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ABSTRACT 

Background: Diagnosis of febrile illnesses in malaria-endemic countries focuses primarily on 

confirming or ruling out malaria, since malaria is considered a major health threat. But because 

of the high rate of malaria over-diagnosis, other febrile illnesses are often misdiagnosed or 

overlooked. Thus, there remains a large gap in our understanding of pathogen profiling in most 

malaria-endemic countries. Because knowing the cause of fever is the first step in deciding 

appropriate treatment and improving disease outcomes, the overall objective of this dissertation 

research was to identify infectious causes of febrile illnesses in Cameroon.  

Methods: We recruited 550 febrile patients seeking care at selected hospitals in Cameroon. 

Blood samples were collected from patients and used to conduct malaria tests by thick film 

microscopy, rapid diagnostic testing and PCR. Plasma samples were tested for antibodies 

against dengue, West Nile, chikungunya and respiratory viruses, Leptospira interrogans and 

Salmonella typhi, using RDT, microsphere immunoassay (MIA) and ELISA. Collected stool 

samples were cultured for the isolation of Salmonella and Shigella sp. Recombinant proteins of 

Ebola, Sudan, Marburg and Lassa viruses were expressed using Drosophila S2 cells and used 

to develop a MIA for viral hemorrhagic fevers (VHF). MIA was pre-validated using human or 

humanized monoclonal antibodies, and 408 previously collected plasma samples were 

screened for the presence of IgG antibodies for hemorrhagic fever viruses.  

Results: Although malaria was the main cause of febrile illnesses in Cameroon, the accuracy of 

clinical diagnosis of malaria was poor. That is, 38% of the patients clinically diagnosed as 

having malaria had fever caused by other pathogens, including acute respiratory tract infections, 

typhoid fever, amebiasis, toxoplasmosis, shigellosis, dengue fever, West Nile fever, and 

chikungunya virus infection. We developed and pre-validated a multiplex MIA for the diagnosis 

of VHF, and identified samples (5/408) suspected to be positive for Ebola, Lassa and Marburg 

viruses.  
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Conclusion: Collectively, our data provide the first evidence of several pathogens causing 

febrile illnesses in Cameroon and may provide the basis for developing an algorithm for the 

management of febrile illnesses. This study also reports for the first time the development of a 

MIA for the diagnosis of VHF.  
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Abstract 

Lack of effective surveillance dictates that most febrile illnesses in Africa are due to malaria. 

Dengue is an important but under-recognized cause of febrile illness in Africa. The mosquito 

species responsible for transmission of dengue virus have been well established in Africa. The 

most recent global estimate of dengue indicates that Africa's dengue burden represents 16% 

(16 million) of the global total, representing a larger burden than previously estimated. Between 

2011 and 2016, locally acquired dengue virus infection has been reported in 20 African 

countries. Out of 26,563 serum samples tested from suspected dengue patients, 5,781 (22%) 

were positive for dengue virus. Since most febrile illnesses in Africa are presumed to be caused 

by malaria, dengue is thus hidden and overlooked due to failure to consider dengue in the 

differential diagnosis of febrile illnesses. Moreover, in areas of Africa where malaria and dengue 

vectors co-exist, co-infections of dengue and malaria cannot be ruled out. Co-infection of 

dengue and malaria poses challenges in diagnosis due to the similar clinical presentation. The 

focus of this review is to understand the burden of dengue in Africa, the possibility of dengue 

and malaria co-infection in Africa and other geographical regions, which may form the basis to 

further develop policies for systematic testing for malaria parasite and dengue virus in febrile 

patients in endemic regions of Africa.
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Background 

Infectious diseases continue to emerge and re-emerge due to globalization and climate change, 

posing daunting challenges for diagnostics and clinical management (1). Febrile illnesses are 

known to be a common cause of hospital admissions in most African countries (2) and pose a 

diagnostic and therapeutic challenge to health care workers (HCW) in resource-limited areas. 

Diagnosis of febrile illnesses in Africa mostly focuses on confirming or ruling out malaria (3) 

since malaria is considered a major health threat. Because of the high prevalence of malaria in 

Africa, other febrile illnesses such as respiratory infections, dengue, leptospirosis, typhoid fever, 

and sepsis are often misdiagnosed as malaria. Epidemiological data on the etiologic agents of 

febrile illnesses in Africa are few and far between. Also, some studies have documented high 

rates of viral infections in febrile patients from various tropical countries (1, 4-6). Mapping the 

etiology of non-malaria febrile illnesses demonstrates a heterogeneous distribution depending 

on the study area and population (4-10).  

 

Differential diagnosis of febrile illnesses based on clinical criteria alone cannot be accurate 

because clinical signs and symptoms overlap. For appropriate management of febrile illnesses, 

timely laboratory diagnosis of the etiologic agent is required. The recent outbreak of Ebola virus 

disease in West Africa shows that prompt and accurate diagnosis is important to curb the 

spread of an infectious agent, and a single outbreak anywhere can lead to a global health 

emergency (11).  Several point-of-care tests (POCTs) are being developed to test for febrile 

illnesses in the tropics so as to improve patient care and disease surveillance (12). However, 

with the diverse range of pathogens causing febrile illnesses in the tropics, a strong will is 

needed to carry out a panel of tests for each patient, taking into consideration the financial cost 

and required technical expertise (3). The objective of this review is to understand the burden of 

dengue in Africa, and the possibility of dengue and malaria co-infection in Africa and other 

regions of the world.  

 

Methods 

Review of literature was conducted using PubMed. Search terms included "dengue in Africa," 

"dengue and malaria co-infection," "dengue and malaria concurrent infection," "malaria over-

diagnosis in Africa," and "non-malaria fevers" without any date filter. Additionally, review of the 

literature was conducted using search terms "dengue (in each African country)" for articles 

between 2011 to 2016. We also searched the online abstract books of the American Society of 
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Tropical Medicine and Hygiene (2013) and the American Society for Virology (2015) meetings. 

Additional data was obtained by searching the WHO Digital Library. We excluded duplicate 

articles. Similarly, after reviewing the abstracts of various publications and reports, we excluded 

those that were not relevant to the topic based on a review of the full text. 

 

Beyond malaria: non-malaria febrile illnesses in the tropics 

Febrile illnesses are caused by diverse pathogens with signs and symptoms that overlap, making 

differential diagnosis challenging. The prevalence of these pathogens may vary depending on the 

geographical region and season. Schoepp and colleagues recently reported that 25% of Lassa-

virus negative and malaria-negative samples submitted to the Lassa virus diagnostic laboratory in 

Sierra Leone had detectable IgM to dengue (2.4%), West Nile (1.2%), yellow fever (2.5%), Rift 

Valley fever (2%), chikungunya (2%), Ebola (8.2%) and Marburg viruses (3.2%) (13). These 

pathogens are known to cause febrile illnesses with overlapping signs and symptoms that could 

mimic those of malaria. Even though treatment information was not published, it would not be 

surprising that some of these patients might have been treated for malaria. Therefore, to treat 

non-malaria fevers appropriately, pathogens that cause febrile illnesses need to be identified. 

Moreover, some patients may be co-infected with malaria parasites and other pathogens that 

cause febrile illnesses, such as dengue (14) and chikungunya viruses and various bacteria (15, 

16), further confounding the situation. Although the particular pathogen may not be identified, 

knowing the pathogen category - virus, parasite, fungi or bacterium- would be useful in deciding 

treatment options (17). Although data on the epidemiology and characterization of non-malaria 

febrile illnesses in Africa is scanty, studies in Southeast Asia, South America and Africa have 

reported dengue, chikungunya, Japanese encephalitis, HIV, respiratory tract infections, 

leptospirosis, rickettsiosis, typhoid fever, pneumonia, blood stream infections, sepsis, scrub 

typhoid, enteric infection, and brucellosis infection in febrile patients (1, 4-8, 10, 16, 18-22). 

Therefore, more studies are warranted in malaria-endemic countries to elucidate the geographical 

and age distribution of non-malarial febrile illnesses, to guide policy makers and clinicians on the 

best course of action to take in treating febrile patients who test negative for malaria. 

 

Diagnostic challenges of non-malaria febrile illnesses in the tropics 

Correct diagnosis of non-malaria febrile illnesses is only possible with the use of laboratory 

tests. However, once malaria is excluded as the cause of the febrile illness, there are very few 

diagnostic tools available to guide the management of non-malaria febrile illnesses. In the 

absence of accurate and readily available diagnostic tests, febrile illness-associated diseases 
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will continue to go undiagnosed leading to poor health outcomes. Deaths from some of these 

diseases can easily be prevented if specific and sensitive diagnostic tools are readily made 

available in resource-poor areas. Based on the successful contribution of rapid diagnostic tests 

(RDTs) in malaria diagnosis and treatment, several POCT could be developed for non-malaria 

febrile illnesses. With the myriad of pathogens that can cause non-malaria febrile illnesses in 

the tropics, it is challenging to know the number of diagnostic tests that may be sufficient for the 

differential diagnosis of febrile illnesses. However, with the availability of epidemiological data 

on the distribution of various etiologic agents of febrile illnesses in tropical countries, diagnostic 

tests could be selected by the disease prevalence in a particular region. Most RDTs for non-

malaria febrile illnesses detect just a single etiologic agent (23), which means that several 

laboratory tests might be needed for each febrile patient. Despite the urgency, there is no 

multiplex POCT that can be used to diagnose multiple etiologies of febrile illnesses in the 

tropics. Using multiple single POCT to test for non-malaria febrile illnesses will be cost-

prohibitive as compared to using multiplex POCT. Thus, the availability of a multiplex POCT for 

tropical fevers will enable differential diagnosis of febrile illnesses thereby improving patient 

care. These POCT could be used to test for antigens, antibodies, and biomarkers. 

 

Most RDTs for non-malarial febrile illnesses currently rely on the detection of host antibodies. 

However, the sensitivity and specificity of host-antibody detection tests are both inherently 

limited. For example, dengue RDT performance is still not reliable due to complex reactivity with 

the four serotypes of dengue. Moreover, prolonged antibody responses to dengue virus 

preclude the use of serological RDTs for monitoring response to treatment. Considering these 

limitations, RDT for dengue and other non-malaria febrile illnesses will rely on combined use of 

antibody and antigen-capture tests.  

 

Until diagnostic tests for febrile illnesses become widely available in most tropical countries, 

there is the need to continuously improve clinical diagnosis. Clinical diagnosis is the first step 

and fundamental principle in the diagnosis of any disease. Continuous training and refresher 

courses for HCW on syndromic approaches to tropical fevers needs to be reinforced. For 

example, it is well documented that among dengue patients in Africa, hemorrhagic manifestation 

is very low, which in other parts of the world is used as one key clinical criteria for the diagnosis 

of dengue. Ultimately, integration of POCT into a validated syndromic approach to tropical 

fevers is urgently needed. Related research priorities are to determine the etiologic agents of 

febrile illnesses in the tropics; to determine how combinations of RDTs could be used to 
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improve health outcomes. 

 

Distribution of Aedes sp. in Africa  

Aedes aegypti and Aedes albopictus, which are the most important vectors for the transmission 

of dengue virus, have been reported in Africa (24-26). Aedes aegypti originated from Africa but 

is now found in tropical and sub-tropical regions of the world due to increased international 

travel and trade development (27). Aedes aegypti mosquitos are found in most countries in 

Africa and occur in a broad range of environments, from sylvan to urban. However, data from 

Algeria, Tunisia, Western Sahara and Libya (Northern Africa) is not available (24, 25). Other 

mosquitoes species reported in Africa that could potentially spread dengue virus include Aedes 

africanus, and Aedes luteocephalus (28). Aedes albopictus has been reported in several 

countries in Central Africa with high enough levels compatible with dengue virus transmission 

(25). The international trade especially in used car tires, which easily accumulate rainwater, has 

aided the geographical expansion of the Aedes mosquito. In September 2015, Aedes albopictus 

was recorded for the first time in Morocco (29). A total of 46 African countries has reported the 

presence of Aedes aegypti (28) with the potential to trigger local dengue virus transmission. 

 

The hidden burden of dengue in Africa 

Dengue is a mosquito-borne viral disease transmitted by female Aedes aegypti and Aedes 

albopictus mosquitoes. There are four serotypes of dengue virus (DENV-1, -2, -3 and -4). 

Infection with one serotype confers life-long immunity against that serotype. However, persons 

infected subsequently with a different DENV serotype may experience antibody-dependent 

enhancement (ADE), in which antibodies from the previous infection cannot neutralize the virus 

but form a complex with the virus which may lead to severe dengue disease (30). Infection with 

DENV can lead to dengue fever or severe dengue (dengue hemorrhagic fever and dengue 

shock syndrome). There is no specific treatment or the United States Food and Drug 

Administration-approved vaccine for dengue, but early detection and appropriate medical care 

can reduce the case fatality. 

 

Dengue is an important but unrecognized cause of febrile illness in Africa. The epidemiology of 

dengue in Africa is poorly understood due to lack of active surveillance systems and weak, 

passive surveillance (diseases notification). Passive surveillance is the platform for any country 

to start surveillance activities. However, in African countries passive surveillance has several 

limitations, including underreporting and reflects the HCW knowledge, attitudes and practices. 
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The most recent global estimate of dengue indicates that Africa's dengue (symptomatic) burden 

represents 16% (16 million) of the global total, representing a larger burden than previously 

estimated (31). With the increase in the use of tires and disposable containers, international 

travel and trade, open-water storage, lack of window screens, combined with the explosion in 

urban populations in most African countries, the incidence of dengue in Africa are expected to 

increase in the absence of effective control measures (32). Recent data suggest that the 

predicted risk of dengue in Africa is much more widespread than previously reported with 

movement between populations being an important facilitator of spread (31).  

 

Available data suggest that dengue is probably endemic in most African countries (28, 31) 

(Figure 1). Between 1960–2010, transmission of dengue has been reported in 34 African 

countries with 22 of them reporting local transmission (20 with laboratory confirmed cases and 2 

with clinical cases only) whereas in 12 countries dengue was only diagnosed in returning 

travelers who had visited these countries from regions non-endemic to dengue (24). Results 

from a 12-year (1998–2010) surveillance of dengue among French military in Africa 

demonstrated additional locations for circulating DENV-1 (Cameroon, Djibouti, Gabon and 

Mayotte) and DENV-3 (Comoros) (33). Between 2011–2016, there have been published reports 

of locally acquired dengue infection in 20 African countries (Table 1). Out of 26,563 serum 

samples tested, reviewed from 37 publications from Africa (2011–2016), 5,781 (22%) samples 

were positive for dengue by serology (IgM, IgG, PRNT, IFA) and RT-PCR. Within the last five 

years, dengue outbreaks have been reported in Angola (2013), Burkina Faso (2013), 

Mozambique (2014), Kenya (2013) and Tanzania (2014). All four DENV serotypes have now 

been documented to be circulating in Africa with DENV-2 being predominant (Table 1). 

