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UNIVERSITY OF HAWAI‘I AT MĀNOA IN PARTIAL FULFILLMENT

OF THE REQUIREMENTS FOR THE DEGREE OF

MASTER OF SCIENCE

IN

COMPUTER SCIENCE

DECEMBER 2017

By

Mark Nelson

Thesis Committee:

Peter-Michael Seidel, Chairperson
Dusco Pavlovic
Yingfei Dong

Keywords: Science of Safety, Formal Methods, Actor Networks, Secure Boot, Trusted Computing



Copyright c© 2017 by
Mark Nelson

ii



Dedicated to:
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One hundred years from now,
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Nor what my clothes looked like,
But, the world may be a little better
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ABSTRACT

We propose a framework for modeling and analyzing the security of cyber-physical systems, in particular

the security properties of a Secure Boot protocol. By reviewing the history of safety in Aviation & Urban

Development, we observe how their safety systems matured and identify key factors for their success such

as economic incentives, investments in to obtain a deep understanding of a system’s components, the ability

to scale and the rigorous definition & analysis of objectives. Cyber-physical systems are hindered by the

lack of rigorous models to express and analyze security objectives. Based on previous works of formal

Actor Networks from Computer Science and informal Actor Network Theory from Sociology, we propose

a mathematical framework to model cyber-physical protocols and analyze their security properties while

keeping the interactions, in particular the physical interactions, flexible. Finally, the thesis develops four

Actor Network models and analyzes security properties of a Secure Boot protocol.
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CHAPTER 1
INTRODUCTION

Almost anything in software can be
implemented, sold, and even used given
enough determination. There is nothing a mere
scientist can say that will stand against the
flood of a hundred million dollars. But there is
one quality that cannot be purchased in this
way – and that is reliability. The price of
reliability is the pursuit of the utmost
simplicity. It is a price which the very rich find
most hard to pay.[23]

—C.A.R. Hoare, 1980 Turing Award Lecture

1.1 The Problem

As an industry, we have been developing software at scale for over 45 years1, yet our ability to develop

systems that are both user friendly and secure continue to plague us.

Why do we adopt protocols, algorithms and programs2 that are nominally well-behaved3 but are un-

safe and insecure? Historically, the major emphasis in program development has been functional require-

ments and verification, while safety and security concerns to prevent undesired functionality has been an

afterthought. With increasing safety and security threats, this emphasis in program development needed to

change. Addressing software security is a significantly harder problem than ensuring traditional program

correctness. The challenges of software security begin with the specification of security requirements and

the establishment of practical security models. Without rigorous security models, providing any form of

security guarantees for software and systems is elusive. In practice, the lack of security guarantees are re-

placed by the detection of harmful behavior and by the development of statistical risk models for (harmful)

security attacks. In this environment software security and safety are treated in a similar way. Despite the

shortcomings of the risk-based security of software and systems, the practical use of these systems for online

banking and e-commerce has been thriving.

Recent security attacks try to circumvent detection by hiding in hardware devices and by gaining control

before a system is fully initialized. For these attacks the detection of the security threats are becoming
1I’ve pegged the start of industrial-scale commercial/personal computing at January 1, 1970. This is the 32-bit UNIX time

Epoch, Dennis Ritchie was developing the C programming language and the conditions were set for the mass commercialization of
computing by companies like Intel, Microsoft and Apple.

2Henceforth, referred to simply as ‘protocols’ or ‘programs’.
3They have the liveness property.
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challenging and any risk model becomes harder to apply. These attacks have motivated the development of

secure boot mechanisms and secure memory enclaves (like INTEL SGX) that can provide privacy from the

overarching system. Both mechanisms rely on features of the processor hardware and physical interaction

from the user. Their proper operation needs to be modeled as a cyber-physical system.

Our goal is to model and analyze the security of cyber-physical systems. Our analysis tries to shed

more light into the security requirements of them and to showcase the application of a model for security

properties of computer systems that rely on physical features. A broader application of these models could

be used to improve the specification of software security requirements and lead to safer and more secure

program development.

While most developers would desire to write secure programs/protocols, the available specification and

modeling methodologies and tools, and the related economics are simply not in their favor. We motivate the

economic aspects of secure system development based on historic perspectives regarding the attainment of

safety in other industries.

This thesis extends Actor Network Theory (ANT), a framework that is uniquely suited to scale from the

abstract system level to the gate level and interact with diverse participants. This framework can be used

to model complex systems. Using Procedure Derivation Logic (PDL) we can formally express and reason

about security properties of a system. This thesis takes inspiration from [16, 33] to extend models proposed

in [40, 34]. We use ANT and PDL to analyze the Secure Boot Protocol.

1.2 The Contributions of this Thesis

The contributions of this thesis include:

1. A historical analysis of two industries: Airline and urban safety. This analysis yields two products:

1) Identifying rational economic models that make investments in safety. 2) An attempt to apply the

historic lessons from these industries to cyber technology.

2. A refinement of the Actor Network modeling technique. Specifically, combining the spirit of socio-

logical Actor Network Theory[32, 16] with the formal methods used in Actor Network procedures[40]

and the notation of Procedure Derivation Logic in [34].

3. A methodology for modeling and analyzing security properties with Actor Network Theory.

4. The application of the proposed methodology to model and analyze the Secure Boot protocol.

1.3 What is Security?

Security becomes relevant when an asset needs to be protected against an adversary. For cyber-physical

systems, an asset can be just about anything: Phones, digital resources, etc. The asset should be usable and

2



have some value. The asset must be able to be secured by a principal4 and the value of the asset should be

commensurate with the cost of securing it.

A system’s capabilities can be classified into one of four sets: What it can & should do, what it can do

but shouldn’t do5 and what it can’t do. See Figure 1.1. Both the safe operation of a system and preventing

deliberate exploitation require avoiding the “What it can do and should not do” space. Designers should

strive to minimize this set, eliminate it if possible, or as our historical analysis will show, seek to mitigate

it6.

Should Should Not

C
a

n
C

a
n

 N
o

t

Should

Liveness Exploitable 

Surface

Minimize 
this box

Missing 
Features

Safety

Figure 1.1: Classifying Capabilities into Sets

Safety and security are very different concerns.

Safety requires protection against random inci-

dents. Security requires protection against inten-

tional incursions[9]. As applied to Software En-

gineering, safety may be thought of as preventing

the software from reaching certain conditions that

it should not get to (bugs). Security, on the other

hand, is ensuring a system behaves correctly even

when deliberate attempts from an all-knowing adversary are made to circumvent control of an asset.

The analysis used in this thesis, like other formal approaches to security, does not distinguish chance

from intent. The analysis only considers capability. Because of this, the following chapters will co-mingle

safety and security7. The distinction between safety and security are still very important. Identifying attack

models, scaling to the capabilities of an adversary and appreciating the difference between an accident and

a choice are important. However, for the sake of simplifying this analysis, we will bypass intent and focus

on capability.

System defects live in the gap between what the system should do and what it can do. Typically, these

sets grow together. As a system adds useful functionality, the side-effects also tend to grow. It takes both

time and cost to shrink the ‘What it can do set’. Those same resources could be funneled into additional

functionality or improving the usability of the system. Designers should carefully balance the investments of

their resources, time and cost, into all three deliverables of a system: Usability, Functionality and Security.

The research in Chapter 2 will show that although there is short-term economic benefit to investing in

usability and functionality (a local maxima), a superior long-term economic benefit exists (global maxima)

when security investments are made to reduce the size of the ‘what it can do’ set.

1.3.1 Correctness vs. Security vs. Trust

4A decision maker or someone who controls an asset.
5For linguistic simplicity, however, we will call this what it can do.
6Many biological systems, such as the human body, have adapted to live with malevolent viruses and bacteria by minimizing

their harmful effects rather than trying to eliminate the source.
7Norwegian only has one word for both safety and security: ‘sikkerhet’[9].
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Figure 1.2: Balancing Conflicting Demands

In this thesis, trust is the idea that an input is

‘trusted’; A guarantee that the input comes from

a particular source that is trusted to ‘do the right

thing’ (not introduce malware / has no malicious

intentions towards the user of the software). This

trust, should not be mistaken for correctness. Just

because the software comes from Microsoft8 does

not guarantee that the software will behave cor-

rectly. Finally, even if the software is trusted and

correct, there’s no guarantee that it’s secure.

TPMs and Intel TXT technologies provide load-time trust (the code is authentic at the time it is loaded),

but it does not provide runtime protection. For example, the code may be changed after it is loaded or the

program may contain bugs.

Readers should also be mindful of who is making the decision regarding trust. Oftentimes, one party

will adjudicate (determine that X is trustworthy) trustworthiness and make an attestation to another party.

Therefore it’s also important to understand the reasoning behind why something is being trusted.

As an exercise in trust, a Windows computer running ‘certlm.msc’ lists hundreds of trusted parties in

‘Trusted Root Certification Authorities \Certificates’. In this list, it is hard to identify who many of these

trusted parties are, why they are trustworthy and to what extent. The assumptions of a typical computer user

regarding the trust in this list is not based on intuition or reason9.

Another consideration is what concepts are being trusted. Is the trust related to the code originating from

source X? Is the trust related to concepts that X trusts? Even the communication with X might be a concern,

i.e. is the channel with X trustworthy?

Practical security can not exist without trust. Without trust, interactions and sharing is impossible. A

designer can build anything in isolation and security would not matter because it’s isolated from all users.

The key to practical security is to be cognizant of trust concepts and trust ratings and to consistently apply a

process of adjudication and monitoring.

1.4 Quo Vadimus: Where Are We Going?

Why are we still producing insecure protocols? The high-tech industry is vibrant and growing. The vast

majority of software engineers do not intend to write insecure systems.

There are several reasons for this disparity... one being that Computer Science is relatively young com-

pared to Mathematics or Physics. This puts Computer Science at a distinct disadvantage relative to other

sciences because the theoretical branches vice the applied branches are blurred in the case of Computer

8Picked at random from many other possibilities.
9How much would you risk on the trustworthiness of any given certificate? How much would you gamble that every certificate

on that list is trustworthy?

4



Science where they are quite clear in the case of the other sciences. For example, the continuum from The-

oretical Physics to Applied Physics to Engineering are relatively well understood. In Computer Science,

however, the distinctions between the disciplines of algorithm/protocol design, language design, systems

programming, software engineering and web development are not as clear.

This thesis observes that one reason we publish insecure protocols is because companies can get away

with it. Publishing an insecure system does not carry enough of a penalty for rational people to choose to

invest in security. Almost all software license agreements limit the liability of the vendor to the point that,

other than reputational damage, there is no penalty for incorrect, insecure systems.

The solution is not to flog software engineers (or their companies) for every software defect. History

tells us that one way forward is to:

1. Understand and formalize the objectives

2. Establish a set of standards

3. Penalize companies for noncompliance with those standards

4. Continually improve the standards

1.5 Orgainzation of this Thesis

Chapter 2 analyzes two industries and how they scaled from their early, developmental period into a mature,

safe and reliable era. Chapter 3 includes a literature review of the technical aspects of this paper: Actor

Network Theory and Secure Boot. Chapter 4 describes the methodology this thesis proposes for using Actor

Network Theory to formally model protocols and provides a full example. Chapter 5 models aspects of the

Secure Boot protocol. Finally, Chapter 6 concludes this thesis. Appendix A contains a glossary of terms

and Appendix B contains a list of axioms used in this thesis but are defined in earlier works.
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CHAPTER 2
A BRIEF STUDY OF THE SCIENCE OF SAFETY IN OTHER

INDUSTRIES

Risks are the wholesale product of
industrialization and are systematically
intensified as they become global.[12]

—Ulrich Beck, Risk Society

History furnishes us with lessons for the present. Therefore, it may be worthwhile to study the history

of safety and security in the Industrial Age to gain some insight into the Information Age. This brief history

will study two industries: Aviation and electrical/fire/building safety. These industries have several things

in common with high-technology such as:

1. They are a product of fundamental scientific research.

2. The research has been engineered for commercial and retail use for the general public.

3. The commodity has an inherent potential danger.

4. The commodity adds tremendous value to society.

The list is axiomatic, however item (3) may require additional explanation with respect to technology. While

not all high-technology is inherently dangerous, the use cases where it is dangerous are easy to underesti-

mate. Certainly terrorists who have been located through their cellphones have underestimated it. The

average technology user makes certain assumptions about the privacy of the information that flows through

that technology. Oftentimes these assumptions are not realized and data they assumed was safe and secure

is, in fact, vulnerable to loss of privacy or tampering. This loss of security is an ever-present threat to users

of technology which has led to financial losses, wasted time/efficiency (for example, restoring a computer

attacked by ransomware), loss of privacy (eMails such as Sony and U.S. politicians) and loss of intellectual

property (industrial espionage). Whenever we use technology, there are certain risks we are assuming, hence

a potential danger, though not always to life and limb.

2.1 The Development of Aviation Safety

On December 17th, 1903, Orville Wright piloted the first powered airplane1 and changed the world. This

chapter is a study of aviation oversight and its evolution through the last century.

Figure 2.1 illustrates the FAA’s 100-year track record of continuous safety improvement. Since 1954,

the U.S. government has collected data on ”Passenger-Miles”[38, 39, 21]. If 20 people fly 1,000 miles in

1There is some debate as to who was the first to fly. Regardless of who was first, the industry took off in 1903.
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Figure 2.1: Record of Aviation Safety

one plane, then this flight is 20,000 Passenger-Miles. Worldwide crash data has also been compiled since

1918[36]. An examination of the crash data shows a relatively consistent rate2. What makes the FAA’s

success worthy of study is the declining crash rate given the exponential growth of passenger-miles. Note

the left Y-axis in Figure 2.1 uses a log10 scale while the right Y-axis is linear scale.

2016 was one of the safest years in aviation history. Since 1997, the average number of airline accidents

has declined[41]. Clearly the FAA is doing something right, doing it consistently and keeping pace with the

growth of air travel.

Section 2.1.1 is a brief review of the history of aviation safety. Section 2.1.2 summarizes axioms that

worked for the aviation industry that could be applied to cyber technology.

2With the exception of WWII. Planes lost due to battle are not counted as a ‘crash’. The uplift during the war years is due to
the rapid expansion of the industrial base and cutting corners in safety to increase production.
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2.1.1 History of Aviation Safety

Aviation regulation has been tug-of-war between oversight and promotion punctuated by cycles of central-

ization and decentralization.

Early aircraft were notoriously dangerous. The first aviation fatality was Lieutenant Thomas Selfridge,

who perished after a 1908 crash in a plane piloted by Orville Wright.

The first 22 years of aviation was unregulated3; however, the U.S. Government saw the utility of using

airplanes to deliver mail and in 1918, it purchased its own airplanes and hired pilots as government employ-

ees. During this period, the government essentially operated its own airline. This was a period where two

aviation systems ran in parallel: The U.S. Air Mail Service and an entrepreneurial private sector. The Air

Mail Service operated a strict safety program with a 180-item checklist for every flight, medical exams for

pilots and four mechanics for every aircraft.

Although the government’s safety regimen required significant manpower, the nascent airline industries

took note of their safety record. Commercial aviation had one fatal accident for every 13,500 miles flown.

During the same period, the Air Mail service flew 463,000 miles per fatal accident. The U.S. Army had an

even better record[30]. Unlike any of the other safety systems we will examine, federal safety oversight was

requested by the aviation industry. This was due to the large social costs of accidents.

Commercial aviation needed to expand access to air travel from thrill seekers and wealthy travelers

to a broad, ‘rational’ base of customers. The dangers of air travel created a reluctance for people to fly.

Regulation was a proven mitigation for those dangers. Additionally, banks were unwilling to financially back

airline industries until some “basic law” was created. Finally, insurance costs were prohibitively expensive

as costs from irresponsible operators were distributed to responsible operations.

There were strategic reasons for government to ‘invest’ in aviation. If cities in a large country were

linked by air, then citizens would be able to travel anywhere in the country in about a day. Any country

able to achieve this goal would make it economically more efficient than its less-connected neighbors. Fur-

thermore, the employment of pilots, mechanics and engineers for commercial purposes could be quickly

converted to military production in the event of war.

3Unregulated in the United States. European nations had begun to regulate their airline industries and coordinate practices
between nations through treaties.
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The debate over the initial regulatory scheme spanned 6 years. Lawmakers had difficulty grappling with

a new and growing technology, what types of controls to put in place and the balance between civil and

military uses of the airways4.

