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ABSTRACT 

Selenium (Se) is an antioxidant trace element that is important for normal brain 

function. Se is incorporated into selenoproteins, a family of proteins with multiple 

functions that include protection from oxidative stress. Methamphetamine (METH) 

increases dopamine (DA) signaling by causing efflux of DA out of nerve terminals, 

resulting in increased oxidative stress from oxidized DA, and eventual degeneration of 

dopaminergic terminals. Se protects against METH-induced neurotoxicity while Se 

deficiency potentiates toxicity. Se may also be involved in DA transmision as Se 

deficiency increases DA turnover in rodents. We explored the possibility that Se may 

affect the physiological response to METH by using fast-scan cyclic voltammetry 

(FSCV) to record DA release and uptake kinetics in mouse brain slices. Action potential-

dependent phasic DA release was simulated in the present study by electrically evoking 

release in brain slices. METH was applied to brain slices and phasic release recorded, 

as well as DA efflux, which was monitored in the absence of stimulation. Dietary Se 

restriction lasting 2 weeks reduced METH-induced DA efflux. Inhibition of the 

selenoprotein glutathione peroxidase (GPx) also reduced DA efflux through 

mechanisms involving ATP-sensitive K+ channels (KATP channels) and cannabinoid 

receptor 1 (CB1R). Chronic Se-deficient mice had reduced basal DA uptake rates, but 

no change in basal release. In response to METH chronic Se deficiency caused 

reduced DA efflux compared to Se-sufficient mice. METH also caused and increase in 

phasic DA release in chronic Se-deficient mice that can be attributed to increased DA 

vesicular release. Selenoprotein P (Sepp1)-KO mice had reduced baseline phasic DA 

release and uptake rates. In response to METH, phasic release was significantly 

potentiated due to increased DA vesicular release. METH-induced vesicular DA release 
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in wild-type mice was found to be masked by D2R auto-inhibition, which may be 

dysfunctional in Sepp1-KO mice. METH-induced vesicular DA release was prevented in 

Sepp1-KO mice by purified Sepp1 protein acting on ApoER2 to promote D2R function. 

These results indicate that Se is directly involved in DA neurotransmission and 

modulates the DA response to METH. Furthermore, specific selenproteins play 

differential roles in regulating DA physiology. 
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CHAPTER 1: INTRODUCTION 

 

 This research project seeks to uncover the role of selenium (Se) in mesolimbic dopamine 

(DA) transmission and in mediating dopaminergic responses to methamphetamine (METH). The 

first aim explores the short-term influence of dietary Se levels and the selenoprotein glutathione 

peroxidase (GPx) in mediating extracellular DA concentrations and METH-induced DA 

elevations. The second aim describes the consequences of chronic Se deficiency on dopaminergic 

activity. Finally, the third aim investigates the specific role of Selenoprotein P (Sepp1) in DA 

release regulation. Overall, this study highlights the importance of Se in the DA system while 

providing new insight on redox and non-redox selenoprotein activity. The findings reported here 

also have some implications for the mechanism of action of METH.  

 

Neurotransmission 

Excitation and inhibition: 

 Although the present study is restricted to dopaminergic transmission, there are 

implications for the involvement of other neurotransmitter systems. Glutamate is the most 

abundant neurotransmitter in the brain and responsible for excitatory transmission. Released pre-

synaptically, glutamate activates four different classes of receptors: α-amino-3-hydroxy-5-methyl-

4-isoxazolepropionic acid receptors (AMPARs), N-methyl-D-aspartate receptors (NMDARs), 

metabotropic glutamate receptors (mGLURs) and kainate receptors (Meldrum, 2000). Activation 

of AMPARs opens ion channels to promote membrane depolarization. NMDAR require partial 

membrane depolarization, in addition to glutamate binding, to activate. Both receptor types differ 

in their kinetics, composition, and ion specificity (Laube et al., 1998). AMPARs are fast-acting 

and mainly responsible for Na2+ influx with precise ion permeabilities depending on protein 

subunit composition (Chater and Goda, 2014). NMDARs are slower, have a high ratio of Ca2+ to 

Na+ permeability, and require depolarization for activation (Iacobucci and Popescu, 2017). The 

mGLURs are G-protein-coupled receptors (GPCRs) that activate intracellular signaling pathways 

primarily to modulate neurotransmission and membrane excitability (Niswender and Conn, 2010). 

 The main inhibitory neurotransmitter is γ-aminobutyric acid (GABA), which reduces 

neuronal excitability. GABA works on two classes of receptors: GABAA receptors, which are ion 

channels that induce hyperpolarization via Cl- conductance, and GABAB receptors, which are 
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GPCRs that can activate K+ channels as well as intracellular signaling pathways (Chebib and 

Johnston, 1999). 

 

Dopamine metabolism and recycling: 

 DA is a monoamine synthesized from the amino acid precursor L-DOPA by the enzyme 

DOPA decarboxylase (Meiser et al., 2013). L-DOPA itself is generated by the removal of a 

hydroxyl group (OH) from L-Tyrosine by the enzyme tyrosine hydroxylase (TH) (Daubner et al., 

2011). This is a rate-limiting step and, thus, TH expression and activity are used as indicators of 

DA synthesis and activity.  

Following synthesis, cytosolic DA is packaged into synaptic vesicles by the vesicular 

monoamine transporter-2 (VMAT-2). Synaptic vesicles have an internal acidity that is maintained 

by the vacuolar-type H+-ATPase (V-ATPase) which pumps protons into the vesicle in an ATP-

dependent manner (Cidon et al., 1983; Cidon and Nelson, 1983). The resulting pH gradient is used 

by VMAT-2 to pump DA into the vesicle by exchanging 2 protons for one DA molecule (Zhang 

et al., 2012).  

Vesicular DA is released into the synapse following sufficient neural activity. Vesicular 

DA release is proposed to occur through a process called ‘kiss-and-run’. This model of vesicular 

release is unique in that it purports that the vesicle fuses with the plasma membrane just enough to 

open a pore, release DA, and then close the pore to be recycled back into the synaptic vesicle pool 

(Wightman and Haynes, 2004; Trouillon and Ewing, 2014). The vesicle is conserved for use rather 

than undergoing full collapse fusion and being recycled through the plasma membrane. While it 

remains a topic of debate ‘kiss-and-run’ is thought to be resource efficient and increase the capacity 

of pre-synaptic terminals to respond to high frequency inputs (Harata et al., 2006). 

Synaptic DA can also be taken back up into the pre-synaptic terminal via the plasma 

membrane dopamine active transporter (DAT) and subsequently re-packaged into vesicles by 

(VMAT-2) (Torres et al., 2003; Wimalasena, 2011). DAT uses similar principles as VMAT-2 to 

transport DA across the membrane. DAT uses an electrochemical gradient to co-transport 2 Na+ 

ions and one Cl- ion along with DA from the extracellular space into the cell (Krueger, 1990). 

Na+/K+-ATPase maintains this gradient that powers DAT activity by pumping Na+ out of the 

neuron and K+ in, an action that primarily serves to maintain the resting membrane potential 

(Torres et al., 2003). 
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Alternatively, synaptic DA can be broken down by the enzymes monoamine oxidase 

(MAO), catechol-O-methyl transferase (COMT), and aldehyde dehydrogenase (ALDH). The 

metabolic products, which include homovanillic acid (HVA) and 3,4-Dihydroxyphenylacetic acid 

(DOPAC), can be measured to evaluate DA turnover rates (Elsworth and Roth, 1997). 

 

Dopamine receptors: 

DA signaling plays a neuromodulatory role in the brain. DA receptors are GPCRs that fall 

into two families of opposing influences. The D1-like family, which includes D1R and D5R, 

activates adenylyl cyclase (AC) to up-regulate the cyclic adenosine monophosphate (cAMP) 

pathway, potentially having numerous effects including increasing intracellular Ca2+. The D2-like 

family, which includes D2R, D3R, and D4R, and inhibits AC to down-regulate the cAMP pathway 

(Beaulieu and Gainetdinov, 2011). While D1R and D2R are both localized post-synaptically, D2Rs 

are also present as a shorter isoform on pre-synaptic terminals where they carry out auto-inhibitory 

action. Activation of pre-synaptic D2Rs can suppress DA release by decreasing release probability 

via K+ channel activation, down-regulating DA synthesis by inhibiting TH, and up-regulating DA 

uptake from the synapse by increasing DAT surface expression (Ford, 2014). Additionally, D2Rs 

can inhibit VGCCs via G-protein coupled signaling. The present study investigates the D2R auto-

inhibitory component of the dopaminergic response to METH. 

 

Other neurotransmitters: 

 There are several other neurotransmitter systems with neuromodulatory properties within 

the brain that, while not directly investigated, can affect dopaminergic transmission. Acetylcholine 

(ACh) modulates synaptic transmission and excitability by binding two classes of receptors: 

muscarinic receptors (mAChRs) (Wess, 2003), which are GPCRs that can activate multiple 

pathways through phospholipase C and AC signaling, and nicotinic receptors (nAChRs), which 

are non-selective ion channels distributed across the neuronal surface (Picciotto et al., 2012). 

Serotonin (SER) and norepinephrine (NE), two other monoamines, act on a diverse range of 

GPCRs as well as Na+/K+ channels in the case of SER (Mohammad-Zadeh et al., 2008; Xing et 

al., 2016). 
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The endocannabinoid system: 

 Part of this study addresses the role of the retrograde signaling endocannabinoid system. 

Endocannabinoids are lipid-based molecules that incorporate the phospholipid membrane-resident 

fatty acid arachidonic acid (ARA) (Mechoulam and Parker, 2013). The major endocannabinoids 

are anandamide (AEA) and 2-arachidonoylglycerol (2-AG), which are derived from the 

phospholipids phosphatidylethanolamine and phosphatidylinositol, respectively (Murataeva et al., 

2014; Maccarrone, 2017). The metabolic processes involved are complex and involve multiple 

hydrolytic pathways carried out by enzymes such as phospholipase D and diacylglycerol lipase. 

AEA and 2-AG are primarily broken down by fatty acid amide hydrolase (FAAH), yielding ARA 

and other metabolites (Mechoulam and Parker, 2013).  

 Endocannabinoids act on two types of pre-synaptic receptors: cannabinoid receptor 1 

(CB1R) and cannabinoid receptor 2 (CB2R). Both receptors are GPCRs that down-regulate AC 

activity to inhibit neurotransmitter release (Pertwee, 2006). Interestingly, CB1R has been 

implicated in the ability of AMPH to elevate striatal DA levels (Covey et al., 2016). CB1R receptor 

activity may also be involved in H2O2-KATP channel suppression of evoked DA release (Sidlo et 

al., 2008). Additionally, CB2R plays a neuroprotective role against METH toxicity (Nader et al., 

2014). 

 

The Mesolimbic Pathway 

The mesolimbic dopamine (DA) system, often referred to as the reward pathway, plays an 

important role in mediating the acute rewarding effects of pleasurable stimuli, such as food, sex, 

drugs of abuse, and social interaction (Nestler and Carlezon, 2006). The mesolimbic system 

consists of dopaminergic projections from the ventral tegmental area (VTA) to the nucleus 

accumbens (NAc). Located in midbrain, the VTA consists primarily of DA neurons with axons 

that extend and synapse onto neurons in the NAc, located in striatum (Cameron et al., 1997). VTA 

dopaminergic neurons play a key role in motivation, reinforcement learning, and motor output 

(Graybiel et al., 1994; Cagniard et al., 2006). VTA also contains GABAergic neurons, which are 

thought to locally inhibit VTA dopaminergic neurons and may also project to the NAc (Van 

Bockstaele and Pickel, 1995). There is also a small population of VTA glutamatergic neurons that 

may provide excitatory regulation of the dopaminergic neurons (Yamaguchi et al., 2007). In 
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addition to drug addiction, the VTA has been shown to be essential for the development of ‘natural 

addictions’ which involve compulsive consumption of natural stimuli and include gambling, 

overeating, and sex addictions (Nestler and Carlezon, 2006).  

The NAc contains primarily medium spiny neurons (MSNs), which are GABAergic and 

receive dopaminergic input from the VTA (Salgado and Kaplitt, 2015). Anatomically, the NAc 

consists of the central core region and the outer shell region, which differ morphologically and 

functionally. NAc core surrounds the anterior commissure (AC) and is in turn surrounded by the 

shell on the medial, ventral, and lateral sides (Fig.1-1) (Heimer et al., 1997). The core is thought 

to consist of a smaller density of cells, with relatively less dendritic branching and few multipolar 

neurons. The shell, on the other hand, is regarded as containing a denser population of fusiform 

and multipolar neurons with more dendritic spines on secondary and tertiary branches (Berendse 

and Groenewegen, 1990; Sazdanovic et al., 2011). Rodent morphology studies have yielded 

opposing results, however, with evidence suggesting the shell contains smaller neurons with fewer 

dendritic spines and branching (Meredith et al., 

1989; Meredith et al., 1992).  

Despite varying mechanisms of action, 

elevated DA levels in the NAc is a central 

component of the role of the mesolimbic system in 

the reward-reinforcement of drugs of abuse (Wise, 

1998; Koob and Le Moal, 2001). For example, in the 

case of psychostimulants like METH and cocaine, 

increased DA transmission in the NAc results from 

the direct inhibition of DA uptake (Wise, 2004). 

Opiates, on the  

other hand, achieve DA elevation by 

inhibiting GABAergic interneurons in the VTA, 

thereby disinhibiting VTA dopaminergic neurons 

(Howlett et al., 2004). 

Functionally, the core and shell seem to serve 

different purposes. The core is vital to conditioned responses, impulsivity, and motivation 

(Maldonado-Irizarry and Kelley, 1995; Parkinson et al., 2000; Cardinal and Howes, 2005) while 

 

Figure 1-1. Nucleus accumbens. 

The NAc core surrounds the anterior commissure 

(AC) and is involved in impulsivity and 

motivation. The NAc shell, which processes the 

rewarding effects is stimuli, is located lateral to 

the core. The shell is also implicated in addiction. 

Shell 

AC 

Core 

Impulsivity,  
motivation 

Rewarding effects  
of stimuli  
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the shell is more involved in the reinforcing properties of novelty, pleasurable substances, drug 

relapse, and feeding behavior (Parkinson et al., 1999; Alderson et al., 2001; Bossert et al., 2007; 

van der Plasse et al., 2012). The NAc shell is of special interest regarding substance abuse as it is 

thought to play a more significant role in the rewarding effects of drugs in comparison to the core 

(Ikemoto, 2007). Lesioning dopaminergic terminals in the NAc shell, but not core, reduces 

amphetamine (AMPH)-induced conditioned place preference (Sellings and Clarke, 2003). 

Additionally, rats learn to self-administer AMPH and cocaine into the NAc shell, but not the core 

(Ikemoto and Witkin, 2003). Chronic cocaine exposure impairs DA signaling in the NAc shell of 

self-administering rats much more dramatically than the core (Saddoris et al., 2016). Finally, the 

shell has also been implicated in METH-induced behavioral sensitization and withdrawal 

symptoms (Xu et al., 2011; Ren et al., 2015). For these reasons, we focused our studies on the NAc 

shell.  

 

Tonic-Phasic Dopamine Model 

Tonic and phasic release: 

Current models of DA release posit DA to be released in two separate modes, driven by 

independent mechanisms that work together homeostatically (Wong et al., 2008). Phasic release 

is a transient episode of action potential-dependent burst firing that releases DA into the synapse 

to elicit a post-synaptic response. Tonic release is described as a slow, sustained release of lesser 

amounts of DA that diffuse into the extracellular space and generally do not elicit a strong post-

synaptic response. Disruptions in the balance of tonic and phasic firing have been proposed to 

underlie the DA pathophysiology of multiple neurological disorders as well as the deleterious 

effects of substance abuse (Grace, 1991, 1995). This study will investigate phasic and tonic DA 

release in NAc using fast-scan cyclic voltammetry (FSCV), which uses a carbon-fiber electrode to 

measure extracellular DA concentrations. 

The precise definitions of the terms “tonic” and “phasic” have changed slightly over time 

and their usage differs slightly in relation to different contexts. The tonic-phasic DA model was 

first proposed by Grace et al. and describes synaptic (phasic) and extra-synaptic (tonic) DA release 

to explain discrepancies seen between microdialysis and voltammetry studies (Grace, 1991). The 

term “tonic DA concentration” has been used to refer to the steady-state extracellular DA 
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concentration that is maintained by steady tonic DA release. Changes in this basal DA 

concentration occur slowly over minutes of time, such as that measured by microdialysis studies.  

Past studies seeking to depict basal tonic DA concentrations in striatum have reported 

levels ranging from 1 nM to 2.5 µM (Atcherley et al., 2015). This wide range of concentrations 

has largely been attributed to the physical limitations of microdialysis and voltammetry techniques 

(Justice, 1993). More recently, Atcherley et al. used a novel method called fast-scan controlled-

adsorption voltammetry (FSCAV), purported to give more direct measurements of tonic DA 

concentrations, and reported concentrations of 90 ± 9 nM DA in anaesthetized mouse NAc 

(Atcherley et al., 2015).  

The usage of the term phasic DA release is more straight-forward and refers to the rapid 

vesicular release of vesicular DA into the synaptic space in response to an action potential. Phasic 

DA release concentrations as high as 1 µM have been reported using FSCV (Gonon, 1988; Garris 

et al., 1997). Further critique and comparison of DA-measuring techniques will take place in the 

GENERAL DISCUSSION section.  

 

Tonic and phasic ‘firing’: 

The definitions of tonic and phasic also incorporate the electrical activity profiles thought 

to underlie each mode of DA release. VTA dopaminergic neurons exhibit a ‘pacemaking’ axonal 

firing maintained by a slow depolarization (40-120 ms) of about 13 mV at 3-8 Hz (Grace and 

Bunney, 1984a). Consecutive depolarization events are associated with voltage-gated Ca2+ channel 

(VGCC)-mediated currents (Lambert et al., 2014). This low frequency firing intrinsically occurs 

at regular intervals and is influenced by GABAergic inputs from afferent connections and local 

circuitry (Grace and Bunney, 1983). These inhibitory controls result in dopaminergic neurons 

displaying a slow, irregular firing pattern that, in combination with spontaneous release events, 

contributes to extracellular DA concentrations. This non-phasic firing pattern, referred to in some 

of the literature as ‘tonic firing’ becomes more regular in ex vivo brain slices when GABAergic 

afferent inputs are lost (Grace and Bunney, 1985; Grace and Onn, 1989; Cohen et al., 2012).  

Early studies on rats noted that only about half of the population of DA neurons in rat VTA 

are typically active, a phenomenon that was eventually attributed to robust GABAergic input from 

the ventral pallidum (VP) (Grace and Bunney, 1984a; Freeman and Bunney, 1987; Floresco et al., 
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2001; Floresco et al., 2003). This constant inhibitory input is required to keep certain neurons in a 

‘non-firing state’, and in the absence of inhibition, the neurons fire consistently in a ‘control state’. 

Overall tonic DA concentration in the NAc is maintained by the baseline activity of the 

VTA DA neuron population. The collective baseline electrical activity of the population, referred 

to as the population activity, may loosely be referred to in some papers as “tonic DA activity”. 

Increases in tonic DA activity are thought to result from an increase in the total number of DA 

neurons that are in the control state. Some other possible factors that could modulate tonic DA 

levels are changes in firing rate, release probability, and vesicular content (Dreyer et al., 2010).  

Phasic DA release results from burst firing events that typically involve 3-10 action 

potentials (5-15 mv) at 40-80 ms intervals (Grace and Bunney, 1984b). Phasic firing of DA 

neurons is driven by glutamatergic input from multiple brain regions. The most robust input noted 

comes from the brainstem, which becomes active in response to behaviorally relevant stimuli 

(Grace, 2012). Only neurons that are already in the control state, however, exhibit burst firing in 

response to glutamatergic signals from the brainstem (Mayer et al., 1984; Chergui et al., 1993). 

Therefore, it is postulated that the greater the number of neurons activated, the larger the resultant 

phasic DA signal (Floresco et al., 2003).  

According to this model, tonic DA release would typically correlate with the amplitude of 

the phasic response. This relationship could change, however, if tonic DA levels rise 

disproportionately to population activity. This could result from augmented quantal size, increased 

spontaneous release, or slower DA reuptake rates (Grace, 2016). In this case, increased 

extracellular DA could cause a greater occupancy of D2 auto-receptors and subsequently attenuate 

the phasic DA release that results from burst firing (Floresco et al., 2003).  

The ventral subiculum (vSub) of the hippocampus has been demonstrated to increase 

population activity of DA neurons by inhibiting VP afferents to the VTA (Lodge and Grace, 2006). 

