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ABSTRACT 
 

The physical process of scour around pile groups is complex. Due to economical and geotechnical 

reasons, group piles have become more common in bridge designs. Various empirical models have 

been developed to estimate maximum scour depth at pile groups. However, these models are 

mostly based on the conventional statistical regression approaches, and are not able to adequately 

capture the highly nonlinear and complex relationship between scour depth and its influential 

factors. In this study, Multivariate Adaptive Regression Splines (MARS) and Genetic Expression 

Programming (GEP) were used to estimate clear-water local scour depth at pile groups from the 

current, sediment, and pile characteristics. Two combinations of data were used to train the GEP 

and MARS models. The first combination includes mean flow velocity, flow depth, mean grain 

diameter, pile diameter, distance between the piles, and the number of piles normal to the flow and 

in-line with the flow. The second combination contains seven non-dimensional parameters. Results 

indicated that MARS and GEP can generate accurate scour depth estimates. Both models yield 

better results when the dimensional data were used. Also, it was found that the MARS model (with 

root-mean-square-error (RMSE) of 0.0110 m and correlation coefficient (R2) of 0.969 

outperformed the GEP model (with RMSE of 0.0187 m and R2 of 0.911). The performance of GEP 

and MARS models was compared with that of the existing empirical methods. The comparison 

showed that both models perform better than the regression-based empirical equations. Finally, a 

sensitivity analysis showed that the pile diameter in dimensional combination and ratio of pile 

spacing to pile diameter in non-dimensional combination have the most significant impact on scour 

depth.   
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1.  Introduction 

1.1. Background 
 

When a stream is partially obstructed by a bridge pier, the flow pattern around the pier is 

changed (Figure 1).  The pier produces an adverse pressure gradient just upstream of the pier, and 

a corresponding uplift pressure that lifts the sediment from the bed surface.  The boundary layer 

upstream of the pier undergoes a three-dimensional separation and the shear stress distribution 

around the pier is drastically changed.  This is due to the formation of a horseshoe vortex, which 

results in the formation of a scour hole around the pier (Figure 1) and changes the flow pattern 

and shear (Kothyarie et al., 1992). 

 

Figure 1. The scour hole around the bridge pier (Hill, 2013) 
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Figure 2. Examples of scour depth around piles: (top)  adopted from Ferraro et al. (2013), (middle) 
scour hole at the New Independencia Bridge on Piura River (Vasquez, 2004), and (Bottom) taken 
from the Leader-Herald (2017). 
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 As shown in top two images in Figure 2, local scour around bridge foundations leads to 

degradation around the pile, which weakens the structural support of the pile, eventually leading 

to the collapse of bridge piers and decks (Moreno et al., 2015), as shown in the bottom image of 

Figure 2.  Wardhana and Hadipriono (2003) studied over 500 bridge failures in the United States, 

between 1989 and 2000.  The average age of the failed bridges was about 52.5 years.  The main 

cause of bridge failures was due to flooding.  Scour due to flood contributed to nearly 53% of all 

failures (Wardhana and Hadipriono, 2003).   

Piles groups provide an efficient use of footprints for the foundation of bridges.  They 

provide us with the ability to provide the maximum amount of load over the minimum amount of 

footprint area.  This is done with the use of an elongated side friction surface area.  However, when 

that elongated side friction surface area changes due to the effects of climate change and natural 

erosion, the efficient use of footprint may become susceptible to failure.   

As stated by Coleman (2005), “physical and economic considerations often lead to bridge 

foundations being constructed of a pile or pile group”. For geotechnical and economic reasons, 

multiple piles have become more and more popular in bridge design (Ataie-Ashtiani and Beheshti, 

2006). These studies demonstrated that group of piles can significantly reduce construction costs 

compared to those spread footer structures, especially when sediment scour is a consideration.  As 

stated, this type of support structure (that of a pile) can be eroded as well, and understanding that 

erosion (or scour) is the goal of this study. 

Pile groups are widely used to support marine structures in coastal areas and bridges on 

deep alluvial riverbeds.  These types of alluvial beds typically have fine sediments from the erosion 

of the surrounding hillsides or mountains.  These fine sediments are more susceptible to uplift 

pressure around piles.  Climate change causes more extreme weather and flooding conditions.  Due 
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to the climate change and rising flood level, pile caps and other parts of the foundations of a bridge 

pile may become submerged and develop characteristics of submerged piles (Amini et al., 2012), 

which are subjected to a higher flow velocity.  This can accelerate the scour process.  

In major river crossings, there is an increasing use of bridge foundations that consist of a 

number of piles supporting a pile cap.  Piers composed of columns and a pile cap are also known 

as complex piers.  These types of foundations of the piles are often deep.  However, if these types 

of piles rely on the skin friction (the friction caused between the pile and the surrounding soil) 

rather than the end-loading (pile load supported primarily by the end of the pile) to support the 

weight of the bridge, the foundation can be more vulnerable to scour.  The focus of this paper will 

be solely on piles.  All research data was cleaned to eliminate the effects of a pile cap.   

An accurate estimation of scour depth around piles is required for a safe and economic 

design of bridges and harbors (Etemad-Shahidi et al., 2011).   However, scour is a complex 

phenomenon that is affected by many variables.  Besides the physical variables (e.g., pier 

geometry, flow velocity, and sediment characteristics), there are several non-physical processes 

(e.g., turbulent boundary layer, time-dependent flow pattern and sediment transport mechanism) 

that can all affect the scour mechanism.  These combined physical and non-physical factors make 

the prediction of scour depth challenging.  Hence, even though many experimental and theoretical 

studies have been conducted to predict scour depth around bridge piers, there is still a need for 

further improvement in the existing empirical relations. 
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1.2. Influential Variables  
 

Scour depth around piers has been estimated by many studies (Dey and Barbhuya, 2004a 

and b, Ataie-Ashtiani et al, 2010, Azamathulla, 2012, Cheng and Cao, 2014, and Choi et. al., 2015).  

These studies have led to various empirical formulas to relate the scour depth to its influential 

variables.  These input variables are the key to the prediction of scour depth.  The variables 

associated with the flow properties, sediment characteristics and pile geometry are found in almost 

all empirical formulas that predict the scour depth.   

Richardson and Davis (2001) evaluated the effect of flow velocity and pier diameter on the 

pile scour depth.  They found that the scour depth has a direct correlation with flow velocity, i.e.,   

the greater the velocity, the deeper the scour depth.  Flow depth also has a direct correlation with 

the scour depth. An increase in flow depth can increase scour depth by a factor of 2 or more.  Pier 

diameter was also found to be a significant factor.  As pier diameter increases, there is an increase 

in scour depth.  However, there is a limit for this increase. Very wide piers do not have scour 

depths as deep as predicted by existing formulas.    

Equation 1 represents the relationship between the scour depth (𝑑𝑑𝑠𝑠𝑠𝑠) and its influential 

variables (Amini et al., 2012):   

𝑑𝑑𝑠𝑠𝑠𝑠 = 𝑓𝑓1(𝜌𝜌, 𝜇𝜇,𝑔𝑔,𝐷𝐷,𝑦𝑦,𝑈𝑈,𝑈𝑈𝑐𝑐 ,𝑑𝑑50,𝑆𝑆𝑚𝑚,𝑆𝑆𝑛𝑛,𝑛𝑛,𝑚𝑚)               (1) 

 

where μ is the fluid dynamic viscosity, ρ is the fluid density, U is the flow mean velocity, Uc is the 

critical flow velocity associated with the start of motion of particles on the bed surface, y is the 

flow depth, g is the gravitational acceleration, D is the pile diameter, and d50 is the sediment mean 

diameter, n is the number of piles normal to the flow, m is the number of piles in line with the 

flow, 𝑆𝑆𝑛𝑛 is the spacing between piles normal to the flow, 𝑆𝑆𝑚𝑚 is the spacing between piles in line 
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with the flow, and dse is the scour depth around pile group (Figure 3). By using the dimensional 

analysis, the twelve independent variables can be decreased to a set of eight non-dimensional 

parameters as follows,  

 

 

Figure 3. Schematic of variables involved in the prediction of scour. 
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Equation 2, (Amini et al., 2012) shows how the various physical processes such as fluid-

structure interaction, fluid-seabed interaction, and sediment transport affect the scour mechanism.  

The Reynolds number (𝜌𝜌𝑈𝑈𝐷𝐷
𝜇𝜇

), the square of the Froude number (𝑈𝑈
2

𝑔𝑔𝐷𝐷
), and depth to diameter ratio 

account for the flow characteristics around the piles.  U/Uc describes the influence of flow on the 
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seabed and D/d50 indicates the interaction between pile and bed sediment (Etemad-Shahidi et al., 

2011)   

1.3. Challenges in Scour Prediction 
 

Lack of understanding of the complex scour processes and their simplified modeling have 

led to a pronounced uncertainty in predicting the scour depth (Azamathulla, 2012).  This is mainly 

because 1) the exact mechanism of scour and effects of different parameters on scour depth are 

not yet fully understood (Dey and Barbhuya, 2004 a, b), and 2) the conventional regression-based 

approaches cannot accurately capture effects of influential parameters on scour depth (Ettema et 

al, 1998).   

 The regression-based relationships are used commonly to predict scour depth at bridge 

abutments.  However, these expressions typically lead to large uncertainties.  This can have major 

drawbacks pertaining to the idealization of the complex scour processes.    This combined with a 

lack of reliable data leads to an inaccuracy in the estimation of scour depth.  Therefore, empirical 

regression-based equations typically overestimate the scour depth and generate conservative 

results (US DOT, 1993; Ettema et al, 1998; Melville and Chew, 1999).   

Although many studies (e.g., US DOT, 1993; Coleman, 2005; Ataie-Ashtiani et al., 2010; 

Toth and Brandiarte, 2011; Azamathulla, 2012; Choi et al., 2015; Toth, 2015) have been carried 

out in this field, there is a lack of reliable formulas for prediction of scour depth.  The results from 

the existing methods highly differ with each other, thus resulting in big controversy in design and 

cost of the protection methods against scour and the foundations of the piers (Ettema et al., 1998).  

Moreover, each empirical formula may work well for a specific data set, but many fall short when 

applied to similar data sets, with slightly different variables.  This becomes increasingly important 
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for piers that may be termed wide by virtue of their large diameter, or width, relative to flow depth.  

For increasingly wide piers, greater accuracy is needed because the cost of conservation becomes 

inordinately large for such designs (Bateni et al, 2007).    

1.4. Alternative Methods to the Regression-Based Approaches 

1.4.1.  Artificial Neural Networks (ANN) 
 

Recognizing the shortcomings of regression-based equations and the importance of 

improving prediction capabilities, a number of studies have used the Artificial Neural Network 

(ANN) approach to estimate scour depth around piles (Choi and Jung, 2006; Bateni et al., 2007a, 

b; Kaya, 2010; Toth and Brandimarte, 2011; Choi et al., 2015; Toth, 2015). 

Regression-based formulas tend to give conservative estimates of scour depth around 

bridge piers, while the more advanced ANN gives more accurate predictions.  This is because the 

complexity of the physical processes involved in the scour problem, can be captured more robustly 

by the ANN (Zhang and Goh, 2013).  However, the ANN approach is often not as readily available 

as the empirical formulas.  Nonetheless, with the rapid increases in processing speed and memory 

of low-cost computers, ANN has been used for modeling highly nonlinear, multivariate 

engineering problems (Zhang and Goh, 2013).  During the last two decades, many studies (e.g., 

Samui, 2011, Azamthulla, 2012, Emamgholizadeh et al., 2015) showed that the soft computing 

techniques such as ANN, GEP, and MARS yielded better results that the conventional statistical 

methods. ANN has been used as an alternative method to capture complexity in physical modeling.  

In recent years, this approach has become an effective tool for providing hydraulic and 

environmental engineers with more accuracy for design purposes and management practices 

(Bateni et al., 2007a).  A typical configuration of an ANN model is shown in Figure 4. Structure 

of a typical ANN model (Bateni et al., 2007)..   A set of data is first fed directly in the ANN model 
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through the input layer.  Then ANN produces an expected result, y, in the output layer.  The number 

of hidden layers establishes the complexity of the network because a greater number of hidden 

layers increases the number of connections in the ANN.   

 

Figure 4. Structure of a typical ANN model (Bateni et al., 2007). 

The number of hidden layers and nodes in each hidden layer are found by trial and error. 

Each node multiplies its corresponding input by its interconnection weight, sums the product, and 

then passes the sum through a transfer function to produce the result.  This transfer function is 

usually a steadily increasing S-shape curve called a sigmoid function.  Under this threshold 

function the output, yj, for the jth neuron in a layer is: 

𝑦𝑦𝑗𝑗 = 𝑓𝑓(∑𝑤𝑤𝑖𝑖𝑗𝑗𝑥𝑥𝑖𝑖) =  1

1+𝑠𝑠−(∑𝑤𝑤𝑖𝑖𝑖𝑖𝑥𝑥𝑖𝑖)
               (3) 

where wij is the weight of the connection joining the jth neuron in a layer to the ith neuron in the 

previous layer and xi is the value of the ith neuron in the previous layer.   
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 The ANN is trained with a set of known input and output data.  Many learning examples 

are repeatedly presented to the network, and the process is terminated when the number of training 

iterations excesses a specified value.  At this stage, ANN is considered as trained (Bateni et al., 

2007). 

1.4.2. Gene Expression Programming (GEP) and Multi-Adaptive Regression Spines (MARS) 

 
Despite the outperformance of ANN models over the regression-based approaches, they 

operate as a black-box and cannot provide an explicit equation between the scour depth and its 

influential variables.  Because of shortcomings of regression-based and ANN methods, this study 

used Genetic Express Programming (GEP) and Multivariate Adaptive Regression Splines (MARS) 

to estimate scour depth around piles.   