In 1925 Congress passed the Kelly Air Mail act that turned the U.S. Air Mail service over to private

contractors. This required the government to ‘certify’ private companies using a scheme of inspection,

licensing, data collection and enforcement5. The government needed to regulate the industry balancing

unspecified economic boundaries; without excessive burden on the industry and without requiring a massive

government workforce.

The ‘type certificate’ is a good example of that balance. The government would establish rules saying

that an airplane needed to have A, B and C. The manufacturer would design aircraft meeting those require-

ments. The government would inspect the first aircraft and upon verification, issue airworthiness certificates

to all aircraft built exactly the same way.

Another example of the government’s attempts to scale were in medical examinations. Pilots needed

to be certified fit to fly. The government developed the requirements and then licensed private practice

physicians to certify pilots.

During this period, the government started to gather data and compile statistics that would eventually

help regulators focus on classes of problems rather than individual accidents. Oftentimes, temporary certifi-

cates would be issued. Consistently, the accident rate of temporary certificate holders would be double that

of those who had met all of the requirements. The regulation appeared to be directly linked to safety.

Oversight matured and expanded to airlines and flight schools. By 1935, twin engine certification re-

quired the plane to land on one engine and planes were required to have radios. There were limits on flight

hours, dispatch procedures and airport controls such as lighting and employees.

In 1938, aviation oversight was reorganized into the Civil Aeronautics Authority (CAA)6. The goal was

to clarify the government’s role in three key areas:

• Promoting aviation. Setting policies to improve the efficiency of the system, setting rates, etc.

• Safety Regulation. Setting rules, managing the inspector workforce, engineering reviews and enforce-

ment.

• Accident Investigation. Separating investigations into their own function served several purposes;

The first was to de-politicize the process. Oftentimes, the investigation would recommend changes to

regulation that created friction for promoting aviation. The second, and more important function, was

to incorporate input from subject matter experts from private industry (for example, the engineers who

helped design the plane). To get high-quality feedback, the investigation team needed to be separate

from the enforcement mechanism.
4One of the reasons I find this topic so compelling is the similarities to the modern debate on the regulation of privacy and

technology.
5Again, this is analogous to how ARPANET’s governance transitioned to ICANN under the Department of Commerce.
6This is a digest of the history and is not intended to be a detailed historical account. This reorganization occured piecemeal in

1935, 1938 and 1939.
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Aviation safety has progressively evolved from its early days to today. Although the CAA has reorga-

nized into the FAA (Federal Aviation Administration), the core tenants are just as applicable today as they

were during the agency’s formative years.

2.1.2 Lessons from Aviation as Applied to Cyber Security

The initial U.S. Air Mail Service was an airline operated by the government. As such, the usual economics

for a private enterprise did not apply. This allowed the Service to utilize a direct inspection and oversight

regimen that required a tremendous amount of labor without the usual cost-benefit balance required in the

private sector. This is similar to the origins of the computer. The first computers were built, or at least funded

by, governments to achieve a goal that would have been unpalatable by the private sector at that time. The

lessons are:

1. The government often funds the initial investments required to stabilize industries that have strategic

and commercial applications.

2. Airports, harbors and ports have ‘common’ resources available to many users. To make these common

areas safe, regulations and a safety system (such as lights and signage) improve its utility.

The aviation industry was unregulated for the first 22 years before both the public and industry demanded

the government take action. The computer industry has been with us for just over 45 years and, as yet, the

industry remains largely unregulated. One reason for this is the cost of failures are divergent. Every airline

accident imposes a tremendous cost. The utility of computers in the first 25 years, from 1970 until the

dawn of the Internet in the mid-90’s, was large enough to invest in, but when these computer services were

unavailable, the loss was not comparable to an airline crash. Today, the utility of high-tech devices is high

enough that both the public and industry are starting to look for systematic (and hopefully scientific) methods

to improve reliability. The lessons are:

3. An increase in utility drives a corresponding increase in losses associated with failure.

4. The public, industry and government must work together to balance utility with risk.

The airline industry took a long time to develop its regulatory structure, which evolved alongside the

industry. The regulation required an ongoing partnership with the industry. And the government had contra-

dictory roles to both promote the industry and enforce regulation. The government also had to involve itself

in many diverse enterprises from material science to medicine. The lessons are:

5. The regulatory structure must scale. It is impractical for regulators to directly verify each of the safety

requirements. The government’s aviation regulators deployed several creative and economical tools to

span the entire industry. These tools may be a template for improving the security practices of today’s

technology industry.

6. The regulation may spread to industries that are tangential to the industry being regulated.
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7. The regulatory structure must adapt over time. It should be neither be too ambitious nor too shallow.

It should cover what it can comfortably accommodate.

There are many unintended consequences to government regulation. It’s expensive and slow. However,

as this analysis will show, regulation is not ipso facto a bad thing. The airline regulators continue to measure

utility and investigate mishaps. So long as the benefits outweigh the costs regulation can support an industry

without killing innovation. The lessons are:

8. Useful regulation requires incentives that create a positive feedback loop that improves the balance of

utility7 vs. risk.

9. The regulatory structure should be data driven. Therefore, it must consistently measure utility over

time as well as events such as failures.

10. The industry should carefully analyze failures, determine the root cause, evaluate existing mitigations

and disseminate lessons learned.

11. The industry must understand the envelope of safe operations and operate within that envelope8.

7Cost is factored into utility. Utility = (Benefit - Cost)
8This is not ment to stifle innovation, it implies that you test something before you use it and then apply lesson 7 to adapt the

regulations.
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2.2 The Development of Urban Safety

The electric lamp was patented in 1880 marking the end of the gaslight era and the beginning of the electric

age9. By 1882, New York City had its first generating station and the commercialization of electricity was

primed to spread around the world[27]. In a prescient article from the Cambridge Press about the loss of

telegraph service and electricity after an 1888 winter storm:

Figure 2.3: The Blizard of 1888

We have become so accustomed to the reception of

news from all points of the world that we feel very sen-

sibly even a brief deprivation, and we hardly know what

to make of it if it lasts a day or two[2]10.

This section discusses three interdependent groups working together

at the turn of the 20th century to apply scientific methodology to

safety; Insurance companies, trade associations and governments

allowed the nascent technologies of their era to scale.

Figure 2.4 identifies milestones in safety (top) and “Peak

Losses” adjusted to 2015 dollars (bottom)11. The implementation

of standards such as the National Electric Code (NEC) and the use

of provably fireproof construction materials marked the peak of in-

surance losses for that era (The San Francisco Earthquake & Fire in

1906). The fact that 95 years passed before a larger loss was seen

demonstrates the effectiveness of their approach.

The Insurance Industry Spawns Trade Associations

The study of electrical safety is intertwined with fire safety, both of which depend on a scientific analysis

of building materials which was initially funded by the insurance industry. In the late 1800’s, insurance

companies had two predominant business models: Stock and Mutual[29]. The owners of a stock insurance

company were stockholders and the economics that drove the company were based on maximizing the

collection of premiums and minimizing payouts due to loss.

9On a personal note, this line of thinking came about as I toured two exhibitions at the Smithsonian Museum of American
History: ‘Lighting A Revolution: 19th Century Invention’ and ‘America on the Move’. The trip was funded through a govern-
ment sponsored Scholarship for Service. I am grateful for the opportunity to visit the Smithsonian and bring something back to
incorporate into this thesis.

10This tells us more about human nature than technology. Imagine the ‘deprivation’ modern society would feel if the Internet
were unavailable for a day or two.

11The largest insurance loss is the 2001 attack on the World Trade Center complex in New York City.
12“Among the 20 deadliest fires in American history, 18 occured between 1865 and 1945.[29]”
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Figure 2.4: Peak Fire Losses at the Turn of the Century12[7, 5, 37]

Mutual insurance companies, on the other hand, were owned by their own customers. Their economics

were based on spreading risk and preventing mishaps.

The mutuals philosophy resulted in the first efforts to innovate in fireproof construction on

a scale that had previously been practiced only in very specific types of buildings, primarily

courthouses and seats of government, hospitals, prisons and banks. [29]

The mutuals would set strict requirements for membership. Inspectors from the mutual insurance com-

panies would make unannounced visits, conduct training, hold safety drills and bring back valuable risk

information. The insurance companies also partnered with universities such as MIT and funded their own

research because the inspectors were not trained scientists. Mutuals emerged as an alternative to the tradi-

tional insurance industry; midway between strong government regulation and the stock insurance model[29].

They achieved sustained fire safety with pressure on both customers and government.

Modern game theory explains the dynamics of a mutual insurance model. Companies, such as cotton

mills, who were nominally competitors, would allow their experts to meet to discuss standards and exchange

information on best practices. These rational actors saw value in co-operation rather than maximizing indi-

vidual benefit (such as treating safety information as proprietary know-how).

In 1895, the presidents of five insurance companies met to develop a consistent standard for the employ-

ment of fire sprinklers. Their goal was to create a consolidated set of requirements for the manufacturers

of sprinkler systems that would guide them in the development of an interoperable, modular set of products

that could be sold to any factory that desired fire insurance. In 1986, this group would form the National

Fire Protection Association or NFPA[5]. Their work would eventually produce the National Fire Code and

the National Electric Code which established a clear set of rules for builders, governments and insurance
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companies.

Another insurance association, the National Board of Fire Underwriters or NBFU, was established in

1866. They funded two ambitious efforts: The publication of a National Building Code in 1905 and the

financial backing for Underwriter Laboratories13. The first Building Code14 was a 250 page document that

covered everything from building materials to construction techniques to design (for example, increasing

the number of exits).

The members of the NBFU were insurance companies, and as such, they moderated the influence of the

laboratories scientists and the rule-of-thumb factory experts. The mutuals’ interest was in results and they

adopted the most pragmatic practice. The NBFU developed a methodology for improving safety[29]:

1. Isolate Risks

2. Convert them to technical problems

3. Solve the problems

4. Translate the solutions into new practices (materials, procedures or design)

5. Promote the new practices

The NBFU funded Underwriters Laboratories to be the “bench science” center of expertise. UL’s man-

date was to develop/publish requirements and test/certify materials and products. In 1906, they started the

Label Service15 to certify products. Subsequently, this became the most recognized symbol for product

safety in the world.

Building codes needed to maintain a balance of affordability, usability and safety. The codes would

often require materials to be certified to UL standard (this way the codes did not have to be rewritten

whenever a new building material was introduced). However, they did not mandate ‘fireproof’ construction

techniques. The authors accepted the fact that buildings will contain flammable materials and there will be

fires. Therefore, they mandated the use of fire sprinklers and extinguishers to mitigate a fire by slowing how

fast it can spread.

Ingenuity, cost and ease of use were key factors in the success of the standards. Many of the standards

started with a debate between cost and safety. But eventually, as the technology matured and integrated

with other safety systems, a quiet consensus would develop and the standard would be accepted. This “just

works” invisibility was a key enabler.

There are significant parallels from the Industrial Age to the Information Age. At the turn of the century

(1900), electricity had replaced a number of riskier technologies (such as oil lamps) to make society more

efficient. Computers and the Internet significantly increase per-capita productivity. However, care should be

taken to understand the risks associated with these gains.

13Founded as the Underwriters’ Electrical Bureau and sometimes referred to as “UL”
14Actually, the first building ordanance is in the ancient Code of Hammurabi c 1754 BC: Law 229, If a builder builds a house

for someone, and does not construct it properly, and the house which he built falls in and kills its owner, then that builder shall be
put to death.[44]

15The first product to receive a UL label was a fire extinguisher.

14



The imbalance between known risks and perceived risks is highlighted in [12]. Ulrich Beck proposed

that the same process of making the industrial metropolis16 possible also manufactured a startlingly high

level or risk. Beck proposed that this modern risk is self-perpetuating and irreversible. The knowledge of

these risks is known to scientists but is invisible to the general public. He challenges the media and legal

professions to discuss these risks openly and integrate them into our social and political landscape.

2.2.1 Lessons from Urban Safety as Applied to Cyber Security

The know-how to construct durable, fireproof buildings existed long before 1880, however, governments

were the main practitioners of those methods17. It took major disasters to force insurance companies to push

the practice into the private sector. This thesis does not propose that governments were the only entities

with the know-how to build safely, only that their economics were aligned to build safely. For example, in

the Fall of 1874, the NBFU called for a fire insurance boycott of Chicago to force local governments and

builders to abandon their traditional building practices for safer materials and methods. The lesson is:

1. Regulators (governments and insurance companies) must balance cost vs. safety and pursue practical,

“just works” solutions.

2. Safe construction requires both technical craft and economic advantage.

We need to rebalance product liability between consumers and producers of software. For example, one

Microsoft End User License Agreement or EULA reads:

NOTWITHSTANDING ANY DAMAGES THAT YOU MIGHT INCUR FOR ANY REASON

WHATSOEVER ..., THE ENTIRE LIABILITY OF MICROSOFT ... SHALL BE LIMITED

TO ... THE AMOUNT ACTUALLY PAID ... FOR THE SOFTWARE.[19]18

The Uniform Commercial Code (UCC) is the legal framework in the United States that defines “Warranty

Of Merchantability (Fitness For A Particular Purpose)” requiring manufacturers to deliver a product that is

fit and safe for its intended purpose. The lesson is:

3. Our legal feedback loop is broken. Companies have created a system/product where they pay little to

no penalty, other than consumer sentiment, for producing buggy (defective) software. The failures are

not as catastrophic as an airliner crash or an industrial fire, but we are getting to the point where some

systematic failures have a very large aggregate harm affecting millions of people and costing millions

of dollars. Protocol failures have the potential to affect national or global economies in a way that

previous technologies did not.

This thesis makes the following postulates:

16In the context of this thesis, the Internet is the modern equivilant.
17Courthouses, prisons and other government buildings
18... denotes language that was removed for the sake of brevity and clarity.
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A. The expertise to publish secure protocols and software is available.

B. Although the High-Technology/Internet industry has a policy creation capability (such as the IETF),

it lacks an effective enforcement mechanism.

C. If software manufacturers must pay a proportional cost when they produce a defective prod-
uct, then a beneficial ecosystem will develop, possibly driven by the software liability insurance
industry.

It’s critical that standards bodies and regulators introduce practical guidance. It should be backed by

multi-disciplinary scientific methods. It’s also important to balance prevention with mitigation. A building

fire is similar to a software defect. Both are going to happen, you just don’t know where or when. Mitigation

after you build it is expensive. The trick is to learn to live with it and contain its effects.

4. Disasters were substantially reduced as a result of disciplinary creativity and a tight fit between the

experts and methods of policy creation[29].

5. Expertise was drawn from academics in university science and engineering departments, firefighters,

architects, city planners, journalists and consumer advocates.

6. Fire, building and electrical safety started from privately-funded endeavors that drafted the practices

governments eventually mandated.

7. With any new technology, generalization and abstractions are not easy to identify. Failures must be

carefully studied to identify discernible patterns.

8. In 1996, the NFPA produced almost 300 codes and standards developed by more than 205 technical

committees staffed by more than 5,000 volunteers[3]. This compares to the results of the Internet

Engineering Task Force or IETF which has over 8,000 Requests for Comment (RFCs) and nearly

20,000 authors[6]. The key difference between these standards bodies is that the NEC carries the

force of law in most jurisdictions in the United States and the IETF does not.

Getting the public to understand that safety and security comes at a cost that, ultimately, has value to

them takes some effort. Safety associations spent a significant effort in public outreach, education and value

creation. The insurance inspectors brought back information and distributed it.

9. Users of technology, not just developers, should learn about the benefits of security. Trade associations

should highlight failures, discuss the science of security, mitigations and promote the idea that the cost

of enforcing a secure technology ecosystem has value to them.

10. Insurance inspectors for software liability insurance companies should be able to distribute anonymized

best practices and lessons learned publicly to any interested parties. Although the press has an impor-

tant role in this process, we should attempt to replace ‘investigative journalism’ with informative and

educational information.

This thesis makes the following postulate:
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D. Today’s obsession with privacy and being first to know something is eroding the pooling of knowledge

necessary to distribute risk.

Although we would like to believe that our high-tech community is a modern and efficient ecosystem, in

a historical light, it may be that our technological underpinnings are the equivalent of the wooden firetraps of

the late 1800s. Technology is evolving at a rapid pace as we make improvements on top of improvements.

At the same time, we do not yet have a deep understanding of these ‘building materials’ (re. Operating

Systems, Libraries, Biometric system X, etc.). Our risks have aggregated to the point that a technological

collapse would have major effects in the physical world. The lessons are:

11. Our technological underpinnings are brittle. Although they are functional, they are complex and not

always well understood – especially when integrated with other technologies.

