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ABSTRACT 

 

Learning and memory rely upon mechanisms of activity-dependent plasticity such as 

hippocampal long-term potentiation (LTP) and long-term depression (LTD). At least six 

types of plasticity exist to function as various types of coincidence detectors. Ultimately, 

plasticity signaling at the synapse flows, among other pathways, through mitogen-

activated protein kinases (MAPKs) signaling networks, interfacing the input 

(postsynaptic receptors) and the output (phosphorylation of proteins). A wide body of 

research has contributed to elucidating the role for MAPKs, such as ERK1/2, in 

memory, but less is known about the function of other MAPKs that are involved with fear 

memory such as the c-Jun N-terminal kinases (JNKs) that interact with the scaffold 

protein JNK-interacting proteins (JIPs). JIPs and JNKs have a variety of important 

functions in the brain that are not yet fully understood. Here, we studied the contribution 

of JIP1 to JNK-mediated learning and memory. Initial studies of excitotoxicity show that 

mice harboring mutations in the Jip1 gene that selectively blocks JIP1-mediated JNK 

activation results in the same phenotype as found for JNK3 isoform-deficient mice. As 

JNKs are involved in regulating fear memory, this raised the question as to whether 

such JIP1 mutants have the same changes in memory as that of carrying JNK deletion. 

We addressed this question by employing behavioral tests for spatial memory, 

contextual fear conditioning and electrophysiology. As seen with JNK-deficiency or with 

pharmacological inhibition of JNK in mice, mice with the Jip1 gene that selectively 

blocks JIP1-mediated JNK activation, displayed similar improvements in spatial 

memory, fear memory and plasticity. Furthermore, these mutant mice exhibited 

increased NMDA receptor currents, increased NMDA receptor-mediated gene 

expression, and a lower threshold for induction of hippocampal long-term potentiation. 

In addition, our studies with mice carrying mutation in JIP1 kinesin-1 binding domain, 

which normally facilitates the transport and assembly of JIP1/JNK signaling module to 

the neuronal processes, showed normal memory suggesting that that JIP1/JNK 

signaling is sufficient for the regulation of the NMDA receptor function independent of its 

cellular localization and the function as an adaptor between motor proteins and their 
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membranous cargo. Our data demonstrate that JIP1-mediated JNK signaling influences 

hippocampal-dependent learning and synaptic plasticity by regulating NMDA receptors.  
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1.0. Introduction 

1.1. Learning and Memory  

Since the hypothesis that an animal's behavior is a function of the nervous 

system, and that memory is stored through changes in synaptic strength (Hebb, 1949), 

experimental proof has supported this with behaviorally relevant circuits in Aplysia 

californica (Kandel and Schwarts, 1982). Preceding this, Ramon y Cajal had identified 

dendritic spines (Cajal, 1911) and thought that neural growth was essential for memory. 

Hebb postulated activity-dependent synaptic plasticity, that “When an axon of cell A is 

near enough to excite cell B or repeatedly or persistently takes part in firing it, some 

growth process or metabolic change takes place in one or both cells such that A's 

efficiency, as one of the cells firing B, is increased” (Hebb, 1949).  

One important example illustrating human learning and memory is the case of 

H.M. The epileptic surgery of bilateral hippocampectomy resulted in HM’s inability to 

form new long-term memories (Scoville and Milner, 1957), yet HM could recall old 

memories, which is consistent with lesioning studies (Corkin et al., 1997). With the 

importance of the hippocampus in memory indicated, Per Anderson performed field 

potential recordings throughout the hippocampus, which led to the discovery of LTP by 

Bliss and Lomo (Bliss & Lomo, 1973), confirming Hebbian plasticity. Bliss and Lomo 

elicited LTP by applying 100Hz 1-second bursts to dentate granule cells through the 

perforant pathway of hippocampus. Conversely, a decrease in of synaptic strength, 

LTD, is induced via 900 stimuli delivered at low frequency over 15 minutes (Lee et al., 

1998). The significance of non-Hebbian homeostatic synaptic plasticity is given by the 

fact that excitability may be regulated for the entire neuron at once (Turrigiano et al., 
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1998) and might be maintained stably by underlying epigenetic mechanism. Along these 

lines, synaptic scaling (a form of synaptic plasticity that adjusts the strength of all of a 

neuron's excitatory synapses up or down to stabilize firing), may be important to provide 

a flexible scale for potentiation to be more precisely modulated when transitioning 

between states of LTP and LTD.  

CA1 pyramidal cell activity has been recorded with implanted electrodes, 

revealing place cells (O’Keefe and Dostrovsky, 1971). They fire when the animal is near 

a familiar location in their environment, for example a particular corner in a maze. A 

fascinating dynamic property of place cells is that they exhibit "phase precession": 

There is a dominant theta (4-8Hz) oscillation frequency in the hippocampus, and the 

firing of the place cells occurs sooner or later relative to this dominant oscillation 

depending on the animal's physical distance from the location. This indicates that CA1 

pyramidal cells are coincidence detectors for learning sensory stimuli for many types of 

associations in the environment (Wood et al., 1999). As the entorhinal cortex (EC) 

transfers information from the sensory cortices to the hippocampus, they work 

differently than hippocampal cells, because the EC cells fire when the animal is at any 

point on the grid pattern (Hafting et al. 2005). Grid cells map out space according to its 

sensed structure, and that the place cells layer on top of them to add meaningful 

locations, such as where food is stored or places to turn for navigation. So the grid cells 

are like graph paper and place cells are like the markings on the graph paper that form 

the territory map. 

 

1.2. The hippocampus 
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The hippocampus is part of the limbic system that is located below the cerebral 

cortex, and is important for learning, memory consolidation, and navigation (Fig. 1).  

Major inputs to the hippocampus go through the EC from neocortex, cingulate 

cortex, temporal lobe cortex, orbital cortex and olfactory bulb. Other inputs to 

hippocampus are from amygdala, contralateral hippocampus and return inputs from the 

fornix: septal and hypothalamic mammillary bodies. Major outputs from hippocampus 

are through CA1 and subiculum, which go back to entorhinal cortex and cortical 

interconnections.   

The hippocampus is an associational area of cerebral cortex composed of areas 

designated as CA1, CA2, CA3, DG and subiculum. Pyramidal cells form overlapping 

assemblies that represent spatial information and are formed by synaptic plasticity via 

glutamatergic and GABAergic neurons. CA1 has 21 types of GABAergic cells and 3 

types of pyramidal cells, allowing for extensive feedback and feedforward connectivity 

that allow for segregation and integration of information. The hippocampus has outputs 

to entorhinal cortex, perirhinal cortex, prefrontal cortex, amygdala, ventral striatum, 

hypothalamus and lateral septum. Spines of CA1 pyramidal cells undergo NMDA 

receptor-dependent synaptic plasticity, which is used to store associations. Theta 

rhythms (4-10Hz), which are the result of neural oscillations, occur in the hippocampus 

during exploratory behavior or REM (O’Keefe and Nadel, 1978). For instance, when 

place cells fire; they are mediated by theta rhythms. During consummatory behavior, 

CA1 pyramidal cells, due to CA3 synchronous firing, also display firing, known as sharp 

waves of 140-200Hz for 50-100ms, possibly for the purpose of reinforcing potentiated 

synapses (Buszaki, 1989).  
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Figure 1. Orientation of the hippocampus. The hippocampus runs along the septotemporal 

axis from the septal nuclei (S) to the temporal cortex (T). The transverse axis is the orientation 

for preparing brain slices for electrophysiology because it preserves the trisynaptic pathway; it is 

perpendicular to the septotemporal axis. (Adapted from Amaral and Witter, 1989) 

 

1.2.1. Hippocampal pathways 

The perforant pathway represents a major set of inputs to all the areas of the 

hippocampus (DG, CA3, CA1 and subiculum) and includes the axons coming from 

layers 2 and 3 of entorhinal cortex (Fig. 2). CA1 and subiculum, in turn, send outputs 

back to EC, specifically layers 5 and 6 of the lateral and medial EC, as part of the output 

from the hippocampus back to cortex. Schaffer collaterals are the axons of CA3 that 

project to CA1 pyramidal cells. However, the pathway from CA3-CA1 is not only 
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unidirectional, as there are back projections from CA1 to CA3 stratum oriens and 

radiatum, that likely are inhibitory to the same layers in CA3 (Amaral et al., 1991; 

Swanson et al., 1981; Cenquizca et al., 2007).  

Function and information distribution likely vary along the longitudinal axis of the 

hippocampus, as revealed by variable firing patterns (McNaughton, 2008), and the 

existence of isolated recurrent CA3-CA1 loops along this axis - such that spatial 

memory may be processed in dorsal hippocampus, and non-spatial memory in the 

ventral hippocampus. The dorsal two-thirds of the hippocampus receives input from 

visuospatial and sensory cortices going through medial EC and perirhinal regions, and 

is critical for spatial learning (Moser and Moser, 1998). As long as the transverse plane 

of hippocampus has the tri-synaptic pathway intact, spatial learning doesn’t appear to 

require long range signaling along the longitudinal axis, and that there are likely multiple 

representations of the environment in different sections of dorsal HC. The ventral one-

third of hippocampus connects mainly subcortical areas: amygdala, medial prefrontal 

cortex and hypothalamus, and is important for anxiety behavior and emotional learning 

(Zhang et al., 2001; Kjelstrup et al., 2002; Yoon and Otto, 2007). In addition, there is 

specific integration of connectivity along the longitudinal axis of the hippocampus via the 

longitudinal axons of CA3 collaterals and longitudinal axons of mossy cells of dentate 

hilus. This differentiation of connectivity indicates three zones of the larger dorsal and 

smaller medial and ventral areas, in which dorsal and intermediate regions have 

interconnectivity and receive direct sensory input, and cover about 75% of 

hippocampus. It is assumed that in these zones spatial memory is located. It is likely 

that variable sensory input goes to different overlapping modules where single 
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pyramidal cells may have functional flexibility. Relevant to these functional differences, 

gene expression has been shown to vary over regions of dorsal, intermediate and 

ventral zones (Cembrowski et al., 2016).  

Functional connectivity between brain areas that are spatially distant depends on 

synchronized firing. Synchronized firing is important for memory consolidation and 

synaptic plasticity. Theta (4-10 Hz), gamma (30-100 Hz) and sharp wave ripples (140-

200 Hz) synchronize pyramidal cell firing, and are controlled by inhibitory neurons that 

use inhibitory neurotransmitter GABA, in concert with excitatory glutamatergic neurons. 

Theta waves are associated with exploratory behavior and REM sleep and facilitate 

information flow from the neocortex to the hippocampus. Sharp waves are associated 

with immobility and slow-wave sleep, thus facilitating information transfer from the 

hippocampus to the neocortex (Girardeau et al., 2009). Sharp waves also prime the 

network for synaptic plasticity. Interestingly, theta oscillations cover the entire 

septotemporal axis at once, suggesting that information that is segregated along this 

axis might be combined or integrated with plasticity in a temporal coincidence manner. 

Entorhinal cortex has been shown to filter information relating to path integration (when 

combining perception of grid cells – which exhibit periodic spatial firing fields that form a 

triangular lattice covering all environments visited by an animal with a sense of 

movement and head orientation). Associations are likely formed in EC due to the 

abundance of connections including perirhinal cortex (PER), postrhinal cortex (POR) 

that ultimately combine non-spatial with spatial information respectively (Hafting et al. 

2005).  
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Figure 2. Major intrinsic connections of the hippocampus. DG, dentate gyrus; CA1 and 

CA3 fields of Ammon’s horn; SUB, subiculum (O’Mara S, 2005).  

 

1.2.2. CA1 pyramidal neurons  

Pyramidal cells make up a laminar or streamline looking network. Their special 

abilities in learning and memory are gradually becoming more understood. Pyramidal 

cells may be divided into two regions: basal and apical. The basal region contains 

dense spines on short dendrites and the axon emanates from this region. The apical 

dendrites have few branches proximal to the soma, but many branches in the medial 

and distal portions of the dendrite. The apical dendrite bifurcates about two-thirds of the 
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way to the distal region. The structure of pyramidal cells is the key to understanding 

how the coincidence detection might work. For instance, we have observed that 

excitatory postsynaptic potentials (EPSPs) are greater in amplitude and have very 

pronounced LTP in the proximal region, whereas LTP is typically (150%) for the rest of 

the CA1 (medial and proximal). This indicates, that, even though there are very few 

dendrites in the proximal region, that the EPSP is large because the spines in the 

regions of the apical dendrite are activated by the cumulative stimulus, whereas the 

distal spines are amplified by default, so that the signal may more easily spread along 

dendrites or towards the soma. 

The local dendritic area where synapses are activated - have increased 

excitability following LTP due to A-type K+ channels. Phosphorylation of A-type K+ 

channels PKA, PKC and MAPK results in a depolarizing shift in the activation curve so 

that back-propagating action potentials have greater amplitudes. Dendritic spikes allow 

for coincidence detection, less through concentrations of inputs on a single dendrite, but 

more likely from the summation of inputs from more than one dendrite. Either way, 

associative plasticity results from strong back-propagating action potentials that are 

paired with high frequency weak EPSPs at the spines.    

Glutamate stimulations from CA3 to CA1 dendrites along the stratum radiatum 

activates ionotropic (NMDA, AMPA, and Kainate receptors) and metabotropic glutamate 

receptors (mGluR). NMDA receptors mediate the slow rise of fEPSP, while AMPA 

receptors and Kainate receptors mediate its fast component. mGluRs transduce signals 

on the pre and postsynaptic sides to regulate various aspects of synaptic function and 

are involved in plasticity. Inhibitory interneurons that use GABA, signal feedforward 
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faster than the Schaffer collateral can from CA3 to CA1 - giving the basal zone of CA1 a 

negative fEPSP. Postsynaptically, GABAA and GABAB receptors mediate the fast and 

slow IPSPs respectively.          

The hippocampus also receives modulatory projections from distant regions that 

influence synaptic strength and network oscillations. These extrinsic projections include 

noradrenaline input from the locus coeruleus, dopamine from the substantia nigra, 

acetylcholine from the medial septal nucleus and serotonin from the raphe nuclei. The 

CA1 region receives two glutamatergic inputs: one from layer 3 of the EC terminating on 

distal dendrites of pyramidal cells also known as the stratum lacunosum moleculare (via 

the perforant pathway), and another from CA3 to CA1 proximal dendrites also known as 

stratum radiatum (via the Schaffer collaterals). The CA1 pyramidal cells express 

GluN2A and GluN2B NMDA receptor subunit mRNA, while other cell types have 

GluN2C and GluN2D mRNA (Monyer et al., 1994).  

 

1.3. Electrophysiology of CA3-CA1 pathway  

Brain slice electrophysiology has simplified the ability to study synaptic plasticity. 

The Schaffer collateral pathway of the hippocampus is particularly advantageous for 

conducting electrophysiology (Yamamoto and McIlwain, 1966). The stimulus is applied 

to a brain area in which multiple fibers from CA3 contact apical dendrites of a layer of 

pyramidal CA1 cells, situated perpendicular to the input axons.  

Electrophysiology is a way to test changes in the magnitude of long-term 

potentiation (LTP), that is a persistent increase in synaptic strength following high-

frequency stimulation of a chemical synapse. Enhancements or deficits of LTP may 
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indicate changes in memory and cognition function.  Thus, LTP induction protocols are 

derived from in vivo hippocampal CA1 synaptic activity. The EEG of exploring rodents 

shows theta rhythm frequency, and since repeated high frequency impulses (100Hz-

400Hz) are known to induce LTP, theta-burst protocol has been optimized to use five 

high frequency pulses separated by 10ms (100 Hz) grouped into theta frequency 

(spaced 200ms).  

Additionally, LTP induced through spike timing dependent plasticity (STDP) 

illustrates the coincidence detector mechanism of the NMDA receptor nicely. STDP is a 

temporally asymmetric form of associative learning induced by tight temporal 

correlations between the spikes of pre- and postsynaptic neurons.  As with other forms 

of synaptic plasticity, it is widely believed that it underlies learning and information 

storage in the hippocampus as well as the development and refinement of neuronal 

circuits during brain development (e.g. Bi and Poo, 2001; Sjöström et al., 2008). With 

STDP, repeated presynaptic spike arrival a few milliseconds before postsynaptic action 

potentials leads in many synapse types to LTP of the synapses, whereas repeated 

spike arrival after postsynaptic spikes leads to LTD of the same synapse. LTD also 

presumably uses extrasynaptic NMDA receptor and is induced with 15 minutes of 900 

1Hz paired-pulses (50ms ISI) or 900 single pulses over 30 min.   