GEP was developed by Ferreira (2001 a, b).  It is an optimization method that can robustly 

simulate the complex relationship between a dependent variable and its influential factors.  MARS 

is a non-parametric model that was developed by Friedman (1991).  To the best of our knowledge, 

GEP and MARS have not been used in other studies to estimate scour depth around pile groups.   

GEP and MARS do not suffer from the abovementioned shortcomings of the regression-

based and ANN approaches and have several advantages: (1) they can generate an explicit 

relationship between the response variable and its predictors, (2) they do not perform like a black-

box, (3) they can simulate the complicated relationship between the dependent variable and its 

influential independent variables, (4) they do not require to presume a priori, specific form of 

function to relate inputs to output(s), and (5) they are more flexible than the regression methods 

and typically can overcome their limitations (Samui et al., 2011; Gandomi and Alavi, 2011; Zhang 

and Goh, 2013). 
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 GEP and MARS have been used by several studies (e.g., Guven and Aytek, 2009; 

Azamathulla, 2012; Adamowski et al., 2012; Sattar, 2014; Cheng and Cao, 2014) and in many 

engineering problems to capture complicated relationships between inputs and outputs.  Shiri et 

al. (2012) used GEP to estimate daily evaporation.  Guven and Azamathulla (2012) compared 

MARS with ANN for runoff forecasting in the mountainous watershed of Sainji in the Himalays, 

and found their performance is comparable.  Emamgholizadeh et al. (2015) used MARS and GEP 

to estimate the soil cation exchange capacity from its easily measurable variables.  Samui (2011) 

utilized MARS to predict the ultimate capacity of piles in cohesionless soils.  GEP and ANN were 

used by Kisi and Shiri (2012) to evaluate the suspended sediment concentration in the Eel River.  

GEP was used successfully in hydraulic engineering problems: estimation of scour depth 

downstream of hydraulic structures (Guven and Gunal, 2008) and scour depth downstream of 

naturally occurring structural sill (Azamathulla, 2012), dispersion coefficients in natural streams 

and pipes (Azamathulla and Wu, 2011), dam breach parameters (Sattar, 2014), and effective 

transverse mixing of fluids (Azamathulla and Ahmand, 2012).  These studies showed that GEP 

and MARS performed better than ANN. In fact, the above studies (among many others) showed 

that outcomes of GEP and MARS have better predictability than those of commonly used 

empirical approaches in most engineering problems.   

Another complexity is how the piles behave in a fluid, not only as an individual pile, but 

grouped together.  Local scour at pile groups is more complex and difficult to predict than that at 

single piles.  The increased complexity is due to the interaction of vortices generated at the 

individual piles and the interdependence of scour holes around each pile (Lanca et al., 2013).  As 

discussed, piles are often built in areas with currents such as harbor and waterfronts.  Although 

scour around “single piles” has been widely studied by many researchers, a limited number of 
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studies have been conducted on scour around “pile groups”.  In contrast to other types of footings, 

pile group foundations are considered significantly cost-effective, regarding the influence of scour 

phenomenon (Etemad-Shahidi et al., 2011).   In order to study the effects of pile scour amongst 

group an alternative dimensionless form of equilibrium scour can also be analyzed. 

    The first goal of this study is to develop and test GEP- and MARS-based equations for the 

prediction of scour depth around pile groups.  Our second objective is to compare scour depth 

estimates from GEP and MARS.  Finally, performance of GEP and MARS is compared with the 

existing regression-based equations.  In this study, we consider the variables that have been used 

in the literature to predict scour around pile groups. 
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2. Data  

2.1. Sources of Data 
 

 In this study, data were obtained from various experimental studies.  These experiments were 

generally conducted in a flume with an adjustable inflow rate (Figure 5).  Different configurations 

of piles groups were used in the experiments in the flume. Different experiments were conducted 

by changing the inflow rate, number and configuration of piles within the pile group, and sediment 

size.  As shown in Figure 8, there is an intake of water at point 1 that is connected to the pump in 

point 2.   The water is conveyed to the flume in point 3.  At position 4, there is a screen to decrease 

the water-surface fluctuations.  Thereafter, the water flows over coarse sediments in zones 5 and 

6 to reduce its turbulence, and finally flows over the fine sediments and pile configuration in 

positions 7 and 8.  The water flows out of the flume in point 9.   

 

Figure 5. General set up for an experimental flume. 

 

A total of 269 experimental data points from 16 studies were used in this study.  The first study 

was conducted by Ataie-Ashtiani et al. (2010).  They investigated the local scour around 

compound piers.  Their experiments were carried out in a 4.0 (m) long, 0.6 (m) wide and 0.3 (m) 

deep flume at the Sharif University of Technology, in Iran.  Their study used complex pier 
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geometry.  The complex pier geometry refers to piles, which are covered by a pile cap. The pile 

cap can alter the flow condition around the pile.  Since this study focuses only on piers and piles, 

all data that involve the pile cap were not used.  The water surface can be above, in line with or 

below the pile cap.  In this study, only experiments in which the water level is below the pile cap 

were included.  This was done to eliminate the effect of the pile cap on the scour depth.   

 The second study was performed by Coleman (2005).  He investigated the scour process 

at complex piers by exposing them to five different water level scenarios.     The experiments were 

run in two different facilities, one in New Zealand and the other one in the United States.  In both 

of the facilities, the tests were performed in a 43 m long and 1.5 m wide, glass-sided flume.  

 In the third study, conducted by Ferraro et al. (2013), the effect of pile cap thickness on the 

temporal evolution of the scour depth and the equilibrium scour was evaluated.  Each test lasted 

for a duration longer than the equilibrium time suggested by Colman (2005).  The experiments 

were performed in an 8 m long, 0.70 m wide, and 0.70 m deep glass-walled horizontal flume.  

Various experiments with different pile cap thicknesses, distances between the pile caps, and the 

initial bed levels (Y) were implemented.  Y is positive when the pile cap is above the water level.  

Therefore, no negative values of Y were used.   

 The fourth study was conducted by Grimaldi and Cardoso (2010).  They evaluated seven 

different complex piers configurations, all with various water levels above and below the pier cap. 

As mentioned above, in this study, only the experiments in which the pile cap is entirely above the 

water surface are considered.  Experiments were done in a flume, which is made of steel with glass 

side walls.  The flume length and width were 8.0 (m) and 0.7 (m), respectively.  

 In the fifth study, performed by Moreno et al. (2014), they ran the experiment in 8 flumes 

for scouring at complex piers.  The aim of this study was to evaluate the contribution of complex 
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pier components on the scour depth.  Their study presented a new approach to estimate the scour 

depth by taking into account different components of complex piers.     

 In another study conducted by Moreno et al. (2015), the effect of relative column width 

and pile-cap elevation on scour depth around complex piers was investigated.  Their experiments 

were carried out in the National Laboratory for Civil Engineering (LNCE) in Lisbon, in a glass 

sided rectangular flume with a length of 40 m, width of 2.0 m, and depth of 1.0 m.  In their study, 

11 pile cap positions relative to the water surface level were analyzed and labeled as positions A-

K.  These 11 positions were associated with three cases.  In case 1 (positions A-D), the pile cap 

was above the water surface level.  In case 2 (positions E-H), the pile cap was partially in the 

flowing water, and finally in case 3 (positions I-K), the pile cap was completely under the water 

surface. In this project, only the experimental data from case 1 were used where the pile cap was 

above the water surface.   

 The seventh study was carried out by Martin-Vide et al. (1998).  They investigated the 

local scour at piles.   In their study, a total of 27 interface elevations (height of water level with 

respect to the pile cap) were tested under the same flow conditions.  These experiments were 

conducted in a 5.80 m long and 1.50 m wide flume. 

 In the eighth study, Ataie and Beheshti (2006) investigated the local scour around a group 

of piles and compared performance of the commonly used formulas.  Their experiments were 

carried out in a 4 m long, 0.41 m wide, and 0.25 m deep flume.  

 In the ninth study, Amini et al. (2012) investigated the clear-water scour at pile groups.  In 

their study, a wide range of pile group arrangements, and spacing were examined.  Their 

experiments were conducted in 46 m length, 1.52 m width and 1.9 m flume. They concluded that 
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local scour depends on pile diameter, and pile spacing, and proposed a new empirical method to 

estimate local scour depth at the pile groups.   

 The tenth study was performed by Sheppard (2003).    His study proposed a methodology 

to estimate local scour depth at a group of piles.    

2.2. Pile Scour Laboratory Data 
Scour depth data were obtained from six other studies (Hajzaman, 2008, Moreno et al., 

2014, Oliveto et al., 2004, Hannah, 1978, Zhao and Sheppard, 1998, and Lanca et al., 2013).    The 

above-mentioned 16 studies are listed in Table 1. The utilized data are shown in Table 2.   The 

measured variables include the scour depth (𝑑𝑑𝑠𝑠𝑠𝑠), average particle diameter size (d50), flow depth 

(𝑦𝑦), and mean flow velocity (U) and the critical flow velocity (Uc).  Physical characteristics of the 

piles (i.e., pile diameter (D), the number of piles parallel (m) and perpendicular (n) to flow, and 

the distance of piles from each other parallel (Sm) and perpendicular to flow (Sn)) were also 

included in these data sets.  The range of different variables used in this study is presented in Table 

3.  The data was separated randomly and 80% of the data was used to train the MARS and GEP 

models and 20% of the data was used to test the validity of the models. 
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Table 1. List of studies that were used in this research. 
 Studies Lab 
1 Ataie-Ashtiani et al. (2010) Sharif University of Technology, Tehran 

2 Hajzaman (2008) Sharif University of Technology, Tehran 

3 Coleman (2005) University of Aukland, New Zealand 

4 Ferraro et al. (2013) Instituto Superior Técnico, Portugal 

5 Cardoso (2010) Instituto Superior Tecnico, Lisbon, Portugal 

6 Moreno et al. (2014) Instituto Superior Tecnico, Lisbon, Portugal 

7 Moreno et al. (2014) Canal de Inclinação Variável (CIV) 

8 Moreno et al. (2015)  National Laboratory for Civil Engineering, Lisbon, 
Portugal 

9 Oliveto et al. (2004) University of Basilicata 

10 Martin-Vide et al. (1998) Civil Engineering School, Barcelona, Spain 

11 Ataie and Beheshti (2006) Sharif University of Technology, Tehran 

12 Lanca et al. (2013) Dept. de Engenharia Civil, Instituto Superior, Faro, 
Portugal 

13 Amini et al. (2012) Hydraulic Laboratory of Malaysia (NAHRIM) 

14 Hannah (1978) Civil Engineering Department, University of 
Canterbury, Christchurch, New Zealand  

15 Sheppard (1998) Hydraulics Laboratory, University of Florida 

16 Sheppard (2003) Conte USGS Laboratory, University of Florida 
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Table 2. Data points of the 16 studies in Table 1. 

   Reference dse (m) d50 (mm) y (m) U (m/s) Uc (m/s) D (m) m n Sm (m) Sn (m) 

1  1 0.048 0.6 0.144 0.234 0.31 0.016 3 2 0.040 0.032 

2  1 0.053 0.6 0.142 0.237 0.31 0.016 3 2 0.040 0.032 

3  1 0.038 0.6 0.140 0.262 0.34 0.016 3 2 0.065 0.048 

4  2 0.058 0.6 0.127 0.230 0.31 0.022 3 2 0.045 0.03 

5  2 0.066 0.6 0.130 0.228 0.31 0.022 3 2 0.045 0.03 

6  2 0.039 0.6 0.143 0.228 0.32 0.016 3 2 0.045 0.03 

7  2 0.047 0.6 0.143 0.227 0.32 0.016 3 2 0.045 0.03 

8  2 0.039 0.6 0.145 0.230 0.32 0.016 4 2 0.036 0.03 

9  2 0.037 0.6 0.139 0.230 0.32 0.016 4 2 0.036 0.03 

10  2 0.066 0.6 0.142 0.234 0.32 0.022 4 2 0.036 0.03 

11  2 0.052 0.6 0.139 0.236 0.32 0.022 4 2 0.036 0.03 

12  3 0.125 0.84 0.330 0.340 0.41 0.02 8 3 0.060 0.065 

13  3 0.077 0.84 0.600 0.375 0.44 0.024 4 2 0.072 0.072 

14  3 0.068 0.84 0.600 0.330 0.44 0.024 4 2 0.072 0.072 

15  4 0.101 0.83 0.100 0.271 0.30 0.025 5 2 0.050 0.055 

16  5 0.096 0.83 0.100 0.290 0.29 0.025 2 2 0.075 0.075 

17  6 0.135 0.86 0.180 0.310 0.32 0.05 4 1 0.125 0 

18  7 0.114 0.86 0.200 0.258 0.32 0.05 4 2 0.125 0.125 

19  8 0.123 0.86 0.200 0.258 0.32 0.05 4 2 0.125 0.125 

20  8 0.123 0.86 0.200 0.258 0.32 0.05 4 2 0.125 0.125 

21  8 0.123 0.86 0.200 0.258 0.32 0.05 4 2 0.125 0.125 

22  9 0.058 2.4 0.114 0.433 0.53 0.02 2 2 0.020 0.02 

23  9 0.029 2.4 0.114 0.433 0.53 0.02 2 2 0.040 0.04 

24  9 0.022 2.4 0.114 0.433 0.53 0.02 2 2 0.060 0.06 

25  9 0.025 2.4 0.114 0.433 0.53 0.02 2 2 0.080 0.08 

26  9 0.021 2.4 0.114 0.433 0.53 0.02 2 2 0.100 0.1 

27  10 0.093 0.65 0.254 0.326 0.35 0.06 2 1 0.240 0 

28  11 0.029 0.98 0.033 0.246 0.31 0.016 1 1 0  0 

29  11 0.028 0.98 0.035 0.232 0.31 0.016 1 1 0  0 

30  11 0.030 0.98 0.047 0.259 0.33 0.016 1 1 0  0 

31  11 0.029 0.98 0.033 0.246 0.31 0.016 1 1 0  0 

32  11 0.035 0.98 0.033 0.246 0.31 0.022 1 1 0  0 

33  11 0.038 0.98 0.034 0.239 0.31 0.022 1 1 0  0 

34  11 0.034 0.98 0.047 0.259 0.33 0.022 1 1 0  0 

35  11 0.042 0.25 0.068 0.179 0.25 0.022 1 1  0  0 

36  11 0.039 0.98 0.034 0.239 0.31 0.028 1 1  0 0  



25 
 

 