Therefore, it is thought that the input from the vSub transmits information about the contextual 

relevance of a situation considering that the more ventral regions of the hippocampus are 

innervated by limbic inputs, particularly from the amygdala (French et al., 2003). For example, a 

situation with elevated an risk/reward ratio may result in less inhibition from the vSub and, 

therefore, allow for a more robust phasic DA signal in response to behaviorally salient stimuli 

(Schultz, 2016). While vSub activity increases tonic firing in DA neurons by inhibiting the VP, 

the basolateral amygdala (BLA), which is activated in response to stress, has been shown to 
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decrease DA neuron population activity potentially through glutamatergic inputs to the VP 

(LeDoux, 2000; Chang and Grace, 2014). 

Historically, DA activity has been investigated in terms of firing patterns using single cell 

recording. Microdialysis originally provided the best means of measuring DA release. More 

recently, the development of FSCV has provided a means to measure DA concentration with sub-

second temporal resolution and, therefore, capture synaptic release events. FSCV modeling of 

endogenous tonic firing involves single-pulse stimulations and multi-pulse stimulations under 20 

Hz in frequency. Phasic burst-firing, on the other hand, is modeled using multi-pulse stimulations 

of at least 20 Hz (Ferris et al., 2013).  

 

Functional interplay of tonic and phasic release: 

Tonic DA release is thought to provide a baseline tone which dictates the local responsivity 

of DA receptors to phasic DA events originating from the VTA (Grace, 2012). The occupancy of 

D1R and D2R is highly dependent on the balance and synchronicity of tonic and phasic DA firing. 

Computational modeling of DA signaling predicts that synchronized phasic burst firing increases 

D1R and decreases D2R average occupancy relative to tonic firing. Phasic patterns consist of 

bursts during which D1R occupancy is high and intra-burst pauses during which occupancy of 

both receptors is relatively low.  

 

Impact of Methamphetamine on Society 

METH is a powerful sympathomimetic with a wide range of devastating health effects and 

high potential for abuse. It is a member of the AMPH class of psychostimulant drugs. METH is a 

methylated derivative of AMPH and shares much the same pharmacodynamics (Melega et al., 

1995). As such, this study considers scientific findings on the actions of AMPH to be 

representative of similar actions exerted by METH.  While METH is generally suggested to be 

more potent than AMPH, few studies have directly compared the two drugs.  

METH is a large player in the global market for synthetic drugs. In the United States, the 

prevalence of METH abuse was estimated to be about 1.2 million individuals in 2012 according 

to the National Survey on Drug Use and Health (Volkow, 2013). It is estimated that there are 15-

16 million METH users worldwide. AMPHs are the second most widely used illicit drug 
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worldwide, trailing only marijuana (UNODC, 2014). The economic strain of METH in the United 

States alone is staggering with estimated costs as high as $48.3 billion (RAND, 2009).  

Acute METH exposure can cause rapid/irregular heartbeat, hyperthermia, hypertension, 

and convulsions. In the long-term, significant alterations to the DA system can lead to problems 

with anxiety, insomnia, violent behavior, psychosis, mood disorder, and of course addiction 

(Volkow, 2013). Although addiction and acute METH toxicity can be supportively managed, there 

are currently no medications that counteract the specific actions of METH (Volkow, 2013). To 

date, most clinical trials for pharmacological treatments have produced negative results. A recent 

expert review on METH addiction pharmacotherapy has indicated a need for new treatment targets 

and, thus, further understanding of the underlying molecular mechanisms of METH is needed 

(Ballester et al., 2017). 

 

 

Methamphetamine Mechanism of Action 

Methamphetamine-induced dopamine efflux:  

METH exerts its main effects on the brain through its ability to greatly potentiate 

dopaminergic transmission. Currently, the most commonly accepted mechanism of action is that 

METH inhibits DA uptake through DAT by competing with DA for the binding site, resulting in 

elevated levels of DA in the synapse (Seiden et al., 1993; Sulzer, 2011). METH is also capable of 

reversing the transport direction of DAT (Jones et al., 1998) as well as entering dopaminergic 

terminals and causing release of DA from vesicles into the cytosol by disrupting VMAT-2 function 

(Fig. 2-1) (Sulzer et al., 1992).  

 

Figure 1-2. Transport of DA and METH through DAT. 

DAT co-transports 2Na+ and Cl- along with DA using the Na2+ concentration gradient as a driving 

force. In the case of DA efflux, this transport mechanism acts in the opposite direction, transporting 

cytosolic DA into the synaptic space.  

2Na
+

 Cl
-

 

DA 
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Vesicular DA stores are depleted and DA is released from the pre-synaptic terminal via 

reverse directional activity of DAT. Electrophysiological studies suggest that this biphasic 

mechanism is concentration dependent with vesicular depletion requiring higher concentrations 

(10µM) than DAT inhibition (<10µM) when applied to mouse brain slices (Siciliano et al., 2014). 

This phenomenon, commonly referred to as DA efflux, is thought by many to account, perhaps 

exclusively, for the increases in extracellular DA levels that are central to METH-induced 

neurological and psychosomatic effects. 

 

Methamphetamine action on vesicular dopamine: 

METH has been demonstrated to have a high affinity for VMAT-2 and compete with DA 

and chemical VMAT-2 inhibitors for binding (Peter et al., 1994). There are two major hypotheses 

to explain the mechanism through which METH removes DA from vesicles into the cytosol. The 

first is that METH competes with DA for the uptake site on VMAT-2, referred to as VMAT 

competition and has also been suggested to be taken up into the vesicle as a VMAT-2 substrate 

(Sulzer et al., 2005). AMPH was known early on to accumulate in acidic organelles inside the cell, 

but this is likely due to its characteristics as a lipophilic weak base and to date there is no direct 

evidence of METH being transported as a VMAT-2 substrate (Mack and Bonisch, 1979). 

Nevertheless, METH is at least capable of reducing DA uptake into vesicles which can deplete 

vesicular DA levels over time as there is naturally a constant low-level leakage of DA out of 

synaptic vesicles (Floor et al., 1995; Pothos et al., 2000).  

The second hypothesis to explain METH-induced vesicular DA depletion purports that the 

weak base activity of METH makes it membrane permeable and thus allows it to enter synaptic 

vesicles and bind protons. This weak base hypothesis predicts the alkalinization of the vesicular 

lumen and, therefore, the destruction of the pH gradient that drives DA uptake into the vesicle. 

These hypotheses are not mutually exclusive and are commonly accepted mechanisms of action to 

explain DA vesicle depletion in the presence of METH.  

 

Methamphetamine action on the dopamine active transporter: 

Like with VMAT-2, there are multiple proposed hypotheses to explain the mechanism of 

METH-induced DAT reverse transport. Facilitated exchange diffusion presumes that the DA 

binding site on DAT crosses the membrane to release DAT. After crossing, it is then available for 
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binding cytosolic DA and transporting it out of the cell. The underlying assumption of this 

hypothesis is that the substrate drives the transport process (Sulzer et al., 2005). According to this 

model, intake would occur much more frequently than efflux due the higher Na+ concentration 

extracellularly (Bogdanski and Brodie, 1969). As a DAT substrate, METH would be taken into 

the neuron and increase the probability of the binding site being on the cytosolic side and, 

therefore, increasing the rate of DA efflux (Paton, 1973). The net result of this model would be a 

one-to-one exchange of DA out of the neuron for METH into the neuron.  

The channel-like transporter modes hypothesis suggests that upon exposure to METH, 

transmembrane gradients drive a net flux of DA molecules through DAT in an ion channel-like 

conductance event (Sonders et al., 1997; Kahlig et al., 2005). This model allows for a greater than 

one-to-one exchange of DA for METH and thus a more potent mode of DA efflux. Khoshbouei et 

al. introduced a hypothesis that contends that DAT has an asymmetric structural conformation that 

transports DA bi-directionally, but strongly favors influx over efflux (Khoshbouei et al., 2004). In 

this model, METH causes secondary messenger events that result in DAT phosphorylation and a 

conformational shift that favors DA efflux. Most evidence points to protein kinase C (PKC) as the 

primary mediator of this pathway (Giambalvo, 1992a, b; Kantor and Gnegy, 1998). While multiple 

ideas have been proposed, the mechanistic details of METH-induced DA efflux remain to be fully 

elucidated.  

There are several additional mediating factors that have been proposed to contribute to 

METH-induced extracellular DA elevation at large including MAO inhibition (Blaschko et al., 

1937; Mantle et al., 1976), increased DA synthesis (Larsen et al., 2002), DAT internalization 

(Saunders et al., 2000), redistribution of VMAT-2 to endosomes (Brown et al., 2000; Brown et al., 

2002), changes in intracellular Ca2+ (Haigh and Phillips, 1993; Mundorf et al., 1999), excitatory 

current conductance via DAT (Ingram et al., 2002), and activation of surface receptors such as 

trace amine-associated receptor 1 (TAAR1) (Cotter et al., 2015), α-2 adrenergic receptors (Ritz 

and Kuhar, 1989), and nicotinic acetylcholine receptors (nAChRs) (Liu et al., 2003).  

 

Methamphetamine-induced vesicular dopamine release: 

There is some evidence to support the less commonly considered hypothesis that METH 

causes an increase in vesicular DA release. Using in vivo single-unit recording of rat VTA DA 

neurons, Shi et al. showed that AMPH induces heightened excitatory bursting and overall firing 
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rate, which is masked by D2R auto-inhibition (Shi et al., 2000). The excitatory effect was itself 

shown to occur in a DA receptor-independent manner. Later studies using FSCV revealed the 

ability of AMPH to activate phasic DA transients in mice in vivo and suggested a mechanism 

involving facilitated vesicular DA release (Covey et al., 2013; Daberkow et al., 2013). These 

studies reported an increase in striatal evoked DA release following intraperitoneal injection (i.p.) 

of AMPH. Additionally, spontaneous DA transients were shown to increase in amplitude and 

frequency with AMPH exposure. Schmitz et al. revealed that AMPH has an indirect effect of up-

regulating D2R auto-inhibitory activity in striatal mouse brain slices (Schmitz et al., 2001). 

Interestingly, pre-treating VTA dopaminergic neurons in vivo with tetrodotoxin, a voltage-gated 

Na+ channel antagonist used to inhibit action potentials, prevents AMPH-induced tonic DA 

elevations in mice altogether (Covey et al., 2016). 

There is disagreement, however, whether this is evidence of an AMPH-induced increase 

in vesicular DA release or simply an artificial result of DA uptake inhibition. DAT knockout (KO) 

mice show a complete absence of AMPH-induced increases in extracellular DA concentrations, 

implying that the effect is DAT-dependent and, therefore, likely results from prototypical efflux 

though DAT (Siciliano et al., 2014). One hypothesis put forth by Covey et al. attempts to reconcile 

these paradoxical findings by claiming that AMPH up-regulates vesicular release of DA from 

readily-releasable DA vesicle pools while exerting its vesicular depletion effects on reserve DA 

pools (Covey et al., 2013). 

It is worth pointing out that since METH seems to block DAT at low doses and must be 

present in high doses to reverse DAT function, it is possible that a separate mechanism leading to 

increased vesicular release of DA may also be dose-dependent. Furthermore, such an effect may 

be masked by the amount of DA efflux and vesicular depletion seen with high doses. Nevertheless, 

this remains a highly contested topic in AMPH research, which carries with it very important 

implications as DA transients are critical in reward-based learning and drug reinforcement (Stuber 

et al., 2005; Steinberg et al., 2014). Moreover, Calipari et al. and Ferris et al. have suggested that 

goal-directed behavior is driven by the ratio of phasic DA release to baseline DA concentration, 

rather than simply the overall DA level (Calipari and Ferris, 2013). The second part of this study 

provides data in support of an increase in vesicular DA release in response to METH as well as a 

mediating function of pre-synaptic D2R. 
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Selenium and the brain 

Se is a nutritionally essential trace element with a variety of biological functions. It has 

been implicated in antioxidant defense, inflammatory response, thyroid hormone metabolism, and 

fertility (Brenneisen et al., 2005; Moghadaszadeh and Beggs, 2006; Youn et al., 2008; Schomburg, 

2011). Epidemiological studies have indicated a protective role for Se in cancer, HIV progression, 

age-related mortality, and neurodegenerative disease (Beck et al., 2003; Akbaraly et al., 2005; 

Rayman, 2005; Brigelius-Flohe and Banning, 2006). Se is particularly important for proper brain 

function, primarily through its antioxidant functions (Chen and Berry, 2003; Steinbrenner and Sies, 

2013).  

 

Selenoprotein transcription and expression: 

Se primarily exerts its physiological functions through the actions of a family of proteins 

called selenoproteins, which contain Se in the form of the 21st amino acid, selenocysteine (Sec) 

(Reeves and Hoffmann, 2009). Selenoproteins are synthesized through a process that involves the 

re-programming of the UGA stop codon to instead cause the insertion of a Sec residue (Allmang 

et al., 2009; Donovan and Copeland, 2010). Selenoprotein mRNAs contain a stem-loop structure 

downstream from the UGA codon on the 3’ untranslated region (UTR) called the Sec insertion 

sequence (SECIS) element. which is necessary for and controls the efficiency of Sec insertion 

(Latreche et al., 2009). The process also requires the recruitment of several proteins and factors, 

including a unique tRNA (Sec-tRNA[Ser]Sec), the alternative elongation factor EFsec, and SECIS-

binding protein 2 (SBP2) (Bulteau and Chavatte, 2015). 

Selenoprotein production is largely dependent on the availability of dietary Se. Early 

studies with radioactive [75Se]selenite labelling in rats revealed that under Se-deficient conditions, 

Se supply is preferentially retained in the brain, reproductive, and endocrine organs (Behne et al., 

1988). It was also noted that expression of certain Se-containing proteins also seemed to be 

differentially affected by Se deficiency.  It was eventually found that while GPx1 mRNA levels 

fall dramatically in response to Se deficiency, Sepp1 and iodothyronine deiodinase 1 (Dio1) 

mRNA levels were less affected by Se scarcity (Hill et al., 1992). Furthermore, protein levels 

decreased to a much greater extent than their respective mRNAs, suggesting regulation at the 

translational level. This suggests a ‘hierarchy’ in selenoprotein expression and a high priority for 

Se utilization in the brain. Indeed, multiple studies have revealed details of the ‘hierarchy’, as well 
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as multiple ways it is imposed by Se availability (Sunde and Raines, 2011). Additionally, 

selenoproteins undergo degradation through nonsense-mediated decay (NMD), a process to 

eliminate aberrant mRNA, in which some selenoprotein transcripts are more vulnerable to than 

others (Seyedali and Berry, 2014). 

 

Neuroprotective role of Selenium: 

Within the brain, an important role of Se is protecting against oxidative stress through 

reactive oxygen species (ROS) and reactive nitrogen species (RNS) scavenging (Spallholz, 1990). 

The brain is especially vulnerable to oxidative stress due to its high demand for oxygen and 

relatively low amounts of antioxidants (Rayman, 2012). Generally, Se has been shown to have a 

protective affect through selenoproteins against neurodegenerative disorders such as Alzheimer’s 

disease (AD), Parkinson’s disease (PD), Huntington’s disease, and amyotrophic lateral sclerosis 

(ALS). While Se neuroprotection has largely been attributed to antioxidant capabilities of 

particular selenoproteins, other mechanisms include preventing Ca2+ influx and anti-inflammation 

via NF-KB inhibition (Santamaria et al., 2005; Demirci et al., 2017; Kahya et al., 2017). Se may 

protect against glutamate-induced excitotoxicity, also by inhibiting NF-KB (Savaskan et al., 2003).  

While Se protects the brain from numerous sources of damage, high Se treatment can also 

be detrimental. Case studies on Se exposure have linked it to a multitude of motor symptoms 

including ataxia, paralysis, tremors, and hyperreflexia as well as mental conditions such as 

irritability, depression, and lethargy (Civil and McDonald, 1978; Ammar and Couri, 1981; Wilson 

et al., 1988). Pigs exposed to high Se levels develop paresis and bilateral lesions in brain stem 

motor nuclei (Wilson et al., 1983). Overall, not much research has been done on Se-induced 

toxicity. 

 

Selenium and neurotransmission: 

There is some evidence to suggest that Se status can cause changes to neurotransmission. 

While Se can decrease glutamatergic excitoxicity, not much has been revealed about how it 

influences glutamatergic transmission specifically. Interestingly, the seleno-organic GPx mimetic 

ebselen can both increase and decrease synaptic glutamate uptake rates when delivered at 

concentrations of 1 and 10 µM, respectively, in rat brain synaptosome preparations (Porciuncula 

et al., 2004). Treatment with 10 µM ebselen also showed an inhibition of H+-ATPase activity, 
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potentially through oxidation of thiol groups on the proton. Ebselen can also inhibit glutamate 

uptake in rat cortical slices at 100 µM (Moretto et al., 2007). These effects could involve a redox 

modulation of one or more proteins involved in glutamate transport.  

The ability of Se to influence neurotransmission may also involve the GABAergic system 

(Solovyev, 2015). Pitts et al showed that Sepp1-KO mice have a reduced number of GABAergic 

parvalbumin (PV)-interneurons in the inferior colliculus (IC). This is potentially caused by 

increased oxidative stress within these highly metabolically active cells. Another study showed 

that ablating selenoprotein synthesis in the forebrain of CamKII-Cre mice via conditional KO of 

the tRNA[Ser]Sec gene, causes a reduction of PV interneurons in the HPC and cortex (Wirth et al., 

2010). Interestingly, PV-interneurons were shown to express ApoER2, suggesting a potential role 

for Sepp1-ApoER2 interactions in protecting GABAergic neurons (Pitts et al., 2012). Genetic KO 

of both Sepp1 and the catabolic enzyme selenocysteine lyase (Scly) revealed further degeneration 

of GABAergic neurons and neurological dysfunction, including audiogenic seizures which may 

occur due to the loss of the PV-interneuron role in synchronicity (Byrns et al., 2014; Pitts et al., 

2015).  

The cholinergic (ACh) system is also vulnerable to loss of Se and selenoprotein function 

as SBP2-KO mice suffer from cholinergic neuron loss in striatum (Seeher et al., 2014). These 

results represent the importance of Se in the development and protection of the GABAergic and 

cholinergic system. Although these are not examples of direct interaction, the implication is that 

overall neurotransmission dysfunction may arise from loss of Se neuroprotection. While the exact 

underlying mechanisms remain unelucidated, they likely involve protection from oxidative stress.  

Supplementing mice with selenite induces anti-inflammatory action via prostaglandin E1 

receptor and improves mitochondrial function in hippocampal cells (Mendelev et al., 2012; Rehni 

and Singh, 2013). In rat striatum, selenite supplementation elevates cholesterol and total lipid 

levels in a dose-dependent manner (Zia and Islam, 2000). These various effects should be 

considered in any study concerning Se and neurotransmission. Although this study focuses 

exclusively on dopaminergic effects in the NAc, changes to other types of neurotransmission could 

also affect DA and vice-versa. Therefore, other neurotransmitters must be considered as potential 

mediators of the observed actions of Se. 
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Dopamine and Selenium 

There is considerable evidence that Se modulates the dopaminergic system. Castano et al. 

reported that 2 weeks of Se deficiency caused an increase in DA turnover in the prefrontal cortex 

(PFC) of Wistar rats (Castano et al., 1997). The increase in DA turnover was accompanied by an 

increase in DOPAC turnover, an increase in TH activity, but not TH protein expression, and a 

decrease in GPx activity. Subsequent studies by the same investigators reported Se deficiency-

induced increases in DA turnover in substantia nigra (SN) and hippocampus (HPC) (Castano et 

al., 1993; Castano et al., 1995). A few years later, Romero-Ramos et al. reported an increase in 

DA, TH mRNA, TH activity, DAT mRNA, and DAT activity in rat striatum following the same 

length of Se deficiency (Romero-Ramos et al., 2000).  

The increase in DA turnover was hypothesized to be the result of reduced GPx activity, 

based upon previous reports that impairment of the glutathione (GSH) system can increase DA 

turnover. For example, human melanoma cells exhibit an increase in TH activity under conditions 

of GSH depletion and Cys deprivation (del Marmol et al., 1993; del Marmol et al., 1996). In rat 

PC12 cells, reduced levels of GSH causes inhibition of vesicular DA storage and a subsequent 

increase in DA turnover (Drukarch et al., 1996). Interestingly, the VMAT-2 inhibitor reserpine, 

which depletes vesicular DA stores, also causes increases in both DA turnover and TH mRNA 

production in midbrain dopaminergic cells (Spina and Cohen, 1989; Pasinetti et al., 1990). 

