-marginal

improvement. The reason for this is again the lower number of tasks in the workflows, which

makes the use task of replication more feasible to mitigate loss of parallelism.

5.4.2 Simulation vs. Real-World Results

One interesting question is that of how accurately our simulation results match up with our

real-world results. We have thus re-run simulations using the hardware characteristics of the

UHHPC cluster (b = 400 MB/s, B = 100 MB/s) and with the same workflow parameters for

the base results presented in the previous section (100 tasks, 10 hosts, CCR =1). Results

are shown in Table 5.3. Ideally, these results would perfectly match up with the real-world

results in Table 5.2. What we observe instead is that the average makespan differences for all

heuristics relative to ALL IN GLOBAL, while sometimes different in magnitude, show the

same trends as the real-world results, and thus lead to the same conclusions. Differences in
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DAX ALL IN
GLOBAL

S W RATIO INV S W
RATIO

THREE PASS RANDOM

Cybershake 0% -12.702% -12.647% -0.611% -12.645%
Montage 0% -0.0293% -0.0293% -3.520% -0.0293%
Genome 0% -72.215% -73.623% -69.695% -73.037%
Intree 0% -20.336% -18.925% -5.420% -19.556%
Outtree 0% -1.545% -7.659% -5.255% -4.910%
ForkJoin
Seq1

0% -12.609% -13.727% -12.691% -13.106%

ForkJoin
Seq2

0% -5.092% -5.670% -8.975% -5.350%

Table 5.3: Average makespan differences relative to ALL IN GLOBAL for all heuristics run
with UHHPC cluster parameters.

magnitude are due to the usual simulation bias problem, i.e., instantiating simulation models

that match particular hardware/software stacks is not straightforward. Such simulation

“callibration” is known to be challenging, and is typically done in ad-hoc manners using

labor-intensive trial-and-error approaches based on extensive benchmarking of the target

platform. Automating such callibration is actually an open question. Regardless, we leave

such callibration for future work, especially given that our simulation results corroborate

conclusions drawn our from real-world results.

5.4.3 Impact of CCR

To have a comparative analysis of results from simulation and a real cluster, in this section,

we present the impact of varying CCR for the same three workflow types– Genome, Cyber-

shake and Outtree. All the plots shown in this section show average real-world application

makespans (in seconds) on the vertical axis, and CCR on the horizontal axis, which ranges

from 1 to 48. In all these results, num conns is equals to 1, h is equal to 10, and the number

of tasks is 100 for all workflow types.

Genome Results

Figure 5.14 shows results for Genome workflows from real-world executions on a real cluster.

We can see that even for higher value of CCR, all other heuristics perform relatively well

compared to ALL IN GLOBAL. Recall that Genome having significant amount of single-

parent-single-child substructures is a suitable workflow that favors the use of local storages.
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Also, recall that in these real-world executions, we are using 100 tasks and 10 hosts and thus

we have enough replication. As a result, all the heuristics perform relatively well compared

to ALL IN GLOBAL even for higher values of CCR. CCR should be further increased

significantly for ALL IN GLOBAL to outperform all other heuristics.

Figure 5.14: Average real-world application makespan vs. CCR for Genome workflows

Cybershake Results

Figure 5.15 shows results for Cybershake workflows from real-world executions on the real

cluster. At lower values of CCR, when I/O is relatively costly, because of enough task

replication, all other heuristics outperform ALL IN GLOBAL. However, as CCR increases

ALL IN GLOBAL is in line with all other heuristics.

Outtree Results

Figure 5.16 shows results for Outtree workflows from real-world executions on the real cluster.

The trend is similar to that of Cybershake workflows and the explanations for these results

are also similar.

5.5 Discussion

From our experimental results in both simulation and on a real cluster, we can see that use

of local storage reduces I/O time, which consequently lowers overall application makespan.

However, this can only be achieved if sufficient task replication can be performed. Recall
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Figure 5.15: Average real-world application makespan vs. CCR for Cybershake workflows

the discussion of the base results for Cybershake workflows discussed in Section 5.2.1: if

we do not have enough hosts to perform task replication then using local storage actually

hurts performance. A corollary of this finding is that if a workflow structure is deep ,

i.e., many edges on the paths from the entry tasks to the exit tasks, relative to the total

number of tasks, then local storage can be used more effectively. This is because for a deeper

graph, the number of ready tasks is lower at each level, and thus task replication can be

applied more often, which limits loss of parallelism. By contrast, for shallower workflows

larger numbers of hosts are required to allow for a significant amount of replication. This is

again supported by the base results for Cybershake workflows discussed in Section 5.2.1, as

Cybershake workflows are shallow and wide.