Hippocampal structures are atypical for corticocortical neurons in that they 

display highly unidirectional synaptic architecture on the longitudinal axis. The perforant 

pathway is structured in this way: entorhinal cortex layer 2 inputs to the dentate gyrus 

via the perforant path, the dentate gyrus synapses onto CA3, which has axons 

synapsing onto CA1 pyramidal cell dendrites via the Schaffer collaterals. The CA3 
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axons that synapse onto CA1 pyramidal apical dendrites (i.e., Schaffer collaterals) are 

good for testing LTP and LTD, as this is a monosynaptic circuit that maintains this 

structure, so that the fEPSP is representative of many synapses in a specific local 

region (Fig. 3).  

 

 
 

Fig 3 The hippocampal Network: The hippocampus forms a principally unidirectional network, 

with input from the Entorhinal Cortex (EC) that forms connections with the Dentate Gyrus (DG) 

and CA3 pyramidal neurons via the Perforant Path (PP - split into lateral and medial). CA3 

neurons also receive input from the DG via the Mossy Fibres (MF). They send axons to CA1 

pyramidal cells via the Schaffer Collateral Pathway (SC), as well as to CA1 cells in the 

contralateral hippocampus via the Associational Commisural (AC) Pathway. CA1 neurons also 

receive inputs direct from the Perforant Path and send axons to the Subiculum (Sb). These 

neurons in turn send the main hippocampal output back to the EC, forming a loop. (Adapted 

from: http://www.bristol.ac.uk/synaptic/pathways/). 

 

1.4. Synaptic Plasticity: STP, LTP, LTD and Depotentiation  

   At least five forms of synaptic plasticity exist: short-term potentiation (STP), early 

LTP (E-LTP), late LTP (L-LTP), LTD, and homeostatic scaling. The induction of LTP is 
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associated with specific changes in gene expression that may be different depending on 

if it is E-LTP or L-LTP. E-LTP develops immediately following HFS and lasts for 3-5 

minutes before it drops down and levels off at 150% potentiation (see Fig. 3). A stimulus 

for E-LTP activates of Ca2+/calmodulin protein kinase II (CaMKII), the MAPK ERK1/2, 

protein kinase B (PKB/Akt), eventually resulting in phosphorylation of the cyclic AMP 

response element binding protein (pCREB). pCREB is observed 3-15 minutes after a 

tetanus, and may remain elevated over 30 minutes (Racaniello et al., 2010). On the 

other hand, L-LTP results in increase in CREB and Elk1. L-LTP also results in in 

induction of immediate early genes such as zif268/krox24, krox20, Arc, fos, as well as 

brain-derived neurotrophic factor (BDNF), C/EBP, microtubule-associated protein 2 

(MAP2), HOMER and GluR1. CaMKII is especially important because of its 

autophosphorylation mechanism whose active state may be maintained autonomously, 

i.e. independently of Ca2+ (Chen et al., 2001; Lisman et al., 2002). The mechanism for 

STP is not fully understood, but it probably results from phosphorylation of GluA1 on 

AMPA receptors by CaMKII.  

E-LTP takes place within one hour of HFS, and is a Hebbian process where 

glutamate stimulus coupled with strong postsynaptic depolarization, results in increased 

levels of calcium flow through NMDA receptors. Synapses may be potentiated with high 

frequency stimulus that mimics pyramidal neuron activity. A 100Hz stimulus is able to 

achieve postsynaptic depolarization as it overcomes inhibitory currents. Upon synaptic 

depolarization, NMDA receptors allow large amounts of calcium for induction of LTP 

(Lynch et al., 1983) (Fig. 4). Calcium is detected by calmodulin, which then interacts 

with CaMKII, which in turn, phosphorylates AMPA receptors to allow influx of Na+ during 



23 
 

stimulation (Lisman et al., 2012). Importantly, E-LTP causes CaMKII to interact with 

GluN2B and microtubules probably to regulate spine dynamics (Matsuzaki, et al., 2004). 

E-LTP causes AMPA receptors to increase in numbers and/or function, and doesn’t 

require translation of new proteins. L-LTP is marked by the increase in size of the 

synapse on postsynaptic sides. This process takes hours to develop and requires 

mRNA translation and gene transcription (Meyer et al., 2014). The newly inserted 

AMPA receptors allow more efficient synaptic transmission.  

LTD has several different forms including NMDA receptor-dependent- or mGluR-

dependent homosynaptic, heterosynaptic LTD and depotentiation (Fig. 5). NMDA 

receptor-dependent LTD is induced with low frequency stimuli and does not require 

postsynaptic spiking. In contrast, the mechanism of mGluR- dependent LTD is not as 

well defined. There are three types of metabotropic glutamate receptor (mGluRs). 

Group I includes mGluR 1/5 that are located at the periphery of postsynaptic density 

(PSD), where they induce hydrolysis of phosphatidylinositol (IP) into inositol tris-

phosphate (IP3) and diacylglycerol (DAG). IP3 signals the ER to release Ca2+ which 

activates PKC. Group II and III of mGluR groups located mainly in axons or presynaptic 

active zones, respectively. Group II/III mGluR’s inhibit transmitter release and 

production of cAMPs. LTD may be induced through pathways form NMDA receptors or 

mGluRs. In CA3-CA1 synapses, the mGluR 1/5 agonist DHPG induces LTD, whereas, 

paired pulse-LFS induces activates NMDA receptors and CaMKII. NMDA receptor and 

CaMKII have been shown to associate together with casein kinase (CK2). It is proposed 

that phosphorylation of GluN2B subunit at S1480 by CK2 causes its internalization by 

preventing its interaction with PSD95 protein (Antonio et al., 2013). Mice with impaired 
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GluN2B -CaMKII interaction show impaired memory, reduced LTP and synaptic 

transmission.   

 Depotentiation of already potentiated synapses appears to be a candidate for 

reversal of learning. Data have shown that depotentiation requires NMDA receptors, 

phosphatases and reduced AMPA receptor conductance. Downregulation of AMPA 

receptors function is achieved by dephosphorylation of GluA1 subunit at serine 831. 

This process is mediated by PP1 and PP2B. In comparison, LTD requires 

dephosphorylation of GluA1 at serine 845 by PP1 or PP2A. Nevertheless, proving a role 

of depotentiation in the reversal of memory has been difficult because there appear to 

be several forms of depotentiation (Chen et al., 2013).  

 

 

 

Figure 4. Long-term potentiation mechanisms. A) NMDA receptor-dependent LTP results 

from glutamate stimulus with postsynaptic depolarization induced relief of the magnesium block 
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of NMDA receptors that then allow enough CA2+ in to activation of CAMKII. Signal transduction 

results in AMPA receptor insertion. B) Presynaptic LTP results from repetitive synaptic activity 

involving VG Calcium channels that facilitate CA2+ entry, causing adenylyl cyclase induced rise 

in cAMP followed by PKA activation that causes Rab3 and RIM1a to induce an increase in 

glutamate release (Adapted from Kauer and Malenka, 2007). 

 

 Homeostatic synaptic scaling is a homeostatic process that keeps the range of 

postsynaptic response within usable limits. Homeostatic synaptic scaling does not 

depend on Na+ spikes, so therefore it is likely to be synapse specific (Fong et al, 2015). 

Yet another form of synaptic scaling exists that uses modulatory factors such as TNF-

alpha or retinoic acid, which induce widespread homeostatic changes in amplitudes 

(Turrigiano et al., 1998; Aoto et al., 2008; Kaneko et al., 2008).  

 

 

Figure 5. Long-term depression mechanisms. A) NMDA receptor-dependent LTD results 

from LFS induced weak CA2+ influx, followed by formation of calcium-calmodulin complex that 

activates PP2B (calcineurin) and PP1. PP1 then dephosphorylates GluA1 at S845 inducing 

lateral diffusion and endocytosis of AMPA receptors.  B) mGluR-LTD is induced by LFS that 

causes mGluR signal transduction to PLC that hydrolyzes PIP2 to generate IP3 and DAG. IP3 
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induces CA2+ from internal stores, while DAG activates PKC. AMPA receptor GluA2 is 

phosphorylated at S880 by PKC, causing lateral diffusion and internalization (Adapted from 

Pinar et al., 2017). 

 

1.4.1. NMDA receptor subunits in LTP and LTD  

The glutamate-gated channels NMDA and AMPA receptors in the brain convert 

the presynaptic glutamate signal into postsynaptic positive ion influx causing a potential 

change. NMDA receptors act as non-specific cation channels, which are permeable to 

Na+, Ca2+, and K+ (Lynch et al., 1983) (Fig. 6A). NMDA receptor channels are 

heteromers composed of an obligatory GluN1 subunit and one or more GluN2 (GluN2A-

GluN2D) subunits or GluN3 subunits (Yashiro and Philpot, 2008). The Ca2
+ influx 

through NMDA receptors is the critical factor that mediates many of the NMDA receptor-

specific physiological conditions. NMDA receptor activation, and the subsequent 

increase in postsynaptic Ca2+ concentration, is a trigger for synaptic plasticity, a 

cascade of events that modifies synaptic efficacy and neuronal morphology. In classic 

NMDA receptor-dependent synaptic plasticity, NMDA receptor activation can lead to 

either LTP or LTD depending on the amount and kinetics of the calcium influx (Lu et al., 

2001; Massey et al., 2004). 

At resting membrane potential, the pore of the NMDA receptor channel is 

blocked by physiological levels of extracellular Mg2+. This blockade is voltage-

dependent resulting in the unique role of NMDA receptors as molecular coincidence 

detectors. Specifically, ion influx only occurs when both presynaptic and postsynaptic 

neurons are stimulated at the same time. Therefore, NMDA receptor activation requires 

postsynaptic depolarization (to relieve the Mg2+ block) that coincides with presynaptic 

release of glutamate that binds to GluN2 subunits. A third element is required for NMDA 
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receptor activation: the presence of glycine or D-serine occupying a binding site present 

in the GluN1 subunit. 

Appropriate coincident activity of the pre- and postsynaptic neurons causes an 

influx of calcium through NMDA receptors, and depending on the quantitative 

characteristics of this calcium signal, AMPA receptors are either inserted into or 

removed from the synapses, resulting in LTP or LTD, respectively (Malenka and Bear, 

2004; Luscher and Malenka, 2012) 

For LTP there is strong evidence that the opening of NMDA receptors increases 

calcium concentration sufficiently in the dendritic spine to activate CaMKII, which is 

found at very high concentrations in spines and which is clearly required for LTP. This 

leads to the phosphorylation of a number of proteins including AMPA receptors 

themselves. The phosphorylation of AMPA receptor subunits can cause an increase in 

the conductance of the AMPA receptor channel. Although CaMKII is well accepted to be 

one major requisite trigger for LTP, like many other cell biological phenomena, the 

signaling cascades underlying the induction and maintenance of LTP are extremely 

complex. A host of additional protein kinases, such as cAMP-dependent protein kinase 

(PKA), PKC, MAPKs, and tyrosine kinases, have all been suggested to contribute to 

LTP in various ways.  

If LTP involves the activation of CaMKII (and other kinases) and LTD represents 

the inverse of LTP, then a logical hypothesis is that LTD involves the preferential 

activation of protein phosphastases. Indeed, a very influential model proposed that 

NMDA receptor-dependent LTD depends on the calcium/calmodulin-dependent protein 

phosphatase calcineurin (PP2B) as well as on protein phosphatase 1 (PP1). This is a 
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very attractive model because calcineurin has a much higher affinity for 

calcium/calmodulin than does CaMKII and thus will be preferentially activated by a 

modest increase in calcium, the exact trigger for LTD. There is now strong evidence that 

these two phosphatases do indeed play a role in LTD, perhaps in part by influencing the 

phosphorylation state of AMPA receptors (Malenka and Bear, 2004; Luscher and 

Malenka, 2012). 

The subunit composition of NMDA receptors confers distinct biophysical and 

pharmacological properties on the receptor. Given that GluN2B-containing NMDA 

receptors have slower, longer-lived currents, carry more Ca2+ per unit of current, and 

interact preferentially with CaMKII, it is proposed that GluN2B subtypes are more likely 

to favor the induction of LTP and memory formation as compared to GluN2A subtypes. 

Although several lines of evidence support a model whereby GluN2B-dominant 

synapses are more plastic than GluN2A-containing synapses, other studies suggested 

a unique role for GluN2B in the induction of LTD versus GluN2A in LTP, or failed to find 

differences between the two GluN2 subtypes in hippocampal LTP and LTD induction 

(Yashiro and Philpot, 2008). 

It is believed that the protein-protein interactions in the cytoplasmic C-terminus 

and the extracellular N-terminus of the receptor determine the precise localization of 

NMDA receptor subunits. For example, the PDZ binding motif at the C-terminus of both 

GluN2A and GluN2B subunits binds to the second PDZ domain of MAGUK proteins, 

which act as scaffolding proteins. Members of this family show differential subcellular 

localization, with PSD-95 predominantly expressed at the postsynaptic density and 

SAP102 being distributed more evenly between synaptic and extrasynaptic sites. In 
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addition, a preferential association of GluN2A/PSD-95 and GluN2B/SAP102 has been 

reported. In addition, GluN2A and GluN2B both have endocytosis signals LL and YEKL 

on their C-termini that can bind AP2 clathrin adapter protein for endocytosis.  

Studies on the role of GluN2A and GluN2B in plasticity show that GluN2B- 

containing NMDA receptors are not necessary for LTD, and that a greater 

GluN2A/GluN2B ratio favors LTD over LTP. From these studies, it has been 

hypothesized that since the ratio of GluN2A/GluN2B determines calcium influx, that 

synapses containing a high GluN2A/GluN2B subunit ratio would require a higher 

frequency stimulus to potentiate, whereas a low GluN2A/GluN2B ratio should potentiate 

at lower frequencies than normal (Sobczyk et al., 2005; Matsuzaki et al., 2004). 

NMDA receptor-mediated postsynaptic responses may be modulated by SRC 

kinases among other candidates. Although SRC was identified as the principal tyrosine 

kinase that positively regulates NMDA receptor gating (open channel probability). Other 

members of the SRC family kinases (SFKs, such as Fyn, Yes and Lyn), have been 

shown to amplify NMDA receptor-mediated synaptic currents. The induction of LTP and 

memory formation may be dependent on Fyn-mediated Y1472 phosphorylation of 

GluN2B in the hippocampal CA1 region. The mechanism by which GluN2B Y1472 

phosphorylation enhances NMDA receptor responses and memory function is not fully 

understood. Possible mechanisms include upregulation of NMDA receptor channel 

gating, increased synaptic surface expression of receptor through inhibition of 

endocytosis, and improved synaptic anchoring through interactions with PSD-95 and α-

actinin  
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Synaptic plasticity is ultimately expressed through changes in AMPA receptor 

function and distribution. AMPA receptors mediate most fast excitatory postsynaptic 

transmission in the brain. The AMPA receptor channel is a tetramer formed by different 

combinations of four subunits termed GluA1-4. The mechanism for AMPA receptor 

function depends on subunit composition and the process of the addition and 

subtraction of postsynaptic AMPA receptors. AMPA receptor function is regulated by 

phosphorylation and rate of cycling to and from the membrane. The mechanism for 

increased AMPA function at the membrane is not as yet fully resolved, but increased 

AMPA receptor activity is associated with increased rates of AMPA receptor recycling 

(i.e. AMPA receptor delivery to the membrane). It is clear that there are at least two 

possible mechanisms for increased AMPA receptor activity are: 1) the increase in either 

surface area of the membrane or the availability of “slots” for AMPA receptors to occupy 

in the PSD, or 2) enhanced tethering of AMPA receptors to the slots that keep them 

anchored in the PSD longer. Specifically, LTP of synaptic transmission involves the 

insertion of additional long-tailed GluA1 and GluA2 AMPA receptor subunits into 

postsynaptic membrane sites; whereas LTD and depotentiation result from diffusion of 

AMPA receptors out of synaptic regions and internalization of AMPA receptors (Rial 

Verde et al., 2006; Shepherd et al., 2006).  
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Figure 6. NMDA receptor. A) The N-methyl-D-aspartate receptor (NMDA) receptor is a 

glutamate receptor that allows positive ions (Ca2+ and Na+) to flow through given both 

presynaptic stimulus paired with postsynaptic depolarization and the concomitant relief of the 

MG2+ block. B) NMDA receptor subunits phosphorylation sites (adapted from Collingridge et al., 

2003).  