While multiple studies have reported greater DA turnover caused by Se deficiency, similar 

results have also resulted from high levels of Se supplementation. Rasekh et al reported that i.p. 

injection with 3 mg/kg selenite caused an over-potentiation of DA activity that could be suppressed 

by pre-treatment with the D2R agonist quinpirole (Rasekh et al., 1997). It is possible, therefore, 

that excessive DA activity may mediate the neurotoxic effects of both Se deficiency and Se over-

supplementation. Moreover, D2R auto-inhibition of DA release may underlie the interaction 

between Se and the DA system. This study seeks to contribute to a more thorough understanding 

of the relationship between Se and DA signaling.  

 

Selenium neuroprotection against methamphetamine 

The neurotoxic effects of METH are well-studied and have long been known to occur 

primarily at DA terminals in the striatum (Ricaurte et al., 1980; Wagner et al., 1980). METH causes 

neurotoxicity through the production of ROS at DA terminals (Cadet et al., 1998). This is thought 
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to result from excessive of DA auto-oxidation, which produces hydrogen peroxide (H2O2) and 

superoxide (O2
-) (Cubells et al., 1994; LaVoie and Hastings, 1999).  

Repeated METH exposure greatly depletes the DA system, eventually leading to increased 

anxiety and symptoms of psychosis, likely the result of neurodegeneration. Although oxidative 

stress caused by DA auto-oxidation is likely the main mediator of METH-induced neurotoxicity, 

the precise mechanisms underlying DA terminal-specific damage have not been fully characterized 

(Miyazaki and Asanuma, 2008). 

Se has been shown to protect against the neurotoxic effects of METH, indicating a potential 

for selenoproteins to counter the molecular actions of METH (Imam et al., 1999; Kim et al., 1999). 

While Se supplementation protects against METH-induced toxicity, Se deficiency potentiates 

METH toxicity in vitro in SH-SY5Y cell cultures (Barayuga et al., 2013). Decreased GPx protein 

levels and activity are suspected mediators. 

 Multiple molecular processes have been proposed to underlie METH-induced 

neurotoxicity, which could also provide targets for the protective actions of selenoproteins. 

Mitochondrial dysfunction may play a role through the activation of caspase-dependent and -

independent apoptotic cascades (Cadet et al., 2003). Mitochondria are present in nerve terminals 

and are vulnerable to H2O2-induced oxidative stress (Chinopoulos and Adam-Vizi, 2001).  The 

selenoprotein glutathione peroxidase 4 (GPx4) and thioredoxin reductase 2 (TxnR2) are involved 

in regulating mitochondrial redox regulation and may protect against mitochondria-induced 

apoptosis (Reeves and Hoffmann, 2009).  

The precise mechanisms through which Se protects against METH-induced neurotoxicity 

are not fully understood, although redox signaling is likely to be involved. It is also possible that 

selenoproteins may mediate the effects of METH on DA signaling, however, given the potential 

involvement of Se in DA transmission. Identifying the physiological effects of Se will help identify 

potential key targets of interest for therapeutic treatment of METH toxicity and abuse. The current 

study investigates the specific contributions of GPx and Sepp1 activity. 

 

Glutathione Peroxidase 

 GPxs are a class of selenoenzymes responsible for reducing H2O2 and a variety of 

hydroperoxides by using GSH as a reductant, thus playing a significant role in protecting cells 

from oxidative stress (Ursini et al., 1995). GPx activity relies on a tetrad catalytic center that 
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contains one Sec residue (Epp et al., 1983). The main reaction involves a selenol group (-SeH), 

which interacts with H2O2 and becomes oxidized to form a selenic acid intermediate (-SeOH). 

Selenic acid is then reduced by 2 GSH molecules in a process that involves the formation of a 

glutathionylated selenol (Se-SG) intermediate. This process results in the formation of glutathione 

disulfide (GS-SG), eventually reduced by enzyme glutathione reductase, and two H2O molecules 

(Toppo et al., 2009).   

  GPx1, the first selenoprotein identified, is a highly abundant peroxide scavenger 

considered to be the prototypical GPx (Rotruck et al., 1973; Lei et al., 2007). GPx1 primarily reacts 

with H2O2 as well as some soluble hydroperoxides (Flohe, 1988). Although GPx1-KO mice 

develop normally, they are susceptible to acute oxidative stress induced by paraquat injection, even 

when supplemented with dietary Se (Ho et al., 1997; Cheng et al., 1998). GPx1 expression is highly 

dependent on Se status, giving it a very low ranking in the selenoprotein ‘hierarchy’ (Sunde et al., 

2009). Due to its antioxidant defense capabilities, GPx1 may play a role in protecting the brain 

against neurodegenerative processes. Post-mortem tissue studies have suggested GPx1 to play a 

neuroprotective role in Parkinson’s disease (PD) and dementia with Lewy Bodies (DLB) (Powers, 

2009).  

GPx4 is another antioxidant enzyme with a broad substrate specificity compared to other 

GPxs that includes hydrogen peroxide. Its main substrates, however, are phospholipid 

hydroperoxides produced in membranes, which GPx4 reduces to their corresponding alcohols 

(Conrad et al., 2007). GPx4 also uses GSH as a reductant, despite lacking the GSH binding sites 

native to GPx1, and carries out a similar catalytic mechanism (Aumann et al., 1997; Ursini et al., 

1997). GPx4 is less dependent on GSH as a reducing substrate, however, as it can also make use 

of protein thiols (Conrad et al., 2007).  

GPx4-KO is embryonic lethal, highlighting the importance of GPx4 function (Yant et al., 

2003). Interestingly, developmental retardation of the brain appears to be involved in the mid-

gestation death of Gpx4-KO embryos (Ufer et al., 2008). Tamoxifen-inducible GPx4-KO mice die 

within 2 weeks of injection and suffer from HPC neuronal loss and astrogliosis (Yoo et al., 2012). 

Moreover, GPx4 is downregulated in an Alzheimer’s disease mouse model that overexpresses the 

amyloid precursor protein (Yoo et al., 2010). Elevated lipid hydroperoxide by-products are a 

common trait amongst neurodegenerative diseases, further indicating the importance of GPx4 lipid 

hydroperoxide-reducing actions.  



20 
 

 

Glutathione Peroxidase interactions with methamphetamine: 

GPx helps protect against METH-induced neurotoxicity through its peroxide scavenging 

capabilities. METHs neurotoxic effects are thought to result primarily from a sudden, dramatic 

increase in extracellular DA concentrations. In these conditions, auto-oxidation and metabolic 

breakdown via MAO both produce O2, OH, and H2O2, causing oxidative stress (LaVoie and 

Hastings, 1999; Yoo et al., 2010; Halpin et al., 2014). GPx provides an important antioxidant 

defense against these ROS. As previously stated, METH appears to downregulate GPx expression 

and activity implying a special role of this selenoprotein. 

GPx may also affect responses to METH at DA terminals, as H2O2 itself functions as a 

signaling molecule. H2O2 inhibits evoked DA release in mouse striatal slices through the activation 

of ATP-sensitive K+ (KATP) channels (Avshalumov and Rice, 2003; Avshalumov et al., 2005). 

KATP channels couple metabolic activity to electrical activity by closing in response to an increase 

in the intracellular ATP/ADP ratio (Rubaiy, 2016). Depolarization induces Ca2+ influx via VGCCs, 

a preceding event of action potential generation and subsequent neurotransmitter release 

(Zamponi, 2016). KATP channel activation, on the other hand, generates polarization through K+ 

outflow and attenuates neurotransmitter release (Kawano et al., 2009).  

The mechanism of KATP channel suppression of DA release is proposed to result from 

endogenous H2O2 produced by AMPAR excitation, but can also be experimentally induced with 

exogenous H2O2 application. Specifically, this was shown to be mediated by KATP channels that 

have the sulfonylurea receptor 1 (SUR1) subunit, which are directly inhibited by the sulfonylurea 

drug glibenclamide (Hussain and Cosgrove, 2005). Therefore, GPx activity may mediate METH-

induced increases in DA signaling by regulating an inhibitory control on DA release. Specifically, 

GPx may prevent the suppression of DA release by excess levels of H2O2 typically produced in 

the presence of METH. The first part of our study explores this possibility. 

 

Role of Selenoprotein P in the Brain 

Selenium delivery: 

Sepp1, the second selenoprotein identified in animals, is a secreted glycoprotein and is 

unique amongst selenoproteins in both its structure and function (Herrman, 1977). Sepp1 contains 

10 Sec residues, 1 on the larger N-terminal domain and 9 on the smaller C-terminal domain (Fig. 
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1-3). Sepp1 accounts for over 50% of the total Se in mouse and rat plasma (Burk and Hill, 1999; 

Hill et al., 2003; Reeves and Hoffmann, 2009). Its high Se content suggests it acts as a Se 

transporter and many studies have confirmed this role. For example, cells cultured in human serum 

depleted of Sepp1 experience reduced GPx activity, which is restored upon addition of Sepp1 to 

the media (Saito and Takahashi, 2002).  

Sepp1 is mainly produced in the liver where it can then enter the bloodstream and deliver 

Se to different parts of the body (Burk and Hill, 2009). Sepp1 mRNA have been found in many 

different tissue types, including glia, and Sepp1 is presumed to be produced in low levels in these 

locations (Burk and Hill, 1994; Zhang et al., 2008). Genetic Sepp1 deletion decreases Se levels in 

many tissues in mice with the most profound effects seen in the brain and testes (Burk and Hill, 

2009). Expression of Sepp1 itself is considerably sensitive to Se availability (Savaskan et al., 

2007). Interestingly, Se deficiency induced by Sepp1 deletion increases Se levels in the liver in a 

gene-dose-dependent manner consistent with a drop in Se turnover caused by Sepp1 synthesis.  

Se delivery to the brain involves endocytosis mediated by Sepp1 binding to the β-propeller 

domain of the surface protein Apolipoprotein E receptor 2 (ApoER2), expressed mostly in neurons 

(Kurokawa et al., 2014). The same Sepp1-ApoER2 interaction has been proposed to occur at the 

blood-brain barrier (BBB). In this scenario, the interaction allows Se to be transferred across the 

BBB and taken up by glia to be re-incorporated into Sepp1 and subsequently secreted to deliver 

Se to ApoER2-expressing neurons (Burk et al., 2014).  

 

Figure 1-3. Sepp1 schematic diagram. 

The N-terminal region of Sepp1 contains one Sec (U) residue within a UXXC thioredoxin motif with 

antioxidant properties. Also, on the N-terminal region are the heparin-binding site and the His-rich metal-

binding sites. The C-terminal region contains 9 Sec residues, as well as the ApoER2 binding domain. 

 

Antioxidant and other activity: 

The N-terminal domain of Sepp1 contains 1 Sec residue in a thioredoxin-like redox motif 

which suggests it plays an antioxidant role as well (Fig. 1-3) (Arteel et al., 1998; Saito et al., 1999; 

Saito and Takahashi, 2002). The redox motif, which occurs at residues 40-43 and contains the 



22 
 

sequence Sec-XX-Cys, can carry out peroxidase activity (Fomenko and Gladyshev, 2003; Saito et 

al., 2004). The peroxidase activity of Sepp1 acts primarily on membrane hydroperoxides and uses 

thioredoxin as a reducing substrate (Saito and Takahashi, 2002; Takebe et al., 2002).  

Sepp1 also has a heparin-binding domain comprised of residues 80-95 on the N-terminus 

(Herrman, 1977; Akesson and Martensson, 1991; Hondal et al., 2001), allowing binding to heparin 

glycoproteins. The heparin binding site is unique in its inclusion of histidine at basic residue sites 

and its sensitivity to pH (Chittum et al., 1996). These qualities, as well as the fact that Sepp1 does 

not bind heparin itself in vivo, but rather heparin sulfate proteoglycans, has led to the postulation 

that Sepp1 binds areas of inflammation under acidic conditions while remaining unbound at 

physiological pH (Burk and Hill, 2005). 

The Sepp1 N-terminus also contains two histidine-rich regions (Arteel et al., 2000). These 

regions have also been theorized to play a role in Sepp1s heavy metal binding properties by 

providing a binding site. Sepp1 has been reported to bind metals such as copper, nickel, cadmium, 

and mercury presumably for detoxification (Yoneda and Suzuki, 1997; Sasakura and Suzuki, 1998; 

Sidenius et al., 1999). Sepp1 can also chelate zinc, which may play a role in cellular responses to 

METH (Chen and Berry, 2003; Aizenman et al., 2010).   

 

Potential role of Sepp1-ApoER2 interactions 

ApoER2 influence on neural activity: 

The focus of the current study on the role of Sepp1 in dopaminergic transmission is 

centered on interactions between Sepp1 and ApoER2. Sepp1 has been suggested to play a role in 

neurotransmission given that ApoER2 is important for synaptic transmission, long-term 

potentiation, and memory tasks (Weeber et al., 2002). ApoER2 has also been shown to be involved 

in dendritic spine formation in primary rat HPC cells (Dumanis et al., 2011). Interestingly, 

ApoER2 has been demonstrated to functionally associate with NMDARs (Beffert et al., 2005). 

Sepp1-KO mice perform poorly on spatial learning tasks, such as the Morris water maze, and 

display enhanced basal HPC synaptic transmission, reduced short-term plasticity, and absence of 

long-term potentiation in response to high-frequency stimulation (Peters et al., 2006). These 

alterations in synaptic plasticity and learning are typically attributed to the well-established effects 

of the ApoER2 ligand Reelin on NMDA receptor activity, but may also be influenced by a defect 

or loss of the Sepp1-ApoER2 interaction.  
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ApoER2 expression is most prevalent in the brain and testes, making it unique compared 

to other lipoprotein receptors that are highly expressed in multiple organs throughout the body 

(Nimpf and Schneider, 2000). ApoE itself is most abundantly expressed in the brain and is thought 

to mediate lipid transport for growth and injury repair in the brain (Weisgraber et al., 1994). 

Interestingly, certain ApoE alleles are major genetic determinants for risk of Alzheimer’s disease 

(AD) (Liu et al., 2013).  

 

ApoER2-mediated signaling: 

ApoER2 is also known to bind several other ligands, mostly extracellular matrix proteins, 

to carry out a variety of functions. These include Reelin (involved in neuronal positioning during 

development, synaptogenesis and memory formation during adulthood) (D'Arcangelo, 2005; Lee 

and D'Arcangelo, 2016), thrombospondin-1 (involved in neuronal migration and survival) (Blake 

et al., 2008), F-spondin (involved in amyloid precursor protein processing) (Hoe et al., 2005), and 

clusterin (sperm maturation, subventricular zone neurogenesis) (Andersen et al., 2003; Leeb et al., 

2014; Riaz et al., 2017). 

Intracellularly, ApoER2 interacts with multiple proteins. The most investigated is the 

adapter protein Disabled-1 (Dab1), which binds ApoER2 on its C-terminal helix (Morimura and 

Ogawa, 2009). It is thought that Dab1 is recruited upon Reelin binding ApoER2 and is 

phosphorylated by either Src or Fyn kinases (Howell et al., 1997). These pathways have mostly 

been shown to mediate organizational effects through investigations into the role of Reelin in 

neurodevelopment. Dab1 activation can also increase surface localization of ApoER2 (Hoe et al., 

2006).  

Disabled-2 (Dab2) is thought to play a similar role to Dab1 in neurodevelopment and 

activates Src as well (Yang et al., 2002). It differs from Dab1, however, in that it can suppress the 

mitogen-activated protein kinase (MAPK) pathway and does not bind the very low density 

lipoprotein receptor (VLDLR) (Zhou et al., 2003). Dab2 also mediates ApoER2 internalization 

through direct binding at a separate site than that of Dab1 (Cuitino et al., 2005). 

ApoER2 also binds other adaptor proteins and scaffolds, demonstrating a wide range of 

possible interactions within the cell. Interestingly, postsynaptic density protein 95 (PSD-95) is one 

such binding partner that forms a complex with ApoER2 that includes NMDA receptors  (Beffert 

et al., 2005).  The adaptor protein FE65 binds ApoER2 and forms multi-protein complexes. These 
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serve a range of functions, including cytoskeleton regulation and mediation of gene transcription 

events. The ability of ApoER2 to bind multiple adaptor proteins and scaffolds in combination with 

its internalization function, introduces a wide range of possibilities downstream from Sepp1-

ApoER interaction. 

 

Potential role in neurotransmission: 

There is some evidence that presynaptic ApoER2 is involved in neuronal signaling (Barger, 

2013). NMDAR phosphorylation occurs on the NR2A and NR2B subunits upon acute Reelin 

application to HPC slices in a Src-dependent manner (Hoe et al., 2006). Chronic Reelin 

administration results in increased AMPA receptor surface expression in HPC post-synaptic 

terminals (Qiu et al., 2006). While most studies addressing the involvement of ApoER2 in 

neurotransmission primarily focus on glutamatergic activity, there is some evidence to suggest a 

role in DA release.  Activation of rat striatal presynaptic NMDA receptors stimulates DA release 

in a Ca2+-dependent manner (Wang, 1991). Interestingly, ApoER2 is known to functionally 

associate with N-methyl-D-aspartate (NMDA) glutamate receptors (Beffert et al., 2005), which 

may be present on presynaptic DA terminals (Johnson and Jeng, 1991; Krebs et al., 1991).  

One study on postmortem PD brain tissue revealed Sepp1 to be present in dopaminergic 

terminals in human striatum as well as cell bodies in midbrain (Bellinger et al., 2012) implying the 

possibility of Sepp1-ApoER2 interactions at these sites. Therefore, Sepp1-ApoER2 interactions 

have the potential to cause changes to dopaminergic terminals via ApoER2-induced cellular 

responses. The second part of this project explores this possibility in the context of dopaminergic 

responses to METH. 

 

Investigative Focus 

In this study, tonic and phasic DA release were individually interrogated using FSCV 

techniques as described in the METHODS section. Regarding tonic DA, changes in response to 

pharmacological agents is simply referred to as a change in tonic release. The change in 

extracellular DA concentration in response to METH is mainly referred to in this study as DA 

efflux, as this is considered the primary means of METH-induced DA elevation. There remains a 

possibility, however, that METH may also influence the mechanisms underlying tonic DA release 

separate from DA efflux. Experiments were focused around interplay between GPx activity and 
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H2O2-KATP channel inhibition of DA release, and the possibility of this mechanism to contribute 

to the METH response.  

Transient increases in extracellular DA upon electrical stimulation will be referred to as 

evoked or phasic DA release. This study uses phasic release to explore the functional relationship 

between Se and dopaminergic transmission. Phasic DA release is also modulated by METH, 

although the extent to which these effects are dependent on striatal mechanisms is unclear. This 

study uses dietary Se and Sepp1-KO mice to tease apart these underlying mechanisms. 

Specifically, we hypothesized that Se plays a direct role in reducing the dopaminergic effects of 

METH. We sought to test this hypothesis with the following aims: First, we determined the effects 

of short-term Se deficiency (2 weeks) on dopaminergic transmission and modulation by METH. 

Next, we further investigated the involvement of Se using a chronic Se deficiency model. Finally, 

we investigated the specific role of Sepp1 using a Sepp1 KO mouse model. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



26 
 

CHAPTER 2: MODEL SYSTEM AND METHODS 

 

Model System 

 The purpose of this study is to investigate DA transmission using the electrochemical 

technique fast-scan cyclic voltammetry (FSCV) that records extracellular DA concentrations. 

FSCV can be performed both in brain slices and in live animals. This study utilizes striatal brain 

slice preparation, which has the advantage of providing a simpler context of local circuitry for 

the interpretation of results. Conversely, it removes the findings from the context of the overall 

neural system thereby obscuring physiological relevance. While slice voltammetry is overall a 

useful technique for studying local control of DA release there are some additional caveats to 

consider during the interpretation of results.  

First, electrical stimulation elicits synchronized firing of a local population of NAc DA 

terminals. Therefore, a change in phasic DA release is simply interpreted as the potential strength 

of that local population to release DA in response to depolarization. Thus, an advantage of in 

vivo studies is the ability to record striatal activity with or without stimulating the cell bodies in 

VTA. Contributing factors to changes in evoked release in slices could include characteristics 

such as quantal size, Ca2+ availability, or even D2R activity as described in the present study. 

Furthermore, DA release from striatal terminals has been linked to the level of excitability of the 

VTA-resident cell bodies (Ferris et al., 2013). 