  Reference dse (m) d50 (mm) y (m) U (m/s) Uc (m/s) D (m) m n Sm (m) Sn (m) 

37 11 0.051 0.98 0.048 0.254 0.33 0.028 1 1  0 0 

38 11 0.046 0.25 0.068 0.179 0.25 0.028 1 1 0  0 

39 11 0.054 0.25 0.068 0.179 0.25 0.031 1 1 0  0 

40 11 0.047 0.98 0.034 0.239 0.31 0.016 4 2 0.016 0.016 

41 11 0.045 0.98 0.035 0.232 0.31 0.016 4 2 0.018 0.0184 

42 11 0.049 0.98 0.034 0.239 0.31 0.016 4 2 0.020 0.02 

43 11 0.045 0.98 0.034 0.239 0.31 0.016 4 2 0.024 0.024 

44 11 0.032 0.98 0.034 0.239 0.31 0.016 4 2 0.048 0.048 

45 11 0.031 0.98 0.035 0.232 0.31 0.016 4 2 0.048 0.048 

46 11 0.028 0.98 0.035 0.232 0.31 0.016 4 2 0.080 0.08 

47 11 0.028 0.98 0.035 0.232 0.31 0.016 4 2 0.080 0.08 

48 11 0.055 0.98 0.045 0.271 0.32 0.016 4 2 0.016 0.016 

49 11 0.056 0.98 0.047 0.259 0.33 0.016 4 2 0.018 0.0184 

50 11 0.053 0.98 0.047 0.259 0.33 0.016 4 2 0.020 0.02 

51 11 0.050 0.98 0.046 0.265 0.33 0.016 4 2 0.024 0.024 

52 11 0.037 0.98 0.047 0.259 0.33 0.016 4 2 0.048 0.048 

53 11 0.032 0.98 0.048 0.254 0.33 0.016 4 2 0.080 0.08 

54 11 0.031 0.98 0.047 0.259 0.33 0.016 4 2 0.096 0.096 

55 11 0.040 0.98 0.048 0.254 0.33 0.016 4 2 0.048 0.048 

56 11 0.037 0.98 0.054 0.225 0.34 0.016 4 2 0.080 0.08 

57 11 0.039 0.98 0.055 0.221 0.34 0.016 4 2 0.048 0.048 

58 11 0.055 0.98 0.034 0.239 0.31 0.022 4 2 0.022 0.022 

59 11 0.048 0.98 0.035 0.232 0.31 0.022 4 2 0.025 0.0253 

60 11 0.064 0.98 0.038 0.213 0.33 0.022 4 2 0.028 0.0275 

61 11 0.053 0.98 0.034 0.239 0.31 0.022 4 2 0.033 0.033 

62 11 0.044 0.98 0.034 0.239 0.31 0.022 4 2 0.066 0.066 

63 11 0.042 0.98 0.035 0.232 0.31 0.022 4 2 0.066 0.066 

64 11 0.033 0.98 0.034 0.239 0.31 0.022 4 2 0.110 0.11 

65 11 0.065 0.98 0.044 0.277 0.33 0.022 4 2 0.022 0.022 

66 11 0.057 0.98 0.046 0.265 0.33 0.022 4 2 0.025 0.0253 

67 11 0.064 0.98 0.047 0.259 0.33 0.022 4 2 0.028 0.0275 

68 11 0.059 0.98 0.048 0.254 0.33 0.022 4 2 0.033 0.033 

69 11 0.048 0.98 0.048 0.254 0.33 0.022 4 2 0.066 0.066 

70 11 0.038 0.98 0.048 0.254 0.33 0.022 4 2 0.110 0.11 

71 11 0.025 0.98 0.035 0.232 0.31 0.022 4 2 0.110 0.11 

72 11 0.052 0.98 0.054 0.225 0.34 0.022 4 2 0.066 0.066 
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  Reference dse (m) d50 (mm) y (m) U (m/s) Uc (m/s) D (m) m n Sm (m) Sn (m) 

73 11 0.042 0.98 0.055 0.221 0.34 0.022 4 2 0.110 0.11 

74 11 0.067 0.98 0.047 0.259 0.33 0.028 4 2 0.035 0.035 

75 11 0.048 0.98 0.035 0.232 0.31 0.016 3 2 0.020 0.02 

76 11 0.045 0.98 0.035 0.232 0.31 0.016 3 2 0.020 0.02 

77 11 0.043 0.98 0.033 0.246 0.31 0.016 3 2 0.024 0.024 

78 11 0.035 0.98 0.033 0.246 0.31 0.016 3 2 0.048 0.048 

79 11 0.050 0.98 0.047 0.259 0.33 0.016 3 2 0.020 0.02 

80 11 0.036 0.98 0.038 0.267 0.31 0.016 3 2 0.048 0.048 

81 11 0.030 0.98 0.033 0.246 0.31 0.016 3 2 0.080 0.08 

82 11 0.036 0.98 0.040 0.254 0.32 0.016 3 2 0.048 0.048 

83 11 0.050 0.98 0.034 0.239 0.31 0.022 3 2 0.028 0.0275 

84 11 0.038 0.98 0.034 0.239 0.31 0.022 3 2 0.028 0.0275 

85 11 0.059 0.98 0.039 0.264 0.32 0.022 3 2 0.028 0.0275 

86 11 0.040 0.98 0.050 0.243 0.33 0.022 3 2 0.028 0.0275 

87 11 0.057 0.25 0.068 0.179 0.25 0.022 3 2 0.028 0.0275 

88 11 0.054 0.25 0.068 0.179 0.25 0.022 3 2 0.044 0.044 

89 11 0.051 0.25 0.068 0.179 0.25 0.022 3 2 0.066 0.066 

90 11 0.048 0.98 0.068 0.179 0.25 0.022 3 2 0.110 0.11 

91 11 0.047 0.98 0.034 0.239 0.31 0.016 2 2 0.020 0.02 

92 11 0.034 0.98 0.033 0.246 0.31 0.016 2 2 0.048 0.048 

93 11 0.043 0.98 0.033 0.246 0.31 0.016 2 2 0.024 0.024 

94 11 0.046 0.98 0.033 0.254 0.31 0.016 2 2 0.024 0.024 

95 11 0.032 0.98 0.033 0.246 0.31 0.016 2 2 0.080 0.08 

96 11 0.029 0.98 0.033 0.246 0.31 0.016 2 2 0.096 0.096 

97 11 0.034 0.98 0.035 0.232 0.31 0.016 2 2 0.020 0.02 

98 11 0.038 0.98 0.043 0.283 0.32 0.016 2 2 0.048 0.048 

99 11 0.023 0.98 0.044 0.277 0.33 0.016 2 2 0.096 0.096 

100 11 0.044 0.98 0.048 0.254 0.33 0.016 2 2 0.024 0.024 

101 11 0.049 0.98 0.049 0.248 0.33 0.016 2 2 0.020 0.02 

102 11 0.040 0.98 0.034 0.239 0.31 0.022 2 2 0.028 0.0275 

103 11 0.057 0.98 0.038 0.213 0.31 0.022 2 2 0.028 0.0275 

104 11 0.066 0.98 0.040 0.257 0.32 0.022 2 2 0.028 0.0275 

105 11 0.062 0.98 0.050 0.243 0.33 0.022 2 2 0.028 0.0275 

106 11 0.056 0.25 0.068 0.179 0.25 0.022 2 2 0.028 0.0275 

107 11 0.049 0.25 0.068 0.179 0.25 0.022 2 2 0.044 0.044 

108 11 0.048 0.25 0.068 0.179 0.25 0.022 2 2 0.066 0.066 
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  Reference dse (m) d50 (mm) y (m) U (m/s) Uc (m/s) D (m) m n Sm (m) Sn (m) 

109 11 0.046 0.25 0.068 0.179 0.25 0.022 2 2 0.110 0.11 

110 11 0.058 0.98 0.033 0.246 0.31 0.016 2 3 0.020 0.02 

111 11 0.052 0.98 0.033 0.246 0.31 0.016 2 3 0.024 0.024 

112 11 0.034 0.98 0.033 0.246 0.31 0.016 2 3 0.048 0.048 

113 11 0.031 0.98 0.033 0.246 0.31 0.016 2 3 0.080 0.08 

114 11 0.055 0.25 0.068 0.179 0.25 0.022 2 3 0.044 0.044 

115 11 0.053 0.25 0.068 0.179 0.25 0.022 2 3 0.066 0.066 

116 11 0.040 0.98 0.047 0.259 0.33 0.016 1 2  0 0.024 

117 11 0.037 0.98 0.047 0.259 0.33 0.016 1 2  0 0.032 

118 11 0.035 0.98 0.047 0.259 0.33 0.016 1 2 0  0.048 

119 11 0.032 0.98 0.047 0.259 0.33 0.016 1 2  0 0.08 

120 11 0.031 0.98 0.047 0.259 0.33 0.016 1 2 0  0.112 

121 11 0.062 0.25 0.068 0.179 0.25 0.022 1 2 0  0.028 

122 11 0.051 0.25 0.068 0.179 0.25 0.022 1 2  0 0.044 

123 11 0.048 0.25 0.068 0.179 0.25 0.022 1 2  0 0.066 

124 11 0.045 0.25 0.068 0.179 0.25 0.022 1 2 0  0.11 

125 11 0.032 0.98 0.047 0.259 0.33 0.016 2 1 0.024  0 

126 11 0.031 0.98 0.047 0.259 0.33 0.016 2 1 0.048 0  

127 11 0.032 0.98 0.047 0.259 0.33 0.016 2 1 0.080 0  

128 11 0.032 0.98 0.047 0.259 0.33 0.016 2 1 0.112 0  

129 11 0.030 0.98 0.047 0.259 0.33 0.016 2 1 0.032 0  

130 11 0.030 0.98 0.047 0.259 0.33 0.016 2 1 0.048 0  

131 11 0.041 0.98 0.034 0.239 0.31 0.022 2 1 0.066  0 

132 11 0.040 0.98 0.034 0.239 0.31 0.022 2 1 0.110 0  

133 11 0.042 0.98 0.034 0.239 0.31 0.022 2 1 0.044  0 

134 11 0.041 0.25 0.068 0.179 0.25 0.022 2 1 0.028 0  

135 11 0.047 0.25 0.068 0.179 0.25 0.022 2 1 0.044  0 

136 11 0.048 0.25 0.068 0.179 0.25 0.022 2 1 0.066 0  

137 11 0.045 0.25 0.068 0.179 0.25 0.022 2 1 0.110 0  

138 11 0.048 0.25 0.068 0.179 0.25 0.022 3 1 0.066 0  

139 11 0.048 0.25 0.068 0.179 0.25 0.022 4 1 0.066 0  

140 12 0.153 0.86 0.200 0.310 0.32 0.05 4 1 0.050 0  

141 12 0.160 0.86 0.200 0.310 0.32 0.05 4 1 0.100 0  

142 12 0.152 0.86 0.200 0.310 0.32 0.05 4 1 0.150 0  

143 12 0.149 0.86 0.200 0.310 0.32 0.05 4 1 0.225 0  

144 12 0.136 0.86 0.200 0.310 0.32 0.05 4 1 0.300 0  
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  Reference dse (m) d50 (mm) y (m) U (m/s) Uc (m/s) D (m) m n Sm (m) Sn (m) 

145 12 0.261 0.86 0.200 0.310 0.32 0.05 4 2 0.050 0.05 

146 12 0.185 0.86 0.200 0.310 0.32 0.05 4 2 0.100 0.1 

147 12 0.183 0.86 0.200 0.310 0.32 0.05 4 2 0.150 0.15 

148 12 0.146 0.86 0.200 0.310 0.32 0.05 4 2 0.225 0.225 

149 12 0.156 0.86 0.200 0.310 0.32 0.05 4 2 0.300 0.3 

150 12 0.327 0.86 0.200 0.310 0.32 0.05 4 3 0.050 0.05 

151 12 0.211 0.86 0.200 0.310 0.32 0.05 4 3 0.100 0.1 

152 12 0.208 0.86 0.200 0.310 0.32 0.05 4 3 0.150 0.15 

153 12 0.218 0.86 0.200 0.310 0.32 0.05 4 3 0.225 0.225 

154 12 0.139 0.86 0.200 0.310 0.32 0.05 4 3 0.300 0.3 

155 12 0.354 0.86 0.200 0.310 0.32 0.05 1 4 0 0.05 

156 12 0.190 0.86 0.200 0.310 0.32 0.05 1 4 0 0.1 

157 12 0.175 0.86 0.200 0.310 0.32 0.05 1 4 0 0.15 

158 12 0.159 0.86 0.200 0.310 0.32 0.05 1 4 0 0.225 

159 12 0.127 0.86 0.200 0.310 0.32 0.05 1 4 0 0.3 

160 12 0.369 0.86 0.200 0.310 0.32 0.05 2 4 0.050 0.05 

161 12 0.212 0.86 0.200 0.310 0.32 0.05 2 4 0.100 0.1 

162 12 0.189 0.86 0.200 0.310 0.32 0.05 2 4 0.150 0.15 

163 12 0.178 0.86 0.200 0.310 0.32 0.05 2 4 0.225 0.225 

164 12 0.141 0.86 0.200 0.310 0.32 0.05 2 4 0.300 0.3 

165 12 0.328 0.86 0.200 0.310 0.32 0.05 3 4 0.050 0.05 

166 12 0.255 0.86 0.200 0.310 0.32 0.05 3 4 0.100 0.1 

167 12 0.187 0.86 0.200 0.310 0.32 0.05 3 4 0.150 0.15 

168 12 0.151 0.86 0.200 0.310 0.32 0.05 3 4 0.225 0.225 

169 12 0.145 0.86 0.200 0.310 0.32 0.05 3 4 0.300 0.3 

170 13 0.183 0.8 0.240 0.365 0.38 0.06 2 2 0.060 0.06 

171 13 0.148 0.8 0.240 0.369 0.38 0.06 2 2 0.090 0.09 

172 13 0.129 0.8 0.240 0.369 0.38 0.06 2 2 0.120 0.12 

173 13 0.108 0.8 0.240 0.365 0.38 0.06 2 2 0.150 0.15 

174 13 0.104 0.8 0.240 0.365 0.38 0.06 2 2 0.180 0.18 

175 13 0.098 0.8 0.240 0.365 0.38 0.06 2 2 0.240 0.24 

176 13 0.098 0.8 0.240 0.361 0.38 0.06 2 2 0.290 0.29 

177 13 0.099 0.8 0.240 0.365 0.38 0.06 2 2 0.330 0.33 

178 13 0.238 0.8 0.240 0.361 0.38 0.06 5 3 0.060 0.06 

179 13 0.180 0.8 0.240 0.361 0.38 0.06 5 3 0.075 0.075 

180 13 0.171 0.8 0.240 0.361 0.38 0.06 5 3 0.090 0.09 

 