 

1.4.2. Membrane-associated guanylate kinases (MAGUKs) 

The central proteins that make up the basic structure of the PSD are known as 

membrane-associated guanylate kinases (MAGUKs). MAGUKs associate with many 

proteins and interface between extracellular and intracellular signaling molecules. 

MAGUKs are part of the PSD-95 family consisting of PSD-95, PSD-93, SAP102, and 

SAP97. Knockdown of MAGUK’s causes PSD-breakdown (Chen et al., 2015). MAGUKs 
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bind GluN2B subunit on the PDZ domain, stabilizing the receptor in the membrane (Lau 

and Zukin, 2007). MAGUKs indirectly regulate AMPA receptors through stargazin and 

transmembrane AMPA receptor regulatory proteins (TARPs) (Tomita et al., 2003). 

AMPA receptor subunit GluA1 binds SAP97 (Leonard et al., 1998; Howard et al., 2010). 

RNAi knockdown of PSD95, PSD93 and SAP102 doesn’t affect spine density, but it 

causes a 75% reduction of EPSCs. Individual interference of the members of the family 

causes a 50% reduction in AMPA receptor and 25% reduction in NMDA receptor 

EPSC’s (Levy et al., 2015). It is proposed that SAP102 inserts GluN2B-conatining 

NMDA receptors into the synapse, as well controls its lateral diffusion. When 

phosphorylation of GluN2B blocks binding to MAGUKs, SAP102 is able to bind with its 

N-terminal domain to facilitate GluN2B removal in non-PDZ binding manner (Chen et 

al., 2012). Interestingly, striatal-enriched protein tyrosine phosphatase (STEP), a brain-

specific protein tyrosine phosphatase, dephosphorylates and destabilizes NMDA 

receptors via endocytosis. It is demonstrated that PSD-95 binds to STEP and promotes 

its degradation via the proteasome, thereby stabilizing surface expression of NMDA 

receptors (Won et al., 2016).  

 

1.4.3. Actin dynamics and microtubules in synaptic plasticity and 

neurodegeneration. 

The architecture of spines, and therefore their ability to change, depends on the 

specialized underlying structure of cytoskeletal filaments (Star et al., 2002; Okamoto et 

al., 2004). These microfilaments are composed of actin, which is present throughout the 

spine cytoplasm in close interaction with the PSD. Developmental studies have shown 
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that changes in spine stability and motility depend on actin polymerization. 

Reorganization of actin could therefore contribute to the structural plasticity of spines 

after LTP induction and memory acquisition. Subsequently, LTP and memory 

consolidation could be promoted by a reduction in actin-based spine motility, leading to 

spine stabilization (Engert and Bonhoeffer, 1999) Consistent with this hypothesis is the 

involvement of actin in synaptic plasticity. Drugs that block actin polymerization 

suppress LTP in the hippocampus. LTP induction in the dentate gyrus of freely moving 

adult animals also increases the content of polymerized actin (F-actin) in dendritic 

spines in the hippocampus. The elevated level of F-actin persists for at least five weeks 

after stimulation. The orientation, kinetics of assembly and stability of F-actin filaments 

are known to contribute to spine shape and are regulated by extracellular stimulation 

that could contribute to spine formation after LTP (for example, NMDA receptor 

activation). The rapid formation and persistence in spines of F-actin after LTP indicate 

that it contributes to spine morphogenesis and stability. Inhibition of NMDA receptors 

blocks LTP and active polymerization of actin, and blockade of actin polymerization in 

adult rats by latrunculin A prevents the development of late-phase LTP (8 h), leaving the 

initial amplitude and early phase (30–50 min) of LTP intact (Kasai et al., 2003). 

Together, these results indicate that NMDA receptor-dependent actin polymerization is 

important for the consolidation of the early phase of LTP into the late phase in adult 

animals in vivo. 

Research over the past decade, has highlighted the role of small G proteins as 

principal regulators of cytoskeletal organization in all cells, and uncovered their 

relationship with adhesion molecules such as cadherins, which have been shown to 
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have a role in both synaptic plasticity and the regulation of mitogen-activated protein 

kinase (MAPK) signaling pathways. Actin polymerization, depolymerization and 

branching are regulated by small G proteins such as Rac, Rho and Ras, which have 

been implicated in the cytoskeletal dynamics that accompany the developmental, 

morphological and physiological plasticity of excitatory synapses (Matus, 2000). 

Cytoskeletal abnormalities, as well as genes encoding effectors of Rho-family 

GTPases such as PIX, PAK3, LIM domain kinase (LIMK), and oligophrenein 1, have 

been linked to mental retardation and associated spine abnormalities (Newey et al., 

2005; Hayashi et al., 2004; Boda et al., 2004). One of the most important outstanding 

questions regarding spine morphology and plasticity is how the disruption of 

cytoskeletal signaling pathways (for example, LIMK, PAK3, WAVE1) are implicated in 

the proper regulation of dendritic spine morphology which influences the properties 

and trafficking of AMPA and NMDA receptors (Derkach et al., 2007). 

 

1.5. MAPKs in the CNS: the JNKs 

Mitogen-activated protein kinases (MAPKs) are serine threonine kinases that are 

evolutionarily conserved from yeast to humans, and mediate cellular responses to 

diverse signals that regulate cell proliferation, differentiation, transformation, survival 

and cell death. The three major MAPK’s are JNKs, p38 MAPK and ERKs. The canonical 

activation pathway involves a well-conserved three-tiered kinase cascade in which a 

MAP kinase kinase kinase (MAPKKK, MAP3K, MEKK, or MKKK) activates a MAP 

kinase kinase (MAPKK, MAP2K, MEK, or MKK), which in turn activates the MAPK 
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through serial phosphorylations. In the nervous system, MAPKs have unique roles 

including responding to growth factors, and proinflammatory cytokines (Davis, 2000).  

The MAPK subgroup JNKs is named for their ability to phosphorylate the 

transcription factor cJun. JNKs were first discovered in purified cyclohexamide 

challenged rat liver where serine/threonine phosphorylate microtubule associated 

protein 2 (MAP2) was observed (Kyriakis and Avruch, 1990). JNK is activated by 

treatment of cells with cytokines (e.g., TNF and IL-1) and by exposure of cells to many 

forms of environmental stress (e.g., osmotic stress, redox stress, and radiation) (Ip and 

Davis, 1998). The JNK protein kinases are encoded by three genes. The Jnk1 and Jnk2 

genes are expressed ubiquitously. In contrast, the Jnk3 gene has a more limited pattern 

of expression and is largely restricted to brain, heart, and testis. These genes are 

alternatively spliced to create ten JNK isoforms (Gupta et al., 1996). Transcripts derived 

from all three genes encode proteins with and without a C-terminal extension to create 

both 46 kDa and 55 kDa isoforms (Kuan et al., 1999; Kuan, 2003). In the central 

nervous system, JNK1 and JNK2 are constitutively activate and are primarily localized 

to axons and dendrites, while the neuron specific isoform JNK3 exhibits low basal 

activity and can be activated in the nucleus when neurons are exposed to 

environmental stress (Coffey et al., 2000). 

JNK is activated by dual phosphorylation of the motif Thr-Pro-Tyr located in the 

activation loop. JNK inactivation can be mediated by serine and tyrosine phosphatases, 

or dual specificity MAP kinase phosphatases (DUSP’s/MKP’s). JNK phosphorylation is 

mediated by two MAPKKs - MAP2K4 (also known as MKK4) and MAP2K7 (also known 

as MKK7) - that can cooperatively activate JNK. MKK4 typically activates JNK in 

http://www.ncbi.nlm.nih.gov.eres.library.manoa.hawaii.edu/LocusLink/LocRpt.cgi?l=6416
http://www.ncbi.nlm.nih.gov.eres.library.manoa.hawaii.edu/LocusLink/LocRpt.cgi?l=6416
http://www.ncbi.nlm.nih.gov.eres.library.manoa.hawaii.edu/LocusLink/LocRpt.cgi?l=6416
http://www.ncbi.nlm.nih.gov.eres.library.manoa.hawaii.edu/LocusLink/LocRpt.cgi?l=6416
http://www.ncbi.nlm.nih.gov.eres.library.manoa.hawaii.edu/LocusLink/LocRpt.cgi?l=5609
http://www.ncbi.nlm.nih.gov.eres.library.manoa.hawaii.edu/LocusLink/LocRpt.cgi?l=5609
http://www.ncbi.nlm.nih.gov.eres.library.manoa.hawaii.edu/LocusLink/LocRpt.cgi?l=5609
http://www.ncbi.nlm.nih.gov.eres.library.manoa.hawaii.edu/LocusLink/LocRpt.cgi?l=5609
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response to stress, while MKK7 activates JNK in response to inflammatory cytokines 

(Waetzig et al., 2005) (Fig. 7).  

Any single JNK may be knocked out without causing developmental defects, and 

double mutants of JNK1/JNK3, or JNK2 /JNK3 survive, but JNK2/JNK3- deficient mice 

dies with exencephaly between embryonic days Ell-E12 (Coffey, 2014). Deletion of the 

JNK upstream activators of either MKK4 or MKK7 results in death between E11.5-E13.5 

due to abnormal hepatogenesis (Ganiatsas et al., 1998; Asaoka and Nishina, 2010).  

JNK is primarily activated in response to cellular stress and contributes to the 

apoptotic response (Davis, 2000). Thus, much of work on JNK in neurons has focused 

on its role in neuropathology. In particular, mice lacking JNK3 show diminished 

excitotoxic cell death (Yang et al., 1997), reduced effects of cerebral ischemia/hypoxia 

(Kuan et al, 2003), protective effects in models of Alzheimer’s disease (Yoon et al., 

2012), Parkinson’s disease and neuro-inflammation (Haeusgen et al., 2009). Similarly, 

JNK inhibitors show therapeutic promise by reducing cell death in many 

neuropathological models (Bogoyevitch et al., 2010).  

Human genetic studies demonstrate that mutations in genes that form the JNK 

signaling pathway are associated with neuropsychiatric disorders, including 

schizophrenia, epilepsy, autism spectrum disorder, and learning disability. For instance, 

down regulation of MAP3K TAOK2 protein (De Anda et al., 2012), impairs basal-

dendrite formation. The genomic location of TAOK2 is on 16p11.2, which is a region 

known to be associated with autism when it has duplications or deletions (Weiss et al., 

2008). JNK activation was shown to mediate the function of interleukin-1-receptor 

accessory protein (IL1RAPL1) (Pavlowsky et al., 2010). IL1RAP1 is associated with 
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intellectual disability, and its deletion causes impaired synaptogenesis (Ramos-Brossier 

et al., 2015), reduced excitatory synapses and reduced LTP.  

 Despite this focus on their roles in neuropathology, the high neuronal expression 

of JNK suggests that this kinase also play important physiological roles, including 

recently described roles in memory and synaptic plasticity. Indeed, JNK has been 

implicated in synaptic plasticity including LTP (Li et al., 2007), LTD (Morishima et al., 

2001; Yang et al., 2011) and depotentiation (Zhu et al., 2005; Yang et al., 2011) (Table 

1). Moreover, we recently provided the first evidence that JNK is critically involved in 

contextual fear conditioning under both stressful and baseline conditions in isoform 

specific manner (Sherrin et al., 2010).  

Direct JNK substrates that might control synaptic transmission are not fully 

identified. Thus far, identified substrates of JNK include proteins that are important 

regulators of synaptic plasticity. JNK1, and probably JNK3, phosphorylate PSD95 on 

serine 295 (Kim et al., 2007), causing its enrichment at synapse where it mobilizes cell-

surface glutamate AMPA receptor subunits and thereby enhances postsynaptic 

currents. In addition, JNK1 phosphorylates GluA2 AMPA receptor subunit, facilitating its 

insertion into the synaptic membrane in response to NMDA receptor stimulation 

(Thomas et al., 2008). Collectively, these data indicate that JNK plays a key role in the 

regulation of synaptic plasticity.   
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Figure. 7. Simplified model of the JNK signaling pathway cascade. The three-tiered core 

signaling module of MAPK, MAPKK and MAPKKK (signalosome) is composed by scaffold 

proteins in a situation- and cell type-specific manner (Waetzig et al., 2006). 
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Table. 1. JNK in synaptic plasticity. Previous electrophysiological studies relevant to the JNK 

signaling pathway. 

 

1.6. JIP scaffold proteins   

Rather than simply serving as static backbones upon which JNK signaling 

complexes are assembled, evidence has shown that the JIP scaffold proteins play a 

central role in JNK module function by regulating the dynamic interrelationship of 

associated protein complex components. Scaffold proteins also impart a degree of 

specificity to JNK signaling modules by directing appropriate responses to specific 

stimuli while preventing unwanted crosstalk. In mammals, there are four members of the 

JNK-interacting proteins (JIPs) family of scaffold proteins (JIPs 1-4).  JIP1, a 

phosphoprotein, features a JBD (JNK-binding domain) found in a variety of JNK- 

binding proteins including MAPKKs, MAPK phosphatases, and substrates such as cJun. 

The C-terminal half of JIP1 contains protein-protein interaction domains including an 

SH3 (SRC homology domain 3) and PTB domain (phospho- tyrosine-binding domain) 

(Fig. 8A).  In vitro biochemical analysis show that all three JNK isoforms (highly 
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homologous JIP2 scaffold have significantly lesser affinities toward JNK), MKK7, and 

MLK bind to separate sites on JIP1 protein (Morrison and Davis, 2003; Whitmarsh et al., 

1998; Dickens et al., 1997; Yasuda et al., 1999). These studies also show that JIP1 

potentiates activation of JNK (Whitmarsh et al., 2001).  

Mechanistic insight into the function of JIP1 was provided by a study that showed 

activation of JNK by select stimuli required phosphorylation of JIP1 on Thr103 in vitro 

(Nihalani et al., 2003; Nihalani et al., 2001). In particular, a model has been proposed 

whereby under baseline conditions JIP1 is bound to the monomeric inactive form of the 

MLK family member DLK (dual leucine zipper bearing kinase), and then in response to 

stress, or other activating stimuli, JIP1 recruits JNK and is phosphorylated by JNK on 

Thr103, leading to dissociation of DLK and the formation of active autophosphorylated 

DLK dimers that promote further JNK activation (Nihalani et al., 2003) (Fig. 8). In line 

with this hypothesis, previous study showed that mice with mutation of JIP1 on Thr103 to 

Ala (JIP1/TA mice) have suppressed JIP1-mediated JNK activation under metabolic 

stress (Morel et al., 2010).  

JIP1 is expressed in several tissues but is highly enriched throughout the brain 

(Dickens et al., 1997; Pellet et al., 2000). Previous studies have demonstrated that JIP1 

is required for stress-induced JNK activation and neuronal death in response to 

ischemia in vitro and stroke in vivo in hippocampal neurons (Whitmarsh et al., 2001). 

This phenotype is similar to those of mice lacking neuronal JNK3, and of mice with cJun 

mutant that lack JNK phosphorylation sites, demonstrating a clear functional link 

between JIP1 scaffold protein and JNK signaling in neurons. Moreover, our preliminary 

data have shown that injection of kainate in the hippocampus caused increased cJun 
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phosphorylation (a canonical JNK target) only in WT JIP1 mice, but not in JIP1TA mice 

(Fig. 8C). These data demonstrate that the Thr103Ala mutation suppresses JIP1-

dependent JNK activity in the hippocampus.   

Together, these observations suggest that JIP1 is a major regulator of neuronal 

function.  

 

 

 

Figure 8. JIP1 structure, JNK activation mechanism and response to kainate toxicity of 

JIP1TA. (A) The structure of JIP1 scaffold protein is illustrated schematically. The JBD, the SH3 

domain, and the PTB domain are indicated. (B) Interaction of JIP1 with components of the JNK 

pathway. Schematic illustration of the dynamic relationship between JIP1, DLK, and JNK. Under 

basal conditions DLK is bound to JIP1 in a monomeric, inactive state. Upon stimulation, JNK is 

recruited to JIP1. This recruitment leads to JIP1 T103 phosphorylation, DLK dissociation from 

JIP1, and subsequent dimerization and activation of DLK and ultimately JNK (Nihalani et al., 

2003). (C) JIP1-dependent JNK activation in the hippocampus is suppressed in JIP1/TA mice.  

