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EXECUTIVE SUMMARY 

A landslide warning system for a 40-foot-high cut soil slope on Kalaniana’ole Highway was 

developed by performing a soil investigation, laboratory tests, installing monitoring instruments, 

developing and calibrating a transient hydrological flow model, using the calibrated model to predict 

moisture/suction response during a design storm, inputting these moisture/suction predictions into a slope 

stability analysis and establishing threshold values for the monitoring instruments.   

The geotechnical investigation and index testing showed that the slope consists of a uniform 

reddish-brown, stiff to very-stiff, highly overconsolidated elastic silt (MH).  Saturated consolidation tests 

were performed to obtain the saturated compression curve and the saturated hydraulic conductivity, 

which was determined to be 10-6 cm/s.  A saturated multi-stage consolidated-drained triaxial shear test 

was performed to obtain the Hvorslev true friction angle and true cohesion, which was 27° and 18 kPa, 

respectively.  Pressure plate and vapor sorption analyser tests were performed to obtain the unconfined 

soil water characteristic curve (SWCC) and hydraulic conductivity function (HCF).  Three constant water 

content isotropic compression (CWIC) tests were performed to obtain the Basic Barcelona Model (BBM) 

stiffness parameters and the porosity-dependent van Genuchten parameters.  Constant water content 

triaxial shear tests (CWTS) were performed to obtain the BBM shear strength parameters, and the critical 

state friction angle which was estimated to be 37°. The BBM parameters were calibrated using the 

modified state-surface approach (Zhang and Lytton, 2009).   

A 2D finite-element transient hydrological flow model was calibrated using the field measured 

suctions and water contents during a two-and-a-half-year period.  A good fit between measured and 

predicted values for all sensors was obtained by modelling hysteresis and porosity-dependency in the 

SWCC and HCF.   The calibrated model was then used to predict the slope response due to a 500-year 

design storm, and to establish landslide warning thresholds for the monitoring instruments.  The predicted 

suctions and water contents during the design storm, and the porosity at each node estimated using the 

calibrated BBM stiffness parameters, were inserted into a slope stability analysis.  The slope was deemed 

stable (FSmin~1.2) during a 500-year storm.   

Amber and red thresholds were developed using Nicholson et al’s (1999) traffic light approach for 

two tensiometers and two water content sensors based on the predicted suction and water content 

response during a 500-year storm and the maximum water contents and minimum suctions ever 

measured in the field.  Proposed plans of action include: 1) cover the slope with a tarp or geomembrane 

to prevent further infiltration if the amber threshold is triggered, and 2) close the town-bound lane of 

Kalaniana’ole Highway if the red threshold is triggered. 
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Key findings include: (1) it is important for a transient hydrological flow model to account for SWCC 

and HCF hysteresis and porosity-dependency in order to predict field behaviour reliably; (2) Porosity-

dependent SWCCs can be derived from constant water content isotropic compression tests along with 

the use of the Basic Barcelona Model stiffness parameters and a modified form of the van Genuchten 

(1980) equation; (3) Based on 2D slope stability analyses, the slope will survive a 500-year storm with a 

factor of safety ≈ 1.2. 
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1 INTRODUCTION 

1.1 Landslides 

Landslides and other mass movement of geomaterials cause approximately 25 to 50 deaths and 

US$1 - 2 billion worth of damage in the United States annually (Turner, 1996).  They can be triggered 

naturally or by humans.  Natural triggers include intense precipitation, earthquakes, undercutting of slope 

toe (e.g.; scour) and volcanic eruptions.  Landslide abatement usually entails employing costly mitigation 

measures such as grading, excavation, drainage, pinning, retaining walls, etc.  A less costly method to 

alleviate losses is to implement a monitoring and early landslide warning system.  This type of system is 

especially suited towards slopes that are prone to rainfall-induced slides. 

Researchers predict that global warming will cause an overall decrease in annual rainfall with an 

increase in frequency and intensity of tropical hurricanes in Hawaii (Murakami et al., 2013; Cai et al., 

2015; Kossin et al., 2014).  Occurrence of debris flows on the island of Oahu has been well-documented 

in a 1993 report by the U.S. Geological Survey (Peterson et al., 1993).  Due to more recent rainfall, the 

island of Oahu, Hawaii has experienced numerous landslides along the state highways and elsewhere.  

This formed the State of Hawaii Department of Transportation’s impetus to develop a site-specific 

landslide warning system for a precarious cut slope adjacent to a main thoroughfare just north of the Pali 

Highway. 

A site-specific landslide warning system can be developed empirically, based on correlations between 

rainfall intensity/duration and previous slide occurrences or mechanistically, based on the principles of 

limit equilibrium (slope stability analysis; e.g. Eichenberger et al., 2013, Thiebes et al., 2014, Baum and 

Godt, 2010, and Kanjanakul et al., 2016) or based on a coupled flow-deformation numerical analysis.  

Since the mechanistic approaches are more rational, they form the focus of this work.  The mechanistic 

approaches typically require: 

1. A geotechnical investigation to characterize the soil; 

2. Monitoring the in situ soil suction, water content, slope movement and rainfall; 

3. A saturated-unsaturated transient flow model that has to be calibrated and then used to estimate 

the change in effective stresses during rain events.  Influence of the antecedent moisture, rainfall 

intensity and duration, evapotranspiration, soil water characteristic curve (SWCC) and variation of 

hydraulic conductivity with water content or suction must be considered in the calibration process; 

and 

4. An appropriate model (slope stability or numerical) for prediction and real time warning of rainfall-

induced landslides. 
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1.2 Objectives 

A precarious cut slope on the windward side of the island of Oahu, Hawaii was selected for this 

study and for development of a landslide warning system.  This site is located on a road that is an 

extension of the Pali Highway into Kailua.  It was selected because numerous slope failures have 

occurred along the Pali Highway since construction completion and because this slope is rather steep 

and barren. 

The objectives of this research are as follows: 

1. Perform laboratory tests to obtain the mechanical and hydraulic parameters necessary to model 

the slope response to rainfall and evaporation; 

2. Obtain the BBM parameters for the slope material;  

3. Calibrate a transient hydrological flow model to field-measured soil moisture and suctions; 

4. Develop mechanistically-based landslide warning thresholds using the calibrated transient 

hydrological model to obtain moisture/suction response due to a design storm; 

5. Establish threshold values and propose plans of actions if each threshold is exceeded; and 

6. Perform a slope stability analysis of the slope due to a design storm event. 

In order to achieve the objectives above, the following tasks were carried out: 

1. Engage a drilling contractor to perform soil investigation, collect soil samples and install 

monitoring instruments at the slope site; 

2. Install instruments such as tensiometers to measure in situ suction, water content sensors to 

measure water content, in-place inclinometers to measure lateral ground deflections and a rain 

gage to measure the rainfall at the slope to be investigated; 

3. Conduct laboratory tests to measure saturated hydraulic conductivity, soil water characteristic 

curves, saturated and unsaturated shear strength and compressibility parameters for the in situ 

soil; 

4. Investigate how the hydraulic conductivity, suction and shear strength vary as a function of 

degree of saturation (or water content); 

5. Monitor rainfall and water content/suction in real time and calibrate the transient hydrological 

model; 

6. Develop a saturated-unsaturated transient hydrological model using the geometry, in situ water 

contents/suction from Step 5, and laboratory test results from Step 4; 

7. Use the calibrated transient hydrological model to predict pore pressure/suction in the slope 

during a design rainfall event.  Input these pore pressure/suction values into a slope analysis. 

8. Determine threshold values of these instruments to develop a real-time landslide warning system. 
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1.3 Outline 

The outline of this report is as follows.  Chapter 2 contains a review of the literature on elements 

pertinent to the development of a landslide warning system.  In Chapter 3, details of the site, geology, 

historical landslides and geotechnical investigation are elucidated.  Chapter 4 summarizes the various 

instrument types installed and their layout.  Results of the laboratory tests and the resulting soil 

parameters are presented in Chapter 5.  In Chapter 6, details of the transient hydrological model are 

discussed and the results summarized.  A slope stability analysis assuming full saturation and assuming 

a 500-year storm is presented in Chapter 7 along with a methodology to develop threshold response 

values.  Chapter 8 discusses the limitations of two finite element analysis software for analyzing 

unsaturated slopes.  In Chapter 9, the report concludes with a summary of the pertinent findings along 

with some suggestions for future research.  The following figure is a schematic of the outline the 

dissertation and how each chapter is related. 
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FIGURE 1.1  Flowchart showing organization of dissertation 
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2 LITERATURE REVIEW 

In this chapter, only literature review of subjects pertinent to this research is provided.  A topic 

deemed important and relevant to this research is constitutive modelling of partially saturated soils since 

this work involves unsaturated soil mechanics.  Then, landslide warning systems that are based on limit 

equilibrium methods are reviewed followed by those based on numerical methods. 

2.1 Constitutive Modeling of Partially Saturated Soils 

Constitutive modelling of partially saturated soils has seen significant growth in the last three 

decades.  Of these models, the Basic Barcelona Model (BBM) is probably the best known (Alonso et al., 

1990).  Several researchers have further advanced constitutive modeling of unsaturated soils to address 

some of the limitations of the BBM, however many of them follow the same framework.  Therefore, a 

review of the BBM model can provide a general basis to understand constitutive modeling of unsaturated 

soils.  Such a review is presented below.  Some constitutive models have deviated from the general 

framework of the BBM to capture unsaturated soil behavior that is not possible to model using the BBM 

framework such as hysteresis, effective net mean stresses and undrained stress states.  Detailed 

comparisons of constitutive models for unsaturated soils are available in the literature (Gens, 2006; 

Sheng, 2008; D’Onza et al., 2011). 

The BBM is formulated using matric suction, s, as an additional independent stress state variable in 

addition to the Cambridge net mean stress (p’), deviatoric stress (q) and specific volume ( = 1 + e 

defined as the volume of soil containing unit volume of soil grains), where in triaxial compression 

𝑝′ =
1

3
(𝜎1
′ + 2𝜎3

′)          (2.1)  

𝑞 = 𝜎1 − 𝜎3           (2.2) 

where 1 and 3 are the major and minor principal total stresses, respectively, 1‘ and 3’ are the major 

and minor principal effective stresses, respectively.  For convenience, the prime will be dropped from p’ 

so that henceforth, p will automatically mean p’. 

During virgin isotropic compression at constant s  varies with p as follows: 

𝜈 = 𝑁(𝑠) − 𝜆(𝑠) 𝑙𝑛
𝑝

𝑝𝑐          (2.3) 

where N(s) = specific volume corresponding to a reference stress pc and (s) is the slope of the normal 

compression line (NCL) for a given value of suction.  Therefore, Eq. 2.3 represents a family of constant 

suction NCLs that vary with suction.  The “intercept” N(s) and slope (s) are defined as follows: 

𝑁(𝑠) = 𝑁(0) − 𝜅𝑠 𝑙𝑛
𝑠+𝑝𝑎

𝑝𝑎
          (2.4) 
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𝜆(𝑠) = 𝜆(0)[(1 − 𝑟) 𝑒𝑥𝑝(−𝛽𝑠) + 1]        (2.5) 

where (0) = slope of the NCL when the soil is saturated (s = 0), N(0) = specific volume corresponding to 

s = 0, r is a constant related to the stiffness of the soil [when s → ∞, r = (s→ ∞)/(0)],  is a parameter 

that controls the rate of soil stiffness increase with suction, κs is the slope of the unload-reload line to 

define the elastic volumetric strains due to changes in suction and pa = atmospheric pressure which is 

added to s to avoid having the natural logarithmic term be undefined when s = 0. 

The BBM yield surface in p-q-s space is shown in Figure 2.1.  When the soil is saturated, s = 0, the 

yield surface defaults to the Modified Cam Clay (MCC) ellipse.  The BBM has three additional lines 

compared to the MCC.  For isotropic compression, the model is characterized by two yield curves - 

loading collapse (LC) and suction increase (SI) curves.  A third line is needed to capture the effects of the 

increase in shear strength due to the effects of suction; i.e.; suction causes the capillary cohesion to 

increase from 0 when the soil is saturated.  Characteristics of these 3 lines are elucidated further below. 

1. The size of the elastic domain increases as suction increases.  The size of the elastic domain is 

limited by the loading collapse (LC) curve.  The LC line allows a normally consolidated soil to 

support irreversible plastic strains and to harden when the suction increases as there will be an 

increase in stiffness with increasing suction.  The equation for the LC line is given by (Alonso et 

al., 1990): 





−

−









=

)(

)0(
* s

c
o

c
o

p

p

p

p
           (2.6) 

where po = preconsolidation pressure of the unsaturated soil, po
* = preconsolidation pressure of 

the soil when saturated and  is the slope of the saturated unload-reload line which defines the 

volumetric elastic strains due to changes in net mean stress, p. 

2. Under very high suctions, irreversible volumetric strains may occur as a consequence of suction 

increase due to drying.  A suction increase (SI) line represents the yield curve when this occurs.  

Parameters associated with changes in suction and the SI yield curve include s, which is the 

slope of the NCL due to changes in suction across virgin states and κs, which is the slope of the 

unload-reload line to define the elastic volumetric strains due to changes in suction. 

3. A capillary cohesion varies linearly with suction as shown by the dashed line in Figure 2.1. 
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FIGURE 2.1  Basic Barcelona Model yield surface (after Laloui et al., 2008) 

The BBM parameters can be measured by conducting the following tests: 

1. Isotropic drained compression loading and unloading tests at several constant suction values to 

find pc, po
*, (0), , r and ; 

2. Tests with a dry-wet cycle at a constant net mean stress to measure so, s, and s, where so is an 

initial reference suction variable that defines the initial position of the yield surface SI.  Analogous 

to the preconsolidation pressure, so is the maximum past suction ever experienced by the soil.  It 

is the value of suction at which the soil transitions from the elastic state to the virgin range when 

suction is increased; and 

3. Drained shear strength tests at different suctions to provide G,  and k where G = shear modulus 

during elastic loading, k = slope of line on q-s plane that increases linearly with suction and  = 

slope of the critical state line. 

The following are some limitations of the BBM: 

1. The BBM uses straight lines to model the specific volume-ln p relationships.  Use of straight lines 

implies a continuous increase of collapse strains upon wetting, which is unrealistic because 

collapse strains cannot increase indefinitely;   

2. The elastic modulus is suction-independent, which is known to be untrue.  This is deemed 

important in pavement geotechnics.   

3. The loading collapse and suction increase yield curves are uncoupled.  In more recent work 

(Zhang and Lytton, 2009), the expansion of one of the yield curves will lead to a coupled 

expansion of the other; and 

4. The original BBM model does not model the coupled hydraulic and mechanical states during 

undrained loading; i.e.; it does not consider SWCC and HCF hysteresis nor does it consider the 

pressure dependency of the SWCC. 
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2.2 Limit-Equilibrium-Based Landslide Warning Systems 

Limit equilibrium analysis of slopes to analyze their stability is ubiquitous amongst the geotechnical 

engineering profession.  It has also been applied to develop landslide early warning systems for site-

specific slopes.  A summary of these warning systems is shown in Table 2-1.   There are numerous 

publications on landslide warning systems for hypothetical slopes, slopes that do not have laboratory 

testing or monitoring instruments, slopes that do not consider transient flow seepage or slopes that do not 

consider suction in the stability model.  These cases have been omitted.  Only warning systems, or work 

toward establishing a warning system, for a site-specific, un-failed, real slope considering unsaturated soil 

behavior is included in Table 2.1.   Information presented in Table 2-1 include laboratory tests performed 

to obtain the soil water characteristic curve (SWCC), whether scanning or hysteresis and pressure-

dependency of the SWCC were considered, laboratory tests to obtain the shear strength parameters, 

software employed to model the transient seepage response of the slope due to rainfall, slope stability 

model utilized, instrument thresholds established and methodology to establish the thresholds. 

Prediction of rainfall-induced slope failures consists of several necessary steps.  Laboratory tests to 

obtain the soil’s hydraulic characteristics and shear strength must be performed.  The influence of suction 

on shear strength must be captured by using either Fredlund’s b (Fredlund et al., 1978) or by using 

Bishop’s effective stress parameter,  (Bishop, 1954).  A software is needed to model the transient 

seepage occurring within the slope due to rainfall.  Monitoring instruments are typically installed to 

measure real-time subsurface response to rainfall.  The transient seepage model should be calibrated 

and used to predict the slope response due to a design storm scenario, the results of which can then be 

used to establish instrument thresholds.  Thresholds can be established for rainfall intensity and duration 

that precedes slope failure.  They can also be established for other types of instruments such as 

tensiometers, water content sensors and inclinometers. 

 Software that can be used to model the transient seepage response of a slope due to rainfall 

include: HYDRUS 2D/3D (Simunek et al., 2012), Seep/W (Geo-Slope International, 2012), CHASM (Lateh 

et al., 2008), Vadose/W (Geo-Slope International, 2014), and SVFlux (SoilVision Systems Ltd., 2018).  

There is a multitude of software available to analyze the stability of a slope, some of which include 

Slope/W (Geo-Slope International Ltd., 2015), CHASM, SVSlope (SoilVision Systems Ltd., 2018), STABL 

(Ensoft Inc., 2015), UTEXAS4 (Wright, 2004), STABGM (Duncan et al., 1985), etc.  Common limit 

equilibrium procedures employed by these software to compute the most critical factor of safety include 

Ordinary Method of Slices, Bishop’s simplified, Janbu, Morgenstern-Price, Spencer, Sarma, etc.   
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Table 2-1  Summary of site-specific limit-equilibrium-based landslide warning systems from the literature 

Reference SWCC Lab 
Tests 

Shear 
Strength Lab 

Tests 

Software for 
Transient 

Hydrological 
Calibration 

Scanning 
Considered? 

Pressure-
Dependent 
SWCCs and 

HCFs? 

Slope Stability 
Model  

Instrument 
Thresholds 
Established 

Methodology 
of 

Establishing 
Thresholds 

Harris et al., 
(2016) 

PP1 Back analyses 
+ Literature 

SEEP/W No No Slope/W 
Morgenstern-

Price 

Rainfall Artificial Neural 
Network 

Eichenberger et 
al., (2013) 

Suction-
controlled 

PP1 

Literature Lagamine No (hysteresis 
not observed 

in tests) 

Yes Infinite Suction Critical pore 
pressure 

parameter, ru
2 

Thiebes et al., 
(2014) 

None – 
obtained from 

SPAW 
model3 using 

PSD4 

Geotechnical 
database 

CHASM 
 

No No Bishop’s 
simplified and 

Janbu 

Rainfall,  
water content 

FS5 and 
groundwater 

levels 

Kanjanakul et al., 
(2016) 

N/A Direct shear SEEP/W No No SLOPE/W 
Bishop’s 
simplified 

Rainfall and 
API6 

FS5 

Godt and 
McKenna, (2008) 

Capillary-rise 
tests 

Direct shear TRIGRS No No Infinite slope, 
Janbu 

Rainfall FS5 

Notes: 1. PP = pressure plate 

 2. ru = pore pressure ratio = 
soilofweightUnitxmassslidingofVol

waterofweightUnitxwaterundermassslidingofVol

.

.
 

 3. SPAW model = Soil-Plant-Air-Water model developed by Saxton and Rawls (2006) that contains a soil database filled with geotechnical 
    and hydrological parameters 

 4. PSD = particle size distribution 
 5. FS = factor of safety 
 6. API = antecedent precipitation index 
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2.3 Landslide Warning Systems Based on Soil Volume Change and Stress-

Deformation Behavior via Numerical Analysis 

 There are numerous numerical methods available to assess the stress-deformation behavior of 

an unsaturated soil slope due to rainfall.  They include the finite element method (FEM), finite difference 

method, shear strength reduction technique, material point method, distinct element method, and 

enhanced limit method (Kulhawy, 1969).  Finite element software available include: NOSAT (Alonso et 

al., 1996), CODE_BRIGHT (Olivella et al., 1996), SOFT (Xiong et al., 2014), ICFEP (Potts and 

Zdravkovic, 1999), ACMEG-TS (Francois and Laloui, 2008) and ABAQUS (2003).  The enhanced limit 

method (Kulhawy, 1969) produces a global factor of safety along the slip surface based on stress 

distributions from a finite element model.  The shear strength reduction technique uses finite elements to 

calculate the hydraulic and mechanical states, and shear strains at each node within the soil mass.   It 

then calculates the factor of safety and deformations using a reduction of the shear strength parameters 

and the states of stresses from the FEM.   

 A thorough review of the literature did not yield a single reference of a landslide warning system 

that is based on numerical methods.  Of the software mentioned above, none have yet been used to 

establish a landslide warning system for a real slope.  One possible reason is because these computer 

programs are not able to model the scanning or hysteresis behavior of soil during drying and wetting 

cycles satisfactorily.  Therefore, there is clearly room for growth and research in this area.  
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3 SITE DESCRIPTION 

3.1 Location 

The 12.2-m-high cut slope is adjacent to Kalaniana’ole Highway on the southeast side of the island 

of Oahu, Hawaii with Le Jardin Academy lying to the northeast as shown in Figure 3.1.  The elevation 

view of the slope is shown in Figure 3.2, where it can be seen that the lower and upper portions of the 

compound slope are 55 and 63°, respectively. 

 

FIGURE 3.1  Location of cut slope on Kalaniana’ole Highway (Google maps, 2017) 
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FIGURE 3.2  Instrument layout in plan (a) and profile view for (b) tensiometers (c) water content sensors, and (d) inclinometers

a) 

 

 

 

 

b)      c)      d) 
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3.2 Geology and Prevailing Groundwater Conditions 

The island of Oahu was formed by the extrusion of basaltic lava from the Waianae and Ko’olau 

shield volcanoes.  The older Waianae Volcano is estimated to be middle to late Pliocene in age and forms 

the western third of Oahu, while the Ko’olau Volcano is estimated to be late Pliocene to early Pleistocene 

in age and accounts for about the eastern two thirds of Oahu.  The Ko’olau and Waianae volcanos may 

have grown as separate islands but were eventually joined and saddled by the Leilehua Plateau (Hazlett 

and Hyndman, 1996).  The Leilehua Plateau and the Waianae volcano braced the western flank of the 

Ko’olau volcano (Figure 3.3).  A portion of the steep, unsupported eastern flank eventually slid into the 

ocean as more and more magma rose into the volcano.  Known as the Nuuanu slide, this is one of the 

largest known slides on earth. 

 

FIGURE 3.3  Formation of Oahu by coalescence of the Waianae and Ko’olau volcanoes (Carlquist, 1970) 

The slope actually lies within the Ko’olau caldera (Figure 3.4), half of which is still standing while 

the other half has slid into the ocean (Figure 3.5).  Rising hydrothermal fluids and gases emanating from 

the active volcano has caused intense decomposition of the basaltic lava and breccia, and over time, this 

material has weathered into a saprolite. 
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FIGURE 3.4  Slope location with respect to the Ko’olau caldera (Rowland and Garcia, 2004) 

 

FIGURE 3.5  Collapse of the Ko’olau caldera (from Hazlett and Hyndman, 1996) 
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The slope crest lies about 50 m above mean sea level (MSL).  Ground water table was not 

encountered in any of the borings drilled.  However, according to Engott et al. (2015), the ground water 

table at this site is at about El. 5.8 m, which is 44.2 m below the slope crest. 

3.3 Nearby Historical Landslides 

Construction of the Pali Highway tunnel began in the mid-1950s and the tunnel was first opened for 

one-way traffic in 1957.  A second tunnel was completed in 1961.  The existing Pali Highway is actually 

the third roadway built along a route that runs roughly close to the old Pali Highway, which is now closed 

and mainly used by hikers. 

The current Pali Highway lies southeast of the slope site.  Since completion in the late 1950s, it has 

experienced a number of landslides, many of which have been documented by Torikai and Wilson (1992) 

and Macdonald et al. (1983).  Table 3.1 documents some of the slope failures in the vicinity of 

Pali/Kalaniana’ole Highway since construction completion of the Pali Highway tunnel while figures 3.6 

through 3.13 contain illustrations of a couple of listed in Table 3.1 plus some other more recent slides. 
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Table 3-1  Landslides in the vicinity of Pali/Kalaniana’ole Highway (from Torikai and Wilson, 1992 and 
Macdonald et al., 1983) 

Date Slide Location Source 

3/6/1958 
Rock slide at entrance to Kailua-side tunnel of Pali Highway, Honolulu-
bound. 6 inches of mud at exit of Kailua-side tunnel, Honolulu-bound. 

Honolulu Star Bulletin 

11/13/1965 
High bank gave way on north side of excavation for Kailua Drive-in 

Theater, which is the site of Le Jardin Academy.  Hundreds of tons of mud 
poured over parking area of theater. 

Macdonald et al., 
(1983) 

11/13/1965 
Large landslide on Kailua-side of Pali tunnels, just above hairpin turn; 15 
feet of mud and boulders, covering three lanes, 60 feet wide. Debris slid 

down 90 feet over a 120 foot high terraced embankment (Figure 3.6) 

Cavaliero, E.,and 
McMurray, T., 1965 

 

11/14/1965 
Second, larger slide on Pali Highway; covered 4 lanes up to 15 feet above 

road surface.  Occurred as crews were clearing area of earlier slide 
Honolulu Star Bulletin 

11/16/1965 
Third and largest slide of this storm on Pali Highway, near hairpin turn on 

Kailua-side dumps 8000 cubic yards of mud and jagged rock on top of two 
earlier slides.  Occurred as helicopter hovered over slide area 

Honolulu Star Bulletin 

August 1967 
A fourth slide took place at the same Pali Highway location as the above 

three November 1965 slides (Figure 3.7) 
Macdonald et al., 

(1983) 

2/1/1969 Rocks on Pali Highway near upper truck ramp OCDA 

5/12/1977 
Landslide blocking one Honolulu-bound lane, one block east of Pali 

Highway and Kamehameha Highway 
OCDA 

10/31/1978 Boulders on road at Pali Highway and Kamehameha Highway OCDA 

1/8/1980 Landslide at Kalaniana’ole/Kamehameha/Pali Highways junction blocking 

one lane 
OCDA 

1/21/1982 Landslide at junction of Auloa Road and Pali Highway OCDA 

1/21/1982 
Mudslide on Pali Highway at same site, Honolulu bound, fronting Kailua 

Drive-In (Note: Kailua Drive-in currently does not exist) 
OCDA 

2/14/1985 Mudslides blocking one lane on Kalaniana’ole Highway at Kailua Drive-In OCDA 

2/14/1985 Small landslide between Pali Highway and Auloa Road OCDA 

12/31/1987 Mudslide at Kalaniana’ole and Kamehameha Highways OCDA 

1/1/1988 Mudslides on Pali and Kalanianaole Highways Honolulu Star Bulletin 

3/19/1991 Landslide on Kalaniana’ole Highway, past Kailua Drive-In OCDA 

3/23/1991 
Mudslide, Kailua side of Pali between Kailua Drive-In and Maunawili 

Junction, Honolulu-bound 
OCDA 

5/20/2003 Landslide at Castle Junction Honolulu Star Bulletin 

6/2/2003 Fallen debris at Castle Junction Honolulu Star Bulletin 
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FIGURE 3.6  Cross sections of November 1965 landslides on Pali Highway (from Macdonald et al., 1983) 

 

FIGURE 3.7  August 1967 landslide on Pali Highway at the same location as above (from Macdonald et 
al., 1983) 

Nov. 13, 1965 

Nov. 14, 1965 

Nov. 16, 1965 
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FIGURE 3.8  May 20, 2003 Castle Junction slide (Honolulu Star Bulletin, 2003) 
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FIGURE 3.9  November 1, 2006 landslide on Pali Highway (Honolulu Star Bulletin, 2006) 

  

FIGURE 3.10  February 28, 2011 landslide on Pali Highway (Honolulu Star Advertiser, 2011) 
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FIGURE 3.11  February 2014 landslide on Pali Highway 

 

FIGURE 3.12  September 28, 2015 mudslide on Pali Highway (KITV4 News, 2015) 
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(a) 

 

(b) 

FIGURE 3.13  July 25, 2016 landslide on Honolulu-bound side of Pali Highway due to Tropical storm 
Darby (a) before and (b) after covering with a geotextile 
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Two maps summarizing some of these slides are shown in figs. 3.14 and 3.15.  Figure 3.14 from 

Deb and El-Kadi (2009) presents slides occurring before 2006.  Figure 3.15 illustrates slope failures taken 

from a NASA landslide database which records globally occurring landslides from 2006 to present. 

 

FIGURE 3.14  Locations of rainfall-induced shallow landslides from 1940 – 2006 (Deb and El-Kadi, 2009) 
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FIGURE 3.15  Map summarizing the locations of recent landslides (20011 – present) on Pali Highway 
and its vicinity (from Kirschbaum et al., 2010) 

3.4 Geotechnical Investigation 

Two borings, B2 and B3, were drilled by Geolabs, Inc. to a depth of 7.6 m (25 ft) with continuous 

sampling alternating between California and split-spoon samplers over the depth of boring (Figure 3.2).  

For safety reasons, the boreholes were drilled at a 3-m-setback from the slope crest.  Inclinometer 

casings were then inserted into the boreholes and grouted in place after reaching the bottom of the 

borings.  In-place inclinometers were then installed inside the casings in borings B2 and B3.  Additional 

boreholes were drilled nearby to install tensiometers (T2 and T3 in boreholes drilled to a depth of 6.1 m or 

20 ft) and water content sensors (W2 and W3 in boreholes drilled to a depth of 0.76 m or 2.5 ft).  

However, no samples were retrieved from these holes. 

Split spoon samples were used for index testing to measure the soil grain size distribution, 

Atterberg limits, water content and specific gravity.  Soil specimens from the California samplers were 

utilized for shear and stiffness tests as well as tests to obtain the soil-water characteristic curves (SWCC). 
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3.4.1 Split Spoon Samplers from Standard Penetration Test 

Standard penetration tests (SPT) were conducted using a safety hammer, which has an energy 

efficiency of 60%, and which has an energy correction factor of 1.0.  From the split spoon samplers, the 

soil was observed to consist of a red-brown stiff to very stiff (standard penetration test or SPT blow counts 

varying from 11 to 31) uniform elastic silt (MH) or saprolite with more than 90% fines.  Figure 3.16 

presents the SPT blow counts corrected for overburden plotted versus depth.  The average corrected 

blow count over the depth of both borings B2 and B3 is approximately 26 blows/ft. 

3.4.2 Modified California Samplers 

Modified California samplers were used to obtain “undisturbed” samples by Geolabs, Inc. because 

Shelby tubes would have likely crimped when pushed into such stiff soils and because Pitcher samplers 

were not available at the time of drilling.  The modified California sampler is a thick-wall, ring-lined split 

barrel sampler that is driven into the soil using a 64-kg (140-lb) SPT hammer falling 76 cm (30 inches).  

Strictly, samples from the modified California Sampler are technically “disturbed” due to the large area 

ratio of the sampler (sampler wall area/sample cross sectional area) and due to hammer advancement of 

the sampler.  However, this was the only option provided by the driller to obtain soil samples for strength 

and stiffness testing.  To reduce the effects of disturbance, the outer portion of the modified California 

samples were trimmed down from a diameter of 2.8 inches to 2.4 inches for strength testing, and to 2.5 

inches for consolidation testing. 

Approximately half the modified California soil samples were tested at the University of Hawaii and 

the other half were provided to Prof. Xiong Zhang of Missouri University of Science and Technology to 

perform constant water content consolidation and constant water content direct shear tests for estimating 

the Basic Barcelona model (BBM) soil parameters.  Simultaneously and independently, the BBM 

parameters were determined as part of this work by running isotropic compression and constant water 

content triaxial tests on unsaturated soil specimens to enable a comparison of the parameters from both 

approaches to be made. 

 

FIGURE 3.16  SPT blow counts versus depth 
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4 INSTRUMENTATION 

4.1 Instrumentation Types, Layout and Installation 

The following instruments were installed at the slope.  The layout of the instruments is shown in 

Figure 3.2. 

Table 4-1  Instrument, purpose, type, location and depth 

Instrument Purpose Make, model and accuracy Location Depth 

In-place 
inclinometer 

To measure lateral 
deflection of the 

slope 

Geokon MEMs 6150-4 (±0.05 
mm/m) 

B2 and B3 
≤ 7.62 m 

(25 ft) 

Tensiometer 
To measure soil 

suction 
Decagon MPS-6 (±10% accuracy) T2 and T3 

≤ 6.1 m 
(20 ft) 

Water content 
sensor 

To measure soil 
water content 

Decagon GS-3 (±3% accuracy) W2 and W3 
≤ 0.76 m 
(2.5 ft) 

Rain gage 
To measure 
precipitation 

Campbell Scientific TE525WS-L 
tipping rain bucket (±1% accuracy) 

Above 
ground 

N/A 

Prior to installation of the in-place inclinometers, a casing was first inserted into the borehole and 

the annular space grouted (Figure 4.1).  The string of in-place inclinometers was then assembled and 

lowered into the casing and the hole capped off.  The bottom of the inclinometer casing is embedded 7.6 

m (25 ft) below the slope crest, which is below the sliding surfaces of most rainfall-induced landslides 

(usually between 2 and 4 m deep according to Eichenberger et al., 2010).  The bottom of the inclinometer 

casing was deemed relatively immobile and can be considered as a point of fixity for reference purposes. 

Five tensiometers were installed each in boreholes T2 and T3 at depths of 0.15 m (0.5 ft), 1.52 m 

(5 ft), 3.05 m (10 ft), 4.57 m (15 ft) and 6.1 m (20 ft).  The tensiometers were first attached to a sacrificial 

PVC pipe (Figure 4.2) and then the whole assembly was lowered into the borehole.  The volume 

immediately surrounding each tensiometer was backfilled with silica fines but the volume in between 

adjacent tensiometers was backfilled with bentonite cement grout to prevent flow continuity along the 

borehole depth.  The measurable suction for the Decagon MPS-6 tensiometers ranges from 9 to 100,000 

kPa. 
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FIGURE 4.1  Installation of inclinometer casing 

 

 (a)                                               (b) 

FIGURE 4.2  (a) Decagon MPS-6 tensiometer and (b) tensiometer/PVC assembly lowered into borehole 

Water content sensors were installed in the walls of the W-series boreholes at depths of 0.15 m 

(0.5 ft) and 0.76 m (2.5 ft corresponding to an arm’s length).  Having to insert the 3 needle sensor prongs 
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(Figure 4.3a) horizontally into the borehole wall (Figure 4.3b) precluded them from being installed at 

larger depths because an installation tool was not available at that time.  After installation, the boreholes 

were grouted with bentonite cement grout. 