29 
 

  Reference dse (m) d50 (mm) y (m) U (m/s) Uc (m/s) D (m) m n Sm (m) Sn (m) 

181 13 0.150 0.8 0.240 0.361 0.38 0.06 5 3 0.120 0.12 

182 13 0.130 0.8 0.240 0.365 0.38 0.06 5 3 0.150 0.15 

183 13 0.115 0.8 0.240 0.361 0.38 0.06 5 3 0.180 0.18 

184 13 0.110 0.8 0.240 0.365 0.38 0.06 5 3 0.210 0.21 

185 13 0.107 0.8 0.240 0.361 0.38 0.06 5 3 0.250 0.25 

186 13 0.105 0.8 0.240 0.365 0.38 0.06 5 3 0.300 0.3 

187 13 0.104 0.8 0.240 0.361 0.38 0.06 5 3 0.330 0.33 

188 13 0.150 0.8 0.240 0.361 0.38 0.042 4 2 0.042 0.042 

189 13 0.128 0.8 0.240 0.361 0.38 0.042 4 2 0.060 0.06 

190 13 0.108 0.8 0.240 0.361 0.38 0.042 4 2 0.084 0.084 

191 13 0.090 0.8 0.240 0.361 0.38 0.042 4 2 0.120 0.12 

192 13 0.085 0.8 0.240 0.361 0.38 0.042 4 2 0.150 0.15 

193 13 0.081 0.8 0.240 0.361 0.38 0.042 4 2 0.189 0.189 

194 13 0.077 0.8 0.240 0.361 0.38 0.042 4 2 0.230 0.23 

195 13 0.254 0.8 0.240 0.365 0.38 0.06 4 3 0.060 0.06 

196 13 0.223 0.8 0.240 0.365 0.38 0.06 4 3 0.080 0.08 

197 13 0.183 0.8 0.240 0.365 0.38 0.06 4 3 0.100 0.1 

198 13 0.169 0.8 0.240 0.365 0.38 0.06 4 3 0.120 0.12 

199 13 0.147 0.8 0.240 0.361 0.38 0.06 4 3 0.150 0.15 

200 13 0.134 0.8 0.240 0.365 0.38 0.06 4 3 0.180 0.18 

201 13 0.130 0.8 0.240 0.361 0.38 0.06 4 3 0.210 0.21 

202 13 0.120 0.8 0.240 0.361 0.38 0.06 4 3 0.250 0.25 

203 13 0.119 0.8 0.240 0.361 0.38 0.06 4 3 0.300 0.3 

204 13 0.200 0.8 0.240 0.365 0.38 0.042 5 3 0.042 0.042 

205 13 0.154 0.8 0.240 0.365 0.38 0.042 5 3 0.062 0.062 

206 13 0.123 0.8 0.240 0.365 0.38 0.042 5 3 0.102 0.102 

207 13 0.103 0.8 0.240 0.361 0.38 0.042 5 3 0.150 0.15 

208 13 0.098 0.8 0.240 0.361 0.38 0.042 5 3 0.200 0.2 

209 13 0.097 0.8 0.240 0.361 0.38 0.042 5 3 0.240 0.24 

210 13 0.199 0.8 0.240 0.365 0.38 0.06 2 2 0.060 0.06 

211 13 0.121 0.8 0.240 0.365 0.38 0.06 2 2 0.060 0.12 

212 13 0.134 0.8 0.240 0.365 0.38 0.06 2 2 0.090 0.12 

213 13 0.117 0.8 0.240 0.365 0.38 0.06 2 2 0.140 0.12 

214 13 0.125 0.8 0.240 0.361 0.38 0.06 2 2 0.180 0.12 

215 13 0.139 0.8 0.240 0.365 0.38 0.06 2 2 0.210 0.12 

216 13 0.129 0.8 0.240 0.365 0.38 0.06 2 2 0.240 0.12 
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  Reference dse (m) d50 (mm) y (m) U (m/s) Uc (m/s) D (m) m n Sm (m) Sn (m) 

217 13 0.123 0.8 0.240 0.376 0.38 0.06 2 2 0.270 0.12 

218 13 0.210 0.8 0.240 0.365 0.38 0.06 5 3 0.060 0.06 

219 13 0.148 0.8 0.240 0.365 0.38 0.06 5 3 0.060 0.12 

220 13 0.163 0.8 0.240 0.361 0.38 0.06 5 3 0.090 0.12 

221 13 0.165 0.8 0.240 0.361 0.38 0.06 5 3 0.110 0.12 

222 13 0.168 0.8 0.240 0.361 0.38 0.06 5 3 0.140 0.12 

223 13 0.172 0.8 0.240 0.361 0.38 0.06 5 3 0.180 0.12 

224 13 0.176 0.8 0.240 0.365 0.38 0.06 5 3 0.210 0.12 

225 13 0.153 0.8 0.240 0.365 0.38 0.06 5 3 0.240 0.12 

226 13 0.150 0.8 0.240 0.361 0.38 0.06 5 3 0.270 0.12 

227 13 0.200 0.8 0.240 0.365 0.38 0.06 2 2 0.120 0.06 

228 13 0.148 0.8 0.240 0.361 0.38 0.06 2 2 0.120 0.09 

229 13 0.132 0.8 0.240 0.365 0.38 0.06 2 2 0.120 0.12 

230 13 0.120 0.8 0.240 0.361 0.38 0.06 2 2 0.120 0.16 

231 13 0.110 0.8 0.240 0.361 0.38 0.06 2 2 0.120 0.19 

232 13 0.106 0.8 0.240 0.361 0.38 0.06 2 2 0.120 0.21 

233 13 0.110 0.8 0.240 0.365 0.38 0.06 2 2 0.120 0.24 

234 13 0.107 0.8 0.240 0.361 0.38 0.06 2 2 0.120 0.27 

235 13 0.270 0.8 0.240 0.365 0.38 0.06 5 3 0.120 0.06 

236 13 0.200 0.8 0.240 0.361 0.38 0.06 5 3 0.120 0.09 

237 13 0.172 0.8 0.240 0.365 0.38 0.06 5 3 0.120 0.12 

238 13 0.160 0.8 0.240 0.372 0.38 0.06 5 3 0.120 0.15 

239 13 0.137 0.8 0.240 0.361 0.38 0.06 5 3 0.120 0.21 

240 13 0.144 0.8 0.240 0.365 0.38 0.06 5 3 0.120 0.21 

241 13 0.137 0.8 0.240 0.369 0.38 0.06 5 3 0.120 0.27 

242 14 0.062 0.75 0.140 0.285 0.40 0.033 2 1 0.033 0  

243 14 0.064 0.75 0.140 0.285 0.40 0.033 2 1 0.052 0  

244 14 0.070 0.75 0.140 0.285 0.40 0.033 2 1 0.068 0  

245 14 0.072 0.75 0.140 0.285 0.40 0.033 2 1 0.101 0  

246 14 0.068 0.75 0.140 0.285 0.40 0.033 2 1 0.135 0  

247 14 0.068 0.75 0.140 0.285 0.40 0.033 2 1 0.160 0  

248 14 0.067 0.75 0.140 0.285 0.40 0.033 2 1 0.200 0  

249 14 0.065 0.75 0.140 0.285 0.40 0.033 2 1 0.266 0  

250 14 0.064 0.75 0.140 0.285 0.40 0.033 2 1 0.364 0  

251 14 0.062 0.75 0.140 0.285 0.40 0.033 2 1 0.530 0  

252 14 0.062 0.75 0.140 0.285 0.40 0.033 2 1 0.695  0 
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  Reference dse (m) d50 (mm) y (m) U (m/s) Uc (m/s) D (m) m n Sm (m) Sn (m) 

253 14 0.120 0.75 0.140 0.285 0.40 0.033 1 2 0  0.035 

254 14 0.073 0.75 0.140 0.285 0.40 0.033 1 2 0  0.069 

255 14 0.066 0.75 0.140 0.285 0.40 0.033 1 2 0  0.136 

256 14 0.068 0.75 0.140 0.285 0.40 0.033 1 2 0  0.164 

257 14 0.068 0.75 0.140 0.285 0.40 0.033 1 2 0  0.202 

258 14 0.064 0.75 0.140 0.285 0.40 0.033 1 2 0  0.229 

259 14 0.064 0.75 0.140 0.285 0.40 0.033 1 2 0  0.267 

260 14 0.064 0.75 0.140 0.285 0.40 0.033 1 2 0  0.363 

261 15 0.068 0.17 0.213 0.180 0.28 0.0318 3 8 0.095 0.0954 

262 15 0.081 0.17 0.215 0.180 0.28 0.0318 8 3 0.095 0.0954 

263 15 0.095 0.17 0.211 0.170 0.27 0.0318 3 8 0.095 0.0954 

264 16 0.132 0.172 0.381 0.240 0.28 0.0318 8 3 0.095 0.0953 

265 16 0.241 0.22 1.201 0.330 0.32 0.0318 3 8 0.095 0.0953 

266 16 0.085 0.172 0.381 0.230 0.28 0.0318 4 2 0.095 0.0953 

267 16 0.089 0.172 0.381 0.230 0.26 0.0318 1 3 0.095 0.0953 

268 16 0.122 0.172 0.381 0.280 0.27 0.0318 3 3 0.095 0.0953 

269 16 0.114 0.172 0.378 0.230 0.27 0.0318 5 3 0.095 0.0953 

 

Table 3. Range of different variables used in this study. 

Variables Range 

Flow depth (𝑦𝑦) 0.033-1.201 (m) 

Flow mean velocity (𝑈𝑈) 0.170-0.433 (m/s) 

Critical velocity (𝑈𝑈𝑐𝑐) 0.250-0.530 (m/s) 

Grains mean diameter (𝑑𝑑50) 0.17-2.4 (mm) 

Pile diameter (𝐷𝐷) 0.016-0.06 (m) 

Center to center spacing of the piles inline to flow (Sm) 

Center to center spacing of the piles inline to flow (Sn) 

0-0.695 (m) 

0-0.363 (m) 

Number of piles inline with flow (𝑚𝑚) 1-8 

Number of piles normal to the flow (𝑛𝑛) 1-8   

Equilibrium scour depth (𝑑𝑑𝑠𝑠𝑠𝑠) 0.0213-0.369 (m)           
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   The whole dataset of 269 points was divided into training and testing datasets.  80% of the 

data was used to train the model, and the remaining 20% were utilized to test it.  Initially, the 

training data set was fed into both the MARS and GEP models to generate an equation between 

the input variables and the output variable (i.e. scour depth).  Once this equation is generated, it is 

used to predict the scour depth from the testing input variables. Performance of the MARS and 

GEP models is assessed via three statistical metrics, namely mean absolute error (MAE), root mean 

square error (RMSE), and correlation coefficient (R2). These metrics are given by, 

MAE =  1
𝑁𝑁
∑ |𝑂𝑂𝑖𝑖 − 𝑃𝑃𝑖𝑖|𝑁𝑁
𝑖𝑖=1                                                                                                                                               (4) 

RMSE =  �∑ (𝑂𝑂𝑖𝑖−𝑃𝑃𝑖𝑖)2𝑁𝑁
𝑖𝑖=1

𝑁𝑁
                                                                                                                                                 (5) 

R2 =  ∑ (𝑂𝑂𝑖𝑖−𝑂𝑂�)(𝑃𝑃𝑖𝑖−𝑃𝑃�)𝑁𝑁
𝑖𝑖=1

�∑ (𝑂𝑂𝑖𝑖−𝑂𝑂�)2𝑁𝑁
𝑖𝑖=1 ∑ (𝑃𝑃𝑖𝑖−𝑃𝑃�)2𝑁𝑁

𝑖𝑖=1

                                                                                                                                    (6) 

where N is the number of observations, 𝑂𝑂𝑖𝑖 and 𝑃𝑃𝑖𝑖 are respectively the observed and predicted 

values, and the bar denotes the average of the variable. 
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3.  Previous Studies: Commonly Used Empirical Relations 
 

Richardson and Davis (2001) proposed the following empirical formula for the estimation 

of scour depth around single piles: 

𝑆𝑆
𝐷𝐷∗

= 2.0𝐾𝐾1𝐾𝐾2𝐾𝐾3𝐾𝐾4 �
ℎ
𝐷𝐷
�
0.35

𝐹𝐹𝐹𝐹0.43               (7) 

where 𝐾𝐾1 is the correction factor for pier nose shape (Figure 6 and Table 4), 𝐾𝐾2 is the correction 

factor for angle of attack (Table 5), 𝐾𝐾3is the coefficient factor based on the channel bed condition 

(Table 6), and 𝐾𝐾4 is the correction factor for armoring by bed material size, and 𝐹𝐹𝐹𝐹 is the Froude 

number.  Streamlining the upstream end of a pier reduces the strength of the horseshoe vortex.  