  

Clinical features of severe dengue that are more distinct and can be used for differential 

diagnosis are infrequently reported in Africa. There were six cases of severe dengue reported in 

Senegal during the 2009 dengue outbreak with one death (34). Meanwhile, in Angola, 11 deaths 

were recorded during the 2013 dengue outbreak (35). Several reasons can be advanced for the 

rare occurrence of severe dengue in Africa. Firstly, signs and symptoms of dengue mimic other 

infectious causes of febrile illnesses in the tropics. Second, most HCW are unfamiliar with 

dengue and do not consider dengue during differential diagnosis of febrile patients even with 

bleeding manifestations. Third, a genetic protective variant has been proposed to be partially 

responsible for the low incidence of severe dengue in Africans (36). However, with limited data 

from Africa, the true burden of dengue in Africa remains uncertain. 
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Fig 1. Dengue and Aedes aegypti in Africa (1960-2011) (24). 

Dark color represents countries in which dengue (including dengue in travelers) and Aedes 

aegypti have been reported. Light color represents countries in which Aedes aegypti have been 

reported, but dengue was not reported. White indicates countries in which data are not 

available.   
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Table 1. African countries with published reports of local transmission of dengue (2011–2016). 

* Includes IgM, IgG, PRNT, IFA and RT-PCR positive samples  
** Countries reporting dengue outbreaks 
NA – Data not available  
 

Malaria in Africa 

Distribution of malaria vectors in Africa 

Malaria is a mosquito-borne disease caused by five species of malaria parasites (Plasmodium 

falciparum, Plasmodium vivax, Plasmodium malaria, Plasmodium ovale and Plasmodium 

knowlesi). Female Anopheles mosquitoes transmit malaria parasites. Of the 140 species of 

Anopheles mosquitoes known to transmit malaria, 20 are reported in Africa (72). Malaria is 

characterized by its biological diversity that is determined by the vector species present in a 

given region (73). The most widespread and potent human malaria vectors in sub-Saharan 

Africa belong to the Anopheles gambiae complex (Anopheles gambiae, Anopheles funestus, 

Anopheles arabiensis, Anopheles nili and Anopheles moucheti) and are responsible for over 

95% overall transmission (72, 74). Anopheles gambiae is widely recognized as the most 

important of these vectors especially in lowlands, and commonly associated with Anopheles 

funestus known to be responsible for intense seasonal malaria transmission (73). However, the 

 

Country (reference) 

Total number of  

samples tested 

Number positive 

(%)* 

DENV 

serotypes 

Angola (35, 37)** 1,214 811 (67) 1 
Burkina Faso (38-40)** 653 95 (15) 2, 3, 4 
Cameroon (41) 2,030 666 (33) 1, 2 
Comoros (42) 400 303 (76) 1, 2, 3, 4 
Cote d'Ivoire(43, 44) 812 10 (1) 3 
Djibouti(45, 46) 1,265 322 (25) 1, 2, 3 
Gabon (47) 4,287 376 (9) 2 
Ghana (48) 218 54 (25) NA 
Kenya (49-52)** 4,720 1,493 (32) 1, 2, 3 
Madagascar (53) 1,244 97 (8) NA 
Mozambique (54)** 193 100 (52) 2 
Namibia (55) 312 25 (8) NA 
Nigeria (56-59) 943 389 (41) NA 
Sao Tome and Principe (60) 78 28 (36) NA 
Senegal (34) 696 196 (28) 3 
Sierra Leone (61-63) 446 142 (32) 1, 2, 3, 4 
South Sudan (64) 632 8 (1) 2, 3 
Sudan (65) 615 170 (28) NA 
Tanzania (66-70)** 2,181 347 (16) 2 
Zambia (71) 3,624 149 (4) NA 
Total  26,563 5,781 (22) NA 
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transmission pattern of malaria in Africa is highly variable due to differences in ecological 

conditions, mosquito feeding behavior and longevity of the different malaria vectors (75, 76).  

 

The burden of malaria in Africa  

The African region is most affected by malaria with about 90% of all malaria deaths in children 

occurring in sub-Sahara Africa (77). Malaria affects the lives of almost everyone in sub-Saharan 

Africa in part, because, most at risk groups live in areas with stable malaria transmission. Young 

children and pregnant women are the most susceptible group. Malaria in pregnancy can cause 

anemia, low birth weight and other related complications (78). The World malaria report 

estimates 212 million new cases of malaria worldwide in 2015 with the WHO Africa Regions 

accounting for 90% (79). In 2015 there were an estimated 429,000 deaths attributed to malaria 

worldwide. Most of these deaths (92%) occurred in the African region. The high malaria 

transmission and mortality rate can be attributed to the fact that the most effective malaria 

vector (Anopheles gambiae) is wide spread in Africa and the majority of infections are caused 

by the most dangerous Plasmodium species (Plasmodium falciparum), respectively. In five 

African countries (Algeria, Morocco, Tunisia, Libya and Egypt), malaria has been well controlled 

(77).   

 

Malaria over-diagnosis 

The advent and widespread use of malaria RDTs present HCW the challenge on an appropriate 

course of action to take when malaria RDT results are negative (Figure 2) (17). Studies have 

documented the widespread use of antimalarial drugs to treat febrile patients who are negative 

for malaria (80, 81). Most clinical decisions on the treatment of malaria are not based on the 

parasite guidelines proposed by WHO but rather based on non-specific signs and symptoms 

such as fever, headache and joint pains that overlap with other diseases including dengue. 

Moreover, the World Malaria Report estimates that in 2015 only 51% of children with a fever 

who sought care at a public health facility in 22 African countries received a malaria diagnostic 

test (79). Given the present scenario, there is the likelihood that malaria over-diagnosis could 

mask other causes of fever including dengue virus and also puts evolutionary pressure on 

malaria parasites that can enhance the development of drug resistance. Therefore, educational 

activities should be focused on training of HCW to treat the only parasite confirmed malaria 

patients with antimalarial drugs and to further investigate negative malaria patients for other 

causes of fever. 



  

	 12 

 
Fig 2. The course of action by health care workers when the result of a malaria RDT is negative 

per WHO recommendation (17).  

Blue indicates recommended actions while red indicates not recommended actions/behaviors 

 

Dengue and malaria co-infection in Africa 

Dengue and malaria co-infection refers to the simultaneous existence of both malaria and 

dengue in a patient. The worry of any co-infection is that it challenges the appropriate clinical 

management of the patient. Thus, misdiagnosis of co-infection may make clinical management 

difficult or worsen patient outcome. The mosquito species responsible for transmission of 

dengue and malaria have been well established in Africa (24, 28). Areas in Africa where malaria 

and dengue vectors co-exist, co-infections of dengue and malaria cannot be ruled out (Figure 

3). Thus, the concept that dengue occurs in urban areas and malaria in rural areas may be 

contradicted by the fact that in a given country, co-infections may occur due to an overlap 

between the two vectors. A study in French Guiana showed dengue virus to have spread to 

malaria-endemic rural areas (82). The first published case report of dengue and malaria co-

infection occurred in a patient returning to France after visiting 3 African countries (Guinea, 

Senegal, and Sierra Leone) for 18 days (83). France is not known to be endemic for either 

dengue or malaria; this patient was therefore infected while visiting these African countries.  

 

Although malaria and dengue co-infections have been documented in Asia and Latin America, 

there is limited information on dengue and malaria co-infection in Africa. This is because, in 

Africa, malaria is generally ascribed to most febrile illnesses. More so, febrile patients show 
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symptoms, which are common to both malaria and dengue making it difficult to diagnose co-

infections clinically (84). Also, malaria can be easily diagnosed in its acute febrile phase, and 

once malaria is confirmed, other possible causes of fever such as dengue are not considered. 

This implies that dengue and malaria co-infection will be treated as malaria mono-infection. 

 

There have been reports of dengue and malaria co-infection in Africa (Table 1). A recent study 

in Ghana investigated archived blood samples from children with laboratory-confirmed malaria 

for possible exposure to dengue. Anti-dengue virus-specific IgM antibodies were detected in 

3.2% of the children, indicating probable co-infection, whereas IgG antibodies were detected in 

21.6% of the children, indicating previous exposure (85). In a similar study in Nigeria, 18 of 310 

febrile patients were co-infected with dengue and malaria (86). Moreover, during the 2014 

dengue outbreak in Tanzania, 4% of confirmed dengue cases were co-infected with malaria 

(67). However, results from these studies should be interpreted with caution (Table 1). Dengue 

infection and disease are different because not all infections are clinically symptomatic. 

Detection of anti-dengue IgM or IgG antibodies in an individual is evidence of current or past 

infection, respectively, but not necessarily disease (illness). While it is important to highlight co-

infection, it is equally important not to overestimate co-illness of dengue and malaria. For 

example, a patient with fever positive for malaria by blood smear and having evidence of 

dengue IgM antibodies maybe co-infected with dengue and malaria but only malaria is causing 

the illness. Out of the seven studies reporting dengue and malaria co-infection in Africa only two 

studies tested for dengue antigens (Table 2). The rest used ELISA or RDT to test for dengue 

IgM/IgG antibodies, which may only indicate previous or probable dengue infection in malaria 

positive patients. However, in studies where dengue antigens were detected, the prevalence of 

co-infection with malaria was 4% and 1.4%, respectively (Table 2). Even though the prevalence 

of dengue and malaria co-infection was low in these studies, it is not possible to draw 

conclusions on the degree of co-infections in Africa based on two studies carried out in the 

same country (Tanzania). Moreover, once a patient is confirmed to be malaria positive, 

clinicians don't think of the possibility of co-infection, leading to underreporting of malaria co-

infections. Thus, more studies on dengue-malaria co-infection and detection of dengue are 

warranted to elucidate the burden of dengue infection and disease (asymptomatic and 

symptomatic) in Africa. Such information will help health authorities plan for improving medical 

care for both diseases. 
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Fig 3. Dengue and malaria risk areas in Africa. 

 

Clinical parameters and implications of dengue and malaria co-infection 

Taking into consideration that the incubation period of malaria, 7-30 days (87), is longer than 

that of dengue, 4-7 days (88), concurrent clinical presentation of both infections is possible 

(Table 3). Co-infection of dengue and malaria leads to an overlap in their clinical presentation, 

which can pose a diagnostic challenge to HCW. Recently, >50 mg/L C-reactive protein (CRP) 

has been demonstrated to be a simple and sensitive tool to discriminate malaria from dengue 

(84). Unfortunately, CRP is non-specific for a particular disease. CRP levels are known to rise in 

response to inflammation. Thus, systematic testing for malaria parasite and dengue virus in 

febrile patients living in areas where both infections are present is ideal since their clinical 

parameters overlap. Treatment for both infections is different. While fluid replacement therapy is 

given to dengue patients, malaria patients are treated with antimalarial drugs. Therefore, a delay 

in treatment or not treating one of the dual infections may lead to serious consequences. A 

recent study suggests an increase in disease severity in dengue and malaria co-infections 

compared to mono-infections, with co-infected patients presented with anemia and severe 

thrombocytopenia more frequently than patients with single infections (89).  
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Table 3. Comparison of clinical and laboratory parameters between dengue and 
malaria. 
 

 

Parameter  

 

Dengue  

 

Malaria  

Malaria and dengue 

co-infection 

Fever  Present  Present  Present  
Incubation period 4-7 days  7-30 days  Variable  
Vomiting  Present  Present  Present (90)*  
Headache  Present  Present  Present  
Myalgia  Present  Present  Present (90) 
Thrombocytopenia  Moderate to  

severe  
Moderate to severe  Severe (89, 91) (90) 

Anemia  Negative  Possible  Possible (89, 91) 
Hematocrit  High  Usually normal   High to moderate (90) 
Rash  Present  Absent  Possible  
Bleeding manifestations  Common  Rare  Possible (90) 
Shock  Possible  Possible  Possible  
CRP Usually <50 mg/L 

(84) 
Usually >50 mg/L 
(84) 

Usually >50 mg/L (89) 

Circulatory collapse  Possible  Possible  Possible  
Severe disease outcome  Dengue shock 

syndrome  
Cerebral malaria, 
severe anemia   

More severe than mono 
infection (89, 91) 

Tourniquet test  Positive  Negative  Positive  
Malaria parasite Absent  Present  Present  
Fatigue  Yes  Yes  Yes  
Treatment  Fluid therapy Antimalarial  Antimalarial plus fluid 

therapy  
*References are cited in parenthesis 

Dengue and malaria co-infection in other regions of the world 

There are several case reports of dengue and malaria co-infections mostly from Southeast Asia 

(91-98). The incidence of dengue and malaria co-infection varies in different geographical 

regions. A recent study in India showed dengue and malaria co-infection in 7.4% (27/367) of 

febrile patients (99). Similarly, in Kolkata, India, 7.6% (46/605) of dengue patients were co-

infected with malaria (100). In French Guiana, 104 dengue and malaria co-infections were 

reported in a retrospective study between 2004-2010 (89). A separate study in French Guiana 

confirmed dengue and malaria co-infection in 17 of 1,723 febrile patients (82). In the Brazilian 

Amazon region, dengue and malaria co-infection were reported in 2 of 11 patients (101). 

Meanwhile, two separate studies from Pakistan reported 23.2% and 33% of dengue-positive 

patients co-infected with malaria (90, 102). A study in Jamaica reported 2.4% concurrent 

dengue and malaria co-infection (103). In a study investigating causes of febrile illnesses in 

Cambodia, dengue virus was frequently observed in co-infections (32/56, 57%), especially with 
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malaria parasite (n=27) (104). Similarly, in a prevalence study in Bangladesh, 5 (1%) concurrent 

cases of dengue and malaria were recorded (105). Based on these published results (Table 2), 

it can be assumed that dengue and malaria co-infection is common and may occur more 

frequently than reported.  