JIP1 WT and JIP1/TA mice were treated by systemic injection of kainate.  At 2 h post-treatment, 

sections of the brain were prepared and stained (green) with antibodies to pSer63 c-Jun. Note 

absence of pSer63 c-Jun in JIP1/TA mice. DNA was stained with DAPI (red).  Representative 

sections of the dentate gyrus of the hippocampus are presented. Adapted , (A) from Yasuda et 

al., 1999, and (B) from Nihalani et al., 2003.    
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1.6.1. JIP1 in transport  

JIP1 acts as an adapter protein that links the kinesin-1 motor protein to cargoes. 

JIP1 may therefore influence the kinesin-mediated localization of cargo molecules and 

organelles within the cell. Proposed cargoes are represented by the low-density 

lipoprotein receptor-related protein LRP8, (Verhey et al., 2001), amyloid precursor 

protein (APP) (Scheinfeld et al., 2002) and organelles, including mitochondria and 

synaptic vesicles (Horiuchi et al., 2005). More recently it has been shown in Drosophila 

that JIP1 regulates synaptic development independently of its role in kinesin-I mediated 

transport (Klinedinst et al., 2013).  

Long distance transport of protein cargoes throughout cells takes place along 

microtubules, depending on cellular demands and functions. Functions involved are 

distribution of mitochondria, trafficking of RNA granules, protein and organelle 

degradation, growth and injury signaling and protein secretion. Anterograde transport is 

controlled by kinesins, while retrograde transport is controlled by dynein activated by 

dynactin.  

 Kinesins use ATP hydrolysis to move along microtubules. Kinesin-1 is made up 

of two kinesin heavy chains (KHC) with two kinesin light chains (KLC). In neurons, 

kinesin-1 transports cargo at a rate of ~1um/s. JNK activity can have both positive and 

negative effects on kinesin-1 function. For example, JNK may phosphorylate JIP1 on 

S421 causing reduced anterograde kinesin-1 run-lengths, while non-phosphorylated 

S421 has reduced retrograde run-lengths. (Fu and Holzbaur, 2013) (Fig. 9) 
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Figure 9. JIP1 in transport. On microtubules, JIP1 links with the anterograde transport protein 

Kinesin-1 to move cargoes like APP and ApeER2.  

 

1.7. JNK regulation by JIP1 

It is demonstrated that JIP1 deletion inhibits JNK activity and changes NMDA 

receptor function (i.e. delayed desensitization of NMDA receptor currents) in cerebellar 

granule neurons (Kennedy et al., 2007), suggesting that JIP1 protein could play an 

important role in NMDA receptor signaling. Additionally, our study has demonstrated 

that sustained activation of hippocampal JNK2 and JNK3 results in the stress-induced 

impairment of contextual fear conditioning and LTP, while JNK1-deficiency and 

pharmacological inhibition of the hippocampal JNK pathway under baseline conditions 

enhances retention of contextual fear, suggesting that activation of JNK might serve as 
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an endogenous break in the processes underlying memory formation (Sherrin et al., 

2010) (Fig. 10). Taken together, these data suggest that JIP1-mediated JNK activation 

could have a regulatory role in NMDA receptor function and NMDA receptor-dependent 

memory and synaptic plasticity.  

 

 

 

Figure 10. Stress-modulated and baseline contextual fear conditioning are JNK isoform 

specific. Constitutive Jnk2- and Jnk3-null mice trained immediately after 1 h immobilization 

stress did not display stress-induced impairment of contextual fear conditioning. As found for 

wild-type mice Jnk1-null mice did show stress-induced memory deficits. The baseline level of 

contextual fear, unchanged in Jnk2- and Jnk3-null mice was significantly increased in Jnk1-null 

compared to wild-type mice (n= 8 per group). Statistically significant differences: * p < 0.05 vs 

wild-type mice (Sherrin et al., 2010). 
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1.8. Aims of the dissertation 

Human genetic studies demonstrate that mutations in genes that form the c-Jun 

NH2-terminal kinase (JNK) signaling pathway are associated with neuropsychiatric 

disorders, including schizophrenia, epilepsy, autism spectrum disorder, and learning 

disability (Coffey, 2014). These observations suggest that JNK play an important role in 

the normal function of the central nervous system. Indeed, recent studies using a 

mouse experimental model have confirmed that JNK-deficiency causes enhanced 

memory (Sherrin et al., 2010). This is exemplified by the observation that JNK1-deficient 

mice exhibit enhancement in associative learning, including contextual fear conditioning 

(Sherrin et al., 2011). Mechanisms that contribute to JNK-regulated synaptic plasticity 

include NMDA-type glutamate receptor (NMDAR) -stimulated JNK activation (Mukherjee 

et al, 1999), AMPA glutamate receptor re-localization (Zhu et al., 2005; Thomas et al., 

2008), and synaptic recruitment of the PSD95 postsynaptic scaffold protein (Kim et al., 

2007). Collectively, these data indicate that JNK plays a key role in the regulation of 

synaptic plasticity. 

While progress towards understanding the role of JNK in learning and memory 

formation has been achieved, little is known about the mechanisms that regulate JNK 

during behavioral responses. Previous studies have implicated roles for scaffold 

proteins in the control of MAP kinase signaling cascades, including the JNK signaling 

pathway (Morrison and Davis, 2003). Indeed, the JNK-interacting protein 1 (JIP1) 

scaffold protein can assemble a functional JNK signaling pathway (Whitmarsh et al., 

1998; Whitmarsh et al., 2001). JIP1 is highly expressed in the brain (Whitmarsh et al., 

1998; Dickens et al., 1997) and localizes at synapses (Pellet et al., 2000). Interestingly, 
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mice with JIP1-deficiency exhibit defects in JNK activity and altered NMDA receptor 

signaling (Kennedy et al., 2007). Collectively, these data suggest that JIP1-mediated 

JNK activation contributes to the regulation of NMDA receptor activity.   

Based on these data, the major hypothesis is that JIP1-regulated JNK activation 

at the synapse plays a critical regulatory role in NMDA receptor-dependent synaptic 

plasticity (Fig. 11). JIP1 may contribute to multiple biological processes, including 

microtubule motor transport and JNK signaling (Morrison and Davis, 2003).  Studies 

using a Jip1 null allele (Whitmarsh et al., 2001) may therefore be compromised by 

defects in both JIP1-mediated JNK activation and defects in other JIP1-mediated 

biochemical activities. Thus, the role JIP1-mediated JNK activation on NMDA receptor 

function, and memory will be determined by studying the effects of point mutations in 

JIP1 that prevent JIP1-mediated JNK activation (Morel et al., 2010; Nihalani et al., 

2003). In addition, it will be tested whether JIP1 interaction with the light chain of 

kinesin-1 (Fu and Holzbaur, 2014), critical for formation and transport of the functional 

JIP1/JNK signaling module to the synapse (Koushika, 2008), is also required for the 

regulation of NMDA receptor function and synaptic plasticity.   

To test the hypothesis, we examined the phenotype of two different mouse 

models with point mutations in the Jip1 gene that block JIP1-mediated JNK activation 

(see specific Aims 1 and 2) in memory formation, synaptic plasticity and NMDA receptor 

function. Our work establishes for the first time that JIP1-mediated JNK activation 

regulates hippocampal-dependent memory formation and synaptic plasticity through 

regulation of NMDA receptor expression and activity. In addition, mice with point 

mutation that prevents binding of JIP1 to kinesin-1 motor protein will be investigated. 
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Thus, we explored whether the fully formed synaptic JIP1/JNK signaling module is 

required for the regulation of NMDA receptor function, and if its regulation is constrained 

to the synapse. 

 

1.8.1. Specific Aim 1  

Specific Aim 1 determined the role of JIP1- mediated JNK activation in regulation 

of hippocampal NMDA receptor expression, function, and NMDA receptor-dependent 

memory and synaptic plasticity. My hypothesis was that JIP1 regulated NMDA receptor 

activation plays a regulatory role in NMDA receptor synaptic plasticity and memory. Two 

lines of mice were employed: one line harboring mutations that prevents recruitment of 

JNK to JIP1 binding site (“JIP1∆JBD” mice, (Leu160-Asn161-Leu162 to Gly160-Arg161-Gly162)), 

and another mouse line with point mutation that prevents JIP1 phosphorylation by JNK 

(Thr103Ala, “JIP1TA” mice). Both mutations prevent JIP1-mediated JNK activation. Using 

these mouse models, we first investigated the consequences of impaired JIP1/JNK 

activation on learning and memory. We expected that impaired JIP1-mediated JNK 

activation would result in enhancement of spatial memory formation and contextual fear 

conditioning.   

We then extended our memory findings by characterizing the electrophysiological 

properties of NMDA receptors in these two JIP1 mutant mice. We saw differences in the 

ability of JIP1TA and JIP1∆JBD mice to undergo changes in plasticity as measured with 

field recordings utilizing NMDA receptor-dependent LTP and LTD inducing protocols. 

Furthermore, we showed the mechanistic connections between JIP1 mutants and 

NMDA receptors by testing the hypothesis that impairment of JIP1-mediated JNK 
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activity might increase expression of NMDA receptor subunits at the synapse. To 

achieve this goal, we characterized the interaction between JIP1, JNK and NMDA 

receptors in immunoprecipitation, and western blotting studies.  

 

1.8.2. Specific Aim 2 

Specific Aim 2 was to determine whether kinesin 1-dependent transport of JIP1 

to the synapse is required for JIP1/JNK mediated regulation the hippocampal NMDA 

receptor-dependent memory as specified under SA1. Our hypothesis was that kinesin 

1-dependent transport of JIP1 and associated cargo to the synapse is required for 

JIP1/JNK mediated regulation of hippocampal NMDA receptor-dependent memory. JIP1 

have important roles on attaching certain cargoes (i.e. APP, LRP8) to kinesin-1 light 

chain through the JNK signaling complex. In this specific aim we determined whether 

the mutation in JIP1 kinesin-1 binding domain (Verhey et al., 2001) (Y709A, “JIP1YA” 

mice), which normally facilitates the transport and assembly of the JIP1/JNK signaling 

module to the neuronal processes, recapitulates the effects of the loss of JIP1 

mediated-JNK activation on NMDA receptor-dependent memory and synaptic plasticity. 

Alternative hypothesis was that JIP1 mediated JNK signaling is sufficient for the 

regulation of the NMDA receptor function and does not depend on JIP1 cellular 

localization for interactions with its membranous cargoes in dendrites and spines. To 

differentiate between alternative hypotheses, we employed methods/approaches similar 

to those mentioned under Specific Aim 1.   

 Thus, with novel mouse models, we have investigated the role of the JIP1/JNK 

signaling module in synaptic plasticity, learning and memory through its regulation of 
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NMDA receptors. By combining molecular, electrophysiological and behavioral 

evaluation of JIP1 mutant mice, we have revealed some of the roles for this scaffolding 

protein in modulating hippocampus-dependent memory, synaptic transmission and 

plasticity. This study is a critical step in elucidating how JIP1-mediated JNK signaling 

may be positively regulated to suppress unwanted memories that may have formed 

under traumatic circumstances as is found in patients suffering from post-traumatic 

stress disorder (PTSD) (Fig. 11). 
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Figure 11.  A model of how JIP1-mediated JNK signaling regulates synaptic NMDA 

receptor expression. JIP1-dependent JNK activation by the NMDA receptor (NMDAR) may 

suppress translation of NMDA receptor subunit mRNA (Grin1, Grin2a, Grin2b). Alternatively, the 

same pathway regulates cell surface insertion or retrieval of NMDA receptors and/or lateral 

diffusion of extrasynaptic NMDA receptors into synaptic sites. Adapted from Morel et al., 2018. 
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2.0. Materials and methods                               

2.1. Mice  

C57BL/6J mice (stock number 000664) were obtained from the Jackson 

Laboratory.  We have previously described Jip1 Thr103Ala (JIP1TA) mice on a 

C57BL6/J strain background (Morel et al., 2010) (Fig. 12).  
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Figure 12. Creation of mice with a germline knock-in mutation in the JIP1 gene.  A) A 

floxed NeoR cassette was inserted to intron 3 of JIP1 by homologous recombination and point 

mutations were introduced into exon 3, along with a silent mutation for the XmaI restriction site. 
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The NeoR cassette was excised with Cre recombinase.  Hind3 sites are labeled (H). B) The 

mutated allele replaces codon 103 that encodes Thr(ACT) with Ala(GCC). Also, a translationally 

silent restriction site for Xmal was added in exon 3. The floxed NeoR cassette used for selection 

was deleted using Cre recombinase. C) Southern blot to probe for vector in ES cell DNA. D) 

PCR genotype analysis (Morel et al., 2010) 

 

Mice with a defect in the JNK binding domain of JIP1 (replacement of Leu160-

Asn161-395 Leu162 with Gly160-Arg161-Gly162) were established by homologous 

recombination in embryonic stem (ES) cells using standard methods. The mutated allele 

was designated JIP1∆JBD (Fig. 13). Briefly, a targeting vector was constructed that was 

designed to introduce point mutations in exon 3 of the Jip1 gene that create the ΔJBD 

mutation and also the introduction of an EagI restriction site. The targeting vector was 

also designed to introduce a floxed NeoR cassette in intron 3. TC1 embryonic stem 

cells (strain129svev) were electroporated with this vector and selected with 200 µg/ml 

G418 (Invitrogen) and 2 µM gancyclovir (Syntex). ES cell clones with the floxed NeoR 

cassette correctly inserted in intron 3 were identified by Southern blot analysis. ES cell 

clones without (genotype +/NeoR-JIP1WT) and with (genotype +/NeoR-Jip1∆JBD) the 

ΔJBD mutation in exon 3 was identified. These ES cells were injected into C57BL/6J 

blastocysts to create chimeric mice that were bred to obtain germline transmission of 

the targeted Jip1 allele. The floxed NeoR cassette was excised using Cre recombinase. 

The mice used in this study were backcrossed (ten generations) to the C57BL/6J strain 

(Jackson Laboratories).  
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Figure13. Establishment of mice with a three amino acid change in the JBD domain. (A,B) 

A targeting vector was designed to replace JIP1 residues Leu160-Asn161-Leu162 with Gly160-

Arg161-Gly162) and to introduce silent mutations that introduce an EagI site in exon 3 of the 

Jip1 gene by homologous recombination in ES cells. The floxed NeoR cassette inserted in 

intron 3 and used for selection was deleted with Cre recombinase. The genomic localization of 

HindIII sites (H) and the Southern blot probe are illustrated. (C) Genomic DNA isolated from 

wild-type and mutant ES cells was digested with HindIII and examined by Southern blot analysis 

to confirm the correct targeting of the Jip1 gene. (D) Genomic DNA isolated from wild-type 

(+/NeoR-Jip1+) and mutant (+/NeoR-Jip1∆JBD) targeted ES cells was amplified by PCR with 

the primers 5´-GCAAGCTGGGAAGATGACTTTATG-3' and 1168 5’-AGACTGC 

CTTGGGAAAAGCG-3' and digested with EagI. A 2.1 kb DNA fragment (NeoR-1169 Jip1+) or 

1.175 kb plus 0.925 kb DNA fragments (NeoR-Jip1 ∆JBD) were identified by agarose gel 

electrophoresis. (E) Genomic DNA isolated from wild-type (Jip1+/+), heterozygous 

(Jip1+/∆JBD), and homozygous (Jip1 ∆JBD/∆JBD) mice was examined by PCR analysis with 

the primers 5´-ACACACACCCCAGGTCTTAG-3´ and 5´-TCAGCTTTGACGCCTATCTTGAC-3´ 

to yield a 400 bp DNA fragment (Jip1+) or a 450 bp DNA fragment (Jip1 ∆JBD). (F) Lysates 
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prepared from the cerebral cortex of Jip1+/+ (WT) and Jip1∆JBD/∆JBD (∆JBD) mice were 

examined by immunoblot analysis using antibodies to JIP1 and GAPDH (Davis lab).    

 

For the third JIP1 mutant mouse strain, the mutation in JIP1 kinesin-1 binding 

domain (JIP1 Y709A), was done as the previous strain was made, except the mutation 

is in exon 12 and a Xmal restriction site was removed there as a result of homologous 

recombination (Fig. 14).   
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Figure 14. Establishment of mice with a point mutation in JIP1 (Tyr705Ala). (A,B) A 

targeting vector was designed to replace Tyr705 with Ala and to introduce silent mutations that 

delete and EcoRV site in exon 12 of the Mapk8ip1 gene by homologous recombination in ES 

cells. The floxed NeoR cassette used for selection was deleted using Cre recombinase. C) 

Southern blot to probe for vector in ES cell DNA. D) PCR genotype analysis. E) Genomic DNA 

was analyzed with PCR for base pair lengths of 680bp (+/YA and YAYA), and 550bp (+/YA and 

+/+). F) Brain lysates were examined by immunoblot analysis using antibodies for JIP1, JIP2 

and tubulin (Davis lab). 