Streamlining the downstream end of piers reduces the strength of the wake vortices.  A square-

nose pier has a scour depth 20% greater than a sharp-nose pier and 10% larger than a cylindrical 

or round-nose pier. 

 

Figure 6. Different pier nose shapes (Richardson and Davis, 2001). 
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In this study, L, or groups of cylinders, was used for the shape of the pier nose (𝐾𝐾1 = 1).  

The angle of attack (θ) was set to 0o because the flow in the flume was in line with the piers. 𝐾𝐾3 

was set to 1.1 for a laboratory set condition of clear – water scour.  

 

Table 4. 𝐾𝐾1correction factor for different pier nose shapes (Richardson and Davis, 2001). 
Index Shape of pier nose 𝐾𝐾1 

                      (a) Square nose 1.1 

                      (b) Round nose 1.0 

                      (c) Circular nose 1.0 

                      (d) Group of cylinders 1.0 

                      (e) Sharp nose 0.9 
 

              Another relevant variable in the prediction of scour depth (not examined in this study) is 

the angle of attack of the flow to the pier. Angle of attack or the angle at which the flow approaches 

the pile is reduced when piles are at angles downstream and increased when embankments are at 

angles upstream.  According to Ahmad (1953), the scour depth at a pile inclined 45o downstream, 

to the flow of water is reduced by 20%. While, the scour at a pile inclined 45o upstream, of the 

flow of water is increased by nearly 10%. Shape of the nose of the pile changes the scour depth by 

20% (Richardson and Davis, 2001).  

Table 5. 𝐾𝐾2 correction factor for angle of attack (Richardson and Davis, 2001). 

Angle 
𝐾𝐾2 

L/a = 4 L/a = 8 L/a = 12 
0 1.00 1.00 1.00 
15 1.50 2.00 2.50 
30 2.00 2.75 3.50 
45 2.30 3.30 4.30 
90 2.50 3.90 5.00 
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Table 6. 𝐾𝐾3 coefficient factor based on the channel bed condition (Richardson and Davis, 
2001) 
Bed condition Dune Height (m) 𝐾𝐾3 
Clear - water scour N/A 1.1 
Plane bed and antidune flow N/A 1.1 
Small dunes  0.6 ≤ H < 3 1.1 
Medium dunes 3 < H ≤ 9 1.2 to 1.1 
Large dunes H ≥ 9 1.3 

 

The correction factor 𝐾𝐾4 decreases the scour depth due to armoring of the scour hole for 

bed materials that have a 𝑑𝑑50 equal to or larger than 2.0 mm and 𝑑𝑑95 equal to or larger than 20 

mm. Richardson and Davis (2001) showed that when the flow velocity is less that the critical flow 

velocity for d90 and there is a gradation in sizes in the bed material, the d90 will limit the scour 

depth.  In our study, 𝑑𝑑50 was less than 2.0 mm, and therefore 𝐾𝐾4 = 1. 

Ataie-Ashtiani and Beheshti (2006) added a correction factor ( 𝐾𝐾𝐺𝐺𝑚𝑚𝑛𝑛) to the Richardson 

and Davis (2001) and developed the following expression for the estimation of scour depth, 

 𝑑𝑑𝑠𝑠𝑠𝑠
𝐷𝐷∗

= 2.0𝐾𝐾1𝐾𝐾2𝐾𝐾3𝐾𝐾4 �
ℎ
𝐷𝐷
�
0.35

𝐹𝐹𝐹𝐹0.43  𝐾𝐾𝐺𝐺𝑚𝑚𝑛𝑛                (8) 

𝐾𝐾𝐺𝐺𝑚𝑚𝑛𝑛 =  1.11 � 𝑚𝑚0.0396

𝑛𝑛0.5225×(𝐺𝐺 𝐷𝐷⁄ )0.1153�                 (9)  

where G is the effective pile spacing.  The effective width of the pile group (𝐷𝐷∗ ) is calculated by: 

𝐷𝐷∗ =  𝐷𝐷𝑝𝑝𝑝𝑝𝑝𝑝𝑗𝑗𝐾𝐾𝐺𝐺𝐾𝐾𝑚𝑚               (10) 

where 𝐷𝐷𝑝𝑝𝑝𝑝𝑝𝑝𝑗𝑗   is the sum of the non-overlapping projected widths of the piles, 𝐾𝐾𝐺𝐺 is the coefficient 

for pile spacing and 𝐾𝐾𝑚𝑚 is the coefficient for the number of aligned rows (Richardson and Davis, 

2001).     
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 Ataie-Ashtiani and Beheshti (2006) showed that their equation can estimate the scour depth 

more accurately than that of the Richardson and Davis (2001).  In a similar effort, Howard and 

Etemad-Shahidi (2014) proposed the following expression for predicting scour depth,  

 𝑑𝑑𝑠𝑠𝑠𝑠
𝐷𝐷

= 2.74(𝐷𝐷2 (𝑆𝑆𝑚𝑚2 + 𝑆𝑆𝑛𝑛2)⁄ )0.21(𝑦𝑦 𝐷𝐷⁄ )0.26𝐹𝐹𝐹𝐹0.37𝑛𝑛0.07         (11)  

The Colorado State University (CSU) introduced a simple equation for estimation of scour 

depth, which is given by, 

𝑑𝑑𝑠𝑠𝑠𝑠 = 2.0𝑘𝑘1𝑘𝑘2𝑎𝑎0.65𝑦𝑦0.35𝐹𝐹𝐹𝐹0.43                   (12) 

where a is the pier width.  In this equation, the scour depth depends on the Froude number, pier 

width, pier shape and angle of attack. This equation was the foundation of the research conducted 

by (Richardson and Davis, 2001). 
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4.  Methodology 

4.1.  Gene Expression Programming (GEP) 
 

Gene Expression Programming (GEP) is an extension of genetic programming (GP) and the 

genetic algorithm (GA).  GA is a class of problem-solving techniques based on Darwinian theory 

of evolution by “natural selection”. The GA uses common biological principals of genetics.  In the 

GA, the genes are connected together in long strings, called chromosomes.  These chromosomes 

can either be subsets of a function, or the function itself.  Each gene, or variable, represents a 

specific trait of the organism, or predicted function.  

An example of the GA is determined by the following objective function: 

𝐹𝐹 = ∑ �𝑑𝑑𝑑𝑑𝑑𝑑,𝑚𝑚𝑑𝑑𝑎𝑎𝑑𝑑𝑚𝑚𝐹𝐹𝑑𝑑𝑑𝑑 − 𝑑𝑑𝑑𝑑𝑑𝑑,𝑑𝑑𝑑𝑑𝑒𝑒𝑒𝑒𝑚𝑚𝑎𝑎𝑒𝑒𝑑𝑑𝑑𝑑�
2𝑁𝑁

𝑖𝑖=1                         (13)  

where 𝑑𝑑𝑠𝑠𝑠𝑠,𝑚𝑚𝑠𝑠𝑚𝑚𝑠𝑠𝑚𝑚𝑝𝑝𝑠𝑠𝑑𝑑 and 𝑑𝑑𝑠𝑠𝑠𝑠,𝑠𝑠𝑠𝑠𝑒𝑒𝑖𝑖𝑚𝑚𝑚𝑚𝑒𝑒𝑠𝑠𝑑𝑑 are respectively the measured and estimated scour depth.  

The goal of the GA is to minimize the function F.  For the given example, Sestimated is determined 

by the equation: 

𝑑𝑑𝑠𝑠𝑠𝑠,𝑠𝑠𝑠𝑠𝑒𝑒𝑖𝑖𝑚𝑚𝑚𝑚𝑒𝑒𝑠𝑠𝑑𝑑 =  𝑎𝑎𝐷𝐷𝛽𝛽 + 𝑏𝑏𝑈𝑈𝛼𝛼 + 𝑐𝑐𝑈𝑈𝑐𝑐𝛾𝛾 + 𝑑𝑑𝑦𝑦𝛿𝛿 + 𝑑𝑑𝑚𝑚𝜇𝜇                      (14) 

where D, U, Uc, y and m, as discussed, could represent the variables affecting scour depth, and a, 

b, c, d, e, β, α, γ, δ and μ are the empirical coefficients. 

For this example, the GA creates many initial guesses or genes (by a random number 

generation) for the empirical coefficients.  This set of numbers is defined as the GA’s first 

population, which includes the first pool of genes.  These genes will then be converted to binary 

strings of numbers to form the initial population of chromosomes.   As an example, the GA will 

perform the following steps: 
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1) Test each chromosome to see its performance and assessing its fitness score.  The fitness 

score is a measure of how good the chromosome can estimate 𝑑𝑑𝑠𝑠𝑠𝑠,𝑠𝑠𝑠𝑠𝑒𝑒𝑖𝑖𝑚𝑚𝑚𝑚𝑒𝑒𝑠𝑠𝑑𝑑. 

2) Convert each chromosome to a binary code, which is a collection of bits.  A bit has a single 

binary value, either 0 or 1.  

3) Select two chromosomes from the current population.  The chance of being selected is 

proportional to the chromosome’s fitness.   

4) Depending on the crossover rate (the chance that two chromosomes swap their bits), 

crossover may occur.  If the crossover rate is sufficient, the crossover of the bits from the 

chosen chromosomes will occur at a randomly selected point.  

5) This process will step through each of the chosen chromosomes bits, step by step or bit by 

bit, and flip the bits, depending on the mutation rate (the chance that a bit within a 

chromosome will be flipped, i.e., 0 becomes 1, and 1 becomes 0).  The mutation rate 

typically ranges from 0.005 to 0.05 (Satar and Gharabaghi, 2015). 

6) Repeat steps 1-5 until a new population of chromosomes has been created that best 

minimizes the function F.   

  As explained above, GA searches within a population of solutions (chromosomes) for the 

“fittest” solution.  In each iteration, GA eliminates poor solutions via the above steps. This 

improves the quality of chromosomes in the gene pool.   

Gene-Expression Programming (GEP) was invented by Ferreira in1999 (Ferrerira, 2001). To 

express the genetic information encoded in the gene, Ferreira (2001) used expression tree (ET) 

representations.  The gene consists of a head and a tail.  The tail of the gene is a sequence of 

terminals that are extremely important because they allow the modification of the next generations 

of genes using any genetic operator without restrictions. GEP randomly selects the sequence.  For 
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each problem, the length of the head (h) is chosen, whereas the length of the tail (tg) is a function 

of the length of the head (h) and the number of data points (N): 

𝑒𝑒𝑔𝑔 = ℎ(𝑁𝑁 − 1) + 1               (15) 

 For each problem, the optimum parameter setting for the GEP model is determined by trial 

and error. Typical values of these parameters are shown in Table 4.  Based on these parameters, 

the GEP creates a random distribution of functions and terminals in the chromosome genes, as GA 

creates a random set of genes within a population of chromosomes. The first created individual 

(i.e., chromosome or ET) is random and is called “the parent.” The parents are made to yield 

“offspring” through the implementation of genetic operators such as cross over and mutation. Each 

individual contributes its own genetic information to the creation of new offspring adapted to the 

environment with a greater fitness and a higher chance of survival (Satar and Gharabaghi, 2015).   

As shown in Figure 7, GEP computer programs are encoded in linear chromosomes, which 

are then expressed or translated into ETs.  These computer programs often include mathematical 

expressions, decision trees, polynomial constructs and logical expressions (Azamathulla, 2012). 

ETs are sophisticated computer programs that have usually evolved to solve a particular problem, 

and are selected according to their fitness in solving the problem (Azamathulla, 2012).   

Table 7. Typical parameter settings for GEP models (Satar and Gharabaghi, 2015). 
Parameter      Value 
Number of Generations 20,000 
Number of Chromosomes 30, 40, 50 
Number of Genes 1, 2, 3, 4 
Head Size 3, 4, 6 
Mutation Rate 0.005 - .05 
Crossover Rate 0.1 
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GEP is a full-fledged genotype/phenotype system with the genotype totally separated from 

the phenotype. While in GP, genotype and phenotype are mixed together in a simple replicator 

system. As a result, the fully-fledged genotype/phenotype system of GEP surpasses the old GP 

system by a factor of 100 – 60,000 (Ferreira 2001a, b).   

Reading of ET is done from left to right and down to up. For example, sub-ET 1, sub-ET 

2, and sub-ET 3 in Figure 7 are expressed by equations 16, 17 and 18 , respectively: 

 

 

 

Figure 7. Expression Tree (ET) samples. 

 

𝑦𝑦 = √𝑐𝑐1 × �𝑑𝑑3               (16) 

𝑦𝑦 =  �𝑐𝑐0 − �(𝑑𝑑2 − 𝑑𝑑1) −  𝑐𝑐0�� + 𝑐𝑐0 �
𝑑𝑑1
𝑐𝑐1
�            (17) 

𝑦𝑦 = 𝑑𝑑2 + (

𝑐𝑐0 𝑐𝑐1�
𝑑𝑑3+𝑑𝑑0
�𝑑𝑑2

𝑑𝑑2
�

)                                   (18) 
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For this study, a GEP-based equation was developed to estimate the scour depth around piles 

groups. Different steps used for the estimation of scour depth are summarized herein: 

1. The first step includes the selection of a fitness function. In this study, the RRSE fitness 

function of an individual program, i, is used (Ferreira, 2001): 

𝑅𝑅𝑅𝑅𝑆𝑆𝑅𝑅𝑖𝑖 = �
∑ (𝑃𝑃𝑖𝑖𝑗𝑗 − 𝑇𝑇𝑗𝑗)2𝑁𝑁
𝑗𝑗=1

∑ (𝑇𝑇𝑖𝑖 − 𝑇𝑇�)2𝑁𝑁
𝑗𝑗=1

                                                                                                                    (19) 

where  𝑃𝑃𝑖𝑖𝑗𝑗 is the predicted value by the individual chromosome i for fitness case j, 𝑇𝑇𝑖𝑖 is the target 

value for fitness case j and 𝑇𝑇�  is the average of Tj. Thereafter, the fitness of the individual 

chromosome i (Tj) is given by 

  𝑓𝑓𝑖𝑖 = 1000 × 1
1+𝑅𝑅𝑅𝑅𝑆𝑆𝑅𝑅𝑖𝑖

                                                                                                                               (20) 

where 𝑓𝑓𝑖𝑖  ranges from 0 to 1000 (1000 corresponds to a chromosome with ideal fitness) (Ferreira, 

2006). 