 

Conclusions  

Dengue virus infection in Africa is a reality but is being masked by malaria over-diagnosis and 

mistreatment. There is limited data on the prevalence of dengue in Africa, which makes the 

burden prediction uncertain. Because local transmission of dengue virus is evident in most 

malaria-endemic countries in Africa, dengue and malaria co-infection is plausible. Thus, special 

attention should be given to the possibility of malaria and dengue co-infection, which can be 

more severe than mono-infection. Since the clinical signs and symptoms of dengue and malaria 

overlap, it will be difficult to diagnose both infections clinically. Therefore, we recommend that 

dengue should be included in the differential diagnosis of febrile illnesses in Africa and the 

possibility of malaria co-infection(s) with other tropical febrile illnesses (including dengue) should 

be kept in mind by HCW attending to febrile patients in Africa or individuals returning from 

Africa. Also, HCW should ensure that patients with fever are investigated for other causes of 

febrile illnesses beyond malaria and prompt treatment to avert serious complications. 

Development of a geographically relevant multiplex point-of-care test for common tropical fevers 

will enable timely and accurate differential diagnosis of febrile illnesses with overlapping signs 

and symptoms, thereby improving patient care. 
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Table 2. Selected publications on dengue and malaria co-infection. 

 

 
Country (ref) 
 

Year of 
sample 
collection Study design  

Sample 
size  

Number of 
malaria and 
dengue co-
infection 

Malaria parasite 
species/ method of 
detection  

Dengue 
serotype/ 
method of 
detection Remarks   

Brazil (93) 2012 Prospective ND 11 Pv/ 
Microscopy& PCR 

2, 3, 4/ 
PCR 

One patient was 
infected with Pv, 
DENV-3 & DENV-4.  

Brazil (101)  2003-2005 Prospective  111 2 Pv/ 
Microscopy  

2/ PCR Dengue and malaria 
co-infection should be 
common in places 
where both diseases 
co-exist.  

Brazil (106)  2009-2011 Cross 
sectional 

1578 44 Pv/ Microscopy, 
PCR 

2, 4/ ELISA, PCR Higher chance of 
bleeding and severe 
disease in co-infected 
patients 

Bangladesh (105) 2007-2010 Cross 
sectional 

659 5 Pf, Pv/  
Microscopy, RDT 
and PCR 

NR/ ELISA High rate of malaria 
co-infections with 
other pathogens also 
recorded 

Bangladesh (107) 2012 Cross 
sectional 

720 1 Pv/ microscopy, RDT NR, ELISA  

Cambodia (104)  2008-2010 Prospective 
observational 

1193 27 Pf and Pv/ 
RDT, PCR 

1, 2, 3, 4/ 
RT-PCR 

A majority of malaria 
negative patients did 
not receive 
appropriate diagnosis 
and treatment.  

East Timor (108) 2006 Case report  1 1 Pf/ 
RDT, Microscopy  

NR/ 
IgM/IgG RDT 

This case study shows 
that, it is difficult 
differentiating dengue 
from malaria purely on 
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clinical grounds  
French Guiana 
(89) 

2004-2010 Retrospective  312 104 Pf and Pv/ 
Microscopy 

1, 2, 3/ 
ELISA, PCR 

Co-infection more 
severe than mono-
infections with 
increased risk of 
anemia and 
thrombocytopenia.  

French Guiana 
(82) 

2004-2005 Retrospective 1723 17 Pf and Pv/ 
Microscopy 

1, 3/ 
ELISA, PCR, 
culture 

Diagnosis of one of 
the dual infections 
should not rule out the 
other.  

France (83)  2004 Case report 1 1 Pf/ 
Microscopy  

3/ 
ELISA, RT-PCR 

Patient returned to 
France from an 18-
day trip to Senegal, 
Guinea and Sierra 
Leone.  

Ghana (85) Archival 
samples 

Retrospective 218 3.2%(IgM) 
21.6% (IgG) 

Pf/ 
Microscopy  

NR/ 
ELISA 

High rate of clinical 
diagnosis of malaria in 
Ghana 

India (99)  2012 Cross 
sectional  

367 27 Pf and Pv/ 
Microscopy 

NR/ 
ELISA 

Clinical presentation 
of co-infection were 
more like dengue than 
malaria 

India (100) 2005-2010 Prospective  605 46 Pf and Pv/ 
Microscopy 

NR/ 
ELISA 

Possible risk of 
dengue and malaria 
co-infection should be 
kept in mind in 
endemic areas. 

India (109) 2011-2012 Cross 
sectional 

300 1 Pv/ 
Microscopy 

NR/ ELISA Study was conducted 
in pregnant women  

India (110) 2013 Case report 1 1 Pf and Pv/ 
Microscopy, RDT 

NR/ ELISA  

India (111) 2006 Case study  1 1 Pv/ Microscopy NR/ ELISA  
India (112)  2006 Case study  1 1 Pv/ 

Microscopy  
2/  
ELISA, virus 
isolation  
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India (98) 2013 Case report 1 1 Pv/ Microscopy  NR/ ELISA  
India (96) 2006 Case report  1 1 Pf/ 

Microscopy  
NR/ ELISA  

India (92) 
 

2007 Case report 1 1 Pf and Pv/ 
Microscopy, RDT 

NR/ ELISA  

India (113) 2009 Case report  1 1 Pv/ 
RDT, Microscopy  

NR/ ELISA Patient was co-
infected with dengue, 
leptospirosis and 
hepatitis E virus 

India (94) 2012 Case report  1 1 Pv and Pf/ 
RDT, Microscopy  

NR/ ELISA Patient responded 
well to treatment  

India (91) 
 

2013 Case report 1 1 Pf/ 
RDT, Microscopy  

NR/ 
RDT for (NS1, 
IgM, IgG), ELISA 

Patient had cerebral 
malaria and dengue 
co-infection with 
anemia and 
thrombocytopenia.  

India (114) 
 

2012-2013 Retrospective 298 9 Pf and Pv/ 
Microscopy 

NR/ ELISA  

India (115) 
 

2014 Case reports 3 3 Pv/ Microscopy, RDT NR/ ELISA All cases were 
children 

India (116) 
 

2014 Cross 
sectional 

300 1 NR/ NR NR/ ELISA Intrauterine death of 
fetus in the pregnant 
woman co-infected 

India (117) 
 

 Cross 
sectional  

1980 22 Pf and Pv/ 
Microscopy, RDT 

NR/ RDT, ELISA, 
PCR 

 

Indonesia (118) 2008 Case report  1 1 Pf/ RDT, Microscopy  NR/ ELISA Patient also suffered 
from acute renal 
failure  

Malaysia (119)  2013 Case report  1 1 Pv/ Microscopy  NR/ ELISA Patient also co-
infected with 
leptospirosis  

Nigeria (120) 
 

2014 Cross 
sectional  

60 1 Pf/ RDT, PCR NR/ RDT  

Nigeria (121) 2014 Case report 1 1 Pf/ Microscopy NR/ PCR, ELISA Patient also co-
infected with 
chikungunya virus 
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Pf = Plasmodium falciparum  
Pv = Plasmodium vivax   
NR = not reported 
RDT = rapid diagnostic test

Pakistan (90) 2012 Cross 
sectional 

856 17 Pf and Pv/ 
Microscopy 

NR/ ELISA, PCR For most clinical 
features, co-infection 
was similar to mono-
infection 

Peru (122) 
 

2002-2011 Retrospective   17 Pf and Pv/ 
Microscopy, PCR 

1, 3/ Culture, 
PCR 

Co-infected group had 
similar findings to 
dengue mono infected 
group 

Tanzania (123) 
 

2013 Cross 
sectional  

364 8 NR/ Microscopy 2/ ELISA, RT-
PCR 

Study conducted in 
children 

Tanzania (124) 
 

2014 Cross 
sectional  

483 7 NR/ RDT 2/ ELISA, RT-
PCR 

Dengue out break 

Thailand (97)  2014 Case report 1 1 Pf/ Microscopy  NR/ ELISA, IgM, 
NS1 

Early recognition and 
treatment of co-
infection can avert 
potential 
complications.  

Singapore (125)  2012 Case report  1 1 Pf/ Microscopy  NR/ ELISA Patient also suffered 
from rhabdomyosis 
and acute renal failure 

Senegal (126) 
 

2009-2013 Cross 
sectional  

13845 1 ND/ Microscopy, 
RDT 

NR/ ELISA, PCR Co-infection of malaria 
and other arboviruses 
also reported.  

USA (95) 2003 Case report  1 1 Pv/ 
Microscopy  

NR/ ELISA Patient returned to the 
US after visiting India 
for 3 months and was 
not on any 
chemoprophylaxis  
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Background 
Currently, the World Health Organization (WHO) recommends limiting anti-malarial treatment to 

individuals with positive malaria test results. However, significant over-diagnosis of malaria is 

evident in most malaria endemic countries. Most febrile patients diagnosed and treated as 

malaria have underlying non-malarial causes. Under the current practices, there is a real 

potential of missing other pathogens that cause fever. In the absence of diagnostic tests, health 

care workers in tropical countries are posed with a daunting task of identifying a particular cause 

of febrile illness especially during the early stages of infection in which fever is the only 

symptom. Even when a patient presents with fever plus other focal signs and symptoms that 

can assist in differential diagnosis, clinical diagnosis is still challenging because some focal 

signs and symptoms are nonspecific (Table 1). For example, a patient with fever and other focal 

signs and symptoms such as diarrhea and/or bloody stool may be infected with Entamoeba 

histolytica, Shigella spp or enterohemorrhagic E. coli (EHEC) making a differential diagnosis 

and clinical management challenging. Likewise, a patient with fever and signs of hemorrhage 

may be infected with dengue, Ebola, Lassa or Marburg viruses, which require different 

treatment approaches and preventive measures (Table 1). Therefore, laboratory diagnosis 

remains the best tool to rule out or confirm a diagnosis of febrile illnesses. Thus, profiling 

pathogens that cause febrile illnesses is essential to provide local epidemiologic data that can 

be used to develop diagnostic tools, optimize clinical care and develop effective prevention 

strategies in communities and hospitals. However, there remains a large gap in our 

understanding of pathogens, other than malaria, which causes febrile illnesses in malaria-

endemic countries. The paucity of reliable data is in part due to the lack of diagnostic tools, 

active surveillance systems and the misplaced emphasis on malaria as the sole cause of the 

fever. 
 

Evidence regarding etiologic agents of febrile illnesses in the tropics is variable. Available data 

shows that in children less than five years of age most fever episodes are associated with acute 

respiratory infections, and a high proportion of infectious etiologies are due to viruses. However, 

in older children and adults, non-malaria febrile illness has been shown to be associated with 

immunocompromised status due to HIV infection (1). Moreover, specific infections such as 

brucellosis, leptospirosis, scrub typhus and rickettsiosis have been shown to be more prevalent 

in older children and adults in part due to environmental and occupational exposure to 

pathogens and vectors in livestock or forest. Although there are some similarities in the 

incidence of disease and prevalence of various etiologic agents of febrile illnesses, available 
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data show a wide variation of different fever causing pathogens due to factors like geographical 

area, setting (urban or rural), age, season (dry or wet) and immune status of the patients. For 

example, dengue is prevalent in studies conducted in Asia but relatively less common in Africa, 

while malaria is more common in studies undertaken in Africa than Asia (Table 2). Thus, more 

studies are needed on the causes of febrile illnesses in different geographical settings because 

if the local epidemiology is well understood, patients’ age and geographic settings can help 

direct the appropriate diagnostic approach and treatment.  
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Table 1: Transmission, clinical features and diagnosis of febrile illnesses in the tropics 
  

Disease/Pathogens* 
and Mode of 

Transmission 

Clinical Features Laboratory Diagnosis Management  

Parasites  
Malaria/Plasmodium spp 
 
Anopheles mosquito  
  

General: fever, chills, sweats, headaches, 
nausea and vomiting.  
Focal**: none   
Complications: cerebral malaria, severe anemia 
Differential diagnosis (DDx): typhoid fever, 
dengue, leptospirosis, influenza, meningitis, viral 
hemorrhagic fevers, gastroenteritis etc.     

Microscopy: identification of 
blood stage parasites (gold 
standard).   
RDT: detects parasite-specific 
protein (HRP) or enzymes (LDH, 
aldolase)  
Molecular (PCR, LAMP): detects 
parasite DNA  

Artemisinin combination 
therapy is used for 
uncomplicated malaria 
while IV quinine can be 
used for severe 
malaria.   

Amebiasis/Entamoeba 
histolytica 
 
Fecal-oral 

General: stomach pain and fever. 
Focal: bloody stool   
Complications: Rarely, E. histolytica invades the 
liver and forms an abscess and spread to other 
parts of the body.  
DDx: salmonellosis, shigellosis, EHEC, EIEC, 
viral hepatitis, campylobacter infection  

Microscopic examination of stool 
(gold standard).   
Antigen detection using ELISA  
Serology for extra intestinal 
diagnosis (can’t distinguish past 
from present infection)  

Tinidazole used for 
intestinal and 
extraintestinal 
amebiasis while 
metronidazole is the 
mainstay of therapy for 
invasive amebiasis. 
 

Toxoplasmosis/ 
Toxoplasma gondii  
 
Foodborne, animal-to-
human and vertical 

General: flu like symptoms in healthy people.  
In immune compromised individuals; fever, 
headache, nausea, and poor coordination.  
Focal: confusion, seizures, visual changes 
Complications: encephalitis   
DDx:  CMV, HSV, ocular syphilis, WNV, 
listeriosis, toxocariasis   

Serology: combination of IgM 
and IgG avidity.  
Direct observation of the 
parasite in stained tissue 
sections, CSF, or other biopsy 
material.  
PCR to detect the parasite's 
DNA in the amniotic fluid.  

Current drugs act 
against the tachyzoite. 
Pyrimetamine is the 
most effective and 
given in combination 
with sulfadzine or 
clindamycin.  

Bacteria 
Salmonellosis/Salmonella 
spp 
 
Fecal-oral 

General: constipation, fever, relative 
bradycardia, dry cough 
Focal: rose spots, splenomegaly, diarrhea 
Complications: sepsis, perforation of Peyer’s 

Blood culture (early during 
infection), stool culture (later 
during infection), bone marrow 
culture (most sensitive)  

Antibiotic treatment 
(Azithromycin and 
ceftriaxone).  
Fluid and electrolyte 
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Disease/Pathogens* 
and Mode of 

Transmission 

Clinical Features Laboratory Diagnosis Management  

patches  
DDx: Campylobacter infection, E. coli, listeriosis, 
shigellosis,   
 

Widal test (low specificity).  
PCR-based multiplex panel for 
enteric bacteria is available. 

replacement in severe 
cases.  