12. It took 80 years for fire sprinklers to become pervasive[3]. It takes a lot of time and, unfortunately,

a lot of loss before the economic incentive to spend money on a mitigation strategy is proven and

becomes mainstream.

This thesis makes the following postulate:

E. A society that can work together to produce better technological systems will be more economically

efficient that their cyber-peers.

F. Developing an economically practical science of software and protocol security is imperative and it

will power an engine that will produce benefits for generations.

Urban safety is primarily based on construction. Reacting to fire dangers is too late as it is too expensive

to retrofit buildings with fire-safe materials. Therefore, the emphasis for urban safety is on construction.

Aircraft safety model, on the other hand, is based on both construction and operations.

The common thread of these safety methodologies is the application of formal methods to reason about

safety. These methodologies took a scientific, observational approach to identify root causes.

There is some good news, the Association of Computing Machinery (ACM) has recently published its

first draft of Curriculum Guidelines for Undergraduate Degree Programs in Cybersecurity[8]. ACM is the

same organization that codified the curriculum for Computer Science in 1968.

“Cyber Sciences” reflects a collection of computing-based disciplines involving technology,

people, and processes aligned in a way to enable “assured operations” in the presence of risks

and adversaries. It involves the creation, operation, analysis, and testing of secure computer

systems (including network and communication systems) as well as the study of how to employ

operations, reasonable risk taking, and risk mitigations. The concept of ‘Cyber Sciences’ refers

to a broad collection of such programs, and disciplines under this umbrella often also include

aspects of law, policy, human factors, ethics, risk management, and other topics directly related

to the success of the activities and operations dependent on such systems, many times in the

context of an adversary.[8]
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Figure 2.5: Technology Maturity Model

Clearly, cyber security is emerging as an identifiable discipline. Although this is a step in the right direction,

programs founded on this curriculum likely generate practitioners and not designers of new protocols. In

other words, the development of new formal methods of verification is probably outside the scope of Cyber

Sciences.

There are some prescriptive, outcome-oriented standards such as PCI and HIPAA, but we have not, as an

industry, achieved a mature level of safety and security. Perhaps this is due to the infancy of the fundamental

science. Perhaps it’s commercial interests. Or, maybe it’s just too hard.
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CHAPTER 3
BACKGROUND & RELATED WORK

If laboratories and research sites are to the
twentieth century what monasteries were to
the twelfth, then the sources of their power and
efficacy remain a mystery.[16]

–Michel Callon, Mapping the Dynamics of
Science and Technology[16]

This thesis uses Actor Network Theory to analyze the security properties of the Secure Boot protocol.

3.1 Actor Network Theory

In the 1980’s, a group of European sociologists were dissatisfied with the direction of their field. The tools

available to sociologists were limited; people, politics and relationships do not routinely lend themselves to

many scientific processes. Furthermore, the group felt that sociologists had misappropriated a few scientific

tools (such as induction[33]). To bring scientific methods back to sociology, this group began a line of

research studying science, scientists and technology[16, 31]1.

Figure 3.1: A 1983
Cover of Time
Magazine

During this period, technology had reached an inflection point and advanced at

unprecedented rates. Technology’s influence on society was profound[43]. A signifi-

cant challenge for sociologists at the time was the complexity of the things they were

attempting to study. They did not have scientific tools to describe interactions between

complex people and complex technology.

One of the first tools the team postulated was the ‘Black Box’: “When many ele-

ments are made to act as one.[31]” They used it as a tool to manage complexity2. It’s

not that they invented abstraction, but they did critically analyze it.

The term “Actor-Network” first appears in [16]. The original postulation of Actor-

Networks is a metaphysical discussion of complexity and Heisenberg-ish observation

that is not applicable to Computer Science. However, two themes emerge that are

directly applicable to the Actor Network Theory proposed in [40]. The first is the

idea that ‘black boxes’ are themselves composed of many ‘black boxes’. Again, the

European team applied a scientific rigor to these ideas that was novel at the time. The second, somewhat

controversial theme, was the idea of homogeniety.

1Science in Action makes extensive references to Tracy Kidder’s 1981 book The Soul of a New Machine. This book was
required reading in my first class in Computer Science, Mike Dobeck’s Assembly Language course at Sierra College in California.

2The term had been used for convenience since the ‘40s. The European sociologists defined it and used it scientifically.
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In Actor-Network theory, all Actors3 are first-class citizens. Presidents, babies, keyboards, elevator cabs,

electric vehicles and cellphones are all on a level playing field. This makes it an effective tool for modeling

the interactions between people and technology. However, the approach is not without controversy as ANTs

do not consider human factors such as belief, preference, bias or rebellion. Fortunately, this is not a limitation

for our purposes.

In [40], the authors adopt the spirit (and name) of [32]’s work; however, [40] is unique and is the starting

point for this thesis. I’ll use [40]’s own words to describe the relationship between [40] and [32]:

The idea that people, computers, and objects are equal actors in such networks imposed itself

on us, through the need for a usable formal model, even before we had heard of the sociological

actor-network theory. After we heard of it, we took the liberty of adopting the name actor-

network for a crucial component of our mathematical model, since it conveniently captures

many relevant ideas. While the originators of actor-network theory never proposed a formal

model, we believe that the tasks, methods and logics that we propose are not alien to the spirit

of their theory.[40]

When necessary, we distinguish between [32]’s Actor-Network Theory and [40]’s Actor-Network The-

ory. On those occasions I’ll denote them as Actor-Network Theory[32] or Actor-Network Theory[40].

3.2 Secure Boot

Computers can’t do much without software. Typically, the very first program a computer runs is a piece of

‘firmware’ called the BIOS (Basic Input/Output System). It is used to start the computer, initialize devices

and eventually, handoff the thread of execution to a system loader.

The evolution from BIOS to UEFI (Unified Extensible Firmware Interface) is still in progress. Standards

organizations such as the Trusted Computing Group (TCG), the UEFI Forum and the National Institute

of Science and Technology (NIST) have collaborated with industry partners to define a common set of

implementation guidelines for how secure chains of trust should be implemented.

NIST has developed recommendations for BIOS Integrity and Measurements [42, 17] intended to help

establish a secure measurement and reporting chain. However, BIOS vendors are free to implement and

market ‘Secure Boot’ as they see fit.

Originally developed by Intel, the UEFI Specification [49] and the UEFI Platform Initialization Speci-

fication describe a framework that BIOS manufacturers, hardware designers and operating system vendors

can use to securely boot a system.

The TCG encourages vendor-neutral collaboration and publishes an extensive set of specifications for

a broad spectrum of technologies. One of TCG’s working groups manages the Trusted Platform Module

(TPM) specifications [47, 46, 48] that describe the API (application program interface) and use models for

3Latour prefers the term ‘Actant’.
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critical phases in the secure boot process. TPMs were not part of the original PC-AT design. A commonly

accepted TPM specification [10] was published in 2003 and by 2009, TPMs had reached critical mass in

that they were broadly available on most PC platforms [50], and vendors could rely on their presence. TPMs

have also been adopted in mobile and networking devices.

TPM vendors such as Atmel [11], Infineon [24] and Intel [25] publish application notes documenting

recommended procedures and details to help designers secure their systems.

While these references describe established and commercially used methods, protocols and responsibil-

ities for implementing trusted boot, there is a growing number of studies that illustrate various shortcomings

of implementations or weaknesses within the specifications themselves.

BIOS implementation flaws in laptops are described in [15]. In [52], the authors describe weaknesses in

the BIOS update process such that if malware were to gain kernel access, undetectable code could be written

to flash memory. In 2013, procedures for bypassing Windows 8 Secure Boot by writing into NVRAM and

disabling trusted boot have been found [14]. In 2014, overflow vulnerabilities in UEFI firmware were

discovered that allowed application software (helped by Windows 8) to introduce malware as a pre-boot

driver [28].

There are several lines of research and technological fronts being advanced simultaneously. The term

Secure Boot typically refers to a feature of UEFI that ensures the firmware that gets a computer ready to

launch an operating system. The term Trusted Boot refers to the next stage in the boot process, measuring

the trustworthiness of the operating system or hypervisor and ensuring that all of the software in those

environments are trusted. The term Trusted Computing generally refers to using applications using TPMs to

store credentials or other information. For example, using a TPM to store BitLocker keys or verify Digital

Rights Management protocols are examples of Trusted Computing. In this thesis, we bundle the terms

Secure Boot and Trusted Boot together and simply refer to them as Secure Boot.
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CHAPTER 4
METHODOLOGY

It is not enough to do your best; you must
know what to do, and then do your best.[1]

—W. Edwards Deming

It’s important to carefully bound our claims. Our intention is to analyze an existing, complex protocol1

and attempt to discover things about it that may not have been apparent. We will not present a formal

verification of the protocol – building up axioms to claim the protocol is or is not secure. An axiomatic

approach might be used if an author intends to present a new ‘secure’ protocol and would use ANT to prove

its correctness and is left for future work.

This section is presented in the following order: 1) Discuss the intuition of Actor Network Theory. 2)

Define the terminology used. 3) Demonstrate the notation. 4) Briefly identify the axioms used in these

models. 5) Outline a proposed methodology for Actor Network modeling. 6) Provide an example of a

complete Actor Network model.

4.1 The Intuition of Actor Network Theory

Sociological Actor Network Theory[32] allows researchers to study complex systems using scientific tools.

Let’s say Alice steals $100 from Bob. Bob has several options, such as stealing the $100 back or fighting

Alice. Another option is for Bob to avail himself of the legal system2. Bob is giving up some options in

the hopes that a judge will arbitrate a fair resolution. A model of these social interactions could be built.

The model may contain types such as People (who can possess money), actors such as Alice, the $100 and a

courtroom (at a minimum, Bob and the judge should be together in a courtroom (a configuration of actors)

to arbitrate the case). Courtroom etiquette demands prescribed channels of data flow. Principles such as

Alice and Bob can control the actions of other actors such as moving the $100 around. In this case, actors,

operating within their defined roles, move through a variety of configurations working towards a goal. Upon

completion of the goal, the actors are free to go about their business.

Actor Network Theory[32] gives sociologists scientific tools to, for example, apply game theory to a

legal system vs. a natural-law system (where Bob strong-arms Alice to get the $100 back). Or to study

the economic efficiencies of societies that use different models to arbitrate disputes. One innovation of

Actor Network Theory[32] is the notion of the ‘Black Box’ – a method of abstracting complexity by nesting

Actants within Actor Worlds to simplify complex interactions between people and their environment.
1It is not strictly a protocol. Secure Boot is an implementation of a set of technologies. I have endeavored to backtrack through

standards, app notes and the like to cite and document the implementation and analyze it as a complete protocol.
2In this example, the legal system is a protocol.
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In Actor Network Theory[40], a model is developed called the Actor Network. The Actor Network maps

elements from the protocol to nodes in the model. Furthermore, it connects the nodes using channels. After

the Actor Network model is defined, Procedure Derivation Logic (PDL) is used to: 1) Define Hoare triples

(a set of ‘before’ states) + (a set of moves) + (a set of ‘after’ states), 2) Define the goals for the protocol and

3) Apply logical tests to determine if the goals were met (or not).

This thesis draws its inspiration of Actor Network Theory from [32] and [16]. It uses [40] as the source

for the modeling techniques’ theoretical underpinnings of ANTs. Finally, it uses Procedure Derivation Logic

from [34] as the starting point for this thesis.

We want to apply Actor Network Theory to model Cyber-Physical systems, a discussion of it is in order.

A Cyber-Physical system can be almost anything. Civilization has had physical systems for ages and while

cyber systems are relatively new, I’d posit that a cyber system’s value is marginal if it doesn’t, in some way,

effect a physical system3.

Cyber-Physical systems depend on protocols to accomplish their goals. “to uncover the mechanisms of

power of science and technology, it is therefore important to reveal the ways in which laboratories simul-

taneously rebuild and link the social and natural contexts upon which they act.[16]” Protocols glue these

systems-of-systems together. The goal of Actor Network Theory is to use scientific methods to model
protocols and analyze their performance against goals.

ANTs and PDL do not require a threat or adversary model because PDL uses axioms to evaluate its

security claims. That said, a threat model could be added for a more focused analysis.

4.2 Terminology4

The spirit of the original Actor Network Theory[32] has valuable insight for modelers. There’s a lot of

reasoning that went into the theory that applies to this proposed methodology. However, for the sake of

clarity, it is also constructive to employ a concise set of terms that are both descriptive and practical. Table

4.1 is a comparison of the original terminology used by Bruno Latour & Michael Callon in [32, 16] with the

terminology used by Catherine Meadows & Dusko Pavlovic in [40, 34]. Table 4.2 defines the terms used by

this thesis’ proposed methodology. Wherever practicable, the definitions in Table 4.2 are extensions of the

definitions in Table 4.1.

In addition to the definitions in Table 4.2, there are a few concepts that need further elaboration.

Actors may hold a state. This state may advance based on internal processes or due to stimuli from

the network6. While individual actors autonomously control their own behavior, the protocol designates the

3An intersting topic, but for another paper.
4This section defines terms specific to Actor-Network Theory. Appendix A contains an expanded glossary of acronyms used

throughout the paper.
5In [34] the term is Box Configuration articulated in Definitions 2 and 3.
6An actor receiving a stimuli does not ipso facto know which actor sent the stimuli. The source actor places a message on

the network which delivers it to another actor. The receiving actor only knows that a message came from the network. It requires
additional information (via the protocol) to prove it’s receiving a message from a known/trusted source and that it has not been
tampered with.
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Table 4.1: Terminology Used in Prior Works

Callon & Latour Meadows & Pavlovic
Term Definition [32, 16] Term Definition [40, 34]
Social
Interaction

Protocol An orchestration of actors execut-
ing actions to move through states to
achieve a cooperative task.

Actant Members of different or overlapping
worlds.

Actor,
Node

A computational agent who partici-
pates in a configuration.

Actor
World
(AW)

Heterogeneous actors that come to-
gether. Without one actant, the AW
would be something else. AWs asso-
ciate heterogeneous entities.

Configura-
tion

A mechanism, assembled from sepa-
rate components that may be owned
or controlled by different principals.

Actor Net-
work (AN)

The interconnected lines between
AWs. The terms AN & AW draw
attention to different aspects of the
same phenomena. AW emphasizes
unity and self-sufficicency. AN em-
phasizes structure and change. The
terms are used interchangeably. (See
Figure 4.1)

Actor Net-
work

Actor-networks depict social pro-
cesses as computations. Configura-
tions of nodes nested in higher-order
configurations.

Translator
Spokesman

The spokesman of the entities he con-
stitutes.

Identities
Principals

Principals control actors. An princi-
ple’s identity is a unique actor (like
a password or private key) controlled
solely by the principal.

Translation
Geography

A geography of necessary points of
passage. A strategic point through
which an AW must pass.

Channel Communication channel between
agents. Unless noted, there is no
guarantee that the channel is secure,
trusted or authentic.

Translation
Displace-
ment

The actual messages carried across
channels. They may be reports, mem-
orandum, documents, survey results
(they are sociologists after all) and
scientific papers.

Messages,
Events &
Actions[40]
Move[34]

Computation in a network consists of
events. When a principal initiates a
message, its an action. When a node
receives a message, its an event.

Predicate Identifies the state of an actor.
Role &
Network
Procedure

Actors play a role assigned to it by a
network procedure.

Channel
Type

Not all channels are the same. For ex-
ample, Cyber Channels have no no-
tion of distance and the recipient can
not observe the sender. A visual
channel requires some level of prox-
imity. Binary channels stream bits
from one node to another with some
level of stochastic reliability.
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Table 4.2: Terminology Used in this Thesis

Term Definition Identification
Protocol Should provide a benefit to principals. None
Actor An entity in the model that plays some role in the proto-

col. Cyber, human and physical actors are all first-class
citizens. Actors can be nothing, a single item or a net-
work of items. Actors may encapsulate a complex ma-
chine at a particular state.

A descriptive label, itali-
cized, camelCase w/ low-
ercase first letter, e.g.
bus, cpu1, tpm.

Principal Principals are a special type of actor that control other ac-
tors. Principles are the ultimate beneficiaries of a proto-
col. They may be identified by a unique, atomic element
that is a known, possessed or a measurable property.

Either capitalized first let-
ter or ALL CAPS. De-
scriptive italic label, e.g.
CPU, People

Type A set of actors that share a common characteristic. When
types are used, zero, one or more members of that type
could be substituted (unless otherwise constrained). For
example the type people could be {Alice, Bob}.

The same nomenclature
of its members in bold.
e.g. cpu,User

Configuration A hierarchical set of Actors. No two actors in the hierar-
chy5are the same.