2. In the second step, a set of terminals (T) and functions (F) must be selected to generate 

each gene of chromosome. In this study, the terminal set consists of independent variables, 

namely flow depth and velocity, critical flow velocity, grains mean diameter, and pile 

diameter. Also, arithmetic and trigonometric functions such as +, −, ×, ∕, √ , Sin, Cos, 

power, ln, and log are used.  

3. In the third step, the chromosomal architecture (i.e., the length of the head and the number 

of genes) is chosen. The head of chromosome contains symbols that represent both 

terminals (elements from the terminal set) and functions (elements from the function set). 

The number of genes per chromosome is important because it determines the number of 



42 
 

sub-expression trees (sub-ETs). Ferreira (2001b) showed that the success rate of GEP 

enhances significantly as the number of gens increases from 1 to 3. Hence, is this study, 3 

genes are used per chromosome. Also, different head lengths were used for GEP. The 

results show that the performance of GEP model does not significantly improve in the 

training and testing phases when number of genes and head length become larger than 3 

and 8, respectively. Thus, the head length (h) and number of genes in each chromosome 

are set to 8 and 3 in the GEP model. Number of chromosomes is varied from 30 to 50 

(Ferreira, 2001b). It is found that the best individuals have 30 chromosomes.      

4. In the fourth step, the genetic operators and their rates are selected. This study takes 

advantage of a combination of genetic operators including mutation and inversion, the three 

types of transposition (IS, RIS, and gene-transposition), and the three kinds of 

recombination (one-point, two-point, and gene-recombination). 

5. The last step contains choosing a function that links the sub-ETs. Different types of linking 

functions such as addition (+), subtraction (−), division (∕), and multiplication (×) can be 

used. In this study, the sub-ETs are linked by the addition operators (+) because it gave 

better results compared to the other operators (i. e., −, ∕, ×) and has been used widely in 

other studies (Azamathulla and Jarrett, 2013; Emamgholizadeh et al., 2015).    

After selecting the fitness function, and the other required parameters as shown in steps 1 thru 5, 

the GEP model is run to estimate scour depth. Training of GEP is terminated after 100,000 

generations because variations in error are found to be negligible. In other words, after 100,000 

generations, the fitness function converges to a value in which no significant changes are observed 

in it, or the RRSE between two subsequent runs is less than 0.01.:  Dimensionless Data Set. 
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4.2. Multivariate Adaptive Regression Splines (MARS) 
 

MARS is a non-parametric model that was developed by Friedman (1991). MARS looks 

for patterns within the data and applies linear or cubic functions to simulate those patterns ( 

Figure 8). As shown in Figure 8, the patterns are captured by three linear functions in 

different segments.  The end points of these segments are called knots. A knot marks the end of 

one region (segment) of data, and the beginning of another. The resulting piecewise linear or cubic 

functions (known as basis functions, BFs) between the scour depth and its variables give a greater 

flexibility to the model.   

 

Figure 8. An example of linear splines in MARS. 

MARS finds the relationship between the input and output variables through generation of 

BFs by searching in a stepwise manner. MARS builds the model in two phases: forward selection 

and backward deletion. Forward selection starts with a model consisting of just the intercept term.  

Then, MARS iteratively adds reflected pairs of BFs and picks the BF that gives the largest 

reduction in error.  An adaptive regression algorithm is used for selecting the knot locations. 
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Through the second phase (backward deletion), the large model created in forward selection is 

trimmed.  The aim of the backward deletion procedure is to find a close to optimal model by 

removing extraneous variables. The backward pass trims the model by removing the basis 

functions with the lowest contribution to the model until it finds the best sub-model.  This process 

is done through generalized cross validation (𝐺𝐺𝐺𝐺𝐺𝐺) of the basis functions, where the BF with the 

least importance will be removed from the model.  This leaves the model with the lowest GCV 

and mean squared error (MSE) values. The GCV is a goodness of fit test that penalizes large 

numbers of BFs and serves to reduce the chance of over fitting (Zhang et al., 2013).  It is calculated 

by, 

𝐺𝐺𝐺𝐺𝐺𝐺 =  𝑀𝑀𝑆𝑆𝑅𝑅𝑡𝑡𝑡𝑡𝑡𝑡𝑖𝑖𝑛𝑛
�1−𝑠𝑠𝑛𝑛𝑒𝑒𝑛𝑛 �

2              (21) 

where 𝑀𝑀𝑆𝑆𝑅𝑅𝑒𝑒𝑝𝑝𝑚𝑚𝑖𝑖𝑛𝑛 is the mean square error of the evaluated model, n is the number of observations 

in the training data and enp is the effective number of parameters defined by: 

𝑑𝑑𝑛𝑛𝑒𝑒 =  𝑘𝑘 + 𝑐𝑐 ×  (𝑘𝑘−1)
2

               (22) 

where 𝑘𝑘 is the number of basis functions in the model that includes the intercept term, and 𝑐𝑐 is a 

predefined structure of training parameters for the algorithm.  (𝑘𝑘−1)
2

 is the number of hinge 

functions or knots.  Therefore the formula not only penalizes the number of basis functions but 

also the number of knots (Jakabson, 2015).  MARS is an adaptive procedure because the selection 

of BFs and the variable knot locations are data-based and specific to the issue at hand (Zhang et 

al., 2013).   
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 Once the optimal MARS model is determined, the procedure known as the Analysis of 

Variance (ANOVA) decompositions can be used to assess the contribution of input variables on 

the scour depth.  This is done by grouping together all BFs that involve that specific variable. 

Let y be the target output and a matrix of p input variables is given by X = (X1, …, Xp).  It 

is assumed that the output is generated by an unknown “true” model, f.   For a continuous response, 

the “true” model is given by: 

𝑦𝑦 = 𝑓𝑓�𝑋𝑋1 … ,𝑋𝑋𝑝𝑝� + 𝑑𝑑 = 𝑓𝑓(𝑿𝑿) + 𝑑𝑑                      (23) 

where e is the distribution of the error. 

The MARS approximation of the function f (X) is done by applying piecewise linear or 

cubic BFs.  In this study, the focus is on the piecewise linear BF, which is of the form         max(0, 

x – t) with a knot occurring at t. It can be expressed as:  

max(0, 𝑥𝑥 − 𝑒𝑒) =  �𝑥𝑥 − 𝑒𝑒, if 𝑥𝑥 ≥ 𝑒𝑒
0, 𝑜𝑜𝑒𝑒ℎ𝑑𝑑𝐹𝐹𝑤𝑤𝑒𝑒𝑑𝑑𝑑𝑑                         (24) 

 The MARS-based function is constructed as a linear combination of BFs and their 

interactions, and is expressed as: 

𝑓𝑓(𝑋𝑋) = 𝛽𝛽𝑝𝑝 + ∑ 𝛽𝛽𝑚𝑚𝐵𝐵𝑖𝑖(𝑥𝑥)𝑀𝑀
𝑚𝑚=1                          (25) 

The BFs are denoted by λm(X), and M is the number of BFs. Each BF is either a single 

function (called first order BF) or the product of two functions (named second order BF).  Higher 

order BFs may be used, depending on the data and physics of the problem.  However, only the 

first-order and second-order BFs were used in this study.  The coefficients β are estimated via the 

least-squares method during the two phases of the model, forward selection and backward deletion.    
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 An example of how MARS uses piece-wise linear BFs to fit an expression to data is shown 

in Fig. 8. The corresponding MARS-based equation is given by, 

𝑦𝑦 = 4.4668 + 1.1038 × 𝑩𝑩𝑩𝑩𝑩𝑩 − 3.997 × 𝑩𝑩𝑩𝑩𝑩𝑩 + 1.967 × 𝑩𝑩𝑩𝑩𝑩𝑩                            (26) 

where BF1 = max(0, x - 16), BF2 = max(0, 16 - x) and BF3 = max(0, 25 – x).  The three BFs 

delimit three intervals where different linear relationships are identified.   

4.3. ARESLab Tool box used for MARS  

In this study, the ARESLab toolbox (in MATLAB) is used to model the scour process with 

MARS (Jakabson, 2015). ARESLab is a multi-adaptive regression splines modeling algorithm. To 

use this toolbox, no specific assumption about the underlying functional relationship between the 

input variables and the output is required.   

The foundational function, Aresparams, creates the structure of ARESLab configuration 

for use with other ARESlab functions.  In Aresparams, the maximum number of BFs is initially 

set to 21 and the maximum interaction level of the input variables is set to 2.  The forward selection 

process will continue until it reaches the predefined number of BFs. Aresparams initially utilizes 

the default setting of building a piece-wise cubic type model (i.e., cubic BFs).   However, for 

simplicity, it can be set to a piece-wise linear type model (i.e., linear BFs).   ARESlab uses the 

function Aresbuild to construct the model.  Finally, MARS generates BFs and β coefficients. 

           Two combinations of data (dimensional and non-dimensional) were used as inputs in the 

MARS model.  Our aim was to investigate which combination yields better results.  In the first 

combination, dimensional variables including mean sediment diameter, (d50), flow depth (y), 

average flow velocity (U), critical flow velocity (Uc), pile diameter (D), number of piles parallel 

to flow (m), number of piles perpendicular to flow (n), distance of the piles from each other 
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perpendicular to flow (Sn), and distance of piles from each other parallel to flow (Sm) were utilized 

to estimate dse (see equation 1).  In the second combination, non-dimensional variables including 

𝑈𝑈
𝑈𝑈𝑐𝑐

, 𝑈𝑈
2

𝑔𝑔𝐷𝐷
, 𝑦𝑦
𝐷𝐷
, 𝐷𝐷
𝑑𝑑50

, 𝜌𝜌𝑈𝑈𝐷𝐷
𝜇𝜇

, 𝑆𝑆𝑚𝑚
𝐷𝐷

, 𝑆𝑆𝑛𝑛
𝐷𝐷

 and 𝑚𝑚
𝑛𝑛

 were used to estimate the dimensionless variable 𝑑𝑑𝑠𝑠𝑠𝑠
𝐷𝐷

 (equation 2).    

The initial input parameters of the ARESlab tool box are the default values in Figure 9. 

As seen in Table 7, “params” denotes parameters that are required by the ARESlab toolbox. These 

parameters are defined by the user in the following MATLAB command, 

params = Aresparams (21, [], false, [], [], 2)                         (27) 

where the value of 21 corresponds to the MaxFuncs. MaxFuncs is the maximum number of BFs 

in the forward phase of the model (before pruning in the backward phase). The recommended 

value for this parameter is about twice the expected number of BFs in the final model (Friedman, 

1991).  Note that the forward phase may not reach the specified maximum number of BFs. This 

can happen when the number of coefficients in the model exceeds the number of experimental 

data.

MaxFuncs can be computed automatically via the following formula,  

maxFuncs  =  min (200, max (20, 2d)) +1              (28) 

where d is the number of input variables (Milborrow, 2015).   
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Figure 9. Input parameters of ARESlab. 

 As shown in Figure 9, the second parameter (c) is the generalized cross validation (GCV) 

penalty per knot.  This is also the second parameter in the Aresparams function. The literature 

suggests values in the range of 2 to 4 for c (Jekabsons, 2015). Larger values of c lead to fewer 

knots (i.e., the final model will be simpler). A value of 0 penalizes only terms, not knots.  This can 

be useful with many data and low noise.  The recommended (and default) value of c is 3 (Friedman, 

1991), which is used in this study.    

The third parameter in the Aresparam function (shown in Figure 9 by “cubic”) specifies 

whether to use the piecewise-cubic or piecewise-linear BFs.  In this study, the piecewise-linear 

BFs were used instead of the default piecewise-cubic, and therefore the corresponding parameter 

in the Aresparams function is set to false.   

The fourth parameter in the Aresparams function is “cubFastLevel” (Figure 9. Input 

parameters of ARESlab.). ARESlab implements three levels of piecewise cubic or linear modeling.  

In level 0, each candidate model is analyzed in both forward and backward (slow).  For a faster 
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form of modeling, level 1 modelling only analyzes each candidate model in the backward phase 

(medium).  In level 2, though modelling is done after both phases, it is only for the final iteration 

of the model, and is the fastest form of modeling. The default and recommended level is 2 

(Jakabson, 2015).      

The fifth parameter of the Aresparams function is the “selfInteractions”.  The 

selfInteractions is the maximum degree of self-interactions for any input variable.  In ARESlab, it 

can be larger than 1 only for piecewise-linear BFs.  Typically, the self-interactions are not allowed 

and the default value is 1, as shown in Figure 9.    

The last parameter in the Aresparams function is “maxInteractions”, which is the maximum 

degree of interactions between input variables.  MaxInteractions of 1 means no interaction between 

the input variables.  For maximal interactivity between the inputs “maxInteractions” should be set 

to d, “selfInteractions”.  This allows the modelling procedure to have the maximum freedom, 

leading to a complex structure.  Typically, only a low degree of interaction is allowed, but higher 

degrees can be used when required.  Herein, a typical value of 2 is used (Figure 9).   