Two different models of dietary Se deficiency are used: short-term (2 weeks) and 

chronic. Short-term Se deficiency is expected to decrease the activity levels of some 

selenoproteins, although not necessarily expression levels as Se is preferentially retained in the 

brain. As previously noted, GPx activity decreased in rodent striatum following 15 days of Se 

deficiency (Romero-Ramos et al., 2000). This time-frame of Se deficiency should not induce 

neurodegeneration. Chronic Se deficiency on the other hand is likely to cause neurodegeneration 

and brain Se content levels have been reported to decrease to 56% of controls (Burk and Hill, 

2009). Consequently, general selenoprotein expression should be decreased in chronic Se 

deficient mice. 
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Animal Care and Usage 

The animals used in this study were C57/BL6 J 

sub-strain mice aged 3-5 months, housed at the 

JABSOM vivarium. Male and female mice were found 

to have no differences in basic METH response and 

were, therefore, pooled together into the control group. 

For all experiments beyond controls, only male mice 

were used. All care and experimental procedures were 

approved by the UH Manoa Institutional Animal Care 

and Use Committee and conducted in accordance with 

the National Research Council’s Guide for the Care and 

Use of Laboratory Animals. Littermates were group-

housed up to 5 in a cage on a light/dark cycle and 

allowed access to food and water ad libitum. 

 

Dietary Selenium:  

Mice were raised on standard lab chow estimated 

to contain 0.25 ppm Se. For Chronic Se deficiency 

studies, mice were put on Se-deficient Torula Yeast 

(TY) Diet (Teklad) immediately post-weaning. For 

short-term Se-deficient conditions, mice were raised on 

standard lab chow until 3 months of age, then changed 

to Se-deficient TY Diet for 2 weeks immediately prior 

to experimentation or brain harvest. Moderate Se TY 

Diet containing 0.25 ppm Se (Teklad) was also utilized 

for control comparison.  

 

Husbandry:  

In Sepp1 KO studies, due to the infertility of 

Sepp1 KO male mice (Olson et al., 2005), breeding pairs 

A 

B 

C 

Figure 2-1. Fast-scan cyclic voltammetry. 

A. DA oxidation is induced, resulting in 

electron donation to a carbon-fiber electrode. 

B. C/V Plot showing current response to 

voltage ramp. DA oxidation occurs at 0.6V. 

C. Sample evoked DA response. Peak current 

values from C/V plots are taken at 10 Hz 

frequency. Stimulation elicits DA release, 

resulting in a large C/V plot peak. Current is 

converted to concentration following individual 

electrode calibration. 



28 
 

consisted of males heterozygous for Sepp1 deletion and female Sepp1 KO mice. Female breeders 

were raised on Se supplemented water containing 1mg/ml sodium selenite to support fertility. 

 

Fast-scan Cyclic Voltammetry 

Brain Slice Preparation:  

Immediately following cervical dislocation without anesthesia, mouse brains were 

extracted and placed in ice-cold artificial cerebral spinal fluid (ACSF) consisting of: 130.00 mM 

NaCl, 3.50 mM KCl, 10.00 mM glucose, 24.00 mM NaHCO3, 1.25 mM NaH2PO4, 1.50 mM 

MgSO4, 2.00 mM CaCl2 (Sigma), and bubbled with carbogen gas (95% O2/ 5% CO2). Coronal 

brain slices of 350 μm containing NAc were obtained using a Leica VT 1200 S vibrating blade 

microtome (Leica Microsystems). For some experiments, Ca2+-free ACSF was made by replacing 

the 2.00 mM CaCl2 with 1.00 mM EGTA (Sigma) as utilized in a previous study (Perez-Velazquez 

et al., 1994). Striatal slices were separated by hemisphere using a scalpel and placed into a slice 

incubation chamber containing oxygenated ACSF. Slices recovered at room temperature for 30 

minutes, then transferred to a heated water bath at 33°C and allowed to equilibrate for at least 30 

minutes prior to experimentation. 

 

Voltammetric Recordings and Experimental Protocol:  

For ex vivo FSCV experiments, brain slices were transferred to a slice recording chamber 

(Warner Instruments) and constantly perfused with oxygenated ACSF at 33°C at a flow rate of 3 

mL/minute. For recordings, a carbon fiber electrode (CFE) was placed ~100 μm below the surface 

of the brain slice in the NAc shell using a Sutter MP-225 micromanipulator (Sutter Instrument) 

under the guidance of a microscope with a 10X objective lens (Nikon Corporation). The 

stimulating electrode was placed 100-200 μm from the tip of the CFE at the same depth of the CFE 

and a reference electrode was placed in the ACSF downstream from the slice. Extracellular DA 

concentrations were measured using a Dagan CHEM-CLAMP voltage clamp amplifier (Dagan 

Corporation). A command voltage (CV) was applied to the CFE and scanned linearly in a 

triangular waveform from -0.4 V to 1.2 V at a rate of 400 V/second (Fig. 2-1A). For stimulated 

DA release measurements, the CV was applied at a frequency of 10 Hz (every 0.1 seconds) and 

the resulting current response to each CV was measured to produce a cyclic voltammogram with 

a peak current response representing DA oxidation at its oxidation potential (~0.6V) (Fig. 2-1B). 



29 
 

The peak response occurred at the oxidation potential for DA, 0.6V, as previously reported 

(Yorgason et al., 2011). For non-stimulated DA release measurements, voltammograms were 

collected at a frequency of 0.5 Hz (every 2 seconds) in the absence of stimulation. Cyclic 

voltammograms were regularly referenced to confirm specificity of the current output to DA 

oxidation. Data were digitized using an NI-6221 analog-to-digital converter (National 

Instruments) and analyzed using the LabVIEW (National Instruments)-based software Demon 

Voltammetry (Yorgason et al., 2011).  

DA release was evoked using a 10-pulse train of 0.5 ms stimulations (370 µA) at 20 Hz 

every 2 minutes using a WPI A365 Stimulus Isolator (World Precision Instruments) to simulate 

phasic DA release events (Ferris et al., 2013), with voltammograms collected for 1 minute epochs 

(Fig. 2-1C). After observing 30 minutes of stable baseline responses, METH was applied via 

perfusion in ACSF for 30 minutes, followed by washout with regular ACSF for another 30 

minutes. In some experiments, other treatments were applied for at least 15 minutes prior to METH 

application and for total durations indicated in figures. To observe METH-induced DA efflux, DA 

release was first elicited via stimulation to confirm satisfactory placement of the electrodes near a 

population of DA terminals. Slices were then allowed to recover without stimulation for 30 

minutes before beginning baseline recordings and, if stable baseline was observed, followed the 

same experimental timeline as in stimulated DA release experiments. Following washout of non-

stimulated DA recordings, stimulated DA release was once again elicited to verify the sustained 

health and dopaminergic function of the selected area for the duration of the experiment. Data from 

experiments in which post-washout stimulation did not elicit DA release were not included in 

analysis. 

 

Data Analysis:  

Peak current heights were converted to DA concentrations using a conversion factor 

calibrated for each CFE. ACSF containing 10 µM DA•HCl was perfused into the slice chamber 

and the resultant current was recorded to yield the conversion factor (nA/µM) Multiple 

measurements taken from the current signal included signal amplitude, area under the curve 

(AUC), and rising slope.  
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Michaelis-Menten Analysis: 

 Data were also fit to a Michaelis-Menten-based curve-fitting model in the Demon 

Voltammetry software to provide further metrics of DA release and uptake: [DA]p, representing 

the average concentration of DA released per individual electrical stimulation pulse; Vmax, 

representing the maximal rate of uptake; 

Km, representing the apparent affinity of 

DA for DAT (Fig. 2-2) (Yorgason et al., 

2011).  

For baseline recordings, the Km was 

adjusted to a default value of 160 nM in 

accordance with previous studies on the 

affinity of DA for DAT in rodent striatum 

(Wu et al., 2001). Vmax was measured at 

baseline and kept constant for the duration 

of experiments. Km was increased to model 

the slower DA signal decay exhibited upon 

METH application. Km was also used to 

monitor any potential effects on DA uptake 

rates by the various chemicals applied to the 

brain slices. 

The limits of this model are that the 

variables generated are approximations 

made based upon some underlying 

assumptions. First, it is assumed that DAT 

is the primary mediator of DA uptake and 

that any other process of uptake that might occur is negligible. Second, saturation of total DAT 

must occur for an accurate measurement of Vmax, which may or may not occur from experiment 

to experiment. Finally, the diffusion of DA out of the synaptic release/uptake site is not accounted 

for and could occur due to DA overflow. 

 

 

Figure 2-2. Curve-fitting model 

The analytical model mathematically resolves the release 

and uptake components of the DA signal. Top panel: 

Baseline evoked DA signal with Vmax (maximal DA 

uptake rate) determined using Michaelis-Menten kinetics. 

Bottom panel: METH induces an increase in DA per 

pulse, [DA]p, representing vesicular release. METH also 

increases apparent Km, representing slower uptake rates. 
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Electrode Fabrication and Calibration: 

 CFEs were produced by inserting a 7 µm diameter carbon fiber into a borosilicate glass 

capillary tube, OD: 1.2 mm, ID: 0.696 mm, L: 100 mm, (Hilgenberg) using negative air pressure. 

Carbon fiber-containing capillary tubes were then pulled on a David Kopf model 700B vertical 

pipette puller (David Kopf Instruments) and the protruding fiber cut to a length of 100 µm from 

the tip of the pipette. CFEs were calibrated by perfusing the electrode in the recording chamber 

with ACSF containing 10 µm DA•HCl (Sigma) and observing the maximum resultant current (nA) 

to produce a ‘current to DA concentration’ conversion factor. CFEs were backfilled with 3 M KCl. 

Stimulating electrodes were pulled on a Sutter P-1000 Flaming/Brown micropipette puller 

(Sutter Instrument) using borosilicate glass capillary tubes, OD: 1.5 mm, ID: 0.86 mm, L: 100 mm, 

(Sutter Instrument) and the tips were broken to yield a 50 µm diameter opening. Stimulating 

electrodes were backfilled with ACSF. 

 

Pharmacological Treatments:  

Drugs and purified proteins were diluted in ACSF and delivered via perfusion during 

experiments. METH was used at a working concentration of 10 μM. Concentrations of other agents 

are indicated in the RESULTS sections. 

The following chemicals were used: AM630 (Sigma, SML0327); Ebselen (Sigma, E3520); 

GBR 12909 (Sigma, D052); Glibenclamide (Sigma, G0639); Hydrogen peroxide (Certified ACS) 

(Fisher Scientific, H325); Mercaptosuccinate (MCS, Sigma, M6182); Quinpirole (Sigma, Q102); 

Rimonabant hydrochloride (Sigma, SML0800); RSL3 (MedChem Express, HY-100218A); 

Sulpiride (Sigma, S8010); WIN 55,212 mesylate salt (Sigma, W102). Stock solutions were made 

up in Milli-Q water at 10,000X concentration to minimize any potential effect on the osmolarity 

of ACSF chemical components. MCS was made to 100X and, therefore, dissolved in ACSF instead 

of water. Ebselen, glibenclamide, and RSL3 were dissolved in DMSO and vehicle control 

experiments completed due to the tendency of DMSO to damage neurons as high enough 

concentrations (Hanslick et al., 2009; Yuan et al., 2014). 
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Brain Harvest and Dissection 

Harvest:  

Mice were sacrificed via cervical dislocation and brains were immediately extracted and 

fresh-frozen. Upon removal from skull, one cut was made to split the brain into left and right 

hemispheres. Each hemisphere was immediately placed medial side down on a thin glass slide on 

top of powdered dry ice in a Styrofoam box and the cover closed to freeze the tissue. Protein was 

later extracted from right hemispheres for use in western blotting. All animal procedures were 

approved by the University of Hawaii Institutional Care and etc (IACUC, protocol number 742-

10).  

 

Dissection:  

Prior to tissue lysis, ventral midbrain and ventral striatum were dissected for protein 

extraction. Dissection was performed at -20° C using a razor blade to make anatomical landmark-

guided cuts. Cuts were made in the following order: 1) sagittal cut ~1/3 from midline and lateral 

portion removed, 2) horizontal cut (through rostral tip of corpus callosum and dorsal side of 4th 

ventricle) and dorsal portion removed, 3) coronal cut (through posterior side of interpeduncular 

fossa and posterior side of superior colliculus) and posterior portion removed, 4) 1mm anterior and 

parallel to 3rd cut and posterior portion containing ventral midbrain kept and stored separately, 5) 

coronal cut 60° from dorsal surface and 1mm posterior to the posterior end of the olfactory bulb 

and the anterior portion removed, and 6) 1mm posterior and parallel to 5th cut and the anterior 

portion containing ventral striatum kept and stored separately. All other brain parts were kept for 

future studies. 

 

Protein Extraction:  

Dissected brain parts were pulverized using the CryoGrinder kit (OPS Diagnostics). The 

ceramic mortar was placed on powdered dry ice along with a ceramic pestle and metal scooper, 

covered and allowed to equilibrate for 10 minutes. Next, the individual brain part was placed in 

the mortar and ground into powder using the pestle attached to a Black and Decker drill. One half 

of the powder was added to a tube containing 300 µL CelLytic MT Mammalisn Tissue Lysis/ 

Extraction Reagent (Sigma) containing 1:100 protease inhibitor cocktail (Sigma) while the other 

half was placed in an empty tube for future studies. 
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Lysis buffer with suspended tissue was sonicated with 20 one-second pulses at 5 Hz, 

separated by one second each, using a Fisher Sonic Dismembrator Model 100 (Fisher Scientific). 

Samples were then centrifuged at 14,000xg for 10 minutes at 4°C. Supernatant was collected and 

stored at -80°C for western blotting.  

 

Western blotting 

Tissue lysate samples containing 40 µg of protein were separated on 4-20% gradient 

polyacrylamide TGX gels (BIO-RAD, 5671094) via electrophoresis and transferred to 0.45 µm 

pore size Immobilon-FL polyvinylidene difluoride membranes (Millipore, IPFL00010). 

Membranes were incubated in PBS-based blocking buffer (LICOR, P/N 927) for 1 hour and then 

probed with primary antibodies for 1.5 hours, followed by washing with PBS containing 0.01% 

Tween 20 (Fisher Scientific, BP337) (PBS-T). Blots were incubated with infrared fluorophore-

bound secondary antibodies in the dark, washed again with PBS-T, and analyzed using the 

Odyssey Imaging System (LI-COR Biosciences).  

 

Antibodies:  

Primary antibodies used for western blotting were: rabbit anti-TH (Cell Signaling, 2792); 

rabbit anti-DAT (Millipore, AB2231); rabbit anti-VMAT-2 (Millipore, AB 1598P; goat anti-GPx1 

(R&D Systems, AF 3798); rabbit anti-GPx4 (Epitomics, 3649-1); mouse anti-αTubulin 

(Invitrogen, 62204). 

Secondary antibodies used for western blotting were LI-COR IRDye highly cross-adsorbed 

antibodies optimized for use with the Odyssey Imaging System: 680LT donkey anti-mouse (926-

68022), 80CW goat anti-mouse (926-32210), 680LT donkey anti-rabbit (925-68023), 800CW goat 

anti-rabbit (926-32211), 800CW donkey anti-goat (926-32214). 

 

Sepp1 Protein Purification 

Sepp1 protein was purified from WT C57/BL6 mouse serum using an antibody affinity 

column previously prepared by Suguru Kurokawa in the Berry lab. Monoclonal Sepp1 antibody 

(9S4) was coupled to AminoLink Plus Coupling Resin (Pierce) and applied to a 10 mL serological 

pipette. 
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Serum was first diluted 1:2 in chilled PBS and centrifuged at 14,000 g for 10 minutes at 

4°C and the supernatant containing protein collected. Supernatant was run through the column, 

followed by a brief rinse with PBS. Next, 1 M NaCl was applied to the column, followed by 

another PBS rinse. 50 mM glycine pH 2.5 was then run through the column to remove Sepp1 from 

its bound state and the eluate collected in 1 mL fractions in tubes containing 1 M Tris pH 8.0. 

Fractions were tested for protein content by adding 5 µL of eluate to 10 µL drops of Bradford 

Assay Reagent to observe color change to blue indicating the presence of protein. After all 

fractions were collected, column was rinsed with PBS until wash out reached a pH of at least 7.4. 

The fraction from each elution that contained the most protein was selected and used to 

produce concentrated Sepp1 for experimentation. Fractions were concentrated to 1 mL of stock 

protein using a Vivaspin Centrifugal Concentrator (Sartorius). The Sepp1 concentration was 

calculated from the absorbance at 280 nm measured using a NanoDrop ND-1000 

Spectrophotometer (Thermo Scientific). The stock concentration was 3.6 µM. 

Sepp1 mutants were generated as previously described and provided by Dr. Kurokawa at 

Osaka Ohtani University (Kurokawa et al., 2014). The full-length all-Cys mutant is full-length 

Sepp1 with Sec residues changed to Cys residues. The N-terminal fragment (NT) mutant is an all-

Cys Sepp1 N-terminal peptide lacking the C-terminal region. The Δ234-237 mutant is a full-length 

all-Cys Sepp1 with an essential region of the ApoER2 binding domain deleted, thus it is unable to 

bind ApoER2. 

 

Data Analysis and Statistics 

 For phasic DA release experiments, peak DA oxidation currents were extracted from 

individual voltammograms occurring at a 10 Hz frequency. These values were plotted over time 

to monitor DA release in response to stimulation and uptake via DAT. Baseline measurements 

are current averages for the duration of baseline (30 minutes) and converted to DA 

concentration. Statistical comparisons were made using the peak signal in response to the first 

stimulation after adding METH, which was typically the largest peak. Data for tonic DA release 

varied in time course from experiment-to-experiment. Therefore, the maximum current during 

the entire METH exposure (30 min) was extracted and used for comparison, unless a specific 

time-point was noted. 
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Data are represented as mean ± SEM in data graphs. Single replicates were taken from 

separate biological specimens. One-way ANOVA was used for between-subject group 

comparisons. Tukey’s multiple comparisons test was used for post-hoc analysis. Otherwise, 

unpaired t-test was used to compare sets of 2 groups. The following criteria were used for 

significance: at p < 0.05 (*), p < 0.01 (**), p < 0.001 (***), and p < 0.0001 (****) 

All statistical analysis was executed in GraphPad Prism 6 software (GraphPad Software, Inc.). 
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CHAPTER 3: SHORT-TERM EFFECTS OF SE DEFICIENCY ON THE DOPAMINE 

SYSTEM 

 

Abstract 

 Mice put in a Se-deficient diet exhibit reduced amount of METH-induced DA efflux, 

which can be potentiated by the GPx mimetic ebslen. GPx enzymatic activity inhibition also 

reduced DA efflux. The suppressive effect of GPx inhibition in DA efflux can be partially 

reversed by KATP channel blockade and CB1R antagonism. These results suggest that GPx4 

inhibition can reduce DA efflux through mechanisms involving elevated H2O2 and lipid-

peroxide-induced endocannabinoid signaling. 

 

Introduction 

Short-term (15 day) dietary Se restriction has been shown to affect DA turnover rates in 

the rodent brain, indicating that Se plays an important role in the DA system (Romero-Ramos et 

al., 2000). Se also protects against METH-induced neurotoxicity in cell and rodent models, 

presumably through antioxidant defense (Kim et al., 1999; Barayuga et al., 2013). We used 

FSCV to investigate the role of dietary Se on phasic DA release and uptake. We also measured 

action potential-dependent and -independent DA responses during METH challenge to reveal the 

mediating role of Se in METH-induced DA efflux. GPx is a potential mediator of the protective 

effects of Se and may affect the physiological response to METH though its influence on redox 

balance (Spanos et al., 2013). We used pharmacogical agents to evaluate the contributions of 

GPx activity to dopaminergic METH responses and explore possible underlying mechanisms of 

such interactions. Futhermore, we investigated the mediating role of KATP channel activity and 

the endocannabinoid system. 

  

Methods 

Male C57/BL6 J-background wild-type mice (aged 3-5 months) were placed on a Se-

deficient diet lasting 2 weeks to be compared to control mice fed a Se-sufficient diet. The 2-week 

period was chosen in order to restrict selenoprotein activity without causing long-term 

neurodegenerative effects (Castano et al., 1997). FSCV was performed in live NAc brain slices 
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as described in the METHODS section to measure phasic and tonic DA events before and during 

30 minutes of 10 µM METH application.  

Phasic DA release was measured through the detection of transient increases in 

extracellular DA concentration on a sub-second timescale following electrical stimulation every 

2 minutes. DA uptake was evaluated using Michaelis-Menten analysis of the transient DA signal. 

Extracullar DA concentration was also measured continuously in the absence of stimulation to 

detect METH-induced DA efflux. METH was delivered to slices via perfusion with ACSF after 

30 minutes of stable baseline recording for both phasic and tonic DA measurements.  