 

 

         (a)    (b)    (c) 

FIGURE 4.3  (a) Decagon GS-3 water content sensor, (b) water content sensors affixed to the borehole 
wall, and (c) hand auger used to drill water content sensor borehole 

The wires from all instruments were connected to two Geokon 16-channel multiplexers, which in 

turn was wired to a GEOKON Micro-1000 datalogger. The datalogger was programmed to collect 

readings every 4 hours.  Data was downloaded via a cellular phone modem housed in the datalogger.  

The whole system was powered by a 12V battery charged by a solar panel during the day.  A rain gage 

was housed separately from the datalogger and solar panel to minimize obstruction when collecting 

precipitation (Figure 4.4). 
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(b) 

FIGURE 4.4  (a) Datalogger, solar panel and rain gage and (b) interior of the datalogger 

4.2 Results 

This section presents the results from the monitoring instruments. 

4.2.1 Precipitation 

Due to limited resources, only a rain gage was installed at the slope site rather than a 

comprehensive weather station that would provide all the data necessary to estimate potential 

evaporation.  The rainfall record over the entire monitoring period is shown in Figure 4.5. 

There exists a gap in all the instrument data from 12/2/2016 to 1/27/2017 due to the following: (a) 

the 12V battery in the datalogger had to be replaced; and (b) damage of the tensiometer cables in 

Borings T2 and T3.  Bees built a hive inside the circular valve box covering the top of the inclinometer 

casing in Boring B3 (Figure 4.6), which is believed to have attracted rodents that chewed on the cables 

within the PVC conduit routing the tensiometer and water content sensor cables to the data acquisition 

system.  The cables were subsequently spliced after engaging a beekeeper to dispose the hive. 

Multiplexer 

Instrument 
cables 

Datalogger 

Modem 
Battery 
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FIGURE 4.5  Rainfall record at the slope site 

 

FIGURE 4.6  Bee hive at inclinometer Boring B3 
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There were two other problematic events that required the rain gage data to be corrected: (a) when 

the rain gage was clogged (7/1/2015 to 9/2/2015 and 11/1/2017 to 1/1/2018); and (b) when the higher 

solar panel and the lower rain gage were initially installed on the same pole, where the former may have 

obstructed precipitation from entering the latter (9/2/2015 to 12/2/2016).  The rain gage was subsequently 

relocated to stand alone as shown in Figure 4.4a. 

To correct the rainfall record during these problematic events, data from 5 nearby rain gages were 

collected and averaged using an inverse-distance-weighting (IDW) averaging method.  These 5 gages 

are located at Kailua Fire Station (KFS), Luluku (LUL), Maunawili (MAU), St. Stephens Seminary (STV), 

and Olomana Fire Station (OFS) (Figure 4.1).  Their coordinates, distance from the slope, dates used to 

calculate the IDW average, and source of the data are shown in Table 4-2. 

Table 4-2 Rain gages used to calculate the inverse-distance-weighting average rainfall at the slope site 

Station Latitude Longitude Distance (m) Dates Used Source 

KFS 21.39580 -157.73990 3654 7/1/15 - 9/30/15 NOAA NCEI (2018) 

LUL 21.38750 -157.80940 4236 7/1/15 - 9/30/15 NOAA NCEI (2018) 

MAU 21.35080 -157.76670 3045 7/1/15-1/1/18 
NOAA NCEI (2018) and 

Horel (2002) 

STV 21.37430 -157.79385 1955 9/30/15-1/1/18 Horel (2002) 

OFS 21.37750 -157.75083 2544 9/30/15-1/1/18 Horel (2002) 

 

 

FIGURE 4.7  Location of rain gage and meteorological sites 
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These problematic rainfall records were adjusted using a double-mass curve.  The double mass 

curve can be used to compare the data for a single station (in this case the rain gage at the slope site 

being researched denoted as KAL) with that of a pattern composed of data from several other stations in 

the area (KFS, LUL, MAU, STV and OFS).  According to the double mass curve method, a graph of the 

cumulative precipitation at KAL versus the cumulative IDW precipitation from KFS, LUL, MAU, STV and 

OFS should be a straight line.  Using this concept, the cumulative IDW rainfall is plotted versus the 

cumulative measured rainfall (Figure 4.8) to populate the missing or problematic KAL data summarized in 

Table 4-3.  The last line of Table 4-3 without an event number is considered the most reliable.  The 

corrected rainfall, KALcorr, was calculated by multiplying the cumulative KAL by the slope of the most 

reliable data (0.921) divided by the slope during which the corrected rainfall is being calculated (Figure 

4.9). 

Table 4-3 Problematic or missing rainfall data along with period when the rain gage worked well (last row) 

Event Description 
Start Date and 

Time 
End Date and 

Time 
Slope 

1 Gage clogged 7/1/15 0:00 9/2/15 9:00 1 

2 
Rain gage shared same 

pole as solar panel 
9/2/15 9:00 12/2/16 23:00 0.6904 

3 Power outage 12/2/16 23:00 1/27/17 14:00 1 

4 Gage clogged 11/1/17 0:00 1/1/18 0:00 1 

 When gage worked well 1/27/17 1400 11/1/17 000 0.921 

 

FIGURE 4.8  Double-mass curve 
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FIGURE 4.9 Corrected and adjusted rainfall data 

4.2.2 Inclinometer 

Ground deflections at the slope site (Figure 4.10) were minimal (< 2 mm or 0.08 inch at the ground 

surface) during the monitoring period.  Deflections decreased with increasing depth.  This amount of 

deflection is probably within the tolerance error of the inclinometer.  For all intents and purposes, the 

lateral deflections are considered negligible during the period of this study. 



48 
 

 
(a) 

 
(b) 

FIGURE 4.10  Inclinometer deflections in borings (a) B2 and (b) B3 
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4.2.3 Tensiometer and Water Content Sensor 

Suction is plotted versus time for the shallower (≤ 1.5 m or 5 ft deep) tensiometers in Figure 4.11a 

and the deeper (≥ 3 m or 10 ft) tensiometers in Figure 4.11b.  From Figure 4.11, it is interesting to note 

that suctions are affected by precipitation mostly at shallow depths (< 1.5 m or 5 ft).  Beyond this depth, 

the suctions are fairly constant (Figure 4.11b).  The suction and water content sensor readings are plotted 

in juxtaposition to show the influence of one on the other in Figure 4.12.  The precipitation versus time 

plot can be compared to Figure 4.12 to further corroborate the increase/decrease in moisture trends.  The 

fact that when suction decreases, water content increases illustrates that the instruments are responding 

in a logical fashion. 
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(a) 

 

(b) 

FIGURE 4.11  Suction versus time for (a) shallow (≤ 1.5 m or 5 ft deep) tensiometers and (b) deeper (≥ 3 
m or 10 ft) tensiometers 
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(a) 

 

(b) 

FIGURE 4.12  Suction and water content versus time for (a) 0.15 m or 0.5 ft deep tensiometers and (b) 
1.5 m or 5 ft deep tensiometers 
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5 LABORATORY TESTING 

Laboratory tests were conducted on soil samples collected in borings B2 and B3, a copy of the 

boring logs are shown in Appendix A.  Index test results are presented in Section 5.1 followed by the non-

index test results for the saturated and unsaturated soil in sections 5.2 and 5.3, respectively. 

5.1 Index Testing 

Index tests performed include grain size analysis, Atterberg limits, natural water content and 

specific gravity, the results of which are summarized in the following sub-sections. 

5.1.1 Grain Size Analysis 

The grain size curves for the soil (Figure 5.1) indicate that the soil is fine-grained. 

 

FIGURE 5.1  Grain size curves 
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5.1.2 Atterberg Limits and Natural Water Contents 

When plotted on a plasticity chart, the Atterberg limits indicate that all soil samples classify as high 

plasticity silt (MH) based on the Unified Soil Classification System (Figure 5.2).  The water contents are 

plotted alongside the respective plastic and liquid limit versus depth values in Figure 5.3. 

 

FIGURE 5.2  Plasticity chart 

Liquidity indices (
PI

PLw
LI

−
= ) ranged from -2.4 to +0.1 with an average of -0.7.  The liquidity index 

provides an indication of the soil’s consistency and sensitivity.  If LI approaches unity, the soil is close to 

the liquid limit, which is an indication that the soil is sensitive.  On the other hand, if LI  0, the natural 

water content is close to the plastic limit.  This indicates that the soil sensitivity (undisturbed strength 

divided by remoulded strength) is low and the soil consistency may be relatively stiff.  This is corroborated 

by the SPT blow counts of 11 to 31, which are indicative of a stiff to very stiff soil.  Overall, it can be 

concluded that the saprolite is most likely heavily overconsolidated since the natural water contents are 

predominantly less than the corresponding plastic limits. 
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FIGURE 5.3  Natural water content and Atterberg limits vs depth for borings B2 and B3 

The natural water content over the depth of both borings averaged approximately 41% (Figure 5.4).  

There does not appear to be much variation in the water content with depth. 

 

FIGURE 5.4  Natural water content vs depth for soils in borings B2 and B3 

w, PL, LL (%) w, PL, LL (%) 
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5.1.3 Specific Gravity 

The specific gravity of the soil was measured in accordance with ASTM Standard D854-98 using a 

pycnometer, the results of which are summarized in Figure 5.5.  The average specific gravity was about 

2.9 for all soil samples tested. 

 

FIGURE 5.5  Specific gravity vs depth for soils in borings B2 and B3 

5.2 Saturated Soil Testing 

One 1D consolidation test and one multi-stage consolidated drained triaxial test were conducted on 

soil samples B3-1 (0.3 to 0.76 m or 1 to 2.5 ft depth) and B2-1 (0.3 to 0.76 m or 1 to 2.5 ft depth), 

respectively. 

5.2.1 Consolidation Test 

A 1D consolidation test was conducted on a soil sample in its saturated state using a Geocomp 

Loadtrac II loading frame and a 55.7 kN (12,500 lbf) load cell to estimate the saturated hydraulic 

conductivity, preconsolidation pressure and compressibility parameters.  Results of this test are 

presented in Figure 5.6 through 5.8.  From Figure 5.6, it can be seen that the soil has a preconsolidation 

pressure of  160 kPa corresponding to an overconsolidation ratio (OCR)  20.  This high OCR is 

consistent with the SPT blow counts and negative values of liquidity indices. 

From measured values of coefficient of consolidation (cv was estimated using both Taylor’s (1948) 

√t and Casagrande and Fadum’s (1940) log t methods in Figure 5.7) and coefficients of volume 

compressibility (mv), the hydraulic conductivity of the soil when overconsolidated is about 10-6 cm/s 

(Figure 5.8). 
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FIGURE 5.6  Consolidation test results on Sample B3-1 

 

FIGURE 5.7  Coefficient of consolidation versus pressure (Sample B3-1) 

Sample B3-1 

Depth = 1.5 ft 

P
p
 ≈ 160 kPa ≈ 3340 psf 

OCR ≈ 160/8 ≈ 20 
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FIGURE 5.8  Hydraulic conductivity versus pressure (Sample B3-1) 

5.2.2 Multi-stage Consolidated Drained Triaxial Test 

Due to a limited number of samples, a multi-stage consolidated drained triaxial test was performed 

on one sample to obtain the saturated shear strength parameters.  The sample was first saturated by 

increasing the confining stress (3) with the drainage valve closed and then measuring the change in 

pore pressure (u).  The ratio u/3 = Skempton’s pore pressure parameter, B, was then calculated.  

This was repeated until a B-value of 0.98 was attained, at which point the sample can be considered 

saturated. 

The confining stress was then increased to 15 kPa, 30 kPa and 50 kPa, and the sample was 

sheared at each confining stress in a drained fashion whereby excess pore pressures were allowed to 

dissipate (Figure 5.9).  At confining stresses of 15 and 30 kPa, peak deviator stresses occurred at axial 

strains of 1.37% and 2.13%, respectively.  The axial strains were limited to 2.5% before increasing the 

confining stress during the first two stages.  At the last stage (3 = 50 kPa), the test was run to larger axial 

strains (about 5.7%).  The axial strain at failure was 3.29% for the 50 kPa confining stress.  The failed 

specimen is shown in Figure 5.10. 

Since the sample was consolidated to 3 different values of confining stress prior to shearing, this 

implies that the OCRs are different at each confining stress.  Therefore, Hvorslev’s (1937) shear strength 

theory was used to discern meaningful shear strength parameters from such a test. 



58 
 

Based on companion direct shear and consolidation test results, Hvorslev showed that the shear 

strength can be separated into two components, one that is a function of the effective normal stress at 

failure (’e or Hvorslev’s true ) and another that is dependent on the water content at failure (c’e or 

Hvorslev’s true c).  To obtain these strength parameters, the equivalent consolidation pressure (’e) must 

first be obtained at each normal stress.  ’e is the normal stress that corresponds to the void ratio on the 

virgin compression curve.  When the normalized failure shear stress (f/’e) is plotted versus the 

normalized normal stress (’f/’e), Hvorslev noticed that the tests for all soils plotted on a straight line as 

follows. 
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For this research, CD triaxial tests were run instead of direct shear tests.  Bishop and Henkel 

(1962) suggested that the corresponding equation for CD tests is as follows: 
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where 1‘ and 3’ are the major and minor principal effective stresses, respectively and the subscript “ f“ 

denotes values at failure.  If the soil was tested in direct shear, ’e would simply be obtained from the 

void-ratio vs log vertical stress plot from a 1D consolidation test (Figure 5.6) because in both direct shear 

and consolidation tests, no lateral straining of the soil occurs.  Since the lateral restraint in a CD triaxial 

and consolidation tests are different, the consolidation test results were replotted in terms of void ratio 

versus the log of mean effective normal stress, p’, instead of the vertical stress so that the equivalent 

stress is based on the mean effective normal stress, which is defined as follows:   

3

21
' '

1
oK

p
+

=               (5.3) 

where ’1 = applied vertical stress and Ko = at-rest lateral earth pressure coefficient estimated using the 

expression proposed by Schmidt (1966) as follows: 

Ko = 

'sin' )sin1( eOCRe
−              (5.4) 
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(a) 

 

(b) 

FIGURE 5.9  (a) Deviator stress vs axial strain and (b) volume change curves for Sample B2-1 
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FIGURE 5.10  Shear plane in multi-stage CD triaxial specimen 

Hence, Equation 5.2 can be rewritten as follows: 
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In the multi-stage CD test, p’ = ’3 since the soil is isotropically consolidated.  Therefore, a trial and error 

process is needed to estimate ’e as follows: 

1. Guess ’e so that p’ and Ko can be estimated using equations 5.3 and 5.4.   

2. Plot Figure 5.11 to estimate the void ratio on the recompression line based on the value of p’ at 

each confining stress. 

3. Use the void ratio from Step 2 to estimate p’e on the normally consolidated line. 
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4. Plot 
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5. Iterate to find the final value of ’e, which is obtained when the guessed and calculated values of 

’e match ( 28°). 

The final values of void ratio, water content, p’e and c’e at each of the 3 confining stresses are 

summarized in Table 5.1.  Hvorslev’s true c’e varies with water content as shown in Figure 5.12.  The 

values of ’e and c’e(w) are then used in slope stability analyses needed for development of the landslide 

warning system. 

 

FIGURE 5.11  Consolidation test results replotted in terms of void ratio vs mean stress 
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FIGURE 5.12  Consolidation test results replotted in terms of void ratio vs mean stress 

 

Table 5-1  Summary of void ratio, p’e, water content and c’e for the CD test 

Confining 
Stress, σ’3 = p’ 

(kPa) Void Ratio, e 
Water Content, 

w (%) 
p’e 

(kPa) 
c’e 

(kPa) 

15 1.345 46.5 61.6 19.2 
30 1.343 46.4 72.0 22.4 
50 1.341 46.3 80.6 25.1 
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FIGURE 5.13  Hvorslev’s c’e as a function of water content 

To determine the value of cohesion to use, it is necessary to look at the variation of water content 

of the soil when it is saturated with depth.  This value of water content can be obtained by dividing the in 

situ void ratio by the specific gravity, and the in-situ void ratios can be obtained from unit weight 

measurements of the modified California samples.  A plot of the water content of the soil if it were 

saturated (wsat) versus depth (Figure 5.14) indicates an average value of about 46.5%.  Figure 5.14 also 

indicates that wsat is fairly constant with depth.  This suggests that a value of c’e of 18 kPa may be 

reasonable for this site. 

It is possible that the soil sample may have failed at a confining stress of 15 kPa because of 

softening as seen in the stress-strain curve at that confining stress (Figure 5.9a) even though the strains 

only reached a maximum of 2.5%.  Nevertheless, the shear strengths obtained from this test should be on 

the conservative side.  In contrast, Prof. Xiong Zhang’s constant water content direct shear tests 

(Appendix B) yielded friction angle and cohesion values of 25.8° and 35.5 kPa, respectively (compared to 

28° and 18 kPa).  In their tests, they attached a tensiometer that was placed in a pre-drilled hole that 

extended to near the failure surface of the direct shear specimen.  It is not known how much of a 

reinforcing effect the tensiometer had on the direct shear specimens and to what extent the tensiometer 

affected the shear strength parameters. 
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FIGURE 5.14  Variation of water content of the soil if it were saturated with depth 

5.3 Unsaturated Soil Testing 

This sub-section summarizes the results of tests conducted to obtain the soil-water characteristic 

curve, the hydraulic conductivity function and the Basic Barcelona model (BBM) parameters. 

5.3.1 Soil Water Characteristic Curve and Hydraulic Conductivity Function 

The soil-water characteristic curve (SWCC) was estimated by running a pressure plate (PP) test 

(apparatus manufactured by Soilmoisture Equipment Corp.).  The PP apparatus (Figure 5.15) has a 

porous ceramic plate with an air-entry value of 500 kPa.  This means that it is useful for deriving the 

portion of the SWCC in the lower suction range (< 500 kPa).  To obtain the portion of the SWCC at higher 

suctions (6,000 to 600,000 kPa), a Decagon Devices’ (now owned by Meter Environment) Aqua Lab 

Vapour Sorption Analyser (VSA - Figure 5.16) was used. 

The pressure plate apparatus was used to test a specimen obtained from a modified California 

sampler.  The VSA is unique in the sense that unlike the pressure plate, the soil sample does not have to 

be “undisturbed.”  This can be explained as follows.  Because the VSA only measures suction in the very 

dry range, the water in the soil exists only at the particle surface and not in the capillary pore spaces.  A 

disturbed soil will have a different soil structure than an undisturbed one.  This will change the capillary 

spaces, but since all the water is associated with those at the particle surface, it will not affect the 

isotherm in the VSA. 
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FIGURE 5.15  Soilmoisture Equipment Corp. pressure plate apparatus having a porous ceramic plate 
with an air-entry value of 500 kPa 

 

FIGURE 5.16  Decagon Devices’ Aqua Lab Vapor Sorption Analyzer 

One important consideration is that the SWCC is pressure dependent (Ng & Pang, 2000; Gallipoli 

et al., 2003; Sun et al., 2007; Khalili et al., 2008; Nuth & Laloui, 2008; Sheng & Zhou, 2011).  Since the 

pressure plate and VSA are conducted in the lab under atmospheric pressure, the resulting SWCC is only 
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valid for very shallow soils.  Nevertheless, these results render the SWCC a very useful yardstick for the 

response of surficial soils to precipitation and evaporation.  Pressure dependent SWCC’s can be derived 

from the results of constant water content isotropic compression tests.  They are presented in Section 

5.1.2. 

The resulting drying and wetting branches of the SWCC conducted on an “undisturbed” sample 

(B2-6 from a depth of 3.05 m or 10 ft) in a PP apparatus are shown in Figure 5.17.  Two cycles of drying 

and wetting were performed in the PP test.  According to Likos et al. (2014), the first wetting and second 

drying cycles form the main wetting and drying curves of the SWCC, respectively while the second 

wetting cycle represents a scanning curve that runs from the drying curve to the wetting curve.  Based on 

readings in the 0.15-m-deep tensiometer, the field-measured suctions never exceeded 700 kPa thus 

rendering the VSA data irrelevant.   

 

FIGURE 5.17  Laboratory measured soil-water characteristic curve 

It is well known that the hydraulic conductivity of soil decreases with decreasing saturation.  

Measuring the unsaturated hydraulic conductivity at different degrees of saturation is a tedious and time-

consuming proposition.  Known as the hydraulic conductivity function (HCF), the variation of unsaturated 

soil hydraulic conductivity (k) with suction (s) can be alternatively obtained using the SWCC data together 

with a statistical approach proposed by Kunze et al. (1968) as follows: 
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where i = interval number which increases as the volumetric water content decreases, Ts = surface 

tension of water = 0.072 N/m, w = unit weight of water, s = volumetric water content at 100% saturation, 

ks = saturated hydraulic conductivity (from consolidation test, ks  10-6 cm/s), μw = absolute viscosity of 

water = 8.62x10-4 N-s/m2, N = total number of intervals computed between saturated volumetric water 

content and zero volumetric water content, j = counter from 1 to m, m = total number of intervals between 

the saturated volumetric water content and the lowest volumetric water content on the experimental 

SWCC and j = matric suction corresponding to the jth interval.  Based on the SWCC data, the resulting 

HCF is shown in Figure 5.18 in terms of the relative hydraulic conductivity (krel) which is defined as the 

hydraulic conductivity of the soil at a given degree of saturation divided by the saturated hydraulic 

conductivity, and is a number between 0 and 1. 

 

FIGURE 5.18  Hydraulic conductivity function derived from the SWCC using Kunze et al.’s (1968) 
procedure 

At shallow depths, the suction can vary considerably due to climactic effects.  When the suction is 

high, the soil’s hydraulic conductivity is low.  If it reaches a point low enough that it can be considered 

“impermeable,” it is easy to see why perched water tables can readily form during a downpour resulting in 
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the development of positive pore water pressures in slopes.  Naturally, the elevated pore pressures are 

the main culprit for triggering rainfall-induced landslides. 

5.3.2 Triaxial Test 

Triaxial tests were conducted on three unsaturated soil samples extruded from modified California 

samplers using a GDS triaxial automated system.  When testing unsaturated soil, the biggest challenge is 

in quantifying the volume change in the soil.  The GDS equipment uses a Hong Kong University of 

Science and Technology (HKUST) system for measuring soil volume change whereby the basic principle 

is “to record the differential pressure between the water inside an open-ended, bottle-shaped inner cell 

and the water inside a reference tube using a differential pressure transducer” (Ng and Menzies, 2007).  

The inner cell is sealed onto the pedestal of the outer cell, a schematic of which is shown in Figure 5.19 

and pictures of the GDS triaxial equipment are shown in Figure 5.20. 

Each sample was subjected to constant water content isotropic compression (CWIC) to obtain 

stiffness parameters (Section 5.3.2.1) and constant water content triaxial shear (CWTS) tests to obtain 

strength parameters (Section 5.3.2.2).  The parameters obtained from these tests are compared in 

Section 5.3.2.3 to those obtained by Prof. Xiong Zhang and Dr. Lin Li, who used constant water content 

oedometer and constant water content direct shear tests (Appendix B).   

 

FIGURE 5.19  Schematic of HKUST double wall volume change measurement system in a triaxial cell for 
unsaturated soil testing (from Ng and Menzies, 2007) 
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FIGURE 5.20  GDS triaxial apparatus with HKUST double wall volume change measurement system 

(a) 

(b) 

(c) 

(d) (e) 
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FIGURE 5.21  Photos of sheared specimen from tests (a) CWCU-1, (b) CWCU-2, and (c) CWCU-3 

 Constant Water Content Isotropic Compression Tests  

An idealized stress path for a soil subjected to CWIC test is shown in Figure 5.22 (Zhang, 2016).  

This test differs from the more conventional suction-controlled isotropic compression test (SCIC) reported 

in the literature by Wheeler and Sivakumar 1995; Cui and Delage 1996; Rampino et al. 1999; Sharma 

1998; Hoyos 1998; Blatz and Graham 2003; Thu et al. 2007, in which both the pore water and pore air 

pressures are drained (i.e.; suction is controlled).  Zhang (2016) indicated that the limitations of SCIC 

tests include longer testing times and deviation of actual stress paths from the idealized ones (Figure 

5.23).  Advantages of CWIC tests are: (1) unlike pore water pressure, pore-air pressure is instantaneously 

distributed throughout the sample which significantly reduces testing time and which eliminates the 

deviation of actual stress paths from the idealized ones; (2) BBM stiffness parameters can be deduced 

from less tests and types of stress paths; and (3) undrained pore water pressure conditions more closely 

resemble rapid rainfall-induced slope failures (Rahardjo et al., 2004 and Thu, 2006). 
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FIGURE 5.22  Idealized stress paths for undrained constant water content isotropic compression (CWIC) 
tests (from Zhang, 2016) 
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FIGURE 5.23  Idealized versus actual stress paths for suction-controlled isotropic compression (SCIC) 
tests (from Zhang, 2016) 

In SCIC tests, two of the stress-state variables, p and s, are controlled and the void ratio is 

determined by measuring the volume change.  In CWIC tests, only water content and net mean stress are 

controlled, and suction and volume change (which yields void ratio) are measured.  Due to the highly 

coupled hydraulic and mechanical states during CWIC testing, they are not commonly performed (Casini 

et al., 2013 and Li, 2015). 

Zhang and Lytton (2009a, b and c) developed a modified state surface approach (MSSA), which 

adopts the same stress space as the BBM (Alonso et al., 1990).  Because the BBM remains one of the 

most fundamental models for unsaturated soils, the MSSA is based on the same framework and can be 

used to obtain BBM stiffness parameters from CWIC tests.  This section presents the testing procedure, 

results, and calibrated BBM parameters from three CWIC tests. 

 Procedure 

The GDS apparatus consists of a high air entry disk (HAED) that is mounted on the triaxial cell 

base pedestal (Figure 5.20a) to allow for pore pressure measurement via the axis-translation technique 

(Hilf, 1956).  When the HAED is saturated, it allows liquid to flow through its pores but it restricts air flow.  

If the differential pressure between the pore air pressure at the top of the HAED (ua) and the pore water 

pressure at the bottom of the HAED (uw) reaches its air entry value (-15 bars), air begins to enter the 

pores of the HAED.  When the pore water pressure beneath the HAED is more than 1 bar larger than the 

pore air pressure at the top of the HAED, cavitation will occur.  Cavitation can be avoided by increasing 

the pore air pressure in the sample as opposed to applying a negative pore water pressure.  Pore water 
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pressure can be either controlled (drained test) or measured (undrained test) once equilibrium is reached.  

The resulting suction is calculated as pore air pressure minus pore water pressure. 

Once the HAED was saturated, the sample was mounted on the pedestal (Figure 5.20b), covered 

by placing the inner cell and sealing the top with tape, and then allowed to equalize with the HAED.  The 

sample was then subjected to a drying stage after recording the initial suction value.  For tests CWIC-1 

and 2, suction was increased via air-drying.  The sample was exposed to atmospheric lab conditions for 

one-hour a day and covered by Saran wrap the rest of the time to avoid rapid drying, which can cause 

surface cracks that will establish an irreversible differential suction profile within the specimen.  After the 

desired suction value was achieved, the GDS apparatus was assembled (Figure 5.20c-e) and the 

isotropic compression stage commenced.  The suction prior to isotropic compression for the three test 

samples are shown in Table 5-2. 

For test CWCIC-3, the GDS apparatus was assembled immediately after the sample was mounted.  

Suction was increased via the axis-translation technique while maintaining a nominal confining stress of 

10 kPa, following the procedure described in JGS 0527-1998 (1998).  Volume change was measured 

during this stage.  The suction increased from 42.9 kPa to 60 kPa prior to isotropic compression. 

Table 5-2. Initial specimen conditions prior to constant water content isotropic compression 

Test Sample D0 
(mm) 

H0 
(mm) 

s0 
(kPa) 

e0 S0 Water 
content 

CWIC-1 B3-1-B 58.35 136.9 15.7 1.286 86% 38.4% 
CWIC-2 B3-6-M 61.13 127.7 25.7 1.365 91.5% 44.3% 
CWIC-3 B3-3-M 61.00 126.7 42.9 1.348 89.7% 43.7% 

 

During the CWIC tests, pore water pressure was measured (undrained), and pore air pressure was 

controlled (drained).  Cell pressure was instantaneously applied at varying user-defined increments to 

capture the yield point and to avoid sudden saturation.  Cell pressure was maintained until the pore water 

pressure and volume change equalized.  An unload/reload cycle was performed in tests 1 and 3.  All 

samples were unloaded to achieve a prescribed level of preconsolidation prior to shear. 

 Results 

Figure 5.24a shows the p-s stress paths for all tests.    Also shown on Figure 5.11 is the location of 

the saturated yield point, P0* = 92 kPa, obtained from the 1D consolidation test.  Figure 5.24b and c show 

specific volume and saturation versus net mean stress, where saturation is obtained by dividing the 

product of water content and specific gravity (constants) by the current void ratio.  From Figure 5.24b, the 

yield points for tests CWIC-1, 2, and 3 were estimated to be 265, 113, and 67 kPa, respectively.  Figures 

5.24d and e show the specific volume and saturation versus matric suction, respectively.   
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(a) 

 

(b)     (c) 

 

(d)     (e) 
FIGURE 5.24  Constant water content isotropic compression test results of (a) measured stress paths, (b) 
specific volume versus net mean stress, (c) saturation versus net mean stress, (d) specific volume versus 

matric suction, and (e) saturation versus matric suction 
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 BBM stiffness parameters  

The MSSA developed by Zhang and Lytton (2009) re-expressed the BBM model using 3-

dimensional surfaces.  One advantage of the MSSA is its capability to model soils with different stress 

histories (FIGURE 5.22  ).  During recompression, the stress path follows the elastic surface until it 

reaches the yield curve, irrespective of stress history (P0, s0, 0).  The elastic surface is inclined at an 

angle  in the ln p -  plane and s in the ln s -  plane but is unfixed and allowed to shift vertically along 

the void ratio (or specific volume) axis.  Once the LC yield curve is reached, the stress path falls on the 

plastic collapse surface.  This surface is fixed in the ln p - ln s -  space.  The elastic surface and the 

plastic collapsible surface can be mathematically expressed as:  

𝑣𝑒 = 𝐶1 − 𝜅 ln 𝑝 − 𝜅𝑠 ln(𝑠 + 𝑝𝑎𝑡)  𝑒𝑙𝑎𝑠𝑡𝑖𝑐 𝑠𝑢𝑟𝑓𝑎𝑐𝑒          (5.1) 

𝑣 = 𝑁(0) − 𝜅𝑠 ln (
𝑠+𝑝𝑎𝑡

𝑝𝑎𝑡
) − 𝜆(𝑠) ln (

𝑝

𝑝𝑐)  𝑝𝑙𝑎𝑠𝑡𝑖𝑐 𝑐𝑜𝑙𝑙𝑎𝑝𝑠𝑖𝑏𝑙𝑒 𝑠𝑢𝑟𝑓𝑎𝑐𝑒 (5.2) 

where C1 is a constant, λ(s) is the slope of the NCL line and is a function of suction = λ(0)[(1 - r)exp(-βs) + 

r]; r = parameter controlling the slope of the virgin compression line, β = parameter controlling the slope of 

the virgin compression line for s ≠ 0, λ(0) = slope of the virgin compression line associated with the mean 

net stress at saturation (s = 0); pc is a reference stress where the LC curve is a vertical line, and N(0) = 

intercept of the saturated NCL line when p = 1 kPa.  A third plastic expanse surface that models plastic 

deformation during drying also exists.  However, this surface is not applicable to the tests performed 

because the suction values during testing never exceeded the initial suction values established at the 

start of the tests. 

BBM parameters N(0), , s, λ(0), β, r, and pc were calibrated using ordinary least squares 

regression of the predicted specific volume (calculated from equations 5.1 and 5.2) and the measured 

values shown in Figure 5.24.  The calibrated parameters are displayed in Table 5-3.  Figure 5.25 shows a 

comparison between measured and predicted specific volumes with a coefficient of determination of 

98.4%.  

Table 5-3. Calibrated BBM stiffness parameters 

Parameter Unit Best fit 

 - 0.0181 

s - 0.0039 

N(0) - 1.90 
λ(0) - 0.13 

r - 0.01 

β MPa-1 6.22 

pc MPa 3.33 
pat MPa 0.1013 

R2  98.4% 
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FIGURE 5.25  Comparisons of predicted and experimental results for CWIC tests 

 Figure 5.26 presents the LC yield curves for the CWIC tests and the 1D consolidation test.  The 

LC yield curve is expressed as: 

𝑝0

𝑝𝑐
= (

𝑃0
∗

𝑝𝑐
)

𝜆(0)−𝜅

𝜆(𝑠)−𝜅
               (5.3) 

where p0 is the yield stress along the LC yield curve under unsaturated conditions (s > 0), P0* is the yield 

stress along the LC curve under saturated conditions (s = 0), λ(s) = λ(0)[(1 - r)exp(-βs) + r], s is the matric 

suction, and λ(0), , β, and pc are previously defined BBM parameters.  The shape of the predicted LC 

curves is classified as Type 3 (Zhang, 2015).  This shape was first deemed illogical by Alonso et al., 

(1990) because there was little experimental evidence showing that this type of yield curve exists. More 
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recently, undrained isotropic compression tests performed by Sun et al., (2008), Thu et al., (2007) and 

Zhang and Lytton (2009b) (Figure 5.27) and Sheng et al., (2008) (Figure 5.28) provided the missing 

experimental evidence.  In 2009, Zhang and Lytton (2009) theoretically proved that the Type 3 LC yield 

curve is applicable to expansive soils. 