As shown in Figure 9, there are additional parameters that are used by ARESlab.  These 

can be adjusted in the Aresparams function by adding other parameters in the function.  The first 

of these parameters is “threshold”.  This is one of the stopping criteria for the forward phase.  The 

larger the threshold, the simpler models are generated.  The default value of threshold is set to 

0.0001.  For noise-free data , the threshold value may be lowered.  “Prune” is the second of these 

parameters, which specifies whether to perform model pruning in the backward phase.  The default 

value is set to 1, which allows to prune the model.  The next parameter is the “fastK”.  This 

parameter determines the maximum number of BFs at each step of the forward phase (Friedman, 

1993).  Typical values for fastK are 20, 10, and 5.  The default value is set to Inf or no Fast MARS.  
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With a lower fastK, building of the MARS model is faster, but its accuracy will be lower.  A 

reasonable initial guess for fastK is 20 (Friedman, 1993).  Friedman (1993) concluded that while 

changing the values of fastK and fastH can have a significant effect on the training time of MARS, 

its predictive performance is largely unaffected over a wide range of fastK and fastH values. 

 FastBeta is the artificial ageing factor in the Fast MARS algorithm (Friedman, 1993).  The 

default value for fastBeta is 0 (no ageing factor) as is the case for this study, where Fast MARS 

algorithm is not used.  As shown in Figure 9, the next parameter is fastH.  FastH is an integer 

value for the Fast MARS algorithm (Friedman, 1993).   

The next parameters are useMinSpan and useEndSpan.  UseMinSpan is used to lower the 

local variance of the estimates.  A minimum span is imposed that makes the technique resistant to 

runs of positive or negative error values between knots.  This is done by jumping over a minSpan 

number of observations each time the next potential knot placement is requested (Friedman, 1991).  

UseMinSpan allows to disable the protection so that all input values are considered for knot 

placement in each dimension.  Disabling minSpan may allow to create a model which is more 

responsive to local variations in the data.  However, this can lead to an over fitted model.   Setting 

the useMinSpan larger than 1 enables us to manually tune the value.  In this study, the default and 

recommended value of -1 is used, which corresponds to the automatic mode.  The useEndSpan 

parameter allows the user to lower the local variance of the estimates near the ends of the data 

intervals.  A minimum span is imposed that makes the technique resistant to runs of positive or 

negative error values between extreme knot locations and corresponding ends of data intervals.  

This is done by not allowing to place a knot too near to the end of the data interval (Friedman, 

1991).  UseEndspan allows the user to disable (set to 0) the protection so that all observations are 

considered for knot placement in each dimension.  Disabling endSpan may allow creating a model 
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which is more responsive to local variations in the data.  However, this scan also lead to a model 

that is over fitted near the edges of the data.  Setting the useMinSpan to larger than 1 enables us to 

manually tune the value.  In this study, the default and recommended value of -1 is used, which 

corresponds to the automatic mode. 

The user should also define maxFinalFuncs, endSpand Adjust and newVarPenalty.  

MaxFinalFuncs is the maximum number of BFs (including the intercept term) in the pruned model.  

This is used as an alternative to the maxFuncs parameter to enforce an upper bound on the final 

model size.  In this study, the default value of Inf is chosen.  EndSpanAdjust reduces probability 

of over fitting of interaction terms, which are supported by just a few observations in the 

boundaries of data intervals. Reasonable values for the EndSpanAdust range from 1 to 10, with 

the default value of 1. The third user defined parameter is newVarPenalty, which is the penalty for 

adding a new variable to a model in the forward phase.  The higher the penalty is, the more reluctant 

the forward phase will be to add a new variable to the model (Friedman, 1991).  Instead, it will try 

to use the variables, which were already in the model.  This can be useful when some of the 

variables are highly collinear.  As a result, the final model may be easier to interpret although the 

built model may be slightly less robust.  Reasonable values for newVarPenaly typically vary from 

0.01 to 0.2 (Milborrow, 2015).  The default value is 0 or no penalty.   

After the required parameters of MARS are specified (shown in Table 7), ARESlab begins 

the process of building the MARS model. Going through the forward and backward phases, it 

utilizes the user-defined parameters to develop the MARS model.   

 The ARESlab generates an ANOVA decomposition.  Here is a quote from Friedman 

(1993), which helps us understand the ANOVA decomposition.   
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“The ANOVA decomposition is summarized by one row for each ANOVA function.  The columns 

represent summary quantities for each one.  The first column lists the function number.  The second 

gives the standard deviation of the function.  This gives one indication of its (relative) importance 

to the overall model and can be interpreted in a manner similar to a standardized regression 

coefficient in a linear model. The third column provides another indication of the importance of 

the correspond ANOVA function, by listing the GCV, score for a model with all of the basis 

functions corresponding to that particular ANOVA function removed.  This can be used to judge 

whether this ANOVA function is making an important contribution to the model, or whether it just 

slightly helps to improve the global GCV score.  The fourth column give s the number of basis 

functions comprising the ANOVA function while the fifth column provides an estimate of the 

additional number of linear degrees-of-freedom used by including it.  The last column gives the 

particular predictor variables associated with the ANOVA function.” 
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5. Results 

5.1. Equilibrium scour depth estimates from the GEP model 
 

      The GEP model used both dimensional (Eq. 1) and non-dimensional (Eq. 2) data 

configurations. Our objective was to understand which configuration leads to better results. 
 

5.1.1. Dimensional data    
  
      Dimensional input (𝐷𝐷,𝑦𝑦,𝑈𝑈,𝑈𝑈𝑐𝑐,𝑑𝑑50, 𝑆𝑆𝑚𝑚, 𝑆𝑆𝑛𝑛,𝑛𝑛, and 𝑚𝑚) and output (𝑑𝑑𝑠𝑠𝑠𝑠) data were used to train 

the GEP model. After 500,000 generations, the fitness function converged to a value of 0.0187 (m) 

and no significant changes were observed in it. Hence, training of GEP was terminated after 

500,000 generations.  

      The final expression tree (ET) from the GEP model is indicated in  

Figure 10. It includes 4 sub-ETs linked by the addition operator (+). Each of the sub-ETs contains 

a number of the specific functions in Table 9, independent variables 

(𝐷𝐷, 𝑦𝑦,𝑈𝑈,𝑈𝑈𝑐𝑐,𝑑𝑑50, 𝑆𝑆𝑚𝑚, 𝑆𝑆𝑛𝑛,𝑛𝑛, and 𝑚𝑚), and constant parameters in Table 8.  
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Table 8. Parameters of the GEP model. 

Number of chromosomes 30 

Head size 8 

Number of genes 3 

Linking function Addition 

Fitness function RMSE 

Mutation rate 0.044 

Inversion rate 0.1 

One-point recombination rate 0.3 

Two-point recombination rate 0.3 

Gene recombination rate 0.1 

Insertion sequences transposition rate 0.1 

Root insertion sequence transposition rate 0.1 

Gene transposition rate 0.1 

Function set +, −, ×, ∕, √, 𝑑𝑑𝑥𝑥, 𝑆𝑆𝑒𝑒𝑛𝑛, 𝐺𝐺𝑜𝑜𝑑𝑑, 𝑇𝑇𝑎𝑎𝑛𝑛, 
𝑇𝑇𝑎𝑎𝑛𝑛ℎ,𝐴𝐴𝐹𝐹𝑐𝑐𝑒𝑒𝑎𝑎𝑛𝑛, 𝐿𝐿𝑛𝑛 
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Figure 10. Expression tree (ET) from the GEP model. 
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(29) 

 

      The GEP-based equation for prediction of equilibrium scour depth (𝑑𝑑𝑠𝑠𝑠𝑠), Eq. (1), in terms of 

𝐷𝐷,𝑦𝑦,𝑈𝑈,𝑈𝑈𝑐𝑐,𝑑𝑑50, 𝑆𝑆𝑚𝑚, 𝑆𝑆𝑛𝑛,𝑛𝑛, and 𝑚𝑚 can be obtained from the expression tree ( 

Figure 10) and is given by, 

 

𝑑𝑑𝑠𝑠𝑠𝑠 =
𝑈𝑈[(𝐺𝐺2 − 2𝑆𝑆𝑚𝑚 − 𝑈𝑈) − 𝐷𝐷 ]

𝑚𝑚𝑑𝑑𝑚𝑚 (𝑚𝑚 + 𝑆𝑆𝑛𝑛 + 𝐺𝐺1 + 𝑑𝑑50)𝑈𝑈𝑐𝑐 
+  

(𝑆𝑆𝑚𝑚 − 𝐺𝐺4)(𝐺𝐺5 − 𝑚𝑚)𝑦𝑦𝐷𝐷𝑑𝑑50
𝑈𝑈𝑐𝑐 

4 (𝑈𝑈𝑐𝑐 +  𝐺𝐺6 + 𝐺𝐺7 + 𝐺𝐺3 + 𝑆𝑆𝑛𝑛 + 𝑆𝑆𝑚𝑚)
+  

𝐺𝐺8
[Ln(𝐺𝐺10) /(𝑛𝑛𝑈𝑈(𝑈𝑈 + 3𝑆𝑆𝑛𝑛)) + 𝐺𝐺10𝐺𝐺11 𝑆𝑆𝑛𝑛2 + 𝐺𝐺8 + 𝐺𝐺9 + 𝑑𝑑50]3

+ 

𝑈𝑈[min (𝑆𝑆𝑛𝑛 ,𝐷𝐷) + 𝑆𝑆𝑛𝑛3 + tanh(𝐷𝐷 − 𝑆𝑆𝑛𝑛) + 𝑛𝑛𝐷𝐷]                                           
             Values of various constant parameters in equation (29) are listed in Table 9.  Eq. (29) 

implies that a complicated nonlinear formula is required to accurately predict equilibrium scour 

depth. Derivation of such an equation is very hard from conventional regression-based approaches. 

 

Table 9. Magnitudes of constant parameters in  

Figure 10 and equation 29. 

Parameter    Value 

    G1 -4.420 

    G2 0.047 

    G3 0.968 

    G4 9.135 

    G5 -1.472 

    G6 6.278 

    G7 -5.487 

    G8 -6.987 

    G9 1.965 

    G10 0.617 

    G11 11.002 
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 A comparison of the predicted and observed equilibrium scour depth values is shown in 

Figure 11 for both training and testing phases. As shown, the equilibrium scour depth estimates 

agree well with the observed values in training and testing. The outcomes also indicate that GEP 

slightly outperforms in training (with MAE, RMSE and R2 0.0130 m, 0.0187 m, and 0.911) 

compared to testing (with MAE, RMSE, and R2 of 0.0162 m, 0.0254 m, and 0.879). Overall, the 

results indicate that the predicted scour depth values are close to the measurements, suggesting 

that the derived equation from GEP can be used to reliably estimate 𝑑𝑑𝑠𝑠𝑠𝑠 from 

𝐷𝐷,𝑦𝑦,𝑈𝑈,𝑈𝑈𝑐𝑐,𝑑𝑑50, 𝑆𝑆𝑚𝑚, 𝑆𝑆𝑛𝑛,𝑛𝑛, and 𝑚𝑚. 

  

 
 

 

Figure 11. Predicted equilibrium scour depth (𝑑𝑑𝑠𝑠𝑠𝑠) from GEP versus observations for 
dimensional data set (Eq. 1). 

5.1.2. Non-dimensional data 
 

       The non-dimensional form of data (Eq. 2) was also used in the GEP model to estimate 

equilibrium scour depth ( Figure 12). This was done to evaluate which of the data configurations 

(dimensional or non-dimensional) could generate better results. In the training step, the MAE and 
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RMSE of scour depth estimates were respectively 0.0162 m and 0.0234 m, which are 24.6% and 

25.1% larger than those of the dimensional dataset.  Similarly, in the testing step, the MAE and 

RMSE increase by 23% and 14% when non-dimensional data is used instead of dimensional. These 

results showed that the GEP model performed better when trained with the dimensional data (Eq. 

1) than the non-dimensional data (Eq. 2). This suggests that utilizing constitutive raw variables 

instead of their groupings leads to more accurate results due to the increased flexibility in fitting 

achieved in that way.  

     

 

 

 Figure 12. Predicted equilibrium scour depth (𝑑𝑑𝑠𝑠𝑠𝑠) from GEP versus observations for non-
dimensional data set (Eq. 2). 
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      The number of basis functions in the forward step (nb) and degree of interaction (deg) influence 

performance of MARS. In this study, nb and deg were varied in the range of 1-25 and 1-2, 

respectively. Finally, nb and deg values that led to the best equilibrium scour depth estimates were 

chosen. The MARS model with deg of 1 (i.e., no interaction effect) yielded a simple expression 

for the estimation of 𝑑𝑑𝑠𝑠𝑠𝑠, but it performance was not as good as the model with deg of 2. Hence, 

deg of 2 was used in this study.  Figure 13 shows variations of RMSE versus the number of basis 

functions for the training step.  

As indicated, the RMSE of 𝑑𝑑𝑠𝑠𝑠𝑠 estimates decrease as the number of basis functions 

increases, ultimately reaching an asymptotic value of 0.0110 (m) for nb of 26. Based on  Figure 

13, nb is set to 26 because a higher nb value does not improve performance of the MARS model 

and only increases its complexity. 

 

The computed coefficients (𝛽𝛽𝑖𝑖) and basis functions (𝐵𝐵𝑖𝑖(𝑥𝑥)) from the MARS model are listed in 

Table 10. They can be substituted in the general form of MARS (Eq. 25) to generate an equation 

for the estimation of the equilibrium scour depth in terms of 𝐷𝐷,𝑦𝑦,𝑈𝑈,𝑈𝑈𝑐𝑐,𝑑𝑑50, 𝑆𝑆𝑚𝑚, 𝑆𝑆𝑛𝑛,𝑛𝑛, and 𝑚𝑚. As 

 

    Figure 13. Variation of RMSE versus number of basis functions in training step 
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indicated in this table, the variables 𝐷𝐷, 𝑛𝑛, and 𝑆𝑆𝑛𝑛 emerge in the MARS-based equation both 

individually and interactively. In contrast, 𝑈𝑈, 𝑈𝑈𝑐𝑐, 𝑦𝑦, 𝑚𝑚, and 𝑆𝑆𝑚𝑚 appear only as interactive 

variables.  