Leptospirosis/Leptospira 
interrogans 
 
Urine of infected animals 
(dogs, cats, horses, pigs, 
rodents) which can get 
into water or soil 

General: flu-like illness, myalgia, tachycardia 
Focal: transient petechial eruption, nonpurulent 
conjunctival discharge and conjunctivitis 
Complications: meningitis, renal failure, 
myocarditis, pulmonary hemorrhage, shock  
DDx:  dengue, VHF, chikungunya, malaria, 
rickettsial infection, enteric fever  

Microscopic agglutination 
testing. 
Dark-field microscopy of blood 
(not usually available).  
Culture of leptospires from 
bodily fluids (takes several 
weeks) 
Serology (ELISA) is usually 
positive after 5-6 days of illness.  
RDT (IgM/IgG) available  
DNA PCR of blood, urine, CSF, 
tissue 

• Antibiotic treatment 
(Doxycycline)  

• Antibiotic treatment 
not necessary for 
mild diseases.  

• Severe cases: I.V. 
penicillin G and 
supportive therapy 

Shigellosis/Shigella spp  
 
Fecal-oral 

General:  fever, and abdominal pain 
Focal: acute bloody diarrhea  
Complications: hemolytic uremic syndrome, 
bacteremia  
DDx: Amebiasis, salmonellosis, EHEC, 
Campylobacter infection, Clostridium difficile 
colitis 

Stool culture   
Serological grouping using 
different antisera.  
PCR-based multiplex panel for 
enteric bacteria is available.  

Antibiotic treatment  
Oral rehydration  

Viruses 
Dengue fever, dengue 
hemorrhagic fever 
/dengue virus  
 
Aedes mosquito 

General: fever, headache, eye pain, joint pain, 
muscle pain  
Focal: mild bleeding manifestation (e.g., nose or 
gum bleed, petechiae, or easy bruising), 
maculopapular rash, positive tourniquet test 
Complications: hemorrhagic fever and shock  
DDx: influenza, malaria, typhoid fever, 
leptospirosis, chikungunya, rubella, 
meningococcemia.  

Virus isolation, PCR and 
serology. DENV can be 
detected in the blood during the 
first 5 days of symptoms. 
Dengue NS1 antigen can be 
detected in serum as early as 
one day post onset of symptoms 
and up to 18 days. PRNT can 
be used for confirmation and 

No specific antiviral 
treatment available. 
Supportive therapy with 
analgesics, fluid 
replacement and bed 
rest may suffice. 
Aspirin, corticosteroids 
and NSAIDs should be 
avoided.   



   

	 37 

Disease/Pathogens* 
and Mode of 

Transmission 

Clinical Features Laboratory Diagnosis Management  

when specific serological 
diagnosis is required.  

WNV encephalitis/ West 
Nile virus 
 
Culex mosquito, blood 
transfusion, organ 
transplant and mother to 
child.   

General:  headache, body aches, joint pains, 
vomiting,  
Focal: rash (erythematous or maculopapular) 
Complications: encephalitis, meningitis 
DDx: bacterial and viral meningitis, leptospirosis, 
toxoplasmosis, herpes simplex 

Blood and CSF can be used for 
testing. Viral culture and test to 
detect RNA can be done on 
specimens collected early in the 
course of illness. WNV-specific 
IgM antibodies can be detected 
3 to 8 days after onset of illness 
and may persist for up to 90 
days. PRNT can be used to 
confirm acute infection.  

No specific antiviral 
treatment available. 
Supportive therapy is 
given.  

Chikungunya/ 
Chikungunya virus 
 
Aedes mosquito 

General:  fever and joint pain, headache, muscle 
pain, joint swelling 
Focal: multiple joint pain that may continue for 
weeks to months, rash 
Complications: incapacitation of the patient 
DDx: malaria, dengue, leptospirosis, GAS, 
rickettsial infection  

Molecular testing best within 7 
days of onset of signs and 
symptoms. Antibodies (IgM) 
detectable 4 days after onset of 
symptoms. PRNT used for 
confirmation.  

No specific antiviral.  
Severe arthralgia may 
be managed with 
NSAIDs (once dengue 
is excluded) and 
physiotherapy 

Flu, pneumonia/ 
Influenza viruses 
 
Droplets generated when 
infected people sneeze, 
cough, or talk. Touching 
contaminated objects 
and surfaces 

General: Fever, cough, sore throat, body aches, 
headaches, tiredness, pharyngitis, myalgia   
Focal: runny or stuffy nose plus cough  
Complications: pneumonia, bronchitis, sinus and 
ear infections.   
DDx: RSV, adenoviruses, enteroviruses, and 
paramyxoviruses. Early stages of flavivirus 
infections 

Specimens include NP, throat 
and nasal swabs and blood. 
Diagnostics include: RDT 
(antigen detection), molecular 
(nucleic acid detection), IFA, cell 
culture and serological testing of 
paired sera.  

Bed rest and supportive 
therapy.  
The following used for 
chemoprophylaxis and 
treatment: Oseltamivir, 
Amantadine, 
Rimantadine, Peramivir 
and Zanamivir 

Bronchiolitis/RSV 
 
Respiratory droplets.  
Infected people can be 
contagious for 3 to 8 
days 

General: flu like symptoms, wheezing   
Focal: none 
Complications: bronchiolitis and pneumonia in 
children <1 year 
DDx: neonatal sepsis, croup, asthma, 
bronchiolitis, other respiratory viruses  

Viral culture, antigen detection, 
PCR and serological testing. A 
multiplex respiratory panel 
diagnostic test is available.  

Supportive care is the 
mainstay of therapy.  
Ribavirin: for high risk 
patients (transplant 
recipients). 
Palivizumab: is given 
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Disease/Pathogens* 
and Mode of 

Transmission 

Clinical Features Laboratory Diagnosis Management  

as prophylaxis for 
children at risk for 
severe disease 

Adenovirus  
 
Aerosolized droplets, 
fecal-oral route and direct 
inoculation to the 
conjunctiva.  

General: flu-like symptoms,  
Focal: conjunctivitis, gastroenteritis, diarrhea.    
Complications: rarely cause serious illnesses or 
death 
DDx: influenza, URTIs, bacterial pneumonia and 
pharyngitis, community acquired pneumonia 

Specimens: NP, stool, 
conjunctival secretions and 
blood.  
Culture (specimen should be 
collected early in clinical course) 
Serology (A 4-fold rise in acute 
titers to convalescent titers) 
Antigen test (indirect IFA) 
PCR (high specificity) 

Presently, the use of 
antivirals remains a 
matter of debate.  
Supportive and 
symptomatic treatment 
is the mainstay.  
Fortunately, most 
infections are self-
limiting  

Ebola virus 
disease/Ebola virus  
 
Blood/bodily fluids, 
objects (needles), 
infected fruit bats or 
primates and possibly 
contact with semen from 
a man who has 
recovered from Ebola. 

General: fever, headache, muscle pain, 
weakness, fatigue, vomiting, stomach pain 
Focal: bleeding through mucosa and orifices, 
diarrhea  
Complications: multiple organ failure, shock  
DDx: malaria, typhoid and other viral 
hemorrhagic fevers (VHF)  

Within a few days after onset of 
symptoms: antigen-capture and 
IgM ELISA, PCR and virus 
isolation. 
Later in the course of disease or 
after recovery: IgM and IgG 
antibodies.  

No specific therapy 
currently available that 
has demonstrated 
efficacy. Supportive 
treatment with attention 
to intravascular volume, 
nutrition, electrolytes, 
replacement of 
coagulation factors is 
beneficial to the patient.  
 

Marburg hemorrhagic 
fever/Marburg virus 
 
Transmission is similar to 
Ebola virus. Reservoir is 
the Egyptian fruit bat, 
Rousettus aegyptiacus. 

General: fever, chills, headache, myalgia, 
nausea, vomiting, chest pain, sore throat, 
abdominal pain.    
Focal: hemorrhage, maculopapular rash (most 
prominent on the trunk) 
Complications: multiple organ failure, shock 
DDx: malaria, typhoid, other VHF.  
 

Similar to Ebola virus  Similar to Ebola virus  

 
Lassa hemorrhagic 

 
General:  fever, malaise, body weakness, 

 
Virus can be cultured in 7-10 

 
Supportive care 
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Disease/Pathogens* 
and Mode of 

Transmission 

Clinical Features Laboratory Diagnosis Management  

fever/Lassa virus  
 
Contact with urine and 
droppings of infected 
Mastomys rodents  

vomiting, headache, pain in the chest and back, 
and abdomen 
Focal: facial swelling, hemorrhage  
Complications: deafness, shock  
DDx: malaria, typhoid, leptospirosis, Rift valley 
fever, Q fever, influenza, other VHF 

days following symptoms. RT-
PCR can be used during early 
stage of the disease. ELISA can 
be used to detect IgM/IgG and 
antigens.  

including fluid and 
electrolytic balance, 
blood pressure 
monitoring can be 
lifesaving. Ribavirin is 
used in Lassa fever  

*Only pathogens covered in this dissertation are included 
**Signs and symptoms which may sometimes help in differential diagnosis 
LAMP: loop-mediated isothermal amplification, PRNT: plaque reduction neutralization test, NP: nasopharyngeal swab, IFA: immune-
fluorescence assay, HAI: hemagglutination inhibition, NSAIDS: nonsteroidal anti-inflammatory drugs, DDx: differential diagnosis, 
VHF: viral hemorrhagic fever 
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Table 2: Summary of most common diagnosis of febrile illnesses in the tropics 
 

Most common diagnosis  Study design Setting Remarks Year of 
study 

(reference) 
Africa 

• 62% ARI (5% chest X-ray-confirmed 
pneumonia) 

• 11.9% nasopharyngeal viral infection 
• 10.5% malaria 
• 10.3% gastroenteritis 
• 5.9% UTI 
• 3.7% typhoid fever 
• 1.5% skin/mucosal infections 
• 0.2% meningitis 

N = 1,005 (< 10 
years with fever) 
Computer algorithm 
generated diagnosis 
using history, 
physical, 
and wide array of 
lab investigations 

Tanzania: one 
urban and one 
rural outpatient 
clinic 

• 3.2% 
undiagnosed 
cases. 

• Multiple 
diagnoses in 
22.6% of the 
study participants 

 

 2014 (2) 

• 10% chikungunya virus 
• 7.7% leptospirosis 
• 7.4% spotted fever rickettsial disease 
• 3.4% bacteremia 
• 2.6% Q fever 
• 2% brucellosis 
• 1.3% malaria 
• 0.9% fungemia 
 

N = 467 (ages 2 
months to 13 years). 
Diagnoses by case 
definitions and 
convalescent serum 
at 4 to 6 weeks post 
discharge 

Tanzania: 
In-patients 

• 64% 
undiagnosed 
cases.  

• Limited viral 
testing.  

• High prevalence 
of zoonoses; 
consider different 
empiric antibiotic 
regimens 

2013 (3) 

• 62% malaria 
• 7% clinical pneumonia 
Serologically diagnosed: 

• 5.8% typhoid 
• 5.1% typhus 
• 2.6% brucellosis 

 

N = 653 (ages 3–17 
years) with acute 
fever or fever within 
the past three days   

Ethiopia: Four 
outpatient 
clinics in Gojjam 
zone  

Limited viral testing 
 

2009(4) 



   

	 41 

Most common diagnosis  Study design Setting Remarks Year of 
study 

(reference) 
• 65% ARIs: (54% viral, 12% bacterial, 

18% unknown) 
• 26% watery diarrhea 
• 5% skin infections 
• 2% bloody diarrhea 
• 0.2% malaria 

N = 677 cases, 200 
controls (ages 2–59 
months) 
Diagnoses by IMCI 
classifications 
plus laboratory 
investigations 

Zanzibar, 
Tanzania 

Of the viral ARIs 
most common 
PCR results: 
16% RSV 
9% influenza (A/B) 
9% rhinovirus 

2013 (1) 

• 93% ARIs as follows: 47%URI, 29% 
common cold, 12% pharyngitis, 4% 
pneumonia and 1% otitis media.  

• 10% diarrhea 
• 8% skin infections 
• 2% urinary tract infections  

N = 1,602 (<10 years 
with fever in last 24 
hours).  Clinical 
diagnoses for RDT or 
Microscopy negative 
for malaria per local 
clinical guidelines 

Uganda, study 
clinic within a 
referral third level 
hospital 

15% unknown 
diagnosis.   
Limited testing for 
bacterial illnesses 
such as typhoid 
 

2007 (5) 

     
Southeast Asia 

• 16.2% dengue virus 
• 7.8% scrub typhus  
6.3% culture-proven bloodstream infection, 
including  

o 1.8% Salmonella typhi 
o 1.1% Streptococcus pneumoniae  
o 0.7% Escherichia coli   
o 0.6% Haemophilus influenzae  
o 0.5% Staphylococcus aureus 
o 0.5% Burkholderia pseudomallei  

• 5.8% Japanese encephalitis virus 
 

N = 1180 (<16 years 
with fever).  
Demographic, 
clinical, laboratory 
and outcome data 
were 
comprehensively 
analyzed.  

Cambodia, study at a 
Children’s hospital in 
Siem Reap province.  
 

Identified a 
microbiological cause 
of fever in almost 
50% of episodes.  
18.8% had two 
pathogens, 3.7% had 
three pathogens, and 
0.3% had four 
pathogens causing 
fever 

2013 (6) 
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Most common diagnosis  Study design Setting Remarks Year of 
study 

(reference) 
Top five diagnoses when only one etiological 
agent per patient were:  
• 8% dengue   
• 7% scrub typhus 
• 6% Japanese encephalitis virus 
• 6% leptospirosis and 2% bacteremia  
Six months influenza testing with 32% 
positive.  

N = 1,938 (ages 5 
months to 49 
years) with fever 

Laos, two 
provincial 
hospitals 

Multiple diagnosis: 
5% had >1 pathogen, 
5% had two 
pathogens and <1% 
had 3 pathogens.  
59% of participants 
without a diagnosis.  