 

FIGURE 5.26  Predicted loading collapse yield curves for oedometer and CWIC tests 

Figure 5.26 shows that the yield mean net stress generally decreases with increasing suction.   

The location of the SI curve has not been experimentally determined in this research.   Therefore, 

two scenarios are presented assuming two different locations of the SI curve.  First, assume the SI curve 

runs close to the maximum past suction (say 80 kPa since maximum measured field suction = 79 kPa – 

see Table 7-3) as shown in Figure 5.29.  If a soil is initially within the elastic region, has a net mean stress 

greater than p0 (which is the value of p at the intersection of the LC and SI yield curves = 14 kPa) and is 

dried at constant net mean stress, it will experience plastic collapse at suctions greater than that on the 

LC yield curve.  This soil will not collapse due to wetting.  This can be best illustrated by Sample CWIC-2 

from a depth of 3.3 m (10 ft), which is in close proximity to a tensiometer in Boring T3 at the same depth. 
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FIGURE 5.27  LC evolution of a MH Malaysian silt (Thu et al., 2007) exhibiting three types of LC yield 
curves (Zhang and Lytton, 2009) 

 

FIGURE 5.28  Type 3 yield curve for Pearl clay (Sheng et al., 2008) 

The soil is initially at a net mean stress of 50 kPa (Point A), which is within the elastic region.  

Under a constant net mean stress, the stress path will run from A→B, which is located on the LC yield 

curve.  Upon further drying, the soil follows path B→C where it undergo irreversible plastic strains 

(Equation 5-2).    

A second scenario is if the SI yield curve is omitted (Figure 5.30) and the LC yield curve extends 

until it intersects with the s axis.  In the case of CWIC-2, the LC yield curve approaches the s axis at 

about s = 100 kPa.  This type of yield curve has previously been shown by Zhang and Lytton (2009b) to 

exist for a high-plasticity compacted clay based on Brackley’s (1975) data (Figure 5.31).   
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FIGURE 5.29  LC and hypothetical SI yield curves for CWIC-2 
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(b) 

FIGURE 5.30  LC yield curves at high suctions for (a) all tests and (b) CWIC-2  

 

FIGURE 5.31  Evolution of LC yield curves for high-plasticity compacted clay (Zhang and Lytton, 2009b) 

C 

 

 

 

B 

 

A 

 

 

M
a
tr

ic
 s

u
c
ti
o
n
, 
s
 (

k
P

a
) 

Net mean stress, p (kPa) 



81 
 

 Porosity-Dependent SWCC 

Porosity-dependent SWCC can be incorporated in coupled hydro-mechanical models either by 

expressing the individual SWCC parameters such as the air entry suction as a function of confining stress 

(Gallipoli et al., 2003; Huang et al., 1998; Nuth and Laloui, 2008; Cabarkapa and Cuccovillo, 2006; Hu et 

al., 2013; and UPC, 2017), or by expressing the SWCC as a function of the soil stress state (Sun et al, 

2008; Masin, 2010; Mbonimpa et al., 2006; and Zhou et al., 2012).  In HYDRUS, which is the software 

used for the transient hydrological flow model in Chapter 6, hysteretic behavior is only available for the 

van Genuchten model (1980).  Therefore, only hydraulic models that express the van Genuchten 

parameters as a function of stress state are considered.  Hu et al., (2013) derived a relationship between 

the air entry suction and void ratio, which varies with pressure.  D’onza et al. (2011) and UPC (2017) 

expressed two of the van Genuchten parameters, P and λ, as a function of porosity. 

𝑆𝑒 =
𝑆−𝑆𝑟

𝑆𝑙−𝑆𝑟
= [1 + (

𝑠

𝑃
)

𝜆

1−𝜆
]

−𝜆

              (5.4) 

𝑃 = 𝑃0 exp[𝑎(0 − )] 

𝜆 = 𝜆0 exp[𝑏(0 − )] 

where Sr is the residual saturation, Sl is the maximum saturation, s is the matric suction (kPa), P and λ 

are the van Genuchten parameters,  is the porosity, P0 and λ0 are the van Genuchten parameters at a 

reference porosity, 0 and a and b are fitting parameters.  Sometimes, the van Genuchten equation is 

more commonly expressed in terms of α and n instead of P and λ.  However, the two pairs of parameters 

are related as follows: 

𝑃 =
𝑔

𝛼
                 (5.5) 

𝜆 = 𝑚 = 1 −
1

𝑛
 

where g is acceleration due to gravity. 

CWIC data was used to obtain the porosity-dependent van Genuchten parameters (P0, λ0, a, b and 

0).  The porosity can be calculated from the specific volume ( = ( - 1)/).  The specific volume can be 

estimated using the BBM (equations 5.1 and 5.2) and inserted into Equation 5.4 to predict the degree of 

saturation during isotropic compression.  Data points during the loading stage were used to calibrate the 

main wetting branch of the porosity-dependent SWCC since suction decreases during compression.  

Conversely, data points during the unloading stage were used to calibrate the main drying branch of the 

porosity-dependent SWCC.  The parameters λ0 and b were assumed to be equal for both drying and 

wetting.  The model parameters (ad, aw, P0
d, P0

w, b, λ0 and 0) were calibrated by performing ordinary 

least squares regression of the measured and predicted saturation and are presented in Table 5-4.  
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Figure 5.32 show the predicted versus measured saturation versus matric suction curves.  The resulting 

coefficient of determination was 0.958 (Figure 5.32d) based on CWIC tests 2 and 3 data.  Using the 

parameters in Table 5-4 and Equation 5.3, the porosity-dependent SWCCs are plotted in Figure 5.33. 

Table 5-4 Calibrated porosity-dependent van Genuchten parameters  

Parameter Unit Drying Branch Wetting Branch 

0 - 80.13% 80.13% 

P0 kPa 3.32 0.003 

λ0 - 0.13 0.13 

a - 14.4 41.36 

b - -0.01 -0.01 

 

FIGURE 5.32  Predicted versus measured saturation versus suction curves for CWIC- (a) 1; (b) 2; (c) 3 
and (d) predicted versus measured saturation for CWIC tests 2 and 3   
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FIGURE 5.33  Predicted porosity-dependent SWCC 

 Constant Water Content Triaxial Shear Tests 

Constant water content shear tests have been performed under triaxial (Bishop et al., 1960; 

Bishop and Donald, 1961; Satija, 1978; Georgetti and Vilar, 2011; Ma et al., 2013; Rahardjo et al., 2004; 

Thu et al., 2006) and direct shear (Tarantino, 2009; Ng and Chiu, 2001; Maswoswe, 1985).  Rahardjo et 

al. (2004) performed CD and CWTS tests on reconstituted residual silt and found that shear strengths 

obtained from both tests show good agreement.  Georgetti and Vilar (2011) observed that CWTS deviator 

stress-strain curves more closely resemble those from saturated CD tests rather than saturated CU tests. 

The next section presents the results of three CWTS tests alongside those for the multi-stage CD 

triaxial tests for comparison purposes. 

 Procedure 

Constant water content triaxial shear (CWTS) tests were performed to obtain the BBM shear 

parameters (G, k, and ).  The pore-water was undrained and pore-air drained during shearing.  An 

unload-reload stage was performed during tests 2 and 3 to obtain the elastic shear modulus, G.  Table 5-

5 summarizes the initial specimen conditions before shearing.   

The samples were sheared at constant cell and pore-air pressure at a rate of 0.01%/min in 

accordance with JGS-0527-1998 (1998).  The same shearing rate was also adopted by Ma et al. (2013), 

Rahardjo et al. (2004), Thu et al. (2006) and Maleki and Bayat (2012).  Thu et al. (2006) measured 
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suction at three sample heights during constant water content shearing of a compacted silt and concluded 

that a constant rate of strain of ~0.01%/min produced small differences between suctions measured at 

the base plate and at ¼, ½ and ¾ of the sample height from the base plate.   

Table 5-5 Initial conditions of specimen before shearing 

Test Sample 
D0 

(mm) 
H0 

(mm) w p0(kPa) 
s0 

(kPa) OCR0 

CD-15 B2-1-B 59.4 124.6 sat 15 0 6 

CD-30 B2-1-B 58.9 126.6 sat 30 0 3 

CD-50 B2-1-B 58.7 128.4 sat 50 0 2 

CWC-1 B3-1-B 57.3 136.6 38.4% 50 44 14 

CWC-2 B3-6-M 60.2 127.7 44.3% 30 21 5 

CWC-3 B3-3-M 59.3 125.8 43.7% 30 40 11 

 Results 

Table 5-6 summarizes the results of the CWTS tests.  Deviatoric stress versus axial strain plots are 

shown in Figure 5.34a.  All tests exhibited post-peak strain softening.  For tests conducted at the same 

confining stress {= 50 kPa for CD-50 and CWC-1} and {= 30 kPa for CD-30, CWC-2 and CWC-3}, the 

peak deviatoric stress increased with increasing suction. 

The samples were loaded to large strains towards critical state.  For tests conducted at the same 

confining stress of 30 and 50 kPa, the deviatoric stress at critical state decreased with increasing suction. 

This indicates that one or both tests did not reach critical state yet. 

Volume change curves are shown in Figure 5.34b.  For the CWTS tests at the same confining 

stress of 30 kPa, the amount of dilation increased with increasing suction and OCR. 

Suction versus axial strain curves are shown in Figure 5.34c.  Suctions did not change significantly 

during shearing.  The maximum suction difference during tests 1, 2, and 3 were 3.5 kPa, 1.3 kPa, and 6.9 

kPa, respectively.  The suction response during shear was different for all tests.  With CWC-1, suctions 

initially increased to a peak of 45.1 kPa then decreased until the peak deviator stress was reached.  The 

suction then gradually increased for the remainder of the test.  With CWC-2, there was no significant 

change in suction throughout despite there being two unload-reload cycles.  With CWC-3, the suction 

initially decreased during shear and increased during the unload-reload cycle.  During reloading, the 

suction decreased until the peak deviatoric stress was reached and then gradually increased for the 

remainder of the test.  Thu et al., (2007) performed CWTS and CD tests on a MH Malaysian silt and found 

that the suction response decreased as the initial suction value decreased.  Our test data are consistent 

with those results. 
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Table 5-6 Peak and critical state results for saturated and unsaturated triaxial shear tests 

Test 
p0 

(kPa) 

Peak Critical state 

p (kPa) s(kPa) q (kPa) εa p (kPa) s (kPa) q (kPa) εa 

CD-15 15 45 0 91 1.4% 1 1 1 1 

CD-30 30 70 0 120.5 2.1% 1 1 1 1 

CD-50 50 107 0 171 3.3% 106 0 170 5.7% 

CWC-1 50 189 42 411 2.6% 99 42.6 142 13.3% 

CWC-2 30 108 21.5 236 6.2% 83 21 162 17.4% 

CWC-3 30 120 40 269 3.3% 75 43 135 21.2% 

Note: 1. First two stages of the multi-stage CD triaxial test did not reach critical state.
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FIGURE 5.34  CWTS test results (a) deviatoric stress versus axial strain, (b) volumetric versus axial 
strain, and (c) matric suction versus axial strain 

 BBM Shear Strength Parameters 

The shear modulus, G, can be calculated from the unload-reload portion of CWC-2 and 3 and the 

elastic regions of CD-15, -30, -50, and CWC-1.  However, in reality, the shear modulus is pressure 

dependent as shown in the following expression, 

( )( )
( )



+

+−
=

12

1213 0ep
G               (5.6) 

where  = Poisson’s ratio, e0 = initial void ratio,  = slope of the unload-reload line and is different for 

saturated versus unsaturated soil and p = mean net pressure within the soil.  Since G is not needed for 

this research and since it is pressure dependent, no value will be reported herein. 

Figure 5.35 shows the CWTS and CD test results in p-q space.  From this plot, the BBM shear 

parameters (M and k) can be determined.  A limitation of the multi-stage CD triaxial test performed on the 

saturated sample is that post-peak strains are small for all stages except the final stage.  Therefore, the 

c = 15 kPa and 30 kPa CD test results could not be used to obtain BBM shear parameters.  The critical 

states of the c = 50 kPa multi-stage CD triaxial test on the saturated sample (henceforth denoted as 

CD50), and the three CWTS tests were used to obtain BBM parameters M and k. 

From Fig. 5.36, it can be seen that samples CD-50 and CWC-1 have reached critical state. 

Normalized q/p values appear to be still decreasing with increasing strain for samples CWC-2 and -3 

although CWC-3 appears close to plateauing. 
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FIGURE 5.35  Stress paths and measured critical states for CD50, and the CWC tests 

 Ordinary least-squares regression was used to fit the data at critical state for tests CD-50, CWC-

1, and -3 to a plane expressed by the equation: 

q = M(p + ks)                (5.7) 

where M and k are the BBM shear parameters estimated to be 1.51 and 0.17, respectively.  CWC-2 was 

omitted from the regression because it does not appear to have reached critical state yet.  A criterion was 

imposed such that qpredicted CWC-1 ≥ qpredicted CD50.  The resulting critical state failure plane can then be 

expressed by the following equation, 

𝑞 = 1.51(𝑝 + 0.17𝑠)               (5.8) 

A coefficient of determination of 42% was obtained between the measured and predicted failure 

deviatoric stresses.  The parameter, M is related to the critical state friction angle as follows 

𝑀 =
6 sin 𝜙𝑐𝑠

′

3−sin 𝜙𝑐𝑠
′                 (5.9) 
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Based on the estimated value of M, the critical state friction angle was calculated to be 37°. 

Figure 5.37a shows the p-q stress paths for the CD and CWTS tests and their respective critical 

state lines.  Figure 5.37b shows the stress paths in p-q-s space with the critical state failure plane 

described by Equation 5.8. 

 

FIGURE 5.36  Normalized deviator stress versus axial strain 
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(a) 

 

(b) 

FIGURE 5.37  Predicted CSL and failure planes in q-p-s space 
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 Comparison of BBM Parameters Obtained with those from Prof. Zhang and Dr. Li’s 

Constant Water Content Oedometer and Constant Water Content Direct Shear Tests 

 Constant water content oedometer (CWK0C) and constant water content direct shear (CWDS) 

tests on soil samples from this slope were carried out by Professor Xiong Zhang and Dr. Lin Li.  Details of 

the test description, procedure, analysis and results can be found in Appendix B.  Table 5-8 provides a 

summary of the tests performed in this study (UH) and by Professor Zhang and Dr. Li.  Sections 5.3.2.3.1 

and 5.3.2.3.2 compare the BBM stiffness and strength parameters, respectively. 

Table 5-7 Summary of tests performed and parameters obtained 

Group Test w% Stress path Stiffness Shear Strength 
Porosity-Dependent 

SWCC 

UH 

CD-15, 
30, 50 

Sat CD shear - 
G, M, 

k 
ϕ'e, c’e, 

ϕ'cs 
- 

CWIC-1 38.4 CWC 
isotropic 

compression 

N(0), , 

s, λ(0), 
β, r, pc 

- - 

- 

CWIC-2 44.3 ad, aw, P0
w, P0

d, b, λ0, 

0 CWIC-3 43.7 

CWTS-1 38.4 

CWTS shear - 
G, M, 

k 
ϕ'cs - CWTS-2 44.3 

CWTS-3 43.7 

Zhang 

CWK0C-1 35.81 

CWCK0 
compression 

N(0), , 

s, λ(0), 
β, r, pc 

M, k, 
α 

ϕ', c’, ϕb, 
ϕ'cs 

- 

CWK0C-2 46.04 

CWK0C-3 34.23 

CWK0C-3 29.84 

CWK0C-4 33.56 

CWK0C-5 30.09 

CWK0C-6 26.19 

CWK0C-7 34.64 

CWDS-1 30.21 

CWCK0 shear 

CWDS-2 29.10 

CWDS-3 35.81 

CWDS-4 38.34 

CWDS-5 41.38 

CWDS-6 41.23 

CWDS-7 44.23 

CWDS-8 32 

CWDS-9 32.43 

CWDS-10 33.72 

 Stiffness Parameters 

Table 5-9 compares BBM stiffness parameters from CWIC tests (UH) with those from CWK0C tests 

by Zhang and Li.  Zhang and Li derived the BBM parameters using an incremental form of equations 5-1 

and 5-2.  The constants C1 and N(0) are not applicable when using the incremental form, therefore Zhang 

and Li provided N(0) values for each test rather than a single value.  To test the validity of Zhang and Li’s 

BBM stiffness parameters, N(0) was allowed to vary for each CWIC test performed in this research and 

Zhang and Li’s stiffness parameters [, s, λ(0), β, r, and pc] were utilized to check goodness of fit of the 

CWIC test results.  Figure 5.32 shows that Zhang and Li’s parameters reasonably predict the CWIC tests 
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in this research as long as N(0) is allowed to vary for each test.  However, the parameter N(0) is a 

constant when the BBM is used to model stress states other than those experienced during testing.  

Thus, for modelling field situations, N(0) must be a determined value. 

Table 5-8 Calibrated BBM stiffness parameters obtained from this research and by Zhang and Li 

Parameter Unit UH Zhang and Li 

 - 0.0181 0.0147 

s - 0.0039 0.0066 

N(0) - 1.90 Varies 

λ(0) - 0.13 0.075 

r - 0.01 0.158 

β MPa-1 6.22 3.812 

pc MPa 3.33 0.046 
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FIGURE 5.38  CWIC tests reinterpreted using Zhang and Li’s parameters and allowing N(0) to vary for 
each test 

The LC yield curves determined for the test samples in this research (Figure 5.31) are of the Type 

3 variety where the mean net stress decreases with increasing suction (Zhang, 2015) whereas Zhang and 

Li’s curves shown in Figure 4.16 of Appendix B (reproduced in Figure 5.39) are Type 1 where the mean 

net stress increases with increasing suction and they are also non-convex.  Type 2 LC yield curves are 

vertical and they occur when po
* = preconsolidation pressure of the soil when saturated = pc.  When po

* > 

pc, it generally implies that the soil is collapsible (pc = 46 kPa according to Zhang and Li and = 3.33 MPa 

according to this research) whereas when po
* < pc, the soil is generally expansive in nature.    Types 1, 2 

and 3 curves can be generated by changing the value of po
*.  These three curve types are shown in 

Figure 5.37 based on pc = 3.33 MPa.  It should be noted that the dash-lined LC yield curves shown in 

Figure 5.39b are an extrapolation using the BBM stiffness parameters.  Additionally, the LC yield curve 
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extension into suction ranges larger than 40 kPa are extrapolations as well.  The water content and 

suction ranges of the CWIC testing program are for the low suction ranges in comparison to the CWOD 

tests performed by Zhang and Li.  Idealy, the CWIC testing program would have been performed to cover 

suction and net mean stress ranges expected in the field however due to limitations of the GDS 

pneumatic controller, larger suctions values could not be imposed.    
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FIGURE 5.39  LC yield curves produced by (a) Zhang and Li and (b) UH 
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 Shear Strength Parameters 

The BBM contains 10 parameters to model unsaturated soil behaviour.  Three of those, G, M, 

and k are for modelling the soil behaviour during shear (Table 5-10).  Zhang and Li did not report the 

elastic shear modulus, G, as a BBM parameter in Appendix B. They assumed a Poisson’s ratio of 0.35, 

which theoretically can be used to estimate G for any value of p and eo in accordance with Equation 5.6. 

Zhang and Li also estimated the parameter  which is defined as follows. 

𝛼 =
𝑀(𝑀−9)(𝑀−3)

9(6−𝑀)
{

1

1−
𝜅

𝜆(0)
 
}             (5.10) 

 Figure 5.40a shows the predicted BBM failure planes in q-p-s space predicted by Zhang and Li 

compared to that from this research.  The plane with colour contours is from this study while the 

uncontoured plane is predicted by Zhang and Li.  The planes intersect at a net mean stress to suction 

ratio of 1.55. 

At a depth of 4m, the net mean stress is approximately 60 kPa and the planes intersect at a suction 

of 46 kPa (Figure 5-30b).  Therefore, below a depth of 4m, the UH BBM parameters predict higher 

strengths than Zhang and Li’s parameters up until a suction of 46 kPa.  Once the suction exceeds 39 

kPa, the Zhang and Li parameters predict higher shear strengths than the UH parameters. 

The peak and critical shear strength parameters can be compared in Table 5-9.  The shear 

strength parameters at peak are strictly not BBM parameters.  Also, the parameters are not expected to 

be the same.  Rowe (1969) showed that the shear strength parameters in direct shear will differ from 

those in a triaxial test because of the different boundary conditions.  However, the parameters are too far 

apart with the percent difference shown in the last column. 

Table 5-9 Shear strength parameters obtained by the UH team and Zhang and Li 

Parameter Unit UH Zhang and Li Percent Difference 

G MPa Varies with p - - 

M - 1.51 1.13 75% 

k - 0.17 0.74 440% 

μ - 0.329 0.35 (assumed) 106% 

α - - 0.802 - 

φcs - 37 28.38 -23.3% 

φpeak - 27.6 25.84 -6.4% 

cpeak kPa 18.2 35.47 +195% 
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FIGURE 5.40  Comparison of q-p-s failure planes determined by Zhang and Li with those from this research 
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6 TRANSIENT HYDROLOGICAL FLOW MODEL 

A saturated-unsaturated transient hydrological flow model was developed and calibrated for the 

purpose of estimating the suctions/pore water pressures in the soil slope during the design storm.  As 

explained in Chapter 1, this model is an integral part of the landslide warning system.  It has to be first 

calibrated to determine the appropriate parameters to use.  Calibration is achieved by adjusting the model 

parameters to match the laboratory measured and calculated SWCC and HCF, and to match calculated 

and field-measured suctions and water contents.  Once the model is calibrated, then it can be used to 

predict the pore pressures during a storm with a prescribed design return period.  Return periods in 

transportation infrastructure design is typically based on a 100-year event.  However, the return period 

can be justifiably increased depending on the importance of structure and consequence of failure.  This 

slope has been in existence for many decades and may have already survived a 100-year if not higher 

storm.  In fact, during the approximately two and a half years of monitoring, the slope experienced a 

storm with a 200-year return period on 10/15/2015.  Since this slope abuts Kalaniana’ole Highway and 

since the consequence of failure is “high”, it was decided to investigate the effects of a storm with a 500-

year return period (= 1/500 or 0.2% annual probability of occurrence) to facilitate selection of threshold 

values for use in the development of a landslide warning system.  Elements of this model are presented 

below. 

6.1 Water Balance 

A soil’s shear strength is governed by the shear strength parameters and the pore water pressure 

in the soil.  The pore water pressure can be positive if the soil is below the ground water table or negative 

if it is above the ground water table.  Since the ground water table at this site is purportedly more than 40 

m below the slope crest, the slope is not subject to ground water recharge from below, and water can 

only enter the slope naturally in the form of precipitation.  A systems analysis of the water balance at the 

site requires that the precipitation (P), runoff (R), actual evapotranspiration (AET) and surface infiltration 

(SI) satisfy the following: 

P = R + AET + SI          (6.1) 

In addition, the slope is relatively barren and for all intents and purposes, transpiration can be 

deemed negligible; i.e.; AET   AE = actual evaporation.  Runoff is automatically calculated based on the 

slope geometry.  Thus, only the effects of precipitation and actual evaporation need be applied to the top 

boundaries (ground surface) for the model to estimate SI.  The method adopted for estimating AE is 

explained in the following section. 
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6.2 Actual Evaporation 

While the precipitation is directly measured, actual evaporation must be estimated.  Actual 

evaporation is calculated by HYDRUS using a mathematical scheme that mimics the stages of 

evaporation rather than by modelling vapor flow.  The following is a summary of the mathematical 

scheme.  Actual evaporation, which is a function of relative humidity and potential evaporation, can be 

estimated using the following relationship (Campbell ,1985): 

𝐴𝐸 =
𝑊𝑠 − 𝑊𝑎

1 − 𝑊𝑎

𝑃𝐸 

where Ws is the relative humidity of the soil, Wa is the relative humidity of the atmosphere, and PE is the 

potential evaporation.  The relative humidity of the soil is related to suction using the following relationship 

(Edlefson and Anderson, 1943), 

𝑊𝑆 = exp (
𝑀𝑤𝑠

𝑇𝑅𝜌𝑤

) 

where Mw is the molecular mass of water (0.018 kg/mol), s is the soil suction at the surface (Pa), T is the 

temperature (K), and ρw is the mass density of water (998 kg/m3).  There are three stages of evaporation 

when the soil dries from an initially saturated state; the first stage is when AE = PE and flow occurs 

mainly in the liquid phase, the second is when AE rapidly decreases from PE and this is when flow occurs 

in both liquid and vapor phases, the third stage is when the rate of decrease of AE starts to level off, 

during which flow occurs mainly in the vapor phase.  Rassam and Williams (1999) showed that the 

maximum rate of change between stages one and two occur at a pressure head of -300 m (i.e. Ws  

97.8%).   

 HYDRUS mimics the above evaporation stages by using a user-defined minimum pressure head, 

hcritA, that initiates stage 2 when the boundary pressure head exceeds this value.  The value of hcritA = -

300 m was experimentally shown to trigger stage 2 by Wilson et al. (1997) regardless of soil type.  An 

hcritA = -1000 m was proposed for silty soil by Simunek et al. (2006).  In this research, a value of hcritA = -

300 m (Wilson et al., 1997) was used. 

 Therefore, the required input for HYDRUS is hcritA and the potential evaporation which can be 

estimated with the aid of the following: 

1. global solar radiation (from Hihara and Sugamoto, 2017); 

2. wind speed (from Hihara and Sugamoto, 2017); 

3. air temperature (from Hihara and Sugamoto, 2017); 

4. relative humidity (from Hihara and Sugamoto, 2017); 

5. cloud factor (from NOAA, Lott et al., 2001); and 
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6. albedo (from Giambelluca et al., 2014) 

and utilizing Kohler and Parmele’s (1967) modification of Penman’s (1948) equation (as shown in 

Dingman, 2008).  After a process of trial and error involving several other methods of estimating PE, it 

was found that this method worked best for this site and their expression for PE is as follows: 

𝑃𝐸 =
∆(𝐾 + 𝐿′ − 𝐺) + 𝛾′𝐾𝐸𝜌𝑤𝑣𝑎𝑒𝑎

∗(1 − 𝑊𝑎)

𝜌𝑤𝜆𝑣(∆ + 𝛾′)
 

(6.2) 

where  

Δ = slope of saturation vapour-temperature curve = 
2508.3

(𝑇𝑎+237.3)2
exp (

17.3𝑇𝑎

𝑇𝑎+237.3
)  [kPaK-1]   (6.3) 

K = net shortwave radiation = (1 − 𝛼)𝐾𝑔𝑙𝑜𝑏𝑎𝑙        (6.4) 

L’ = adjusted net longwave radiation = 𝜀𝑠𝜎(1 − 𝜀𝑎𝑡)(𝑇𝑎 + 273.2)4 (after Kohler and Parmele, 1967 as 

shown in Dingman, 2008)         (6.5) 

G = soil heat flux = 0.2(K+L’) (after Fuchs and Hadas, 1972, Idso et al., 1975 and Novak and Black, 1983) 

            (6.6) 

’ = adjusted psychrometric constant =
𝑐𝑎𝑝𝑎

0.622𝜆𝑣
+

4𝜀𝑠𝜎(𝑇𝑎+273.2)3

𝐾𝐸𝜌𝑤𝜆𝑣𝑣𝑎
 (after Kohler and Parmele, 1967 as shown in 

Dingman, 2008)           (6.7) 

KE = atmospheric constant =
0.622𝜌𝑎

𝑝𝑎𝜌𝑤

𝑉2

[ln(
𝑧𝑚
𝑧0

)]
2        (6.8) 

ρw = mass density of water [kgm-3] 

va = measured wind speed [ms-1] 

ea* = saturation vapour pressure [kPa] = 0.611 exp (
17.3𝑇𝑎

𝑇𝑎+237.3
) (after Monteith and Unsworth, 2008)  

            (6.9) 

Wa = measured relative humidity 

λv  = latent heat of vaporization [Jkg-1] = 2.5 × 106 − 2370𝑇𝑎      (6.10) 

Ta = measured air temperature [°C] 

α = albedo (site-specific monthly values taken from Giambelluca et al., 2014) 

Kglobal = measured global solar radiation [Wm-2] 

εs = soil emissivity = min(0.9 + 0.18𝜃; 1) (after van Bavel and Hillel, 1976)   (6.11) 

σ = Stefan-Boltzmann constant = 5.67 × 10−8 Wm-2K-4 
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εat = atmospheric emissivity = 1.72 (
𝑊𝑎𝑒𝑎

∗

𝑇𝑎+273.2
)

1/7

 (after Brutsaert, 1975 as shown in Dingman, 2008) 

   (6.12) 

ca = heat capacity of air = 1 × 10−3 MJkg-1K-1 

𝑝
𝑎

(𝑧) = atmospheric air pressure at elevation, z [kPa] = 101.32 (
293−0.0065𝑧

293
)

5.26

 (after Burman et al., 1987) 

              (6.13) 

ρa = mass density of air = 
𝑝𝑎

0.288𝑇𝑎
 kgm-3 

V = von Karman constant typically = 0.4 (after Dingman, 1980) 

zm = height at which air temperature, relative humidity, and wind speed were measured = 2 m 

z0 = roughness height = 1.1 x 10-3 m for bare soil (after Chow et al., 1988) 

 = measured volumetric water content near the surface 

The calculated PE is shown in Figure 6.1a. 

 

(a) 



101 
 

 

(b) 

FIGURE 6.1  (a) Potential evaporation estimated using Kohler and Parmele’s (1967) modification of 
Penman’s (1948) equation and (b) estimated net radiation using equations 6.4, 6.5 and 6.6 = K+L’-G 

compared with net radiation reported by Giambelluca et al. (2014) at the slope site 

Giambelluca et al. (2014) provided estimates of monthly, monthly-hourly, and annual-hourly 

evapotranspiration maps for Hawaii.  The calculated net radiation = K + L’ - G is compared to the 

monthly-hourly net radiation at the slope site from Giambelluca et al. (2014) in Figure 6.1b.  The 

calculated shortwave radiation is subject to errors due to the presence of trees and other vegetation in 

other areas of the slope, however an R2 of 71.2% was estimated between the calculated and Giambelluca 

et al. (2014) values. 

It should be noted that global solar radiation, wind speed, air temperature and relative humidity 

were obtained from Hihara and Sugamoto (2017), who are with the University of Hawaii’s Department of 

Mechanical Engineering, and their data cannot be readily accessible by the general public.  Alternatively, 

a similar set of such data can be downloaded from a weather station on Coconut Island (Hawaii Institute 

of Marine Biology).  However, it was found that for the period of this research, the Coconut Island data is 

sporadic with missing gaps.  This is why, the Hihara and Sugamoto (2017) data was adopted for this 

study. 
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6.3 Governing Differential Equation for Saturated-Unsaturated Transient Flow 

The governing differential equation for the problem of water flow through an isotropic unsaturated 

soil is Richards’s equation (1931), which is based partially on Darcy’s law and is given as follows: 

𝜕

𝜕𝑥
(𝑘

𝜕ℎ

𝜕𝑥
) +

𝜕

𝜕𝑦
(𝑘

𝜕ℎ

𝜕𝑦
+ 1) =

𝜕𝜃

𝜕𝑡
          (6.14) 

where k = unsaturated soil hydraulic conductivity,  = volumetric water content, h = pressure head (m) 

and x and y are Cartesian coordinates in the x- and y-directions, respectively.  The pressure head is the 

primary unknown in Eq. 6.14.  Note k,  and h are all functions of matric suction. 

Solving Equation 6.14 will yield the pressure head (which can be converted to matric suction) and 

the volumetric water content at any (x, y) coordinate in the domain.  It should be noted that this analysis 

completely ignores the effects of enthalpy (thermodynamic quantity equivalent to the total heat content of 

a system) in the porous media.  This may be reasonable for Hawaii where the temperature extremes are 

not significantly different and where the soil temperature is fairly constant.  In addition, the effects of 

temperature and solar radiation are embodied in the estimate for potential evaporation.   

6.4 Geometry 

Both 1D and 2D models of the slope were analysed to estimate the effects of precipitation, runoff, 

potential evaporation and surface infiltration on the pressure head, which will affect the pore water 

pressures, effective stresses and strength of the soil in the slope. 

6.4.1 1D Model 

A 1D model was analysed as a first approximation.  It was deemed reasonable to analyse the slope 

crest as a 1D model because the 4-m-wide crest ledge is nearly horizontal (i.e.; assume surface runoff 

due to rain falling on the ledge is negligible; i.e.; R = 0, meaning that the precipitation on the ledge 

undergoes evaporation and surface infiltration only) and because the instruments are set back at a fairly 

long distance from the slope crest.  As seen from the mesh in Figure 6.2, more elements were provided at 

shallow depths, which is the area of interest. 

Even though a rectangle is strictly a 2D model, the analysis is effectively 1D due to the use of the 

following boundary conditions: 

1. Top boundary – assume atmospheric conditions where precipitation (Figure 4.5) and potential 

evaporation (Figure 6.1) are defined on an hourly basis. 

2. Bottom boundary – assume a constant head of 5.8 m at El. 0 (Engott et al., 2015). 

3. Left and right boundaries – no flux. 
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The antecedent pressure heads from tensiometer data were input as initial conditions over the top 

6.1 m.  From a depth of 6.1 m to El. 0, the pressure heads were obtained by linear interpolation. 

 

FIGURE 6.2  1D finite element mesh for saturated-unsaturated transient flow model and initial pressure 

head profile 

6.4.2 2D Model 

The mesh for a 2D model is shown in Figure 6.3.  The initial pressure head profile (Figure 6.4) 

below the ground surface generally mimics the values in the 1D model (Figure 6.2) over the top 6.1 m.  