Perhaps unsurprisingly, we find that the (relative) performance of our heuristics depend

significantly on the structure of the workflows. For instance, the base results presented in

Section 5.2.1 show clearly that results vary enormously between workflows (i.e., between rows

of Table 5.1). A contributing factor to these variations is the existence and number of single-

parent-single-child structures, as these structures make the use of local storage desirable in

most of the cases. This if, for instance, the reason while all our heuristics perform well for

Genome workflows as they contain many such structures (see Figure 5.1).

In many cases, both in simulation and with a real cluster, we found that the RANDOM

heuristic performs well when compared to ALL IN GLOBAL. This signifies that use of local

storage along with enough task replication is good enough to achieve better makespans even

without proper prioritization of which files for local storage. This is particularly true for

relatively low numbers of tasks and files, in which cases we find that RANDOM does very
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Figure 5.16: Average real-world application makespan vs. CCR for Outtree workflows

well. This is supported by comparative analysis of the base results between simulation and

the real cluster, i.e., RANDOM seem to perform better in base case experiments on the real

cluster (with 100 tasks) compared to the base case experiments in simulation (with 1,000

tasks).

Our results show expected trends regarding the sharing of global storage bandwidth.

All heuristics benefit from a higher num conns value, and the more a heuristic uses global

storage the more it benefits. As a result, for high num conns values, the ALL IN GLOBAL

approach is the best. In practice, on two distinct HPC clusters, we found via benchmarking

that num conns = 1, showing that ALL IN GLOBAL is likely not effective in practice. Fur-

thermore, we found that all our proposed heuristics, across all workflow types, perform well

when the workflows are more data-intensive. This is supported by the results in Section 5.2.3,

which show that for low CCR values our heuristics vastly outperform ALL IN GLOBAL be-

cause they are able to use local storage effectively. Recall that ALL IN GLOBAL is the

approach used in current state-of-the-art WMSs. Therefore, claim that these WMSs poorly

support data-intensive workflows. However, our results show that minor modifications to

their implementations, combined with a heuristic as simple as our RANDOM heuristics,

could lead to substantially better performance for these workflows.
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CHAPTER 6

CONCLUSION

Scientific workflows nowadays are, increasingly, being used to represent crucial applica-

tions in most fields of science and engineering. These applications, due to the increase in

capacity of storage systems and of the computing capabilities of computers, tend to make

use of large data files, relative to the amount of computation they perform, thus making

them data-intensive. It has thus become necessary to reduce I/O overhead while executing

such workflows on HPC clusters. HPC clusters, however, often use commodity interconnects

with relatively low I/O bandwidth to connect compute hosts with some global storage sys-

tem. As a result, the global storage system bandwidth can be a performance bottleneck for

data-intensive workflows. In spite of this bottleneck, state-of-the-art Workflow Management

Systems (WMSs) always use global storage while executing workflows on HPC clusters. In

this thesis we have explored an alternative approach in a view to reducing I/O overhead.

Our approach consists of using, whenever possible, the local storage system available at

each compute hosts in most HPC clusters. The connection bandwidth from each compute

host to its local storage can be orders of magnitude higher than that to the global storage

system. Therefore, storing data files in local storage can significantly reduce I/O overhead.

Such local storage, however, is of limited capacity and is also private to a single compute

host. As a result, not only is there an issue of which files should be selected to be stored

in local storage due to capacity constraints, but also an issue of loss in parallelism because

local storage can only be accessed by a single lost.

6.1 Summary of Contribution

In this thesis, we have formalized an off-line workflow scheduling problem that accounts

to both local and global storage in homogeneous clusters, with the objective of minimizing

workflow makespan. This scheduling problem, like most scheduling problems, is NP-hard,

and thus we approached it with heuristics. These heuristics compute the schedule dynam-

ically at runtime, i.e., they schedule tasks as they become ready on hosts as they become

idle. More specifically, our propose heuristics make:

• Storage decisions – Given the capacity constraint of local storages and since each

local storage is only accessible to one host, it is typically not possible to use local

storage for holding all data files. Therefore, our heuristics decide to use local storage
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whenever feasible (in terms of capacity and in terms of feasible workflow executions)

and deemed worthwhile given the data-intensiveness of the workflow.

• Task replication decisions – Using local storage may lead to worse workflow per-

formance due to loss of parallelism. So, in addition to making storage decisions, our

heuristics perform task replication. Task replication allows copies of input/output

files of tasks to be available on different compute hosts, thus making it possible for

independent tasks to run on different compute hosts concurrently.

We have implemented a re-usable simulation framework to evaluate the execution of

workflow applications in cluster settings with local and global storage. This framework

implements our proposed heuristics, as well as the state-of-the-art “use only global storage”

approach. This framework is re-usable for further research.