2013 (7) 

• 47% ARI 
• 23% diarrhea or dysentery  
• 17% enteric fever 
• 2% bacteremia  
• 0.5% UTI 
• 0.4% malaria 

N = 1,248 febrile 
episodes (all ages) 
Case definition and 
laboratory 
investigations 

Pakistan, small 
peripheral clinic 

High proportion 
of enteric disease 

2013 (1) 

*Only studies that included at least one or more respiratory, enteric and systemic pathogens are included 
ARI: acute respiratory infection, UTI: urinary tract infection, URI: upper respiratory infection, IMCI: integrated management of 
childhood illnesses 
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Long-term goal, objective and hypothesis  

Our long-term goal is to develop rapid, sensitive and specific tools for diagnosis of tropical 

febrile illnesses. The primary objective of this research is to profile the infectious etiologies of 

febrile illnesses in Cameroon. Our central hypothesis is that approximately 50% of febrile 

illnesses attributed to and treated as malaria in Cameroon are caused by pathogens other than 

the malaria parasite. The rationale is that to treat non-malaria febrile illnesses appropriately, 

pathogens that cause fever must be identified. Moreover, some patients may be co-infected with 

malaria and other pathogens that cause fever. We expect to profile bacteria, parasites, and 

viruses that cause febrile illnesses, which will form the basis for the development of new clinical 

management strategies and better diagnostics, as well as vaccines and other preventive 

modalities. These fundamental data will have a significant impact on public health and medicine 

and will assist policy makers to allocate resources to support surveillance systems to monitor 

the prevalence and trends of febrile diseases.  

 

Specific Aims  

Specific Aims 1. To evaluate the accuracy of clinical diagnosis, thick-film microscopy 

(TFM), rapid diagnostic test (RDT) and polymerase chain reaction (PCR), in the diagnosis 

of malaria 

Hypothesis: Clinical diagnosis of malaria is the least accurate method for diagnosing malaria. 

Rationale: Prompt and accurate diagnosis of malaria is not only an essential component of 

malaria treatment, control and elimination but also valuable in the identification of malaria-

negative patients, for which further investigations need to be sought and appropriate treatment 

administered. The performance of malaria test methods may vary from one region to another 

and likely to be influenced by the level of malaria endemicity and competency of the technicians. 

Therefore, active monitoring of the performance of various diagnostic methods for malaria at the 

country level is important to guide policy on the diagnostic methods to pursue for malaria 

diagnosis and elimination.  

Approach: This aim will focus on conducting a comprehensive evaluation of the three commonly 

used diagnostic test methods for malaria (clinical diagnosis, TFM, and RDT), concurrently with 

PCR, in samples collected from febrile Cameroonian patients with suspected malaria. 

Laboratory test results will be compared to the patient health records and clinical diagnosis.   
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Specific Aim 2. To assess the prevalence of infectious causes of febrile illnesses in 

Cameroon  

Hypothesis: Approximately 50% of febrile illnesses on the African continent are due to viral 

infections, and the remainders are due to bacteria and parasites.  

Rationale: There is a paucity of data on the causes of febrile illnesses in Cameroon, therefore 

this aim will focus on screening patient-derived biological samples for the presence of 

pathogens.    

Approach: We will test sera from febrile patients for antibodies against Toxoplasma gondii, 

Salmonella typhi, Shigella sp., Entamoeba histolytica, Leptospira interrogans, West Nile virus 

(WNV), chikungunya virus (CHIKV), influenza A/B viruses, respiratory syncytial virus (RSV), 

adenovirus, parainfluenza virus types 1, 2, 3 and 4, using Luminex® assay, ELISA, RDT and 

PRNT. Procalcitonin levels will be measured using ELISA in plasma samples of patients who 

meet sepsis criteria.  

 

Specific Aim 3. To determine the prevalence of viral hemorrhagic fevers (VHF) among 

febrile Cameroonian patients 

Hypothesis: Cameroonians are infected with viruses causing hemorrhagic fevers, such as 

dengue, Ebola, Marburg and Lassa viruses. 

Rationale: The scarcity of reliable data on the epidemiology of VHF in Cameroon and most 

African countries is in part due to lack of diagnostic tools and active surveillance. The highly 

infectious and diverse etiologies of VHF underscore the need to develop diagnostic tools that 

are sensitive and can be multiplexed to concurrently diagnose multiple VHF causing viruses.  

Approach: We will test serum samples from febrile patients for antibodies against Ebola, 

Marburg, and Lassa viruses, using newly developed Luminex®-based assays.   

 

Significance 

Evaluating the performance of various malaria diagnostic methods 

As malaria-endemic countries move toward malaria elimination, there is a need for rapid and 

accurate diagnosis of malaria since the performance of available malaria test methods varies 

from one region to another and is influenced by the level of malaria endemicity and competency 

of the technicians. In the proposed study, we will compare the accuracy of clinical diagnosis, 

rapid diagnostic test (RDT), thick-film microscopy (TFM) and PCR in the diagnosis of malaria in 

Cameroon. Active monitoring of the performance of various malaria diagnostic methods at the 

country level is necessary to guide policy for malaria diagnosis. Moreover, accurate diagnosis of 
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malaria is not only significant for malaria treatment and elimination but also to identify other 

pathogens affecting malaria-negative febrile patients to provide effective and efficient clinical 

management of patients.  

 

Profiling etiologies of  febrile illnesses 

Health care workers (HCWs) in malaria-endemic countries are always faced with the daunting 

challenge of the proper course of action to take when a patient with fever tests negative for 

malaria. To treat non-malaria fevers appropriately, pathogens that cause febrile illnesses must 

be identified. Febrile illnesses are caused by diverse pathogens with signs and symptoms that 

overlap, making a differential diagnosis based on clinical criteria alone challenging (Table 1). 

The prevalence of these pathogens may vary depending on the geographical region, age and 

season. Although a specific pathogen may not be identified, knowing the category (virus, 

parasite, fungi and bacteria) would be useful in deciding treatment options. Moreover, recent 

outbreaks of febrile illnesses, including EVD, have taught us that routine surveillance of some 

febrile illnesses, including viral hemorrhagic fevers, is critical. Therefore, the significance of this 

study is its focus on identifying infectious etiologies of febrile illnesses in Cameroon. 

 

This study will thus fill gaps in knowledge and will provide information that can be used by 

HCWs to improve diagnosis and management of febrile illnesses, thereby improving disease 

outcomes. Moreover, data from this study can contribute to the development of algorithms in the 

management of febrile illnesses in the tropics and the development of diagnostic tools.   

 

Developing accurate diagnostics for febrile illnesses 

Correct diagnosis of febrile illnesses is only possible with the use of laboratory tests. In the 

absence of accurate and available diagnostic tests, the health and economic burden of these 

diseases will continue to rise. Deaths from some febrile illnesses can easily be prevented if 

accurate diagnostic tools are made available. With the myriad of pathogens that can cause 

febrile illnesses in the tropics, it is challenging to use a battery of single tests to systematically 

test for every pathogen. Therefore, this proposal will also focus on developing a multiplex 

immunoassay that will be utilized for the surveillance of hemorrhagic fever viruses, which, in the 

future, will include other pathogens, such as hantavirus, Zika virus and CHIKV. Thus, the 

availability of a multiplex diagnostic platform for diagnosis of tropical fevers will significantly 

enable rapid and accurate differential diagnosis of febrile illnesses, thereby improving patient 
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care and breaking the pathogen transmission cycle leading to the early identification, isolation, 

and treatment of affected patients.  

 

Innovation  
The proposed research is innovative as it represents the first study to profile pathogens that 

cause febrile illnesses in Cameroon, including hemorrhagic fever viruses. An innovative 

multiplex microsphere immunoassay, using Luminex® technology, which incorporates 

recombinant antigens for simultaneous detection of Ebola, Marburg, Lassa and dengue viruses 

is the first of its kind to be developed and used for surveillance in Cameroon. Data obtained 

from this study can be used to develop algorithms for the management of febrile illnesses. 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



   

	 47 

References 

1. World Health Organization. WHO Informal Consultation on Fever Management in 

Peripheral Health Care Settings: A Global Review of Evidence and Practice. Geneva. 

WHO Library Cataloguing-in-Publication Data. 2013. 

2. D'Acremont V, Kilowoko M, Kyungu E, Philipina S, Sangu W, Kahama-Maro J, et al. 

Beyond malaria--causes of fever in outpatient Tanzanian children. New England Journal of 

Medicine. 2014;370(9):809-17. 

3. Crump JA, Morrissey AB, Nicholson WL, Massung RF, Stoddard RA, Galloway RL, et al. 

Etiology of severe non-malaria febrile illness in Northern Tanzania: a prospective cohort 

study. PLoS Neglected Tropical Diseases. 2013;7(7):e2324. 

4. Animut A, Mekonnen Y Fau - Shimelis D, Shimelis D Fau - Ephraim E, Ephraim E. Febrile 

illnesses of different etiology among outpatients in four health centers in Northwestern 

Ethiopia. Japanese Journal of Infectious Disease. 2009;62(2):107-10. 

5. Njama-Meya D, Clark TD, Nzarubara B, Staedke S, Kamya MR, Dorsey G. Treatment of 

malaria restricted to laboratory-confirmed cases: a prospective cohort study in Ugandan 

children. Malaria Journal. 2007;6(1):7. 

6. Cheng K, Carter MJ, Emary K, Chanpheaktra N, Moore CE, Stoesser N, et al. A 

prospective study of the causes of febrile illness requiring hospitalization in children in 

Cambodia. PloS One. 2013;8(4):e60634. 

7. Mayxay M, Castonguay-Vanier J, Chansamouth V, Dubot-Pérès A, Paris DH, 

Phetsouvanh R, et al. Causes of non-malarial fever in Laos: a prospective study. Lancet 

Global Health. 2013;1(1):e46-e54. 

 

 

 

 

 

 

 

 

 

 

 

 



   

	 48 

 

 

 

 

 

 

 

 

 

 

 

Chapter 3 
 

Flipping the Switch to Accurately Diagnose Malaria:  

A Comparison of Clinical Diagnosis, Thick-Film Microscopy, Rapid 

Diagnostic Test, and PCR in the Diagnosis of Malaria in Cameroon 
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Abstract 

Accurate diagnosis of malaria is important for effective disease management and control. In 

Cameroon, presumptive clinical diagnosis, rapid diagnostic test (RDT) and thick-film microscopy 

(TFM) are commonly used in malaria diagnosis. However, these methods lack sensitivity to 

detect low parasitemia. PCR, on the other hand, enhances the detection of sub-microscopic 

parasitemia making it a much-needed tool for malaria diagnosis and elimination. In this study, 

we compared the accuracy of clinical diagnosis, RDT, and TFM against PCR in the diagnosis of 

malaria. Blood samples, collected from 551 febrile patients from Cameroon between February 

2014 and February 2015, were tested for malaria by RDT, TFM, and PCR. The hospital records 

of participants were reviewed at the end of their hospital visit for clinical diagnosis of malaria. 

TFM-, RDT- and PCR-based prevalence of malaria was 31%, 45%, and 54%, respectively. 

However, 92% of participants were presumed to have malaria based on fever, of which 38% 

were negative by PCR. PCR detected 23% and 12% more malaria infections than TFM and 

RDT, respectively. The sensitivity of TFM, RDT, and clinical diagnosis was 57%, 78% and 

100%, respectively; the specificity was 99%, 94%, and 17%, respectively; the positive predictive 

value was 99%, 94%, and 59%, respectively; the negative predictive value was 66%, 78%, and 

100%, respectively. Thus, 38% of the participants clinically diagnosed as having malaria, had 

fever caused by other pathogens. A total of 128 individuals with sub-microscopic infections were 

identified by PCR in the study population. The data suggest that PCR may be the best tool for 

the accurate diagnosis and control of malaria since the presence of sub-microscopic malaria 

infections may be a potential hindrance towards malaria elimination. The development of a rapid 

and sensitive PCR-based test to diagnose malaria could flip the switch to accurate diagnosis, 

control and elimination of malaria in Cameroon and around the globe. 
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Introduction 

Malaria remains a major public health threat, particularly in sub-Saharan Africa, where about 

191 million new infections and 395,000 deaths were reported in 2015 (1). The World Health 

Organization (WHO) now recommends a confirmatory diagnosis of malaria before initiation of 

treatment, partly influenced by the fear of the development of drug resistance and to enable the 

identification of malaria-negative patients, for which further investigations need to be sought and 

appropriate treatment provided (2). Accurate diagnosis of malaria is thus vital for effective 

management and control of malaria while avoiding the wrong use of antimalarial drugs. In most 

malaria-endemic countries, malaria diagnosis depends mainly on clinical evidence, and in some 

cases, thick film microscopy (TFM) and rapid diagnostic test (RDT) kits may be used for 

laboratory confirmation. 

          The traditional practice by health care workers (HCW) in malaria-endemic countries has 

been to diagnose malaria based on a history of fever (3-6). Clinical diagnosis even though 

imprecise remains the mainstay for therapeutic care for the majority of febrile patients in 

malaria-endemic countries. The specificity of clinical diagnosis of malaria is reduced by the 

overlap of malaria symptoms with other tropical diseases, such as typhoid fever, respiratory 

tract infections, bacterial disease and viral infections. The accuracy of clinical diagnosis may 

vary with the level of endemicity, malaria transmission season and age group. A high-quality 

microscopy service for malaria diagnosis is not widely available, especially in rural areas where 

diagnostic and treatment services are required. Moreover, malaria microscopy is complex, 

which includes different species and blood stages of the Plasmodium parasite, and requires a 

competent microscopist who often is overworked. Also, the presence of sub-microscopic 

parasitemia greatly reduces the sensitivity of malaria diagnosis by TFM. Unlike TFM, RDT 

detects malaria antigens, not malaria parasites, which gives it an added advantage in its ability 

to diagnose malaria in patients with low-grade parasitemia below the detection limit of TFM. 

However, the specificity of the commonly used RDT that detects histidine rich protein (HRP) of 

P. falciparum, is limited when the parasite is cleared and antigens remain in circulation for about 

28 days (false positive) (2).  

           As malaria-endemic countries move towards malaria elimination, there is a need for rapid 

and accurate diagnostic tools for malaria, which are capable of detecting low-grade parasitemia. 