Due to the nature of Actor
Network Theory (where
actors are black boxes
consisting of other ac-
tors), the notation is the
same as an actor. Con-
figuration names may fol-
low { } as a subscript. e.g.
{a1, a2}con f igName.

Action Actions are initiated by Principles and may be executed
by actors. An action should change the state of the net-
work and is denoted by a Hoare triple: Prior state + Ac-
tion + Post state. An action could be sending or receiving
a message.

Use square brackets to
name an action, e.g.
[saveData], [driveBus]

Policy A logical statement that defines a set of legal transactions
and/or configurations. Should be a subset of all possible
actions ∪ configurations.

A person can only board
the bus if it has an empty
seat, e.g.
(seat == emptyS eat)V
(person) : [boardBus]

Goal The goal of a protocol should be defined in both plain
language and in mathematical expressions that should be
true (or hold true) if the goals are met and false for all
other cases.

The Bus should earn
money, e.g.
(paidFare @ Bus)
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Table 4.3: Keywords Used in this Methodology

Keyword Description
IDENTIFY Assign a label and a meaning to something.
ENUMERATE Identify all possible members for an actor or type.

Consider whether those members are mutable or im-
mutable7.

ASSIGN Set configurations.
DESIGNATE Define an allowed action or policy.
TEST Ensure a given rule holds for a given set of configu-

rations.

messages and sequence of tasks the actors should perform.

Figure 4.1: The Duality of Actor Worlds & Actor Networks

Well-Behaved Actors are predictable

and execute tasks according to proto-

cols that determine their interaction with

other actors through available transac-

tions. Mis-Behaved Actors are unpre-

dictable and possibly malicious. Regard-

less of their ‘motive’, these actors do

not always function within the bounds

defined by the protocol. A protocol

analysis must be blind to the intention of

actors and focus on what actors can or can not do. On the other hand, the goals of the protocol should align

closely with the intentions of the actors.

This thesis does not use Channels although the concept is articulated in both [16, 40]. It should be noted

that [34] does not make significant use of channels. From a practical perspective, channels are diagram-

matically useful, but the ephemeral nature of ‘allowed moves’ makes diagrams with channels difficult to

interpret or too numerous to be helpful.

Our methodology uses the keywords in Table 4.3 to denote specific actions. For example IDENTIFY

instructs the modeler to assign a label to an actor and document a definition for that label. The inspiration

of these keywords is RFC 2119’s definition of MUST and SHOULD.

A Conversation or View represents the Protocol as experienced by any given actor. Although this

methodology does not utilize conversations (because they do not alter the logical expressions of the model)

they can be helpful for visualizing how a protocol may be used. From an analysis perspective, however,

conversations of two communicating actors should agree based on the policies of the protocol.

7At the time of this writing, I do not have a good method for identifying the cardinality of this membership, which I think is an
important part of the model. Cardinality should denote: Choose-zero-or-one, choose-one, choose-one-or-more, Coose-n, etc.
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Table 4.4: Distinguishing Includes from Contains

Left Term Operator Right Term
element ∈ set
set v set

4.3 Notation

Table 4.5 describes the mathematical operators and terms used in this thesis.

As this methodology is intended to be used for analysis, labels should be descriptive. Instead of a or α

this thesis will endeavor to use descriptive labels such as Alice, emptyS eat or person. The labels will use

the camelCaps method of combining words into a single label. The members of a configuration should be

distinct and easily identifiable. In our examples, several actors have a pouch so they may be identified as

pouchAlice for Alice’s pouch and pouchBus for the Bus’ pouch.

The logical tests ∈ and v are similar but distinct. In casual usage the words “includes” and “contains”

are synonymous, but in logic they have distinct meanings[4]. Table 4.4 illustrates the differences in their

use. In Actor Network Theory, we would could say e ∈ Alice if Alice has some money. We could also say

that {e} @ Alice if we wanted to say that Alice has the e configuration.

world

Z

X

Y

world

Z

X

Y

Figure 4.2: Moving X

To reduce ambiguity in the oft abused = sign, this thesis will avoid its use

where practicable and use four distinct operators: == TESTs for equality, :=

makes an assignment, ::= andX define membership in configurations and types

respectively.

Before ASSIGNing a value to a configuration, modelers should define (or

ENUMERATE) its configuration. The next two sections discuss the notation

for ASSIGNing values and ENUMERATING configurations and types.

4.3.1 Configuration Notation

An ENUMERATEd configuration identifies two things: Permanent members and potential members.

Use the ::= operator to ENUMERATE the allowed actors in a configuration. Immutable actors should

be identified by being underlined in the definition. All busses must have a seat and a pouch, which would

be ENUMERATED as: Bus ::= {seat, pouchBus}.

A seat, on the other hand, is a configuration that may be empty or have an occupant. This will be

modeled as: seat ::= {{}, Alice}

When a actor is declared to be a permanent part of a configuration, an implied policy is also created.

Use the ASSIGNment operator := to indicate a configuration’s members. When a configuration contains

actors, use a subscript to identify the parent and { } to demark the contents. In this case, the Bus’s current

configuration is: Alice is on a seat in the Bus and there is no e in the pouch (which may violate a policy

that will be defined later): Bus := {{Alice}seat, {}pouchBus}.
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Table 4.5: The Notation Used in this Thesis

Operator Definition Usage
∧ ∨ TEST: Logical AND & OR. If this and that or zig and zag...:

(this ∧ that) ∨ (zig ∧ zag)
∈ 3 TEST: Is element a a member of set S ? Used

to determine if an actor is in a configuration.
Alice has bus fare:
e ∈ Alice

v w TEST: Is the left term a subset (or superset) of
the right term (inclusive of the root node). This
is used to see if the left configuration is in the
right’s configuration.

Is the seat empty?
emptyS eat v seat

@ A TEST: Same as above except exclusive of the
root node.

Does the bus have an empty seat?
emptyS eat @ Bus

::= ENUMERATE a configuration. i.e. This oper-
ator identifies all possible members.

A seat may be empty or occupied by a
person:
seat ::= {{},person}

:= ASSIGN actors or types to the left term. To put Alice in the seat:
seat := {Alice}

== TEST: Are the left and right sides equivalent? Is the seat empty?
emptyS eat == seat

σ(a, b) Count the number of instances of a in configu-
ration b.

How much money is in the pouch?
σ(e, pouch)

X Y ENUMERATE the allowed members of a type. Alice and Bob are people.
person Y {Alice, Bob}

⊕ Attach a configuration. See Definition 6[34]. To place X underneath Z:
Z ⊕ X

	 Remove a configuration. To remove X from Z:
Z 	 X

[Y 	 X,Z ⊕ X] Move configuration X from Y to Z.
See Figure 4.2

Alice gives e to the bus:
[pouchAlice 	 e , pouchBus ⊕ e]

c© Copy a configuration. Make a copy of X and call it Xcopy:
Xcopy c© X

p : Y
X
−→ Z A principle causes X to move from Y to Z. Alice pays the bus fare:

Alice : pouchAlice
e
−→ pouchBus

V Guard. The expression on the left must be true
to allow the move on the right to proceed.

Al can only take an empty seat:

(seat == {})V (Al) : seat
Al
−−→ {Al}seat

∀ For all. An assertion that everything to the right
gets applied to the left.

Hash all of the memory in ue f iCode:
∀m ∈ ue f iCode, hash(m)

¬ Negation. In plain language “not something”. If the seat is not empty:
seat == ¬emptyS eat
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Table 4.6: Terminology Update

Term used in [34] Term used in this Thesis
configuration set
box configuration configuration
multiplicity or mult(actor, con f iguration) σ(actor, con f iguration)
move action

Configuration ASSIGNment is an in a relationship. Alice is in a Bus, but Alice is not a Bus.

4.3.2 Type Notation

It takes two steps to define a type. The first step defines its use within a configuration. The second step

defines the allowed members of the type.

To ENUMERATE the use of a type, we use the same notation we used to assign an actor, substituting

a type in its place. For example, any person can take a seat on a bus. An improved definition of a seat is:

seat ::= {{},person}.

To ENUMERATE the allowed members of a type, we need to map actors into it. The notation we will

use is: type Y {actor1, actor2, ..., actorn}. For example, actors Alice and Bob are of type person, this

would be expressed as: person Y {Alice, Bob}8. Note that the open end of the operator points toward the

name of the type and the closed end points toward the set of allowed actors.

Type membership is a directional is a relationship. Alice is a Person, but not all people are Alice. Use

configurations to define an in a relationship.

Finally, types can be used in the abstract by constraining what configuration can be a member of another

configuration.

4.4 Axioms

This thesis extends the work in [40, 34]. The axioms (established mathematical statements) are in Appendix

B. Table B.1 summarizes the axioms and applies the terminology set out in Table 4.6.

Many axioms depend on a root node that ties everything together. From a modeling perspective, the root

node may not add a lot of value, but from a proof perspective, many axioms depend on it.

Unfortunately, the source material does not provide all of the axioms needed in this thesis. Therefore,

we must define one more, a copy axiom.

Axiom 1. We define a copy of configuration X as Xcopy, which are two separate actors such that

X == Xcopy and Xcopy == X. We create a copy with the c© operator. Similar to assignment, the target is on

the left and the operand on the right is read-only: Xcopy c© X.

8This is abuse of notation for the sake of simplicity. In the source material, this would be: person Y t | t ∈ {Alice, Bob}.
Where t is a temporary placeholder.
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4.5 Methodology

Actor Network Theory[32] resists formal methods, however we respectfully submit this methodology in the

service of science. Actor Network Theory has some powerful concepts that, when combined with logic and

set theory may give scientists tools to analyze the area between what a protocol should do and what it can

do.

Now that we have identified the terminology and notation, we can describe the process used to model

a protocol. An Actor Network Model is composed of two major parts: 1) Clearly defining the essential

elements of the protocol and assigning them to various roles in the Actor Network: Principals, Actors,

Configurations and the like. 2) A comparative analysis of what the network can do vs. what it should

do. Oftentimes, the network is represented as a drawing to facilitate human comprehension; however, the

important details of the network are a set of mathematical statements.

This Methodology may resemble the syntax of a programming language, however it is not our intent to

define a strict grammar, which would be a disservice to Actor Network Theory. It does, however, borrow

some principles from Software Engineering. For example, the notion of types is analogous to classes. The

methodology attempts to strike a balance between simplicity and expressiveness – attempting to highlight

important elements and abstract the rest. In this section, we will borrow from the Waterfall software devel-

opment methodology in that it’s unlikely that an Actor Network model will be fully specified in one pass.

Modelers are encouraged to return to various “pages” of the model as it’s continuously refined. As the model

evolves, care should be taken to ensure that all documented rules continue to hold true.

Actor Network modeling defies a linear step-by-step process. Modelers can initially IDENTIFY a start-

ing set of actors, but it’s unlikely they can IDENTIFY all of them. In an effort to break the model into

functional areas, the concept of Pages in introduced. Each page has dependencies on other pages. Pages

can be developed in any order and may reference items in any other page9. A model is a collection of the

following pages:

• Protocol Page

• Principal Page

• Actor Page

• Type Page

• Configuration Page

• Action Page

• Policy Page

• Analysis Page

4.5.1 The Protocol Page

This page introduces the protocol and describes what it should and shouldn’t do.

• Give the protocol a name.

• In plain language, document the benefit of the protocol to the principals.

• In mathematical terms, DESIGNATE the goals of the protocol. This is definitive statement of what it

should do.

• DESIGNATE any non-goals or things it expressly shouldn’t do.
9Which is why the pages are named and not numbered.
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4.5.2 The Principal Page

Promote selected actors to principals. All principles are actors, but if they are a principle, they should be

documented here and not in the Actor Page. Principals are labeled with a leading capital letter i.e Alice

instead of alice or ALL CAPS.

• IDENTIFY the principles. It should have both a label and brief description of the principle. If it’s

appropriate, identify which actors the principal controls.

• ENUMERATE the contents of the principle. All permanent (non-mutable) configurations should be

identified with an underline.

• ENUMERATE any non-mutable or permanent configurations of the principals.

• If appropriate, add a drawing to help the reader understand the principals of the protocol.

4.5.3 The Actor Page

All other actors should be IDENTIFIED on this page.

• IDENTIFY every actor with a label and definition. If the label changes, be sure to update all of its

references so that the model remains consistent and clear throughout.

• ENUMERATE the configuration of each actor. Use underlines to identify non-mutable or permanent

members. Between the Principles Page and the Actor page, all non-leaf actors should have a configu-

ration enumerated. True leaf-node actors don’t need a configuration – they have no structure and the

label is all that is needed.

At the time of this writing, I am undecided on a nomenclature for cardinality. For example, the enumer-

ation could be ”Choose none-or-one” or ”Choose one” or ”Choose n” or ”Choose up to n”. These are all

important logical distinctions and I’d like to have a notation for them, but I’m not sure what way to go.

4.5.4 The Type Page

Types are an abstraction layer for Actor Networks. They allow actors to be substituted for one another.

They also allow the Actor Network to be more expressive; the math will bear a closer resemblance to the

plain language. Types are powerful because they can greatly expand what a network can do and uncover

properties of the model that may not have originally been apparent.

Types have two enumerations. The first ENUMERATION is the is a relationship. It identifies what

actors are a given type. The second ENUMERATION is the has a relationship. It identifies what actors the

type has.

• IDENTIFY the types with a label and definition. Types don’t have to be represented as actors.

• ENUMERATE type membership. All members should be an actor or another type. Type member-

ship should not be empty. Members conform to the is a rule. In other words, a place could be a
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{source, dest, town} because they are all places. However, a person follows the in a rule. A person

is not a place, but a person can be in a place.

• ENUMERATE type contents. A type may be required or allowed to have certain actors. A pouch may

be empty or have some money in it: pouch ::= {{},e}. Like the ENUMERATION for actors, use the

underline to identify required contents.

4.5.5 The Configuration Page

This page focuses on the initial configuration of the model. From there, the actions and policies should

elucidate any other states worthy of analysis. For clarity, a drawing may be helpful for this page, however,

the configurations should also be expressed mathematically.

• For every actor that has a configuration, ASSIGN an initial set of actors to it.

• ASSIGN any constant actors.

Note: In [40], circles were used to diagram membership in a configuration. In [34], membership is

diagramed as a hierarchy. This thesis will diagram configurations as hierarchies as that best conforms with

the underlying mathematics.

4.5.6 The Action Page

All of the things that can be done are identified here. Identifying the actions helps modelers think about the

allowed set of actions and define them using the most appropriate actors. The mapping from what can be

done to what should be done happens through actions.

• IDENTIFY all actions giving them a label and a description.

• DESIGNATE the action, identifying the source actor, the destination actor, the actor that is moving

and the principal that can initiate the action.

4.5.7 The Policy Page

This is where actors, TESTS and actions come together to form policies. DESIGNATE allowed transactions

and any policies that must hold true either before or after the transaction.

• Document the intent of the policy in common language.

• DESIGNATE the policy, identifying the conditions that must be true for the action to be permitted.

4.5.8 The Analysis Page

Once the model has been established, the next step is to mathematically examine the benefit of the model.

This page contains the analysis of the protocol and compares the configurations it can get into vice what it

should get into.
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Technically, the analysis is not part of the model, rather it’s an output of the model, however the entire

context of the analysis is the model and the model exists to be analyzed, so the analysis becomes part of the

whole.

• Analyze the performance of the model against the goals of the protocol. Does it do what it should do?

• Analyze the model against what it can do.

4.5.9 Modeling Notes

The following are some guidelines for modelers:

• Clearly document the purpose or benefit of the protocol being modeled. A byproduct of considering

the benefit is that it usually identifies the principals and actions between them.

• Scope the inside/outside boundaries of the protocol to identify the protocol-level inputs and outputs

of the model.

• Principals should be well understood with clearly defined boundaries.

• Some principals may need an identity. In Actor Network Theory, actors consist of a network of other

actors. A modeler must identify the set of actors that is distinct from the other actors in the network.

• Principals must have control of their identity. This may be done by maintaining privacy and control

of a set of secrets. It may also be done by the possession of a copy-resistant token, but if it is, the

modeler should be aware that the ‘token’ can be given away.

• Within a given model, principals should not overlap with other principals. Actors in Actor Network

Theory are always composites of other actors. The trick is to identify the principals and nodes (actors)

at an appropriate granularity to support the model. Maintaining a focus on the benefit of the protocol

being modeled helps to identify the appropriate granularity of actor. Each actor should have a direct

role in carrying the ‘benefit’ of the protocol at some point. If an actor does not have a role in the

benefit, it may be modeled too finely. If the modeler is having trouble proving the benefit in PDL,

then the actors may be too coarse.