To the best of our knowledge, current WMSs do not have the ability to make decisions

about where the output files of workflow tasks should be written in a cluster setting as they

do not account for local storage at compute hosts. We have, thus, implemented a software

prototype with this capability so as to evaluate our heuristics in the real-world. We have

obtained experimental results both in simulation and on a real cluster. The broad finding

is that using local storage can provide significant performance benefits in practice. More

specifically, it is a good idea to use local storage if there is a balance between the number of

hosts and the number of ready tasks (which depends on the workflow’s parallelism) so that

tasks can be sufficiently replicated to mitigate parallelism loss.

We have shown that although some of our proposed heuristic do well for particular

workflow configurations, most likely a single simple greedy heuristic can be effective across

the board of workflow configurations. In fact, a random heuristic can do surprisingly well in

some scenarios.

6.2 Future Work Directions

We have proposed several heuristics that employ local storage while satisfying the storage

limitations, attempting to use local storage only when it is “worth it”, and avoiding sit-

uations that would make application execution infeasible. Our heuristics consider several

factors while making such decisions (e.g., files sizes, runtime of workflow tasks, CCR of the

workflow). However, our heuristics do not explicitly look for particular structural patterns

in the workflow. Yet, our results show that particular patterns have a high impact of the
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(relative) effectiveness of our heuristics. Therefore, a promising research direction is to de-

sign heuristics that discover and account for particular structural patterns. While there is

conceivable a large number of possible patterns, real-world workflow applications tend to re-

use a limited number of them (i.e., chains, fork-joins, etc). It is thus possible that heuristics

designed to discover and exploit only a few patterns could yield good results across a broad

range of applications.

Regardless of the heuristic chosen for making storage decision, another promising direc-

tion is to “tech-transfer” our approach, as pioneered in the software prototype used to obtain

the results in Section 5.4 into an actual WMS system. This should be done with only minor

modification of the WMS implementation, namely, including the ability to specify for a task

execution which files should be written to global storage and which files should be written

to local storage. Typically, tasks in production workflows use file paths as command-line

arguments, and thus adding this capability to a WMS could be completely straightforward.

A bit more involved is adding the capability of tracking which file is stored where, including

the fact that a file can be available at multiple locations (e.g., in global storage and in local

storage at several hosts). Note that WMS typically has this capability for tracking the pres-

ence of files and file replicas in distributed storage infrastructures. It should thus be feasible

to add the capability of tracking file replicas in global and local storage systems within a

cluster. An obvious first target for this tech-transfer would be the popular Pegasus [15]

WMS.
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APPENDIX A

WORKFLOW TYPES

A.1 Genome

Figure A.1: An example instance of the Genome Workflow

A.2 Cybershake

Figure A.2: An example instance of the Cybershake Workflow
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A.3 Outtree

Figure A.3: An example instance of the Outtree Workflow

A.4 Intree

Figure A.4: An example instance of the Intree Workflow

A.5 Montage

Figure A.5: An example instance of the Montage Workflow
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A.6 ForkJoinSeq1

Figure A.6: An example instance of the ForkJoinSeq1 Workflow

A.7 ForkJoinSeq2

Figure A.7: An example instance of the ForkJoinSeq2 Workflow
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APPENDIX B

SIMULATION RESULTS

B.1 Impact of num conns

B.1.1 Intree Results

Figure B.1: Average simulated application makespan vs. num conns for Intree workflows
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B.1.2 Montage Results

Figure B.2: Average simulated application makespan vs. num conns for Montage workflows

B.1.3 ForkJoinSeq1 Results

Figure B.3: Average simulated application makespan vs. num conns for ForkJoinSeq1 work-
flows
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B.1.4 ForkJoinSeq2 Results

Figure B.4: Average simulated application makespan vs. num conns for ForkJoinSeq2 work-
flows

B.2 Impact of CCR

B.2.1 Intree Results

Figure B.5: Average simulated application makespan vs. CCR for Intree workflows
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B.2.2 Montage Results

Figure B.6: Average simulated application makespan vs. CCR for Montage workflows

B.2.3 ForkJoinSeq1 Results

Figure B.7: Average simulated application makespan vs. CCR for ForkJoinSeq1 workflows
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B.2.4 ForkJoinSeq2 Results

Figure B.8: Average simulated application makespan vs. CCR for ForkJoinSeq2 workflows

B.3 Impact of h

B.3.1 Intree Results

Figure B.9: Average simulated application makespan vs. h for Intree workflows
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B.3.2 Montage Results

Figure B.10: Average simulated application makespan vs. h for Montage workflows

B.3.3 ForkJoinSeq1 Results

Figure B.11: Average simulated application makespan vs. h for ForkJoinSeq1 workflows
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B.3.4 ForkJoinSeq2 Results

Figure B.12: Average simulated application makespan vs. h for ForkJoinSeq2 workflows
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