In this study, we compared the performance of clinical diagnosis, RDT, TFM and PCR in the 

diagnosis of malaria in Cameroon. Active monitoring of the performance of various diagnostic 

methods for malaria at the country level is necessary to guide policy on the diagnostic methods 

to use for malaria diagnosis and elimination. 
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Methods 

Study area 

This study was conducted in three regions of Cameroon, Far North, Center and North West with 

varied climatic conditions and altitudes (Table1). In the Far North Region, we conducted the 

study in Maroua in October 2014. In the Center Region, the study was conducted in Nkolbisson 

(a neighborhood in Yaoundé) from February 2014 to April 2014. In the North West Region, the 

study was carried out in Bamenda in February 2015. 

 

Study design 

A cross-sectional study was conducted in selected health care facilities in Maroua, Nkolbisson, 

and Bamenda (Figure 1). Inclusion criteria were age >6 months and axillary temperature 

>37.5oC at the time of recruitment or fever within 24 hours preceding recruitment. A written 

informed consent was obtained from all study participants >18 years of age. Parents or legal 

guardians of children <18 years gave a written informed consent on behalf of their children.  

 

Ethical considerations 

Ethical approvals were obtained from the Committee on Human Subjects of the University of 

Hawaii (protocol number CHS 21724) and the National Research Ethics Committee of the 

Ministry of Public Health Cameroon (protocol number 2014/04/442/CE/CNERSH/SP). 

Administrative approvals were obtained from the Minister of Public Health Cameroon and the 

Directors of the various Health Institutions. 

 

Study procedure  

We provided an easy-to-read questionnaire for the collection of demographic and clinical data. 

After obtaining informed consent from all patients, the research or clinic staff took axillary 

temperature readings and conducted a physical examination with a clinical note of the reported 

signs and symptoms. Venous blood, 2–5 mL, was collected from each participant, dispensed 

into EDTA tube and stored in cold boxes until transported to the research laboratory where they 

were stored at 4–8oC. RDT and TFM for malaria were conducted for all participants, and both 

results were presented to the consulting HCW. At the end of their hospital visit, an exit survey 

was conducted for previously consented patients to verify if the consulting HCW adhered to the 

malaria test results or prescribed antimalarial drugs to malaria-negative patients. When exit 

survey was not possible, we consulted the hospital records for such information. 
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Laboratory investigations 

Malaria RDT: Approximately five µL of blood was used to conduct malaria RDT using the Ag 

Pf/Pan kit (Standard Diagnostic Inc., South Korea), following the manufacturer’s instructions. 

This RDT is a qualitative immunochromatographic test that detects P. falciparum HRP-II and 

Plasmodium lactate dehydrogenase (pLDH), which is a glycolytic enzyme common to P. 

falciparum, P. ovale, P. vivax and P. malariae.   

 

Malaria TFM: Thick blood films were prepared and stained using 10% Giemsa for 15 minutes. A 

slide was considered positive if at least one asexual blood stage of malaria parasite was 

visualized. Parasitemia was determined by counting the number of parasites against 200 white 

blood cells and assuming that each subject had 8,000 WBCs/µL of blood. Two readings were 

conducted for each slide and discrepancies were resolved by the third reading by an 

independent technician. 

 

Malaria PCR: DNA was extracted from 200 µL of whole blood by spin-column technique 

(Macherey-Nagel, Germany) following the manufacturer’s instructions. Detection of malaria 

parasite DNA was based on nested PCR amplification of the 18s rRNA gene in a reaction that 

used 2 µL of the extracted DNA, 10 µL of GoTaq polymerase and master mixes (Promega, 

USA), 0.25 µM each of upstream and downstream primers, and 6 µL of buffer, in a total reaction 

volume of 20 µL. The first PCR encompassed genus-specific primers and the second nested 

PCR run encompassed the species-specific primers for P. falciparum, P. malariae and P. 

ovalae, as previously described (7). The amplicon size of the products was estimated after 

electrophoresis on a 2% agarose gel stained with ethidium bromide and visualized on a UV 

transilluminator.  

 

Statistical analysis  

Data were entered into Microsoft Office Excel and analyzed using StatPlus 5.9.80 (AnalystSoft 

Inc., Walnut, CA) and Prism 6.0 (Graphpad Software, San Diego, CA) for descriptive statistics. 

Diagnostic test performance for clinical diagnosis, RDT, and TFM for the diagnosis of malaria, 

was analyzed using MedCalc 16.8 (Ostend, Belgium). Descriptive statistics are represented as 

frequencies and medians. Sensitivity, specificity, positive and negative predictive values, 

accuracy and percentage of agreement (kappa value) were calculated with confidence intervals 

by age groups. Multivariable logistic regression was conducted to identify correct diagnosis 

comparing other test methods (RDT and TFM) to PCR as the gold standard. We also conducted 
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linear mixed models treating multiple test methods performed on the same patients to identify 

the difference in proportions by test methods and age groups. PCR test was used as a 

reference standard for all the analyses. P <0.05 was considered statistically significant. These 

analyses were conducted using SAS 9.4 (SAS Institute, Cary, NC). 
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Results 

General characteristics of the study population and study sites environmental factors  

Of the 551 febrile patients, recruited from selected health care facilities in Cameroon (Figure 1) 

between February 2014 and March 2015, 57% were from Nkolbisson, 23% from Maroua and 

20% from Bamenda. The overall distribution of males was 48%, and females were 52% in the 

study population. The majority of the study participants were in the age-group of 0-5 years, 81 

(65%) in Maroua, and 180 (57%) in Nkolbisson. However, 69 (61%) of the study participants in 

Bamenda were greater than 17 years of age (Table 1). 
 

 
Figure 1: Flow chart of recruited patients, malaria test methods and antimalarial treatment by 
health care workers 
RDT, rapid diagnostic test; TFM, thick film microscopy; PCR, polymerase chain reaction; MP+, 
malaria positive; MP-, malaria negative; AMT, antimalarial treatment  
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Table 1: General characteristics of study population, study sites and environmental factors 

 

High malaria prevalence in Maroua and Nkolbisson  

The overall prevalence of malaria by TFM, RDT, and PCR in the general population was 31%, 

45%, and 54%, respectively. However, 92% (507/551) of the participants were diagnosed 

clinically for malaria, of which 38% (209/551) were negative for malaria by PCR (Table 2). The 

prevalence of malaria by PCR in Maroua, Nkolbisson, and Bamenda was 57%, 70% and 5%, 

respectively. 

Table 2: Malaria prevalence stratified by test method and study site 

TFM, thick film microscopy; RDT, rapid diagnostic test; PCR, polymerase chain reaction, MP+, 
malaria positive; P; prevalence 
 

 
Characteristics 

Study sites  
Total n (%) Maroua n (%) Nkolbisson n (%) Bamenda n (%) 

Gender     
Male 
Female 
Total  

64 (52) 
60 (48) 

124 

168 (53) 
147 (47) 

315 

33 (29) 
79 (71) 

112 

265 (48) 
286 (52) 

551 
Age group (years)      
0-5 
6-10  
11-16  
>17 

81 (65) 
15 (12) 

9 (7) 
19 (15) 

180 (57) 
86 (27) 
49 (16) 

0 (0) 

34 (30) 
5 (4) 
4 (4) 

69 (61) 

295 (54) 
106 (19) 
62 (11) 
88 (16) 

Environmental factors (8) Maroua Nkolbisson  Bamenda  
Climate  Sahelian  Tropical savanna  Tropical   
Average annual temperature  28.3 oC 23.7oC 21.5 oC   
Average annual rainfall 794 mm 1,643 mm 2,145 mm  
Elevation  384 m 750 m 1,614 m  
Weather condition at time of 
specimen collection   

End of rainy 
season 

Rainy season Dry season  

 Study sites  
 

Test Method 
Maroua (n=123) Nkolbisson(n=351) Bamenda(n=112) Total (n=551) 
MP+ P (%) MP+ 

 
P (%) MP+ 

 
P (%) MP+ 

 
P (%) 

TFM 32 
 

26 135 
 

43 5 
 

4 172 
 

31 

RDT 67 
 

54 175 
 

55 7 
 

6 249 
 

45 

PCR 71 
 

57 221 
 

70 6 
 

5 298 
 

54 

Clinical diagnosis 120 97 301 96 86 77 507 92 
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Differences in the proportion of diagnosed malaria cases by test method and age group 

In participants younger than 17 years of age, malaria prevalence was higher by PCR, TFM, 

RDT and clinical diagnosis, as compared to those older than 17 years of age. There was 

variation in the age-specific prevalence of malaria by all test methods (Figure 2). Specifically, 

the difference between the age-specific prevalence of malaria by PCR and RDT was 8%, 3%, 

2% and 1% for the age group 0-5, 6-10, 11-16 and >17 years, respectively. Meanwhile, the 

difference between the age-specific prevalence of malaria by PCR and TFM was 18%, 27%, 

24% and 13% for the age group 0-5, 6-10, 11-16 and >17 years, respectively. Clinical diagnosis 

of malaria was common irrespective of the age-group. Across different age groups, the age-

specific prevalence of malaria by RDT was closer to that of PCR (Figure 2).  

 

 
Figure 2: Age-specific prevalence of malaria by test method  
 

Age-group, gender and study site did not influence the ability to correctly diagnose malaria 

To determine if there was a difference in correctly diagnosing malaria across different age-

groups, gender and study sites, a multivariable logistic regression was conducted to identify 

correctly diagnosed malaria cases by comparing the various test methods, RDT vs. PCR and 

TFM vs. PCR. There was no significant difference in accurately diagnosing malaria by RDT 

between those aged >5 years and <5 years (p = 0.12), males and females (p = 0.41) and, 

between study sites with high malaria transmission intensity (p = 0.84) (Table 3). Similarly, there 

was no significant difference in correctly diagnosing malaria by TFM in the age group >5 years 

vs. <5 years (p = 0.36), males and females (p = 0.11) and, between study sites with high 

malaria transmission intensity (p = 0.15). Those living in Bamenda were 11 and 68 times more 
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likely to be correctly diagnosed having Malaria by RDT and TFM, respectively, compared to 

those residing in Maroua after adjusting for age-group and gender.  
 

Table 3. Multivariate logistic regression analysis of correctly diagnosing malaria by RDT and 
TFM in different age-groups, gender and study sites  
Test method  Variable Odds ratio (95% CI) p-value 
RDT Age-group (6-16 vs. 0-5 years) 1.52 (0.89-2.67) 0.12 
 Gender (Female vs Male) 0.81(0.49-1.34) 0.41 
 Region (Maroua** vs Nkolbisson**) 

            (Maroua vs Bamenda*) 
0.94 (0.53-1.68) 

10.61 (2.96-38.04) 
0.84 

0.0003 
TFM Age-group (6-16 vs 0-5 years) 0.81 (0.52-1.26) 0.36 
 Gender (Female vs Male) 1.41 (0.92-2.16) 0.11 
 Region (Maroua vs. Nkolbisson) 

            (Maroua vs Bamenda) 
0.70 (0.43-1.14) 

67.63 (8.87- 515.5) 
0.1 

<0.0001 
** High malaria transmission intensity study site  
* Low malaria transmission intensity study site 
 
Substantial number of sub-microscopic infections detected by PCR and RDT 

Sub-microscopic P. falciparum infection was defined as, i) positive by PCR but negative by 

microscopy, ii) positive by PCR but negative by RDT, and iii) positive by RDT but negative by 

microscopy. A total of 128 (23%) febrile patients were positive for P. falciparum by PCR but 

negative by TFM (Table 4). Meanwhile, 65 (12%) febrile patients were positive for P. falciparum 

by PCR and negative by RDT. RDT detected 84 (15%) malaria infections that were missed by 

microscopy. In general, sub-microscopic P. falciparum infections were more common in the 

younger age-group.   

 

Table 4: Prevalence of sub-microscopic P. falciparum infection by age-group 
 
 
 
 
 
 
 
 
 
 
 

PCR (+), TFM (-) = PCR positive but TFM negative 
PCR (+), RDT (-) = PCR positive but RDT negative  
RDT (+), TFM (-) = RDT positive but TFM negative 
 

 

 
Age-group (years) 

Test characteristic 
PCR (+), TFM (-) 

n (%) 
PCR (+), RDT (-)  

n (%) 
RDT (+), TFM (-)  

n (%) 
0-5 (n=259) 72 (24) 45 (15) 37 (13) 

6-10 (n=106) 34 (32) 12 (11) 27 (25) 

11-16 (n=62) 16 (26) 5 (8) 13 (21) 
> 17 (n=88) 6 (7) 3(3)  7 (8) 

Total (n=551) 128 (23) 65 (12) 84 (15) 
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Comparison of diagnostic accuracy of clinical diagnosis, RDT, and TFM  

According to the reference method, PCR, 298 participants were positive for malaria while 253 

participants were negative for malaria (Table 5). RDT correctly identified 234 (79%) infections 

(true positive), microscopy correctly identified 170 (57%) infections whereas clinical diagnosis 

identified all 298 (100%) infections. However, there were 209 (83%) false positive clinical 

diagnosis, 15 (6%) by RDT and 2 (0.8%) by TFM. The sensitivity of TFM, RDT, and clinical 

diagnosis was 57%, 78%, and 100%, respectively, the specificity was 99%, 94%, and 17%, 

respectively, positive predictive value was 99%, 94%, and 59%, respectively, and negative 

predictive value was 66%, 78%, and 100%, respectively. The clinical diagnosis had a "poor" 

agreement (kappa 0.18), malaria RDT had a "good" agreement (kappa 0.71), and malaria 

microscopy had a "moderate" agreement (kappa 0.54) when compared to the reference 

method, malaria PCR. In general, the accuracy of clinical diagnosis was 62%, RDT 85%, and 

TFM 76%. However, the error rate of clinical diagnosis was 34%, RDT was 14%, and TFM was 

23% (Table 5). 