The initial heads were then linearly interpolated from a depth of 6.1 m to El. 0, which has a head of 5.8 m.  

In Figure 6.4, the deeper head contours appear jagged probably because of an inadequate kriging routine 

in HYDRUS, the software used to solve Richards’s equation in this work.  However, these anomalies are 

not critical because they lie outside the area of interest (top 4 m). 

Elev 51 m –  

Elev 0 m –  

Pressure head, h (m) 



104 
 

 

FIGURE 6.3  2D finite element mesh for saturated-unsaturated transient flow model 

Elev 0 m –  

Elev 39 m  –  

Elev 51 m  –  

Elev 54 m  –  



105 
 

  

FIGURE 6.4  Initial pressure head contours for 2D finite element analysis of saturated-unsaturated 
transient flow 

The boundary conditions are essentially identical to the 1D analysis as follows: 

1. Top boundary – assume atmospheric conditions where precipitation (Figure 4.5) and potential 

evaporation (Figure 6.1) are defined on an hourly basis. 

2. Bottom boundary – assume a constant head of 5.8 m at El. 0 (Engott et al., 2015). 

3. Left and right boundaries – no flux. 

6.5 Model Calibration 

Steps in the calibration process are summarized in Figure 6.5.  To the author’s knowledge, 

HYDRUS (Simunek et al., 2006) is the only commercial software that allows for hysteresis in the SWCC 

and HCF.  If say a soil starts off at a point on the drying curve of the SWCC prior to a rain event, then 

when the soil is wetted, the suction path will run along a scanning curve between the main drying and 

Z

X

-14.660 -12.740 -10.820  -8.900  -6.980  -5.061  -3.141  -1.221   0.699   2.619   4.539   6.459

Pressure Head  - h[m], Min=-14.660, Max=6.459

Project 2D_Calibration_32618-18-0002

Initial Conditions, Pressure Head
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main wetting branches.  This is a fundamentally important behaviour that needs to be captured when 

calibrating the model. 

 

FIGURE 6.5  Flow chart for calibration process 

Before discussing the calibration steps, the van Genuchten models for the SWCC and HCF are first 

presented.  The van Genuchten (1980) equation that is applicable to both the main drying and main 

wetting branches of the SWCC is as follows: 

𝜃(ℎ) = 𝜃𝑟 +
𝜃𝑠−𝜃𝑟

[1+(𝛼𝜓)𝑛]𝑚
           (6.15) 

where  = volumetric water content, r = residual volumetric water content, s = saturated volumetric 

water content,  = matric suction,  and n are van Genuchten parameters and m = 1 - 1/n.  The physical 

meaning of  and n are as follows:  is a measure of the matric suction at which the pore fluid begins to 

leave a drying soil and in fact it is the inverse of the air entry pressure, whereas the parameter n is an 

indicator of the pore size distribution of the soil.  The reader is referred to the HYDRUS manual (Simunek 

et al., 2006) for the mathematical formulation of the scanning curves. 

Also, the van Genuchten equation in terms of relative hydraulic conductivity (krel) that is applicable 

to both the main drying and main wetting branches of the HCF is as follows: 

Solve Richards’ equation 

using HYDRUS

Compare predicted  and 

θ vs. field measurements

Is error acceptable?

End

Input

Geometry

Model Parameters

Initial Conditions

Boundary Conditions

Parameter Optimization

Initial guess of

θs
d, θs

w, θr, n, αd, αw 

Insert parameters into HYDRUS

No

Yes

Optimize parameters to 

minimize error

New guess of

θs
d, θs

w, θr, n, αd, αw 
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𝐾𝑟𝑒𝑙 =
𝐾(ℎ)

𝐾𝑠
=

[1−|𝛼ℎ|𝑛−1(1+|𝛼ℎ|𝑛)
1
𝑛−1

]

2

(1+|𝛼ℎ|𝑛)
1
2(1−

1
𝑛)

          (6.16) 

where k = hydraulic conductivity of the unsaturated soil, ks = hydraulic conductivity of the saturated soil 

and all other parameters have been previously defined.  HYDRUS restricts r and n to be the same for 

drying and wetting; i.e.; rd = rw and nd = nw.  Other restrictions include d ≤ w, ksw ≤ ksd, sw ≤ sd and n > 

1.  Since the saturated hydraulic conductivity was measured from a consolidation test, ksw = ksd  10-6 

cm/s was used unless otherwise noted.  This leaves the following 6 parameters to be determined to fully 

define the drying and wetting SWCC and HCF: d, w, sd, sw, r and n. 

The saturated-unsaturated transient flow model was calibrated by optimizing these 6 parameters 

so that:  

1. The lab-measured and van Genuchten volumetric water contents on the drying and wetting 

branches of the SWCC match closely; 

2. The lab-measured and van Genuchten relative permeabilities on the drying and wetting 

branches of the HCF curves match closely; and 

3. The field-measured and HYDRUS matric suction and water contents match closely.  Initial 

attention is paid to matching the water content sensor and tensiometer at a depth of 0.5 ft 

utilizing the same SWCC and HCF constant throughout the entire slope.  Eventually, the goal 

is for HYDRUS to match the responses of all water content sensors and tensiometers. 

The first two matches can be achieved relatively easily but for all 3 to match requires a process of 

trial and error as shown in Figure 6.5.  As discussed previously, the wetting and drying episodes in the 

field usually run along the scanning curves.  So in essence, the calibration process involves finding 6 

parameters that gives the optimum drying and wetting curves for the lab SWCC and HCF and the 

scanning curves for the field. 

Based on the HYDRUS results at a depth of 0.5 ft, the calibrated van Genuchten parameters for 

the soil at this site are summarized in Table 5-1 below: 

Table 6-1 Calibrated van Genuchten parameters 

Parameter Unit Best-fit 

sd - 52.25% 

sw - 52.25% 

r - 0 

d m-1 0.14 

w m-1 1 

nd = nw - 1.15 

Before discussing the field results, a comparative discussion of the lab-measured versus van 

Genuchten SWCC and HCF curves is first warranted.  From Figure 5.16, the parameters were selected 
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such that the van Genuchten SWCC fits the PP data well but the accuracy was sacrificed for the VSA 

data.  This is deemed reasonable because the field-measured suctions were all less than 7 bars while the 

lowest suction measured using the VSA was 75 bars.  The data points in Figure 5.17 represent the HCF 

that was derived by applying the analytical method of Kunze et al. (1968) on the SWCC data while the 

solid lines represent the HCF using the van Genuchten model.  Overall, the van Genuchten HCF fit is 

quite reasonable. 

6.5.1 1D Results 

Figure 6.6 compares the field-measured and calculated matric suction vs time and volumetric water 

content vs time.  Calculated values were derived using HYDRUS assuming the following 3 scenarios: 

1. Use of SWCC and HCF along the drying branch only with no scanning allowed; 

2. Use of SWCC and HCF along the wetting branch only with no scanning allowed; and 

3. Use of SWCC and HCF with scanning allowed. 

Figure 6.6 shows the importance of scanning between the drying and wetting branches.  Tsai (2010) 

showed that it is important to consider hysteresis in the SWCC when modeling rainfall-induced landslides 

based on a case history in Taiwan.  He demonstrated that using the main drying branch alone led to an 

underestimation of the factor of safety against landslide occurrence.  When no scanning is allowed, the 

drying branch will over-predict suctions and volumetric water contents while the wetting branch has a 

tendency to under-predict especially the volumetric water contents.  However, the analysis that allows 

scanning offers the most reasonable agreement with the field measured values overall in terms of both 

matric suction and volumetric water content.  The reason for this can be best illustrated with the aid of the 

volumetric water content-suction path (henceforth referred to as the field suction path) taken by the soil 

during the various drying-wetting events (see Figure 6.7).  The field suction path can be constructed by 

plotting the field response of a tensiometer and the corresponding water content sensor at the same 

depth (0.15 m in this case).  For best visual effect, it should be superimposed on the lab SWCC main 

wetting and main drying curves.  In early May 2016, the soil was initially very dry ( = 0.45 in Figure 6.6b) 

and the suctions were high (s = 160 kPa in Figure 6.6a).  A rainfall episode then caused the suctions to 

drop dramatically (from 160 kPa to 9 kPa, which is the lowest suction measurable by the tensiometer).  

Subsequent drying-wetting events caused the field SWCC to scan rather than travel along the main 

drying or main wetting branches as seen by the black circular symbols.  The green lines in Figure 6.7 

represent the field suction paths calculated by HYDRUS if scanning is allowed, while the red and blue 

lines represent the HYDRUS-calculated field suction paths for the main drying and main wetting SWCC 

branches, respectively if scanning is disallowed.  Therefore, these results confirm that: 

1. A field suction path can be drawn by plotting tensiometer and the corresponding water content 

sensor readings over several drying-wetting events; 
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2. The field suction path usually runs along a scanning curve except during periods of heavy rain or 

extreme drought when the field suction path could join up and run along the wetting or drying 

branches, respectively.  It should be noted that in Figure 6.7, excursions of the field suction path 

did occur beyond the wetting branch during a rain event.  This is probably because the backfill 

around the top tensiometer is silica sand, which is more permeable than the native soil.  It is 

probable that the tensiometer reacted to the presence of water quicker than the water content 

sensor, which has three prongs embedded in the native MH soil.  However, the other deeper 

tensiometer readings should correctly reflect the suctions in the native soil instead of the silica 

sand because these tensiometers are surrounded by the native soil, whose suction governs the 

value measured; 

3. It is important for a saturated-unsaturated transient flow model to allow for scanning in order to 

predict field behavior reliably; 

4. If scanning is not allowed, the calculated field suction path will run along the main drying or main 

wetting branches only depending on which is specified.  Doing so will result in over-estimated 

suctions and water contents when the SWCC and HCF are specified for the drying branch only.  

Conversely, use of the wetting branch only will yield under-predicted suctions and water contents; 

and 

5. HYDRUS allows the user to begin an analysis on one of either the main drying branch (i.e.; 

during a period of extreme drought) or the main wetting branch (i.e.; during a period of extreme 

rain).  It will not allow an analysis to begin on a scanning curve.  Hence, the starting point was 

chosen at the end of a drought period when using the main drying branch in the analysis.  

Conversely, the analysis was started after a period of heavy rain when analyzing using the main 

wetting branch. 
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(a) 

 

(b) 

FIGURE 6.6  Measured vs 1D HYDRUS-derived assuming a constant SWCC and HCF throughout (a) 
matric suction vs time and (b) volumetric water content vs time at depth of 0.15 m (0.5 ft) 
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FIGURE 6.7  Measured vs 1D HYDRUS-derived field stress paths along the scanning portion of the 
SWCC at depth of 0.15 m (0.5 ft) assuming a constant SWCC and HCF throughout 

Only instruments from W3 and T3 are considered in this research because these readings make 

more sense than those from W2 and T2.  With W2 and T2, the field suction path at 0.15 m (0.5 ft) plotted 

to the right of the main drying branch of the SWCC instead of the left.  Also, the correlation coefficients 

between the measured and calculated water content and suction at the W2 and T2 instruments are less 

than those at W3 and T3. 

The volumetric water content and suctions calculated at other depths are also compared to 

measured values in Figs. 6.8 through 6.12.  Despite having a good match at a depth of 0.15 m (0.5 ft), it 

was observed that the calculated values at larger depths did not match the measured field values as well.  

In fact, the calculated values at larger depths are not as “reactive” as the field values.  At first, it was 

thought that this may have been due to the presence of desiccation cracks in the surficial soils allowing 

moisture to infiltrate deeper quicker.  To create a response in the calculated values at larger depths, the 

saturated hydraulic conductivity of the soil below a depth of 0.15 m was artificially increased from 10-6 

cm/s to 10-4 cm/s.  Despite the increase in calculated response, the calculated values are still not as 

reactive as the field-measured values at larger depths. 
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FIGURE 6.8  Measured vs 1D HYDRUS-derived volumetric water content vs time at depth of 0.76 m (2.5 
ft) assuming a constant SWCC and HCF throughout 

 

FIGURE 6.9  Measured vs 1D HYDRUS-derived matric suction vs time at depth of 1.52 m (5 ft) assuming 
a constant SWCC and HCF throughout 
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FIGURE 6.10  Measured vs 1D HYDRUS-derived matric suction vs time at depth of 3.05 m (10 ft) 
assuming a constant SWCC and HCF throughout slope geometry 

 

FIGURE 6.11  Measured vs 1D HYDRUS-derived matric suction vs time at depth of 4.57 m (15 ft) 
assuming a constant SWCC and HCF throughout 
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FIGURE 6.12  Measured vs 1D HYDRUS-derived matric suction vs time at depth of 6.1 m (20 ft) 
assuming a constant SWCC and HCF throughout 

6.5.2 2D Results 

The 2D geometry allows runoff to occur that is neglected in the 1D analysis.  Now recognizing the 

importance of scanning, the first part of this section presents 2D analysis results using a single SWCC 

applied to the entire soil slope.  However, as it will be shown, use of a porosity- or pressure-dependent 

SWCC is critical to achieve a good match between the calculated results and measured field data.  The 

pressure-dependent SWCC was determined earlier using BBM stiffness parameters and the van 

Genuchten model with parameters that are expressed as a function of porosity as discussed in Section 

(5.1.4.2.1).  Therefore, the second part of this section presents the calibration results using porosity-

dependent SWCC. 

 2D Calibration with Porosity-Independent SWCC 

HYDRUS-calculated suctions and volumetric water content versus time for the 2D slope geometry 

are compared with the 1D results at a depth of 0.15 m in Figs. 6.13a and 6.13b, respectively for the case 

where scanning is permitted.  Correlation coefficients between the calculated and measured suction and 

volumetric water content values are shown in Table 6.1. 
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Table 6-2  Correlation coefficients between calculated and measured suctions and volumetric water 
contents 

Depth (m) Analysis Suction Volumetric Water Content 

0.15 
1D 0.430 0.805 

2D 0.807 0.762 

0.76 
1D - 0.807 

2D - 0.909 

1.52 
1D 0.791 - 

2D 0.876 - 

3.05 
1D 0.648 - 

2D 0.659 - 

4.57 
1D 0.157 - 

2D 0.109 - 

6.10 
1D 0.426 - 

2D 0.378 - 
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(a) 

 

(b) 

FIGURE 6.13  Measured vs 2D HYDRUS-derived (a) matric suction vs time and (b) volumetric water 
content vs time at a depth of 0.15 m (0.5 ft) assuming a constant SWCC and HCF throughout slope 

geometry 

Based on the 0.15-m correlation coefficients alone, it can be seen that the 2D analysis results in a 

significant improvement in the volumetric water content prediction over the 1D analysis whereas the 1D 

and 2D suctions are both reasonably well correlated.  Including results at other depths, the 2D analysis is 

overall better at 4 sensor locations while the 1D is better at 3.  These results suggest that the 1D analysis 

is not unreasonable.  However, the advantage of performing the 2D analysis is that it is more rational and 

also the 2D analysis allows for suction contours to be generated throughout the slope geometry for use in 

slope stability analysis (Chapter 7). 
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Figure 6.14 presents a comparison of the field suction path with those calculated from both 1D and 

2D HYDRUS analyses.  As expected, the 1D and 2D HYDRUS-derived scanning curves are very similar.  

The 2D scanning curves do contain excursions beyond the lab SWCC main drying branch.  This is 

probably because of an aberration in the scanning algorithm and is not a real property of the soil.  The 

scanning algorithm utilizes a scaled version of the main drying and wetting curves whereby it assigns a 

fictitious s for the drying scanning curve and a fictitious r for the scanning wetting curve that can cause 

these excursions to occur. 

 

 

FIGURE 6.14  Measured vs 2D HYDRUS-derived field stress paths along the scanning portion of the 
SWCC assuming a constant SWCC and HCF throughout slope geometry 

The volumetric water content and suctions calculated at other depths are also compared to 

measured values in Figs. 6.15 through 6.19.  
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FIGURE 6.15  Measured vs 1D and 2D HYDRUS-derived volumetric water content vs time at depth of 
0.76 m (2.5 ft) assuming a constant SWCC and HCF throughout slope geometry 

 

FIGURE 6.16  Measured vs 1D and 2D HYDRUS-derived matric suction vs time at depth of 1.52 m (5 ft) 
assuming a constant SWCC and HCF throughout slope geometry 
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FIGURE 6.17  Measured vs 1D and 2D HYDRUS-derived matric suction vs time at depth of 3.05 m (10 ft) 
assuming a constant SWCC and HCF throughout slope geometry 

 

FIGURE 6.18  Measured vs 1D and 2D HYDRUS-derived matric suction vs time at depth of 4.57 m (15 ft) 
assuming a constant SWCC and HCF throughout slope geometry 
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FIGURE 6.19  Measured vs 1D and 2D HYDRUS-derived matric suction vs time at depth of 6.1 m (20 ft) 
assuming a constant SWCC and HCF throughout slope geometry 

 2D Calibration using Porosity- or Pressure-Dependent SWCC 

Once again, while the predictions at 0.5 ft are reasonably good, the same cannot be said for the 

predictions at larger depths.  This can be explained as follows.  In reality, the SWCC is affected by 

confining stress (Ng and Pang, 2000; Assouline, 2006).  As seen in Figure 6.20, increasing confining 

stress has a tendency to “squash” or “pancake” the SWCC.  This implies that the soil at larger depths 

tend to have larger changes in suction for the same change in water content as the shallower soils.  The 

SWCC obtained via laboratory testing (Figure 5.16) was derived under zero confinement and thus are 

applicable only to surficial soils (say at 0.15 m or 0.5 ft). 

To estimate pressure-dependent SWCCs, specialized equipment such as a modified pressure 

plate is needed (e.g.; Figure 6.21), which is not available at the University of Hawaii.  However, it is 

possible to use the results of the isotropic compression triaxial tests to discern points on the SWCC for 

different confining stresses by selecting points at equal void ratios. 
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FIGURE 6.20  Effect of confining stress on SWCC (after Ng and Pang, 2000) 

 

FIGURE 6.21  Schematic of modified pressure plate apparatus that is capable of measuring SWCC under 
variable confining stress (after Ng and Pang, 2000) 

Pressure-dependent SWCC can be modelled using the van Genuchten equation with its 

parameters expressed as functions of porosity (which is a function of pressure).  The description of the 

model and calibration of parameters are found in section 1.4.2.1.3.  The model is restated below. When 

the residual saturation is zero, as was determined for this soil, saturation, S, is expressed as 
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𝑆 = [1 + (𝛼ℎ)𝑛]−(1−
1

𝑛
) = [1 + (

𝑠

𝑃
)

1

1−𝜆
]

−𝜆

        (6.18) 

where h = pressure head (m), s = suction (kPa) = gh, α = g/P and λ = 1 – 1/n.  HYDRUS uses the first 

form of equation 6.18 which expresses the van Genuchten equation in terms of pressure head, h, and 

parameters α and n.  The authors of the Code Bright (a finite element software for unsaturated soils) 

Manual at the Universitat Politecnica de Catalunya (UPC, 2017) suggested that P and  can be 

expressed in terms of the soil porosity,  as follows: 

( ) −= oo aPP exp             (6.19) 

( ) −= oo bexp           (6.20) 

where Po, o, o, a and b are constants.  Since  is a function of pressure, equations 6.18, 6.19 and 6.20 

can be used as a model for the pressure-dependent SWCC.  Separate values of Po, o, o, a and b for 

the drying and wetting portions of the isotropic compression tests were discerned by ordinary least-

squares (OLS) regression analysis.  The resulting constants are summarized in Table 6.2. 

Table 6-3  Hydraulic parameters for drying and wetting portions of the SWCC 

Parameters Drying Wetting 

Po 3.32 0.00299 

o 0.129 0.129 

o 0.8013 0.8013 

a 14.4 41.4 

b -0.01 -0.01 

 

With the model constants in Table 6.2, the SWCC and HCF can be derived for the soil at any depth 

(Figure 6.24).  The slope was divided into 4 layers (Figure 6.25).  At the mid-depth of each layer, the 

mean stress p’ was calculated, from which the porosity and van Genuchten parameters shown in Table 

6.3 can be derived using Table 6.2 and assuming r = 0. 
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Table 6-4  Slope layers, resulting van Genuchten parameters and saturated hydraulic conductivity 

Layer 

Depth 
Range 
(m{ft}) 

p 
(kPa)  θs

d θs
w αd αw nd nw 

ks 
(cm/s) 

1 
0 – 0.76 
{0 – 2.5} 

12.7 0.54 0.54 0.54 0.15 1 1.15 1.15 10-6 

2 
0.76 – 1.52 

{2.5 – 5} 
25.6 0.584 0.584 0.584 0.129 0.405 1.15 1.15 5 x 10-3 

3 
1.52 – 6.1 
{5 – 20} 

58.5 0.581 0.581 0.581 0.124 0.364 1.15 1.15 10-4 

4 
6.1 - 51 

{20 - 167} 
349 0.546 0.546 0.546 0.074 0.083 1.15 1.15 10-5 
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FIGURE 6.22  Pressure-dependent SWCC and HCF using the Universitat Politecnica de Catalunya-
modified (UPC, 2017) version of the van Genuchten model 

Increasing pressure 
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Increasing pressure 
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FIGURE 6.23  Slope model in HYDRUS showing the 4 layers 

Z

X

Project 2D_Calibration_32618-18-0002

Domain Properties, Observation Nodes

_____ Layer 1: 0-76cm (0-2.5ft) 
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_____ Layer 3: 152-610cm (5-20ft) 
_____ Layer 4: 610-5100cm (20-167ft) 
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This 4-layer model was then utilized to rerun HYDRUS.  Presented in Figure 6.26 through 6.31, the 

agreement between measured and predicted responses is much improved from before.  Now, it can be 

seen that the soils at larger depths are more reactive.  To optimize the match, ks values for the 3 lower 

layers had to be increased to the values shown in Table 6.3.  Justification for these higher values can be 

attributed to the fact that desiccation cracks may allow water to infiltrate quicker into the soil. 

By no means perfect, the fits are reasonably good.  This is the best that can be obtained with the 

limited time and resources available, and this model and parameters in Table 6.3 was then utilized to 

determine the pore water pressure/suction profile in the slope after a design storm, which is taken to be a 

500-year storm. 
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(a) 

 

(b) 

FIGURE 6.24  Measured vs 2D HYDRUS-derived (a) matric suction vs time and (b) volumetric water 
content vs time at a depth of 0.15 m (0.5 ft) using a pressure-dependent SWCC and HCF throughout 

slope geometry 
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FIGURE 6.25  Measured vs 1D and 2D HYDRUS-derived volumetric water content vs time at depth of 
0.76 m (2.5 ft) using a pressure-dependent SWCC and HCF throughout slope geometry 

 

FIGURE 6.26  Measured vs 1D and 2D HYDRUS-derived matric suction vs time at depth of 1.52 m (5 ft) 
using a pressure-dependent SWCC and HCF throughout slope geometry 

 

FIGURE 6.27  Measured vs 1D and 2D HYDRUS-derived matric suction vs time at depth of 3.05 m (10 ft) 
using a pressure-dependent SWCC and HCF throughout slope geometry 
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FIGURE 6.28  Measured vs 1D and 2D HYDRUS-derived matric suction vs time at depth of 4.57 m (15 ft) 
using a pressure-dependent SWCC and HCF throughout slope geometry 

 

FIGURE 6.29  Measured vs 1D and 2D HYDRUS-derived matric suction vs time at depth of 6.1 m (20 ft) 
using a pressure-dependent SWCC and HCF throughout slope geometry 

To validate that HYDRUS is calculating reasonable values of actual evaporation (AE), the 

boundary pressure head (which is a measure of the moisture of the soil at the ground surface) from 

HYDRUS is plotted versus the ratio of the actual (from HYDRUS) to the potential evaporation (AE/PE) as 

shown in Figure 6.30.  In this figure, the three distinct stages of evaporation are evident when the surficial 

soil dries from an initially saturated stage as described in Section 6.2.  When the boundary pressure head 

is 0 (soil is wet), AE/PE = 1.  This is akin to the first stage of evaporation.  Then AE decreases rapidly 

from PE with small changes in pressure head.  This is akin to the second stage of evaporation.  In the last 

stage, the rate of decrease of AE starts to level off.  This is representative of the third stage of 

evaporation.  All three stages are correctly and well represented during the 2.5-year calibration period.  

The HYDRUS results of boundary pressure head versus AE/PE were fitted using a hyperbolic best-fit line.  

The resulting coefficient of determination (R2) is 0.692 (Figure 6.30).   
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FIGURE 6.30  Boundary pressure head versus ratio of actual to potential evaporation 

6.6 Transient Flow Analysis during a Storm with a 500-year Return Period 

The 500-year-return period precipitation intensity vs duration frequency curve (IDF) for the site was 

downloaded from NOAA’s National Weather Service precipitation frequency data server (2018) and is 

plotted in Figure 6.31.  IDF curves can also be downloaded from the same website for 3 (Pali Golf 

Course, Maunawili, and Kailua Fire Station) of the 5 rain gages utilized to correct precipitation for periods 

of missing data (Section 4.2.1).  The inverse-distance weighting average was then used to calculate the 

IDF curve for the slope site (IDW Average). 
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FIGURE 6.31  Precipitation intensity vs duration curve for a 500-year-return period storm at the slope site 

The 5-minute (622 mm/hr) and 60-day (1.25 mm/hr) values of precipitation intensity were then 

applied to the 2D slope mesh in HYDRUS resulting in the suction contour plots of Figs. 6.11 and 6.12, 

respectively.  It was found that the longer duration low intensity storms are most critical when analysing 

slope stability.  Storms with durations between 5-minute and 60 days are not presented in this report. 

Baum and Godt (2010) discussed the importance of seasonal pre-storm (antecedent) rainfall for 

slopes in areas that subject seasonal wetting and drying cycles on the slope.  They stated that 

antecedent precipitation is less significant for humid areas with evenly distributed rainfall throughout the 

year, specifically the Ko’olau range of Oahu.  In contrast, Kanajanakul (2016), Rahardjo et al., (2007), and 

Zhang et al., (2016) showed the importance of antecedent rainfall for slopes in Southeast Asia.  The 

Kalaniana’ole Highway slope is situated closer to the coast and is sparsely vegetated.  Therefore, the 

effects of pre-storm moisture conditions on slope stability have been investigated.   

Two initial conditions were considered; one starting at a relatively dry time (May 2, 2015 19:00) and 

the other at a relatively wet time (November 27, 2015 05:00) of the monitoring period.  These same initial 

conditions along a vertical through the slope crest were used for calibrating the 1D model.  The initially 

wet condition for calibrating the 2D model was previously shown in Figure 6.4 and is reshown here in 

Figure 6.32a along with the initially dry condition in Figure 6.32b. 
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(a)       (b) 

FIGURE 6.32  Initial conditions for (a) a relatively wet period (November 27, 2015) and (b) a relatively dry 
period (May 2, 2015)  

The 500-year design storm could occur when the ground is already saturated to begin with or when 

the ground is dry.   When the initial conditions are wet to begin with, it would mean that the design storm’s 

actual return period is higher than 500-years. Nevertheless, both sets of initial conditions are indeed 

possible and were utilized to provide good insight into what may occur in the field. 

The HYDRUS analyses were extended for another 60 days beyond the end of the 500-year storm 

as the moisture was still making its way into the soil after the rain event.  During the 60-day extension, it 

was assumed that the precipitation ceased and there was no evaporation (conservative).  Figs. 6.33 and 

6.34 represent the suction contours at the end of the storm through 3 days after the end of the storm.  

Suction contour plots at any point in time can be generated and utilized to perform stability analyses of 

the slope, as described in Chapter 7.  The results of these analyses also form the bases of selection of 

threshold values for the landslide warning system. 
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The suctions within the initially dry slope are noticeably lower than within the initially wet slope.  In 

fact, the dark red contour represents a pressure head greater than 0, or saturated conditions.  Therefore, 

saturated conditions have occurred within the initially dry slope and not the initially wet slope.  An 

explanation is provided below. 

The SWCC predicted at sensor locations are shown in Figure 6.35.  As can be seen, a scanning 

path was not followed when the initially dry slope was subjected to the 500-year 60-day duration rainfall. 

As discussed previously, the field SWCC paths exhibit scanning which must be captured by the model or 

else the suctions and water contents will be over-predicted.  It was hypothesized that shorter duration, 

lower intensity, lower return-period rainfalls are necessary to trigger a scanning path.  Zhang et al., (2016) 

found that the minimum factor of safety will occur before the end of a storm if the rainfall follows an 

advanced (green) or normal (red) pattern as shown in Figure 6.36.  Variable rainfall patterns like those 

proposed by Ng et al (2010), that more closely resemble real rainfall patterns, should be but were not 

investigated as they are hypothetical scenarios that fall outside the scope of work.   
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FIGURE 6.33  Suction contours for an initially dry slope during a 60-day duration 500-year return period storm

End of storm     12 hours after end of storm   3 days after end of storm 
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FIGURE 6.34  Suction contours for an initially wet slope during a 60-day duration 500-year return period storm 

End of storm     12 hours after end of storm   3 days after end of storm 
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FIGURE 6.35  Predicted suctions at sensor locations during a 500 year, 60 day storm fir initially wet and 

initially dry conditions
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 FIGURE 6.36   Effects of variable rainfall patterns on delayed response of the minimum factor of safety 
(from Zhang et al., 2016) 



138 
 

7 SLOPE STABILITY ANALYSIS 

Infinite slope analysis is useful to analyze slope failures where the slip surface runs roughly parallel 

to the slope face and is long in comparison to its depth.  Even though the slope is not infinitely long, an 

infinite slope analysis provides a useful index to investigate the sensitivity of the various factors that affect 

the margin of safety.  Only the steepest (63°) portion of the compound slope is analyzed since the 55° 

portion will be less critical. 

First, the slope was analyzed assuming a fully saturated infinite slope.  This was followed by a 2D 

analysis of the actual slope geometry assuming full saturation.  The results of the infinite slope analysis 

were then compared to the 2D slope analysis for the saturated case.  Analyses of the unsaturated infinite 

and 2D slope were then performed utilizing the suctions estimated for the 500-year storm. 

7.1 Infinite Slope Analysis Assuming Full Saturation 

The factor of safety for a saturated, infinite slope with an inclination of  with respect to the 

horizontal can be written as: 

( )
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       (7.1) 

where c’ and ’ are the effective cohesion and angle of internal friction of the soil, respectively, sat is the 

saturated soil unit weight, uw is the pore water pressure and z is the depth of the sliding surface.  The 

expression for factor of safety can be thought of as having three separate components: (1) a cohesion 

term; (2) a frictional term; and (3) a pore water pressure term.  The pore water pressure influences the 

soil shear strength.  Its magnitude is a function of the seepage inclination with respect to the horizontal,  

(Figure 7.1) as follows: 





tantan1+
=

z
u w

w             (7.2) 

It can be seen from Equations 7.1 and 7.2 that the factor of safety is a minimum when  = 0° or the 

seepage is horizontal.  Horizontal seepage can only occur when there is a sink (e.g.; pumping well).  

Since no is sink present, it is unlikely that seepage will be horizontal.  However, both horizontal seepage 
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(i.e.;  = 0) and seepage parallel to the slope (i.e.;  = ) are analysed with the former representing a 

lower bound.  Their respective expressions for factor of safety are: 

 

 

FIGURE 7.1  Infinite slope with seepage at an inclination of  to the horizontal (after Powrie, 1997) 
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where b = soil buoyant unit weight.  Figure 7.2 presents the factor of safety for a 63° infinite slope with 

both horizontal seepage and seepage parallel to the slope and utilizing Hvorslev’s true ’e  28° and c’e  

18 kPa.  The factor of safety varies with depth since the cohesion term is a function of z.  When the factor 

of safety is 1.0, the critical depths were 1.7 m and 2.9 m, respectively indicating that the horizontal 

seepage case has a shallower critical depth than the seepage parallel to slope scenario. 
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FIGURE 7.2  Factor of safety assuming 63° infinite slope with seepage parallel to slope 

7.2 2D Slope Stability Analysis Assuming Full Saturation 

As a comparison to the infinite slope analysis, the 2D factor of safety for the slope when entirely 

saturated was calculated using the method of slices with the aid of the search routines in SLOPE/W 

(Geo-slope International, Ltd., 2012).  The factors of safety using Bishop’s simplified (1955), 

Morgenstern-Price’s (1965), Spencer’s (1967) and Sarma’s (1973) methods were calculated to be 0.520, 

0.530, 0.493 and 0.522, respectively (see Figs. 7.3, 7.4, 7.5 and 7.6, respectively).  Bishop’s simplified 

method satisfies overall moment equilibrium and force equilibrium only in the vertical direction.  Even 

though it does not satisfy force equilibrium in the horizontal direction, it is commonly used in the 

geotechnical profession because it is known to be reasonable if the limitations are recognized and 

overcome.  The last three methods satisfy all conditions of equilibrium and therefore, should provide 

factors of safety accurate to within ±5% for any condition (Duncan and Wright, 2005). 
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When entirely saturated, the factors of safety indicate that the slope is unstable.  However in 

reality, the slope is still standing and is unsaturated.  This demonstrates the importance of suction in 

keeping this slope stable since suction increases the soil shear strength and also the factor of safety of 

the slope under normal ambient unsaturated soil conditions. 

 

FIGURE 7.3  2D factor of safety using Bishop’s simplified method from SLOPE/W assuming a fully 
saturated slope 
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FIGURE 7.4  2D factor of safety using Morgenstern-Price’s method from SLOPE/W assuming a fully 
saturated slope 
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FIGURE 7.5  2D factor of safety using Spencer’s method from SLOPE/W assuming a fully saturated slope 
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FIGURE 7.6  2D factor of safety using Sarma’s method from SLOPE/W assuming a fully saturated slope 

7.3 Infinite Slope Stability Analysis During 500-year Storm 

An infinite slope stability analysis was conducted at several depths and during several points in 

time after the 500-year storm using values of suction from Figs. 6.33 and 6.34.  The factor of safety for an 

unsaturated slope can be calculated as follows (Lu and Godt, 2013): 

( ) 









tancottan

tan

'tan

2sin

'2
+−+=

zz

c
FS

s

        (7.5) 

where s = suction stress (in units consistent with z) at the depth of the sliding plane, z.  Equation 7.5 is 

similar to Equation 7.1 with s replacing uw.  The background behind the suction stress and how it can be 

estimated is described below. 