• Remove any actors, types, principles that do not add value to the model.
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4.6 An Example of an Actor Network

Putting it all together, we present an Actor Network model of a city bus. Our principals are Alice and a Bus.

A protocol is established where, upon boarding the bus, riders pay a bus fare of e1 and are then permitted

to ride to a destination.

Readers are encouraged to consider how the model could be extended to have more seats on the bus or

to allow Alice to pay for both herself and Bob when they board.

4.6.1 Example Protocol Page

Name: Alice rides the bus

Benefit: Alice can economically cross town and the Bus will earn money for transporting passengers.

The goal of this protocol is: (Alice @ destination) ∧ (paidFare @ Bus)

4.6.2 Example Principal Page

Principal Description
Alice Alice wants to cross town, going from source to dest. She has e in a pouch for

bus fare.
Bus The Bus travels to various places around town. It has a single seat and a pouch

for bus fare.

Alice ::= {pouchAlice}

Bus ::= {pouchBus, seat}
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4.6.3 Example Actor Page

Actor Description
e Bus fare. An important characteristic of e is that there is only one ‘copy’ of it.

It can be given from one actor to another, but it can not be duplicated and it can’t
be in more than one place at once.

town The root node for the model.
source A place where Alice starts her trip.
destination A place where Alice wants to go.
pouchAlice Alice’s pocketbook.
pouchBus The Bus’s cashbox.
seat A seat on the bus.
emptyS eat An empty seat on the bus.
occupiedS eat A seat with a person in it.
paidFare The bus fare has been paid.

town ::= {source, destination}

seat ::= {emptyS eat, occupiedS eat}

emptyS eat ::= {}

occupiedS eat ::= {person}

paidFare ::= {e}pouchBus

Notes

• e is one of the true leaf-nodes in this model.

• source and destination are places, which are declared on Example Type Page.
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4.6.4 Example Type Page

Type Description
place A nice place.
person A nice person. A person may be in a place.
pouch A secure place to keep money.

place Y {source, destination, town}

person Y {Alice}

pouch Y {pouchAlice, pouchBus}

place ::= {{},person, Bus}

pouch ::= {{},e}
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4.6.5 Example Configuration Page

The initial configuration of this protocol is:

town

Bus source destination

pouchBus seat

{} {}

Alice

pouchAlice

€

Figure 4.3: The Starting Configuration for this Protocol

In mathematical terms, the initial configuration is:

{{{}pouchBus , {}seat}Bus, {{{e}pouchAlice}Alice}source, destination}town
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4.6.6 Example Action Page

Type Description
[boardBus] Take a seat on the bus.

emptyS eat
person
−−−−−−−→ occupiedS eat

[leaveBus] Disembark from the bus.

occupiedS eat
person
−−−−−−−→ emptyS eat

[payBusFare] Pay the bus fare.

Alice : pouchAlice
e
−→ pouchBus

[drive] The bus drives from place to place.

Bus : place1
Bus
−−−→ place2

Notes

• No refunds. There is no action where the Bus pays Alice.
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4.6.7 Example Policy Page

A person can only occupy an empty seat. Reading this expression; if the seat is empty, then a person who

wishes to board a bus can move into an empty seat making it an occupied seat.

(seat == emptyS eat)V (person, Bus) : emptyS eat
person
−−−−−−−→ occupiedS eat

...which can also be written as:

(seat == emptyS eat)V (person, Bus) : [boardBus]

A person must be on the bus, to get off the bus. Some of these are obvious, but the math needs them.

(seat == occupiedS eat)V (person, Bus) : occupiedS eat
person
−−−−−−−→ emptyS eat

When the bus carrying Alice arrives at the destination, Alice will exit the bus.

((Alice @ Bus) ∧ (Bus @ destination))V (person, Bus) : [leaveBus]

To board a bus, the following must hold:

• Both Alice and the Bus must be at the same place.

• There must be an empty seat on the bus.

• Alice must pay the bus fare.

Let ` ∈ place Let p ∈ person

(Bus @ `) ∧ (p @ `) ∧ (emptyS eat @ Bus) ∧ (paidFare @ Bus)V (p, Bus) : [boardBus]

4.6.8 Example Analysis Page

Analysis of what the network should do

• The only way that Alice can get to the destination is to pay the bus fare.

• There is no policy that requires the bus take Alice to the destination once she has paid the bus fare.

Analysis of what the network can do

• There is no policy that says the bus will go to the source to pickup Alice.
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CHAPTER 5
MODELING THE SECURE BOOT PROCESS

boot — noun
A sturdy item of footware.

New Oxford American Dictionary

5.1 Introduction

5.1.1 Background

Like a lot of technical jargon, the word ‘boot’ has taken on a life of its own. Sometimes it’s used as a verb as

in “Please boot the computer” at other times, it’s used as a noun such as “The BIOS contains the boot code”.

A computer follows a ‘boot’ process to put itself into a stable, known state. Colloquially it’s the process of

starting a computer.

The existence and widespread distribution of bootkits, rootkits and hardware viruses [28, 14, 52, 20]

indicate increasing attempts to penetrate computer systems at lower levels in order to escape traditional ob-

servations. Even overwriting non-volatile random-access memory (nvRam) can trigger a Denial-of-Service

attack [53]. This type of malware takes control before anti-virus software can detect it. Recent improvements

to firmware standards [49, 47, 42] and the introduction of trusted boot processes [26, 35, 56, 45, 13, 51, 55]

show the commercial need and interest to address and prevent such low level attacks.

[54] proposes “presence attestation” to improve the trust of Dynamic Root of Trust for Measurement

(DRTM) based on sight, location or scenes all of which lends itself to Actor Network Modeling.

Trusted boot processes incorporate many layers and phases, each requiring the ability to be updated.

Early implementations of trusted boot processes contained vulnerabilities demonstrating that the develop-

ment of commercial trusted boot solutions is not straightforward and may be an error-prone task. Yet,

describing the protocols and features of a specific trusted boot process in a rigorous framework that would

allow for formal analysis is non-trivial and requires a methodology to not only model hardware and software

components, but also people, identities and locations. Conventional models to describe computer hardware,

software and network protocols typically fail to describe distinguishing physical features such as sensors,

actuators and locations.

This section contains four Actor Network models that work together to bring a system from a cold-

start to a fully operational system. The first model ensures the system is only executing ue f iCode – or

the software we are about to ‘measure’ or ‘analyze’ and decide if it’s trusted. The second model analyzes

ue f iCode and decides if it’s to be trusted or not. These two models look ‘backward’ into the same software

that’s running to determine if it’s trustworthy or not. The third model is a forward looking model that
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evaluates software and determines its trustworthiness before the system is allowed to execute any of its

code. The last model ensures that the firmware involved in this process must be updatable by authorized

system administrators.

We use a cryptographic technique called “Digital Signatures” to determine if the software can be trusted.

We do this by ensuring that the authors have used cryptographic controls to verify that the trusted software

on the computer is exactly the same software that shipped from their factory. This guarantees that the source

of the software is both known and trusted by the computer. The models make no guarantees of the quality

of the software of the robustness of their implementation of these protocols.

Computers are very complex machines. When we model a particular protocol, it would be impractical

to model the entire computer – the model would be too complex. Therefore, we must group certain details

together into actors and ignore other details, which, although crucial to the computer, are not salient to the

protocol. A grouping of details is abstracted into an actor. These actors interact with other actors to express

a protocol which we model and analyze.

All four of these protocol models consist of different actor-networks that change depending on the

model’s needs. Each protocol creates different objects, measures different actors and protects actions differ-

ently. Consequently, our actors interact differently for each model.

A good example is the difference between how memory is modeled in Secure UEFI Boot and Secure

UEFI Validation. In Secure UEFI Boot, the model is examining the addresses of memory in ue f iCode.

One of the main goals of this protocol is to ensure that the CPU’s Program Counter (pc)1 always contains

an address that is a member of ue f iCode. In the model, the actor ue f iCode should be considered a set of

addresses. In this protocol, if the pc ever contains an address that is not a member of ue f iCode, then the

protocol fails and ue f iCode should not be trusted. On the other hand, Secure UEFI Validation models the

contents of memory. This protocol considers ue f iCode a set of instructions and data.

The Secure Boot, Trusted Boot and Trusted Computing processes have several stages. Fortunately,

many of the stages utilize a common pattern of measurement and execution. The very first boot processes

use Secure UEFI Boot and Secure UEFI Validation to start the system and establish a root of trust. This is

called “Secure Boot”. Subsequently, nvRam configuration, UEFI drivers and Kernel loaders will use Secure

Software Load to measure and extend the trust domain to that software.

The remainder of this chapter is divided into four Actor Network protocols:

• Secure UEFI Boot

• Secure UEFI Validation

• Secure Software Load

• Secure UEFI Update

Many of the models contain figures such as Figure 5.1. This diagram represents a “Hoare Triple”[22],

which is a mathematical expression that shows the state BEFORE an action, labels the ACTION, and the

1Sometimes called an Instruction Pointer or IP.
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state AFTER the action. In this diagram, there are two actions, [decrypt] and [hash]. The red color signifies

that something is changed or is causing a change.

The network to the left of the −→ shows the state of the network BEFORE the action. The network to the

right of the −→ shows the state of the network AFTER the action.

The straight lines between actors indicate membership (see Table 4.5). The curved lines with arrowheads

indicate a flow of information from one actor to another.
memory

ramuntrustedMemory

codeβ

pubKeyβ encryptedHashβ

hashβactual hashβdecrypted

memory

ramuntrustedMemory

codeβ

pubKeyβ encryptedHashβ

[decrypt]

[hash]

Figure 5.1: Sample Figure

5.1.2 Secure UEFI Boot Protocol

Our first model is also the simplest. All four of these models work together to bring the system from a

cold-start to a fully operational system.

The purpose of Secure UEFI Boot is to model the simplest possible computer. All it has is a CPU and

memory. The CPU, which is incredibly complex in the real world, is abstracted such that it only has one

component that we are interest in: Its Program Counter. The program counter is a CPU register that points

to a memory location of the current instruction.

Before we talk about memory, we need to understand a few basic CPU instructions: LOAD and STORE.

The LOAD instruction takes the contents of memory at a specified address and LOADS it into a register in

the CPU. The STORE instruction, on the other hand, takes the contents of memory and stores it in memory

at a specified address, overwriting its original contents.

In this model, the memory is divided into three actors. The first is rom, or Read Only Memory. This

is a type of memory that is indelibly programed in the factory and can not be changed without physically

altering the computer. In the early days of computers, the first instructions the computer ran were often

written in rom. We have rom in our model to explicitly say that we do not use it. One requirement of these

protocols is that all of the software can be updated. Therefore, we do not use rom. CPUs can use LOAD

with rom memory, but a STORE instruction will always fail.

What many people think of as rom is actually the second type of memory we model called nvRam. The

‘nv’ stands for Non-Volatile, in other words, the contents of this memory are retained even when it does not

have power. The ‘Ram’ stands for Random Access Memory. Unqualified RAM is usually associated with

a type of memory that is volatile and can not reliably save data without power. A CPU LOAD instruction

works with nvRam. A STORE instruction will always fail with nvRam, but there is another way to write to
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it. ‘nvRam’ is updated with special I/O operations that write in blocks similar to the sectors of a hard drive.

ram, our third type of memory, can use both the LOAD and STORE instruction.

There is another way to update memory, which is not exprssed any of our models. It’s called DMA or

Direct Memory Access. DMA allows devices like hard disk controllers to write to certain blocks of ram –

bypassing the CPU’s STORE instructions. DMA allows computers to be very efficient. An analyst could

think of DMA, however, as a means to attack the system. The analyst should carefully observe when data is

stored in memory without cryptographic protections or memory management controls.

Underneath nvRam, we have divided memory into two logical groupings: trustedMemory and un-

trustedMemory. When a computer is started, we consider the ue f iCode, which is stored in nvRam to be

untrustedMemory. The goal of this protocol is to move the ue f iCode to trustedMemory. We do this using

the following Actions:

• We inductively assert that at all times during UEFI Boot (and UEFI Validation), the pc, points to

addresses in ue f iCode.

• We use our second protocol S ecureUEFIValidation to assert that the code is trusted (or not). (see

Equation 5.2)

• Finally, if it is trusted, we use our Actor Network operators from Table 4.5 to move ue f iCode to

trustedMemory.

Our inductive proof is adapted from [22, 18] where we know what the pc is and we know what the

pc was for the previous instruction. We do not know what the next instruction is. So long as the current

and previous instruction are addresses in ue f iCode, this relationship will roll backwards to the very first

instruction, which, if it is also in ue f iCode, then we can prove that all of the instructions executed up to this

point are in ue f iCode (see Equation 5.1).

What follows is a model and proof that allows the ue f iCode to link to trustedMemory.
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Secure UEFI Boot Protocol Page

Name: Secure UEFI Boot

Benefits:

A. Establish trust for the UEFI firmware that is running just after boot.

The goal of this protocol is: ue f iCode ∈ trustedMemory

Notes

• This is the smallest first-step we can make. It works in conjunction with UEFI Verify. I separated

these two protocols to simplify the first few production Actor Network models.

• In this model, references to memory refer to addresses. In the UEFI Verify model, references to

memory refer to the data stored in memory.

• This protocol is distinct from Secure Software Load in that this (and UEFI Boot) are running the same

code it’s measuring. Secure Software Load will measure the code first and then run it.

• ue f iCode does not, as yet, read any persistent data such as nvRAM.

Secure UEFI Boot Principal Page

Principal Description
CPU The central processing unit of the computer.

CPU ::= {pc}

Notes

• We limit our model to a single CPU.
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Secure UEFI Boot Actor Page

Actor Description
computer All of the hardware and software on a given computer.
memory Memory that’s available to the computer.
pc The Instruction Pointer in the CPU. Sometimes called a Program

Counter.
addr0, addr1, ..., addrn All possible memory addresses for this computer. The subscript repre-

sents the memory address. addr0 represents address 0x0000.
nvRam Non-Volatile RAM. Normally, the UEFI / BIOS would be in ROM, but

then it could not be updated. In this model, it’s in nvRam, which requires
special processes (outside of normal CPU Store Memory commands) to
update.

untrustedMemory Configurations under this actor should not be trusted.
trustedMemory Configurations under this actor have been trusted by the system.

Leaf Node Actor Description
rom Traditional read-only memory. This is modeled without any members to

indicate that no ROM exists in the computer. All firmware can be updated.
ram Traditional read-write memory. It is not modeled, although it may be used

as a scratchpad for uefiCode.
ue f iCode The set of every memory address (and its contents) that make up the BIOS

/ UEFI firmware. It is this memory region the protocol is attempting to
trust.

cpuS tartAddr The starting address of the CPU. cpuS tartAddr ∈ ue f iCode

computer ::= {CPU,memory}

CPU ::= {pc}

memory ::= {rom, nvRam, ram}

nvRam ::= {untrustedMemory, trustedMemory}

pc ::= {addr0, addr1, ..., addrn}

Notes

• For addrn, n represents the highest memory address.

• ue f iCode is not writable. Any attempt to change the code, at any time, will invalidate the model.
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Secure UEFI Boot Type Page

Type Description
memoryAddr An address of memory.

memoryAddr Y {addr0, addr1, ..., addrn, {ue f iCode}, cpuS tartAddr}

None

Notes

• In this model, all memoryAddrs are leaf nodes.

Secure UEFI Boot Configuration Page

The initial configuration of this protocol is:

pc

Figure 5.2: Initial Configuration at UEFI Boot

In mathematical terms, the initial configuration is:

computer := {CPU,memory}

CPU := {pc}

pc := {cpuS tartAddr}, cpuS tartAddr ∈ ue f iCode

memory := {rom, nvRam, ram}

memory := {untrustedMemory, trustedMemory}

untrustedMemory := {ue f iCode}
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Secure UEFI Boot Action Page

Type Description
[execute] Execute an instruction.

CPU : {pc == addrnPrev}
CPU
−−−−→ {pc == addrn}

[ue f iValidate] Modeled in section 5.1.3.
[trust] Trust the ue f iCode.

CPU : {ue f iCode ∈ untrustedMemory}
CPU
−−−−→

(cont.) {untrustedMemory 	 ue f iCode, trustedMemory ⊕ ue f iCode}

Notes

• pc must be ∈ ue f iCode. This gets asserted in the next section.