The GPx mimetic ebselen was applied to slices of Se-deficient mice in order to restore 

GPx activity and evaluate its effect on METH-induced DA efflux. GPx inhibitors MCS and 

RSL3 were also utilized to investigate a potential role of GPx activity. To evaluate the role of 

Ca2+ influx, which controls DA release and is affected by redox signaling, METH responses 

were recorded in the presence of Ca2+-free ACSF. Glibenclamide was also used to inhibit KATP 

channels, another moderator of DA release and potential target of GPx activity (Avshalumov and 

Rice, 2003).  

The endocannabinoid system, which was recently suggested as an essential mediator of 

METH-induced DA efflux, was manipulated using the non-specific CB receptor agonist 

WIN55,212-2 (WIN55) and the CB1R antagonist rimonabant (RIMO) (Covey et al., 2016). 

Finally, protein was extracted from ventral midbrain and ventral striatum for western blot 

analysis of DA machinery and selenoprotein expression levels. 

 

Results 

Effects of se-deficiency on phasic dopamine release and uptake: 

Upon testing for an impact of Se-deficiency on DA neurotransmission, FSCV did not 

uncover any major changes in phasic DA signaling in Se-deficient mice at baseline or during 

METH application. The average DA concentration evoked by stimulation reached an average 

maximum of ~1.1 µM in slices from control mice. Evoked DA release in brain slices from Se-

deficient mice reached an average of ~0.8 µM, a slight downward trend (Fig. 3-1A, B). METH 

application caused an immediate spike in evoked DA release that decreased with each successive 

stimulation back to baseline levels. Evoked DA concentrations reached an average spike of ~1.5 

µM in both experimental groups in the presence of METH (Fig. 3-1C, D). METH-induced spikes 
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were also calculated as a percent increase over baseline. This metric was also unchanged by Se 

deficiency (Fig. 3-1E).  

 Basal DA uptake rate, represented by the Michaelis-Menten constant Vmax, was not 

affected by dietary Se restriction (Fig. 3-1F). The apparent affinity of DA for DAT, represented 

by the Michaelis-Menten constant Km, was set to 160 nM at baseline. This value increased 

during METH application, representing the magnitude of METH-induced DA uptake inhibition. 

Apparent Km was not changed in slices from Se-deficient mice compared to controls (Fig. 3-1G, 

H). Western blot analysis of DAT and VMAT-2 expression revealed no changes in ventral 

midbrain or ventral striatum (Fig. 3-2B, C). 

  

Protein expression changes in Se-deficient mice: 

Protein expression levels were measured in brain lysates of ventral midbain, which 

contains the VTA-resident dopaminergic cell bodies, and the ventral striatum, which contains the 

DA terminal-containing NAc. Western blot anaylsis revealed that TH expression was unchanged 

by Se deficiency, although a downward trend was detected in the ventral striatum of Se-deficient 

mice (Fig. 3-2A). DAT and VMAT-2 expression were also unchanged (Fig. 3-2B, C). 

Expression of GPx1 trended towards a decrease in the brains of Se-deficient mice (Fig. 3-2D). 

GPx4 expression was significantly reduced in the ventral midbrain of Se-deficient mice, while 

again trending towards a decrease in ventral striatum (Fig. 3-2E). 

 

Se deficiency changes the tonic response to methamphetamine: 

Upon addition of METH, extracellular DA concentration quickly rises due to DA efflux 

and remains elevated for the duration of METH application in slices from control animals (Fig. 

3-3A). The maximum increase in DA concentration from baseline reached an average of 12.19 

µM in slices from control animals, yet was reduced to a 3.33 µM increase in slices from Se-

deficient mice (Fig. 3-3B). The total amount of DA efflux was calculated by measuring the area 

under the curve (AUC) of the DA response for the duration of the METH application. Total DA 

efflux was also significantly reduced by Se deficiency (Fig 3-3C).  
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Involvement of glutathione peroxidase: 

GPx activity was pharmacologically increased in Se-deficient brain in response to the 

GPx mimetic ebselen. Ebselen caused and increase in extracellular DA concentration, followed 

by a more robust increase when METH was added (Fig. 3-3D). The maximum change in DA 

concentration caused by METH was compared to both the orignial baseline (pre-ebselen) as well 

as the heightened values measured just before METH exposure. Ebselen-treated slices from Se-

deficient mice displayed a significantly higher change in DA concentration than non-treated 

slices from Se-deficient mice when data was compared to the original baseline and trended 

towards an increase when compared to the ebselen-adjusted baseline (Fig. 3-3E). Ebselen also 

caused an upward trend in total DA efflux (Fig. 3-3F). 

 To investigate whether inhibition of GPx activity would cause the opposite effect of 

ebselen, GPx inhibitors were added to control slices for 15 min prior to METH. The GPx1 

inhibitor MCS caused a downward drift in extracellular DA and decreased the response to 

METH (Fig. 3-4A). Maximum DA concentration (compared to the MCS-adjusted baseline) and 

total DA efflux were reduced by MCS treatment (Fig. 3-4B, C).  

MCS reduces evoked DA release in dorsal striatum (Avshalumov et al., 2005). Therefore, 

evoked DA was measured in the current study to confirm a similar effect in the NAc. MCS 

quickly reduced evoked DA release  by ~25%, followed by stable recording (Fig. 3-4D, E). 

When compared to the MCS-reduced baseline, neither peak phasic DA release nor percent 

increase were changed by MCS treatment (Fig. 3-4F).  

In contrast to MCS, the GPx4 inhibitor RSL3 (0.5 µM) did not affect basal tonic DA 

levels (Fig. 3-4G). Remarkably, RSL3 greatly reduced the tonic response to METH with the 

average DA increase reaching only 2.8 µM, ~25%  of that seen in controls (Fig. 3-4G, H). Total 

DA efflux was also reduced by RSL3 to ~15% of the control response (Fig. 3-4I). Since RSL3 is 

an inducer of apoptosis, its effects on phasic DA signals were measured to confirm the viability 

of slices (Yang et al., 2014). RLS3 did not affect evoked DA release or uptake, ruling out cell 

death as an underlying cause of the reducing effect on DA efflux (Fig. 3-4J, K).   

 

Mediating role of KATP channels: 

KATP channels reduce spontaneous DA release events by inhibiting Ca2+ influx via 

VGCCs (Rice et al., 2011). KATP channels can also be activated by H2O2. Since a reduction of 
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GPx activity will cause an increase in H2O2 levels and reduces the tonic DA response to METH, 

we investigated whether this effect is mediated Ca2+ influx. First, we evaluated the contribution 

of Ca2+ influx to METH-induced extracellular DA concentration elevations by exposing slices 

from control mice to METH under conditions of zero extracellular Ca2+. Removal of 

extracellular Ca2+ reduced the increase in DA concentration in response to METH (Fig. 3-5A). 

Average peak DA concentration and average total DA efflux were reduced compated to (Fig. 3-

5B, C). 

Next, we used the KATP channel inhibitor glibenclamide to investigate whether KATP 

channel blockade would attenuate the effect of Se deficiency and RSL3 on METH responses by 

up-regulating Ca2+-dependent DA release. Interestingly, in slices from control animals 

glibenclamide (3 µM) decreased the response to METH (Fig. 3-6A). Maximum change in DA 

and total DA efflux were both reduced by glibenclamide treatment (Fig. 3-6B, C). When Se-

deficient brain slices were treated with glibenclamide, the METH response was raised (Fig. 3-

6D). The Maximum change in DA concentration was significantly higher than non-treated slices 

from Se-deficient mice and total DA efflux was was also raised, but did not reach statistical 

significance (Fig. 3-6 E, F).  

Glibenclamide was also added prior to RSL3 to slices from control animals to investigate 

if KATP channel blockade could also have a reversal effect on RSL3 suppression of METH-

induced DA efflux. This resulted in a small response to METH that peaked at around 8 minutes 

before gradually declining (Fig. 3-6G). For this reason, maximum DA concentrations were 

compared to slices exposed to RSL3 only at the 8 minute mark. Glibenclamide partially reversed 

the suppressive effect of RSL3 on DA efflux (Fig. 3-6H, I). 

 

Modulation by cannabinoid receptor activity: 

METH-induced increases in striatal DA levels is dependent on CB1 receptor activation as 

the CB1R antagonist RIMO completely blocks METH-induced DA efflux in vivo (Covey et al., 

2016). Covey et a. proposed that METH-induced CB1R activity inhibits GABAergic 

interneurons located in the VTA to promote DA neuron firing. We investigated the possibility of 

striatal CB1R involvement in METH-induced DA efflux using our in vitro brain slice technique. 

RIMO (1 µM) added to slices from control animals prior to METH exposure resulted in no 

change in the METH response (Fig. 3-7A). WIN55, a CB1R and CB2R receptor agonist, caused 
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an increase in basal DA levels, yet significantly reduced the METH response (Fig. 3-7A). The 

maximum change in DA concentration and total DA efflux were both significantly reduced 

compared to controls (Fig. 3-7B, C).  

Since the WIN55 blockade of METH-induced DA efflux implies a suppressive effect of 

CB receptor activity, we next investigated whether RSL3 prevents DA efflux through CB 

receptor activation. Adding RIMO prior to RSL3 resulted in an increase in DA concentration in 

response to METH (Fig. 3-7D). Similar to glibenclamide, this spike in DA concentration peaked 

at 8 minutes, so we compared DA levels at this timepoint. The maximum change in DA 

concentration and the total DA efflux were both increased by RIMO treatment (Fig. 3-7E, F). 

 

Conclusions and Discussion 

Contrasting results in phasic and tonic release: 

Overall, there were no measured effects of Se deficiency on phasic DA signals. Despite 

reports of increased DA turnover with 2 weeks of dietary Se deficiency (Romero-Ramos et al., 

2000), evoked DA was not affected. Past studies utilized microdialysis and HPLC, however, 

which may account for contrasting findings and will be further elaborated on in the GENERAL 

DISCUSSION section. Accordingly, basal uptake rates and expression of DA-related proteins 

were unchanged, revealing no neuroadaptive or degenerative effects. 

 Se protects against METH-induced neurotoxicity, purportedly by reducing oxidative 

stress caused by DA auto-oxidation (Yu et al., 2015). As Se deficiency reportedly potentiates 

METH-induced neurotoxicity, this suggests it may also cause an increase in DA efflux, and thus 

increase auto-oxidation. Our results point to the opposite, however, as METH-induced DA efflux 

was reduced by Se deficiency. VMAT-2 expression did not change in response to Se deficiency, 

which would have suggested a change in vesicular DA levels. Instead these results suggest a 

change in vulnerability to METH within the Se-deficient mouse striatum.  

 

Glutathione peroxidase regulates basal release: 

We have identified GPx activity as playing a mediating role. The first evidence was that 

ebselen caused an upward drift in tonic DA levels, possibly due to decreased ROS. In contrast, 

MCS caused a decrease in tonic DA levels. Take together, this data indicates that H2O2 inhibits 

tonic DA release.  
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Since H2O2 suppresses evoked DA release by activating KATP channels and consequently 

inhibiting Ca2+ influx, a similar mechanism may decrease tonic DA release (Avshalumov and 

Rice, 2003). This suppressive role was theorized to be carried out by H2O2 produced downstream 

from AMPAR activation as demonstrated in vivo. AMPAR-induced H2O2 generation is unlikely 

to contribute to the present pre-METH tonic results, however, as glutamatergic afferents are cut 

off in brain slices and no electrical stimulation occurred. Nevertheless, MCS likely causes 

general H2O2 elevation that can activate KATP channels. Interestingly, KATP channels can inhibit 

T-type VGCCs, which would disable the ‘pacemaking’ depolarization in DA terminals that 

drives tonic release (Perez-Reyes and Lee, 2014).   

KATP channel inhibition with glibenclamide had no direct effect on tonic DA release, 

implying that KATP channels may be widely inactive. Indeed, this has been reported to be the 

case in DA neurons in brain slices (Roper and Ashcroft, 1995; Liss et al., 1999). This seems to 

cast some doubt over whether ebselen-induced increases in extracellular DA can be attributed to 

the H2O2-KATP channel pathway. If KATP channels are already inactive, reducing H2O2 would 

have no effect on their activity. Therefore, it is possible that reduced H2O2 may increase tonic 

DA release through an alternative mechanism. Nevertheless, GPx activity has been demonstrated 

to have a bi-directional effect on tonic DA release, likely through H2O2 regulation. 

 

Glutathione peroxidase modulates the response to methamphetamine: 

The GPx mimetic, ebselen, recovered DA efflux in slices from Se-deficient micewhile 

GPx inhibition reduced efflux in control slices. Surprisingly, treating control slices with the 

GPx4-specific inhibitor RSL3 dramatically suppressed METH-induced DA efflux. One concern 

regarding this result is that RSL3 induces cell death via ferroptosis (Yang et al., 2014). In order 

to rule out cell death as an underlying cause of the decreased tonic response to DA, we measured 

the effect of RSL3 on evoked DA release in control slices. RSL3 did not change the amplitude or 

uptake kinetics of evoked DA release, ruling out terminal degeneration as a contributing factor. 

These data suggest an inhibitory effect of both H2O2 and lipid peroxides on the changes in DA 

efflux in response to METH. 
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KATP channels reduce dopamine efflux: 

While the role of KATP channels in mediating GPx influence on basal tonic release is not 

completely clear, it appears to be crucial for METH-induced DA efflux. KATP channel blockade 

prevented the inhibitory effect in Se-deficient and RSL3-exposed slices. In contrast to baseline 

conditions, METH elevates H2O2 levels in rodent striatum (Yokoyama et al., 1997). Therefore, 

KATP channels are likely activated in the presence of METH, with a stronger effect in the Se-

deficient striatum. Therefore, the present findings indicate that H2O2-KATP activation may 

underly the reduced DA efflux in Slices from Se-deficient mice and slices exposed to RSL3. It is 

worth noting that DAT blockade via GBR 12909 reduces METH-induced DA efflux, presumably 

by limiting the number of channels through which DA can leave the cell (Hedges, unpublished). 

RSL3 did not affect DA uptake kinetics, however, implying no effect on DAT. 

The findings further suggest that increased tonic DA release is partially responsible for 

METH-induced increases in extracellular DA levels. Our collaborators at BYU previously 

showed that lidocaine blockade of Na+ channels, which prevents action potential-dependent 

release, had effect on DA efflux suggesting that membrane potential and Ca2+ influx are not 

involved (Hedges, unpublished). As the current study shows, however, removal of extracellar 

Ca2+ reduces DA efflux. Therefore, while  Ca2+ influx is not necessary for DA efflux, it does 

potentiate it. Combined with the inhibitory effect of KATP channels, the overall implication is that 

depolarization increases METH-induced DA efflux. Whether this depolarization causes an 

increase in vesicular tonic DA release remains an interesting prospect for future studies. 

Alternatively, METH has been proposed to act through phosphorylation events initiated by 

intracellular Ca2+ elevation, such as PKC reversal of DAT function (Kantor and Gnegy, 1998). 

 

Cannabinoid receptor activity reduces dopamine efflux: 

The present study also elucidates a mediating role of the endocannabinoid system. CB1R 

antagonism by RIMO did not change METH-induced DA efflux, implying that CB1Rs are 

already in a constitutively low activation state. RIMO also caused a similar effect as 

glibenclamide in reversing RSL3 suppression of DA efflux. This suggests that RSL3 suppresses 

the METH response partly by activating CB1R. This is further supported by the fact that the CB 

receptor agonist WIN55 prevented METH DA efflux similarly to RSL3.  
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These results are in contrast to a previous study showing CB1R activity is necessary for 

AMPH-induced DA elevation in vivo. Covey et al. argued that activation of CB1R on 

GABAergic interneurons disinhibited VTA DA neurons, subsequently increasing DA release 

into the striatum (Covey et al., 2016). Since our experiments were carried out in NAc brain 

slices, however, the effect we have seen is restricted to the level of the striatum. The location of 

the responsible CB1R could be on presynaptic DA or GABAergic terminals.  

RSL3-mediated CB receptor activation is likely achieved through a change in 

endocannabinoid production or metabolic balance. The simplest explanation is that inhibition of 

GPx4 by RSL3 results in increased lipid peroxides, which increases production of a CB1R 

activating endocannabinoid such as AEA or 2-AG. Lipid peroxides can inhibit FAAH, which in 

turn leads to a decrease in AEA breakdown (Clapper et al., 2009; Maccarrone et al., 2009). AEA 

can also be up-regulated by application of exogenous H2O2 to isolated primary mouse 

hepatocytes (Siegmund et al., 2006).  

Sidlo et al. found that WIN55 suppresses evoked striatal DA release through a 

mechanism involving the suppression of GABAergic transmission (Sidlo et al., 2008). This 

permits H2O2 production and subsequent KATP inhibition of DA release. Interestingly, this 

mechanism seems to run in parallel to our finding that WIN55 suppresses DA efflux. Since 

WIN55 initially caused a slight elevation in tonic DA levels, it might act to relieve GABAergic 

inhibition of DA terminals. Then once METH is applied, this effect is overpowered by H2O2-

KATP suppression of DA release. This model would require GABAergic synapses on to both 

presynaptic DA terminals and MSN postsynaptic membranes.  

The simplest explanation is that CB1R located on DA terminals acts to inhibit METH-

induced DA efflux (Wenger et al., 2003; Kofalvi et al., 2005). 

 

Experimental limitations: 

The findings of the present study are complicated by a few observations. First, 

glibenclamide unexpectedly exerted the opposite effect in slices from control animals from slices 

from Se-deficient mice, reducing METH-induced DA efflux rather than causing an increase. This 

could be due to a differential change in membrane excitability between control and slices from 

Se-deficient mice and further investigation is warranted. 



45 
 

There are also some caeveats in intepreting ebselen experiments. Ebselen significantly 

increased the METH-induced DA release above the pre-ebselen baseline, but not above post-

ebselen DA levels. DA efflux following ebselen and METH may have reached a maximal 

‘ceiling’ comparable to METH-induced efflux in slices from control animals. While our results 

indicate that ebselen is a tonic DA up-regulator, the depiction of the role of GPx in DA efflux is 

not quite as clear. 

Ebselen is a lipid-soluble organoselenium compound that enters the cell to reduce ROS 

through a similar mechanism as GPx: the selenol residue of ebselen becomes oxidized by H2O2 

and is subsequently reduced by 2 GSH molecules, resulting in GSH dimerization with the GSH 

units connected via a disulfide bond (Azad and Tomar, 2014). Ebselen has also demonstrated a 

wide range of effects within the cell which may complicate the interpretation of experimental 

results. These effects are consequences of antioxidant function and include: Na+/K+-ATPase 

inhibition that disrupts the resting memebrane potential; inhibition of PKC, which may 

downregulate DA uptake through DAT phosphorylation; and increasing cytosolic Ca2+ to 

increase spontaneous DA release (Azad et al., 2014; Azad and Tomar, 2014). 
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Figure 3-1. Following dietary Se deficiency (2 weeks) did not change phasic DA release and uptake kinetics.  

A. Sample traces of basal evoked DA release and peak response following application of 10 µM METH to brain 

slice of male C57 WT mice, aged 3-5 months. B. Se deficiency (2 weeks) does not alter basal evoked DA release 

compared to controls (1.126 ± 0.1476, n=16 and 0.7997 ± 0.1603, n=4, respectively, P = 0.31). C, D, E. Short-

term Se deficiency does not affect augmentation of evoked DA release (n=8 for controls and 4 for Se deficiency). 

F. No differences in basal DA uptake rates (Vmax) were observed (n=19 and 4) (P>0.05). G, H.  METH-induced 

uptake inhibition (Km) was also unchanged between groups (n=8 and 4) (P>0.05).  
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Figure 3-2. Western blot analysis of brain lysates from ventral midbrain and ventral striatum.  