In 1954, Bishop (1954) proposed an expression for the effective stress, ’, of unsaturated soil as 

follows: 
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( )waa uuu −+−=  '             (7.6) 

where  = total stress, ua = pore air pressure, uw = pore water pressure and  = Bishop’s effective stress 

parameter = 0 when the soil is dry and unity when the soil is saturated.  According to Bishop’s equation, 

as a soil moistens, suction decreases leading to a decrease in effective stress which usually implies an 

increase in volume.  Jennings and Burland (1962) criticized Bishop’s equation saying that it cannot 

adequately explain the behavior of collapsing soils since such soils undergo a decrease in volume upon 

wetting.  However, this criticism was made assuming a linear elastic framework.  Non-recoverable 

deformations such as collapse can be modelled with an effective stress framework if a yield surface is 

defined as a function of suction.  Such work has been reported in the literature by Kohgo et al. (1993), 

Modaressi and Abou-Berk (1994), Bolzon et al. (1996), Loret and Khalili (2000) and Khalili and Loret 

(2001). 

Another issue with Bishop’s equation has been the problem associated with estimating .  Bishop (1954) 

initially suggested  = S, where S = degree of saturation.  As seen in Figure 7.7, Gens (1996) showed 

that  ≠ S and there is considerable variation in this relationship depending on soil type. 

 

FIGURE 7.7  Variation of  with degree of saturation for various soils (Gens 1996) 

Khalili and Khabbaz (1998) and Khalili et al. (2004) experimentally showed that  is related to suction if it 

is normalized by its air entry value (Figure 7.8).  This relationship can be mathematically approximated as 

follows: 

𝜒 = {
(

𝑠

𝑠𝑒
)

−0.55

, 𝑖𝑓 𝑠 ≥ 𝑠𝑒

1               , 𝑖𝑓 𝑠 < 𝑠𝑒

          (7.1) 
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FIGURE 7.8   versus matric suction normalized with the air entry value (Khalili & Khabbaz, 1998) 

In 2010, Lu et al. (2010) proposed a simple way to estimate  by introducing the concept of suction 

stress, s, into the effective stress equation whereby they rewrote Equation 7.6 as: 

s
au  −−='           (7.2) 

They then argued that the suction stress is related to the matric suction, s = ua - uw, as follows: 

𝜎𝑠 = −𝑆𝑒𝑠 = −
𝜃−𝜃𝑟

𝜃𝑠−𝜃𝑟

(𝑢𝑎 − 𝑢𝑤)         (7.3) 

where Se = equivalent degree of saturation which is akin to Bishop’s (1954) effective stress parameter, , 

for unsaturated soils,  = volumetric water content, r = residual volumetric water content and s = 

saturated volumetric water content.  s can be calculated using Equation 7.9 and substituted into 

Equation 7.5 to calculate the infinite slope factor of safety. 

By combining Equation 7.9 and van Genuchten’s model (Eq. 6.15), Se can be related to the van 

Genuchten SWCC as follows: 

𝑆𝑒 =
1

[1+(𝛼ℎ)𝑛]𝑚
          (7.4) 

where  and n are van Genuchten model parameters and m = 1 – 1/n.  Therefore, the suction stress can 

be rewritten as: 

𝜎𝑠 = −
𝑠

[1+(𝛼ℎ)𝑛]𝑚
            (7.5) 

Now the effective stress for an unsaturated soil can be expressed as 

e 
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𝜎′ = 𝜎 − 𝑢𝑎 +
𝑠

[1+(
𝛼𝑠

𝑔
)

𝑛
]

𝑚            (7.6) 

The effective stress is now a function of the total stress, matric suction and the two van Genuchten 

parameters:  and n.  As explained previously, the physical meaning of  is that it is a measure of the 

matric suction at which the pore fluid begins to leave a drying soil (i.e.; it is the inverse of the air entry 

pressure) while the parameter n is an indicator of the pore size distribution of the soil. 

The parameter n divides the suction stress into two distinct behavior regimes.  When n ≤ 2 

(namely clays), s monotonically increases with increasing suction whereas when n > 2 (namely silts and 

sands), s increases with increasing suction, reaches a peak and then decreases with further suction 

increase (Figure 7.9).  The latter (n > 2) is more intuitive and can be explained as follows.  s is governed 

by the product s (or Ses).  At low water contents, s is high but  → 0 so s → 0.  On the opposite end of 

the spectrum, when the soil approaches full saturation,  → 1 but s → 0.  So s → 0 also.  Therefore, 

there must exist some value of degree of saturation in between 0 and 1 at which s is a maximum.  Lu et 

al. (2010) explained that there is no maximum with clays because the physico-chemical bonding force is 

significant when sis high, which causes s to remain elevated for clays. 

For the silt slope analyzed in this research, n is less than 2 (Table 6.3) suggesting that the silt 

behaves more like a clay than a silt.  A landslide warning system is more concerned with the wetting 

behavior.  As the soil is wetted, the suction stress decreases regardless of the value of n.  Besides, the 

field suction path typically runs along a scanning curve.  Since n is associated with either the main wetting 

or the main drying branch only, the value of n is unimportant in the stability analysis (i.e.; it is better to 

estimate s using Eq. 7.9 rather than 7.11. 
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FIGURE 7.9  Soil suction characteristic curve for typical soils with differing n values (from Lu et al., 2010) 

The suction stress concept is utilized to estimate the infinite slope analysis factor of safety as a 

consequence of the 500-year storm.  Values of s along vertical lines at the two middle third points of the 

63° portion of the slope were estimated from HYDRUS and utilized for infinite slope analyses after both 

the 5-minute-duration, high intensity and 60-day-duration, lower intensity storms.  It was found that the 

upper of the two middle third portions gave lower factors of safety and only their results are presented 

below for the sake of brevity. 

Rahardjo et al. (2010) observed a time delay of 5 days after the storm for the factor of safety to 

reach a minimum for a residual soil slope.  Zhang et al. (2016) found that it took at most 5 days for the 

factor of safety to reach a minimum for a residual slope under varying scenarios.  Therefore, it is 

important to investigate the variation of factor of safety with time after a storm. 

Figure 7.10 presents factors of safety for the 500-year 5-minute storm at the end of the storm and 

60 days after the storm assuming dry initial conditions.  It can be seen that the minimum factor of safety 

occurred at the end of the storm.  However, the factors of safety were always greater than 2.0. 

Figures 7.11 and 7.12 present the factors of safety for the 500-year 60-day duration storm at the 

end of storm, 12 hours after the storm, and 3 days after the storm for the initially dry conditions and 

initially wet conditions, respectively.    

For the case of an initially dry slope, the minimum factor of safety occurred at the end of the storm.  For 

this case, the critical depth is about 3.2 m.  For the case of an initially wet slope, the minimum factor of 



149 
 

safety did decrease slightly after the end of the storm but not by much.  For this case, the sliding plane is 

at a depth of about 3 m.  The time it took for the factor of safety to decrease to a minimum was 3 days. 

These analyses utilize Hvorslev’s true ’e  28° and c’e  18 kPa.  The factor of safety clearly 

increased compared to the case of the saturated slope suggesting that these values are trending in a 

reasonable fashion. 

 

 

FIGURE 7.10  Factor of safety assuming 63° infinite slope 500-year 5-minute-duration storm 
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FIGURE 7.11  Factor of safety assuming 63° infinite slope subjected to a 500-year 60-day-duration storm 
with initially dry conditions 
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Figure 7.1 Factor of safety assuming 63° infinite slope subjected to a 500-year 60-day-duration storm with 
initially wet conditions 

7.4 2D Slope Stability Analysis During 500-year Storm 

Suction values from HYDRUS can be imported into SLOPE/W to perform 2D slope stability 

analyses for the 500-year storm.  SLOPE/W interpolates between suction values to generate equal 

suction contours, which are then used to estimate the shear strength of the soil.  When the slope is 

unsaturated, SLOPE/W estimates the shear strength of the soil at the bottom of each slice in accordance 

with the following equation proposed by Vanapalli et al. (1996): 

( ) ( ) 'tan'tan'  ewaa Suuuc −+−+=         (7.13) 

Equation 7.13 can be rewritten as: 

3-days after  
storm 

storm  
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( ) ( )  'tan'  ewaa Suuuc −+−+=         (7.14) 

Since Se can be expressed in terms of suction using the van Genuchten model (Equation 7.10), therefore 

the shear strength then becomes: 

( )
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− nnna

s
uc         (7.15) 

which implies that 

( )  'tan'  s

auc +−+=          (7.16) 

In essence, Vanapalli et al. (1996) had proposed the notion of suction stress about a decade before Lu 

and Likos (2006) and Lu et al. (2010) without referring to it as suction stress. 

When analysing the stability of an unsaturated slope using SLOPE/W, input of suction (s),  and n 

throughout the slope is required.  However, since the field suction path follows a scanning curve, values 

of  and n from Table 6.3 are inadmissible because they apply either to the main drying or main wetting 

branches only.  This problem can be circumvented in SLOPE/W as follows 

1. Use values of s and  from HYDRUS and manually calculate s as follows: 

s
s

s








−=




             (7.17) 

since r in Equation 7.9 = 0.  The beauty of calculating suction stress this way is that s is the 

same for drying, wetting and scanning (since sd = sw) unlike when using  (d ≠ w) and n. 

2. Input the calculated values of s from Equation 7.17 throughout the slope geometry as s and 

assign  = n = 1. 

3. Calculate the 2D factor of safety for the slope. 

This is one of an infinite number of ways to fool SLOPE/W into using the correct value of suction 

stress for the slope stability analysis. 

The same four methods of analyses used for the saturated case (Bishop’s simplified, Morgenstern-

Price’s, Spencer’s and Sarma’s methods) were utilized to analyse the unsaturated case during the 500-

year storm.  Summarized in Table 7.1, the results indicate that: 

1. The 60-day low-intensity storm on an initially dry slope yielded the lowest factors of safety.  The 

factors of safety increased as the storms trend toward the shorter duration higher-intensity 
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variety.  For the sake of brevity, only the results for the 5-minute and 60-day duration storms are 

tabulated in Table 7.1; 

2. Overall, the factors of safety are greater than 1.19 suggesting that the slope will survive a 500-

year storm.  For the 60-day low-intensity storm, the lowest factors of safety occur at the end of 

the storm under initially dry conditions.  They were estimated to be 1.196, 1.195, 1.191 and 

1.197, respectively using the Bishop’s simplified, Morgenstern-Price’s, Spencer’s and Sarma’s 

methods (see Figs. 7.12, 7.13, 7.14 and 7.15, respectively). 

3. The initially dry conditions produced lower factors of safety than the initially wet conditions.  

Rahardjo et al. (2010) saw similar results where a drier slope “sucked up” more rainfall and 

decreased in suction much faster than an initially wetter slope during a low intensity rainfall.   

4. There was a delayed response for the initially wet slope.  The minimum factor of safety occurred 

three days after the end of the storm.  This can be seen by the suction response (Figure 6.34a) at 

the locations of the 15-ft and 20-ft tensiometers, which continue to decrease after the end of 

storm.  They do not continue to decrease for the initially dry slope (Figure 6.33b).     

5. The 60-day duration storm is severe enough to decrease the suctions in the deeper layers to 

values lower than at shallower depths (Figure 7.16).  This has never been observed in the field.   

6. Variable rainfall patterns like those proposed by Ng et al (2010) that more resemble real rainfall 

patterns should be but were not investigated as they are hypothetical scenarios that fall outside 

the scope of work.   

The 2D analyses factors of safety differ from the infinite slope analyses.  While the 2D factors of 

safety indicate that the slope is safe during a 500-year storm, the infinite slope factors of safety especially 

for the 60-day low-intensity storm do drop below unity.  Naturally, the 2D slope analysis is more realistic 

than the infinite slope analysis, which is accurate only when the slip surface runs roughly parallel to the 

slope face and is long in comparison to its depth.  Despite the fact that the slope is expected to survive 

this storm, it will be conservative to base threshold values off its seepage pattern.  The following section 

details the background behind the selection of these threshold values. 

Table 7-1  500-year 5-minute duration storm 2D factors of safety against slope instability 

Analysis Method 
Factor of Safety 

End of storm 3 days after storm 30 days after storm 

Simplified Bishop 2.28 2.23 2.21 

Morgenstern-Price 2.58 2.40 2.62 

Spencer 2.61 2.40 2.65 

Sarma 2.34 2.24 2.23 
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Table 7-2 500-year 60-day duration storm 2D factors of safety against slope instability 

Analysis Method 

Factor of Safety 

Initially Wet Initially Dry 

End of 
Storm 

12 hours 
after storm 

3 days 
after 
storm 

End of 
Storm 

12 hours 
after 
storm 

3 days after 
storm 

Simplified 
Bishop 

1.288 1.286 1.282 1.196 1.208 1.239 

Morgenstern-
Price 

1.287 1.285 1.282 1.195 1.208 1.236 

Spencer 1.287 1.285 1.279 1.191 1.204 1.235 

Sarma 1.286 1.284 1.281 1.197 1.207 1.238 

 

FIGURE 7.12  2D factor of safety using Bishop’s simplified method from SLOPE/W for the unsaturated 
case at the end of a 500-year 60-day low intensity storm with initially dry conditions 
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FIGURE 7.13  2D factor of safety using Morgenstern-Price’s method from SLOPE/W for the unsaturated 
case at the end of a 500-year 60-day low intensity storm with initially dry conditions 
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FIGURE 7.14  2D factor of safety using Spencer’s method from SLOPE/W for the unsaturated case at the 
end of a 500-year 60-day low intensity storm with initially dry conditions 
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FIGURE 7.15  2D factor of safety using Sarma’s method from SLOPE/W for the unsaturated case at the 
end of a 500-year 60-day low intensity storm with initially dry conditions 
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FIGURE 7.16  Suctions predicted using HYDRUS at T3 tensiometers during a 500-year 60-day duration 
storm for an (a) initially wet slope and (b) initially dry slope 



159 
 

7.5 Threshold Values 

A rainfall-induced landslide warning system essentially involves using the observational method 

(OM) to identify if a slope is rapidly deteriorating.  For this particular slope, the “cause” of the rapid 

deterioration is extreme rainfall and the “symptoms” may include elevated volumetric water content, 

reduced suction and/or increasing slope movement*.  According to Nicholson et al. (1999), the 

observational method is only applicable if the soil behaves in a ductile fashion; i.e.; significant 

displacement is required to mobilize the peak strength.  If the soil is brittle (i.e.; small displacement to 

mobilize peak strength which is true for the stiff silt in this slope), then Nicholson et al. (1999) stated that 

the OM is not applicable.  With this slope however, it can be argued that because the hydraulic 

conductivity of the soil, k, is quite low (k < ks = 10-6 cm/s), there will be ample lead time to forecast 

whether a slide is impending provided continuous monitoring data of suction/volumetric water content is 

available. 

Nicholson et al. (1999) proposed a traffic-light-based trigger criterion that is useful for establishing 

instrument thresholds as follows: 

1. Green = safe site condition 

2. Amber = decision stage 

3. Red = implement planned modifications 

with the understanding that the monitored value (most likely based on a “symptom” rather than the 

“cause”) follows the trend as shown in Figure 7.16.  In light of this figure, plots of the HYDRUS-calculated 

suction and volumetric water content vs. time values due to the 500-year event at the instrument locations 

are shown in Figs. 7.17 and 5.18 for the 5-minute, high-intensity storm and Figs. 7.19 and 7.20 for the 60-

day, low-intensity storm.   
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FIGURE 7.17  Traffic-light-based trigger criteria useful for selecting threshold values after (after Nicholson 
et al., 1999) 

For an instrument to be considered a good candidate for use as a threshold indicator, the response 

has to be in the correct direction; i.e.; as a result of the storm, volumetric water contents should trend 

upward and suctions should trend downward.  Otherwise, there may be ambiguity as the opposite trend is 

more closely associated with a dry spell.   

Based on this criterion and based on the 5-minute storm simulation, all sensors in Borehole 3 trend 

in the right direction and make good candidates except for T3 tensiometers at 3.05 and 4.57 m (10 and 

15 ft).  Use of T3 tensiometer at 1.52 m (5 ft) is questionable.  Even though there was an episode of a 

decrease in suction, there were also two episodes of suction increase.   

Based on this criterion and based on the 60-day storm simulation, all sensors in Borehole 3 trend in 

the right direction and make good candidates.  Even though the suctions in the T3 tensiometers at depths 

of 1.52, 3.05 and 4.57 m (5, 10 and 15 ft) increased initially, they eventually decreased as the 60-day 

storm progressed.  Due to the erratic observations in the T3 tensiometers at 1.52, 3.05 and 4.57 m (5, 10 

and 15 ft) and due to the fact that the HYDRUS analyses do not predict suctions as well in these 

instruments (Figure 6.28 through 6.30) compared to the shallower sensors (Figure 6.26 and 6.27), the T3 

tensiometers at 1.52, 3.05 and 4.57 m (5, 10 and 15 ft) will not be utilized as triggers for instrument 

thresholds. 
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FIGURE 7.18  Volumetric water content vs time during and after 500-year 5-minute, high-intensity storm 
at W3 water content sensors 

 

FIGURE 7.19  Matric suction vs time during and after 500-year 5-minute, high-intensity storm at T3 
tensiometers 
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FIGURE 7.20  Volumetric water content vs time during and after 500-year 60-day, low-intensity storm in 
W3 water content sensors 

 

FIGURE 7.21  Matric suction vs time during and after 500-year 60-day, low-intensity storm in T3 
tensiometers 

A discussion on the assignment of threshold values is best facilitated with the following information: 

1. Replots of W3 and T3 instruments to cover the 500-year 60-day, low intensity storm period only 

(Figs. 7.21 and 7.22); 

2. Average, minimum and maximum instrument values recorded during the period of this study 

(Table 7.2). 
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(a) 

 

(b) 

FIGURE 7.22  (a) Volumetric water content vs time during 500-year 60-day, low-intensity storm in W3 
water content sensors and (b) blow-up of the first two days of this plot 
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(a) 

 

(b) 

FIGURE 7.23  (a) Matric suction vs time during 500-year 60-day, low-intensity storm in T3 tensiometers 
with the vertical axis reversed and (b) blow-up of the first 7 days of this plot  
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Table 7-3 Mean, minimum and maximum recorded instrument values 

Instrument 
Depth 
(m/ft) 

Mean 
Reading 

Minimum 
Reading 

Maximum 
Reading 

Water content sensor W3 0.15/0.5 0.46 0.37 0.50 

Water content sensor W3 0.76/2.5 0.48 0.40 0.53 

Tensiometer T3 0.15/0.5 76.4 9.1 684 

Tensiometer T3 1.52/5 43.5 10.8 146 

Tensiometer T3 3.05/10 48.9 11.2 79 

Tensiometer T3 4.57/15 68.7 51.9 112 

Tensiometer T3 6.1/20 115.2 94.1 193 

The discussion for each instrument is as follows: 

1. W3 at 0.15 m (0.5 ft) – This instrument reacted very rapidly to the 60-day storm.  In 2 days, the 

volumetric water content increased by 0.08 from 0.45 to about 0.54.  The threshold values have 

to be selected in light of the field measured values where the volumetric water content averaged 

0.46 with a maximum of only 0.50.  The proposed amber and red thresholds are 0.51 and 0.53, 

which must be accompanied by at least 2 days of rainfall averaging about 1 inch/day (0.043 

inches/hr). 

2. W3 at 0.76 m (2.5 ft) – This instrument reacted more gradually to the 60-day storm.  In 2 days, 

the volumetric water content increased by 0.02 from 0.5 to about 0.52.  The maximum volumetric 

water content reached was 0.563 at 60.5 days.  The threshold values have to be selected in light 

of the field measured values where the volumetric water content averaged 0.48 with a maximum 

of 0.53.  The proposed amber and red thresholds are 0.54 and 0.55 accompanied by at least 14 

days of rainfall averaging about 1 inch/day (0.043 inches/hr). 

3. T3 at 0.15 m (0.5 ft) – This instrument reacted very rapidly to the 60-day storm.  In 2 days, the 

suction decreased by 159 kPa from 169 to 10 kPa.  The minimum suction reached was 0.5 kPa at 

54 days.  Realistically, the tensiometer cannot read suctions less than 9 kPa due to the limitation 

of the sensor.  The threshold values have to be selected in light of this sensor limitation and in 

light of the field measured suctions which averaged 76 kPa and with minimum and maximum 

readings of 9 and 684 kPa.  The proposed amber threshold is 10 kPa accompanied by at least 2 

days of rainfall averaging about 1 inch/day (0.043 inches/hr).  Due to the limitation of this sensor, 

it is not reasonable to propose a red threshold. 

4. T3 at 6.1 m (20 ft) – This instrument reacted more gradually to the 60-day storm.  In 51 days, the 

suction decreased by 92 kPa from 101 to 9 kPa.  The minimum suction reached was 2.6 kPa at 
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63 days.  Realistically, the tensiometer cannot read suctions less than 9 kPa due to the limitation 

of the sensor.  The threshold values have to be selected in light of this sensor limitation, in light of 

the fact that the HYDRUS analysis for the 500-year, 60-day duration low intensity storm tends to 

under-predict suctions at this depth (Figure 6.31), and in light of the field measured suctions 

which averaged 115 kPa and with minimum and maximum readings of 94 and 193 kPa.  The 

proposed amber and red thresholds are 70 and 50 kPa accompanied by at least 14 days of 

rainfall averaging about 1 inch/day (0.043 inches/hr). 

Table 7-4  Proposed threshold values for the various monitoring instruments 

Instrument 
Amber 

Threshold 
Value 

Red 
Threshold 

Value 
Accompanying Threshold 

W3 at 0.15 m 0.51 0.53 2 days rain averaging about 1 inch/day 

W3 at 0.76 m 0.54 0.55 14 days rain averaging about 1 inch/day 

T3 at 0.15 m 10 kPa - 2 days rain averaging about 1 inch/day 

T3 at 6.1 m 70 kPa 50 kPa 14 days rain averaging about 1 inch/day 

Planned modifications for the amber trigger can consist of placing tarp or geomembrane on the 

slope crest to minimize infiltration into the slope.  For the red trigger, closing the lane closest to the slope 

may be prudent until the suctions increase, and the water contents decrease. 

7.5.1 Error Analysis 

In the development of instrument threshold values, the possible sources of uncertainty include: 

1. Error in the instrument readings themselves; 

2. Error in the transient hydrological model; and 

3. Error in the design storm characteristics. 

With respect to 1, the instruments have been factory calibrated.  The factory provided accuracy of the 

tensiometers, water content sensors and rain gage are ±10%, ±3% and ±1%, respectively as summarized 

in Table 4-1.  There is every reason to believe that the calibration of the instruments was not 

compromised during transport or during installation because the HYDRUS results predicted the hourly 

response of all seven instruments very well for a period of over 2.5 years as shown in Figures 6.24 

through 6.29.  The correlation coefficients between the predicted and measured instrument response 

values are summarized in Table 7-5. 
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Table 7-5  Improved correlation coefficients between calculated and measured suctions and volumetric 
water contents for the final calibration run 

Depth (m) Suction Volumetric Water Content 

0.15 0.95 0.93 

0.76 - 0.86 

1.52 0.89 - 

3.05 0.87 - 

4.57 0.65 - 

6.10 0.74 - 

 

It is unlikely that this level of agreement is fortuitous.  So, there must be some credence to the 

accuracy of the transient hydrological model as well.  This level of agreement further justifies the use of: 

(1) a software that models SWCC and HCF hysteresis; and (2) porosity-dependent SWCC and HCF in 

the transient hydrological model, which incidentally are two of the biggest takeaways from this research. 

Characteristics of the design storm are most likely the greatest level of uncertainty among the 3 

sources of error because this was developed or assumed for an event that has not yet occurred.  There is 

uncertainty in the prevailing ground moisture (although both dry and wet initial conditions were analyzed 

and it was found that the initially dry conditions were more critical for slope stability) prior to the design 

storm as well as uncertainty in the intensity, duration and time history of the design storm rainfall (a 

constant precipitation rate with time for a period of 60 days was used because the longer the duration, the 

more conservative the results with respect to slope stability).  The literature has shown that a storm that is 

front-loaded is more critical but sensitivity analyses of the shape of the precipitation time-history for the 

design storm is beyond the scope of this work.  Besides, it may not be necessary because ultimately, 

threshold values cannot be categorized as outright right or wrong.  There could be a possible range of 

values that could be utilized without compromising the stability of the slope. 

7.5.2 Applicability of Threshold Values to Other Slope Sites 

Landslide warning systems can be site specific or regionally based.  A site-specific landslide 

warning system is more reliable than a regional, empirically-based landslide warning system.  In this 

research, a landslide warning system was developed for a specific slope with its own unique geometry, 

soil properties, hydrological conditions and monitoring instruments.  Soil properties vary with location and 

depth.  Therefore, the instrument thresholds, geotechnical properties and transient flow model developed 

are not applicable to other slopes.  Only the principles can be used to develop other site-specific landslide 

warning systems.  A set of guidelines to develop site-specific rainfall-induced landslide warning systems 

are provided below.   

1. Instruments capable of measuring high-resolution suction response from full-saturation to high 

suction range (past the soil air entry value) should be installed with companion water content 

sensors at the same depth and as near to the slope face as possible.  Near the ground surface, 
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the instruments should be installed at closer depth increments because the zone of interest is at 

shallow depths. 

2. A total weather station would be useful to install at the slope site.  This will avoid reliance on third 

party weather data that may or may not be representative of the actual site.   

3. A geotechnical investigation should be performed with continuous disturbed and undisturbed 

sampling of the geomaterial.   

4. Laboratory tests on undisturbed samples should be performed to obtain the main wetting and 

drying SWCC and HCFs as a function of porosity.  This research shows that pressure-dependent 

SWCC is of paramount importance to obtain a good fit between predicted and measured 

instrument response to the applied boundary conditions.   

5. To the author’s knowledge at the time of writing, HYDRUS 2D/3D is the only commercially 

available software capable of performing transient hydrological analyses considering SWCC and 

HCF hysteresis.   

6. The transient hydrological analysis must be calibrated to field measured suction and water 

content response over several dry-wet cycles to gain confidence that the model is reliable.  

7. Once calibrated, the transient hydrological flow model should be used to predict the suction and 

water content response to hypothetical design storms.  The estimated suction stresses can then 

be inserted into a slope stability or numerical model to assess the slope’s performance during the 

design storm.   

8. The predicted suction and water content response during the design storm should be compared 

to the maximum and minimum recorded field measured data, to establish the instrument 

thresholds. 

9. Nicholson et al’s (1999) traffic light procedure provides a logical approach to establish instrument 

thresholds. 
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8 FEM ANALYSIS 

It was originally intended to develop threshold values based on another measured symptom, lateral 

deflection, in addition to suction and volumetric water content.  However, due to the limitations of the 

software utilized in this research, it was decided that any threshold values of lateral deflection developed 

based on finite element analyses would be difficult to justify with a great deal of confidence.  The reasons 

can be explained by identifying the software limitations below. 

8.1 CODE_BRIGHT 

CODE_BRIGHT is an extremely powerful finite element software developed at the Universitat 

Politecnica de Catalunya (2017) that can be used to solve uncoupled and coupled problems in soils.  It 

can handle hydro-mechanical, thermo-mechanical and hydro-thermal problems in one-, two- and three-

dimensions.  It uses the Basic Barcelona Model (BBM) as the constitutive model for unsaturated soils.  

The BBM is an elasto-plastic model that can be considered as state-of-the-art for unsaturated soils at the 

time of writing.  The model was formulated for isotropic and triaxial compression stress states.  It can 

model both collapse and expansive responses of unsaturated soils upon wetting.  When the soil reaches 

saturation, the BBM defaults to the modified Cam-clay model. 

After extensive use of this software to solve just hydro- or seepage problems for the unsaturated 

slope, it was discovered that agreement between the calculated and measured values of suction and 

volumetric water content was difficult to achieve.  When the field suction paths were superimposed on the 

SWCC, it was realized that the field values of suction and water content do not follow the wetting or 

drying curves in most instances.  Instead, they scan.  Since CODE_BRIGHT does not allow scanning, it 

was recognized as a major limitation that precluded its use to evaluate the slope deformation behaviour. 

8.2 Slope Cube Module in HYDRUS 

HYDRUS 2D is a finite element software that is renowned for its capability to solve problems 

involving water flow and solute transport in variably saturated media.  This software was utilized after 

failed attempts with CODE_BRIGHT to simulate scanning because HYDRUS 2D does have a scanning 

routine for water flow in unsaturated soils.  The Slope Stress and Stability (Slope Cube by Lu et al., 2016) 

framework is a HYDRUS add-on module that combines variably-saturated flow and stress fields to 

simulate transient hillslope hydrology and stability in response to rainfall.  Slope Cube calculates the 

factor of safety at each point in the slope instead of a single factor of safety for the entire slope that is 
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traditionally employed in limit equilibrium analysis.   The local factor of safety is then quantitatively used to 

identify stress paths toward failure due to rainfall.  

 

FIGURE 8.1  Flow chart showing Slope Cube analysis methodology (after Lu et al., 2016) 

The Slope Cube methodology for plane-strain analysis of a slope is summarized in Figure 8.1.  It 

calculates soil stresses, strains and displacements in the slope using a linear elastic finite element code, 

FEM2D, originally developed by Reddy (1993).  For plane strain problems, the governing differential 

equations are the force-equilibrium equations in 2D as follows: 
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            (8.2) 

where xx and zz are the normal stresses in the horizontal and vertical directions, respectively, xz is the 

shear stress and Z is the body force due to the soil in the slope calculated using field moist unit weights.  

Stresses are all effective and Slope Cube calculates effective stresses, ’, as follows: 

s
au  −−='              (8.3) 

where  = total stress,  and s = suction stress which is given by Eq. 7.9 or 7.11. 

In the context of the Mohr-Coulomb envelope, the physical meaning of the suction stress can be 

best explained with the aid of Figure 8.2.  When the soil is sheared under saturated conditions, the matric 

suction, ua – uw = 0 but the suction stress, s = -c’/tan’.  As matric suction increases, the suction stress 

and consequently the apparent cohesion increase.  Therefore, increasing the matric suction effectively 

contributes to an increase in the apparent cohesion. 
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FIGURE 8.2  Determination of suction stress from the apparent cohesion intercept with varying degrees 
of suction (after Lu and Godt, 2013) 

Lu et al. (2016) argues that traditional limit equilibrium slope stability analysis suffers from the 

following limitations: (1) the failure surface is presumed (usually circular in a 2D analysis); and (2) failure 

occurs simultaneously along every point on the failure surface.  To overcome these limitations, the Slope 

Cube analysis adopts the shear strength reduction approach with the aid of finite element analysis.  In the 

finite element routine, the soil is assumed to be linear elastic.  Linear elasticity may be simple but it 

suffers from the following shortcomings: 

1. Selecting a representative Young’s modulus for soils which have a non-linear and stress-

dependent stress-strain curve is extremely challenging; 

2. A linear elastic soil will not fail unless a yield strength is specified; 

3. Soil is not elastic at large strains; e.g.; if a sand is initially sheared in triaxial compression and 

then the confining stress is decreased, that sand will eventually fail when the confining stress is 

low enough.  However, if Hooke’s law is used, the soil will just unload elastically and not fail 

(Lade, 2007); 

4. Hooke’s law cannot handle stress path dependency (Lade, 2007); 

5. A Hookean soil cannot have a negative Young’s modulus and hence cannot strain soften (Lade, 

2007); 
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6. An isotropic elastic soil cannot dilate since Poisson’s ratio, , is limited by -1 ≤  ≤ 0.5.  If a soil 

dilates,  must be > 0.5.  Use of  > 0.5 results in negative work; i.e.; energy can be produced 

along certain stress paths which is clearly incorrect (Lade, 2007); 

7. Hooke’s law cannot handle normal strain and shear stress or normal stress and shear strain 

coupling effects in soil as shown in Figure 8.3 (Lade, 2007); 

8. With Hooke’s law, it is implied that stress and strain directions or stress increment and strain 

increment directions coincide.  However experimental evidence based on simple shear and 

torsional shear tests indicate that stress directions coincide with strain increment directions at 

high stress levels as shown in Figure 8.4 (Lade, 2007).  This has been observed in materials that 

behave plastically and forms the basis of Saint Venant’s (1870) principle whereby he proposed 

that the principal axes of stress coincide with the principal axes of incremental plastic strain 

during stress rotation. 

Due to the abovementioned limitations, any deformation analysis using Slope Cube cannot be relied upon 

to derive meaningful threshold inclinometer deflection values.  Without a fundamentally sound finite 

element routine, no logical and reasonable inclinometer threshold values can be established with a great 

degree of confidence.  
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FIGURE 8.3  Normal strain and shear stress or normal stress and shear strain coupling in soils (after 
Lade, 2007) 
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FIGURE 8.4  (a) Elastic and (b) plastic behavior of material during rotation of principal stress axes (after 
Lade, 2007) 
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9 SUMMARY AND CONCLUSIONS 

9.1 Summary and Conclusions 

A landslide warning system was developed for a cut slope along Kalaniana’ole Highway by 

performing a soil investigation, collecting soil samples, performing laboratory tests, installing monitoring 

instruments at a soil slope site, collecting field data, developing and calibrating a saturated-unsaturated 

transient hydrological model, using the calibrated model to predict pore pressure/suction during a design 

rainfall event (a 500-year storm), inputting these pore pressure/suction values into a slope stability 

analysis and determining threshold values of these instruments to develop a real-time landslide warning 

system.   