• The model takes some liberties with respect to x overrunning n or underrunning 0. For the purposes

of the model, we will assume that pc is MOD(n + 1) and if the new address is still ∈ ue f iCode then

the code will continue to [execute].

• In Figure 5.3 demonstrates the linear execution of a 2-byte instruction that does not branch.

pc pc

  

Figure 5.3: Executing ue f iCode

nvRam

untrustedMemory trustedMemory

uefiCode

[trust]

nvRam

untrustedMemory trustedMemory

uefiCode

Figure 5.4: Trusting ue f iCode
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Secure UEFI Boot Policy Page

pc is always an element of ue f iCode. Each execution changes the pc from addrnPrev to addrn. This

execute transition is enabled if both addrnPrev and addrn are in ue f iCode.

cpuS tartAddr ∈ ue f iCode ∧ pc ∈ ue f iCode :

(addrnPrev ∈ ue f iCode ∧ addrn ∈ ue f iCode)V (CPU) : {pc == addrnPrev}
CPU
−−−−→ {pc == addrn}

(5.1)

Which is the same as:

(addrn ∈ ue f iCode)V (CPU) : [execute]

If ue f iCode is trusted by [ue f iValidate] then trust it.

(trusted == [ue f iValidate])V (CPU) : {ue f iCode ∈ untrustedMemory}
CPU
−−−−→

{untrustedMemory 	 ue f iCode, trustedMemory ⊕ ue f iCode}
(5.2)

ue f iCode should not be writable. If any ue f iCode changes, then it invalidates this model.

Secure UEFI Boot Analysis Page

Analysis of what the network should do

• pc should never escape ue f iCode.

• If [ue f iValidate] determines that ue f iCode at one point in time is the same as the code in the factory

or from a secure update.

• AND if ue f iCode is indelible, then it should remain trusted for the running time of the computer.

pc ∈ ue f iCode

(trusted == [ue f iValidate]) V (CPU) : {ue f iCode ∈ untrustedMemory}
CPU
−−−−→ {untrustedMemory 	

ue f iCode, trustedMemory ⊕ ue f iCode}

Analysis of what the network can do

• There are no protections around the ram, which will be used as the stack. This model makes no

guarantees that ram values are not altered after they are written but before they are read, nor does this

model protect against alteration in transit. For example, ram data is not digitally signed.
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5.1.3 Secure UEFI Validation Protocol

The goal of the next two protocols is to decide if software is trustworthy or not. In this case, we are exam-

ining the same ue f iCode that the protocol is running. This is a ‘backwards’ looking test of trustworthiness.

In this model, the computer has three actors, a simple CPU, some memory and a new device called a

TPM. The content of memory is ue f iCode. Practically, ue f iCode may include BIOS or UEFI code, it may

include Option ROM if there’s a possibility it may execute while this protocol is running. The ue f iCode

does not need to be in a contiguous address space. It can be spread out anywhere in addressable memory

or shadow memory. The important property of this actor is that any and all code that the CPU may execute

during this phase must be a member of ue f iCode or the protocol is invalid.

A Trusted Platform Module or TPM is a tamper-resistant device whose purpose is to help verify trust

in the platform. A trusted system is one where, for each component, either hardware or software, the

provenance can be guaranteed and the user of the system elects to trust the originator. A trusted system is

no guarantee of correctness (liveness), safety or security. There is some debate as to the trustworthiness of

TPMs and their role in Digital Rights Management, loss of anonymity and control of your system. This

thesis simply tries to model the TPMs, UEFI and system architectures as they are used today.

The TPM contains two interrelated actors that are critical for establishing trust: nvIndexes and PCRs.

nvIndexes (the way we use them) are small, secure blocks of memory that store a few bytes of information.

In our case, we store a version number. The nvIndexes are protected by numerous TPM policies, but for this

model, this Actor Network will enforce a simple read policy. When the nvIndex is created, it is assigned

a set of rules, or policies in TPM-nomenclature, that govern what conditions must be true for the TPM to

allow anyone to read the nvIndex. For our model, the nvIndex is protected by a policy that says that pcr0

must be a certain value. That’s it... if pcr0 is that value, then you can read nvIndex. If pcr0 is anything else,

then the TPM will not allow nvIndex to be read.

How do you get pcr0 to that value? TPMs are protected by not allowing PCRs to be set directly. Equation

5.3 shows how PCR values get set through a function called extend(). PCRs use a cryptographic hash() to

measure software state. A PCR’s value can not be ‘rolled back’. For a PCR to get to a certain value, a

series of extend(value) functions must be executed in order. For the PCR to return to that value, after a

reboot, the PCR must receive an identical set of extend(value) function calls in the same order. If the value

represents a hash of the ue f iCode, then as long as the current PCR value matches a trusted value stored in

the TPM, for example, the value protecting an nvIndex, then the system has some information to determine

the trustworthiness of the code.

If the pcr0 value allows the nvIndex to release the version number AND if that version number is in

the ue f iCode that was part of the hash that went into pcr0, then the computer will assert that ue f iCode is

trustworthy – it has not changed since it left the factory or was updated through the Secure UEFI Update

Protocol. This is expressed in Equation 5.4.

extendPCR(parm1) : pcrnew := hash(pcrold‖parm1) (5.3)
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Secure UEFI Validation Protocol Page

Name: Secure UEFI Validation

Benefits:

A. Validate that the UEFI Code is trusted by the TPM.

The goal of this protocol is: (versionnvIndex == versionue f iCode)

Notes

• This is the smallest first-step we can make.

• This protocol is distinct from Secure Software Load in that this (and UEFI Boot) are running the same

code it’s measuring. Secure Software Load will measure the code first and then run it.

• The root of trust is the TPM.

• This analysis assumes that the current UEFI code has been loaded and sealed into the TPM’s PCRs

either at the factory or through a secure update protocol.

• The code does not, as yet, use any data such as nvRAM.

Secure UEFI Validation Principal Page

Principal Description
T PM Trusted platform module.
CPU The central processing unit of the computer.

T PM ::= {pcr0, nvIndex0}

CPU ::= {hash}

Notes

• We limit our model to a single CPU.

• TPMs must have PCRs, but they are not required to have populated nvIndexes.
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Secure UEFI Validation Actor Page

Actor Description
computer All of the hardware and software on a given computer.
memory Memory that’s available to the computer.
ue f iCode The set of every memory address (and its contents) that make up the BIOS

/ UEFI firmware. It is this memory region the protocol is attempting to
trust.

pcr0 Core root of trust measurement (CRTM). It contains the measurement of
the BIOS / UEFI firmware in the form of a hash that has been ‘extended’
by other hashs.

nvIndex0 Contains a version of the BIOS / UEFI firmware and a copy of pcr0
at the time the BIOS / UEFI firmware was trusted. Access is protected
by pcr0. This value is set either in the factory or through a secure update
protocol.

Leaf Node Actor Description
reset The uninitialized state of an actor.
hashue f iCode The hash of ue f iCode.
pcr0ue f iCode The PCR-extended value of hashue f iCode.
pcr0VersionX A saved copy of pcr0. When pcr0 == pcr0VersionX , then the T PM will

allow nvIndex0 to be read.
versionXnvIndex0 The UEFI version number stored in nvIndex0.
versionXue f iCode The UEFI version number stored in ue f iCode.
versionX f romT PM The data stored in nvIndex0 that is copied to memory.

computer ::= {T PM,memory,CPU}

memory ::= {ue f iCode,hash,version}

ue f iCode ::= {versionXue f iCode}

pcr0 ::= {reset,hash}

nvIndex0 ::= {reset,hash}

Notes

• The hash stored in memory is in uninitialized RAM. The hash’s state is written to RAM first and

accessed later. No RAM is read before it is initialized. In other words, in this context, it’s a scratchpad.

• This protocol assumes that hash and version are an accurate copy of their source and they are not

modified between when they are written and later read. Conversely, there is some risk that another

entity could update them as in memory.

• ue f iCode contains both executable code and standing data such as versionXue f iCode, however only the

latter is vital to this model.
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Secure UEFI Validation Type Page

Type Description
pcr Platform Control Register.
nvIndex Non-volatile RAM in the TPM that is protected by policy.
hash A cryptographically secure hash value := hash(message)
version The version number of something the protocol is attempting to trust.

pcr Y {pcr0}

nvIndex Y {nvIndex0}

hash Y {hashue f iCode, pcr0ue f iCode, pcr0VersionX}

version Y {versionXnvIndex0 , versionXue f iCode, versionX f romT PM}

pcr ::= {reset,hash}

nvIndex ::= {{version,hash}}

Notes

• The hash function is a cryptographic one-way function in that its security property is it that it is

prohibitively hard (due to size and computational complexity) for an attacker to deliberately generate

a collision.

• nvIndex’s do not have a reset state because this model assumes the nvIndex will be set in the

factory and never reset after that.

• In this model, all hashs and versions are leaf nodes.

• Technically pcr and nvIndex do not need to be types as there is only one actor that instantiates

them. However, real TPMs have several nvIndexes and PCR registers, so this form is more general.
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Secure UEFI Validation Configuration Page

The initial configuration of this protocol is:

computer

TPM CPU memory

nvIndex0 pcr0

versionXnvIndex0

reset

uefiCode

pcr0VersionX

versionXuefiCode

Figure 5.5: Initial Configuration Before UEFI Validation

In mathematical terms, the initial configuration is:

computer := {T PM,CPU,memory}

T PM := {nvIndex0, pcr0}

nvIndex0 := {versionXnvIndex0, pcr0VersionX}

pcr0 := {reset}

memory := {ue f iCode}

ue f iCode := {versionXue f iCode}
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Secure UEFI Validation Action Page

Type Description
[hash] A secure hash function.

CPU : ue f iCode
CPU
−−−−→ hashue f iCode := hash(ue f iCode),memory ⊕ hashue f iCode

[extend] A TPM primitive that accepts a hash as input and makes the following computation:
pcrnew := hash(pcrold‖inputHash).

CPU,T PM : inputHash,pcrold
T PM
−−−−→ pcrnew := hash(pcrold‖inputHash),

pcr 	 pcrold,pcr ⊕ pcrnew

pcr

pcrold pcrnew

pcr

pcrold pcrnew

The PCR 
register
ThThThe PCPCPCR R R 
register
The PCR 
register

The value in 
the PCR 
register

ThThThe valululue ininin 
the PCR 
register

The value in 
the PCR 
register

[nvRead] Read the value stored in nvIndex and put a copy in main memory. The ability to read
this value is protected by a policy enforced by the T PM.

T PM : versioninNvIndex
T PM
−−−−→ versioncopy c©versioninNvIndex,

memory ⊕ versioncopy

Notes

• PCR’s can not be written to directly, they can only be extended. The extend function is a deterministic,

one-way function that hashes it’s old value appended with a new hash[47].

• We assume that the hash() function is such that collisions are impossible to force, thus providing

assurance that when two hash values are the same, then the two inputs are also the same.

computer

TPM CPU memory

nvIndex0 pcr0

versionXnvIndex0

reset

uefiCode

pcr0VersionX

versionXuefiCode

hashuefiCode

[hash]

Figure 5.6: Hashing ue f iCode
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computer

TPM CPU memory

nvIndex0 pcr0

versionXnvIndex0

pcr0uefiCode

uefiCode

pcr0VersionX versionXuefiCode

hashuefiCode
[extend]

versionXfromTPM

[nvRead]

Figure 5.7: Extending pcr0 and reading nvIndex0
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Secure UEFI Validation Policy Page

The hash function must hash all of uefiCode:

hashue f iCode := hash(ue f iCode)

(not modeled) The hash function must process uefiCode in the same order as the factory and/or future

validations.

The value stored in nvIndex0 can only be read if prc0 matches the pcr value sealed in nvIndex0.

(pcr0VersionX == pcr0ue f iCode)V (T PM) : versioninNvIndex
T PM
−−−−→ versioncopy c©versioninNvIndex,

memory ⊕ versioncopy Which is the same as: (pcr0VersionX == pcr0ue f iCode)V (T PM) : [nvRead]

If the UEFI version read from the TPM matches the UEFI version contained in ue f iCode then the CPU will

determine that ue f iCode is trusted.

(5.4)

(versionXue f iCode == versionX f romT PM)V (CPU) : ue f iCode is trusted.

Secure UEFI Validation Analysis Page

Analysis of what the network should do

• The system can determine if ue f iCode at one point in time is the same as the code in the factory or

from a secure update.

hashue f iCode := hash(ue f iCode)

(CPU,T PM) : {hash(ue f iCode), pcr0reset}
T PM
−−−−→ {pcr0ue f iCode := hash(pcr0reset ‖ hashue f iCode),

pcr0 	 pcr0reset, pcr0 ⊕ pcr0ue f iCode}

(pcr0VersionX == pcr0ue f iCode)V (T PM) : {versionXnvIndex0}
T PM
−−−−→ {versionX f romT PM c© versionXnvIndex0,

memory ⊕ version f romT PM}

(versionXue f iCode == versionX f romT PM)V (CPU) : ue f iCode is trusted.

Analysis of what the network can do

• There are no protections around the two intermediate values: versionX f romT PM and hashue f iCode. This

model makes no guarantees that these values are not altered after they are written but before they are

read, nor does this model protect against alteration in transit. For example, this data is not digitally

signed by the TPM.

• There are no protections around the ue f iCode in memory being altered after the initial hash() function.
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5.1.4 Secure Software Load Protocol

This protocol starts with programs and data that’s already in trustedMemory. The goal of this protocol is

to establish the trustworthiness of some new software. This software is broadly defined and may originate

from a FACTORY which is modeled, but may originate within trustedMemory and is securely stored for

later retrieval. The software may be drivers, loaders, programs, data, lists of other certificates or just about

anything you can map into a computer’s memory.

Like the other models, this protocol is only allowed to run software in trustedMemory.

This model has an Actor Network that’s rooted with the world. The world contains a FACTORY and a

computer. The FACTORY produces software, digitally signs it and ships it into the world. The computer

loads the software from the world and verifies the digital signature to determine if it’s trustworthy.

The protocol consists of three phases: Pre-loading of trusted keys (not modeled), activity in the FACTORY

and what happens in the computer. This protocol uses asymmetric cryptography (public & private encryp-

tion keys) for its digital signatures. Trust between the FACTORY and the computer must be established

before the protocol begins and is not modeled. The trust starts with a private key that’s securely kept at the

FACTORY and protected from unauthorized use. If the key is compromised, then another protocol, again

not modeled, must be employed to revoke or “untrust” compromised keys. A set of public keys is pre-loaded

on the computer. The specific method of storing the keychain is not modeled, but it is assumed to be trusted

and secure2. If a piece of software has been signed by a private key and it’s corresponding public key is one

of the keys in this set (inclusive of superior keys in a hierarchy) then it is deemed to be trustworthy by the

computer.

The second phase happens at the FACTORY . This is the first part of the model. The FACTORY has

some new, unsigned software. In order to digitally sign the software, the software is digitally hashed3 and

then the hash is encrypted using the FACTORY’s private key. The original software is packaged with the

public key(s) and the encrypted hash and is now a digitally signed piece of software that ships from the

factory out into the world.

The last phase happens in the computer and is diagrammed in Figure 5.9. The software is loaded

from the world into untrustedMemory. The computer then extracts the public key from the software and

determines if it is in the computer’s list of trusted public keys. If it is not, then the protocol ends and the

software remains in untrustedMemory.

If the public key is trusted, then the protocol will extract the encrypted hash from the program, decrypt

it with the public key and store it in ram. Next, the software is hashed by the trusted code and that value is

stored in ram. If the two hash values are matched, then the computer is assured that the software came from

the FACTORY and it has not been altered. Based on that test, the software will be moved to trustedMemory

or will remain in untrustedMemory.

2This list of public keys could be a keystore, TPM or hardcoded.
3The public key must be hashed along with the rest of the software.
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Secure Software Load Protocol Page

Name: Secure Software Load

Benefits:

A. Based on trusted codeα, establish the trustworthiness of codeβ.

The goal of this protocol is: codeβ ∈ trustedMemory if the code is trustworthy and codeβ ∈ untrustedMemory

if the code is not trustworthy.

Notes

• codeβ could be UEFI drivers, nvRam (such as “BIOS Configuration”), operating system loaders and

the entire operating system.

• This model does not protect against replay attacks. If FACTORY signs and ships version 1, 2 and

3, any one of those versions may be loaded into the system. This can be resolved by using T PMs

to store version information in nvIndexs protected by monotonically increasing version numbers. It

could also be resolved by storing version information in codeα.

Secure Software Load Principal Page

Principal Description
CPU The central processing unit of the computer.
FACTORY The factory where privKeyβ is securely stored and codeβ is signed.