A, B, C. Western blot revealed no significant changes in the expression of TH, DAT, or VMAT-2 in male C57 

WT mice, aged 3-5 months (n=4, 4) (P>0.05). D, E. GPx protein measurement via western blot showed a 

downward trend in expression of GPx1 and GPx4 in ventral midbrain (n=4 and 4, P = 0.26 and 0.02, respectively) 

and ventral striatum (n=4 and 4, P = 0.10 and 0.07, respectively) of Se-deficient brain lysates. GPx4 expression 

was significantly reduced in ventral midbrain (P = 0.02). 
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Figure 3-3. Short-term Se deficiency caused a reduction in METH-induced DA efflux that could be 

partially reversed by the GPx mimetic ebselen.  
A. Time course graph showing increased extracellular DA concentration upon exposure to 10 µM METH in the 

absence of electrical stimulation in male C57 WT mice, aged 3-5 months. B. The maximum change in DA 

concentration caused by METH-induced DA efflux was greater in Se sufficient (12.19 ± 1.87, n=3) mouse brain 

slices than in slices from Se-deficient mice (3.33 ± 0.72, n=4; P = 0.004). C. Area under the curve (AUC) of the 

non-stimulated METH response was also reduced by Se deficiency (2335 ± 573.0, n=4 compared to 6344 ± 

983.6, n=3 for controls; P = 0.013). D Treating Se-deficient brain slices with ebselen (3 µM) for 15 minutes 

prior to METH increases DA efflux. E. Ebselen treatment increased the maximum response in short-term Se-

deficient brain slices when compared to the original baseline (n=4 and 3, respectively, P=0.02), but not when 

data was normalized to the increased baseline caused by ebselen (n=4 and 3, respectively, P=0.003). F. Total 

DA efflux was also increased by ebselen treatment, although statistical significance was not reached by one-way 

ANOVA (n=4 and 3, respectively, P=0.02). 
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Figure 3-4. Inhibition of GPx activity reduced METH-induced DA efflux.  

A. Pre-treatment with the GPx1 inhibitor Mercaptosuccinate (MCS) (1 mM) caused a decrease in baseline tonic 

DA levels as well as a reduction in the amount of DA efflux in response to METH in male C57 WT mice, aged 

3-5 months. B, C. Maximum increase in DA concentration, compared to MCS-adjusted baseline (n=3 and 3), 

and total DA efflux (n=3 and 3) were significantly reduced by MCS (P = 0.0210 and 0.0302, respectively). D. 

Sample traces of phasic DA release after application of MCS and METH to slices from control animals. E. MCS 

decreased evoked DA release in response to METH. MCS also caused an increase in evoked DA release in 

response to METH, similarly to controls. F. MCS did not affect the max percent increase in evoked DA in 

response to METH (n=8 for controls and 3, P=0.26). G. Pre-treatment with 0.5 µM RSL3, GPx4 inhibitor, 

suppressed DA efflux in response to METH. H, I. Maximum DA concentration and total DA efflux were greatly 

reduced by RSL3 (n=3 and 3, P = 0.0106 and 0.0068, respectively). J, K RSL3 was added to slices from control 

animals with no changes in DA release or uptake. 
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Figure 3-5. Zero extracellular Ca2+ conditions reduced METH-induced DA efflux. 

To evaluate the role of calcium influx in mediating METH-induced DA efflux, we perfused brain slices from 

male C57 WT mice, aged 3-5 months with calcium-free ACSF before and during METH exposure. A. The 

absence of extracellular calcium resulted in a reduction in METH-induced DA efflux. B, C. Maximum DA 

concentration and total DA efflux were significantly decreased by zero calcium conditions (n=3 and 3, P = 

0.0266 and 0.0120, respectively). 
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Figure 3-6. Se deficiency and RLS3 reduction of METH-induced DA efflux was potentiated by KATP 

channels.  

A. The KATP channel blocker glibenclamide (3 µM) reduced METH-induced DA efflux in slices from male C57 

WT mice, aged 3-5 months. B, C. Maximum DA concentration (n=3 and 3, P=0.002) and total DA efflux (n=3 

and 3, P=0.02) in response to METH were significantly decreased by KATP channel blockade in slices from 

control animals. D. Glibenclamide treatment increased the DA response to METH in slices from Se-deficient 

mice. E, F. Maximum concentration was raised by glibenclamide in slices from Se-deficient mice (n=3 and 3, 

P=0.0130), while total DA efflux was increased, but did not reach significance (n=3 and 3, P=0.12). G. 

Glibenclamide caused a METH response in RSL3-treated slices. Comparisons were made at the 8-minute mark 

when the response to METH was greatest in slices treated with glibenclamide and then RSL3 prior to METH. H, 

I. Glibenclamide increased the maximum DA concentration (n=3 and 3. P=0.0164) in response to METH in 

RSL3-exposed slices, but not total DA efflux (P=0.38).  
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Figure 3-7. METH-induced DA efflux was reduced by CB1/CB2 agonism while CB1 receptor antagonism 

partially reversed RSL3 blockade of DA efflux. 

A. Pre-treatment with the CB1/CB2 agonist WIN 55, 212-2 (10 µM) reduced DA efflux while the CB1 antagonist 

Rimonabant (1 µM) had no effect on slices from male C57 WT mice, aged 3-5 months. B, C. Maximum DA 

concentration and total DA efflux were reduced by WIN (n=3 and 3, P=0.01 and 0.01, respectively). D. Pre-

treatment with RIMO partially reversed the RSL3 blocking effect on DA efflux. E. Measurements taken at 8 

minutes after the beginning of METH application showed RIMO significantly increased maximum DA 

concentration increases in response to METH in Slices from Se-deficient mice (3.38 ± 0.28, n=3 compared to 0.49 

± 0.18, n=3; P = 0.0009). F. Total DA efflux was also increased by RIMO (2007 ± 33.34, n=3 compared to 951.0 

± 372.3, n=3; P = 0.048). 
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Figure 3-8. Model for GPx4 inhibition causing reduced METH-induced DA efflux. 

RSL3 inhibition of GPx4 activity may reduce DA efflux through two separate pathways that converge to inhibit 

Ca2+ influx. The first proposed pathway is that loss of GPx activity will increase H2O2 levels, which is 

exacerbated by METH exposure. H2O2 then activates ATP-sensitive K+ channels (KATP channels) to inhibit Ca2+ 

influx via voltage-gated calcium channels (VGCCs) to inhibit DA efflux. The second proposed pathway involves 

GPx4 inhibition causing lipid peroxidation that leads to production of an endocannabinoid (AEA or 2-AG). The 

endocannabinoids then act on cannabinoid receptor 1 (CB1R) located on DA pre-synaptic terminals. CB1R can 

activate KATP channels and inhibit VGCCs, leading to inhibition of DA efflux. 
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CHAPTER 4: THE EFFECTS OF CHRONIC SELENIUM DEFICIENCY ON THE 

DOPAMINE SYSTEM 

 

Abstract 

 Chronic Se-deficient mice have reduced basal DA uptake rates, but no change in basal 

release. In response to METH, chronic Se deficiency causes reduced DA efflux compared to Se-

sufficient mice. METH also caused an increase in phasic DA release in chronic Se-deficient mice 

that can be attributed to increased DA vesicular release. 

 

Introduction 

Although Se is preferentially retained in brain during chronic dietary Se deficiency, 

METH-induced neurotoxicity of DA neurons is exacerbated by Se deficiency and attenuated by 

Se supplementation (Behne et al., 1988; Kim et al., 1999; Barayuga et al., 2013). While there has 

been little investigation into the effects of chronic (11-13 weeks) Se deficiency on DA 

transmission, one study revealed an increase in K+-induced DA release in mouse striatum 

measured via microdialysis (Watanabe et al., 1997). However, we did not observe increased DA 

release with short-term (4-5 weeks) Se deficiency. Possible long-term functional changes in 

dopaminergic neurons due to increased oxidative stress could explain the discrepency between 

short- and long-term Se deficiency. Previous work in the Bellinger lab demonstrated that chronic 

Se deficiency decreases DAT and VMAT-2, but not TH (data not shown). We investigated the 

effects of chronic Se deficiency on DA release and uptake.  

 

Methods 

Mice were raised on an Se deficient diet from weaning as described in the METHODS 

chapter. Brain slices were made at 3-5 months of age. FSCV was performed as previously 

described to depict changes in phasic and non-phasic DA release at baseline and in response to 

METH. 
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Results 

Phasic dopamine release: 

Baseline evoked DA peaks in brain slices from chronically Se-deficient mice trended towards 

a decrease compared to Se-sufficient control mice (Fig. 4-1A, B). When METH was applied, 

slices from chronic Se-deficient mice displayed a larger percent increase over baseline (211 ± 

16.7%) of evoked DA release compared to controls (165 ± 12.8%), although peak DA 

concentrations evoked were not different (Fig. 4-1C-E). Kinetic modeling was used to derive the 

release rate constant dopamine per pulse DAp, which corrects for uptake to give an estimate of 

the amount of vesicular DA release. Slices from chronic Se-deficient mice exhibited a 141% 

average increase over baseline, implying an increase in vesicular DA release in response to 

METH (Fig. 4-1F). Se-sufficient slices, on the other hand, showed only a slight average increase 

of 107 ± 5.6% in DAp in response to METH (Fig. 4-1G-I).  Similar to evoked DA concentration 

measurements, maximum DAp was comparable between the groups. 

 

Dopamine uptake kinetics: 

Michaelis-Menten kinetic analysis showed decreased DA uptake, represented by Vmax, in 

slices from Se-deficient mice, with average rates reduced by half compared with slices from 

control animals (Fig. 4-2A). When slices were treated with METH, slices from Se-deficient mice 

exhibited less inhibition of DA uptake (apparent Km) compared to controls (Fig. 4-2B, C).  

 

Methamphetamine-induced dopamine efflux: 

Non-stimulated DA release in response to METH was greatly reduced in slices from Se-

deficient mice (Fig. 4-3A). The average maximum increase in DA concentration in the presence 

of METH was considerably lower in Se-deficient mice (3.080 µM) compared to controls (11.95 

µM) (Fig. 4-3B).  Total DA efflux measurements yielded a similarly large difference between 

the groups (Fig. 4-3C).  

 

Conclusions and Discussion 

Baseline evoked dopamine is unchanged by chronic selenium deficiency: 

While past studies found  increased DA turnover rates with Se deficiency (Romero-Ramos et 

al., 2000), our results did not reveal a change in the magnitude of action potential-driven DA 
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release events and may in fact indicate a decrease. Although our findings do not corroborate past 

studies, discrepancies may be due to the technical differences between FSCV and microdialysis. 

Specifically, FSCV has a much faster (sub-second) temporal resolution compared to 

microdialysis (tens of minutes), a difference that will be further discussed in the GENERAL 

DISCUSSION chapter. Our data suggests a lack of global change in the potential of the striatal 

DA system to respond to any given phasic firing event.  

Comparable baseline phasic release concentrations may be reflective of comparable DA 

terminal densities or, perhaps, more directly a comparable availability of readily-releasable 

vesicular DA stores, despite increased oxidative stress. Similar dopaminergic density is further 

suggested by the fact that western blot analysis did not reveal a change in TH expression in 

chronic Se-deficient mice. However, there may be a change in TH activity without a change in 

TH expression. Indeed, Castano et al. reported increased DA turnover in PFC of Se-deficient rats 

that was accompanied by increased TH activity, but not TH expression. Such possibilities 

warrant further characterization of the physical characteristics of striatal DA terminals in chronic 

Se deficiency. 

 

Chronic selenium deficiency impairs basal dopamine uptake: 

The reduced Vmax observed in slices from Se-deficient mice indicates an impaired DA 

uptake, and is consistent with the reduced DAT expression found in ventral midbrain. DAT 

expression in ventral striatum trended towards a decrease, but was not statistically significant. 

This could be due to DA terminals making up a much smaller percentage of overall protein in 

striatum, compared to DA cell bodies, which make up a large percent of protein in the VTA. 

DAT may have reduced functionality in addition to reduced expression. H2O2 can inhibit DA 

uptake via DAT (Huang et al., 2003), and may be present in higher amounts in the Se-deficient 

striatum. 

 

Methamphetamine increases vesicular dopamine release in chronically selenium deficient 

striatum: 

In contrast to the results of our short-term Se deficiency study, chronic Se deficiency 

increased phasic DA release in response to METH. Moreover, the slices from chronic Se-

deficient mice exhibited an increase in vesicular DA release in addition to reducing DA efflux, 
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indicating a biphasic modulation of DA release. In slices from control animals, vesicular release 

may be masked by the much larger output of the DA efflux mechanism. Additionally, DA efflux 

depletes vesicular DA stores, further decreasing the capacity for evoked DA release. As METH 

produces a smaller amount of DA efflux in slices from Se-deficient mice, however, vesicular DA 

stores should remain intact for longer, allowing for the observation of increased vesicular 

release.  

 

Chronic selenim deficiency reduces methamphetamine-induced dopamine efflux: 

 The decreased amount of DA efflux in slices from Se-deficient mice may be the result of 

a reduction in overall striatal DA terminal density. The impaired antioxidant defense of the Se-

deficient brain could lead to chronic oxidative stress-induced neurodegeneration in the striatum. 

This possibility is obscured by the result that TH expression did not change. Alternatively, the 

loss of GPx activity may be responsible for reducing METH-induced DA, as suggested in the 

previous chapter. Indeed, GPx expression is reduced in the Se-deficient brain, particularly in the 

ventral midbain, which contains the dopaminergic cell bodies that project to NAc. 
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Figure 4-1. Chronic Se deficiency augmented the phasic DA response to METH. 

A. Sample traces of baseline and (10 µM) METH-amplified phasic DA responses in slices from control animals 

versus slices from mice (Male C57 WT, aged 3-5 months) raised on a Se-deficient diet from weaning age (~21 

days). B. Baseline evoked DA concentrations trended towards a decrease in Slices from Se-deficient mice (0.69 

± 0.16, n=7) compared to controls (1.126 ± 0.1476, n=16) (P = 0.102). C. Evoked DA release in slices from Se-

deficient mice increased about 200% over baseline in response to METH. D, E. While the max evoked DA 

response was unchanged by chronic Se-deficiency, the percent increase over baseline was significantly higher 

than controls (211.5 ± 16.7, n=7 compared to 165.4 ± 12.80, n=8; P = 0.045). F. Dopamine released per pulse, 

[DA]p, was unchanged at baseline, but increased in response to METH in Slices from Se-deficient mice. G, H. 

Like extracellular DA concentration, max [DA]p was unchanged (P>0.05) while the percent increase over 

baseline was augmented by chronic Se deficiency (141.1 ± 6.7, n=7 compared to 107.4 ± 5.583, n=8; P = 0.002).  
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Figure 4-2. Chronic Se deficiency reduced basal DA uptake rates and attenuated METH inhibition of DA 

uptake. 

A. Baseline DA uptake rates, Vmax, measured before METH (10 µM) exposure were lower in slices from Se-

deficient male C57 WT mice, aged 3-5 months (1334 ± 122.0, n=8) than in slices from control animals (2026 ± 

64.66, n=19) (P < 0.0001). B. Time course graph depicting changes in uptake inhibition, represented by apparent 

Km, in response to METH. Apparent Km, inversely proportional to the affinity of DA for DAT, was set to 160 

nM at baseline and increased as METH inhibited DA uptake. C. Average peak Km values of slices from control 

animals (23830 ± 3764, n=8) were more than twice as high as for Slices from Se-deficient mice (8850 ± 3008, 

n=4) (P = 0.0276).  
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Figure 4-3. Chronic Se deficiency reduced METH-induced DA efflux. 

A. Time course showing reduced DA efflux in slices from Se-deficient male C57 WT mice, aged 3-5 months in 

the presence of METH (10 µM). B, C. Maximum change in DA concentration (n=3 and 3, P=0.0143) and total 

DA efflux were both reduced by chronic Se deficiency (n=3 and 3, P=0.0278).  
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CHAPTER 5: THE ROLE OF SELENOPROTEIN P IN ACTION POTENTIAL-

DEPENDENT DOPAMINE RELEASE 

 

Abstract 

 Sepp1-KO mice have reduced baseline phasic DA release and uptake rates. In response to 

METH, phasic release was significantly potentiated due to increased DA vesicular release. 

METH-induced vesicular DA release is masked by D2R auto-inhibition in WT mice, which may 

be dysfunctional in Sepp1-KO mice. METH-induced vesicular DA release could be prevented in 

Sepp1-KO mice by application of purified Sepp1 protein acting on ApoER2 to promote D2R 

function. 

 

Introduction 

The work carried out in the previous chapters revealed a role of Se in modulating 

dopaminergic transmission and the response to METH in the mouse NAc, while highlighting the 

role of the selenoprotein GPx. Notably, we reported an increase in exoctotic DA release in the 

chronic Se-deficient NAc. We next investigated the potential role of the Se transport 

selenoprotein, Sepp1, using a Sepp1-KO mouse model. Since Sepp1 is responsible for delivering 

Se to the brain, we predicted the dopaminergic phenotype of Sepp1-KO mice to be similar to that 

seen in mice raised on a Se-deficient diet. Multiple studies have described the similarities in the 

neurological impairments caused by genetic Sepp1 deletion and dietary Se deficiency, including 

similar reductions in brain Se levels (Burk and Hill, 2009). Although there are no studies of 

Sepp1-induced signaling to date, Sepp1 has recently been confirmed to interact with ApoER2 in 

order to mediate Se transport across membranes (Burk et al., 2007; Olson et al., 2007; Burk et 

al., 2014). ApoER2 can also initiate signaling cascades leaving open the possibilty that Sepp1 

can induce changes in the cell in addition to Se delivery (Reddy et al., 2011).  

In this chapter, we describe the effects of Sepp1 deletion on the mesolimbic mouse DA 

system revealed through FSCV interrogation of brain slices. We also explore the vulnerability of 

Sepp1-KO mice to METH-induced increases in vesicular DA release and the ability of the Sepp1 

protein to rescue this phenotype potentially through interaction with ApoER2. Finally, we 

describe the contributory role of D2R auto-inhibition of DA release in mediating the Sepp1-KO 

mouse response to METH as well as the rescue effect of Sepp1 protein.  
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Methods 

To investigate the dopaminergic phenotype of Sepp1-KO mice, we measured phasic and 

tonic release as descibed in the METHODS section. C57/BL6 Sepp1-KO mice raised on standard 

lab chow with no Se supplementation were used. Male and female mice showed similar 

responses to METH (data not shown) and were, therefore, pooled together. For all other 

experiments on Sepp1-KO including pharmacological agents and Sepp1 protein application, 

male mice were used. DA release was evoked by 1-, 2-, and 10-pulse stimulations to test the 

level of responsiveness to varying degrees of stimulation. The early rising slope was also derived 

from 10-pulse-elicited response as an indicator of vesicular release, as the signal should be less 

affected by uptake through DAT. 

Purified Sepp1 protein and mutants were applied to slices for 30 minutes prior to METH 

to investigate the effect of Sepp1 activity. For information on generation and descriptions of the 

mutants, refer to the METHODS section. The D2R agonist quinpirole (30nM) and D2R 

antagonist sulpiride (600nM) were added to characterize the role of D2R auto-inhibition in 

METH-induced changes in phasic DA release. 

 

Results 

Changes in Basal Phasic DA Release in Sepp1-KO Mice: 

To investigate the responsiveness of DA terminals to varying degrees of stimulation, we 

first performed a progression of pulse stimulations: 1-pulse, 2-pulse, and 10-pulse. Sepp1-KO 

slices released lesser amounts of DA on average (0.1512 ± 0.0462 µM, n=5) than WT slices 

(0.5054 ± 0.1456 µM, n=5) following a 1-pulse stimulation (P = 0.0490) (Fig. 5-1A, B). 2-pulse 

stimulation trended towards significance (P = 0.0513) between Sepp1-KO slices (0.2184 ± 

0.0499 µM, n=5) and WT slices (0.6269 ± 0.1713 µM, n=5) (Fig. 5-1A, C). The ratio of 2-pulse 

response over the 1-pulse response was greater in Sepp1-KO slices (1.558 ± 0.0977 µM, n=5 

compared to 1.264 ± 0.0444 µM, n=5 for WT mice) representing a greater increase in DA release 

from 1 to 2 pulses (P = 0.0256) (Fig. 5-1C). In response to a 10-pulse stimulation train, Sepp1-

KO slices had reduced DA release (0.4800 ± 0.1197 µM, n=4) compared to WT slices (1.399 ± 

0.3666 µM, n=3) (P = 0.0418) (Fig. 5-1A, D) and there was no difference in the 10/1 pulse ratio 

between the groups (P = 0.8999) (Fig. 5-1D).  
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 The average basal evoked DA release in Sepp1-KO slices (0.4731 ± 0.06796 µM, n=13) 

in response to 10-pulse stimulation trains taken from the baseline of ensuing experiments was 

about half the amount measured in WT slices (1.126 ± 0.1476 µM, n=16) (P = 0.0009) (Fig. 5-

1E). The early rising slope of the baseline evoked DA release events was similarly reduced in 

Sepp1-KO slices (0.5546 ± 0.1387 µM/ms, n=6 compared to 1.416 ± 0.1197 µM/ms, n=4 in WT 

mice) (P = 0.0024) (Fig. 5-1F). The early slope represents the rate of DA release during the 

rising phase of the evoked response and is less affected by DA uptake. Baseline [DA]p was 

reduced in Sepp1-KO slices (87.29 ± 8.247 nM, n=13) to about half the level of WT slices 

(184.2 ± 19.69 nM, n=16) (P = 0.0003) (Fig. 5-1G). All three measurements of basal evoked DA 

release yielded significantly smaller values in Sepp1-KO slices in similar proportions. 