Laboratory test results showed that the soil was a uniform stiff to very stiff high plasticity silt.  Field 

instruments installed included tensiometers to measure in situ suction, water content sensors to measure 

volumetric water content, in-place inclinometers to measure lateral ground deflections and a rain gage to 

measure precipitation at the slope site. 

A saturated-unsaturated transient hydrological flow model was developed and calibrated using the 

field data and the lab test data.  Calibration was achieved by adjusting the model parameters to match the 

laboratory measured and calculated SWCC and HCF, and to match calculated and field-measured 

suctions and water contents.  The following conclusions can be made from this research. 

1. A field suction path can be drawn by plotting tensiometer and the corresponding water content 

sensor readings over several drying-wetting events.  It usually runs along a scanning curve 

except during periods of heavy rain or extreme drought when the field suction path could join up 

and run along the wetting or drying branches, respectively.  Therefore, it is important for a 

saturated-unsaturated transient flow model to allow for scanning in order to predict field behaviour 

reliably; 

2. If scanning is not allowed, the calculated field suction path will run along the main drying or main 

wetting branches only depending on which is specified.  Doing so will result in over-estimated 

suctions and water contents when the SWCC and HCF are specified for the drying branch only.  

Conversely, use of the wetting branch only will yield under-predicted suctions and water contents; 

3. To the author’s knowledge, HYDRUS (Simunek et al., 2006) is the only commercial software that 

will allow scanning; 

4. When using a SWCC constant with depth, the calculated surficial water contents and suctions 

matched well with the measured values.  However, the calculated water contents and suctions 
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did not match as well deeper.  This is because the SWCC is affected by confining stress (Ng and 

Pang, 2000); 

5. Increasing confining stress has a tendency to “squash” or “pancake” the SWCC.  This implies that 

the soil at larger depths tend to have larger changes in suction for the same change in water 

content as the shallower soils.  The SWCC obtained using the pressure plate and VSA was 

derived under zero confinement and thus are applicable only to surficial soils; 

6. To estimate pressure-dependent SWCCs, it is possible to use the results of the isotropic 

compression triaxial tests.  By expressing the van Genuchten parameters as a function of the soil 

porosity using a model suggested by the Universitat Politecnica de Catalunya (UPC, 2017), 

separate constants for the drying and wetting portions of the SWCC can be discerned based on 

the results of isotropic compression tests.  These model constants were then used to develop 

various SWCCs at different depths; 

7. When HYDRUS was rerun using pressure-dependent SWCCs, the calculated water contents and 

suctions matched better with the measured values especially deeper; 

8. HYDRUS was used to run this more detailed model to estimate suctions and volumetric water 

contents within the slope during and after a 500-year storm.  These suctions and water contents 

were then used in infinite slope analyses as well as 2D slope stability analyses with the aid of 

SLOPE/W; 

9. To fool SLOPE/W into using the correct value of suction stress, s, for the slope stability analysis, 

manual calculations of s and unit dummy values of the van Genuchten parameters ( and n) 

were input into SLOPE/W; 

10. Based on infinite slope analyses, the calculated factors of safety suggest that the slope will 

survive the 5-minute-duration, high intensity 500-year storm where the lowest factor of safety was 

> 2.0.  For the 60-day-duration, low-intensity 500-year storm, the factors of safety did decrease 

below 1.0 at the end of the storm.  The critical depth was 3.4 m when the factor of safety = 1.0; 

11. Based on 2D slope stability analyses, the calculated factors of safety suggest that the slope will 

survive the 5-minute-duration, high intensity 500-year storm where the lowest factor of safety (> 

2.0) occurred about 3 to 30 days after the end of the storm.  For the 60-day-duration, low-intensity 

500-year storm, the factors of safety were lower than the 5-minute, high intensity variety.  The 

lowest factor of safety was 1.3, which occurred at the end of the storm; 

12. Instrument thresholds were established using a traffic-light-based trigger criterion proposed by 

Nicholson et al. (1999); 
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13. Instrument threshold values were selected in light of whether the HYDRUS prediction was 

trending in the right direction during a storm, in light of sensor limitation (e.g.; tensiometers cannot 

read below 9 kPa), in light of the agreement between calculated and predicted sensor responses 

during calibration, and in light of the field measured average, minimum and maximum values; 

14. Instrument threshold values could be established for 2 water content sensors and 2 tensiometers 

with confidence; 

15. Instrument threshold values were not established for the inclinometers due to no significant 

observed field movement and due to the limitations of the software utilized in this research.  For 

instance, CODE_BRIGHT did not have the ability to scan and the Slope Cube module in 

HYDRUS utilized a linear elastic soil constitutive model.  Therefore, it was decided that any 

threshold values for lateral deflection developed based on finite element analyses would be 

difficult to justify with a great deal of confidence. 

9.2 Suggestions for Future Research 

The following are suggestions for future research or suggestions if additional research work were to 

be conducted for this or similar slope site: 

1. “Undisturbed” soil samples were collected using modified California samplers.  To decrease 

sample disturbance, Pitcher samplers should be used to collect samples if the soils are stiff and 

where use of Shelby tubes is precluded. 

2. Although this may be challenging and dangerous, instruments to measure suctions and water 

contents should ideally be installed from the slope face. 

3. Water content sensors should be installed to coincide with tensiometers at larger depths now that 

an installation tool is available from the Miter Group. 

4. More consolidation tests at larger depths would have provided a clearer picture of the stress 

history at the site. 

5. Pressure-dependent SWCC tests should be conducted to validate the UPC (2017) porosity-based 

model used in conjunction with BBM parameters derived from isotropic compression test data. 

6. Other models (Gallipoli et al., 2003) for pressure-dependent SWCC should be explored and 

compared to the approach in Suggestion 5. 

7. The variation of hydraulic conductivity with water content of the unsaturated soil should be 

experimentally derived to verify the HCF computed using the method of Kunze et al. (1968). 
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8. The triaxial shear apparatus utilized contains only one tensiometer located in the bottom 

pedestal.  Suction measurements at both the top and bottom of the sample should be used to 

provide a more representative overall value of suction in the sample. 

9. Potential evaporation computed using Kohler and Parmele’s (1967) modification of Penman’s 

(1948) equation should be compared to values from the Evapotranspiration Atlas (Giambelluca et 

al., 2014). 

10. A numerical software utilizing the BBM (or better) as a constitutive model that allows for scanning 

should be used to establish inclinometer threshold values. 
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CHAPTER I INTRODUCTION 

 

1. INTRODUCTION 

Unsaturated soils extensively existed in the field. The volume change behaviors and shear 

strength of unsaturated soils play an essential role in the structural design of the road, building, 

and dam…..etc. that above the saturated soil layer and the slope stability analysis for slopes of 

unsaturated soils. However, characterizing the volume change and shear strength of unsaturated 

soils is still challenging issue for researchers and practicing engineers. The conventional suction-

controlled triaxial test (SCTX) required sophisticated test equipment. The testing process was very 

time-consuming and laborious. In addition, the test results are not very accurate. All these problems 

become the barriers which prevent unsaturated soil mechanics from being used in routine 

engineering projects. With the recent developments in high-suction tensiometers and theoretical 

advancements, the constant water content tests can be easily performed by using HST to measure 

the matric suction simultaneously with the load applied to characterize the unsaturated soil 

behavior. However, the test results are complicated, and at present, there is no available method to 

analyze the test results for constitutive modeling purposes. This research modifies the oedometer 

and shear test apparatus for saturated soils in conjunction with the high-suction tensiometer (HST) 

to perform tests for unsaturated soils. In addition, methods are also proposed for data reduction. 

The constant water content test could be useful to get good results and to save time and money of 

the engineering projects related to unsaturated soils. 

In this project, based on modifications on a conventional oedometer, a new oedometer cell 

with suction measurement ability developed by Li et al. (2015) was adopted for the one-

dimensional oedometer compression test on unsaturated soils. In this system, the oedometer cell 

was equipped with a high-suction tensiometer to measure suction change during constant water 

content compression tests. Soil volume change was measured by a displacement transducer. With 

this newly developed oedometer cell, a series of constant water content compression tests on the 

unsaturated Hawaii soil was conducted.  

Besides this, a new direct shear cell with suction measurement ability was developed to 

investigate the shear strength of the Hawaii soil through constant water content direct shear tests. 
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A miniature high-suction tensiometer was also developed and applied to measure the soil matric 

suction during shearing. A series of tests were performed to characterize the shear strength of the 

unsaturated soils with different water contents under different normal stresses. 

After that, based on (Zhang et al. 2016) a new calculation method was used to combine the 

constant water content oedometer test results as well as the constant water content direct shear test 

results together to characterize Hawaii unsaturated soil shear strength and stiffness parameters.  

2. LITERATURE REVIEW 

2.1.Saturated soil testing 

Saturated soils considered as a special case of unsaturated soils. The saturated soil is a two-

phase soil (water and solid phase) this makes the saturated soils much simpler than unsaturated 

soils during testing and analysis. Even for saturated soils, there are some laborious unfavorable 

tests take much time and effort such as consolidated drained triaxial test which is called slow test. 

In this section, the purpose and limitation of each test will be briefly presented. 

It is well known that when materials are loaded or stressed they suffer from deformations or 

strains. For elastic materials, the strains are entirely reversible. For plastic materials, part of the 

strains is irreversible when unloaded. Some other types of materials take relatively long time to 

deform under loads. Materials with stress-strain time factor are called visco-elastic. For soils, the 

behavior becomes more complicated because of the introduction of another factor which is the 

stress history (soil has a memory). Which means, when soils are loaded, they deform, and when 

stresses are released some permanent deformations are remained. The soil deformations could be 

either change in shape (which is corresponding to shear loading), or a change in volume (which is 

corresponding to compression loading), or both. 

Terzaghi firstly defined the consolidation process as the process which involves a decrease 

in soil water content without air replacement. When saturated soils are loaded, excess pore water 

pressure will be generated. If the soil has a relatively low permeability (i.e., clays and silts), the 

excess pore water pressure dissipation will take a long time, which is called consolidation 

(Terzaghi (1944). After that, tremendous researches have been done to define and determine the 

parameters related to consolidation process such as pre-consolidation pressure, OC and NC slopes, 

the soil OCR and coefficient of consolidation. Oedometer test is the laboratory test that represents 

the one-dimensional consolidation process. The oedometer test is called K0 test and, lateral strains 
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are constrained by the metal ring. The volume change parameters only could be determined from 

the oedometer test results.  

To characterize the shear strength of soils, the direct shear test is usually used. This test is 

one of the oldest strength experimental tests. Coulomb has used a test like the direct shear box to 

determine the required shear strength parameters for his equation (Holtz and Kovacs 1981). In this 

test firstly, normal force is applied to the sample after that the sample is laterally sheared by means 

of applying a lateral deformation to the lower part of the soil. By applying different normal stresses 

and measure the corresponding shear strength. The soil shear strength parameters (cohesion and 

angle of internal friction) can be determined. The soil shear strength is defined by  Mohr-Coulomb 

shear envelope: 

' tan ' 'n C      (1.1) 

Where, τ=shear strength; σn’= normal stress; C’= cohesion; ’=angle of internal friction. 

There are several advantages and disadvantages of the direct shear test. The test is fast, 

inexpensive and straightforward, especially for cohesionless materials. Disadvantages include the 

difficulty of controlling drainage, especially for fine-grained soils. Consequently, the direct shear 

test is suitable only for fully drained soil conditions. Also, in the direct shear tests we are forcing 

the sample to fail on a horizontal plane, maybe this is not the weakest or critical direction. 

Moreover, there is a severe stress concentration at the sample boundaries, which mean highly no-

uniform stress conditions within the specimen. In addition to, there is uncontrolled rotation in the 

principal stresses and planes at the failure conditions (Holtz and Kovacs 1981). The vertical 

deformations can be measured during direct shear testing. However, it is not usable. Only the 

parameters related to the shear strength of soil can be determined from the direct shear test. 

To overcome the shortcomings of the direct shear test, A. Casagrande in 1930 began research 

to develop a cylindrical compression test at M.I.T. Later, the test called triaxial and now is the most 

popular testing technique in geotechnical engineering. The triaxial test is more complicated than 

the direct shear test but also much more versatile and reliable. The drainage could be controlled, 

and there is no rotation in the principal stresses and planes. One of the vital advantages of the 

triaxial test that the stress path can be controlled. Using triaxial testing, one can model any complex 

stress bath for the soil in the real conditions. There are different types of triaxial tests such as 

Unconsolidated Undrained (UU-rapid test), Consolidated Undrained (CU) and Consolidated 

Drained (CD-slow test). In the triaxial test, we can get many data about the soil such as shear 
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strength parameters, volumetric strains, pore water pressure, consolidation parameters, and 

coefficient of consolidation. In the triaxial test, the major and minor principal stresses are known 

as well as the pore water pressure so that the total and effective stress paths are known. However, 

the test is laborious, time-consuming and the results are more complicated. 

2.2.Unsaturated soil testing 

The unsaturated soil is more complicated than saturated soils. Unsaturated soils have three-

phases: soil particle, pore water, and pore air (Kohgo et al. 1993). The contractile skin (air-water-

solid interface) was introduced by (Fredlund and Morgenstern 1977) as a fourth independent phase 

of unsaturated soils. However, it is not used in calculations at because it is too thin. Behavior of 

unsaturated soils is influenced by many factors, and the influences of these factors are usually 

coupled together: load applied to an unsaturated soil will lead to changes in the matric suction. 

Changes in matric suction often cause soil moisture and volume to change, and when volume 

changes are restricted, stresses are generated (Zhang 2016).  

The stress state variables are needed to describe the soils mechanical behavior (the 

volumetric changes and shear strength behavior). The stress state variable should be independent 

of any material physical properties (Fredlund and Morgenstern 1977). The use of effective stress 

(-uw) for saturated soils has proven it’s satisfactory for engineering practice. In other words, the 

effective stress is a unique stress state variable to describe the mechanical behavior of saturated 

soils. Which means, the effective stress state variable could be used to explain and study the 

mechanical behavior of saturated sands, silts, and clays because it is independent of any soil 

properties. Firstly, numerous efforts have been made to extend the single effective stress state 

variable for unsaturated soils. Bishop (1959) suggested the below equation as an effective stress 

state variable for the unsaturated soil. 

' ( ) ( )a a wu u u         (1.2) 

Where, 

’=effective stress 

uw= pore water pressure

ua= pore-air pressure 

-ua= net normal stress 

ua-uw= matric suction 
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  a parameter related to the degree of saturation of soils. 

The magnitude of   parameter is unity for saturated soils and between one and zero for 

unsaturated soils. Jennings and Burland (1962) found that the relationship between volume 

changes of unsaturated collapsible soils cannot be adequately explained by Bishop’s equation (1.2). 

After that, many researchers suggested that the need for two independent stress state variables 

(mean stress and matric suction) to define the mechanical behavior of unsaturated soils (Fredlund 

and Morgenstern 1977; Matyas and Radhakrishna 1968), which means, to explain any mechanical 

behavior of unsaturated soil such as volumetric changes or shear strength, two variables are 

required. Although there are some different opinions in the use of two stress state variables (Khalili 

et al. 2004; Lu and Likos 2004). All researchers controlled the two stress state variables (net normal 

stress and matric suction) when experimentally characterize unsaturated soils. 

For saturated soils, the volume changes equal to the water volume flow in or out of the 

sample when the load is applied, which is easy to measure during testing using a volume gage. 

However, for unsaturated soils, the volume change is no longer equal to water volume change 

because of the presence of air phase in soil pores. This makes the use of the conventional triaxial 

test is no longer sufficient for unsaturated soils. Bishop and Donald (1961) adopted the first double-

cell suction controlled triaxial apparatus as schematically shown in Figure 1.1. Two significant 

modifications were made to change the conventional triaxial test into suction-controlled triaxial 

apparatus. First one is the use of double cell to measure the volume change of unsaturated soil 

specimen. The second one is to replace the porous stone at the base pedestal with a high air entry 

(HAE) ceramic disc to control matric suction with the axis-translation technique (Hilf 1956).The 

SCTX is the most popular unsaturated soil testing system. Moreover, it allows researchers to 

control the stress, air, and pore water pressures separately to eliminate the complicated coupling 

effect. In addition, using SCTX test the soil mechanical behavior under specific (pre-selected) 

stress paths could be investigated. Since the 1960s the SCTX test used by many researchers to 

study and investigate constitutive behaviors of unsaturated soils (Bishop and Blight 1963; 

Fredlund 1979; Fredlund and Morgenstern 1976; Fredlund et al. 1978; Fredlund and Morgenstern 

1977; Jennings and Burland 1962; Matyas and Radhakrishna 1968; Sivakumar 1993). However, 

there are many limitations for the SCTX test, such as the need for sophisticated equipment and 

sensitivity of measurements to temperature changes. Also, the SCTX test is a consolidated drained 

test. Because of large sample dimensions and low permeability of unsaturated soils, the SCTX test 
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is very time consuming, laborious and costly. Usually, to fully characterize one unsaturated soil it 

takes several years (Hoyos Jr 1998; Sharma 1998; Sivakumar 1993). 

 

 

Figure 1.1 Double-cell triaxial apparatus for unsaturated soils (Bishop and Donald 1961). 

 

The SCTX is established based on the divide and conquer approach which implicitly 

includes an assumption that the unsaturated soil is stress path independent. However, it is well 

established that the unsaturated soil is elasto-plastic and stress-dependent (Zhang 2016). One 

significant additional limitation for the SCTX that the results are theoretically not correct. The test 

theoretical principals were deeply investigated and discussed by Zhang (2016). It was concluded 

that the soil elastic behavior is stress path independent and the SCTX test results could be accepted. 

However, the soil plastic behavior is stress path dependent and the test results are only a collection 

of elastic behaviors of the soil with different pre-consolidation stresses and are always lower than 

the results from the idealized stress path as shown in Figure 1.2. Moreover, applying continuous 

load into the drained unsaturated soil will result in non-uniform suction changes within the sample. 
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As a result, the sample cannot be considered as a representative elementary volume (REV). In 

other words, using SCTX test we made a good sample representing the field conditions to a non-

REV sample. If the soil is not a REV, the test results cannot used for constitutive modeling purpose 

(Zhang 2016). 

 

 

Figure 1.2 Schematic plot of effects of loading procedure on suction-controlled 

triaxial test results (Zhang 2016). 

Because of the limitations mentioned above of SCTX test and the non-availability in most 

of the universities and research centers due to high cost and time-consuming. There was a great 

need to develop and modify simple testing equipment for unsaturated soils to be used for common 

engineering projects.  

The suction-controlled direct shear test was firstly proposed by (Gan et al. 1988) to 

characterize the shear strength parameters of unsaturated soils. Similar to the suction-controlled 

triaxial test proposed by Bishop and Donald (1961), the axis-translation technique was also used 

to control soil suction during shearing. The soil specimens shall be conditioned to different suction 

levels after that sheared. Using different samples at different suction levels, the shear strength 

parameters could be determined based on (Fredlund et al. 1978) equation. After that, many 

researchers successfully used the suction-controlled direct shear test to characterize the unsaturated 

soils shear strength (De Campos and Carrillo 1995; Nam et al. 2011). However, the test required 

sophisticated modifications to the conventional direct shear test apparatus for suction control 

purpose and was complicated to operate. Moreover, suction controlled tests are drained tests. As 
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mentioned previously, due to the extremely low permeability of unsaturated soils, suction-

controlled tests could be time-consuming. 

The oedometer test is a well-known test in classical geotechnical engineering and typically 

used to get the soil parameters related to consolidation and stress history. Some researchers have 

also modified the oedometer test for saturated soils to a suction-controlled oedometer test (SCOD) 

for unsaturated soils by introducing suction control system through axis-translation or vapor 

equilibrium technique (Dineen and Burland 1995; Kassiff and Shalom 1971; Maswoswe 1985; 

Romero et al. 1995). Compared to triaxial test, the suction controlled oedometer is much cheaper, 

simpler, faster and easier to perform. In the oedometer test, the volumetric changes can be directly 

calculated from the vertical deformations, which can be easily measured using LVDT. One of the 

significant limitations of the oedometer test is that the lateral stress is unknown. Another limitation 

of the suction controlled oedometer test is the required significant modifications to the 

conventional oedometer cell. Moreover, it takes a fair amount of time to perform a SCOD test 

because the long time needed for suction equilibrium. In the past, there was no method to use the 

oedometer test results for constitutive modeling. As a result, most researchers used the oedometer 

results for only verify their models, based on two assumptions: (a) elastic shear strains are small 

and negligible and (b) the K0 consolidation line shares the same slope and is a constant for saturated 

and unsaturated soils. (Zhang et al. 2016) demonstrated that these two assumptions are problematic. 

With the recent developments in high-suction tensiometers, the constant water content tests 

can be easily used by using HST to measure the matric suction simultaneously with the load 

applied to characterize the unsaturated soil behavior. Based on this concept of Zhang et al. (2016) 

modified a constant water content oedometer cell (CWOD) for unsaturated soils which is 

schematically presented in Figure 1.3. The major advantages of the modified cell are (1) no 

significant modifications are introduced to the conventional cell and (2) it takes short time (only 4 

to 7 hours) to run a CWOD for unsaturated soils, which is 300 to 400 times less than the required 

for SCTX test. In addition to the modified equipment, Zhang et al. (2016) developed a method to 

analyze the test results for constitutive modeling based on the conceptual definition of K0 

conditions only.  One limitation of Zhang et al. (2016) is that the oedometer test is not a failure 

test. As a result, the shear strength obtained from Zhang et al. 92016) represent an extrapolation of 

soil shear strength behavior, which can be inaccurate.  
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In this report, a constant water content direct shear test will be developed. Similar to the 

CWOD, the conventional direct shear cell is equipped with a miniature high-suction tensiometer 

to measure suction changes during normal and shear loading. Knowing the suction value at failure, 

(Fredlund et al. 1978) equation could be used directly to adopt the unsaturated soil shear strength 

parameters. 

 

Sample

Tensiometer

Consolidation ring

PistonO-ring

Cell base (lower part)

Cell base (upper part)

Tensiometer cable

Porous stone

Filter paper

Displacement 

transducer

Grease

Threaded rod

 

Figure 1.3 Modification on cell base for one-dimensional oedometer compression test.  

Besides the developed CWOD and CWDS tests, based on the explicit formulation developed 

by Zhang et al. (2015), a method was also developed to analyze the results of unsaturated soil 

SCOD test for constitutive modeling. The developed method combined the modified state surface 

approach MSSA with the quasi-Newton method to calibrate the Barcelona basic model (BBM) 

parameters. Zhang et al. (2016) successfully used the developed method to calibrate the BBM 

parameters based on the results of constant water content oedometer test (CWOD).It worth noting 

that oedometer tests are representing the at-rest conditions in which the soil shear strength is not 

mobilized. However, M and k parameters in the BBM are related to the shear strength of 

unsaturated soils. Which means, M and k values calculated using the proposed method are an 

extrapolation of the oedometer test results to failure conditions and could be subjected to 

significant error (Zhang et al. 2016). 
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To overcome this limitation, Zhang et al. 2016 recommended using another test to introduce 

the M and K values to the proposed approach as an additional constraint. Here is the role of 

constant water content direct shear test (CWDS) to provide the shear strength parameters to the 

process. In other words, the constant water content oedometer test (CWOD) combined with the 

constant water content direct shear test (CWDS) may be used to replace the suction controlled 

triaxial test to fully calibrate the BBM parameters using the method developed by (Zhang et al. 

2016). Using both results of the CWOD test allow more stress paths and ranges to be included in 

the analysis so that the prediction will be made on the bases of interpolations instead of 

extrapolations. 
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CHAPTER II DEVELOPMENT OF TEST APPARATUS 

1. INTRODUCTION 

For both saturated and unsaturated soils in the field, most of the time, due to the applied 

vertical load, the soil deformation is under K0 (no lateral strain) condition. Moreover, the K0 

condition is critical to include in the numerical modeling and simulation since it represents the soil 

initial (at rest) conditions. As a result, a one-dimensional oedometer compression test is still very 

popular for soil behavior investigation and verification of model parameters. For saturated soils, 

due to the simplicity and equipment availability, oedometer cell is widely used to characterize 

saturated soil behaviors. However, the conventional oedometer cannot be directly used for 

unsaturated soil investigation due to the difficulties in measuring soil suction. Ridley and Burland 

(1993) developed the first high-suction tensiometer for direct suction measurement on unsaturated 

soils. Since then, more and more high-suction tensiometers have been developed and utilized for 

both laboratory and field suction measurements (Ridley and Burland 1993; Meilani et al. 2002; 

Take and Bolton 2003; and Lourenco et al. 2006). In Le et al. (2011), a high-suction tensiometer 

was equipped in the conventional oedometer for direct suction measurement during undrained 

testing on unsaturated soils. In this chapter, the development of the modified oedometer cell is 

presented in detail. 

The direct shear test is usually used to characterize saturated soils from which the shear 

strength properties can be determined. Different from the saturated soils, the suction of unsaturated 

soils during shearing is also affecting the shear strength characterization of unsaturated soil. 

However, the conventional direct shear apparatus cannot be directly used for unsaturated soils due 

to difficulties in soil suction measurement during testing. In the past few decades, several methods 

had been developed to characterize shear strength properties of unsaturated soils. However, these 

methods suffered from several limitations such as significant system modification on the existing 

apparatus and time-consuming testing process. Due to difficulties in measuring suction during a 

shearing test of unsaturated soils. (Vanapalli and Lane 2002) proposed a method using 

conventional direct shear test apparatus combined with soil water characteristic curve to determine 

the soil shear strength and the corresponding suction value. The proposed method was based on 

the assumption that the suction value does not change significantly during shearing. However, this 
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assumption is not correct because the volumetric changes in soils during shearing even contraction 

or dilation will cause suction changes. Moreover, the load application during shearing test either 

normal loading and shear loading will cause suction changes. All these efforts from researchers 

around the world were to eliminate the introduction of significant modifications into the direct 

shear test which will make the simple test more complicated and time-consuming. Nowadays, 

using the high suction tensiometer the conventional direct shear test could be used with very few 

modifications will not affect the test simplicity and short time advantage. In this chapter, to 

characterize the shear strength of the Hawaii unsaturated soil, a modified direct shear cell was 

developed and described in detail. 

2. MODIFIED OEDOMETER CELL 

2.1.Literature Review  

Conventional triaxial test apparatus designed to test saturated soils cannot be directly utilized 

for triaxial tests on unsaturated soils due to the difficulties in matric suction and volume change 

measurements. Bishop and Donald (1961) developed the suction-controlled triaxial test apparatus 

to characterize unsaturated soil behaviors. Since then, suction-controlled triaxial test, which is a 

drained test, has been extensively used to characterize unsaturated soil behaviors (Fredlund et al. 

1978; Josa et al. 1987; Wheeler 1988; Sivakumar 1993; Romero et al. 1997; Ng et al. 2002; and 

Thu et al. 2006). However, suction-controlled triaxial tests are too laborious, time-consuming, and 

costly, and cannot be justified for routine engineering projects. Moreover, the SCTX test results 

are theoretically incorrect as presented in (Zhang 2016). Usually, it took months to years to 

characterize the stress-strain behavior of one unsaturated soil (Sivakumar 1993).  

One-dimensional oedometer compression test was reported to be utilized for unsaturated soil 

behavior investigation (Le et al. 2011). However, in this test, due to lack of confining pressure, the 

test results cannot be used for soil constitutive behavior characterization. In the present study, a 

similar one-dimensional oedometer compression test system was presented to characterize 

unsaturated soil behaviors. The confining pressure generated by the oedometer compression ring 

was back-calculated based on the assumption that there is no lateral deformation during loading. 

Compared with the conventional suction-controlled triaxial test, suction-monitored one-

dimensional oedometer compression test significantly reduced the time required to characterize an 

unsaturated soil behavior from years to days. 
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The suction-monitored one-dimensional oedometer compression test equipment was modified 

based upon a conventional oedometer for a one-dimensional oedometer compression test on 

saturated soils. Since the one-dimensional oedometer compression test was designed to investigate 

unsaturated soil behavior, under the undrained condition, soil suction would change due to the 

applied vertical stress. Thus, it was required to monitor soil suction change during loading. In Le 

et al. (2011), a high capacity tensiometer was adopted for the matric suction measurement. In this 

project, a newly designed high-suction tensiometer was utilized for the soil suction measurement. 

3. SUCTION MEASUREMENT USING A HIGH-SUCTION TENSIOMETER 

In the past few decades, a great effort has been dedicated to measuring matric suction of 

unsaturated soils. Reviews of conventional suction measurement methods on unsaturated soil are 

found in Fredlund and Rahardjo (1993), Ridley and Burland (1993), Ridley and Burland (2003), 

and Rahardjo and Leong (2006). Based on the literature review on existing high-suction 

tensiometers, a new high-suction tensiometer, as schematically shown in Figure 2.1a, was 

developed based upon an EPXO pressure transducer. Similar to previously developed high-suction 

tensiometers (Ridley and Burland 1993; Meilani et al. 2002; Lourenco et al. 2006), the tensiometer 

developed in this project as shown in Figure 2.1b included three parts: a pressure transducer, 

ceramic disc, and housing. However, unlike the other high-suction tensiometers, the ceramic disc 

was glued to a stainless steel ring (Figure 2.1b) instead of directly glued to the housing. To reduce 

the possibility of water cavitation under negative pressure and provide the room for the transducer 

diaphragm outward deformation, the thickness of the water reservoir was designed to be 0.2 mm. 

Ceramic disc with an air-entry value of 15 bar was used as a filter to prevent air from entering the 

water reservoir. The detailed fabrication process is presented in Li and Zhang (2014). 
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                    (a) Tensiometer design                                     (b) Tensiometer picture 

Figure 2.1 High-suction tensiometer (Li and Zhang 2014) 

4. OEDOMETER MODIFICATION 

Since the one-dimensional oedometer compression test is to be performed on unsaturated 

soils under the undrained condition, the cell wall mounted on the pedestal of the oedometer is no 

longer required. Due to the use of high-suction tensiometers for matric suction measurement, a 

new cell base is required to accommodate the high-suction tensiometers. The oedometer 

modification is presented in Figure 2.2. A new cell base, the schematic design shown in Figure 2.2, 

was fabricated with a hole inside to hold the high-suction tensiometer in place. The new cell base 

has two parts. As shown in Figure 2.2, the tensiometer sits on the lower part. The upper part is in 

direct contact with the tested soil sample. The tensiometer is well aligned with the upper surface 

of the cell base to ensure a good contact between the tensiometer and soil sample. The upper part 

of the oedometer is firmly fixed to the cell base through threaded rods as shown in Figure 2.2. 



15 

 

Sample

Tensiometer

Consolidation ring

PistonO-ring

Cell base (lower part)

Cell base (upper part)

Tensiometer cable

Porous stone

Filter paper

Displacement 

transducer

Grease

Threaded rod

 

Figure 2.2 Modification on cell base for one-dimensional oedometer compression test 

A new cell base was fabricated with a hole inside to hold the high-suction tensiometer (Figure 

2.3a) in place. The lower part of the new oedometer cell base is shown in Figure 2.3b. As shown 

in Figure 2.2, the tensiometer sits on the lower part which is also shown in Figure 3c. The upper 

part of the cell base as shown in Figure 2.3d is in direct contact with the tested soil sample. The 

tensiometer is designed to be aligned with the upper surface of the cell base as shown in Figure 

2.3d to ensure a good contact between the tensiometer and soil sample. An unsaturated soil sample 

inside the oedometer compression ring as typically shown in Figure 2.3e sits on the top of the 

upper part of the cell base. The upper part of the oedometer, which is the same as the conventional 

oedometer (2.5 inches fixed ring oedometer compression cell from Humboldt), is then firmly fixed 

to the cell base through threaded rods as shown in Figure 2.3f. The detailed fabrication process is 

presented in Li et al. (2015) and Zhang et al. (2016). 

In this project, the used tensiometer was saturated in a triaxial chamber. To achieve an 

accurate measurement, high-suction tensiometer was calibrated in a positive pressure range after 

saturation. Negative pressure range calibration is based on extrapolation which was also used in 

Lourenco et al. (2006). The accuracy of the calibration can be checked by the water pressure 

immediately after cavitation, which should be approximate -100 kPa. After saturation and 
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calibration, the tensiometer was ready for matric suction measurement. The maximum attainable 

pressure of the high-suction tensiometer was determined to be approximately 1100 kPa through a 

free evaporation test presented by Guan and Fredlund (1997).  
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(a) High-suction tensiometer 

 

(b) Cell base (lower part) 

 

(c) Cell base with tensiometer 

 

(d) Cell base (lower part) 

 

(e) Unsaturated soil in a 

consolidation ring 

 

(f) Oedometer cell 

 

Figure 2.3 Assembly for one-dimensional oedometer compression test 
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5. MODIFIED DIRECT SHEAR CELL  

5.1.Literature Review 

In geotechnical engineering, the soil shear strength parameters are required for the most man-

made earth structures such as highway embankments, earth dams, and foundations. In these man-

made earth structures, the compacted unsaturated soils are commonly used. A safe and economic 

slope or foundation design is highly dependent on an accurate determination of the unsaturated 

soil shear strength. As we know, the water content is playing a crucial role in advancing 

understanding of unsaturated soil behavior. The influence of water content on the shear strength 

and constitutive behavior of unsaturated soils could be found in many research efforts (e.g. Hilf 

1956; Fredlund et al. 1978; Feddes et al. 1988; Fredlund and Rahardjo 1993; Fredlund et al. 1996; 

Thu et al. 2006; Li and Zhang 2015a and 2015b). An increase of water content could cause a 

decrease in shear strength of unsaturated soils which was one of the primary reasons for the failure 

of man-made earth structures and natural slopes (when induced to rainfalls). In the past, to be 

conservative, the unsaturated soils were usually considered as saturated for the design of the man-

made earth structures. However, this design (consider unsaturated soils to be saturated) can be 

over-conservative and wasteful under the following situations: (1) the structure is located in arid 

areas with limited water access; and (2) the structure is equipped with a well-designed drainage 

system. On the other hand, studying the stability of natural slopes from unsaturated soils requires 

to precisely determine the unsaturated shear strength and evaluate the strength loss in case of 

rainfalls or water leakage. To design reliable and economically efficient structures and study 

natural slopes, the measurement of unsaturated soil shear strength has gained increasing attention 

in the past few decades (e.g., Bishop and Donald 1961; Gan et al. 1988; and Li and Zhang 2015a 

and 2015b).  