CPU ::= {}

FACTORY ::= {privKeyβ, unsignedCodeβ}

Notes

• We limit our model to a single CPU.

• In this model, the CPU is a leaf node.
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Secure Software Load Actor Page

Actor Description
world The world.
computer All of the hardware and software in a given computer.
memory Memory that’s available to the computer.
untrustedMemory Configurations under this actor should not be trusted.
trustedMemory Configurations under this actor have been trusted by the computer.
codeα All of the memory (code, data, etc.) that has been trusted by the computer.
ram Random Access Memory. Generally untrusted unless first initialized by

trusted code.
privKeyβ The private key for β. It must be securely stored in f actory.

Leaf Node Actor Description
trustedPubKeys Either a list of trusted public keys OR code that will get the trusted public

keys from another trusted source. For example, code to verify a certificate
chain or a certificate kept in a TPM.

codeβ The candidate code that is being evaluated for trustworthiness. This may
not be code, it could be data. For example, the “BIOS Configuration”
stored in nvRam could be codeβ.

pubKeyβ The public counterpart to privKeyβ.
hashβactual The computed hash of codeβ in memory.
hashβdecrypted The decrypted hash from codeβ in memory.

world ::= {FACTORY, computer}

computer ::= {memory,CPU}

memory ::= {trustedCode, untrustedCode, ram}

trustedMemory ::= {codeα}

codeα ::= {trustedPubKeys}

privKeyβ ::= {pubKeyβ}

Notes

• world ties everything together... most of the axioms require a root to the Actor Network.

• In this model of asymmetric cryptography, the public key is derived from the private key.
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Secure Software Load Type Page

Type Description
software Any piece of software or data.
pubKey The public portion of a public-private keypair.
hash A cryptographically secure hash value := hash(message)

software Y {codeβ}

pubKey Y {pubKeyβ}

hash Y {hashβactual, hashβdecrypted}

Notes

• hash() is a cryptographic one-way function with a security property where it is prohibitively hard (due

to size and computational complexity) for an attacker to deliberately generate a collision.

Secure Software Load Configuration Page

The initial configuration of this protocol is:
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Figure 5.8: Initial Configuration of Software Load Protocol

In mathematical terms, the initial configuration is:

world := {FACTORY, computer}

FACTORY := {privKeyβ, unsignedCodeβ}

privKeyβ := {pubKeyβ}

computer := {CPU,memory}

memory := {trustedMemory, untrustedMemory, ram}

trustedMemory := {trustedPubKeys}
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Secure Software Load Action Page

Type Description
[sign] The factory will do three things to prepare unsignedCodeβ for release.

1) Hash unsignedCodeβ 2) encrypt the hash with privKeyβ 3) compose codeβ:

{privKeyβ, unsignedCodeβ}
FACTORY
−−−−−−−−→ {codeβ c© unsignedCodeβ,

(cont.) encryptedHashβ := encrypt(hash(codeβ), privKeyβ),
(cont.) codeβ ⊕ encryptedHashβ, privKeyβ 	 pubKeyβ, codeβ ⊕ pubKeyβ}

45)6789

$(:;<',β

$%=<',β

%./:>.'0)"0'β

45)6789

$(:;<',β %./:>.'0)"0'β !"0'β

$%=<',β '.!(,$&'0?-/@β

!"#$%&

[ship] Send software into the world:
{software @ FACTORY}

FACTORY
−−−−−−−−→

ship
{FACTORY 	 software,world ⊕

software}

[load] Load software into untrusted memory:

{software @ world}
CPU
−−−−→
load

{world	software, untrustedMemory⊕software}

[checkPubKey] In computer, check a pubKey against trustedPubKeys:

{pubKey, trustedPubKeys}
CPU

−−−−−−−−−−→
checkPubKey

{pubKey is trusted}

[hash] A secure hash function:
{software}

CPU
−−−−→
hash

{hashsof tware := hash(software), ram ⊕ hashsof tware}

[decrypt] A secure asymmetric decryption of a hash:

{hashencrypted,pubKey}
CPU
−−−−−→
decrypt

{

(cont.) hashdecrypted := decrypt(hashencrypted,pubKey),
(cont.) ram ⊕ hashdecrypted}

[trust] Trust some software:

{software @ untrustedMemory}
CPU
−−−−→
trust

{untrustedMemory 	 software,

(cont.) trustedMemory ⊕ software}

Notes

• hash() is a cryptologically secure hash function such that collisions are impossible to force, thus

providing assurance that when two hash values are the same, then the two inputs are also the same.

• encrypt(clearData, key) is a cryptologically secure asymmetric encryption algorithm such that the

only way to successfully decrypt the result is with knowledge of the asymmetric key (of the pair) that

was not used to encrypt it.
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Secure Software Load Policy Page

The hash function must hash all of the software:

hashβactual := hash(∀codeβ)

(not modeled) FACTORY&CPU must hash(software) in the same order.

The factory will sign and ship codeβ:

(true)V (FACTORY) : {privKeyβ, unsignedCodeβ}[sign]codeβ[ship]{FACTORY 	 codeβ,world⊕ codeβ}

Validate codeβ:

{codeβ @ world ∧ codeβ a computer}[load]{codeβ @ untrustedMemory}

(pubKeyβ @ trustedPubKeys)V {pubKeyβ, trustedPubKeys}[checkPubKeys]pubKeyβ is trusted.

(pubKeyβ is trusted )V {encryptedHashβ, pubKeyβ}[decrypt]{

(cont.) hashβdecrypted := decrypt(encryptredHashβ, pubKeyβ), ram ⊕ hashβdecrypted}

(true)V {codeβ}[hash]{hashβactual := hash(codeβ), ram ⊕ hashβactual}

(hashβactual == hashβdecrypted)V {codeβ @ untrustedMemory}[trust]{untrustedMemory 	 codeβ,

(cont.) trustedMemory ⊕ codeβ}

memory

untrustedMemorytrustedMemory

codeα

trustedPubKeys

memory

untrustedMemorytrustedMemory

codeα

trustedPubKeys

codeβ

pubKeyβ encryptedHashβ

[load]

memory

untrustedMemorytrustedMemory

codeα

trustedPubKeys

codeβ

pubKeyβ

memory

untrustedMemorytrustedMemory

codeα

trustedPubKeys

codeβ

pubKeyβ

[checkPubKey]

then trust
if found

memory

ramuntrustedMemory

codeβ

pubKeyβ encryptedHashβ

hashβactual hashβdecrypted

memory

ramuntrustedMemory

codeβ

pubKeyβ encryptedHashβ

[decrypt]

[hash]

memory

untrustedMemorytrustedMemory

codeα codeβ

ram

hashβactual hashβdecrypted

memory

untrustedMemorytrustedMemory

codeα codeβIf ( == )

[trust]

Figure 5.9: Software Load Protocol
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Secure Software Load Analysis Page

Analysis of what the network should do

• The computer is able to load codeβ and trust it.

• If codeα does not trust pubKeyβ or if codeβ has been modified, then codeβ will not be trusted.

Analysis of what the network can do

• There are no protections around the two intermediate values: hashβactual and hashβdecrypted. This

model makes no guarantees that these values are not altered after they are written but before they are

read.

• This model does not protect against replay attacks. If FACTORY signs and ships version 1, 2 and 3,

any one of those versions may be loaded into the system. This can be resolved by using T PMs to

store version information in nvIndexs protected by monotonically increasing version numbers.
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5.1.5 Secure UEFI Update Protocol

This protocol is, by far, the most complex. It builds on all of the concepts used in the earlier protocols and

fully leverages the Secure Software Load protocol. Fortunately, the goal of this protocol is simple, it should

load the new β firmware into nvRam and update all of the nvIndex values (version and PCR) to ensure that

the new firmware is trusted by the Secure UEFI Validate protocol.

In the Secure UEFI Validate protocol, the TPM had an object called nvIndex which was protected by a

read policy. This policy ensured that the only way the TPM would allow access to the data stored in nvIndex

(the version number of the UEFI firmware ) was if a PCR register matched a copy of a known-good PCR

value securely stored in the nvIndex.

The model for this protocol is more complex because now, we need to work with two policies: An

nvIndex WRITE policy and we need to compose, stage and eventually WRITE a new READ policy (and a

new version number) for the nvIndex.

Before the protocol starts, the nvIndex must have been fully configured either in the FACTORY or

through a successful invocation of this protocol. Furthermore, there’s a symmetric / shared secret password

that is known only to the ADMINIS TRATOR. This password is one of the controls (policies) that allows

the nvIndex to be updated.

The model starts with a room containing three things, a computer, a US ER and an ADMINIS TRATOR.

The ADMINIS TRATOR knows the shared secret password, but the US ER does not.

The computer is also a little more complex as a button is added which can either be pressed or not

pressed (see Equation 5.5).

Before we get into the protocol, we need to introduce a few new TPM concepts. The first concept is

the idea of policies. This was first discussed in the Secure Software Load protocol, where a PCR register

guarded access to a version number stored in an nvIndex. In this model, the nvIndex has two policies, a

READ policy and a separate and more stringent WRITE policy. The read policy is the same policy we are

familiar with from Secure Software Load. In this protocol, however, we will need to update, or WRITE new

values into the nvIndex, which requires computing the PCR for the new firmware. The TPM, being a secure

processor, has a lot of controls around updating certain properties of the TPM.

In order to boot the new ue f iβ firmware, we first need to update the version and pcr in the T PM with

new values. Otherwise, when the computer rebooted, the Secure UEFI Boot Protocol would detect that the

firmware does not match the expected values in the T PM and the firmware would not be trusted.

The new PCR is computed using a TPM object called a “Trial Session”. A trial session is created using a

dummy username (called the NULL hierarchy in TPM-nomenclature4). If the new firmware is trusted, then

a Trial Session is created on the TPM and a PCR value is computed for the new firmware and staged in ram.

Next, another session called an “Update Session” must login with a shared secret. If the shared secret,

for example, the one known by the ADMINIS TRATOR matches the secret in nvIndex, then the Update
4The concept of a user and password is called a ‘hierarchy’ in TPM-speak. When you login to a hierarchy, you create a new

session. A NULL hierarchy is so named because it does not have a password. NULL-sessions are used to manage concurrent access
to the TPM.
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Session has unlocked one of several policy controls that must be satisfied in order to WRITE to the nvIndex.

Another TPM policy control required to update the nvIndex, is Physical Presence (PP). This TPM term

is misnamed as the TPM specification clearly spells out methods to assert Physical Presence electronically!

However, in our model we will use a button attached to the computer as the only way to assert Physical

Presence. Initially, the button is not pressed. Our model says any person can press the button (not just the

ADMINIS TRATOR), however, the person must be in the same room as the computer.

The first step of the protocol is to load the new firmware into trustedMemory. Equation 5.6 uses the

Secure Software Load protocol to bring the new firmware in.

The next step is to compute the new PCR value for the firmware. A Trial Session is created in the TPM

and a (the model uses α for original firmware and β for new firmware) PCR value is computed and staged

in ram for the new firmware. Equation 5.7 leaves us in this state.

At this point the protocol tries to create an Update Session. If it’s successful, then Equation 5.8 will

either update the firmware or consign it to untrustedMemory. The first line of the equation states that the

new firmware must be in trusted memory and the TPM does not have an active Update Session. The next

assertion ensures that the shared secret passwords match and the ADMINIS TRATOR is now logged into

the TPM with an Update Session. The final two authorizations are verifying that the button is pressed and

the new version of the software is greater than the prior version. This protects against replay attacks or

malicious actors loading trusted firmware with known vulnerabilities. If both of those controls are satisfied,

then the update is authorized.

In summary, there are four controls protecting WRITE access to the nvIndex:

• The new firmware must be digitally signed by a secret key that is trusted by this computer.

• Knowledge of a secret password.

• Physical presence in the same room as the computer.

• The new version of firmware must be > than the current version.

When the update is authorized, three things must happen. Two values in the TPM must be updated: The

new PCR value and the new version number. With the update fully authorized, the TPM is now allowed to

write them into the nvIndex. Third, the actual firmware needs to be updated. In this case, we use operators

from Table 4.5 to replace the old firmware with the new firmware.

If, for any reason, the update is not authorized, then the new firmware is moved to untrusted memory.

The full process to update the T PM is very elaborate. This model attempts to simplify it into accurate,

but easily modelable terms that will ultimately satisfy the goals of the protocol.
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Secure UEFI Update Protocol Page

Name: Secure UEFI Update

Benefits:

A. Securely update the UEFI software. The update should have the following properties:

• The update should be verified to be authentic code from the FACTORY (modeled in Secure

Software Load).

• The update should be authorized with a shared secret password and the physical presence of

a person.

• The update should be a newer, more up-to-date version, not a version that is earlier than the

current UEFI firmware.

In plain language, the goal of this protocol is to update UEFI version α with version β. In mathe-

matical terms, the goal of this protocol is: (ue f iα < nvRam) ∧ (ue f iβ ∈ nvRam) ∧ (versionnvIndex0β ∈

nvIndex) ∧ (pcr0nvIndexβ ∈ pcr0) if the code is trustworthy and authorized by an ADMINIS TRATOR or

ue f iβ ∈ untrustedMemory if the code is not trustworthy.

Notes

• This model would allow ue f iβ to run when it’s loaded into trustedMemory during the Secure Software

Load protocol. This should not be an issue because all of the code that is running is trusted.
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Secure UEFI Update Principal Page

Principal Description
ADMINIS TRATOR A person who can authorize the installation of new firmware.
CPU The central processing unit of the computer.
T PM Trusted platform module. A secure storage/crypto processor that is tamper

resistant.
US ER A person who is not authorized to install firmware.

ADMINIS TRATOR ::= {adminPWadmin}

CPU ::= {pc}

T PM ::= {session, nvIndex, pcr0}

US ER ::= {}

Notes

• We limit our model to a single CPU.

• US ER, who does not have the adminPW is intended to contrast with the ADMINIS TRATOR who

does have it. Both can assert physical presence, but only one has a secret that is shared with the T PM.
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Secure UEFI Update Actor Page

Actor Description
room A location that contains a person and a computer.
computer All of the hardware and software in a given computer.
button A physical presence sensor somewhere in the computer.
memory Memory that’s available to the computer.
trustedMemory Configurations under this actor have been trusted by the computer.
untrustedMemory Configurations under this actor should not be trusted.
nvRam A trusted, nonvolatile block of electronically reprogrammable memory.
ue f iα Current version of UEFI firmware that is trusted by the computer.
ue f iβ New version of UEFI firmware that will be loaded and trusted by the

computer using the Secure Software Load Protocol.
pcr0 Core root of trust measurement (CRTM). It contains the measurement of

the BIOS / UEFI firmware.
trialS ession A non-binding T PM session that is used to compute pcr values.
updateS ession An authenticated T PM session that can update nvIndex values.
ram Random Access Memory. Generally untrusted unless first initialized by

trusted code.
nvIndex0 Contains a version of the BIOS / UEFI firmware and a copy of

pcr0 at the time the BIOS / UEFI firmware was trusted. Read access is
protected by pcr0. Write access is protected by a more complex policy.