 

Changes in protein expression in Sepp1-KO mice: 

Western blot analysis revealed no differences in TH expression between groups (Fig. 5-

2A). There was also a decrease in DAT expression in Sepp1-KO ventral striatum, with a 

downward trend in ventral midbrain (Fig. 5-2B). Interestingly VMAT-2 expression was 

increased in Sepp1-KO ventral midbrain, with an upward trend detected in ventral striatum as 

well (Fig. 5-2C). D2R expression was not changed in Sepp1-KO mice (Fig. 5-2D). 

 

Changes in METH-induced DA release in Sepp1-KO mice: 

We further employed FSCV to examine whether Sepp1-KO mice have an altered 

response to METH. Sepp1-KO slices and WT slices both exhibited an immediate increase in the 

phasic DA response post-METH application (Fig. 5-3A, B) that was reduced in Sepp1-KO slices 

(0.9173 ± 0.1452 µM, n=6) compared to WT slices (1.542 ± 0.1490 µM, n=8) (P = 0.0127) (Fig. 

5-3C). Phasic DA signals gradually drifted back down towards baseline levels, an effect that was 

slower to occur in Sepp1-KO slices (Fig. 5-3B). Although the maximum response was lower in 

Sepp1-KO slices, the percent increase over baseline (292.9 ± 27.08 %, n=6) was nearly double 

that of WT slices (163.1 ± 11.81 %, n=8) (P = 0.0004) (Fig. 5-3D). The dramatic effect of Sepp1 

deletion on evoked DA release in response to METH contrasted with non-stimulated DA efflux 

induced by METH, which was unchanged in Sepp1-KO slices (Fig. 5-3D, E). It is worth noting 

that while Sepp1KO slices displayed smaller evoked DA signals and a disproportionately larger 
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fold-increase with METH than controls, the peak phasic concentrations displayed by each group 

were comparable. 

We used the Michaelis-Menten modeling application to depict changes in DA uptake in 

Sepp1-KO mice. Vmax was reduced in Sepp1-KO slices (1206 ± 86.56 µM/s, n=27) indicating 

slower basal DA uptake rates compared to WT slices (2026 ± 64.66 µM/s, n=19) (P < 0.0001) 

(Fig. 5-4A). METH elicited comparable increases in apparent Km in both WT (23830 ± 3764 

nM, n=8) and Sepp1-KO slices (14611 ± 2215 nM, n=6) indicating similar levels of DA uptake 

inhibition, although there was a downward trend in the Sepp1-KO slices (P = 0.0778) (Fig. 5-4B, 

C).  

There has been some debate over whether METH causes an increase in vesicular DA 

release in addition to the widely accepted mechanism of DA efflux (Siciliano et al., 2014). 

Recent publications have argued that AMPH causes increases in action potential-driven DA 

release as demonstrated by in vivo FSCV experiments (Covey et al., 2016). In response to 

METH, Sepp1-KO slices exhibited an initial increase in [DA]p that gradually decreased in 

amplitude towards baseline with successive stimulations (Fig. 5-5A). WT slices, by contrast 

displayed a slight increase that quickly dropped below baseline, likely due to vesicular depletion. 

The average percent increase over baseline [DA]p was greater in the Sepp1-KO slices (171.9 ± 

11.86 %, n=6) than in WT controls (112.9 ± 3.139 %, n=8) (P < 0.0001) (Fig. 5-5B). To test 

whether reduced Se levels may have caused long-term neurodegeneration to affect these results, 

we supplemented some Sepp1-KO mice with Se water (1mg/mL) immediately post-weaning. Se-

supplemented Sepp1-KO mice exhibited an equal increase in [DA]p as non-supplemented 

Sepp1-KO mice (data not shown), further implicating the role of Sepp1 protein. 

 

Ability of Sepp1 Protein to Prevent METH-induced Increases in Vesicular DA Release: 

 To evaluate whether the increase in [DA]p in Sepp1-KO mice in response to METH was 

a direct effect of the loss of Sepp1 activity, we added 100 pM Sepp1 protein to brain slices via 

perfusion for 30 minutes immediately prior to METH application. Sepp1 protein by itself did not 

change DA release or uptake in either WT or Sepp1-KO slices. However, Sepp1 suppressed the 

METH-induced increased in vesicular DA release in Sepp1-KO slices without altering the 

response to METH in WT slices (Fig. 5-6A, B). The maximum percentage increase of [DA]p in 
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Sepp1-exposed Sepp1-KO slices (118.2 ± 7.276 %, n=4) was significantly lower than non-

exposed Sepp1-KO slices (171.9 ± 11.86, n=6) (112.9 ± 3.139 %, n=8) (P = 0.0097) (Fig. 5-6C).  

 Although the accepted primary function of Sepp1 is to deliver Se, it has other functions 

including possible cell signaling via ApoER2. To examine which function of Sepp1 is involved, 

we first utilized a full-length (FL) all-cys Sepp1 mutant in which the 10 Sec residues have been 

changed to Cys residues, and is therefore unable to supply Se. Application of the FL all-Cys 

Sepp1 mutant to Sepp1-KO slices resulted in a robust suppression of the METH-induced 

vesicular DA release (106.0 ± 1.680 %, n=3) (Fig. 5-6D, E).  

Next, we added to slices an N-terminal domain fragment (NT) of the all-Cys Sepp1 

mutant, which resulted in a [DA]p (146.5 ± 21.66, n=3) response to METH similarly to non-

exposed Sepp1-KO slices (Fig. 5-6D, E). The ineffectiveness of the NT mutant implies that the 

region of Sepp1 responsible for suppressing METH-induced increases in [DA]p is located on the 

C-terminal domain.  

The ApoER2 binding site is in the C-terminal domain, suggesting the possibility that 

interaction of Sepp1 with ApoER2 is a contributing factor (Kurokawa et al., 2014). To explore 

this possibility, we used an all-Cys Sepp1 mutant in which an essential region (residues 234-237) 

for ApoER2 binding is deleted eliminating the ability of Sepp1 to bind ApoER2. The ApoER2 

domain mutated peptide (Δ234-237) did not significantly reduce the METH-induced [DA]p 

increase (127.2 ± 8.245 %, n=3), demonstrating that Sepp1-ApoER2 interactions attenuate the 

METH response in Sepp1-KO slices (Fig. 5-6D, E). Dunnett’s test following one-way ANOVA 

revealed a significant reduction in the [DA]p response to METH only following pre-application 

with the FL all-Cys mutant (Fig. 5-6F). 

 

Role of Dopamine Receptor 2: 

 AMPH has an excitatory effect on DA release that is masked by D2R auto-inhibition (Shi 

et al., 2000). Therefore, the substantial increase in [DA]p induced by METH in Sepp1-KO mice 

may be due to D2R dysfunction. To see if increasing D2R activity would prevent the METH-

induced [DA]p increase in Sepp1-KO mice, we applied the selective D2R agonist quinpirole to 

Sepp1-KO and WT slices for 15 minutes prior to and for the duration of METH exposure. 

Quinpirole activates presynaptic D2R to increase auto-inhibition of vesicular DA release to 

reduce evoked DA responses measured through FSCV. Exposure to 30nM quinpirole caused a 
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similar decrease in evoked DA release in WT and Sepp1-KO slices (45.88 ± 2.833 % of baseline 

signal, n=3 and 41.61 ± 3.856, n=3, respectively) (Fig. 5-7A, B).  

In response to METH, [DA]p increased in both WT and Sepp1-KO slices following 

quinpirole application, but did not reach original baseline levels in either group (Fig. 5-7C). The 

maximum [DA]p reached in Sepp1-KO slices as a percentage of original baseline pre-quinpirole 

treatment was in stark contrast to the increase seen without quinpirole application (Fig. 5-7D). 

Quinpirole application did not significantly change the eventual maximum percentage change in 

[DA]p in response to METH in WT mice (Fig. 5-7D). Moreover, the WT and KO slices treated 

with quinpirole exhibited similar percent increases in [DA]p during METH application.  

 To block D2R auto-inhibition, we added the selective D2R antagonist sulpiride to further 

investigate the role of D2R in METH-induced changes in DA release. Addition of sulpiride (600 

nM) resulted in comparable increases in evoked DA signals over baseline in Sepp1-KO (139.8 ± 

6.146, n=7) and WT (148.5 ± 4.580, n=4) slices (Fig. 5-8A, B). Sulpiride caused an increase in 

[DA]p WT mice (429.3 ± 131.4, n=3) in the presence of METH (Fig. 5-8C, D). Sulpiride with 

METH did not further increase [DA]p in Sepp1-KO slices significantly above levels observed 

with METH alone (184.3 ± 21.54 % increase over baseline, n=3 and 176.3 ± 10.41 %, n=6, 

respectively) (Fig. 5-8C, D). In the presence of sulpiride, the [DA]p increase in response to 

METH was also significantly larger in WT than in Sepp1-KO slices (Fig. 5-8D).  

 Since sulpiride antagonism of D2R auto-inhibition resulted in an [DA]p in response to 

METH, we tested if it could prevent the Sepp1 protein from reducing the response in Sepp1-KO 

mice. We added sulpiride to Sepp1-KO slices prior to and during Sepp1 application as well as 

during METH exposure. Sulpiride prevented the suppressive action of Sepp1 protein, resulting in 

roughly a doubling of [DA]p (203.4 ± 23.87 %, n=4, P = 0.0069 when compared to just Sepp1-

applied Sepp1-KO slices via unpaired t-test) once METH was added (Fig. 5-8E, F, G).  

 

Conclusions and Discussion 

Sepp1-KO mice have reduced basal phasic DA release: 

All three measurements of basal evoked DA release yielded significantly smaller values 

in Sepp1-KO slices in similar proportions, indicating that genetic deletion of Sepp1 reduces the 

magnitude of phasic DA release. Altered vesicular content or distribution may be a possibility to 

account for the reduced basal release, considering that VMAT-2 expression was increased in 
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Sepp1-KO mice. It is possible that the vesicular DA was not necessarily present in the readily-

releasable pool of vesicles (Covey et al., 2013). This will be further elaborated on in the 

GENERAL DISCUSSION section. Another explanation for decreased phasic release is that the 

Sepp1-KO mice could have fewer DA terminals due to neurodegeneration or aberrant 

neurodevelopment. Indeed, DAT expression was reduced in the relevant brain regions of Sepp1-

KO mice, suggesting fewer DA terminals. TH expression was not changed in the same brain 

regions of Sepp1-KO mice, however, implying similar levels of DA synthesis. However, TH is 

expressed in both nerve terminals and cell bodies. Neurodevelopmental changes in the DA 

system of Sepp1-KO mice is plausible as the Sepp1 binding partner ApoER2 is heavily involved 

in migration of DA neurons during development (Sharaf et al., 2013; Sharaf et al., 2015).  

The 2/1 pulse response ratio was greater in Sepp1-KO slices, representing a greater 

increase in evoked release. The ratios for both groups were less than 2, indicating that the 

amount of DA released from the 2nd pulse in the 2-pulse train is less than the amount released 

from the 1st pulse. D2R auto-inhibition is partially responsible for this phenomenon (Moquin and 

Michael, 2009; Anzalone et al., 2012) Therefore, the greater 2/1 ratio of the Sepp1-KO mice 

suggests a less robust D2R auto-inhibitory effect. Also, the 10/1 pulse response ratios were equal 

between the groups.  

 

Sepp1 protein prevents METH-induced vesicular release in Sepp1 KO mice: 

Sepp1-KO mice exhibited a dramatic increase in [DA]p in response to METH, indicating 

an increase in vesicular DA release, that was prevented by application of purified Sepp1 protein. 

Moreover, the effect is Se-independent as the full-length all-Cys mutant was as equally effective 

as the intact Sepp1. The all-Cys N-terminal fragment was not effective, however, implying that 

the C-terminal domain is necessary (Saito and Takahashi, 2002). The Δ234-237 mutant was also 

ineffective, revealing that proper function of the ApoER2 binding site on Sepp1 was necessary 

for this preventative effect.  

Together, these results strongly suggest that Sepp1 acts through ApoER2-mediated 

signaling. Furthermore, the ability of sulpiride to block the suppressive effect of Sepp1 protein in 

Sepp1-KO slices suggests that Sepp1 signaling may engage pre-synaptic D2R to limit increases 

in vesicular DA release caused by METH.  
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 ApoER2 interacts with different scaffolds and adaptor proteins, such as Dab1, which 

promotes ApoER2 surface expression. ApoER2 is also known to undergo internalization in 

response to ligand binding (Cuitino et al., 2005). Interestingly, the adaptor protein CIN85 binds 

to Dab1 and has been suggested to mediate internalization of various membrane receptors, 

including D2R (Fuchigami et al., 2013). This further suggests that ApoER2 may be able to 

influence D2R surface expression. ApoER2 is also known to associate with NMDARs. NMDAR 

activation on active pre-synaptic striatal DA terminals promotes DA release in a Ca2+-dependent 

manner (Wang, 1991). Therefore, NMDAR internalization via ApoER2 activation is another 

prospective mechanism for Sepp1. 

 

Implications for METH mechanism of action: 

The ability of quinpirole to prevent the large METH-induced increase of [DA]p in Sepp1-

KO mice implicates impaired D2R activation or function in Sepp1-KO mice in the METH-linked 

increase in vesicular DA release. This is an important finding that suggests that METH can 

directly increase evoked DA release independent of DAT inhibition, but that this increase is 

normally masked by D2R auto-activation. This is also contingent upon D2R auto-inhibition 

acting fast enough after METH application to inhibit the first evoked release. Interestingly, Shi et 

al. reported that AMPH causes an excitation in VTA DA neurons, which is masked by D2R 

activation via AMPH-elevated DA concentrations (Shi et al., 2000). The excitatory action of 

AMPH was reported to be driven by adrenergic afferents onto VTA cell bodies. Our current 

findings, however, suggest that METH can increase vesicular DA release through a mechanism 

localized to the striatal environment. While we have shown that D2R masks this effect as well, 

further investigation into how METH causes the increased vesicular DA release is warranted. 

The proposed mechanism of D2R dysfunction masking METH-induced vesicular DA release in 

Sepp1-KO mice, in a manner reversible by Sepp1 protein, is summarized in Figure 5-9. 
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Figure 5-1. Deletion of Sepp1 results in reduced evoked dopamine responses in the nucleus 

accumbens.  

A. Representative traces from male C57 WT mice and C57 Sepp1 KO mice, aged 3-5 months. DA 

signals evoked by 1-, 2-, and 10-pulse stimulations. B, C. 1-pulse (n=5 and 5, P < 0.05) stimulation 

elicited greater concentrations of DA from WT mice than from Sepp1 KO mice. 2-pulse stimulation 

caused in upward trend in Sepp1 KO mice (n=5 and 5, P=0.051). The ratio of 2-pulse-elicited responses 

(n=5 and 5, P < 0.05) to 1-pulse-elicited responses was greater in Sepp1 KO mice. D. 10-pulse 

stimulation induced greater DA release in Sepp1 KO mice (n=5 and 5, P < 0.05). The ratio of 10-pulse to 

1-pulse responses was unchanged between the groups (n=5 and 5, P=0.9). E. Average baseline phasic 

DA release (evoked by 10-pulse stimulation trains) taken from all experiments was reduced in Sepp1 KO 

mice compared to WT (n=5 and 5, P < 0.001). F. The early rising slope of the baseline phasic signals 

was also reduced in Sepp1 KO mice (n=5 and 5, P < 0.01). G. Concentrations of vesicular DA released 

per individual stimulation pulse, [DA]p, estimated using a kinetic modeling system was decreased in 

Sepp1 KO mice (P < 0.001).  
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Figure 5-2. Western blot revealed Sepp-KO mice have reduced DAT and increased VMAT-2 expression in 

both the ventral midbrain and ventral striatum. 

A. TH expression trended toward in an increase in ventral midbrain of male C57 WT mice and C57 Sepp1 KO 

mice, aged 3-5 months (n=3 and 3) (P=0.0561), while no changes were seen in ventral midbrain. B. DAT 

expression was significantly decreased in Sepp1-KO ventral striatum (P=0.0377) with no change in ventral 

midbrain (n=3 per group) (P>0.05). C. VMAT-2 expression was increased in Sepp1-KO ventral midbrain 

(P=0.0091) and trended up in ventral striatum (P=0.0694) (n=3 per group). D. No changes were seen in D2R 

expression (n=3 per group) (P>0.05). 
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Figure 5-3. Increased phasic dopamine release induced by methamphetamine was 

greater in Sepp1 KO mice than wild-type controls, with no effect on dopamine efflux. 
A. Representative traces from male C57 WT mice and C57 Sepp1 KO mice, aged 3-5 

months. Phasic DA signals at baseline and in response to 10µM METH. B. Time course of 

phasic DA release (elicited every 2 minutes) showing percent increases over baseline. C. WT 

mice displayed higher peak phasic DA responses to METH (p < 0.05). Sepp1 KO mice 

displayed greater percent increases in phasic DA release over baseline levels compared to 

WT mice (p < 0.001). The ‘n’ for each group is shown in the graph columns. D. Time course 

of DA efflux (non-stimulated) in the presence of METH measured as an increase in 

extracellular DA concentration over baseline levels. E. Maximum non-simulated DA 

concentrations and total DA efflux, measured as area under the curve (AUC) of the complete 

time course response, were not different between the groups (P>0.05). 
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Figure 5-4. Sepp1 KO mice had reduced maximal DA uptake rates with no change in 

METH-induced DA uptake inhibition compared to controls.  

A. Max DA uptake rates, calculated as Vmax using Michaelis-Menten kinetic modeling, 

were lower in Sepp1 KO mice (p < 0.0001). Male C57 WT mice and C57 Sepp1 KO mice, 

aged 3-5 months were used. Vmax was calculated for each subject at baseline and held 

constant for the duration of the experiment. B. Time course of apparent Km, representing the 

affinity of DA for DAT. Km was set to 160 nM at baseline an increased in response to 

METH (10 µM) as DA uptake was inhibited. C.  No differences in maximum Km reached in 

the presence of METH were observed between groups (P>0.05). 
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Figure 5-5. METH caused an increase in vesicular DA release in Sepp1 KO mice. 
A. Time course of vesicular DA release in response to METH (10 µM) from male C57 WT 

mice and C57 Sepp1 KO mice, aged 3-5 months. Vesicular DA release is measured by the 

Michaelus-Menten kinetic factor [DA]p, representing the average concentration of DA 

released per stimulation pulse. METH induced a slight increase in [DA]p in WT mice before 

dropping below baseline. Sepp1 KO mice exhibited a substantial increase in [DA]p upon 

METH application which took longer to drop below baseline. B. Sepp1 KO mice displayed a 

greater percent increase in [DA]p (171.9 ± 1.86 %) compared to WT mice (112.9 ± 3.14 %) 

(P < 0.001). 
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Figure 5-6. Sepp1 protein prevented METH-induced increases in vesicular DA release by acting 

through ApoER2 receptors.  
A. Representative traces showing METH (10 µM) responses in Sepp1 KO and WT brain slices pre-

treated with Sepp1 protein. B. Time course of [DA]p showing no change upon Sepp1 protein exposure 

and absence of a METH-induced increase in [DA]p in Sepp1 KO mice pre-treated with Sepp1 protein. 

C. Sepp1 protein reduced the [DA]p response to METH in Sepp1 KO mice to the level of WT mice (P 

< 0.01). Sepp1 treatment had no effect on the WT response. D. Representative traces of Sepp1 KO 

mice when treated with various Sepp1 mutants (100 pM) prior to being exposed to METH. E, F. Pre-

treatment with a full-length all-Cys Sepp1 mutant lacking Se was successful in preventing the METH-

induced [DA]p increase in Sepp1 KO mice (P < 0.05). Treatment with an all-Cys N-terminal region 

Sepp1 peptide lacking the C-terminus, however, did not prevent the increase in [DA]p in response to 

METH. The Δ234-237 Sepp1 mutant that is unable to bind ApoER2 also did not reduce the [DA]p 

response. 
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Figure 5-7. D2R activation prevented the METH-induced increase in vesicular dopamine release 

Sepp1 KO mice. 
A. Sample traces of quinpirole-enhanced D2R auto-inhibition of evoked DA release from male C57 WT 

mice and C57 Sepp1 KO mice, aged 3-5 months. B. Quinpirole (30 nM) reduced basal DA release in 

WT and Sepp1 KO mice similarly. C, D. Quinpirole silenced the METH-induced increase in [DA]p 

above baseline levels in Sepp1 KO mice. WT and Sepp1 KO mice had comparable responses to METH 

after pre-treatment with quinpirole.  