 

The mice were housed in a facility accredited by the Association for Assessment 

and Accreditation of Laboratory Animal Care (AAALAC). The Institutional Animal Care 

and Use Committees (IACUC) of the University of Massachusetts, University of Hawaii, 

and Morehouse School of Medicine approved all studies using animals.  

 

2.2. Analysis of Tissue sections 

 Paraformaldehyde-fixed brains were cryoprotected in 30% sucrose in 0.1 M PBS 

for 48 h at 4°C. The sections were examined using Nissl stain (American MasterTech). 

Immunohistochemical analysis was performed on free-floating sections cut at 30 µm on 

a cryostat. The sections were washed once with PBS and blocked with 5% goat serum 

in PBST (PBS + 0.3% Triton X-100) for 1 h. The sections were then incubated overnight 

with primary antibodies to JIP1 (1:500, BD Pharmingen), anti-NeuN antibody (1:500, 

Millipore), MAP2 antibody (1: 500, Millipore), GAD67 antibody (1: 5000, Millipore), or 

GFAP antibody (1: 150, Promega) at 4°C. The sections were washed in PBST and 

incubated (1 h) with anti-mouse Ig or anti-rabbit Ig conjugated to Alexa Fluor 488 or 546 

(Life Technologies). Nuclei were stained using DAPI (Vectashield with DAPI, Vector 

Laboratories). Images were obtained with a Zeiss Axio Imager 2 microscope at 10X and 
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20X magnification. The mean fluorescence intensity was quantitated using ImageJ 

software 

 

2.3. Kainate Toxicity 

JIP1WT, JIP1TA and JIP1∆JBD mice (8-12 week-old) were injected intraperitoneally 

with 30mg/kg kainic acid (Tocris) (Yang et al., 1997). At 2h post-treatment, the mice 

were perfused with 4% paraformaldehyde. Brains were harvested and fixed for an 

additional 24 h in 4% paraformaldehyde, then dehydrated and embedded in paraffin. 

Sagittal sections (5 µm) were cut, rehydrated and subjected to microwave antigen 

retrieval (Vector Laboratories). Sections were blocked for 1h at room temperature (1% 

BSA, 2% normal goat serum, 0.4% Triton-X100 in 483 PBS) and incubated overnight 

with primary antibodies to pSer63-cJun or cFos (Cell Signaling Technologies) or cJun 

(Santa Cruz). The primary antibodies were detected by incubation with anti-rabbit Ig 

conjugated to Alexa Fluor 488 (Life Technologies). DNA was detected by staining with 

DAPI (Life Technologies). Fluorescence was visualized using a Leica TCS SP2 

confocal microscope equipped with a 405-nm diode laser. 

 

2.4. Dendritic spine density and arborization complexity 

Golgi staining was performed on 4 brains each for WT and JIP1TA using the FD 

Rapid Golgi Stain Kit (FD Neurotechnologies) following the manufacturer’s guidelines. 

Coronal sections (150 µm) were obtained using a microtome (Leica VT1000S). Spines 

examined were apical (stratum radiatum) and basal (stratum oriens) dendrites of CA1 

pyramidal neurons. CA1 pyramidal neurons were traced using a Zeiss Axioskop 2 Plus 
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microscope with a 100x oil immersion objective. Only pyramidal neurons that exhibited 

complete impregnation, not obscured by other neurons or artifacts were included. Five 

neurons per animal were three-dimensionally reconstructed using NeuroLucida 

Software (MicroBrightField). At least three apical (>50 µm from soma) and three basal 

(>30 µm from soma) dendritic segments (>25 µm length) were quantified in each 

neuron. Spine densities were calculated as mean numbers of spines per 10 µm per 

dendrite per neuron in individual mice (Feldman ML et al., 1979). Dendritic arborization 

was analyzed with Scholl analysis (via NeuroLucida) of the apical and basilar dendrites 

of these neurons. Briefly, a series of increasingly large concentric circles centered at the 

cell body and separated by 10 µm radius intervals were superimposed upon traces of 

apical and basilar dendrites; the number of dendritic intersections with each concentric 

circle was recorded. On the basis of morphology, spines were classified into the 

following categories: thin; mushroom; and stubby (Korobova and Svitkina, 2010).  

 

2.5. Immunoblot Analysis 

To define the role of JIP1 in NMDA receptor channel conductance, we measured 

protein concentrations and mRNA expression of synaptic proteins in the hippocampus. 

We examined glutamate receptors and other proteins critical to synaptic function. 

Tissue extracts were prepared from JIP1WT, JIP1TA and JIP1∆JBD adult mice (8-12 week-

old) using Triton lysis buffer (20 mM Tris-pH 7.4, 1% Triton-X100, 10% glycerol, 137 

mM NaCl, 2 mM EDTA, 25 mM β-glycerophosphate, 1 µM sodium orthovanadate, 1 µM 

PMSF and 10 µg/mL Leupeptin plus Aprotinin).  Extracts (20-50 µg of protein) were 

examined by protein immunoblot analysis by probing with antibodies to pSer63-cJun, 
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JNK, GAPDH, GluN2B, SAP102, pERK1/2, pSer133 CREB and CREB (Cell Signaling 

Technologies), ERK2 and pJNK (Santa Cruz), GluN2A, pY1472 GluN2B, GluN1, GluA1, 

GluA2 and Synapsin I (EMD Millipore), JNK1/2 (BD Pharmingen), ß-Tubulin (Covance), 

and PSD-95 and KIF17 (Sigma). Immunocomplexes were detected by fluorescence 

using anti-mouse and anti-rabbit secondary IRDye antibodies (Li-Cor) and quantitated 

using a Li-Cor Imaging system. 

 

2.5.1. Multiplexed ELISA. 

 Quantitative analysis of pSer63-cJun, cJun, pJNK, JNK, pERK and ERK2 was 

performed using Bioplex kits (Bio-Rad) and a Luminex 200 instrument (EMD Millipore).  

 

2.6. Behavioral Tests 

To define the role of JIP1-mediated memory formation in resultant behavior, we 

used the following behavioral tests: Rotarod, Elevated plus maze, Open field test, 

Acoustic startle and pre-pulse inhibition, Contextual fear conditioning and Morris water 

maze.   

 

2.6.1. Rotarod test  

Motor coordination and skill learning were assessed using an accelerating 

Rotarod (Stoelting). Starting speed for the Rotarod began at 4 rpm and increased to 40 

rpm over a 5 min period. Mice were tested 4 times daily for 2 consecutive days with an 

inter-trial interval of 1 h between tests. The latency to fall off the rod was measured for 

each trial.  
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2.6.2. Elevated plus maze test   

The elevated plus-maze test for anxiety-related behaviors was performed as 

previously described (Todorovic et al., 2007). Briefly, mice were placed in the center 

platform of the elevated plus maze and allowed to explore for 5 min. Animal behavior 

was recorded by a video camera connected to a PC and analyzed by video tracking 

software (VideoMot 2, TSE Systems). The percentage of time spent in the open and 

closed arms were recorded. Shift of preference from the open to the closed arms was 

interpreted as an increase of anxiety-like behavior. Locomotor activity was determined 

with this test by the distance traveled.  

 

2.6.3. Open field test  

General exploratory activity and anxiety were assessed in an open field test. 

Mice were placed in the center of an open field apparatus (50 x 50 cm) protected with 

10 cm high opaque walls and allowed to explore for 5 min. The field was divided into 16 

equal squares (12.5 cm x 12.5 cm), consisting of 12 outer squares and 4 inner squares. 

Animal behavior was recorded by a video camera connected to a PC and analyzed by 

video tracking software (VideoMot 2, TSE Systems). The amount of time spent in the 

inner and outer squares and the total distance traveled was measured.   

 

2.6.4. Acoustic startle and prepulse inhibition   

Acoustic startle and pre-pulse inhibition test were performed as previously 

described (Pitts et al., 2012). Mice were placed in the startle chamber (Responder-X, 
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Columbus Instruments) and allowed a 5 min acclimation period with the background 

noise (70 dB) continuously present. Following the acclimation period, two blocks of trials 

were administered to assess the acoustic startle response and pre-pulse inhibition, 

respectively. The first block of trials consisted of 8 sets of 4 types of trials that were 

randomly distributed. Startle stimuli (40 ms) of varying intensities were administered, 

with an inter-stimulus interval of 15 s. The stimulus intensities were 80, 90, 100, and 

110 dB. Baseline activity was assessed by a set of no-stimulus trials. The startle 

amplitude was defined as the peak response during a 100 ms sampling window 

beginning with the onset of the startle stimulus. Mean startle amplitudes were derived 

by subtracting the average startle amplitudes of stimulus intensities employed (80–110 

dB) from the no-stimulus trial (70 dB). The second block of trials consisted of 8 sets of 5 

trial types, distributed randomly and separated by 20 s inter-stimulus intervals. The trial 

types were (1) no-stimulus/background noise (70 dB); (2) 40 ms, 110 dB startle alone; 

(3–5) 110 dB startle preceded 100 ms by one of three 20 ms pre-pulses at the following 

intensities: 74, 80, 86 dB. The startle amplitude for each subject at each of the different 

pre-pulse intensities was calculated using the following formula: pre-pulse inhibition 

(PPI)=100−100×[response amplitude for pre-pulse stimulus paired with startle  

stimulus/response amplitude for startle stimulus alone].   

 

2.6.5. Contextual fear conditioning   

Context-dependent fear conditioning was performed using a computer-controlled 

fear conditioning system (TSE, Bad Homburg, Germany) (Todorovic et al., 2007). The 

fear conditioning was performed in a Plexiglas cage (36 x 21 x 20 cm) within a fear 
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conditioning box. The training (conditioning) consisted of a single trial. The mouse was 

exposed to the conditioning context (180 sec), followed by a tone [conditioned stimulus 

(CS), 30 sec, 10 kHz, 75 dB SPL, pulsed 5 Hz]. After termination of the tone, a foot 

shock [unconditioned stimulus (US), 0.8 mA or 0.4 mA, 2 s, constant current] was 

delivered through a stainless-steel grid floor.  

Under these conditions, the context served as background stimulus. Background 

contextual fear conditioning but not foreground contextual fear conditioning, in which the 

tone is omitted during training, has been shown to involve the hippocampus (Philips and 

LeDoux, 1994). A loudspeaker provided constant background noise. Contextual 

memory was tested in the fear-conditioning box for 180 sec without CS or US 

presentation (with background noise), 0 min, 1 h or 24 h after fear conditioning. 

Freezing, defined as a lack of movement except for respiration was recorded every 10 

sec by a trained observer for a total of 18 sampling intervals. The mean number of 

observations indicating freezing was expressed as a percentage of the total number of 

observations. The exploration of the fear conditioning box during the training and activity 

burst produced by electric foot-shock were automatically detected by an infrared beam 

system and analyzed using TSE software.   

 

2.6.6. Morris water maze  

The water maze paradigm was performed in a circular tank (diameter 180 cm; 

height 30 cm).  It was located in a room with various distal cues. The tank was filled with 

water (40 cm depth) maintained at 23°C, which was made opaque by the addition of a 

nontoxic white paint. Inside the pool was a removable, circular (12 cm in diameter) 
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plexiglas platform 0.5 cm below the surface of the water. On the first two days, each 

mouse received visible platform training that consisted of four consecutive trials of 

climbing onto the visible platform (with a black plastic brick placed above it) until each 

subject was able to climb without help. For the hidden platform task, the mice were 

given four consecutive trials per day starting from four different pseudo-randomized 

start locations, with a 15 min inter-trial interval. Mice were allowed to search for the 

hidden platform for 60 s. If the mice did not find the platform within 60 s, they were 

guided to it. Mice were allowed to rest on the platform for 15 s after each trial. The 

hidden platform task was composed of two phases: (1) 10 days (acquisition phase-days 

3-13) with a hidden platform in located in the center of the target quadrant; (2) reversal 

phase (day 14) with the hidden platform located in the center of the quadrant opposite 

to the original target quadrant. Reversal platform training was conducted without 

changing any distal visual cues.  Probe trials in which the escape platform was removed 

from the pool were conducted on days 10 (target quadrant), 13 (target quadrant), and 

15 (opposite quadrant). During the memory test (probe trials), the platform was removed 

from the tank, and the mice were allowed to swim in the maze for 60 s. The swimming 

path of the mice was recorded by a video camera and analyzed with the computer-

based tracking software Videomot 2 (TSE Systems). The percentage of swim distance 

spent in the platform quadrant, and the latency to find the platform were analyzed.  

 

2.7. Synaptoneurosomes 

 Hippocampi from 4 mice (age 8-12 wks) were isolated and homogenized in Syn 

buffer (10 mM HEPES (pH 7.0), 1 mM EDTA, 2 mM EGTA, 0.5 mM DTT, 10 µg/mL 
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Leupeptin and 50 µg/mL soybean trypsin inhibitor) (Villasana et al., 2006). Briefly, 

lysates were then filtered twice through 3 layers of 100 µm pore nylon filter, and then 

once through a 5 µm pore hydrophilic filter. The filtrate was centrifuged at 1,000g for 10 

min (4°C). The pellet corresponds to the synaptoneurosome fraction.  

 

2.8. Electrophysiology 

Extracellular recordings were performed as described previously (Lawrence et 

al., 2014). Hippocampi of wild-type or mutant mice (8-12 weeks) were rapidly removed 

and briefly chilled in ice-cold artificial CSF (aCSF) (consisting of the following: 130 mM 

NaCl, 3.5 mM KCl, 10 mM glucose, 1.25 mM NaH2PO4, 2.0 mM CaCl2, 1.5 mM MgSO4 

and 24 mM NaHCO3 (equilibrated with 95% O2/5% CO2, pH 7.4). Transverse slices 350 

μm thick were prepared with a Vibratome (Leica; VT1200S) and maintained at least 1 h 

in a holding chamber containing aCSF. The slices were then transferred to a recording 

chamber and perfused (3 mL/min) with aCSF at 32°C. CA1 field EPSPs (fEPSPs) were 

recorded with a glass electrode filled with 3 M NaCl (resistance 1-1.5 MΩ) by stimulating 

the Schaffer collateral fibers through a bipolar stimulating electrode (Fig. 15). The slope 

of the initial rising phase (20–60% of the peak amplitude) of the fEPSP was used as a 

measure of the postsynaptic response. Basal synaptic neurotransmission was studied 

by plotting stimulus strength or fiber volley against fEPSP slope to generate input–

output relationships. Paired-pulse facilitation (PPF) was defined as the second fEPSP 

slope divided by the first at various inter-stimulus intervals (10, 50, 90, 130, 170, 210 

and 250 ms). For the LTP and long-term depression (LTD) measurements, a minimum 

of 20 min of baseline stimulation (0.05 Hz) were recorded every minute at an intensity 
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that evoked a response 40% of the maximum response. The strong tetanic LTP 

induction protocol consisted of two 100-Hz tetani (1 s each), with an interval of 20 s 

between tetani. The weak LTP induction protocol consisted of 900 pulses given at 10-

Hz. To induce NMDA receptor-dependent LTD, a 1-Hz and 0.5-Hz single pulse stimuli 

were delivered for 15 and 30 min, respectively (900 stimuli). 

 

 

Figure 15. Hippocampal brain slice and electrophysiology rig for extracellular recording. 

 

2.9. Statistics  

 Data were statistically analyzed using StatView (SAS Institute, Cary, NC) and 

GraphPad Prism 6 software (GraphPad, San Diego, CA). Student’s t-test was used for 

comparing two conditions, and ANOVA was used with Bonferroni post hoc test for 

comparing more than two conditions. All data are expressed as means ± SEM.  The 

accepted level of significance was p ≤ 0.05, indicated by an asterisk; p values ≤0.01 are 

indicated by double asterisks, while p values ≤ 0.001 are indicated by triple asterisks. 

 For LTP and LTD experiments, the average changes of potentiation reflected in 

the slope (mv/ms) was compared over the last 5 minutes of test stimuli of the hour after 
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the stimulus protocol. SEM was calculated and is represented by ± or the error bars. 