 
Table 5: Diagnostic test performance of clinical diagnosis, RDT, and TFM in the diagnosis of 
malaria with PCR as reference method 
Test characteristic  Clinical diagnosis RDT TFM 

TP (PCR=298) 298 234 170 
FP (PCR negative) 209 15 2 
TN (PCR=253) 44 237 251 
FN (PCR positive) 0 65 128 
Sensitivity [95%CI] 100% [99-100] 78% [73-82] 57% [51 to 63] 
Specificity [95%CI] 17% [13-23] 94% [90-97] 99% [97 to 99] 
PPV [95%CI] 59% [54-63] 94% [90-96] 99% [96 to 99] 
NPP [95%CI] 100% [92-100] 78% [73-83] 66% [61 to 71] 
Accuracy [95%CI]   62% [58-66] 85% [82-88] 76% [73 to 80] 
Kappa value [95%CI] 0.18 [0.14-0.24] 0.71 [0.65-0.77] 0.54 [0.48-0.60] 
Misclassification rate 34% 14% 23% 
TP, True positive; FP, False positive; TN, True negative; FN, False negative; PPV, Positive 
predictive value; NPV, Negative predictive value  
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Discussion 

Accurate and prompt diagnosis of malaria is the only way to effectively treat, manage and 

eventually eliminate the disease. In this study, we investigated the diagnostic accuracy of 

clinical diagnosis, TFM, and RDT in the diagnosis of malaria using PCR as the reference 

standard. We demonstrate a high prevalence of clinical diagnosis of malaria among febrile 

patients in all the study sites, which led to the indiscriminate use of antimalarial drugs. RDT for 

malaria performed best as compared to TFM and clinical diagnosis. However, PCR detected 

several malaria infections that were missed by TFM and RDT.  

 

Heterogeneous distribution of malaria   

This study has reported an overall malaria prevalence of 54% by PCR. The prevalence of 

malaria by PCR was 1.2 and 1.7-fold higher than that determined by RDT and TFM, 

respectively. In a previous study in Ethiopia, the PCR-based prevalence of malaria was 3.3- and 

5.6-fold greater than that determined by RDT and TFM, respectively (9). PCR, a very sensitive 

method, can detect parasite burden as low as 0.002 parasites/μL (10).    

 The prevalence of malaria was high in Nkolbisson and Maroua but low in Bamenda. 

Differences in climatic variables (temperature, relative humidity, rainfall), altitude, vector 

population, transmission dynamics and human behavior, have been shown to affect the 

prevalence of malaria in a given region (11-15). In Nkolbisson, the study was conducted during 

the rainy season, and in Maroua, it was at the end of the rainy season. Meanwhile, in Bamenda, 

the study was conducted during the dry season. Also, Maroua and Nkolbisson are at a low 

altitude, 384 m and 760 m, respectively, as compared to Bamenda, situated at 1,614 m. A 

previous study in Tanzania reported malaria prevalence proportions of 79-90%, 27-46% and 8-

16% in low, intermediate and high altitudes, respectively (16). The climatic variables described 

above could have accounted for the different distribution of malaria reported throughout 

Cameroon. Results of this study provide information on the prevalence of malaria in three 

climatically different regions of Cameroon, which is important to guide malaria control 

interventions. 

 

Sub-microscopic symptomatic malaria infections  

We demonstrate that TFM missed 23% of PCR-positive malaria infections. In a meta-analysis, 

microscopy missed about 50% of PCR-positive malaria infections (17). False-negative 

microscopy results are known to increase as parasite density decreases(18). Moreover, the 

detection threshold of Giemsa-stained TFM varies considerably between 50–500 parasites/µL of 
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blood. RDT missed 12% of the malaria infections that were positive by PCR. Several factors 

have been demonstrated to affect the sensitivity of RDTs that detect HRP-II including, an 

inherent limitation of the device, mutation or deletion of the gene encoding the HRP-II and 

environmental factors including temperature(18, 19). However, RDT detected 15% of malaria 

infections that were negative by TFM. Unlike microscopy, RDT detects antigens, not parasites, 

which gives it an added advantage over microscopy in its ability to diagnose malaria in patients 

with low-grade parasitemia below the detection limit of microscopy. Because PCR detected 23% 

and 12% additional malaria infections as compared to TFM and RDT, respectively, the utility of 

TFM and RDT to accurately diagnose malaria, especially for the purpose of malaria elimination, 

warrants further investigation.  

 

Performance of clinical diagnosis  

The WHO currently recommends antimalarial treatment only for laboratory confirmed malaria 

cases (20). However, there was poor adherence to the WHO’s recommendation in our study. 

Even in Bamenda, where only six patients were positive for malaria, 86 patients were treated for 

malaria. Elsewhere, high rates of clinical diagnosis and overtreatment of malaria have been 

reported with economic consequences (21-24). As expected, the sensitivity of clinical diagnosis 

of malaria in this study was high (100%). This is consistent with a recent study in Tanzania in 

which the sensitivity of clinical diagnosis of malaria was 97% (25). However, a clinical malaria 

diagnosis could predict the presence of malaria parasite in only 59% of our study participants. 

Hence, clinical diagnosis cannot be relied upon as a "rule in" test for malaria because of 

overlapping malaria symptoms with other tropical febrile illnesses. Moreover, the specificity of 

clinical diagnosis in the present study was low (17%) with 209 false positive results. Therefore, 

209 patients were erroneously treated for malaria. Clinical malaria diagnosis could predict the 

absence of malaria parasite in a high percentage of patients making it a useful "rule out" test for 

malaria diagnosis. 

 

Performance of malaria RDT  

The accuracy of malaria RDT was good as compared to PCR. We reported a sensitivity and 

specificity of 78% and 94%, which is consistent with a recent study in Kenya (10) that evaluated 

the same RDT used in this study. Malaria RDT could predict the presence of malaria parasite in 

94% of the study participants making it a good "rule in" test for malaria. It has been suggested 

that the specificity of HRP-II tests is reduced in high malaria transmission settings (26). In our 

study, there was a decrease in the specificity of malaria RDT when comparing Maroua (81% 
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specificity), located in a high transmission area, with results from Bamenda (98% specificity), 

characterized as a low transmission area (data not shown). Consequently, those living in 

Bamenda were more likely to be correctly diagnosed having malaria by RDT compared to those 

living in Maroua. A combination of long-lasting HRP-II antigens after parasite clearance and a 

high frequency of malaria infections may lead to persistent antigenemia in people living in high 

transmission settings. Malaria RDT was the most accurate method of malaria diagnosis in our 

study population compared to TFM and clinical diagnosis. Therefore, malaria RDT can be used 

to improve the quality of care by ensuring appropriate treatment of confirmed malaria cases 

while avoiding indiscriminate administration of anti-malarial drugs for malaria-negative patients.  

 

Performance of TFM  

The accuracy of TFM in this study was moderate, compared to PCR. The sensitivity and 

specificity of TFM were 57% and 99%, respectively. The observed lower sensitivity of TFM 

could be due to submicroscopic malaria infection in the study population. The two false-positive 

malaria cases diagnosed by TFM could be due to artifacts mistook for malaria as a result of 

poor blood film preparation. TFM has been shown to miss a substantial amount of malaria 

infections in low transmission areas (17). However, we found that those living in Bamenda (low 

transmission area) were more likely to be correctly diagnosed as having Malaria by TFM 

compared to those residing in Maroua (high transmission area). Nevertheless, only five patients 

were positive for malaria in Bamenda. Therefore, it may be premature to draw a conclusion due 

to the small sample size. Overall, TFM could predict the presence of malaria parasite in 99% of 

the study participants making TFM a good "rule in" test for malaria. 

 

Conclusions 

The accuracy of clinical diagnosis of malaria was poor, leading to the administration of 

antimalarial treatment to a large percentage of febrile malaria-negative patients without treating 

the true underlying cause of their fever. The diagnostic performance of RDT was superior to that 

of TFM and clinical diagnosis. Although TFM and RDT gave moderate and good results, 

respectively, they are not adequate when precise laboratory diagnostic data are needed to 

monitor antimalarial treatment. PCR permitted the detection of sub-microscopic parasitemia, 

making it a valuable tool for malaria diagnosis, control, and elimination. The development and 

standardization of a rapid and sensitive PCR-based test capable of detecting sub-microscopic 

malaria infection are urgently needed for the global elimination of malaria. Furthermore, 
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continual training and proficiency testing should be instituted for laboratory technicians on 

malaria microscopy and post-market surveillance to assure the quality of malaria RDT. 
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Abstract 

Fever is a common cause of patients seeking treatment in healthcare facilities in most tropical 

countries and poses a diagnostic and therapeutic challenge to healthcare workers in limited 

resource areas. Diagnosis of febrile illnesses in most malaria endemic countries mainly focuses 

on confirming or ruling out malaria. Thus, healthcare workers are often faced with the challenge 

of the course of action to take in treating febrile patients negative for malaria. The lack of 

information on the specific etiologic agents of non-malaria febrile illnesses prevents effective 

treatment and management of otherwise often treatable diseases. Despite their importance, 

there is no published data on the epidemiology of non-malaria febrile illnesses in Cameroon, 

and their true burden remains unknown. In this study, we sought to identify pathogens that 

cause febrile illnesses in Cameroon. We recruited 551 febrile patients from three different 

geographical regions of Cameroon. Blood and stool specimens were collected, and rapid 

diagnostic test, ELISA, microsphere immunoassay, microscopy, culture, and PCR were 

conducted to identify various etiologic agents of febrile illnesses. Of the 551 participants, 45% 

had malaria, 41.5% had one or more acute respiratory viral infections, 3% had typhoid fever, 2% 

had acute toxoplasmosis, 0.9% had probable dengue, 0.7% had evidence of West Nile virus 

infection, and 1.3% had chikungunya virus infection. Meanwhile, 10.8% and 5% of the stool 

samples were positive for Salmonella and Shigella, respectively. We identified 137 patients with 

febrile illnesses other than malaria. Of these, 44.5% were co-infected with malaria. Furthermore, 

91% participants were presumed to have malaria based on fever, of which 41% were negative 

for malaria by PCR. Our results show evidence of non-malaria febrile illnesses in Cameroon, 

which should be considered by clinicians in the differential diagnosis of febrile illnesses. 

However, lack of access to diagnostic tests for febrile illnesses impedes precise diagnosis and 

clinical management of patients. 
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Introduction 

Fever is a common cause of patients seeking treatment in healthcare establishments in most 

tropical countries and poses a diagnostic and therapeutic challenge to health care workers 

(HCW) in limited resource areas (1). Diagnosis of febrile illnesses in malaria-endemic countries 

mostly focuses on confirming or ruling out malaria (2) as malaria is considered a major health 

threat. Studies have documented the use of antimalarial drugs to treat patients who are 

negative for malaria (3-5). Because of the high rate of malaria over-diagnosis in malaria-

endemic countries, other febrile illnesses such as respiratory tract infections (RTI), dengue, 

leptospirosis, typhoid fever, and sepsis are often misdiagnosed as malaria. HCW in most 

malaria-endemic countries are often faced with a difficult challenge on the course of action to 

take when a patient is negative for malaria, especially as epidemiologic data on the etiologic 

agents of febrile illnesses is scanty. The lack of information on the specific etiologic agents of 

non-malarial febrile illnesses prevents effective treatment and management of otherwise often 

treatable diseases. Moreover, in regions with high malaria prevalence, the possibility of malaria 

co-infection with other pathogens that cause fever cannot be ruled out (1). This is particularly 

important because once malaria is confirmed clinicians do not readily suspect co-infection.   

 

Studies in Laos, Tanzania, and Kenya have identified other causes of fever apart from malaria 

including acute RTI, and enteric and blood stream infections (6-10). To date, there are no 

studies from Cameroon investigating if malaria is solely responsible for the periodic outbreak of 

febrile illnesses. Moreover, there have been reports of periodic outbreaks of febrile illnesses in 

the Far North region of Cameroon, which have been attributed to malaria (11). The current 

study sought to identify pathogens that cause febrile illnesses in three regions of Cameroon and 

the prevalence of co-infection with malaria. An understanding of the prevalence and distribution 

of fever-causing pathogens is the first step for effective disease management thereby positively 

impacting morbidity and mortality due to febrile illnesses. This study will thus provide local 

epidemiologic data that can assist HCW in Cameroon to improve diagnosis, management, and 

control of febrile illnesses, thereby improving disease outcomes. Furthermore, data from this 

study can contribute to the identification of research priorities, the development of algorithms in 

the management of febrile illnesses in Cameroon and in the development of diagnostic tools. 
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Materials and Methods 
 

 

Figure 1: Flow chart depicting enrollment, sample collection and laboratory assays  

CBC, complete blood count; TFM, thick film microscopy; RDT, rapid diagnostic test;  

MIA, microsphere immune assay; PRNT, plaque-reduction neutralization test; 

PIV, parainfluenza virus; RSV, respiratory syncytia virus; PCT, procalcitonin    

 

Study Setting and Justification  

This study was conducted in three regions of Cameroon.  

Maroua: In the Far North region, the study was conducted in Maroua in October 2014. The 

climate in Maroua is hot and semi-arid, with a rainy season from May to September. We 

included Maroua in this study because of the yearly outbreak of febrile illnesses that occurs 

between August and October. In October 2013, more than 600 people were reported to have 

succumbed to malaria within one month in Maroua (12). It was important for our study to confirm 

if similar febrile illnesses in Maroua are due to malaria or other pathogens.  
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Nkolbisson: In the Center region, the study was conducted in Nkolbisson from February 2014 to 

April 2014. We included Nkolbisson because it is holoendemic for malaria and we wanted to 

investigate if other febrile illnesses co-exist with malaria either as mono or co-infections.  

 

Bamenda: In the North-West region, we conducted the study in Bamenda in February 2015. 

There are two seasons in Bamenda: A rainy season runs from April to October and a dry 

season from November to March. We included Bamenda because the prevalence of malaria in 

Bamenda is generally low and thus it is important to identify the pathogens that cause febrile 

illnesses in this region.  

 

Recruitment of study participants and sample collection:  

We conducted a cross-sectional study in which 551 febrile patients were recruited between 

February 2014 and March 2015. Inclusion criteria were age >6 months and axillary temperature 

>37.5oC at the time of recruitment or complaint of fever within 24 hours preceding recruitment. 

Children <6 months and individuals with readily identifiable causes of fever such as a dental 

abscess and deep wound were excluded. The research or clinic staff took axillary temperature 

readings and collected clinical data of the reported signs and symptoms. Venous blood (2–5 

mL) was collected into an EDTA tube from each patient and stored in cold boxes until 

transported to the research laboratory where they were stored at 4–8oC. Stool samples were 

collected from participants with diarrhea.  