 Figure 14 shows the equilibrium scour depth estimates from MARS versus observations. 

Most of the data points fall around the 1:1 line, implying that the MARS model can accurately 

predict 𝑑𝑑𝑠𝑠𝑠𝑠. The results from MARS had a small MAE of 0.0079 m and RMSE of 0.0110 m, and 

high R2 of 0.969 in the training step. In the testing phase, the MAE = 0.0120 m and RMSE = 

0.0174 m were larger and R2 = 0.952 was lower compared to the training step. Overall, the results 

showed that MARS has performed well in estimating the equilibrium scour depth. 
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Table 10. Basis functions and coefficients of the MARS model. 

Basis functions (𝐵𝐵𝑖𝑖(𝑥𝑥)) Coefficients (𝛽𝛽𝑖𝑖) 

Intercept           0.2054 

 (0.05 − 𝐷𝐷)+           

  (𝑛𝑛 − 3)+                                                                                                                                            

(3 − 𝑛𝑛)+                                                                                                                                            

(𝑆𝑆𝑛𝑛 − 0.0184)+ × (𝑈𝑈 − 0.31)+                                                                                                                                                                                                                   

(𝑆𝑆𝑛𝑛 − 0.0184)+ × (0.31 − 𝑈𝑈)+                                                                                                                     

(𝑆𝑆𝑛𝑛 − 0.0184)+ × (𝑦𝑦 − 0.24) 

(𝑆𝑆𝑛𝑛 − 0.0184)+ × (0.24 − 𝑦𝑦) 

(3 − 𝑛𝑛)+ × (𝐷𝐷 − 0.024)+                                                                                                                   

(𝑆𝑆𝑛𝑛 − 0.15)+ 

(3 − 𝑛𝑛)+ × (𝑆𝑆𝑛𝑛 − 0.06)+                                                                                                                           

(3 − 𝑛𝑛)+ × (0.06 − 𝑆𝑆𝑛𝑛)+                                                                                                                                                                                                

(𝑆𝑆𝑛𝑛 − 0.0184)+ × (𝑈𝑈𝑐𝑐 − 0.32)+                                                                                                                                

(𝑆𝑆𝑛𝑛 − 0.0184)+ × (0.32 − 𝑈𝑈𝑐𝑐)+                                                                                                                                

(0.15 − 𝑆𝑆𝑛𝑛)+ × (𝑚𝑚 − 5)+                                                                                                                                

(0.15 − 𝑆𝑆𝑛𝑛)+ × (5 −𝑚𝑚)+                                                                                                                                           

(𝑆𝑆𝑛𝑛 − 0.15)+ × ( 𝑑𝑑50 − 0.8)+ 

(𝑆𝑆𝑛𝑛 − 0.15)+ × ( 0.8 − 𝑑𝑑50)+ 

(0.0184 − 𝑆𝑆𝑛𝑛)+ × (𝑦𝑦 − 0.2)+         

(0.0184 − 𝑆𝑆𝑛𝑛)+ × (0.2 − 𝑦𝑦)+ 

(0.15 − 𝑆𝑆𝑛𝑛)+ × (𝐷𝐷 − 0.028)+ 
 

−5.4888 

   0.0285 

   0.0361 

− 8.9735 

− 14.2360 

   1.3787 

   3.0331 

−1.1594 

    17.9990 

     0.8013 

− 0.9569 

− 0.2078 

    17.8451 

    0.3283 

 −0.0099 

   −86.2240 

   − 103.0101 

    − 62.3371 

        9.8549 

        17.1142 
 

  (0.15 − 𝑆𝑆𝑛𝑛)+ × (0.028 − 𝐷𝐷)+           22.9282 

  (𝑆𝑆𝑛𝑛 − 0.0184)+ × (𝑛𝑛 − 3)+          − 0.2319 

  (𝑆𝑆𝑛𝑛 − 0.0184)+ × (3 − 𝑛𝑛)+          −0.7851 

  (3 − 𝑛𝑛)+ × (0.068 − 𝑦𝑦)+          −0.2423 

  ( 𝑆𝑆𝑛𝑛 − 0.0184)+ × (𝑆𝑆𝑚𝑚 − 0.125)+          −0.7108 

  ( 𝑆𝑆𝑛𝑛 − 0.0184)+ × (0.125 − 𝑆𝑆𝑚𝑚)+          − 0.8789 
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 Figure 14. Predicted equilibrium scour depth (𝑑𝑑𝑠𝑠𝑠𝑠) from MARS versus observations for 
dimensional data set (Eq. 1). 

 

5.2.2. Non-dimensional data 
 

        Similar to the GEP model (Section 5.1.2), non-dimensional data were used to train MARS. 

The equilibrium scour depth estimations are shown versus observations in  Figure 15. The model 

performed well in predicting the equilibrium scour depth in both training (MAE = 0.0102 m, 

RMSE = 0.0155 m, and R2 = 0.939) and testing (MAE = 0.0144 m, RMSE = 0.0191 m, and R2 = 

0.935) stages. The results also showed that the MARS model generated better results when 

analyzed with dimensional inputs (Eq. 1) rather than the non-dimensional inputs (Eq. 2). This 

implies that using constitutive raw variables in lieu of their groupings yields more promising 

results because of the better flexibility in fitting a relationship between inputs and output (Bateni 

et al., 2007).  
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 Figure 15. Predicted equilibrium scour depth (dse) from MARS versus observations for non-
dimensional data set (Eq. 2). 

 

5.3. Comparison of equilibrium scour depth estimates from MARS and GEP with 
those of existing equations 
 

        Figure 16 compares the equilibrium scour depth estimates from MARS with those of the five 

existing equations. The results from GEP are not shown in  Figure 16 to keep it readable and not 

too congested. As shown, the existing equations generally underestimate the equilibrium scour 

depth, while MARS provides improved estimates of equilibrium scour depth and its results fall 

mainly around the 1:1 line. As indicated in Table 11, the proposed models (i.e., MARS and GEP) 

outperform the existing studies. For the best available study (Sheppard et al., 2013), the MAE, 

RMSE, and R2 are respectively 0.0197 m, 0.0297 m, and 0.836, compared to 0.0120 m, 0.0174 m 

and 0.952 for the MARS model. MARS reduces RMSE of scour depth estimates by 57%, 55%, 

41%, 56%, and 49% compared to Richardson et al. (2001), Beheshti et al. (2012), Sheppard et al. 

(2013), and equations 13 and 14 in Ghaemi et al. (2013), respectively. The results in Table 11 also 

show that MARS yields better results than GEP. MAE and RMSE from MARS are 26% and 31% 

less than those from GEP. Both GEP and MARS models can create explicit equations for 
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estimation of equilibrium scour depth. Overall, the results of this study suggest that MARS and 

GEP are viable alternative techniques to the existing equations. 

           

 

 Figure 16. Comparison of equilibrium scour depth measurements and estimations using 
different approaches. 
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Table 11. Statistical metrics of different approaches to estimate scour depth. 

Different approaches MAE (m) RMSE(m) Correlation coefficient (R2) 

This study (MARS)    0.0120    0.0174          0.952 

This study (GEP)        0.0162      0.0254                        0.879 

Richardson et al. (2001)        0.0209      0.0401                        0.716 

Beheshti et al (2013)        0.0208      0.0386                        0.772 

Sheppard et al. (2013)        0.0197      0.0297                        0.836 

Ghaemi et al. (2013)        0.0263      0.0394                        0.768 

Ghaemi et al. (2013)        0.0220      0.0341                        0.800 

 
 

5.4 Sensitivity Analysis 
 

       The generated equation from MARS (i.e., the best available equation) was used to conduct the 

sensitivity analysis. This analysis was performed to find the relative importance of each of the 

input variables (𝐷𝐷,𝑦𝑦,𝑈𝑈,𝑈𝑈𝑐𝑐,𝑑𝑑50, 𝑆𝑆𝑚𝑚, 𝑆𝑆𝑛𝑛,𝑛𝑛, and 𝑚𝑚) on the equilibrium scour depth. In each 

sensitivity test, only one of the input variables was changed at a constant rate, and its influence on 

𝑑𝑑𝑠𝑠𝑠𝑠 was determined. Inputs were varied at the constant rates of 10%, 30%, and 50%. The sensitivity 

of equilibrium scour depth (𝑑𝑑𝑠𝑠𝑠𝑠) to changes in each input variable is computed via: 

𝑑𝑑𝑠𝑠𝑠𝑠 (%) = 1
𝑁𝑁
∑ ( % Change in 𝑑𝑑𝑠𝑠𝑠𝑠

% Change in the input variable
)𝑁𝑁

𝑖𝑖=1  × 100                                                                     (30)  

where N = 54 is number of testing data points used in this study. 

      Figure 17a, b, and c show the sensitivity of 𝑑𝑑𝑠𝑠𝑠𝑠 to 10%, 30%, and 50% changes in each input 

variable, respectively. As indicated, D has the most significant impact on the equilibrium scour 
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depth. A similar result was reported by Zounement-Kermani et al. (2009). They also found that 𝑈𝑈𝑐𝑐 

and 𝑈𝑈 have a high influence on 𝑑𝑑𝑠𝑠𝑠𝑠, which is consistent with the results of our sensitivity analysis.   

     Ataie-Ashtiani and Beheshti (2006) proposed the following equation for the estimation of 

equilibrium scour depth 

𝑑𝑑𝑠𝑠𝑠𝑠 = 2.22 𝑘𝑘1𝑘𝑘2𝑘𝑘3𝑘𝑘4  (𝐷𝐷𝑒𝑒𝑡𝑡𝑝𝑝𝑖𝑖 𝐾𝐾𝐺𝐺 𝐾𝐾𝑚𝑚)0.7653  𝑚𝑚0.0396  

𝑛𝑛0.5225 𝐺𝐺0.1153 �𝑦𝑦 𝑈𝑈
𝑈𝑈𝑐𝑐
�
0.35

                                                  (31) 

where 𝑘𝑘1, 𝑘𝑘2,𝑘𝑘3, and 𝑘𝑘4 are the correction factors for pier nose shape, angle of attack, channel bed 

condition, and bed armoring, respectively. 𝐷𝐷𝑝𝑝𝑝𝑝𝑝𝑝𝑗𝑗 is the sum of the non-overlapping projected 

widths of piles, 𝐾𝐾𝐺𝐺 is the coefficient for pile spacing, 𝐾𝐾𝑚𝑚 is the coefficient for the number of 

aligned rows, and 𝐺𝐺 is the pile spacing. According to Eq. (30), 𝑑𝑑𝑠𝑠𝑠𝑠 increases with growth of 𝑚𝑚, 𝑈𝑈, 

𝑦𝑦 and 𝐷𝐷, and decreases with increase of 𝑈𝑈𝑐𝑐 and 𝑛𝑛. Analogously, Figure 17 indicates that 𝑑𝑑𝑠𝑠𝑠𝑠 is 

positively correlated with 𝑦𝑦, 𝑈𝑈, 𝐷𝐷 and 𝑚𝑚, while it is negatively correlated with 𝑈𝑈𝑐𝑐 and 𝑛𝑛.  
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Figure 17. Sensitivity of equilibrium scour depth to 10% (a), 30% (b), and 50% (c) variations 
in each input variable. 
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6. Conclusion 
 

       Genetic Expression Programming (GEP) and Multivariate Adaptive Regression Splines 

(MARS) approaches were used to estimate equilibrium scour depth (𝑑𝑑𝑠𝑠𝑠𝑠) around pile groups. Two 

configurations of data (dimensional and non-dimensional) were used in the GEP and MARS 

models. The results indicated that GEP and MARS can accurately estimate 𝑑𝑑𝑠𝑠𝑠𝑠. Also, both models 

yielded better 𝑑𝑑𝑠𝑠𝑠𝑠 estimates with the dimensional data. MARS outperformed GEP. The 

equilibrium scour depth estimates by GEP and MARS have a root-mean-square-error (RMSE) of 

0.0254 m and 0.018 m, respectively. Corresponding mean-absolute-error (MAE) values are 0.0162 

m and 0.0131 m. Overall, the results indicate that MARS and GEP are effective and reliable 

methods for estimating equilibrium scour depth.  

       Performance of MARS and GEP was compared with four existing studies, namely Richardson 

et al. (2001), Beheshti et al (2013), Sheppard et al. (2013), and Ghaemi et al. (2013). The results 

illustrated that GEP and MARS can estimate equilibrium scour depth more accurately. MARS 

reduced the MAE (RMSE) by 43% (57%), 42% (55%), 39% (41%), 54% (56%), and 45% (49%) 

compared to Richardson et al. (2001), Beheshti et al (2013), Sheppard et al. (2013), and equations 

13 and 14 in Ghaem et al. (2013). A similar reduction was seen in MAE and RMSE by using GEP 

instead of existing equations. In general, the results showed that GEP and MARS perform well 

and thus can be used to accurately estimate equilibrium scour depth.  

       Sensitivity analysis was conducted to assess the influence of each input variable on the 

equilibrium scour depth. It was found that pile diameter has the most significant impact on the 

equilibrium scour depth. Also, the flow velocity and critical flow velocity have a substantial effect 

on 𝑑𝑑𝑠𝑠𝑠𝑠. Overall, 𝑑𝑑𝑠𝑠𝑠𝑠 is positively correlated with flow depth and velocity, pile diameter, number 

of piles inline with the flow, and the spacing between piles inline with the flow, while it is inversely 
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related to mean grain diameter, critical flow velocity, number of piles normal to the flow, and 

spacing between piles normal to the flow. 
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