Student’s t-test was used when comparing two conditions, and ANOVA was used with 

Bonferroni post hoc test when comparing more than two conditions. P<0.05 was used 

for determining statistical significance. 
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3.0. Results 

3.1. Morphological analysis of WT and JIP1TA hippocampus  

Previous studies have shown that JIP1 deficiency reduced JNK activity and 

altered NMDA receptor activity. However, JIP1-mediated JNK signaling had yet to be 

studied in the synapse. Therefore, we employ a mutation in the JNK regulatory site 

Thr103-Ala. If this mutation affects only this JNK interaction site, then the distribution of 

JIP1 will remain intact. To test this, we stain for JIP1 in hippocampus (Fig. 16A). JIP1 

expression is in dendrites and cell bodies of the CA1/CA3 pyramidal and DG granule 

neurons (Fig. 16A), showing no difference between WT vs JIP1TA mice (Fig. 16B,C). 

Moreover, Nissl staining of nuclei was similar, as was neuronal marker NeuN, dendritic 

marker MAP2, GABAergic interneuron marker GAD67, and glial marker GFAP -  when 

comparing WT and JIP1TA (Fig. 16B).  

 

 

 

Figure 16. Analysis of JIP1 expression in the hippocampus. (A) Nissl stain and neuron-
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specific nuclear protein (NeuN) stain of JIP1WT and JIP1TA coronal hippocampal sections. (B,C) 

Pyramidal cells of the CA1 region of JIP1WT and JIP1TA were stained with Nissl, NeuN, the 

dendritic marker MAP2, the astrocytic marker GFAP, and the inhibitory GABAergic marker 

GAD67 (C). The staining fluorescence intensity was quantitated using ImageJ software (mean ± 

SEM; n = 4; p>0.05; Student’s t–test).  

 

3.1.1. Spine density of WT and JIP1TA hippocampus 

  To investigate structural changes of pyramidal cells, we performed the classic 

Golgi stain of brains. Dendritic spine density, spine type and dendritic complexity was 

similar in both WT and JIP1TA hippocampal CA1 pyramidal cell’s apical and basal 

dendrites (Fig. 17A-E).  

In summary, JIP1TA mice have comparable hippocampal morphology as that 

seen for WT mice. 
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Figure 17. Neuronal spine density and dendritic arborization of CA1 pyramidal neurons 

are similar in JIP1WT and JIP1TA mice. (A) Representative images of apical and basal 

dendrites spine morphology in JIP1TA mice and 969 JIP1WT littermates. (B) Quantitation of 

basal and apical dendritic spine density (mean ± SEM; n=120; p>0.05, Student’s t test). (C) 

Quantitation of different spine types in basal and apical dendrites (mean ± SEM; n=120; p>0.05, 
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Student’s t test). (D,E) Scholl analysis of dendritic arborization of CA1 pyramidal neurons. 

Values on the x-axis represent increasing distance from the soma of the pyramidal cells. Basal 

(n=120) and apical (n=120) dendrites from 40 pyramidal cells from 4 different brains for each 

genotype were examined (mean ± SEM; p>0.05, Student’s t-test).  

 

3.2. Kainate-induced JNK activity is inhibited in the hippocampus of JIP1TA mice 

JNKs are the kinases for cJun and is active in response to growth factors, 

inflammatory cytokines, UV and oxidative stress. cJun forms a heterodimer with cFos to 

form a transcription factor called the AP-1 complex. Suppression of JNK activity has 

been shown to result in reduced phosphorylation of cJun and AP-1 activity, and was 

tested by exposing cells to kainic acid. Kainic acid is an analogue to excitotoxic 

glutamate and induces neurodegeneration requiring JNK3 phosphorylation of cJun, and 

also causes calcium overload and ER stress. To test if JIP-mediated JNK activation is 

inhibited by the JIP1TA mutation, exposure to kainate was performed on hippocampus. 

These data shows that cJun and cFos of both WT and JIP1TA were similar (Fig. 18 B,C), 

but p-cJun is increased only in the WT mice (Fig. 18 A). In addition, over time, kainate 

toxicity was suppressed in JIP1TA mice (Fig. 18 D,E). In summary, these data supports 

the hypothesis that JIP1 regulates JNK activity in hippocampus.  
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Figure 18. JIP1-dependent JNK activation in the hippocampus is suppressed in JIP1TA 

mice. (A-C) JIP1WT and JIP1TA mice were treated by systemic injection of kainate. At 2 h post-

treatment, sections of the brain were prepared and stained (green) with antibodies to pSer63 

cJun (A), cJun (B), or cFos (C). DNA was stained with DAPI (red). Representative sections of 

the dentate gyrus of the hippocampus are presented. (D,E) Extracts prepared from the 

hippocampus of JIP1WT and JIP1TA mice treated with kainate (0 – 60 mins) were examined by 

multiplexed ELISA to measure the amount of pSer63-cJun (D) and cJun (E) normalized to the 

amount of JNK. The data presented are the mean ± SEM (n=5; *, p<0.05, two-way ANOVA 

followed by Bonferroni's post-hoc test). (Dr. Caroline Morel). 
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3.3. Behavior analysis 

To test if JIP1TA mice compared with JIP1WT have behavioral changes, we first 

performed a battery of basic behavioral tests of CNS function on JIP1WT and JIP1TA 

mice.   

 

3.3.1. JIP1-mediated JNK activation in locomotor, sensory and emotional 

responses 

We found that anxiety-related behavior was increased in JIP1TA mice.  For 

example, JIP1TA mice in an elevated plus maze spent less time in the open arms, 

compared with JIP1WT mice, with no changes in locomotor activity (Fig. 19, A-C).  

Moreover, JIP1TA mice spent significantly less time in the center and more in the 

periphery during an open field test compared to JIP1WT animals (Fig. 19, D-E). 

Consistent with previous reports (Grillon et al., 1998), elevated anxiety in JIP1TA mice 

was accompanied by an enhancement of the startle response to strong acoustic stimuli 

(Fig. 19F).  No changes in sensorimotor gating (pre-pulse inhibition) were observed 

(Fig. 19G).  We also found that “fast” improvement in motor coordination on the 

accelerating Rotarod was comparable between JIP1WT and JIP1TA mice.  However, 

during the second day of Rotarod training JIP1TA mice did not display a continuation of 

skill learning from day 1, instead, JIP1TA mice skill level returned to baseline on the day 

2 of trials. Altered skill learning on the rotarod may indicate a reduction in long-term 

motor skill memory in JIP1TA mice (Fig. 19H). Taken together, these data demonstrate 

that JIP1TA mice have normal sensory and motor activity, and attention function.  

However, JIP1TA mice displayed increased levels of anxiety-related behaviors and 
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altered skill learning.   

 

 

Figure 19.  JIP1TA mice display normal locomotor function, motor coordination, elevated 

anxiety-like behavior and increased acoustic startle response. (A-C) Elevated Plus Maze. 

JIP1TA mice show decreased time spent in open arms (A), increased time spent in closed arms 

(B) relative to wild-type mice, indicative of elevated anxiety-like behaviors. In addition, JIP1TA 

mice show normal activity as measured by total distance traveled (C).  The data are presented 

as the mean ± SEM (n = 10; **, p<0.01, Student’s t–test).  (D,E)  Open Field Test.  JIP1TA mice 

show increased anxiety-like behavior in an open field test.  Mice were allowed to explore an 

open field for 5 min. JIP1TA mice spent more time in the periphery (D) and less time in the center 

region of the open field (E), both indicators of increased levels of anxiety-like behavior in this 

test.  The data are presented as the mean ± SEM (n = 10; ***, p<0.001, Student’s t–test).  (F)  

JIP1TA mice showed an increased acoustic startle response for the 110 dB acoustic startle 

stimulus compared with JIP1WT mice (mean ± SEM; n = 8; *, p<0.05, two-way repeated 
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measures ANOVA followed by Bonferroni's post-hoc comparisons tests).  (G)  No significant 

differences in prepulse inhibition for the 74, 80 and 86 dB pre-pulse sound levels followed by a 

110 dB startle stimulus were observed between JIP1TA and JIP1WT mice (mean ± SEM; n = 8; 

p>0.05, two-way repeated measures ANOVA followed by Bonferroni's post-hoc test.  (H) JIP1TA 

mice have normal balance and motor coordination, but impaired skill learning on the rotarod. 

Mice received four trials on day 1 (Trials 1-4) and day 2 (Trials 5-8).  The duration of balance or 

latency to fall (4–40 rpm over 5 min) was recorded. Mice were trained on day 1 to establish 

baseline performance, and retested 24 hours later to measure skill learning. Both JIP1TA and 

JIP1WT mice exhibited increased skill in maintaining balance on the rotarod over the first four 

trials on day 1. On day 2, JIP1TA mice failed to display motor coordination achieved after the day 

1, indicative of impaired motor learning in the rotarod task.  Data are presented as mean ± SEM; 

n = 8; *, p<0.05, two-way repeated measures ANOVA followed by Bonferroni's post-hoc test. 

 

 

3.3.2. Cued and contextual fear conditioning 

 Reduced JNK activity has previously been shown to regulate some types of 

hippocampus-dependent memory (Sherrin et al., 2011), however it has yet to be tested 

if JIP1-mediated JNK activity is critical. To answer this question, we performed fear 

conditioning, which measures the rodent’s most common response to inescapable 

danger: immobility, commonly referred to as “freezing”. In contextual fear conditioning, 

the contextual environment is paired with the aversive stimulus, and later when the 

animal is placed in the same environment, freezing may be noted.  

The shock used is either a weak 0.4mA or strong 0.8mA. Significant increases in 

contextual freezing of JIP1TA mice were seen following 24 hours of training using the 

strong shock (Fig. 20A). Interestingly, the weak training yielded an even greater 

increase in contextual freezing of JIP1TA mice (Fig. 20B). Previously it was shown that 

JNK is activated in dorsal hippocampus following contextual fear conditioning (Sherrin 

et al., 2010). Therefore, to test JIP1TA mice, hippocampus samples were analyzed over 
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a range of times during the consolidation phase following training. Results showed that 

after 30 minutes JIP1TA mice had reduced 54 kDa phospho-JNK (corresponding to brain 

isoforms JNK2a2, JNK2b2, JNK3a2 (Davis, 2000) following contextual fear conditioning, 

whereas 46-kDa phosphor-isoforms (JNK1a1, JNK1b1) were the same as WT and thus 

aren’t involved in contextual fear memory consolidation (Fig. 20C). 

 In summary, the JIP1TA mutant mice have strongly increased contextual fear 

conditioning, unchanged cued fear conditioning, and reduced JNK activity. 
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Figure 20. JIP1TA mice display enhanced contextual fear and diminished JNK activation 

in the dorsal hippocampus following contextual conditioning. (A) “Strong” (0.8 mA electric 

shock) training demonstrated that JIP1TA and JIP1WT littermate mice exhibited similar contextual 

freezing when tested immediately after training, or 1 h later, 1026 but the JIP1TA mice froze 
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more than JIP1WT mice in contextual test at 24 h following training (left panel). Foot-shock 

reactivity during fear conditioning training did not significantly differ between JIP1TA and JIP1WT 

mice (right panel). The data presented are the mean ± SEM (n = 11 ~ 12; ***, p<0.001, 

Student’s t-test). (B) “Weak” (0.4 mA electric shock) training demonstrated that JIP1TA mice (n 

= 14) exhibited contextual freezing that was similar to the “strong“ training schedule, but JIP1WT 

mice (n = 14) displayed significantly less contextual fear conditioning at 24 h following training 

(mean ± SEM; n = 14; ***, p<0.001, Student’s t-test). (C) Dorsal hippocampal tissue was 

isolated from ‘naïve’ mice (Control) and different times after contextual fear conditioning (FC) 

and examined by immunoblot analysis by probing with antibodies to phospho-JNK, JNK, and 

GAPDH.  The amount of 45-kDa and 54-kDa phospho-JNK was quantitated and normalized to 

the amount of JNK in each sample (mean ± SEM; n =5; ***, p<0.001, for JIP1TA compared with 

JIP1WT mice; #, p<0.01, compared with the naïve control, two-way ANOVA, followed by 

Bonferroni's post-hoc test). 

 

3.3.3. Improved hippocampal-dependent spatial learning and spatial reversal 

learning in the JIP1TA mice. 

 In the next experiment we tested spatial memory. The most effective test for 

spatial memory is the Morris water maze. In this test, the mouse is trained to swim to a 

visible platform in the tank, over time the mouse memorizes outside visual cues to 

pinpoint the platform location. Later, when the platform is submerged just below the 

surface, the mouse relies on hippocampal dependent memory to remember the hidden 

platform location. During training both groups of mice learned equally, then during 

hidden platform training the JIP1TA mice improved on their time to reach the platform, 

arriving there faster than WT mice (Fig. 21 A). Then for probe trials, the platform is 

removed and the amount of time the mouse spends within the platform quadrant 

(looking for the platform) is quantified. However, the time spent in the platform quadrant 

during the probe trials on day 10 (Fig. 21B, 29 ± 5% of time in quadrant T for JIP1TA; 28 
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± 4% JIP1WT; p>0.05) and day 13 (Fig. 21 C, 31 ± 4% of time in quadrant T for JIP1TA 

mice; 29 ± 2% JIP1WT mice; p>0.05), indicating that the mutation affects the rate of 

learning.  

 To then analyze fast spatial learning, the mice were trained (four trials separated 

by 15-20 minutes) to find the platform in the opposite quadrant. JIP1TA mice learned the 

new platform location faster and during the probe trial they searched for the platform in 

its quadrant more than the WT mice on probe day15, 24 hours later (Fig. 21 F; time 

spent in NT (new target) quadrant: 41 ± 2% 434 for JIP1TA; 23 ± 4% for JIP1WT; p<0.01).  

 In summary, JIP1TA mutation causes improved fast spatial learning.  

 



80 
 

 

  

Figure 21. JIPTA mice exhibit enhanced reversal learning in the Morris water maze test.  

(A-C) JIP1TA and JIP1WT littermate mice learned the visible platform task (day 1 & 2), as 

indicated by reductions in escape time during training. The mice were then trained to find a 

hidden platform during the next seven days. JIP1TA mice showed faster escape latencies at 

days 6-9 training compared with JIP1WT littermates (A). A first probe test (day 10) was 

conducted 24 h after the completion of training. No significant differences in percentage time 

spent in the target quadrant (T) between JIP1TA and JIP1WT mice were observed (B). The mice 

were then subjected to 2 days of additional training (days 11-12), and a second probe trial was 

performed 24 h later. No significant differences between JIP1TA and JIP1WT mice were 

observed during second probe trial (C). Data presented are the mean ± SEM (n = 14; *, p<0.05, 
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two-way repeated measures ANOVA, followed by Bonferroni's post-hoc test). (D-F) Twenty-four 

hours after the second probe test, the platform was removed to the opposite quadrant in the 

pool and mice were trained for four trials (day 14, reversal learning). In this new setting, JIP1TA 

mice displayed shorter escape time to find newly placed platform (NT) compared with JIP1WT 

littermate mice (E). The probe test for reversal training was conducted 24 h after the completion 

of new platform training (day 15). Analysis of the time spent in the quadrants revealed that 

JIP1TA mice spent significantly more time in the new target quadrant than JIP1WT mice (F). Data 

presented are the mean ± SEM (n = 14; *, p<0.05, **, p<0.01, two-way repeated measures 

ANOVA (E) and two-way ANOVA (F) followed by Bonferroni's post-hoc tests).  

 

3.4. Enhanced synaptic plasticity in JIP1TA mice 

 Previous experiments suggest that JNK activity influences synaptic plasticity 

(Wang et al., 2004; Chen et al., 2005; Zhu et al., 2005; Li et al., 2007; Yang et al., 

2011).  If this is true, then JIP-mediated JNK activity may be an important part of the 

mechanisms of memory. Thus, an array of specific electrophysiological stimulus 

protocols was employed to investigate synaptic function. As seen in the input-output 

(I/O) and fiber-volley relationships for the Schaffer collateral-CA1 pathway in 

hippocampal slices from WT and JIP1TA mice, no differences were observed (Fig 

22A,B). Paired-pulse facilitation reflects presynaptic efficacy, and this was also similar 

between the slices from the WT and JIP1TA mice (Fig 24C).  Therefore, WT and JIP1TA 

mice have similar basal synaptic strength. 