5.2.Shear Strength of Unsaturated Soils  

According to the Mohr-Coulomb failure criteria for saturated soils, a linear relationship 

exists between the shear strength and the net normal stress applied to the soil. However, different 

from the saturated soils, besides the net normal stress, the soil suction also plays an important role 

in the shear strength properties and soil failure criterion (Fredlund et al. 1978 and Khalili and 

Khabbaz 1998). Fredlund et al. (1978) reported that besides the normal stress, the shear strength 

of unsaturated soils could be significantly influenced by the soil suction. Subsequently, a new shear 
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strength equation was proposed for unsaturated soils using two independent stress state variables 

(net normal stress and matric suction) as shown in Equation 2.1. 

   ' tan ' tan b

f a a wf f
c u u u       

 
(2.1) 

Where, b= angle indicating the rate of change in shear strength relative to changes in matric 

suction. Equation 2.1 was well accepted and widely used to model the shear strength of unsaturated 

soils (e.g.,(Escario and Saez 1986; Gan et al. 1988; Oloo and Fredlund 1996; Vanapalli et al. 

1996),(Li and Zhang 2015; Li and Zhang 2015; Thu et al. 2006). As stated in (Hamid and Miller 

2009) the angle b is approximately equal to ’ while the soil is saturated. However, once the air-

entry value is exceeded, b tends to decrease with increasing matric suction. As a result, the 

relationship between matric suction and shear stress becomes nonlinear which cannot be captured 

by Equation 2.1. To overcome this limitation, Vanapalli et al. (1996) proposed a nonlinear equation 

to model the shear strength of unsaturated soils (equation 2.2) as a relation with the volumetric 

water content. The unsaturated soil shear strength prediction models were summarized in Garven 

and Vanapalli (2006). However, equation 2.1 is more famous for practical use because of simplicity. 
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(2.2) 

5.3.Tests to Characterize Shear Strength of Unsaturated Soils 

There are several well-established tests available for the determination of shear strength 

parameters such as direct shear, triaxial, unconfined compression, and vane shear for saturated 

soils in both laboratory and field. However, all these conventional methods cannot be directly used 

to characterize the shear strength properties of unsaturated soils due to the difficulties in soil 

suction measurement. Bishop and Donald (1961) proposed the use of a consolidated drained test 

for measuring the shear strength of an unsaturated loose silt using a triaxial equipment. In this 

system, the soil suction during testing was controlled using the axis-translation technique proposed 

by Hilf (1956). This suction-controlled triaxial system was adopted by Miao (2002) for shear 

strength characterization on unsaturated soils. However, since the suction-controlled triaxial test 

is a consolidated drained test, the suction-controlled triaxial test is very laborious, time-consuming 
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due to the low permeability of unsaturated soils. In (Li and Zhang 2015) a modified unconfined 

compression system was developed and used to characterize the stress-strain behavior of 

unsaturated soils under low net confining stresses through constant water content triaxial tests. In 

this system, the confining load was applied through vacuum pressure. During testing, the soil 

suction was measured through two high-suction tensiometers mounted at the middle height of the 

unsaturated soils sample. With this system, the shear strength property of the tested unsaturated 

soil was determined. The adoption of constant water content test significantly reduced the time 

required for the unsaturated soil shear strength characterization when compared with the suction-

controlled triaxial test. However, the major disadvantage of this system is the applied confining 

stress was limited to 100 kPa due to water cavitation when applying confining stress through 

vacuum pressure. Besides using the unconfined compression system, the constant water content 

triaxial test (e.g., Thu et al. 2006 and Li and Zhang 2015b) was also developed to characterize 

unsaturated soils through constant water content triaxial tests (unconsolidated undrained triaxial). 

With this system, the constitutive behavior and shear strength of unsaturated soils can both be 

characterized by the constant water content triaxial tests on unsaturated soils with different initial 

soil suction and confining pressure conditions. Besides the triaxial test as discussed above, similar 

to saturated soils, the shear strength properties of unsaturated soils can also be determined through 

direct shear tests.  

Gan et al. (1988) developed a suction-controlled direct shear test, as schematically shown in 

Figure 2.4, to characterize the shear strength characteristics of unsaturated soils. Similar to the 

suction-controlled triaxial test proposed by Bishop and Donald (1961), the axis-translation 

technique was also used to control soil suction during shearing. An additional chamber was added 

to the direct shear cell to facilitate the adoption of the axis-translation technique. Using this system, 

the shear strength properties of a glacial till was successfully determined. This system was later 

adopted by Miller and Hamid (2006) and Hamid and Miller (2009) for shear strength 

characterization on different unsaturated soils. The soil specimens used in this direct shear tests 

were thin when compared to those used in the triaxial tests. As a result, the time required for direct 

shear testing was reduced when compared with the suction-controlled triaxial test due to the use 

of thin specimens. However, as presented in Gan et al. (1988), this testing apparatus required 

significant modifications on the conventional direct shear testing apparatus for the suction control 

purpose and was complicated to operate. 
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Figure 2.4 Suction-controlled direct shear test apparatus. 

Besides the experimental methods as discussed above, the shear strength properties of 

unsaturated soils can be predicted based on the soil shear strength properties at saturated and the 

soil water retention curve as presented in Fredlund et al. (1996). However, there is a significant 

limitation which is the hysteresis effect of the soil water retention curve as well as the influence of 

specific volume and loading history.  

Theoretically, as long as the soil suction at failure is known, both suction-controlled and 

constant water content direct shear tests can be used to characterize the shear strength of 

unsaturated soils. However, the stress paths for two tests during testing are different which are 

discussed in detail as follows.  

5.4.Suction-Controlled Direct Shear Test 

In a typical suction-controlled direct shear test, the soil specimen was required to be saturated 

in the direct shear chamber first as presented in Gan et al. (1988). Then, the specimen was 
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conditioned to different target suction levels through the axis-translation technique. After this, the 

direct shear test could be performed. Using the failure plane defined by Equation 2 as an example, 

Figure 2.5a shows the stress paths of unsaturated soils during suction-controlled direct shear 

testing. Point A represents a soil specimen with zero all-around stress and suction of s1 at the start 

of a direct shear test. The application of the normal stress, n1, caused the stress state moved from 

A to B on the  - s plane at a constant suction of s1. Then, the direct shear load was applied which 

caused the movement of stress state from B to C and continuous increase of the Mohr Circle 

diameter until touched the failure plane at F1 as shown in Figure 2.5a. The failure plane is 

tangential to the Mohr Circle at the suction of s1. However, only point F1 is not sufficient to define 

a plane. At least two more direct shear tests for soils with different suction (s2 and s3) and normal 

stress (n2 and n3) levels are required to be performed to define the failure plane. With these tests, 

the corresponding failure points F2 and F3 can then be determined. To increase the accuracy of the 

shear strength parameters (i.e. c’, ’, and b), more direct shear tests are encouraged to be 

performed. With these test results, a linear regression can be easily performed to find the best 

combination of the shear strength parameters through best-fit the failure points with a plane 

represented by Equation 2. Once the failure plane is defined (i.e., specified c’, ’, and b), the shear 

strength of the unsaturated soil at any combination of stress and suction can be predicted using 

Equation 2. The above process is straightforward. However, suction controlled tests are drained 

tests. As mentioned previously, due to the extremely low permeability of unsaturated soils, suction-

controlled tests could be time-consuming. 

5.5.Constant Water Content Shear Test 

Before the direct shear test, the soil specimens were conditioned to different suction levels. 

Different from the suction-controlled direct shear test, the suction of an unsaturated soil during 

constant water content direct shear test continuously changing with normal and shear load 

application. Using the failure plane defined by Equation 2.1 as an example, Figure 2.5b shows the 

stress paths during constant water content direct shearing testing. Point A represents a soil 

specimen with zero all-around stress and suction of s0 at the initial conditions (before the direct 

shear test). The application of the normal stress, n1, caused the movement of stress state from A to 

B on the  - s plane during which the soil suction decreased from s0 to s1. Then, the direct shear 

load was applied which caused the continuous movement of stress state from B to C and then to 
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F1 at the constant normal stress of n1. Meanwhile, the Mohr Circle diameter continuously increased 

until touched the failure plane at F1 as shown in Figure 2.5b. Different from the suction-controlled 

direct shear test, the soil suction continuously varied from s1 to s2 and then to s1F during shear 

loading. With the results from more direct shear tests at different soil suction (s2F and s3F) and 

normal stress levels (n2 and n3), more failure points such as F2 and F3 can be obtained. Then, the 

shear strength parameters can then be determined through the best-fit linear regression on Equation 

2.1. As discussed above, the principle for unsaturated soil strength measurement using the constant 

water content direct shear test is very simple. However, till now, the constant water content direct 

shear test has never been reported to characterize unsaturated soil shear strength due to lack of a 

proper sensor for soil suction measurement during shearing. 
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(b) Constant water content direct shear test 

Figure 2.5 Stress paths for direct shear test on unsaturated soils 

5.6. A Miniature High-Suction Tensiometer 

The high-suction tensiometer used in the oedometer cell was too big for the direct shear cell. 

As a result, a miniature high-suction tensiometer was developed as shown in Figure 2.6a. This 

high-suction tensiometer comprised (1) a miniature EPB-PW pressure transducer for pressure 

measurement, (2) a 15 Bar high air-entry disc (6.5 mm in diameter and 1 mm in thickness) as a 

filter to prevent the tensiometer from cavitation at low pressures (< -100 kPa), and (3) a water 

reservoir to facilitate the generation of a negative water pressure which is detected by the pressure 

transducer. For the developed miniature high-suction tensiometer, the clearance between 

transducer diaphragm and ceramic disk, where the water reservoir was located, was approximately 

0.1 mm. Figure 2.6b shows a picture of the miniature high-suction tensiometer developed in this 

project. After fabrication, the miniature high-suction tensiometer was saturated in a triaxial 

chamber through repeatedly applied water pressure of 600 kPa. The first saturation usually takes 

time (approximately a week for the tensiometer developed). This time for first saturation can be 

reduced through applying a higher chamber pressure and more pressurizing cycles. Besides this, 

the saturation method using CO2 presented in Acikel and Mancuso (2009) can also be used to 

shorten the saturation process. To prevent any possible damage from impact, the miniature high-

suction tensiometer was protected by a silicone rubber grommet as shown in Figure 2.6b. 
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Figure 2.6 A miniature high-suction tensiometer 

After saturation, the miniature high-suction tensiometer was calibrated in a positive pressure 

range. Negative pressure range calibration was based on extrapolation, which was also used by Li 

and Zhang (2014) and Lourenço et al. (2006). The accuracy of the calibration was examined by 

the water pressure immediately after cavitation, which should be approximate -100 kPa. After 

calibration, to evaluate tensiometer response time under a pressure change, a loading-unloading 

process was performed for the saturated tensiometer in the triaxial cell filled with water applying 

precise pressures. The scanning interval for the used data logger was set to be 2 seconds during 

data acquisition. Figure 2.6c shows the responses of the high suction tensiometer. It can be seen 

that the pressure measured by the miniature high-suction tensiometer was consistent with cell 

pressure variation with no delay, which means the response of the tensiometer was less than 2 
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seconds or nearly instantaneous. Free evaporation tests as suggested by Guan and Fredlund (1997) 

were also performed to evaluate the maximum attainable suction of the new miniature high-suction 

tensiometer. Figure 2.6d shows the response of the tensiometer during the free evaporation test. 

The maximum attainable suction of the used tensiometer was found to be 1235 kPa. After 

cavitation, the tensiometer pressure quickly reduced to nearly -100 kPa as shown in Figure 2.6d 

which verified that the tensiometer calibration was accurate. 

5.7.Direct Shear Cell Modification 

In this project, a direct shear cell was modified for direct shear test on unsaturated soils. As 

shown in Figure 2.7, this new cell comprised three components: (1) a miniature high-suction 

tensiometer for soil suction measurement during direct shearing under the undrained condition, (2) 

a top cap for the application of the normal stress during testing, and (3) two separate stainless steel 

rings to hold the unsaturated soil specimen and create the shear plane. Figure 2.7 shows a schematic 

plot of the new cell for the constant water content direct shear test on unsaturated soils. To achieve 

more representative soil suction measurement results, the miniature high-suction tensiometer tip 

is preferred to be located on the failure plane. However, for a real direct shear test, the failure plane 

is usually rough due to the non-uniformity of the soil specimen. As a result, in this new cell, the 

high-suction tensiometer tip was set to be approximately 1 mm above the failure plane as shown 

in Figure 2.7a. The miniature high-suction tensiometer tip should not be placed “far” away from 

the failure plane. Otherwise, the measured soil suction would be less representative. The presence 

of the spring ensured a good contact between the soil and the high-suction tensiometer. This new 

cell was designed to accommodate the conventional direct shear cell. To characterize the shear 

strength properties of unsaturated soils, this new cell was placed in the conventional direct shear 

cell as shown in Figure 2.7b. With this new cell, the conventional direct shear test apparatus could 

then be performed. 
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Figure 2.7 A new direct shear cell 
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CHAPTER III EXPERIMENTAL PROGRAM 

1. SAMPLING 

The samples were stored in metal or plastic tubes as shown in Figure 3.1. The original soil 

samples were not in good shape especially at both ends as typically shown in Figure 3.1. Before 

testing, the samples were extracted using a hydraulic extruder. To minimize the disturbance during 

extraction, the soil specimens were directly extracted to the rings for oedometer compression and 

direct shear test as shown in Figures 3.2a and 3.2b. Then, the soil specimen was cut off from the 

tube as shown in Figure 3.2c.  No obvious disturbance on the sample surface was observed after 

this extraction. Figure 3.2d shows a picture of the soil specimen in the ring before the oedometer 

compression or direct shear test. After extraction, the soil specimens were stored in air-tight plastic 

bags for suction equilibrium or conditioning. The soil specimens were conditioned to different 

moisture contents by controlling the number of exposures to the atmosphere for about 15 min/day. 

Finally, the soil specimens were sealed in plastic bags and stored in a moist room for at least one 

week to ensure suction equilibrium in the whole soil specimen. 

 

 

Figure 3.1 Soil Samples  
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Figure 3.2 Sampling process 

2. ONE-DIMENSIONAL OEDOMETER COMPRESSION TEST ON 

UNSATURATED SOILS 

After suction equilibrium in the unsaturated soil specimen, the constant water content one-

dimensional oedometer compression test can then be performed. Before testing, the weight of the 

oedometer compression ring, as well as the soil specimen inside as shown in Figure 3.2d, was 

accurately determined. Then, the saturated high-suction tensiometer was mounted to the oedometer 

cell base. To avoid cavitation during test preparation, the porous ceramic disc of the tensiometer 

was covered with a thin layer of Kaolin paste which was also recommended by other researchers 

(e.g. Colmenares and Ridley 2002 and Le et al. 2011). The unsaturated soil specimen was mounted 

(a) 
(b) 

(c) (d

) 
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to the cell base after tensiometer installation. Due to the self-weight of the upper part of the 

modified oedometer and the soil specimen, a good contact between the tensiometer and the bottom 

surface of the specimen was established. System setup for the one-dimensional oedometer 

compression test is shown in Figure 3.3. The loading device is exactly the same as the conventional 

oedometer. Since the testing process for the one-dimensional oedometer compression test lasted 

for several hours, water evaporation during testing is very critical. After system assembling as 

shown in Figure 3.3, vacuum grease was smeared to the places needed to avoid water evaporation 

during testing. Also, an O-ring was placed around the loading piston to prevent water evaporation 

from the top surface of the specimen. Then, the used displacement transducer and tensiometer were 

connected to a Datalogger. A computer was required to monitor the soil volume and suction change 

during testing as shown in Figure 3.3. 

 

Figure 3.3 One-dimensional oedometer compression test on an unsaturated soil  

Usually, before loading, several minutes were required for the high-suction tensiometer 

readings to reach equilibrium. Then, the vertical load was applied to the unsaturated soil specimen 

through dead weight come with the oedometer compression system. After each loading step, the 
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applied vertical stress was maintained to be constant for a certain time. This is because the matric 

suction in the soil specimen would change due to the applied load and this suction change required 

some time to reach a new equilibrium (Le et al. 2011). The higher the soil suction, the more time 

required for suction equilibrium (Oliveira and Marinho 2008). The applied vertical stress gently 

increased or decreased to a target value and followed by another equilibrium period. After reach 

equilibrium, the readings of tensiometer and the local displacement transducer were recorded. In 

this project, the tested soil specimen was gradually loaded to a vertical stress of 800 kPa and then 

unloaded to 25 kPa. After testing, the weight of the oedometer compression ring, as well as the 

soil specimen inside after testing, was double checked to make sure that there was no water loss 

during testing.  

3. DIRECT SHEAR TEST ON UNSATURATED SOILS 

After conditioning, the specimens were then used for the direct shear test. The rings for the 

direct shear test, as shown in Figure 3.4a, were 59 mm in diameter and 26 mm in height. Also, the 

saturated miniature high-suction tensiometer was assembled with the top cap as shown in Figure 

3.4b. Before the installation of the high-suction tensiometer, a 6.5 mm in diameter and 12 mm in 

depth hole was required to be made at the center of the specimen as shown in Figure 3.4c. In order 

to prevent tensiometer cavitation during installation and maintain a good contact between the high-

suction tensiometer and the soil, similar to the oedometer compression test, a thin layer of saturated 

kaolin was also smeared on the surface of the ceramic disk. The analysis of shear strength data 

would not be complete without the volume change behavior during testing. In this direct shear test, 

the soil volume change was monitored through a linear variable differential transformer (LVDT) 

mounted at the top of the soil as shown in Figure 3.4d. After installation of soil specimen, high 

suction tensiometer, and LVDT, dead weight was placed on the yoke to apply the normal load on 

the soil specimen. When the tensiometer reading stabilized, the direct shear load could then be 

applied at a constant loading rate of 0.05 mm/min. The shearing process was stopped after the soil 

specimen reached the failure stage. The soil specimen after the direct shear test was then used for 

moisture content measurement. Figure 3.4e shows a soil specimen after the direct shear test. It was 

found that the tensiometer was exactly located at the failure plane. In other words, the measured 

soil suction was representative of the unsaturated soil shear strength characterization. 
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Figure 3.4 Constant water content direct shear test on an unsaturated soil 
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CHAPTER IV TEST RESULTS AND DATA ANALYSIS 

1. TEST RESULTS 

The matric suction, water content, and specific volume of the tested soil specimens before 

the oedometer compression test are summarized in Table 4.1. Besides this, the soil information 

before the direct shear test and at-failure during shearing are also summarized in Table 4.2. Direct 

shear test number (3) was excluded from the direct shear test results because of negative suction 

value. Negative suction value means pore water pressure is generated which is not expected for 

unsaturated soil sample. 

Table 4.1 Summary of specimen initial conditions for oedometer compression tests 

Water content ν=1+e 
Initial suction (kPa) 

at 25 kPa normal load 

35.81% 2.28 386.3 

46.04% 2.485 56.3 

34.23% 2.145 136.4 

29.84% 2.081 325.7 

33.56% 2.116 106.5 

30.09% 2.026 224.9 

26.19% 2.085 353.6 

34.64% 2.153 98.2 

Table 4.2 Summary of specimen initial and final conditions for direct tests 

Test 

No. 

Initial condition At failure during shearing 

Wc ν=1+e s (kPa) 
Matric 

suction (kPa) 

Shear strength 

(kPa)
Normal 

stress(kPa)

1 30.21% 2.191 58.7 235 310 463 

2 29.10% 2.209 403 224.70 171.06 139 

3 35.81% 2.132 83.4 -7.0 255.96 463 

4 38.34% 2.204 428.7 128.9 185.59 236 

5 41.38% 2.228 47.9 18.6 80.87 116 

6 41.23% 2.235 87 62.60 79.774 58 

7 44.23% 2.313 18.9 24.2 173 232 

8 32.00% 1.991 649.4 282 356.8 463 

9 32.43% 1.973 81.5 84 132.188 116 

10 33.72% 2.006 144.4 110.80 99.708 58 
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2. ONE-DIMENSIONAL OEDOMETER COMPRESSION TEST 

For the constant water content one-dimensional oedometer compression tests, matric suction and 

vertical displacement were recorded during testing using the high-suction tensiometer and the local 

displacement transducer, respectively. In this project, soil suctions after equalizations were used 

as the representative suctions for soil at different loading steps. Based on soil displacement at 

different loading steps, soil volumes at different loading steps were calculated. Figures 4.1a and 

4.1b presented the soil volume and suction variations at different loading steps, respectively. The 

experimental test results were plotted in different 3D spaces using the Matlab software as presented 

in Figure 4.2 to be investigated more clearly. Detailed oedometer compression test results are 

summarized in Appendix A. 
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(b) 

Figure 4.1 Soil volume and suction variations during oedometer compression. 
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(a) Normal stress-suction-specific volume space 

 
(b) Normal stress-water content-suction space 
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(c) Normal stress-water content-specific volume space 

Figure 4.2 Oedometer compression test results in different 3D spaces. 

As can be seen in Figure 4.1a and 4.2a, during vertical testing, soil volume decreased with 

increasing vertical stress. This volume decrease is attributed to the elasto-plastic behavior of 

unsaturated soils. During unloading, soil volume increased with decreasing vertical load. When 

comparing the soil volume at a vertical stress of 25 kPa at loading and unloading stages, it could 

be found the unsaturated soil specimens experienced a significant volume decrease as shown in 

Figure 4.1a. During vertical testing, as can be seen in Figure 4.1b, soil suction decreased with the 

increase of vertical stress. It is clear from Figure 4.2a that as the normal stress increases the soil 

specific volume as well as the matric suction decreases simultaneously. During unloading, soil 

suction increased with decreasing vertical stress. However, soil suction was not fully recovered at 

25 kPa after unloading due to the plastic volumetric deformation. 

3. DIRECT SHEAR TEST 

After the constant water content, direct shear test on unsaturated soil specimens, matric suction 

and soil volume changes of the tested specimens during testing were recorded using the miniature 
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high-suction tensiometer and the local displacement transducer, respectively. Detailed direct shear 

test results are summarized in Appendix B. The shear stress variations in the soil specimens with 

different water contents during loading under different normal stresses were presented in Figure 

4.3.  

 

Figure 4.3 Shear stress variations during shearing 

As can be seen in Figure 4.3, with increasing horizontal displacement, the shear stress in the soil 

increased and then reach peaks and then stabilized or decreased. It could be found that the peak 

shear stresses generally increased with increasing normal stress. Besides the shear stress, soil 

suction and volume variations versus horizontal displacement during shearing under different 

normal stress and water content levels were also extracted and presented in Figures 4.4a and 4.4b, 

respectively.  
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(a) 

 

(b) 

Figure 4.4 Soil volume and suction variations during shearing 

As shown in Figure 4.4a, at high initial soil suction levels, the soil suction usually decreased 

with increasing shear load/displacement. However, for soil specimens with initial soil suction less 

than 100 kPa, with increasing shear load/displacement, the soil suctions variations during shearing 

were different under different normal stress and water content conditions. At different normal 

stress conditions (e.g., 463 kPa), most of the soil volumes slightly decreased with horizontal 

displacement during shearing except the specimen with a water content of 29.1% and 32.43 

sheared under normal stresses of 139 kPa and 116 kPa, respectively. 
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4. DATA ANALYSIS  

4.1.Shear Strength Characterization  

The shear strength equation proposed by (Fredlund et al. 1978) was used to study and analyze 

the stress states for all soil specimens at failure (1f-ua, 3f-ua, sf). A linear regression was 

performed on the test results to find the best estimation of the shear strength parameters. To find 

out the suitable combination of shear strength parameters 'c , ' , and 
b ,  the below procedure 

shall be followed: 

1- Assume arbitrary values for the shear strength parameters (i.e., 'c , ' , and 
b ). 

2- Using Fredlund, Morgenstern et al. (1978) equation, calculate the shear strength based 

on the assumed values in step (1). 

3- Calculate the square of differences between the measured and predicted shear strength 

based on the below equation. The predicted values and the squared errors are presented 

in table 4.3. 

2

1

( ) ( ) ( )[ ]
n

i
i

F x fm fpi iw  


   (4.1) 

4- Use SOLVER add-in in Microsoft Excel to guess the best-fit parameters to get the 

minimum error. 

Table 4.3 Predicted shear stress and errors. 

Initial condition At failure during shearing Predicted 

Error2 Wc 

(%) 
v s (kPa) 

sf 

(kPa) 

Shear 

stress (kPa) 

Normal 

stress (kPa) 

Shear stress 

(kPa) 

30.21 2.191 58.7 235 310 463 329.75 390.08 

29.10 2.209 403 224.7 171.06 139 169.78 1.64 

38.34 2.204 428.7 128.9 185.59 236 188.19 6.75 

41.38 2.228 47.9 18.6 80.87 116 97.19 266.35 

41.23 2.235 87 62.6 70 58 82.22 149.40 

44.23 2.313 18.9 24.2 173 232 155.03 322.80 

32.00 1.991 649.4 282 356.8 463 343.76 169.93 

32.43 1.973 81.5 84 132.188 116 116.69 240.17 

33.72 2.006 144.4 110.8 99.708 58 96.59 9.69 

      Sum of errors = 1556.81 
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The calculated best-fit shear strength parameters 'c , ' , and 
b  were 35.47 kPa, 25.84o, and 

16.60o, respectively. As shown in Figure 4.5, the coefficient of determination (i.e., R2) was 98% 

which indicates a strong relationship between the independent variables (i.e. 'c , ' , and 
b ) and 

the dependent variables (i.e., 1f-ua, 3f-ua, sf). Figure 4.6 shows the Mohr circles at failure and the 

Mohr-Coulomb failure envelope based upon the calibrated model parameters in the  (-ua)  

(ua-uw) space.  

 

Figure 4.5 Measured and predicted shear strength 
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Figure 4.6 Mohr-Coulomb circles at failure and the failure envelopes 

5. CONSTITUTIVE MODELING  

5.1.General 

Unsaturated soils are exhibit irrecoverable volumetric changes (elasto-plastic) when subject 

to loading and wetting or drying cycles. (Alonso et al. 1990) proposed the first unsaturated soil 

model that considers the elasto-plastic behavior of unsaturated soils, which later called Barcelona 

Basic Model (BBM). The BBM successfully explained many features related to the unsaturated 

soils behavior. One of the most important features of the BBM is the introduction of LC yield 

curve (Loading Collapse) concept in the p-s plane on which the yield stress increases with the 

suction increase. The BBM was proposed using incremental form following the conventional 

theories of soil plasticity. This makes the calibration of the model parameters extremely difficult, 

even if SCTX used (Gallipoli et al. 2010; Zhang and Lytton 2009; Zhang and Lytton 2009; Zhang 

and Lytton 2011; Zhang and Xiao 2013). The concept of state surface approach (SSA) was firstly 

proposed by Matyas and Radhakrishna in 1968 to relate the void ratio and degree of saturation to 

the suction and mean stress. However, the SSA is an elastic analysis of the unsaturated soils 

Failure plane 
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(Alonso et al. 1987; Alonso et al. 1990). In 2009, Zhang and Lytton proposed the modified state 

surface approach (MSSA) which considers the elasto-plastic behavior of unsaturated soils. The 

MSSA used to explain the BBM using the integrated form to generate surfaces for the elastic and 

plastic behavior of soils (Zhang and Lytton 2009; Zhang and Lytton 2009; Zhang and Lytton 2011). 

(Zhang et al. 2016) derived and explicit formulation for at-rest coefficient based on k0 

definition without any additional assumptions. In addition to, a procedure to calibrate the BBM 

parameters under triaxial stress conditions based on the results of oedometer test only.  After that, 

the same procedure used to calibrate the BBM parameters under triaxial loading conditions based 

on constant water content oedometer tests (Zhang et al. 2016). However, it was recommended by 

the author that the BBM shear strength parameters shall be introduced from additional test related 

to soil shear strength at failure. This was based on the concept that no failure is related to the 

oedometer test which means that the shear strength parameters calibrated using only oedometer 

test results are just extrapolations to the oedometer test results. In Hawaii project, the procedure 

described by (Zhang et al. 2016) to calibrate BBM parameters will be used and the shear strength 

parameters will be introduced to the procedure from constant water content direct shear test. The 

calculations will be explained in detail in the following sections. 

5.2.BBM Shear Strength Parameters 

In this section, the BBM parameters related to shear strength (i.e. M and K) will be calculated 

from the constant water content direct shear test results (CWDS). In the CWDS, the suction at 

failure measured using miniature HST equipped in the conventional direct shear cell. A derivation 

is provided to calculate M and K from the unsaturated soil shear strength properties (i.e. 'c , ' , 

and 
b ) based on C’=0.0 which is assumed by the first author of modified Cam-Clay model and 

addressed by Alonso et al., 1990.  

Starting from Fredlund et al. (1978) shear strength equation. 

   ' tan ' tan b

f a a wf f
c u u u         (4.2) 

The suction effect may be considered as a cohesion effect and can be added to the cohesion. 

   ' tan tan 'b

f a w af f
c u u u        
 

 (4.3) 

Denoting the suction and cohesion term as C. 

  tan 'f a f
C u      (4.4) 
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Below is the shear strength of the soil as a function of the major and minor principal stresses. 

    2

1 3

' '
tan 2 tan

4 2 4 2
a af f

u u C
   

 
   

        
   

 (4.5) 

The deviatoric and mean effective stresses are defined as follows: 

   1 3a aq u u      (4.6) 

   1 32

3

a au u
p

   
  (4.7) 

From that one can get σ1 and σ3 as functions in q and p, 

 1

3 2 2

3 3
a

p q q
u p


     (4.8) 

 3

3

3 3
a

p q q
u p


     (4.9) 

Substituting equations (4.8) and (4.9) into equation (4.5), 

22 ' '
tan 2 tan

3 3 4 2 4 2f f

q q
p p C

          
            

       
 (4.10) 

Inserting C back to equation (4.10), one has 

 
2

2 ' tan
3 3

b

p a w pf
f f

q q
p p K c u u K

                  
 (4.11) 

Where, 2 '
tan

4 2
pK

  
  

 
 

Expressing equation (4.11) in terms of q, on has 

   

     

   

 

6 ' tan3 1

2 2
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2 2 1
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K K K
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c u u K
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 

 

     
 

  
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 
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p p
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p p

c u u K
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M p u u
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
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(4.12) 



45 

 

Where, 
 

2

2

'
3 tan 1

3 1 4 2

'2
2 tan

4 2

p

p

K
M

K

 

 

  
      

 
  

  
 

, the cohesion is assumed to be equal to zero in BBM 

and Cam-clay models (Roscoe and Burland 1968), putting C’=0 in equation (4.12), 

 
2 tan

1

b

p

a w f

p

K
q M p u u

K

 
   

  

 (4.13) 

When one can get the original BBM shear failure equation: 

( )q M p ks   (4.14) 

Finally, from the above derivation, BBM parameters related to shear strength M and K can 

be calculated from the soil parameters C and ɸ using the below equations: 

 
2

2

'
3 tan 1

3 1 4 2

'2
2 tan

4 2

p

p

K
M

K

 

 

  
      

 
  

  
 

 (4.15) 

2 tan

1

b

p

p

K
k

K





 (4.16) 

Using the same criterion described in section 4.1. The shear strength parameters were re-

guessed forcing C’ to be zero. The corresponding shear strength properties’ and b were 28.13 

and 22.26 degrees, respectively. Table 4.4 presents the predicted shear strength values and the 

errors. Based on C’=0, ’ and b, the BBM shear strength parameters K and M were calculated 

using equations 4.15 and 4.16, and the values are 0.74 and 1.13, respectively. Figure 4.7 presents 

the coefficient of determination between the measured and predicted shear strength (R2=94%) 

which indicates a strong relationship. 
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Table 4.4 Predicted shear stress and errors in case of forcing C’ to zero. 

Test 

No. 
Initial condition At failure during shearing Predicted 

Error2 

  
Wc 

(%) 
v 

s 

(kPa) 

sf 

(kPa) 

Shear 

stress (kPa) 

Normal 

stress (kPa) 

Shear stress 

(kPa) 

1 30.21 2.191 58.7 235 310 463 344.24 1172.55 

2 29.10 2.209 403 224.7 171.06 139 165.10 35.52 

3 38.34 2.204 428.7 128.9 185.59 236 179.12 41.87 

4 41.38 2.228 47.9 18.6 80.87 116 70.11 115.75 

5 41.23 2.235 87 62.6 70 58 56.41 184.74 

6 44.23 2.313 18.9 24.2 173 232 135.01 1442.87 

7 32.00 1.991 649.4 282 356.8 463 363.07 39.32 

8 32.43 1.973 81.5 84 132.188 116 96.31 1287.16 

9 33.72 2.006 144.4 110.8 99.708 58 75.72 575.56 

      Sum of errors = 4895.36 

 

 

Figure 4.7 Measured and predicted shear strength in case of C’ forced to zero. 

5.3.BBM Stiffness Parameters 

The at-rest conditions, k0, commonly used to verify the model parameters by many 

researchers. Zhang, Alonso et al. (2016) proposed an explicit formulation to calculate the lateral 
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without any additional assumptions. Once the lateral stress at K0 test is known, the oedometer test 

becomes a triaxial test with a well-defined stress path. After that, the procedure was successfully 

used by (Zhang et al. 2016) to calibrate the BBM parameters from a set of six constant water 

content oedometer test. In this section, the procedure proposed by Zhang, Alonso et al., 2016 will 

be used for the analysis of Hawaii data from eight constant water content oedometer tests and nine 

constant water content direct shear tests.  