6 8 3 3 

3 3 



76 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

A B 

E 

D 

Baseline            Sulpiride             METH 

  
  
W

T
 

  
  
S

ep
p

1
 K

O
 

G 
Baseline         Sulpiride 

Sepp1             METH 

Figure 5-8. D2R antagonism unmasked an increase in vesicular dopamine release in wild-type 

mice and prevented the Sepp1 rescue in Sepp1-KO mice. 
A. Sample traces showing sulpuride (600 nM) reduction of D2R auto-inhibition and subsequent response 

to METH from male C57 WT mice and C57 Sepp1 KO mice, aged 3-5 months. B. Sulpiride increased 

the baseline evoked DA release in WT and Sepp1 KO mice similarly. C, D. Pre-treatment with sulpiride 

caused a dramatic increase in [DA]p in WT mice while resulting in no changes to the METH response 

in Sepp1 KO mice. E. Sample traces showing the ability of sulpiride to prevent METH-induced vesicular 

DA release in Sepp1 KO mice. F, G. Sulpiride prevented the ability of Sepp1 protein to prevent the 

METH-induced increase in [DA]p in Sepp1 KO mice. 
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Figure 5-9. Proposed model for Sepp1 restoration of D2R function in Sepp1-KO mice. 

The proposed mechanism is that Sepp1-KO mice have lower functioning pre-synaptic dopamine receptor 2 

(D2R) compared to WT mice. D2R expression did not change suggesting a change in receptor kinetics or 

intracellular signaling. Phasic release of DA does not typically overflow out of the synaptic cleft due to uptake 

by DAT. When METH induces DA efflux, however, D2R become occupied by extra-synaptic DA overflow, thus 

allowing the D2R deficiency in Sepp1-KO mice to be observed. This D2R dysfunction unmasks the ability of 

METH to increase DA vesicular release. When Sepp1 is applied, it interacts with apolipoprotein e receptor 2 

(ApoER2) to increase D2R function. This could be caused by an increase in D2R surface expression or cross-talk 

between ApoER2 and D2R intracellular signaling pathways. 



78 
 

CHAPTER 6: GENERAL DISCUSSION 

 

Summary of Research Findings 

 The current study characterizes the influence of Se on dopaminergic transmission in the 

NAc through study of the impact of short-term and chronic Se deficiency. We found that short-

term (2 weeks) Se deficiency reduced METH-induced DA efflux from acutely isolated NAc 

slices, potentially due to reduced GPx activity leading to increased levels of H2O2. This effect 

occurred in the absence of impact of short-term Se deficiency on phasic DA release. Application 

of a GPx mimetic increased tonic DA release and potentiated the METH-induced DA efflux. 

Direct inhibition of GPx activity had the opposite effect, instead reducing DA efflux, consistent 

with the Se-deficiency condition. Thus, our findings implicate GPx as playing a mediating role in 

the tonic dopaminergic response to METH. Furthermore, KATP channels seem to be involved in 

the suppression of the METH response by both 2-week Se deficiency and GPx4 inhibition. In 

addition, the endocannabinoid system may be involved as CB receptor activation reduced DA 

efflux. CB1R antagonism partially reversed GPx4 inhibition of DA efflux. H2O2 and lipid 

peroxides may be mediating players as described in detail in Figure 3-8. 

 Chronic Se deficiency reduced basal DA uptake rates and DAT expression, consistent 

with long-term Se deficiency leading to neurodegeneration. Moreover, the tonic response to 

METH was reduced to a degree like that seen in NAc slices from short-term Se deficiency mice. 

In contrast to the short-term Se deficiency condition, however, METH surprisingly increased 

vesicular DA release in NAc slices from chronically Se-deficient mice.  

 Lastly, we investigated DA release from Sepp1-KO slices to compare the impact of loss 

of the Se transport selenoprotein to the Se-deficiency condition. Sepp1-KO slices also exhibited 

strongly augmented METH-induced vesicular DA release, potentially due to dysfunctional D2R 

auto-inhibition. The augmentation METH-induced vesicular DA release in Sepp1-KO slices was 

prevented both by application of Sepp1 protein and a D2R agonist. D2R antagonism blocked the 

Sepp1 rescue effect, implying that Sepp1 acts through D2R activity. The Sepp1 rescue effect is 

dependent upon on the ApoER2 binding domain.  

These findings highlight the ability of METH to regulate action-potential DA release 

independently of METH-induced DA efflux. Furthermore, we provide evidence of Sepp1-
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induced changes in DA terminals that may involve intracellular signaling. Our proposed 

mechanism is explained in Figure 5-9. 

 

Selenium-dopamine interactions in the striatum 

Comparison of previous studies: 

In previous studies, Se deficiency lasting 15-30 days increased DA metabolic turnover in 

the striatum (Romero-Ramos et al., 2000). These studies utilized microdialysis to measure 

changes in extracellular DA concentrations, which were accompanied by increases in TH and 

DAT activity. The authors postulated that the increase in DA turnover was a cellular adaptation 

to compensate for decreased DA vesicular storage caused by low GSH content. Our FSCV 

investigations did not reveal any changes in stimulated release of DA in NAc slices from Se-

deficient C57/BL6 mice for a similar period, which likely would have been affected by a change 

in vesicular DA storage. Therefore, the increased DA turnover seen in vivo cannot be attributed 

to an effect specific to the NAc alone. The underlying cause could be an increase in the number 

of DA neurons in the active control state and, thus, greater contribution to tonic DA levels.  

 

Potential Long-term Changes in Vesicular DA storage: 

 Several studies have reported a Se-deficiency induced increase in striatal DA turnover, 

but only one study by Watanabe et al. investigated Se deficiency lasting for 3-4 months 

(Watanabe et al., 1997). This study reported an increase in high K+-induced DA release 

measured by microdialysis in mouse striatum. Since extracellular concentration of the DA 

metabolite DOPAC was not changed, however, the authors ruled out increased DA synthesis 

during the stimulation period. These data combined with our finding of METH-induced vesicular 

DA release suggest greater amounts of vesicular DA in chronic Se-deficient and Sepp1-KO 

striatum as an alternative underlying factor.  

 The potential for increased vesicular DA is complicated by the fact that the increase in 

evoked DA release in our study only occurred in the presence of METH. In contrast, baseline 

evoked DA release was slightly lower in slices from chronic Se-deficient mice and much lower 

in Sepp1-KO mice. One possible explanation is provided by a study by Covey et al. on the 

differential effects of AMPH on vesicular DA pool types (Covey et al., 2013). The study was 

based on the idea that neurotransmitters reside in distinct populations of vesicles that differ in 
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physical characteristics and function: the reserve pool, the recycling pool, and the readily-

releasable pool. The authors of the study postulated that AMPH depletes reserve DA vesicular 

pools to drive reverse-transport while up-regulating the readily releasable pool to increase 

vesicular release.  

This assertion is based on the idea that separate pools of DA-containing vesicles 

contribute exocytotic release in response to electrical stimulations of varying duration (Rizzoli 

and Betz, 2005). The stimulation protocol used in our study should activate the readily-releasable 

pool and, therefore, our results would suggest that the readily-releasable pool is up-regulated by 

METH in the NAc of chronically Se-deficient mice and Sepp1-KO mice more so than controls.  

 

Implications for the Mechanism of Action of Methamphetamine: 

GPx-mediation of the Tonic METH Response: 

Inhibiting GPx enzymatic activity attenuates the rise in extracellular DA caused by 

METH exposure. Inhibition of GPx1 with MCS caused a decrease in tonic DA release while also 

blunting the tonic METH response. Inhibiting GPx4 activity with RSL3 caused a much stronger 

suppression of the tonic METH response, but did not change the tonic DA release baseline. This 

implies that H2O2 and lipid peroxidation both reduce the effect METH.  

 Correlating these findings to behavioral studies would help reveal the direct implications 

of this finding in vivo. On the one hand, it would appear that the Se-deficient brain is less 

vulnerable to the mechanism of METH-induced DA efflux. As previously mentioned, however, 

phasic DA transients are strongly implicated as a causative factor in addiction (Steinberg et al., 

2014). Reduced amounts of DA efflux would cause less occupation of pre-synaptic D2R and 

allow greater DA release in response to incoming signals. It would be interesting to see whether 

Se deficiency changes the immediate behavioral response to METH or drug-seeking behavior 

following a chronic METH regimen. 

 

Role of calcium: 

One of the main implications of our study is that the tonic METH response is partially 

dependent on Ca2+ influx, which can be inhibited by KATP channels. This is supported by our 

finding that removal of extracellular Ca2+ reduces the tonic METH response. While this pathway 

was shown to inhibit action potential-driven DA release, the midbrain afferents are transected 
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during preparation of NAc slices, thus excluding VTA-originating action potentials from playing 

a role in our study. Moreover, blocking Na+ channels with lidocaine did not alter the METH 

efflux in NAc brain slices (Hedges, unpublished personal communication). Thus, KATP channel 

activity likely reduced the METH response by preventing a Ca2+ influx-induced increase in 

intracellular Ca2+ levels. This mechanism may underlie the attenuation of the tonic response by 

both GPx inhibition and Se deficiency.  

METH-induced reverse transport of DA can be inhibited in PC12 cells by PKC inhibition 

and intracellular Ca2+ chelation (Kantor et al., 2001). PKC inhibition also prevents DA efflux in 

rat striatum while having no effect on the inward uptake of DA (Kantor and Gnegy, 1998). 

AMPH can activate L-type VGCCs by inducing DAT-mediated depolarization as a DAT 

substrate (Cameron et al., 2015). Therefore, the reduced METH potency under zero extracellular 

Ca2+ conditions may be due to a loss of L-type VGCC activity. METH-induced L-type VGCC 

activity could work to enhance vesicular DA release. METH-induced Ca2+ influx could also 

contribute to a recent and compelling model of DA efflux in which it is posited that CaMKII 

signaling leads to DAT phosphorylation (Fog et al., 2006). The effect of METH may be 

concentration-dependent, however, as 50 µM concentrations inhibit L-type VGCCs in SH-SY5Y 

cells (Andres et al., 2015). Interestingly, CaMKII may also mediate METH-induced 

neurotoxicity (Chen et al., 2016). 

 

Role of Endocannabinoids: 

The endocannabinoid system can modulate the influence of the H2O2-KATP channel on 

evoked DA release through CB1 receptor activity. Sidlo et al proposed that activation of CB1 

receptors on GABAergic terminals suppresses GABAA receptor activity to enhance H2O2 

generation (Sidlo et al., 2008). We have confirmed a similar general effect in relation to tonic 

DA release by showing that broad CB receptor agonism via WIN55 increases striatal tonic DA 

levels. Whether this increase is mediated by changes in GABergic signaling warrants further 

investigation. The inability of CB1R antagonist RIMO to affect basal DA levels implies an 

absence of basal endocannabinoid activity under normal conditions. 

Although WIN55 caused an increase in basal DA levels (Fig. 3-7A), it prevented the 

tonic DA response to METH similarly to RSL3. The attenuation by RIMO of the suppressive 

effect of RSL3 indicates that RLS3 may activate CB1 receptors. This would imply that high lipid 
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peroxidation causes elevated levels of a CB1 activator when METH is added. This could occur 

by suppressing a counter-endocannabinoid mechanism, such as clearance or metabolism, that is 

usually able to limit endocannabinoid levels in response to METH under normal conditions. 

Such a mechanism could involve preventing breakdown of AEA by FAAH. GPx4 is responsible 

for reducing the lipid peroxide 12-HPETE which in turn is capable of inhibiting FAAH 

(Sutherland et al., 2001; Maccarrone et al., 2009). Therefore, elevated 12-HPETE levels caused 

by GPx4 inhibition could potentially prevent AEA catabolism to up-regulate CB1R activity. In 

future studies, direct detection of each of these changes in DA terminals would be of particular 

interest. 

RSL3 could also cause a more direct effect by facilitating release of endocannabinoids in 

the presence of METH. Maccarrone et al. showed that chemically disrupting lipid rafts 

stimulates 2-AG production and increases CB1R activity in mouse striatal slices (Maccarrone et 

al., 2009). Therefore, the combination of METH-induced oxidative stress and GPx4 inhibition 

may induce this same mechanism. Interestingly, Premasekharan et al. depicted the disruption of 

lipid rafts through iron-mediated lipid peroxidation (Premasekharan et al., 2011). This may 

account for the distinct effect of RSL3 since GPx4 inhibition leads to lipid peroxide-induced cell 

death in an iron-dependent fashion (Imai et 

al., 2017). 

 

Implications for METH-induced 

neurotoxicity: 

 The results of the present study may 

describe a physiological mechanism 

through which Se affects DA transmission 

to protect against METH-induced 

neurotoxicity. First, the reduced DA efflux 

in the conditions of Se deficiency and GPx 

inhibition provide and interesting 

possibility. Presuming that VMAT-2 

inhibition still occurs, our findings imply 

that DA, after leaking out of pre-synaptic 

 

Figure 6-1. Model of Neurotoxicity in Chronic Se 

Deficiency. 

DA is leaked out of pre-synaptic vesicles and 

becomes built up in the pre-synaptic terminal as 

reverse-transport via DAT is inhibited. When this 

DA auto-oxidizes within the terminal, there is 

greater oxidative stress to the cell. Additionally, a 

greater amount of vesicular DA release into the 

synapse occurs, leading to further oxidative stress. 
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vesicles, becomes built up within the terminal as reverse-transport through DAT is inhibited. 

Auto-oxidation of this built up DA may be more toxic for the DA terminal as it will occur within 

the cell as opposed to in the extracellular space, thus increasing oxidative 

 stress. Second, the increased vesicular DA release caused by METH under conditions of chronic 

Se deficiency and Sepp1 deletion implies a greater amount of DA release into the synapse 

following action potentials. This could, in turn, cause greater oxidative stress via DA auto-

oxidation. This proposed model for neurotoxicity is described in Figure 6-1. 

 

Experimental Limitations: 

Fast-scan cyclic voltammetry measurements: 

One major limitation of this study is that tonic DA levels can only be measured 

differentially in relation to baseline levels. While FSCV can quantify the increase in tonic DA 

when METH is added, it is unable to measure the absolute concentration of extracellular DA. 

This has the potential to complicate some experimental findings as the baseline tonic DA level 

may influence the magnitude of the METH responses. For example, a higher basal tonic release 

in 2-week Se-deficient striatal slices could account for the decreased response to METH, as the 

local system is closer to reaching maximum DA release capacity. This is possible considering 

that microdialysis indicates higher extracellular DA concentrations in Se-deficient mice 

(Romero-Ramos et al., 2000). Since these microdialysis studies were performed in vivo, 

however, increased DA transients may also contribute to the elevations observed. The present 

study was performed in brain slices containing DA terminals transected from cell bodies, 

however, and are not affected by action potentials originating from the soma. Nevertheless, 

interpretation of the data collected via FSCV in this study would benefit from complementary 

microdialysis experiments.  

 

Michaelis-Menten modeling: 

While the benefit of FSCV lies primarily in its ability to measure rapid changes in DA 

release and uptake, there are some caveats to its use to study phasic DA signaling. Analysis of 

uptake kinetics relies on a mathematical model that in turn is based upon the assumption that DA 

uptake via DAT occurs according to Michaelis-Menten enzyme kinetics. Therefore, to accurately 

measure Vmax, the concentration of DA released upon stimulation must be high enough to 
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saturate DAT activity, a state called “DA overflow”. Generally, Vmax is reliable when 

concentrations surpass the baseline Km value, which is approximately 160-200 nM in mice 

(Ferris et al., 2013). Saturation might not occur under some conditions, however, and must be 

considered (Yorgason et al., 2011). Complementary experiments could involve a more direct 

assay of DAT-mediated DA uptake in NAc dopaminergic terminals. 

The modeling also assumes that DAT uptake is primarily responsible for the clearance of 

DA from the extracellular space and, therefore, the falling phase of the evoked DA response. 

While this is widely accepted to be the case in striatum, it may not always be the case in other 

areas of the brain (Hoffman et al., 2016). For example, the norepinephrine transporter (NET) 

carries out some DA uptake activity in mouse frontal cortex (Moron et al., 2002). Therefore, this 

underlying assumption must be reconsidered for prospective experimentation outside the 

striatum. 

In the present study, METH-induced DA uptake inhibition was modeled by increasing 

Km while keeping Vmax fixed. Addition of a drug known to change DAT surface expression 

levels would require adjustment of Vmax values while keeping the Km constant. Therefore, the 

validity of the Km values reported in this study are contingent upon DAT levels remaining 

approximately constant for the duration of METH exposure. While METH has been suggested to 

cause DAT internalization, conflicting reports have emerged indicating no change or an increase 

in DAT surface expression (Kahlig and Galli, 2003; German et al., 2012; Wheeler et al., 2015). 

Moreover, most of the studies reporting DAT internalization are based on a timescale beyond the 

experimental design of the present study.  

In our modeling, we set the baseline Km to 160 nM according to past studies that have 

determined DA affinity for DAT in mice. Se deficiency was not suspected to change the baseline 

affinity of DA for DAT in the current study, but it remains a possibility. DAT binding affinity 

has been suggested to change due to altered DAT phosphorylation states (Samuvel et al., 2008). 

H2O2 can inhibit DAT activity, but no change in Km occurs as a result (Huang et al., 2003). 

While there is no apparent mechanism through which Se deficiency could change DA affinity for 

DAT, such an effect should be experimentally ruled out to further validate the current findings.  
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Future Directions: 

 Our study has identified several potential interactions between selenoproteins and NAc 

DA terminals in the context of METH exposure. Future studies could address whether the EC50 

of METH is changed in chronic Se-deficient and Sepp1-KO mice. Moreover, since much of what 

is known about METH is derived from studies with AMPH, whether AMPH affects the 

phenotypes used in this study in the same way could be explored. In addition, it would be 

instructive to compare the impact of METH to cocaine or similar DAT-selective uptake inhibitor. 

The nature of KATP channel reduction of the METH response should be further 

investigated by examining the downstream effects of KATP channel activity. Although Ca2+ influx 

appears to contribute to METH-induced DA release, the signaling pathways and role of 

Ca2+stores involved need to be elucidated. Pharmacological effectors of intracellular Ca2+ stores 

and moderating proteins can be used in combination with extracellular Ca2+ manipulation to 

tease apart this relationship. 

Involvement of endocannabinoids can be further characterized with different 

combinations of agonists and antagonists. Ultimately, mass spectrometry should be used to 

measure endocannabinoid levels as the present findings appear to be caused by a change in 

production or metabolism. 

Genetic deletion of Sepp1 creates a striatal environment in which FSCV D2R dysfunction 

has unmasked an increase in vesicular DA release caused by METH. Kinetic analysis of ligand-

D2R interactions should be performed to determine if there is a change in kinetic activity of 

striatal D2R. Disruption of a signaling pathway is another possibility, and thus AC and Kv1.2 

voltage-gated K+ channel involvement should be studied. Vesicular DA storage could also be 

investigated in Sepp1KO mice. This can be done by using the VMAT-2 inhibitor reserpine to 

deplete DA vesicles and observe time course of depletion. Different stimulation paradigms can 

also be used to interrogate specific vesicular pools. 

The rescuing effect of Sepp1 protein provides a useful tool to investigate this phenotype. 

This study supports the prospect that Sepp1 can induce intracellular signaling via interaction 

with ApoER2. Further investigation should be aimed at identifying the secondary messengers 

involved and characterizing the potential functional association between ApoER2 and D2R 

receptors. Moreover, the specific role of Sepp1 in the dopaminergic system can be discerned by 

continuing to phenotype the Sepp1KO mouse model in parallel with chronic Se-deficient mice. 
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Technical limitations of this study can be alleviated by using alternative methods to 

measure DA concentrations. Fast-scan controlled-adsorption voltammetry (FSCAV) is a 

relatively new voltammetry technique that can provide absolute measurement of DA 

concentrations (Atcherley et al., 2015). This would provide a useful tool to help resolve current 

uncertainties in measuring METH-induced DA efflux in brain slices.  

Since this study was based upon the neuroprotective ability of Se against METH, 

oxidative stress and cell death should be assayed under the same experimental conditions 

wherein Se-deficiency leads to a reduction in neuroprotection. This can help reveal the 

relationship between DA release and neurotoxicity. Moreover, it can shed light on the seemingly 

paradoxical ability of GPx to protect against METH toxicity while promoting METH-induced 

DA efflux. Connecting the physiological responses observed in brain slices to changes in 

neurotoxicity would help clarify the physiological relevance of our findings. 
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