 The next experiment tested NMDA receptor-dependent plasticity (Citri and 

Malenka, 2008), using a moderate high frequency stimulus (HFS: 2 trains of 1 sec 100-

Hz, separated by 20 sec). fEPSP responses to 2 trains of HFS were similar in slices 

from both groups of mice (Fig. 22D; fEPSPs were potentiated to 145 ± 7% for JIP1WT 

and 146 ± 4% for JIP1TA; p>0.05 between genotypes). The threshold for induction of 
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LTP was tested, by applying a 900-pulse train at 10Hz (Fig. 22E;122 ± 3.8% of baseline 

at 50-60 min after LTP induction; p<0.01), while fEPSPs in JIP1WT slices were not 

potentiated (Fig. 22E; 92.1 ± 5.5 % of baseline; p>0.05). This indicates that LTP may be 

induced at lower frequencies in hippocampal slices from JIP1TA mice as compared to 

slices from WT mice.  

 Next we examined NMDA receptor-dependent LTD (Collingridge et al., 2010). 

LTD was induced in slices from WT mice using 900 single pulses at 1Hz for 15 minutes, 

but was not induced in the slices from JIP1TA mice (JIP1WT mice, 72 ± 467 2%; JIP1TA 

mice, 98 ± 1%; p<0.01). LTD that depends more on calcium from intracellular stores 

than from influx through NMDA receptors (Nakano et al., 2004) was tested using 900 

pulses at 0.5Hz for 30 minutes (Dudek and Bear, 1992) (Fig 22G), but yielded 

equivalent results for slices from both genotypes (Fig. 22G; JIP1WT, 472 68% ± 1%; 

JIP1TA, 66% ± 2%; p>0.05 between genotypes).  

 In summary, the JIP1TA mice have a reduced LTD induction frequency and that 

synapses potentiate at frequencies lower than normal (Fig 22H).  
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Figure 22. The threshold for LTP induction is reduced in JIP1TA mice. (A,B) Basal synaptic 

transmission at Schaffer collateral-CA1 synapses, as assessed by measuring the fEPSP input-

output relationship (A) and the fEPSP slope to fiber volley relationship (B), was similar in JIP1TA 

slices (n = 16 slices, 13 mice) compared with slices obtained from JIP1WT littermates (n = 16 

slices, 12 mice). Statistically significant differences are indicated (p>0.05, two-way repeated 

measures ANOVA). (C) fEPSP's from JIP1TA (n = 16 slices, 13 mice) and JIP1WT (n = 16 slices, 

12 mice) slices exhibit similar paired pulse facilitation. Statistically significant differences are 

indicated (p>0.05, two-way repeated measures ANOVA). (D) High-frequency stimulation LTP 

was induced by two trains of 100 Hz stimulation (separated by a 20 sec interval) to the Shaffer 

collaterals in slices from JIP1TA and JIP1WT mice (n = 10-12 slices, 8 mice/genotype). 

Stimulation was delivered at time 0 (arrow). Statistically significant differences are indicated 

(p>0.05, Student’s t–test). (E) An intermediate-stimulation LTP protocol involved 900 pulses of 

10 Hz stimuli delivered at time 0. LTP induced at intermediate frequencies is significantly 

facilitated in slices taken from 1078 JIP1TA mice when compared to JIP1WT controls n= 9~11 

slices, 9 mice/genotype). Statistically significant differences are indicated (**, p<0.01, Student’s 

t–test). (F) LTD induced by low-frequency (1 Hz, 900 pulses, 0-15 min time) stimulation was 

significantly reduced in JIP1TA slices compared to JIP1WT slices (n= 10~11 slices, 10 

mice/genotype).  Statistically significant differences are indicated (**, p<0.001, Student’s t–test). 

(G) LTD induced by 0.5 Hz stimulation (0.5 Hz, 900 pulses sec, 0-30 min time) was similar in 

JIP1WT and JIP1TA slices (n= 14 slices, 11 mice/genotype). Statistically significant differences 

are indicated (p>0.05, Student’s t–test). (H)  Frequency-response function in JIP1TA and JIP1WT 

mice. The percentage change in synaptic strength from baseline in JIP1TA and JIP1WT mice at 

50-60 min following stimulation at the indicated frequency is presented. Values are mean ± 

SEM.  Magnitudes of LTP/LTD were calculated as the ratio of the average fEPSP’s between 50-

60 min and average baseline fEPSP’s between -20 min -0 min. The insets show representative 

average fEPSP responses obtained before and after LTP/LTD inducing stimuli.  Calibration: 0.2 

mV/10 ms. statistically significant differences are indicated (**, p<0.01, Student’s t–test).  

 

3.5. Upregulated expression of NMDA receptor subunits in the hippocampus of 

JIP1TA mice 
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 Previous studies showed that JIP1/2 play an important role in regulating NMDA 

receptor activity (Kennedy et al., 2007). NMDA receptors are critical for memory. For 

instance, GluN2A KO mice have reduced hippocampal LTP and spatial learning 

(Sakimura et al.,1995). In contrast, overexpression of NMDA receptor 2B (GluN2B) in 

the forebrain leads to enhanced NMDA receptor activation and improved ability in 

learning and memory (Tang et al., 1999). Moreover, the GluN2B c-terminal intracellular 

domains has many phosphorylation sites for regulatory activity, notably Y1472 

phosphorylation that plays a role in fear learning and synaptic plasticity (Nakazawa et 

al., 2006) 

Therefore, in the next series of experiments we investigate the question: is 

increased JIP1TA synaptic plasticity due to upregulation of NMDA receptor’s? To answer 

this, we measured expression of NMDA receptor subunits in hippocampus. In the 

hippocampus, NMDA receptor subunits GluN1, GluN2A and GluN2B had elevated 

protein levels – however, the mRNA levels remained normal (Fig. 23A-C). In cortex, 

NMDA receptor subunits didn’t change (Fig. 23D). Next, synaptoneurosomes were 

analyzed. Synaptoneurosomes are purified synapses that contain both pre and 

postsynaptic components, including synaptic vesicles in the presynaptic component, 

postsynaptic receptors and translational machinery. NMDA receptor subunits were 

increased in synaptoneurosomes, but were unchanged in the postsynaptic density 

(PSD) (Fig. 23E,F). In summary, JIP1TA mice display increased NMDA receptor 

signaling.  

  



86 
 

 

 

Figure 23. Increased NMDA receptor expression and basal activity in JIP1TA mice. 

(A-C) Lysates prepared from the hippocampi of JIP1TA and JIP1WT mice were examined by 

immunoblot analysis by probing with antibodies to NMDA and AMPA receptor subunits, 

SAP102, JIP1, and β-tubulin (A). The amount of NMDA receptor subunits in the hippocampus 

was quantitated and normalized to the amount of β-tubulin in each sample (B, mean ± SEM, n =  

5; *, p<0.05, Student’s t-test). The amount of NMDA receptor subunit mRNA in the 

hippocampus was measured by quantitative RT-PCR and normalized to the amount of Gapdh 

mRNA in each sample (C, mean ± SEM, n=5; p>0.05, Student’s t-test). (D) NMDA receptors 

measured in JP1TA hippocampus and cortex. (E) Enrichment of NMDA receptor subunits in the 

synaptoneurosome fraction of the hippocampus of JIP1WT and JIP1TA mice was examined by 

immunoblot analysis. (F) NMDA receptors measured in JIP1TA PSD fraction. (Dr. Tessi 

Sherrin). 
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3.6. Confirmation of JIP1-mediated JNK activation in hippocampal learning and 

memory via JBD mutant. 

 To confirm that JIP1-mediated JNK activation plays a critical role in NMDA 

receptor-dependent, hippocampus-dependent learning and memory, we tested an 

independent mouse model of defective JIP1-mediated JNK activation: JIP1 lacking the 

JNK binding domain (JBD).  To create a mouse model lacking the JBD of JIP1 (JIP1∆JBD 

mice), the core of the JBD (Leu160-Asn161-Leu162) mediating a hydrophobic interaction of 

JIP1 with JNK (Whitmarsh et al., 2001; Heo et al., 2004) was replaced with Gly160-

Arg161-Gly162 in JIP∆JBD mice (Fig. 13 A-F/ 24 A). To test this, first we analyzed kainate-

induced excitotoxicity in hippocampus of the WT and mutant JIP1∆JBD mice, which 

showed that JIP1∆JBD mice had less cJun phosphorylation than in WT mice in response 

to kainite induced excitotoxicity (Fig. 24 A). This confirms the JIP1∆JBD mutant is a model 

for JIP1-mediated JNK signaling.  
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Figure 24. Suppression of kainate-induced JNK activity in the hippocampus of JNK∆JBD 

mice. (A,B) JIP1WT and JIP∆JBD mice were treated without and with kainate. Representative 

sections of the dentate gyrus stained (green) with antibodies to phospho-cJun (G) or cJun (H) 

are presented. DNA was stained with DAPI (red).  

 

3.6.1. Enhanced contextual, spatial and hippocampal-dependent reversal learning 

in JNK∆JBD mice. 

For the next experiment, we examined learning and memory by using contextual 

fear conditioning. JIP1∆JBD mice had enhanced contextual fear conditioning, displaying 

increased freezing when tested 24 hours after fear training (Fig. 25A; mean percentage 

freezing; JIP1WT = 58 ± 3%; JIP1∆JBD = 89 ± 3%, p<0.001). JIP1∆JBD mice also had 

improved spatial learning, they learned to locate the hidden platform in the MWM faster 

than WT (Fig. 25B), and spent more time in the target quadrant during probe trials on 

day 9 (Fig. 25C left panel; 36 ± 9% of time in quadrant T for 536 JIP1∆JBD; 22 ± 3% of 
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time in quadrant T for JIP1WT, p<0.01) and day 13 (Fig. 25C, right panel; 47  ± 2% of 

time in quadrant T for JIP1∆JBD; 32 ± 6% of time in quadrant T for JIP1WT, p<0.001). 

JIP1∆JBD mice also had enhanced hippocampal-dependent spatial reversal learning, 

they spent more time in the NT quadrant than WT (Fig. 25D, right panel; mean 

percentage of time spent in new target quadrant [NT] was 49 ± 3%, for 546 JIP1∆JBD; 

28 ± 4% for JIP1WT; p<0.001). Consistent with JIP1TA mice, compared to WT the JBD 

mice also have increased GluN1, GluN2A and GluN2B protein in hippocampus (Fig. 

25E) with increased ERK activation (Fig. 25F).  

In summary, these data show that hippocampal-dependent memory is increased 

by the loss of JIP1-mediated JNK activation. 
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Figure 25. Disruption of the JNK binding domain (∆JBD) on JIP1 causes enhanced 

hippocampus-dependent learning.  
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(A) Contextual fear conditioning of JIP1∆JBD and JIP1WT mice consisted of one exposure to cue 

[context + tone] and 0.8mA shock (mean ± SEM; n = 10; ***, p<0.001, Student’s t-test). (B,C)  

Morris water maze tests of mean latencies to escape to a visible (days 1-2) or a hidden platform 

(days 3-12) are presented for JIP1∆JBD or JIP1WT mice (B). Probe trials with a removed hidden 

platform were performed on days 9 and 13 of water maze training (C). JIP1∆JBD mice spent 

significantly longer time in the target quadrant compared to JIP1WT littermates (mean ± SEM; n = 

10; *, p<0.05; **, p<0.01; ***, p<0.001, two-way repeated measures ANOVA (B) and 1182 two-

way ANOVA (C) followed by Bonferroni's post-hoc tests). (D) The water maze platform was 

removed to the opposite quadrant in the pool and mice were trained for four trials (day 14, 

reversal learning).  The probe test for reversal training was conducted 24 h after the completion 

of new platform training (day 15). Analysis of the time spent in the quadrants during the probe 

trial revealed that JIP1∆JBD mice spent significantly more time in the new target quadrant (NT) 

than JIP1WT mice (mean ± SEM; n = 10; ***, p<0.001, two-way ANOVA followed by Bonferroni's 

post-hoc test). (E) Hippocampus lysates of JIP1WT, JIP1TA and JIP1∆JBD mice were examined 

by immunoblot analysis by probing with antibodies to NMDA receptor subunits and β-Tubulin. 

(F) The amount of phospho-ERK was quantitated in hippocampus lysates of naïve JIP1WT and 

JIP1∆JBD mice by multiplexed ELISA and normalized to the amount of ERK2 in each sample 

(mean ± SEM; n=5; *, p<0.05, Student’s t-test).  

  

3.7. Disruption of the Kinesin-1 binding site on JIP1 (Y705A) does not alter 

associative learning.  

 Because JIP1 is transported on microtubules in neurons and influences learning 

and memory, we then asked the question: Is JIP1 transport necessary for its functions 

in learning and memory? The first experiment involved contextual and cued fear 

conditioning (Fig. 26A), which showed no difference between wild-type and JIP1YA mice. 

Morris water maze also shows no differences in the ability of the mice to use spatial 

memory to learn the location of the hidden platform (Fig. 26B). Probe trial 1 (Fig. 26C) 

showed that both WT and JIP1YA mice searched for the removed known platform 

location for equal amounts of time. Given training for the hidden platform’s new location 
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in an opposite quadrant, mice in both groups performed similarly in learning its location, 

as seen in probe trial 2 (Fig. 26D). Hippocampus was then analyzed using immunoblot 

for fractions of either membrane or cytosolic (Fig. 26E). Membrane fractions from WT 

and JIPYA hippocampi both had similar amounts of JIP1. In the cytosol fraction, the WT 

mice lacked JIP1, but JIP1YA mice had JIP1 present. These results indicate that JIP1’s 

anterograde kinesin-driven transport along microtubules isn’t necessary for its presence 

in the membrane, whereas the JIP1-microtubule interaction keeps JIP1 out of the 

cytosol. 
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Figure 26.  Disruption of the Kinesin-1 binding site on JIP1 (Y705A) does not alter 

associative learning. (A) Contextual and cued fear conditioning of JIP1YA and JIP1WT mice 

consisted of one exposure to cue [context + tone] and 0.8mA shock (mean ± SEM; n = 10~11; 
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p>0.05, Student’s t-test). (B, C) Morris water maze tests of mean latencies to escape to a 

hidden platform (days 1-6) are presented for JIP1YA or JIP1WT mice (B). Probe trial were 

performed on day 7 of water maze training (C). JIP1YA mice spent similar time in the target 

quadrant compared to JIP1WT littermates (mean ± SEM; n = 10; two-way repeated measures 

ANOVA (B) and two-way ANOVA (C) followed by Bonferroni's post-hoc tests, p>0.05). (D) The 

water maze platform was moved to the opposite quadrant in the pool and mice were trained for 

four trials (day 7, reversal learning).  The probe test for reversal training was conducted 24 h 

after the completion of new platform training (day 8). Analysis of the time spent in the quadrants 

during the probe trial revealed that JIP1YA mice spent a similar amount of time in the new target 

quadrant (NT) as JIP1WT mice (mean ± SEM; n = 10; p>0.05, two-way ANOVA followed by 

Bonferroni's post-hoc test). (E) Membrane and cytosolic fractions were prepared from the 

hippocampus of naïve JIP1YA or JIP1WT mice and analyzed by immunoblot probing with 

antibodies to NMDA receptor subunits, cadherin, and -Tubulin. Note depletion of JIP1 from the 

cytosolic fraction.  
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4.0 Discussion 

 

The results of this thesis demonstrate that JIP1-linked JNK activation in the 

hippocampus regulates contextual fear conditioning in a NMDA receptor-dependent 

fashion. This finding builds on the previous results that JNK1-deficient mice exhibit 

enhanced contextual fear conditioning (Sherrin et al., 2010) and altered synaptic 

plasticity (Li et al., 2007).  