The MSSA summarizes the BBM under triaxial loading conditions into two surfaces: (1) 

Elastic surface and (2) plastic surface as presented in equations 4.18 and 4.19, respectively. While 

the elastic surface is easy to determine by calculating the constant (C1) from the soil initial 

conditions. After that, the elastic BBM parameters ( sκ and κ )can be calibrated by using solver in 

Microsoft Excel to make the squared difference between measured and predicted specific volumes 

minimum. The major challenge is to determine the eight parameters related to soil plastic behavior, 

which are   cN(0), λ 0 , β, r, p ,  M, K and  . It worth note that in the original BBM (Alonso et al. 

1990), it was suggested that   is chosen in such a way that the flow rule predicts zero lateral strain 

for stress states, corresponding to Jaky’s equation K0=1-sin ’. Two assumptions were made to 

derive : (a) the elastic shear strain is small and negligible and (b) for saturated and unsaturated 

conditions, the K0 consolidation line shares the same slope and is a constant. (Zhang et al. 2016) 

found that neither assumption holds true for unsaturated soils and suggested that   be used as an 

additional constant for the modified BBM. These BBM parameters have physical meanings and 

constrained, as follows in equation 4.17: 

  cN(0)>0, λ 0 >0, β>0, r>0, p 0,  M>0, K>0 and 0   (4.17) 

 1 ln lns atv C p s p      (4.18) 

  
 

2

2
(0) ln ln ln ln cat

sc

at

s pp q
v N s p p

p p M p ks
   

   
                

 (4.19) 

Where, 

ν = specific volume, 

p = mean net stress, 

q = deviatoric stress, 

s = suction, 



48 

 

C1 = Constant related to initial specific volume of the soil, 

κ = slope of unloading reloading line in the p-e space, 

sκ  = slope of unloading reloading line associated with soil suction,  

pat = atmospheric pressure, 

pc = reference stress, 

M = slope of theoretical critical state line, 

k = parameter describing increase in cohesion with suction, 

 s  = slope of virgin expansion line at different suction values associated with mean 

net stress, and 

(0)N   = constant representing virgin specific volume at zero suction value and 

mechanical stress. 

Mathematically, the calibration problem can be described as follows: the calibration of the 

BBM parameters under K0 condition is to find the appropriate combination of

  cN(0), λ 0 , β, r, p ,  M, K and   , which can minimize the overall difference between the 

measured and predicted specific volumes (using equation 4.19) for all oedometer test stress paths 

under the constraints of equation 4.17. 

The eight CWOD tests (with water content of 26.19%, 29.84%, 30.09%, 33.56%, 34.23%, 

34.64%, 35.81%, 46.06%) are used to demonstrate the proposed approach. The procedures for 

BBM parameter calibration are as follows: 

1- Prepared the experimental data for each test, each point has three entries ( 1 , ( ) ia i Su   

and measured specific volume mi ). 

2- Find the yield stress (pre-consolidation stress) from Figure 4.1-a for each CWOD test 

using Casagrande method (Casagrande 1936). 

3- The poisons ratio ( ) was assumed to be constant for the soil and equal to 0.35. 

4- Assume arbitrary initial parameters for the BBM taking into account the constraints in 

equation 4.17. In addition, the BBM shear strength parameters M and K will be 

introduced from the constant water content direct shear tests results. 
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5- Starting from the initial condition where the vertical and lateral stresses are zero, assume 

a small increase in the vertical stress  1 ad u  , find the corresponding suction change 

ds from Figure 4.1-b, and calculate the increase in lateral stress  3 ad u  as follows: 

   3 1

1 2

1 1

s
a a

at

p
d u d u ds

s p

 
 

  


   

  
 (4.20) 

6- Update the stress state using the following equations: 

     1 1 11a a ai i
u u u  


       (4.21) 

     3 3 31a a ai i
u u u  


       (4.22) 

1i i SS S     (4.23) 

7- Starting from  1 1a i
u


 ,  3 1a i

u


  and 1iS  , repeat steps 5 and 6 until the yield point is 

reached. 

8- Calculate p and q for the same point using the following equations: 

   1 3 1 3
2 2

3 3

a au u
p

      
   (4.24) 

   1 3 1 3a aq u u          (4.25) 

9- At initial conditions, calculate the elastic surface constant ( 1C  ) using the arbitrary

sκ and κ  values and the measured specific volume as inputs in equation 4.18. Similarly, 

calculate the unloading-reloading elastic surface constant.  

10- For the plastic part based on the firstly assumed arbitrary BBM parameters and assuming 

a small increase in vertical stress  1 ad u   and the corresponding change in suction

ds from Figure 4.1-b, calculate the incremental change in lateral stress  3 ad u   using 

the following equation: 
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(4.26) 

11- Update the stress state variables using the following equations: 

     1 1 11a a ai i
u u u  


       (4.27) 

     3 3 31a a ai i
u u u  


       (4.28) 

1i i
pp p

    (4.29) 

1i i
qq q

    (4.30) 

12- Repeat steps 10 and 11 to calculate the stress path for the entire oedometer K0 loading 

conditions. 

13- Repeat steps 1 through 9 for all the eight CWOD tests. 

14- Calculate the void ratio based on the exact solution from equations 4.18 and 4.19 each 

for the corresponding surface (elastic or plastic). 

15- Calculate the square of differences between the measured and predicted specific volumes. 

16- Sum all the squares of differences between measured and predicted values. 

17- Use the solver add-in in Microsoft Excel to search the minimum of the sum of the squares 

of the difference between measured and predicted values by changing the BBM 

parameters (   c

sκ, κ , N(0), λ 0 , β, r, p ,  and   ) based on the below equations. Solver 
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stop is internally set that the variation between the current and previous iteration for each 

parameter is less than 0.001. 

  
 

2

1

2

1

: ( )

                

 p

 

lastic

   
2

2
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(0) ln ln

ln ln

n

i
i

n

i
i

F X mi piFo

at
sc

at

mi

c

r v vw

s pp
N

pp
w v

q
s p p

M p ks

 

 





 





   
    

   
                    

 

(4.28) 

  

2

1

2

1

: ( )

                   

 elastic

 
1

( )

ln ln

n

i
i

n

i
i

For F X mi pi

mi s at

v vw

C p s pw v  





 





      

 

(4.29) 

Table 4.5 presents the yield stress and elastic surfaces constants for each CWOD test. 

Table 4.5 Summary of yield stress, first and second elastic surface constant for each test. 

Test No. 

Water 

content 

(%) 

Yield stress 

(kPa) 

Loading elastic 

surface constant 

(C1) 

Maximum 

applied vertical 

stress (kPa) 

Unloading-

reloading elastic 

surface constant 

(C1) 

1 26.19 300.0 2.024 1178.0 1.962 

2 29.84 325.0 2.012 925.0 1.901 

3 30.09 300.0 1.964 700.0 1.878 

4 33.56 270.0 2.038 695.0 1.969 

5 34.23 160.0 2.045 875.0 1.924 

6 34.64 250.0 2.083 575.0 2.018 

7 35.81 75.0 2.190 925.0 2.014 

8 46.04 115.0 2.408 925.0 2.272 
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As explained in the chapter (3) the samples seem to have some disturbance during 

transportation. This makes the initial conditions of the samples not consistent with each other. 

Therefore, N(0)  for each test will be different. This will not make any significant difference since 

the BBM incremental approach will be used. Only the slopes of the surfaces are required. However, 

this might make some difficulties if the MSSA surface needs to be generated. 

It is well-known that the direct shear test results are not precise enough because of rotation 

of principal axes and the shear failure forced to be in a preselected plane may be not the weaker 

plane the sample supposed to fail on in the field. Because of that, the BBM shear strength 

parameters were allowed to change by 5% and 10% when guessing using solver. Summary of the 

set of iterations for BBM parameters is illustrated in Table 4.6. Following the described procedure 

and considering the three iterations summarized in Table 4.6, the calculations were repeated three 

times based on each iteration and the guessed parameters using solver are presented in table 4.7. 

Comparison between the iterations results and the experimental measurements are illustrated in 

Figure 4.8 through 4.15. It is clear from these figures that the predictions for all the iterations are 

very close to the experimental results and a good match has been reached except for two tests 

(30.09% and 34.64%) this may be due to the mentioned disturbance in chapter three. In order to 

judge the results of the three iterations the soil shear strength parameters 'c , ' , and 
b were back-

calculated from the guessed M and K values using equations 4.15 and 4.16 and the results shown 

in Table 4.8. The original (fixed) BBM shear strength parameters (i.e. M=1.13 and K=0.74) will 

be used since it gave the lowest soil shear strength parameters to be on the conservative side. 

Which means that the BBM parameters corresponding to iteration three, the fixed iteration, are 

recommended after that to be used for any further numerical modeling. 
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Table 4.6 Summary of yield stress, first and second elastic surface constant for each test. 

Parameter 
Iteration number 

1 2 3 

Description 
10% allowed for 

M&K 

5% allowed for 

M&K 
M&K Fixed 

N(0) 
Changing for each 

test 

Changing for 

each test 

Changing for 

each test 

s Constant for the entire set of tests 

 Constant for the entire set of tests 

(0) Constant for the entire set of tests 

r Constant for the entire set of tests 

 Constant for the entire set of tests 

pc Constant for the entire set of tests 

 Constant for the entire set of tests 

M 10% allowed 5% allowed Fixed 

k 10% allowed 5% allowed Fixed 

 Constant for the entire set of tests 
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Table 4.7 BBM strength and stiffness parameters. 

Parameter 
Iteration number 

1 (10%) 2 (5%) 3 (Fixed) 

N(0) 

Wc=26.19% 2.129 2.138 2.119 

Wc=29.84% 2.132 2.131 2.131 

Wc=30.09% 2.097 2.095 2.097 

Wc=33.56% 2.183 2.181 2.182 

Wc=34.23% 2.156 2.154 2.155 

Wc=34.64% 2.223 2.221 2.224 

Wc=35.81% 2.251 2.250 2.249 

Wc=46.04% 2.508 2.507 2.507 

s 0.0069 0.0055 0.0066 

 0.0155 0.0151 0.0147 

(0) 0.077 0.076 0.075 

r 0.453 0.612 0.158 

 5.413 8.626 3.182 

pc 0.046 0.046 0.046 

 0.742 0.796 0.802 

M 1.177 1.185 1.13 

k 0.814 0.777 0.74 

 0.350 0.350 0.350 

Standard deviation 0.128 0.128 0.128 

Coefficient of determination 

R2 
99.72% 99.71% 99.73% 
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Figure 4.8 Comparison between predictions and experimental results for oedometer 

at Wc=26.19%. 

 

Figure 4.9 Comparison between predictions and experimental results for oedometer 

at Wc=29.84%. 
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Figure 4.10 Comparison between predictions and experimental results for oedometer 

at Wc=30.09%. 

 

Figure 4.11 Comparison between predictions and experimental results for oedometer 

at Wc=33.56%. 
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Figure 4.12 Comparison between predictions and experimental results for oedometer 

at Wc=34.23%. 

 

Figure 4.13 Comparison between predictions and experimental results for oedometer 

at Wc=34.64%. 
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Figure 4.14 Comparison between predictions and experimental results for oedometer 

at Wc=35.81%. 

 

Figure 4.15 Comparison between predictions and experimental results for oedometer 

at Wc=46.04%. 
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Table 4.8 Soil shear strength parameters corresponding to BBM parameters for each 

iteration. 

Iteration 
BBM Strength parameters 

Corresponding Shear Strength 

Parameters 

M K C ’ b 

1 (10%) 1.177 0.814 0.0 29.47 24.70 

2 (5%) 1.185 0.777 0.0 29.66 23.86 

3 (Fixed) 1.13 0.74 0.0 28.38 21.83 

 

As previously discussed, during the optimization process, the values of the BBM parameters 

(   c

sκ, κ , N(0), λ 0 , β, r, p ,  and  ) were changing to minimize the overall difference between the 

measured and predicted test results. As shown in Table 4.7 that the coefficient of determination 

(R2) is higher than 99.70%, indicating a very strong relationship between the measured and 

predicted test results. It can be clearly seen from Figures 4.8 through 4.15 that the predicted results 

match the measured ones very well in the elastoplastic zone. In the above procedure tow tests 

(CWOD and CWDS) were combined together to calibrate the model parameters. The idea is to 

include more types of stress paths and covers as much as possible of stress ranges so that the 

predictions are based on interpolations instead of extrapolations of oedometer test results. 

Based on the MSSA, the intercept of the elastic surface and the plastic surface in the ν-p-q-

s space is the yield hypersurface. The expression of the yield surface could be obtained by letting 

equation 4.18 equal to equation 4.19 according to Criterion 4 in the MSSA: 

 2

1

0 2

(0) ln( ) ln
exp

( ) ( )

C
s atC

N C pq P
pp P

p ks sM

 

 

   
    

  
 (4.30) 

The size of the yield surface is controlled by the value of the constant (C1) in equation 4.30. 

Figure 4.16 shows the initial shapes of the yield curves (in s-p plane) for specimens in each 

oedometer test with different C1 corresponding to each test as shown in Table 4.5. Figure 4.16 

indicates that when the mean net stress is greater than 0.1 MPa, suction increases with the increase 

of mean net stress on the yield curves, which is similar to the original BBM assumption (Alonso 

et al. 1990). This behavior could be explained based on (Zhang 2016; Zhang and Lytton 2009), 

Hawaii soils have a collapsible behavior when the mean net stress is greater than 100 kPa. Figure 

4.16 shows different yield curve for each CWOD test. If the tested specimens in oedometer test at 
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different water contents have the same stress history, the saturation pre-consolidation stress shall 

be the same. There will be one yield curve for all the tests. The results indicate that the specimens 

used in the eight oedometer tests have different stress histories. This implies that there was soil 

yielding due to drying and wetting the samples during preparation for testing (different water 

content values). This proves the strength of the MSSA to determine the shapes of the LC yield 

curves. When soil specimens with identical stress histories are available, one LC yield curve could 

be generated using MSSA. When soil specimens with identical stress are available, using MSSA 

we still can get correct shapes for LC yield curves. 

Figure 4.17 shows the predicted lateral stress as a function of the applied vertical stress 

during eight CWOD tests. It can be clearly seen that generally for all test, firstly the lateral stresses 

increased at a faster rate with the increase of the vertical stresses. After that, there was a sudden 

decrease in the rate of lateral stress increase with the applied vertical stress. Figure 4.18 shows the 

calculated K0 stress paths for the CWOD test at different water content levels in the p-q plane. As 

shown, the stress paths are consist of two straight lines connected by a transition curve. In the 

elastic zone, the ratio between deviatoric stress and mean net stress (slope of the line) is 0.667 

which is corresponding to a Poisson’s ratio of 0.35. When, the mean net stress passes the yield 

stress the K0 value reaches almost a constant value for the eight CWOD of 0.574 in average (the 

behavior is consistent with (Zhang et al. 2016) and (Zhang et al. 2016) findings). 

Figure 4.19 presents the calculated lateral strain increments at different vertical stresses for 

the CWOD tests at different water contents. The lateral strains calculated based on the calibrated 

BBM parameters (Fixed case) and the stress paths in Figure 4.18. The lateral strains increments in 

the range of 10 x 10-5, indicating that the predicted K0 stress paths according to this approach are 

very accurate. 
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Figure 4.16 Yield curves for tested samples with different water contents. 

 

Figure 4.17 Predicted lateral stress as a function of applied vertical stress during 

CWOD tests. 
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Figure 4.18 K0 stress paths in the p-q space for the CWOD tests. 

 

Figure 4.19 Predicted lateral strain increments at different vertical stresses. 
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 CHAPTER V CONCLUSIONS 

 

In this project, a new system, based on modification on a conventional oedometer apparatus for 

saturated soils, was adopted for the constant water content one-dimensional oedometer 

compression tests on unsaturated soils. A high-suction tensiometer was utilized to monitor matric 

suction variation during testing. Results from the constant water content test using the newly 

developed one-dimensional oedometer compression test equipment were then used to characterize 

the constitutive behavior of the unsaturated soils. In addition to the one-dimensional oedometer 

compression test, a method with the modified state surface approach developed by Zhang et al. 

(2016) was adopted to analyze the one-dimensional oedometer compression test results for the 

constitutive modeling purpose.  

Besides the oedometer compression test, a new direct shear cell was developed to investigate 

the shear strength properties of unsaturated soils. In this cell, a miniature high-suction tensiometer 

was used to directly measure the soil suction variation during shearing which was significantly 

different from the conventional suction-controlled direct shear test. Also, since the soil suction was 

directly measured at the failure plane, the measured soil suction was more representative when 

compared with the other tests for shear strength determination methods. The direct soil suction 

measurement at the failure plane eliminated the problem of the suction representativeness due to 

possible non-uniformity during testing in the other methods. With the newly developed direct shear 

cell, a series of tests were performed on the unsaturated soil to characterize the shear strength 

through constant water content direct tests. 

Finally, in this project instead of using the suction controlled triaxial test (SCTX) which is a 

time-consuming test and requires sophisticated and expensive equipment. Instead of the controlled 

suction oedometer and direct shear tests which requires significant modifications to the 

conventional test apparatuses. A new approach wish is the constant water content oedometer and 

the direct shear test is proposed.  

The direct shear test results combined with the oedometer test results are used to calibrate 

the BBM strength and stiffness parameters based on the modified state surface approach developed 

by (Zhang and Lytton 2009) and using the procedure described by (Zhang et al. 2016) to calculate 

the lateral stress from oedometer test results and BBM parameters calibration. The calibrated BBM 

parameters after that used to predict the specific volumes for the set of constant water content 
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oedometer test results and a very close match was reached. The final adopted BBM parameters to 

be used for any further analysis are summarized in the below table. In addition, the results indicated 

that Hawaii soils might experience collapsible behavior at mean net stress greater than 100.0 kPa. 

This behavior shall be taken into account in the further studies related to slope stability analysis. 

When the soil collapses, the shear strength will be reduced, and excessive plastic deformations 

will be experienced. 

Parameter Unit Best Fit BBM Parameters 

Test (Wc, %) 26.19% 29.84% 30.09% 33.56% 34.23% 34.64% 35.81% 46.04% 

N(0) --- 2.119 2.131 2.097 2.182 2.155 2.224 2.249 2.507 

s --- 0.0066 

 --- 0.0147 

(0) --- 0.075 

r --- 0.158 

 MPa-1 3.182 

pc MPa 0.046 

 --- 0.802 

M --- 1.130 

k --- 0.740 

 --- 0.350 
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APPENDIX A OEDOMETER COMPRESSION TEST RESULTS 

 

Sample 5, Oedometer compression specimen 3, w=26.19% 

Normal stress (kPa) H (mm) Suction (kPa) Specific v 

1.2 25.50 - 2.085 

29.5 25.38 353.6 2.075 

58.9 25.30 349.4 2.069 

117.8 25.25 342 2.064 

235.6 25.10 321.7 2.053 

353.5 24.94 298 2.039 

471.3 24.81 274.5 2.028 

706.9 24.59 237.2 2.010 

942.6 24.38 214.5 1.993 

1178.2 24.18 198.1 1.977 

29.5 24.52 279.3 2.005 

 

Sample 4, Oedometer compression specimen 2, w=29.84% 

Normal stress (kPa) H (mm) Suction (kPa) Specific v 

1.0 25.30 - 2.081 

29.0 25.22 325.7 2.075 

57.9 25.17 300.9 2.070 

115.8 25.04 266.4 2.060 

231.7 24.83 214.5 2.042 

463.3 24.46 140.2 2.012 

926.7 23.46 9.9 1.930 

29.0 23.88 193.7 1.964 
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Sample 5, Oedometer compression specimen 2, w=30.09% 

Normal stress (kPa) H (mm) Suction (kPa) Specific v 

1.2 25.50 - 2.026 

29.5 25.40 224.9 2.018 

58.9 25.34 212.1 2.014 

117.8 25.18 184.4 2.001 

235.6 24.94 135.3 1.982 

353.5 24.76 96.2 1.967 

471.3 24.58 62.5 1.953 

589.1 24.42 31.7 1.941 

706.9 24.28 0 1.929 

29.5 24.57 113.1 1.952 

 

Sample 5, Oedometer compression specimen 1, w=33.56% 

Normal stress (kPa) H (mm) Suction (kPa) Specific v 

1.2 26.00 117.2 2.116 

29.0 25.88 106.5 2.106 

57.9 25.81 100.8 2.101 

115.8 25.66 87.5 2.088 

231.7 25.40 58.3 2.068 

347.5 25.17 38.4 2.049 

463.3 24.95 17.7 2.031 

695.0 24.55 8.8 1.998 

29.0 24.98 49.4 2.033 
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Sample 4, Oedometer compression specimen 1, w=34.23% 

Normal stress (kPa) H (mm) Suction (kPa) Specific v 

1.0 26.00 155.2 2.145 

29.0 25.60 136.4 2.112 

57.9 25.45 120.2 2.099 

115.8 25.23 94.8 2.082 

231.7 24.90 62.6 2.055 

463.3 24.41 7.6 2.014 

926.7 23.61 0 1.948 

29.0 24.23 81.5 1.999 

 

Sample 6, Oedometer compression specimen 1, w=34.64% 

Normal stress (kPa) H (mm) Suction (kPa) Specific v 

1.2 26.00 108.8 2.153 

29.0 25.87 98.2 2.143 

57.9 25.79 90.6 2.136 

115.8 25.66 78.7 2.125 

231.7 25.43 54.3 2.106 

347.5 25.23 31.1 2.090 

463.3 25.04 6.6 2.074 

579.2 24.86 -1 2.059 

29.0 25.24 57.1 2.090 

1.2 26.00 108.8 2.153 
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Sample 2, Oedometer compression specimen 1, w=35.81% 

Normal stress (kPa) H (mm) Suction (kPa) Specific v 

1.0 24.40 - 2.280 

29.0 24.10 386.3 2.252 

57.9 24.05 361.4 2.247 

115.8 23.92 307.1 2.235 

231.7 23.59 214.6 2.204 

463.3 22.87 94.6 2.137 

926.7 21.58 0.2 2.016 

29.0 21.85 182 2.041 

1.0 21.92 205 2.048 

 

Sample 3, Oedometer compression specimen 1, w=46.04% 

Normal stress (kPa) H (mm) Suction (kPa) Specific v 

1.0 26.00 - 2.485 

29.0 25.93 56.3 2.478 

57.9 25.86 50.3 2.471 

115.8 25.70 40.9 2.456 

231.7 25.34 27.4 2.422 

463.3 24.79 1.68 2.369 

926.7 23.89 0.7 2.283 

29.0 24.46 13 2.337 
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APPENDIX B DIRECT SHEAR TEST RESULTS 

 

Sample 1, direct shear specimen 1, w=30.32%, normal load = 463 kPa 

Displacement (mm) H (mm) Suction (kPa) Shear load (N) Stress (kPa) Specific v 

0 25.28 58.7 0 0.0 2.191 

0.25 25.30 58.9 0 0.0 2.193 

0.5 25.30 59.8 15.1 5.5 2.193 

0.75 25.27 62.2 69.7 25.5 2.190 

1 25.26 68.6 157.5 57.6 2.189 

1.25 25.24 75.3 254.5 93.1 2.188 

1.5 25.22 78.4 312.0 114.1 2.186 

1.75 25.21 82.1 372.6 136.3 2.185 

2 25.20 90 454.4 166.2 2.184 

2.25 25.18 98.6 518.0 189.5 2.183 

2.5 25.16 107.3 563.4 206.1 2.181 

2.75 25.14 115 602.8 220.5 2.179 

3 25.11 121 633.1 231.6 2.177 

3.25 25.08 126.2 660.4 241.5 2.174 

3.5 25.04 132 675.5 247.1 2.171 

3.75 25.01 136.4 687.7 251.5 2.167 

4 24.97 140.2 702.8 257.1 2.165 

4.25 24.93 146.8 724.0 264.8 2.161 

4.5 24.89 155.5 742.2 271.5 2.157 

4.75 24.86 164 757.3 277.0 2.155 

5 24.83 171.3 775.5 283.7 2.152 

5.25 24.80 182 787.6 288.1 2.150 

5.5 24.78 197.7 793.7 290.3 2.148 

5.75 24.76 206 802.8 293.6 2.146 

6 24.74 211.5 805.8 294.7 2.144 

6.25 24.71 215.6 808.8 295.8 2.142 
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6.5 24.69 222.2 817.9 299.2 2.140 

6.75 24.67 227.5 827.0 302.5 2.138 

7 24.64 230 833.1 304.7 2.136 

7.25 24.62 231.2 839.1 306.9 2.134 

7.5 24.60 233 845.2 309.1 2.132 

7.75 24.58 235.4 845.2 309.1 2.130 

8 24.56 238.9 845.2 309.1 2.128 

 

Sample 1, direct shear specimen 2, w=29.10%, normal load = 139 kPa 

Displacement (mm) H (mm) Suction (kPa) Shear load (N) Stress (kPa) Specific v 

0 25.48 403 0 0.0 2.209 

0.35 25.48 401.7 36.9 13.5 2.209 

0.7 25.46 392.5 99.2 36.3 2.206 

1.05 25.44 381.5 110.6 40.4 2.205 

1.4 25.44 370.1 148.8 54.4 2.205 

1.75 25.44 357 212.6 77.8 2.205 

2.1 25.45 338.5 266.5 97.5 2.206 

2.45 25.47 318.7 326.0 119.3 2.207 

2.8 25.50 301.7 381.3 139.5 2.210 

3.15 25.50 286.2 428.1 156.6 2.210 

3.5 25.55 276.3 470.6 172.1 2.215 

3.85 25.61 269.8 510.3 186.7 2.220 

4.2 25.71 221.6 484.8 177.3 2.228 

4.55 25.77 224.7 467.8 171.1 2.234 

4.9 25.83 221.6 467.8 171.1 2.239 
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Sample 2, direct shear specimen 1, w=35.81%, normal load = 463 kPa 

Displacement (mm) H (mm) Suction (kPa) Shear load (N) Stress (kPa) Specific v 

0 22.82 83.4 0 0.0 2.132 

0.5 22.82 83.2 6.1 2.2 2.132 

1 22.82 83.2 15.1 5.5 2.132 

1.5 22.80 83.1 136.3 49.9 2.131 

2 22.79 82.8 348.4 127.4 2.129 

2.5 22.73 79.3 445.3 162.9 2.124 

3 22.70 71.64 499.8 182.8 2.121 

3.5 22.67 53.7 560.4 205.0 2.118 

4 22.63 24.4 599.8 219.4 2.115 

4.5 22.60 8.12 630.1 230.5 2.111 

5 22.57 -4.7 651.3 238.2 2.109 

5.5 22.54 -13 663.4 242.7 2.106 

6 22.52 -16.7 672.5 246.0 2.104 

6.5 22.50 -17.6 681.6 249.3 2.102 

7 22.49 -17.9 687.7 251.5 2.101 

7.5 22.47 -17 693.7 253.7 2.099 

8 22.45 -7.8 699.8 256.0 2.097 

8.5 22.44 -1.5 699.8 256.0 2.097 

9 22.44 3 696.7 254.8 2.096 
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Sample 2, direct shear specimen 2, w=38.34%, normal load = 236 kPa 

Displacement (mm) H (mm) Suction (kPa) Shear load (N) Stress (kPa) Specific v 

0 25.45 87.9 0 0.0 2.204 

0.25 25.45 87.9 9.1 3.3 2.204 

0.5 25.45 88.4 42.4 15.5 2.204 

0.75 25.45 91.1 112.1 41.0 2.204 

1 25.44 96.7 227.2 83.1 2.203 

1.25 25.41 100 302.9 110.8 2.200 

1.5 25.37 104.3 360.5 131.9 2.197 

1.75 25.36 113.9 418.0 152.9 2.195 

2 25.34 126.7 463.5 169.5 2.194 

2.25 25.33 134 484.7 177.3 2.193 

2.5 25.32 137.7 499.8 182.8 2.192 

2.75 25.31 132.5 505.9 185.0 2.191 

3 25.29 128.9 507.4 185.6 2.190 

3.25 25.27 130 505.9 185.0 2.188 

3.5 25.25 135.3 502.9 183.9 2.186 
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Sample 2, direct shear specimen 3, w=41.38%, normal load = 116 kPa 

Displacement (mm) H (mm) Suction (kPa) Shear load (N) Stress (kPa) Specific v 

0 25.74 47.9 0 0.0 2.228 

0.25 25.73 47.2 27.3 10.0 2.227 

0.5 25.72 43 72.7 26.6 2.226 

0.75 25.71 33.6 115.1 42.1 2.225 

1 25.69 28.4 154.5 56.5 2.224 

1.25 25.66 22.6 184.8 67.6 2.221 

1.5 25.63 20.4 206.0 75.3 2.219 

1.75 25.62 18.6 215.1 78.7 2.217 

2 25.61 18.6 221.1 80.9 2.216 

2.25 25.60 15.77 221.1 80.9 2.216 

2.5 25.58 11.73 218.1 79.8 2.214 

  

Sample 2, direct shear specimen 4, w=41.23%, normal load = 58 kPa 

Displacement (mm) H (mm) Suction (kPa) Shear load (N) Stress (kPa) Specific v 

0 25.84 87 0 0.0 2.235 

0.25 25.82 87.2 0.0 0.0 2.233 

0.5 25.81 88.8 27.3 10.0 2.233 

0.75 25.80 94.9 75.7 27.7 2.232 

1 25.80 97.6 136.3 49.9 2.232 

1.25 25.79 87 178.7 65.4 2.231 

1.5 25.79 77.1 209.0 76.5 2.231 

1.75 25.79 73.7 218.1 79.8 2.231 

2 25.79 71.1 212.1 77.6 2.231 

2.25 25.79 62.6 196.9 72.0 2.231 
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Sample 3, direct shear specimen 1, w=44.23%, normal load = 232 kPa 

Displacement(mm) H (mm) Suction (kPa Shear load (N) Stress (kPa) Specific v 

0 24.21 18.9 0 0.0 2.313 

0.25 24.20 18.4 42.4 15.5 2.312 

0.5 24.18 16.99 136.3 49.9 2.310 

0.75 24.17 16.5 166.6 60.9 2.309 

1 24.16 16.22 227.2 83.1 2.309 

1.25 24.16 16.3 327.2 119.7 2.309 

1.5 24.16 17.2 390.8 142.9 2.309 

1.75 24.17 19 442.3 161.8 2.309 

2 24.17 20.5 466.5 170.6 2.310 

2.25 24.18 22.8 469.5 171.7 2.310 

2.5 24.18 24.2 472.6 172.9 2.310 

2.75 24.18 25.6 469.5 171.7 2.310 
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Sample 3, direct shear specimen 3, w=32.00%, normal load = 463 kPa 

Displacement (mm) H (mm) Suction (kPa) Shear load (N) Stress (kPa) Specific v 

0 25.50 649.4 0.0 0.0 1.991 

0.25 25.49 636.3 109.1 39.9 1.990 

0.5 25.47 604.1 239.3 87.5 1.989 

0.75 25.45 573.6 354.4 129.6 1.987 

1 25.43 544 451.4 165.1 1.985 

1.25 25.41 518.7 530.1 193.9 1.984 

1.5 25.41 496 590.7 216.1 1.984 

1.75 25.41 476.1 678.6 248.2 1.984 

2 25.41 456 754.3 275.9 1.984 

2.25 25.41 436 814.9 298.1 1.984 

2.5 25.41 413 863.4 315.8 1.984 

2.75 25.41 393 905.8 331.3 1.984 

3 25.40 371 930.0 340.2 1.983 

3.25 25.39 353 942.1 344.6 1.983 

3.5 25.39 335 948.2 346.8 1.982 

3.75 25.38 322 954.2 349.0 1.982 

4 25.38 310 963.3 352.4 1.981 

4.25 25.36 291 972.4 355.7 1.980 

4.5 25.36 282 975.4 356.8 1.980 

4.75 25.36 300 972.4 355.7 1.980 
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Sample 4, direct shear specimen 1, w=32.43%, normal load = 116 kPa 

Displacement (mm) H (mm) Suction (kPa) Shear load (N) Stress (kPa) Specific v 

0 23.94 81.5 0 0.0 1.973 

0.25 23.94 81.9 6.1 2.2 1.973 

0.5 23.92 82.1 48.5 17.7 1.971 

0.75 23.90 82.3 90.9 33.2 1.970 

1 23.88 82.5 136.3 49.9 1.968 

1.25 23.87 82.9 175.7 64.3 1.968 

1.5 23.88 83.1 215.1 78.7 1.968 

1.75 23.85 83.2 257.5 94.2 1.966 

2 23.86 83.6 302.9 110.8 1.966 

2.25 23.89 83.7 345.3 126.3 1.969 

2.5 23.91 83.7 360.5 131.9 1.971 

2.75 23.93 84 369.6 135.2 1.973 

3 23.95 84.6 366.5 134.1 1.974 
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Sample 4, direct shear specimen 2, w=33.72%, normal load = 58 kPa 

Displacement (mm) H (mm) Suction (kPa) Shear load (N) Stress (kPa) Specific v 

0 25.50 144.4 0.0 0.0 2.006 

0.25 25.50 144.7 9.1 3.3 2.006 

0.5 25.48 146.2 45.4 16.6 2.005 

0.75 25.47 147.2 112.1 41.0 2.004 

1 25.46 135.3 175.7 64.3 2.003 

1.25 25.45 126.8 218.1 79.8 2.002 

1.5 25.46 127.1 263.5 96.4 2.003 

1.75 25.47 122 272.6 99.7 2.004 

2 25.48 117.2 284.8 104.2 2.005 

2.25 25.49 114 284.8 104.2 2.006 

2.5 25.50 110.8 272.6 99.7 2.006 

2.75 25.50 144.4 0.0 0.0 2.006 

 

 

 


	Corrected BL.pdf
	Untitled