Leaf Node Actor Description
adminPWadmin A shared secret known by both the ADMINIS TRATOR and a nvIndex

in the T PM.
adminPWnvIndex0 A shared secret in the T PM that protects nvIndex0 from writing.
buttonNotPressed Physical presence is not asserted.
buttonPressed Physical presence by a person is asserted.
pc Holds the Program Counter or a pointer to the current instruction. The

model will assert that this always points to addresses that are part of
trusted memory, although this won’t be explicitly modeled. Proof of cor-
rectness is in earlier models.

pcr0nvIndexβ The precomputed value of pcr0 when ue f iβ has been extended into it.
reset The uninitialized state of an actor.
versionnvIndex0α The UEFI version number securely stored in nvInxex0.
versionnvIndex0β A copy of the UEFI version number stored in ue f iβ.
versionue f iα The UEFI version number stored in ue f iα.
versionue f iβ The UEFI version number stored in ue f iβ.

room ::= {US ER, ADMINIS TRATOR, computer}

computer ::= {button,CPU,memory,T PM}
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button ::= {buttonState}

memory ::= {trustedMemory, untrustedMemory, ram}

trustedMemory ::= {nvRam,firmware}

untrustedMemory ::= {{},firmware}

nvRam ::= {firmware}

ue f iα ::= {versionue f iα}

ue f iβ ::= {versionue f iβ}

nvIndex0 ::= {version,pcr,password}

trialS ession0 ::= {pcr}

Notes

• Some actors may be missing as they are very short lived and can easily be tracked between states and

then no longer used.
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Secure UEFI Update Type Page

Type Description
buttonState The state of a button on the computer.
firmware Software that’s been released by a FACTORY and used as UEFI firmware in a

computer.
hash A cryptographically secure hash value := hash(message)
nvIndex Non-volatile RAM in the TPM that is protected by a read policy and a different

write policy.
password A shared secret that should only be known by an ADMINIS TRATOR. It au-

thenticates a person for access to nvIndexes in the T PM.
pcr Platform Configuration Register. A special memory cell in the T PM that can not

be directly set by anything outside of the TPM. Instead, it’s value is calculated
as: tpmold := hash(tpmold‖tpmnew).

person A person who may have a password and may be able to push a button.
session A session which is used to create or access objects in the T PM depending on

what is authorized.
version The version number of something the protocol is attempting to trust.

buttonState Y {buttonNotPressed, buttonPressed}

firmware Y {ue f iα, ue f iβ}

hash Y {pcr0ue f iα, pcr0ue f iβ}

nvIndex Y {nvIndex0}

password Y {adminPWadmin, adminPWnvIndex0}

pcr Y {pcr0}

person Y {US ER, ADMINIS TRATOR}

session Y {trialS ession, updateS ession}

version Y {versionue f iα, versionue f iβ, versionnvIndex0α, versionnvIndex0β}

firmware ::= {version}

nvIndex ::= {version,pcr,password}

pcr ::= {hash}

session ::= {password,hash}

Notes

• hash() is a cryptographic one-way function with a security property where it is prohibitively hard (due

to size and computational complexity) for an attacker to deliberately generate a collision.
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Secure UEFI Update Configuration Page

The initial configuration of this protocol is:

CPU

room

computer

ADMINISTRATORUSER

adminPWadmin

memory

trustedMemory

uefiα

button

buttonNotPressed untrustedMemorypc

TPM

nvIndex0 pcr0

versionnvIndex0α pcr0nvIndexα pcr0uefiαadminPWnvIndex0

ram

nvRam

Figure 5.10: Initial Configuration of the UEFI Update Protocol

In mathematical terms, the initial configuration is:

room := {US ER, ADMINIS TRATOR, computer}

ADMINIS TRATOR := {adminPWadmin}

computer := {button,CPU,memory,T PM}

button := {buttonNotPressed}

CPU := {pc}

memory := {trustedMemory, untrustedMemory, ram}

trustedMemory := {nvRam}

nvRam := {ue f iα}

ue f iα := {versionue f iα}

ue f iβ := {versionue f iβ}

T PM := {nvIndex0, pcr0}

nvIndex0 := {versionnvIndex0α, pcr0nvIndexα, adminPWnvIndex0}

versionue f iα == versionnvIndex0α

pcr0nvIndexα == pcr0ue f iα

pcr0 := {pcr0ue f iα}
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Secure UEFI Update Action Page

Type Description
[createTrialS ession]

See Figure 5.11

Create a sessiontrial in the T PM that will be used later to calculate a new
pcr value:

{sessiontrial a T PM}
CPU,T PM

−−−−−−−−−−−−−−→
createTrialS ession

(cont.) {sessiontrial := newTrialS ession(NULLpassword),
(cont.) T PM ⊕ sessiontrial,

(cont.) sessiontrial ⊕ pcrtrial,

(cont.) pcrtrial ⊕ reset}
[extendPCR]

See Figure 5.12

Using the sessiontrial and the new firmware, compute a PCR hash for it:

{sessiontrial ∈ T PM ∧ firmwarenew @ memory}
CPU,T PM
−−−−−−−−→
extendPCR

(cont.) {hash := hash(firmwarenew),
(cont.) pcrtrial 	 reset,pcrtrial ⊕ hash}

[getPolicy]

See Figure 5.13

Copy/move the computed pcr (it’s a hash) to ram:

{hash @ pcrtrial}
CPU,T PM
−−−−−−−−→

getPolicy
{pcrtrial 	 hash, ram ⊕ hash}

[createU pdateS ession]

See Figure 5.14

Using the password, create a session that is authorized to update firmware
(this is guarded by a password check):

{sessionupdate a T PM}
CPU,T PM

−−−−−−−−−−−−−−→
createTrialS ession

(cont.) {sessionupdate := newU pdateS ession(password),
(cont.) T PM ⊕ sessionupdate}

[authorizeU pdate] Use physical presence to authorize the firmware update:

{buttonPressed ∈ button ∧ sessionupdate @ T PM}
person

−−−−−−−−−−−−→
authorizeU pdate

(cont.) {updateAuthorized}
[writePolicy]

See Figure 5.15

Using an authorized session, update the nvIndex:

{updateAuthorized}
T PM

−−−−−−−−→
writePolicy

{ram 	 hash,nvIndex ⊕ hash,

(cont.) nvIndex 	 versionold,nvIndex ⊕ versionnew}

[saveFirmware]

See Figure 5.16

Move the new firmware into trusted nvRam, replacing the old firmware:

{updateAuthorized}
CPU
−−−−−−−→
saveUe f i

{nvRam 	 firmwareold,

(cont.) nvRam ⊕ firmwarenew}
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Type Description
[re jectFirmware]

See Figure 5.17

Move the new firmware into untrustedMemory:

{¬updateAuthorized}
CPU

−−−−−−−−−−−−→
re jectFirmware

{trustedMemory 	 firmwarenew,

(cont.) untrustedMemory ⊕ firmwarenew}

[buttonPress] A person pushes a button:

{buttonNotPressed ∈ button}
person
−−−−−−−−−→
buttonPress

{button 	 buttonNotPressed,

(cont.) button ⊕ buttonPressed}
[buttonRelease] A person releases a button:

{buttonPressed ∈ button}
person
−−−−−−−−−−→
buttonRelease

{button 	 buttonPressed,

(cont.) button ⊕ buttonNotPressed}

TPM

sessiontrial

pcrtrial

reset

[createTrialSession]

TPM

Figure 5.11: Create a Trial Session

[extendPCR]

TPM

sessiontrial

pcrtrial

hash

TPM

sessiontrial

pcrtrial

reset

Figure 5.12: Extend the PCR Register

[getPolicy]

TPM

sessiontrial

pcrtrial hash

ram

memory

computer

TPM

sessiontrial

pcrtrial

hash

Figure 5.13: Save the New PCR Value to Memory

TPM

sessionupdate

[createUpdateSession]

TPM

Figure 5.14: Create an Update Session

TPM

nvIndex0

versionnvIndex0α pcr0nvIndexα adminPWnvIndex0

TPM

nvIndex0

versionnvIndex0β pcr0nvIndexβ adminPWnvIndex0

[writePolicy]

Figure 5.15: Writing a New TPM Policy to an nvIndex
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Figure 5.16: Saving the Firmware Update
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Figure 5.17: Rejecting the Firmware Update

Notes

• newTrialS ession() and newU pdateS ession() are T PM functions that create a new session. All ses-

sions require a password, but Trial sessions use a NULL password.
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Secure UEFI Update Policy Page

Any person can push the button but only one person can press it at a time:

(buttonNotPressed ∈ button)V (person) : [buttonPress]

(buttonPressed ∈ button)V (person) : [buttonRelease]
(5.5)

A new version of ue f iβ will be loaded with the Secure Software Load Protocol:

(ue f iβ a memory)V (person) : [S ecureS o f twareLoad](ue f iβ) (5.6)

If it’s trusted, then the resultant state is: {ue f iβ @ trustedMemory}

Compute a pcr value for ue f iβ:

(trialS ession a T PM)V (CPU) : [createTrialS ession](NULL) {trialS ession @ T PM∧

(cont.) reset ∈ pcrtrial}

(trialS ession @ T PM)V (CPU) : [extendPCR](ue f iβ) {pcr0nvIndexβ ∈ pcrtrial}

{(trialS ession @ T PM)V (CPU) : [getPolicy](trialS ession) {pcr0nvIndexβ ∈ ram}

(5.7)

Update the UEFI code:

(ue f iβ @ trustedMemory) ∧ (updateS ession a T PM) ∧ (adminPWadmin == adminPWnvIndex0)

V (ADMINIS TRATOR) : [createU pdateS ession](adminPWadmin) {updateS ession @ T PM}

(buttonPressed ∈ button) ∧ (versionue f iβ > versionue f iα)V (ADMINIS TRATOR) :

(cont.) [authorizeU pdate]{updateAuthorized}

(updateAuthorized)V (T PM) : [writePolicy](pcr0nvIndexβ, versionnvIndex0β)

(cont.) {pcr0nvIndexβ ∈ nvIndex0 ∧ versionnvIndex0β ∈ nvIndex0}

(updateAuthorized)V (CPU) : [saveFirmware](ue f iβ) {ue f iβ ∈ nvRam ∧ ue f iα < nvRam}

(¬updateAuthorized)V (CPU) : [re jectFirmware](ue f iβ) {ue f iβ ∈ untrustedMemory∧

(cont.) ue f iα ∈ nvRam}

(5.8)
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Secure UEFI Update Analysis Page

Analysis of what the network should do

• If the ADMINIS TRATOR uses it’s adminPWadmin, the ue f iβ firmware is trusted, the version of β > α

and someone presses the button at the right time, then the ue f iα firmware will be replaced with ue f iβ.

• If any of the above conditions are not true, then ue f iβ should be moved to untrustedMemory.

Analysis of what the network can do

• There are no protections around the pcr0nvIndexβ hash value that’s stored in ram. This model makes

no guarantees that this value is not altered after it is written but before it’s read.

• There are no protections around the data as it flows between memory and the T PM. It could get

altered in transit.

• There are several opportunities for race conditions in this protocol and it is not safe to run concurrent

executions of it. Some type of locking mechanism is recommended, but is not modeled.

• The protocol does not force the computer to reboot. If shadow ram is used, then the old ue f iα code

could run indefinitely even though the protocol’s goals have been satisfied (ue f iβ ∈ nvRam).
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CHAPTER 6
CONCLUSIONS

Don’t let the noise of others’ opinions drown
out your own inner voice. And most
important, have the courage to follow your
heart and intuition.

–Steve Jobs, Stanford University
Commencement Address, 2005

This thesis covered a number of topics relevant to Computer Science. It began with a simple question:

“Why do we adopt protocols that are nominally well-behaved but are unsafe and insecure?” It observes

that one reason this problem continues to plague us is because companies can get away with it. Publishing

insecure systems does not yet carry enough of a penalty for rational people to choose to invest in security.

Computer Science is not the first discipline to grapple with these issues. We analyzed two industries

that were also the product of fundamental scientific research and was engineered for commercial and retail

use by the general public. These industries, Aviation and Urban Safety both have an inherent potential

danger but also add tremendous value to society. They are worthy of study because, clearly, they are doing

something right.

We need to study software failures the same way we analyze airline accidents and urban disasters.

We must acknowledge that these things will happen and take steps to mitigate the damage when it does.

Regulation, from the government or through private bodies like insurers, must be able to scale and be, above

all, practical and easy to implement. In the long run, it must pay for itself. We need to systematically

measure the performance of the regulation and the utility of the technology to the general public to make

the case that a small investment in safety and security will ultimately benefit them.

The analysis of each industry identified 11 lessons that can be applied to Cyber Security. The Urban

Safety laid out an even stronger methodology for improving safety of systems across a diverse set of disci-

plines. It concluded with the postulate that: If software manufacturers must pay a proportional cost when

they produce a defective product, then a beneficial ecosystem will develop.

One key ingredient for the safety in both industries is the capability to detect and analyze failures rig-

orously. Recent security attacks try to circumvent detection by hiding in hardware devices and by gaining

control before a system is fully initialized. For these attacks the detection of the security threats are becom-

ing challenging and any risk model becomes harder to apply. These attacks have motivated the development

of secure boot mechanisms and secure memory enclaves (like INTEL SGX) that can provide privacy from

the overarching system. Both mechanisms rely on features of the processor hardware and physical interac-

tion from the user. Their proper operation needs to be modeled as a cyber-physical system. Our proposed

77



methodologies improve our capabilities to detect security attacks and to model and analyze security proto-

cols for cyber-physical systems.

The thesis then introduced a formal methodology called Actor Network Modeling. The goal of Actor

Network Theory is to use scientific methods to model protocols and analyze their performance against goals.

The thesis draws from several papers from both Sociology and Computer Science and synthesizes all of this

material to produce a detailed methodology for creating Actor Network Models. It describes a common set

of terminology, notation and useful axioms. Section 4.5 borrows from the waterfall software development

methodology and introduces the concept of organizing the models into a set of 8 ‘pages’ that fully describe

a protocol. The chapter concludes with a fully working, non-technical example and proof.

Finally, the thesis uses this methodology to analyze the functionality and security requirements of a

real-world set of protocols collectively known as Secure Boot by modeling 4 interdependent protocols and

analyzing various security properties. The analysis identifies weaknesses in the protocols such as the fact

that the security measurements are not continuous and that trust may erode over time. Oftentimes, there is

no protection for intermediate values stored in ram, which is readily accessible by other technologies such

as Direct Memory Access. Finally, the analysis points out that there are issues with revocation of trust, lack

of protection from replay attacks and a potential for race conditions.

6.1 Future Research

The proposed methodology has several restrictions. This work tries to strike a balance between a strict

formal declaration (like a computer language) that is clear and type-safe with the spirit of Actor Network

Theory[31] that eschews formalism. The more models we build with this methodology, the more experience

we will develop on how to evolve it.

In particular, the proposed notation lacks a method for identifying cardinality of membership. For

example, if actor A may contain b, c, d and e; can it choose none, one, two or more, etc. This would be

helpful for someone who approaches modeling like programming.

Extend the methodology to include a threat model.

Finally, an attempt could be made to use this modeling technique to formally verify aspects of the full

Secure Boot protocol rather than simply analyze a few properties.
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APPENDIX A
GLOSSARY

Table A.1: Acronyms used in this paper.

Acronym Definition
ALSR Address Space Layout Randomization
ANT Actor Network Theory
API Application Program Interface
BIOS Basic Input/Output System
CRTM Core Root of Trust Measurement
DoS Denial of Service
EULA End User License Agreement
HIPAA Health Insurance Portability and Accountability Act of 1996
IETF Internet Engineering Task Force
IP Internet Protocol
MAC Media Access Control
NBFU National Board of Fire Underwriters
NEC National Electrical Code
NFPA National Fire Protection Association
NIST National Institute of Standards and Technology
PCI Payment Card Industry
PDL Procedure Derivation Logic
PDL Protocol Derivation Logic
RFC Request for Comment
SGX Software Guard Extensions
TCB Trusted Computing Base
TCG Trusted Computing Group
TPM Trusted Platform Module
TXT Trusted Execution Technology
UEFI Unified Extensible Firmware Interface
UL Underwriter Laboratories
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APPENDIX B
AXIOMS USED FROM EARLIER WORKS

This thesis depends on a number of axioms that were defined in earlier works.

Table B.1: The Axioms Used in this Thesis

Paper Axiom Description
Definition 1 A set (née configuration) is a finite set. It may be empty or it may contain

actors or other configurations.
Definition 2 A configuration (née box configuration) is a hierarchy of configurations.

A configuration may be empty, contain actors or other configurations.
Definition 3 Defines membership within the hierarchy. For each actor in the hierarchy,

it’s either the entire hierarchy or all its parents ‘contain’ it.
Definition 4
Proposition 1

Each actor in a configuration (organized as a hierarchy) must be unique.

Definition 5 σ (née mult) is used to count the number of occurrences of an actor in a
configuration.

Proposition 2 If X v Y then σ(X, t) ≤ σ(Y, t)
[34] Definition 6 Defines a transaction where an actor moves from one configuration to

another.
Definition 7 When an actor moves to a new configuration, it takes everything under its

hierarchy with it.
Definition 8 Describes the notation of a transaction and weather it’s a unique action or

one of a possible set of actions.
Move types 1-6 in
section 3.1

Describes the nomenclature for how principles direct the action of actors.

Definition 9 Defines a run as an alternating sequence of states and moves.
Definition 10 Defines the notion of a policy and how it guards a set of runs. It’s the

logical equivalent of what the runs can do (the power set of possible runs)
and what they should do (the policy).

Definition 11 Defines the notion of a move policy – under what conditions an action
may take place.

Easy Subterms If a principle knows an actor, it also knows all actors that are subsets of it.
[40] Section 3.3.1 &

Section 4.3.1
The notion of sending/receiving events.

Section 4.3.1 The notion of a freshly generated nonce.
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