The JIP1 scaffold protein can assemble a functional JNK signaling module 

formed by members of the mixed-lineage protein kinase family of MAP3K, the MAP2K 

family member MKK7, and JNK (Whitmarsh et al., 1998). However, JIP1 also functions 

as an adapter protein that mediates transport by microtubule motor proteins (Fu and 

Holzbaur, 2014), including kinesin-1 (Verhey et al., 2001; Whitmarsh et al., 2001) and 

dynein (Standen et al., 2009; Fu and Holzbaur, 2013). These two functions of JIP1 

complicate the interpretation of loss-of-function studies focused on the analysis of JIP1 

knockout mice (Whitmarsh et al., 2001; Kennedy et al., 2007). To overcome this 

limitation, we studied two mouse models with germ-line mutations in the Jip1 gene that 

prevent JIP1-mediated JNK activation. First, a point mutation of the JIP1 

phosphorylation site Thr103 (by replacement with Ala) in JIP1TA mice suppresses JIP1-

mediated JNK activation by disrupting the regulated interaction of mixed-lineage protein 

kinases with JIP1 (Morel et al., 2010). Second, a three-residue mutation of the JIP1 site 

that binds JNK in JIP1∆JBD mice prevents JIP1-mediated JNK activation. These 

complementary mouse models therefore provided an opportunity to selectively disrupt 

JIP1-regulated JNK activation in vivo.   
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4.1. Regulation of synaptic plasticity by JIP1-mediated JNK activation 

We showed that JIP1-mediated JNK activation regulates NMDA receptor signal 

transduction associated with an altered threshold for LTP, decreased long-term fear 

memory, and decreased spatial memory (Figs. 20-23). These observations are 

consistent with the conclusion that JNK normally functions to negatively regulate 

mechanisms responsible for learning and memory (Sherrin et al., 2011). We found that 

the enhanced learning in JIP1 mutant mice was associated with an increase in the 

NMDA receptor component of the synaptic response, and enhanced activity of 

downstream pathways that facilitate induction of NMDA receptor-dependent LTP. This 

is consistent with previous reports that have separately implicated both JNK signaling 

(Sherrin et al., 2010) and CA1 hippocampal NMDA receptors in contextual fear 

conditioning, spatial learning, and synaptic plasticity (Kutsuwada et al., 1996; Tsien et 

al., 1996; Tang et al., 1999; Liu et al., 2004; Lau and Zukin, 2007; Yashiro and Philpot, 

2008; Brigman et al., 2010). These data indicate that JIP1-mediated JNK activation may 

constrain synaptic plasticity, learning and memory through attenuation of NMDA 

receptor function. Furthermore, decreases in JIP1 level and/or localization affecting JNK 

activity, perhaps resulting from distinct signaling pathways (e.g. glutamate-mediated 

down-regulation of JIP1 levels in growth cones (Dajas-Bailador et al., 2014); Ca2+-

dependent degradation of JIP1 (Allaman-Pillet et al., 2003), would thus be predicted to 

reduce this constraint, leading to enhanced learning and memory.  
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4.2. Potential involvement of JIP1-JNK signaling in the amygdala mediating 

anxiety and fear conditioning 

In our behavioral studies we found that the JIP1TA mice are more anxious than 

JIP1WT controls, based on altered behaviors in the open field and elevated plus maze 

tests (Fig. 22). Some studies suggest that elevated anxiety might predispose organism 

toward developing stronger fear memory (Radulovic et al., 1999; Rau et al., 2005; 

Sartori et al., 2011), or potentially bias outcome of the fear conditioning test (Crestani et 

al., 1999).  Increased anxiety in JIP1TA mice, however, does not appear to underlie 

observed enhancement of contextual fear. Firstly, we found no differences in freezing 

responses between JIP1TA mice and JIP1WT mice during the memory tests immediately 

and 1 h after training, ruling out the possibility of a post-shock anxiety enhancement of 

freezing response. Secondly, JIP1TA mice showed similar shock reactivity to JIP1WT   

littermates. Finally, since spatial learning in the MWM tend to be inversely correlated 

with anxiety (Harrison et al., 2009), it is unlikely that enhanced anxiety would facilitate 

spatial learning in JIP1TA mice. Thus, our data show that JIP1TA mice exhibited similar, 

shock-induced and post-shock behaviors when compared to JIP1WT mice, and that an 

increased anxiety phenotype in the JIP1TA mice does not appear to affect contextual 

fear conditioning and learning in the MWM. Taken together, they suggest that 

hippocampal JIP1/JNK signaling plays a selective role in associative memory, as 

opposed to altering baseline anxiety or training-associated sensory and motor 

processes. Another finding revealed that increased hippocampal NMDA receptor 

signaling not only contributed to enhanced acquisition of contextual fear memory, but 

also conferred resistance to extinction of fear response in JIP1TA mice (preliminary 
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observations). This was in agreement with a recent study reporting that experimentally 

elevated NMDA receptor levels resulted in impaired contextual fear extinction 

(Leaderbrand et al., 2014). Our data thus, expand upon the previous studies showing 

that increased NMDA receptor signaling (Milton et al., 2013; Leaderbrand et al., 2014), 

and strength of the memory trace (Suzuki et al., 2004), could limit the ability to modify 

previously acquired behavioral responses in fear-based learning tasks. It may be 

speculated that increased anxiety might be explained by an overall increased NMDA 

receptor currents in the areas mediating anxiety such as the amygdala and the bed 

nucleus of the stria terminalis. In the absence of obvious compensatory inhibitory 

mechanism, this elevated excitatory transmission might lead to reduced filtering of 

external stimuli, thus resulting in the increased activation of the fear/arousal related 

structures, and a long-term increase of stress hormones and elevated anxiety.  

Contextual-fear learning recruits both the hippocampus and amygdala, while 

cued-fear learning relies on the amygdala (Phillips and LeDoux, 1992). JIPTA and 

JIP1∆JBD mice displayed enhancement in both contextual and cued fear conditioning 

(Figs. 25). As such, these learning enhancements suggest that JIP1-mediated JNK 

activation is also important in the amygdala. Although JIP1 is expressed in amygdala 

(preliminary observations), JNK signaling and the importance of JIP1 in the amygdala 

have yet to be thoroughly investigated. We hypothesize that the observed contextual-

learning enhancement is, at least, in part due to a lack of hippocampal JIP1-mediated 

JNK signaling. Not only is signal transduction altered in this region, but JIPTA and 

JIP1∆JBD mice also demonstrate improved spatial memory in the Morris water maze, 

which classically relies on the hippocampus. Further studies will address the role of 
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JIP1/JNK signaling in the amygdala and determine how altered amygdala function 

accounts for interplay between improved memory and increase in arousal.  

 

4.3. A role for JIP1-JNK signaling in the regulation of NMDA receptor subunit 

composition 

The increased NMDA receptor signaling caused by loss of JIP1-mediated JNK 

activation in JIP1TA mice is associated with increased expression of the NMDA receptor 

subunits GluN2A and GluN2B (Fig. 23). This increase in the levels of NMDA receptor 

subunits is significant because it is established that changes in GluN2A and GluN2B 

expression cause altered plasticity and memory (Tang et al., 1999; Brigman et al., 2010; 

Chao et al., 2013). This may be mediated by extending the integration time window for 

NMDA receptor signaling coincident with pre- and postsynaptic activity, and decreasing 

the threshold for inducing long-term synaptic changes. Indeed, a constraint by JIP1-JNK 

on plasticity thresholds may, in turn, regulate information processing and learning 

(Kiyama et al., 1998; Hawasli et al., 2007; Hu et al., 2007). This is consistent with the 

observation that loss of JIP1-mediated JNK activation in JIP1TA mice enables the 

establishment of LTP at lower stimulation frequencies (Fig. 22H), with the converse 

being a requirement for higher stimulation frequencies needed in the presence of JIP1-

JNK activation. The mechanism of JIP1-dependent regulation of NMDA receptor subunit 

expression (Fig. 23A,B) remains to be determined and may include changes in NMDA 

receptor membrane insertion, internalization, or lateral movement into synapses (Fig 

11). Additionally, JIP1 may regulate NMDA receptor subunit expression through a post-

transcriptional mechanism (Fig. 11). Indeed, it is known that GluN1, GluN2 and GluN2B 
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protein expression can be regulated by CPEB3 (Chao et al., 2013), that GluN2A protein 

expression can be regulated by CPEB1 (Udagawa et al., 2012; Swanger et al., 2013), 

and that GluN2B expression can be regulated by a microRNA (Harraz et al., 2012).  

Strikingly, the learning and memory phenotypes of Cpeb3-/- mice associated with 

increased NMDA receptor expression (Chao et al., 2013) are similar to the phenotypes 

of the mice with defects in JIP1 function studied in the present study (JIP1TA and 

JIP1∆JBD mice).   

 It is possible that increased expression of NMDA receptor subunits only partially 

accounts for the learning and memory phenotypes of JIPTA and JIP1∆JBD mice. Indeed, it 

has been shown that Fyn mediates phosphorylation of the NMDA receptor subunit 

GluN2B on Y1472, resulting in increased NMDA receptor activity (Salter and Kalia, 2004) 

by attenuating NMDA receptor internalization (Roche et al., 2001; Prybylowski et al., 

2005), increasing the proper localization of the GluN2B NMDA receptors at synapses 

(Nakazawa et al., 2006), and enhancing GluN2B NMDA receptor-mediated currents at 

CA1 synapses (Yang et al., 2012).  In the present study, increased GluN2B Y1472 

phosphorylation resulted from disruption of JIP1-mediated JNK activation in JIP1TA mice 

(Fig. 23A), also perhaps contributing to the observed increase in NMDA receptor 

signaling. This change in GluN2B Y1472 phosphorylation may be caused by JIP1-

mediated recruitment of Fyn (Kennedy et al., 2007) or by JNK-mediated recruitment of 

the PSD-95/Fyn complex (Kim et al., 2007).  Another potential contributing factor may 

be the binding of JIP1 to LRP8, a protein that regulates NMDA receptor signaling 

(Stockinger et al., 2000; Beffert et al., 2005).  Finally, it is possible that JIP1-mediated 

interactions with the exchange factors Ras-GRF1 and Tiam1 may contribute to 
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increased NMDA receptor dependent activation of the ERK pathway and activity-

dependent actin remodeling critical for synaptic plasticity and memory (Buchsbaum et 

al., 2002; Krapivinsky et al., 2003; Tolias et al., 2007).  

 

4.4. A role for JIP1 transport of cargoes, in NMDA receptor-dependent memory 

and synaptic plasticity 

JIP1 has important roles in attaching certain cargoes (i.e. APP, LRP8) to the 

kinesin-1 light chain through the JNK signaling complex (Verhey et al., 2001; Whitmarsh 

et al., 2001). Interestingly, mice with the mutation in JIP1 kinesin-1 binding domain 

(Y709A, “JIP1YA” mice), which normally facilitates the transport and assembly of the 

JIP1/JNK signaling module to the neuronal processes, did not recapitulate the effects of 

the loss of JIP1 mediated-JNK activation on NMDA receptor-dependent memory and 

synaptic plasticity. It is possible that JIP1/JNK signaling is sufficient for the regulation of 

the NMDA receptor function independent of its cellular localization and the function as 

an adaptor between motor proteins and their membranous cargo (Fig. 26). 

 

4.5. Implications of the JNK isoforms in the hippocampal tri-synaptic pathway 

Interestingly, JIP1TA mice show reduced post-conditioning increase in 54kDa 

isoforms of JNK (JNK2a2, JNK2b2, JNK3a2) with no difference in 46kDa JNK isoforms 

(JNK1a1, JNK1b1) when compared to wild-type littermates (Davis, 2000) (Fig. 20). 

Whereas JNK1 is present mainly in the cytoplasm of neuronal processes, JNK2 and 

JNK3 can translocate to the nucleus and affect transcription of genes such as cJun. It 

was shown that JNK2 and JNK3 might act synergistically in phosphorylating numerous 
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transcription factors including AP1, ATF3, and STAT3, all implicated in memory and 

plasticity (Barnat et al., 2010). The hippocampal JNKs isoforms upregulated in response 

to stress and involved stress- induced memory deficits are JNK2 and JNK3 (Sherrin et 

al., 2010). The JNK isoform that regulates fear response in the absence of a stressor is 

JNK1, which functions to restrain fear memory. Since constitutive JNK1 activity can be 

considered as high as total of the activated JNKs, and JNK1 activity in neurons is 

considerably higher than JNK activity from non-neuronal origins, it is possible that use 

of the pan-phospho JNK antibody in our study was not able to detect changes in fear 

conditioning-regulated JNK1 activity of JIP1TA mice  (Fig. 20) (Coffey et al, 2002).  

Weather reduced JNK1, JNK2 and/or JNK3 activity in the JIP1TA mice is 

responsible for the observed phenotype may be tested with the use of conditional, brain 

and isoform specific knockout mice, that have been recently developed and available for 

our use. Thus far existing constitutive knockout mice lacking either JNK1, JNK2 or 

JNK3 develop normally. However, mice lacking both JNKs 1 and 2 die prematurely 

and exhibit brain abnormalities that are attributable to a dysregulation of apoptosis. 

So, JNK1 and JNK2 might be redundant in function for embryonic brain development.  

Finally, double knockouts of JNK1/JNK3, or JNK2/JNK3 are viable (Sabapathy et al., 

1999; Kuan et al., 1999).  Since JNK3 is predominantly present in CA1 pyramidal 

neurons, and JNK1 in CA3, CA4 and DG hilus (Lee et al., 1999; Coffey, 2014), it is 

likely that the JIP1TA mice has altered JNK activity in most of the tri-synaptic 

hippocampal pathway. It is attractive to hypothesize that information processing and 

memory function within the hippocampal DG, CA3 and CA1 may be enhanced due to 

reduced JNKs activity. The molecular mechanisms by which JNKs contribute to memory 
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and synaptic plasticity however remain to be defined.  Potential downstream target 

proteins implicated in both processes, which are also regulated by JNKs, include 

synaptotagmin-4 (Mori et al., 2008), long-tailed subunits GluA1-, GluA2- and GluA4-

containing AMPA receptors (Thomas et al., 2008), PSD95 (Kim et al., 2007), amyloid 

precursor protein (APP) (Mazzitelli et al., 2011), or transcription factors including 

glucocorticoid receptors (Bruna et al., 2003), AP-1, CREB or Elk-1 (Gupta et al., 1996; 

Coffey, 2014).  

 

4.6. Therapeutic potential of JIP1-JNK signaling  

Genetic anomalies of the JNK pathway have also been associated with a 

subset of other psychiatric disorders (Coffey, 2014). However, the degree to which 

and the mechanism by which JNK is involved is unknown. JIP1TA mutant mice display 

a range of behaviors including exaggerated fear responses to cues associated with  

danger, difficulty suppressing fear behavior even when these cues no longer predict 

danger, elevated acoustic startle response, and anxiety-like behaviors that may 

represent rodent homologues of the symptoms that are diagnostic for trauma- and 

stressor-related disorders, such as posttraumatic stress disorder (PTSD) (Shalev et al., 

2017). These responses may be regulated by JIP1-mediated JNK signaling in the 

hippocampus, the amygdala, or in various cortical regions that interconnect to form the 

neural circuits that promote adaptation to stress and fear conditioning. Interestingly, we 

have shown that intrahippocampal infusion with a JNK inhibitor prevents stress-

induced changes in fear conditioning (Sherrin et al, 2010). Thus, it is possible that 

drugs that target the function of JIP1 to positively regulate JNK activity or NMDA 
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receptor function (Myers and Davis, 2007; Feder et al., 2014; Ori et al., 2015; Mataix-

Cols et al., 2017) may therefore be useful for the treatment of PTSD or anxiety 

disorders marked by abnormal fear learning and maladaptive processing of information 

related to threat. My thesis provides a proof-of-concept that validates this approach 

using a model organism. An exciting future possibility is the application of this strategy 

to the treatment of human fear and anxiety.  

Overall, the results of this thesis suggest that JNK activation caused by the JIP1 

scaffold protein constrains learning and memory in a NMDA receptor-dependent 

fashion. This role of JIP1 starkly differs from the related protein JIP2 that acts to 

promote NMDA receptor signaling by a JNK-independent mechanism (Kennedy et al., 

2007). Our studies of JIP1 therefore establish a role for the JIP1-JNK pathway in NMDA 

receptor-dependent regulation of memory acquisition, consolidation, and retention.  
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5.0. Conclusions 

The principal findings of this dissertation are: 

1) Hippocampus morphology is normal in JIPTA mice. 

2) Increased anxiety-related behavior in JIPTA mice. 

3) Enhanced learning abilities of JIPTA mice (decreased JNK activity in response to 

contextual fear conditioning), suggesting that JIP1-mediated JNK activity plays a 

role in memory consolidation. 

4) Enhanced postsynaptic transmission in JIPTA mice, and lower threshold for LTP 

induction. 

5) NMDA receptor subunits expression is upregulated in the hippocampus of JIPTA 

mice. JIPTA mice have enhanced NMDA receptor activity that could contribute to 

the enhanced synaptic plasticity observed in those mice. 

6) JIP1∆JBD mice have enhanced learning abilities with upregulation of NMDA 

receptor expression and activity. 

7) Disruption of the Kinesin-1 binding site on JIP1Y705A does not alter associative 

learning. 
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