 

Ethical considerations 

Signed informed consent was obtained from all study participants. Parents or legal guardians of 

children <18 years gave a written informed consent on behalf of their children. Ethical approvals 

were obtained from the Committee on Human Subjects of the University of Hawaii (protocol 

number CHS 21724) and the National Research Ethics Committee of the Ministry of Public 

Health Cameroon (protocol number 2014/04/442/CE/CNERSH/SP). Administrative approvals 

were obtained from the Minister of Public Health Cameroon and the Directors of the various 

Health Institutions. 

 

 

 

 

 



   

	 73 

Laboratory Procedures  

Complete blood count  

Complete blood count was conducted using URIT 3200 automated hematology analyzer (URIT 

Medical, China) following the manufacturer’s instructions. The analyzer displayed complete 

blood count results including white blood cell (WBC) count, red blood cell (RBC) count, 

hemoglobin (Hgb) and platelets. Anemia was classified as mild (Hgb 10-11.9 g/dL), moderate 

(Hgb 7-9.9 g/dL), and severe (Hgb <7 g/dL).  

 

Diagnosis of malaria 

All participants were screened on-site for malaria parasite by RDT, which detects the presence 

of P. falciparum HRP-II and Plasmodium lactate dehydrogenase (pLDH), which is a glycolytic 

enzyme common to P. falciparum, P. ovale, P. vivax and P. malariae. Approximately 5 μL of 

blood was tested using the malaria Ag Pf/Pan (Standard Diagnostic Inc. South Korea) RDT kit 

following the manufacturer’s instructions.  

 

Diagnosis of enteric infections  

Stool samples were collected from febrile patients with diarrhea. 

Microscopy: A wet mount of stool sample was prepared and analyzed for the presence of 

Entamoeba histolytica cyst.  

Isolation of Salmonella and Shigella: Stool samples for the isolation of Salmonella, were 

enriched in Selenite F broth overnight and a loop-full was streaked the next day on Salmonella-

Shigella (SS) agar and incubated aerobically at 37oC overnight. For the isolation of Shigella, a 

loop-full of stool samples was streaked within 1 hour of the collection on SS-agar and incubated 

aerobically at 37oC overnight. Suspected colonies of Salmonella and Shigella were streaked on 

nutrient agar and incubated aerobically at 37oC overnight to obtain pure colonies. Pure colonies 

were subjected to Gram staining and biochemical tests including triple sugar iron (TSI) agar, 

motility, citrate utilization, indole and urea hydrolysis. Salmonella species were identified as 

colorless colonies on SS-agar, Gram-negative bacilli, TSI-alkaline slant and acid butt, H2S 

positive, indole negative, motile and citrate negative. Shigella species were identified as 

colorless colonies on SS-agar, Gram-negative bacilli, TSI-alkaline slant and acid butt, no H2S, 

indole negative, non-motile and citrate negative. 
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Microsphere Immunoassay (MIA) for dengue virus (DENV) and West Nile virus (WNV) 

infection 

Coupling of microspheres: Magnetic carboxylated microspheres (MagPlexTM-C) and the amine 

coupling kit were purchased from Luminex Corporation (Austin, TX, USA). Ten µg of each 

protein (DENV-2, DENV-NS1, and WNV-E protein) was conjugated to the surface of 1.25 X 106 

beads using a two-step carbodiimide process recommended by Luminex Corporation. The 

antigen-conjugated microspheres were stored in 250 mL of PBN buffer (Sigma-Aldrich) at 4oC 

for future use.  

MIA test: MIA test was conducted, using the protocol described previously by our group (13). 

Briefly, plasma samples were diluted 1:100 using PBS-1%BSA. For IgM measurement, 

GullSORBTM was added to the plasma samples to remove human IgG. Fifty µL of bead dilution 

(1:200) was added into each 96-well followed by the addition of 50 µL of diluted plasma 

samples. The plate was incubated at room temperature (RT) for 30 minutes on a plate shaker. 

The beads were washed twice with PBS-1%BSA, and 50 µL of diluted (1:250) anti-human IgG-

phycoerythrin (PE) or anti-human IgM-PE in PBS-1% BSA (Jackson Immunoresearch, West 

Grove, PA) was added to the corresponding wells and incubated at RT for 45 minutes in the 

dark. After washing the beads twice with PBS-1%BSA, 100 µL of PBS-1%BSA was added into 

each well and read using the Luminex 100TM system.  

Cut-off determination: We determined the cut-off median florescence intensity (MFI) for each 

antigen by running 20 negative control samples and calculating the mean +3 standard deviation. 

Cut off MFI were 185, 318 and 201 for WNV E protein, DENV NS1, and DENV-2 antigens, 

respectively. Samples with MFI greater than the cut-off were considered positive for the 

respective antigens. 

 

Diagnosis of acute respiratory viral infections 

We did a clinical assessment of our study participants to identify those with signs and symptoms 

consistent with respiratory tract infections (RTI). Plasma samples from these participants were 

tested for the presence of IgM antibodies to influenza A virus, influenza B virus, parainfluenza 

virus types 1, 2 and 3, and adenovirus using commercial ELISA kit (GenWay Biotech, Inc., San 

Diego USA). Briefly, 100 μL each of the 1:100 diluted samples and the ready-to-use standards 

and controls were added to microtiter strip wells pre-coated with antigens. After washing the 

wells, horseradish peroxidase (HRP) labeled anti-human IgM conjugate was added. 

Tetramethylbenzidine (TMB) substrate was added to visualize the immune complex at 450 nm. 

Four control sera included in each kit were treated the same way as the test samples to 
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determine cut-off concentration. The calculated absorption for the patient sera were compared 

with the absorption value for the cut-off standard for each pathogen. If the value of the sample 

was higher, it was considered positive as recommended by the manufacturer. 

 

Diagnosis of typhoid/paratyphoid fever, toxoplasmosis, leptospirosis and chikungunya 

We used the onsite typhoid/paratyphoid IgG/IgM, Toxoplasma IgG/IgM, Leptospira IgG/IgM and 

chikungunya IgM rapid test kits (CTK Biotech, San Diego USA), which is a lateral flow 

immunoassay that can simultaneously detect and differentiate IgG and IgM antibodies to 

Salmonella typhi/paratyphi, Toxoplasma gondii and Leptospira interrogans and IgM antibodies 

to chikungunya virus. Briefly, one drop of plasma was added to the sample well, immediately 

followed by one drop of sample diluent. Results were read within 15 minutes. The appearance 

of a burgundy colored band in the C (control) line and the M or G lines was considered to be 

positive for IgM and IgG antibodies respectively. Meanwhile, the absence of a colored band in 

both the G and M lines but present in the C line was considered negative. Study participants 

positive for IgM were considered to have a recent infection while those positive for IgG were 

considered to have a past infection.   

 

Diagnosis of sepsis 

We selected plasma samples of participants that were negative for all pathogens tested who 

met systemic inflammatory response syndrome (SIRS) criteria (temperature >38.5oC or <36oC 

and WBC >12,000 cells/mm3 or <4,000 cells/mm3). We measured the levels of procalcitonin 

(PCT), which is a protein produced by the body in response to a bacterial infection, using 

human procalcitonin ELISA kit (Thermo Scientific, Frederick, MD, USA), following the 

manufacturer’s instructions. We used PCT cut-off levels established by Thermo Fisher Scientific 

for their FDA-cleared B·R·A·H·M·S PCT-assay to classify sepsis as detailed in Table 1 (14).  

 

Table 1:  Reference values of PCT 
PCT level (µg/L) Interpretation  
<0.05  Healthy individuals (sepsis unlikely)  
0.05 - <0.5 Systemic infection (sepsis) not likely but local bacterial 

infection possible  
³0.5 - <2 Systemic infection (sepsis) possible with moderate risk of 

progression to severe sepsis  
³2 - <10  Systemic infection (sepsis) likely with high risk of progression 

to severe sepsis  
³10  Severe bacterial sepsis or septic shock  
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Statistical Analysis 

All data are presented as proportions for categorical variables and mean and standard deviation 

for continuous variables. Demographic and clinical characteristics of patients stratified by 

location were investigated using chi-square tests or Fisher’s exact tests and one-way analysis of 

variance based on the type of variable.  

 Multivariable logistic regression models were conducted to predict the association between 

clinical signs and symptoms, and infectious etiologies, while controlling for age, gender and 

other clinical characteristics. The results are presented as the odds ratios (ORs) and 95% 

confidence intervals (CIs). A p-value <0.05 was considered statistically significant. To confirm 

diagnostic accuracy of predictors (signs and symptoms) for each type of infection, concordance 

(or c) statistic (equivalence of area under the receiver operating characteristic (ROC) curve) of 

predicted values was calculated. A c-statistic value of 0.5 indicates the model is no better than 

random chance, a value higher than 0.7 indicates moderately accurate whereas 0.8 indicates 

strong accuracy. All analyses were conducted using SAS version 9.4 (SAS Institute Inc., Cary, 

NC).  
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Results 

Demographic and clinical characteristics of study participants 

Of the 551 febrile patients recruited for this study, 57.1% were from Nkolbisson, 22.5% from 

Maroua and 20.3% from Bamenda. Men (48.1%) and women (51.9%) were about equal in 

proportion, while children less than five years were the majority (53.5%). Headache was the 

most common symptom reported (36.8%) followed by cough (28.6%), abdominal pain (26%) 

and vomiting (22.1%). Joint pain, rhinorrhea, and diarrhea, each was often reported (>14%). 

The mean body temperature, hemoglobin concentration and WBC count were 38.3oC, 11.7 

g/dL, and 8,700 cells/mm3, respectively. We found severe and moderate anemia in 34 (10.2%) 

and 91 (16.5%) study participants, respectively. Of the severe and moderate anemia cases, 

65% and 75% were positive for malaria, respectively. The proportion of severe anemia cases 

was highest in Maroua (13.9%), followed by Nkolbisson (8.8%) and none in Bamenda (Table 2). 

 
Table 2. Demographic and clinical characteristics of study participants 

 
Characteristics 

Study sites n (%)  
Total 

(n=551) 
Bamenda 
(n=112) 

Maroua 
(n=124) 

Nkolbisson 
(n=315) 

Gender     
   Male 33 (29.5) 64 (51.6) 168 (53.3) 265 (48.1) 
   Female 79 (70.5) 60 (48.4) 147 (46.7) 286 (51.9) 
Age Group (years)     
   0-5 34 (30.4) 81 (65.3) 180 (57.1) 295 (53.5) 
   6-10  5 (4.5) 15 (12.1) 86 (27.3) 106 (19.2) 
   11-16 4 (3.6) 9 (7.3) 49 (15.6) 62 (11.3) 
   17 and above 69 (61.6) 19 (15.3) 0 (0) 88 (16.0) 
Major Clinical Symptoms     

Joint pain  56 (51.9) 10 (10.5) 6 (1.9) 72 (13.9) 
Headache 62 (57.4) 50 (52.1) 78 (25.0) 190 (36.8) 
Dyspnea 24 (22.2) 20 (21.1) 2 (0.6) 46 (8.9) 
Rhinorrhea 41 (37.9) 33 (34.4) 27 (8.6) 101 (19.5) 
Cough  39 (36.1) 45 (46.9) 64 (20.5) 148 (28.6) 
Abdominal pain  7 (6.5) 10 (8.1) 125 (39.8) 142 (26.0) 
Diarrhea  21 (19.4) 19 (20.0) 33 (10.5) 73 (14.1) 
Vomiting  17 (15.7) 32 (33.7) 65 (20.7) 114 (22.1) 
Convulsion 1 (0.9) 4 (3.2) 2 (0.6) 7 (1.3) 

Other parameters      
Mean body temperature (oC)  
  (Mean ± SD) 

37.5 ± 1.0 38.6 ± 1.0 38.4 ± 1.3 38.3 ± 1.2 

Mean Hgb conc. (g/dl)  
  (Mean ± SD) 

15.3 ± 3.2 9.4 ± 2.3 11.0 ± 2.9 11.7 ± 3.5 

Severe anemia  0 (0) 12 (13.9) 22 (8.8) 34 (10.2) 
 Mean WBC count (cells/mm3) 
  (Mean ± SD) 

8.9 ± 5.2 10.2 ± 7.6 8.2 ± 4. 8.7 ± 5.3 

Clinical diagnosis of malaria  86 (76.8) 120 (96.8) 301 (95.6) 507 (92.0) 
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Causes of fever   

Malaria was diagnosed in 45% of the study participants. Malaria prevalence was high in 

Nkolbisson (55%) and Maroua (54%) but low in Bamenda (5%) (Table 3). The prevalence of 

malaria was highest in children <5 years old (49%) and decreased with increasing age (Figure 

2). We found evidence of recent toxoplasmosis in 2% of the participants and evidence of past 

infection in 23% of study participants. Overall 3% of the participants had recent typhoid or 

paratyphoid fever while 3.3% had a past infection. Entamoeba histolytica was detected in 27% 

of the stool samples collected from participants who had diarrhea while Salmonella and Shigella 

sp were grown in culture from 10.8% and 5% of the stool samples, respectively. Entamoeba 

histolytica was identified in participants from both Maroua and Bamenda. Positive culture for 

Salmonella and Shigella species was limited to participants from Bamenda.  

 

Table 3. Infectious causes of febrile illnesses  
Pathogens All Bamenda Maroua  Nkolbisson 
Malaria parasite  551 (45) 112 (6) 124 (54) 315 (55) 
Toxoplasma gondii-IgM  551 (2) 112 (1.8) 124 (0) 315 (3.2) 
Toxoplasma gondii-IgG  551 (23) 112 (5.3) 124 (5.6) 315 (37) 
Entamoeba histolytica* 37 (27) 20 (10) 17 (47) NT 
Salmonella sp-IgM 551 (3) 112 (0.9) 124 (1.6) 315 (4) 
Salmonella sp-IgG 551 (3.3) 112 (0.9) 124 (3.2) 315 (4) 
Shigella sp* (culture) 37 (5) 20 (10) 17 (0) NT 
Salmonella sp* (culture) 37 (10.8) 20 (20) 17 (0) NT 
Influenza A virus-IgM** 162 (8) 44 (16) 43 (7) 75 (4) 
Influenza B virus-IgM** 162 (8) 44 (16) 43 (9) 75 (2.5) 
PIV 1, 2 and 3-IgM** 162 (7) 44 (9) 43 (14) 75 (1.3) 
RSV-IgM** 162 (18) 44 (18) 43 (18) 75 (16.5) 
Adenovirus-IgM** 162 (8.6) 44 (11) 43 (14) 75 (4) 
Chikungunya virus-IgM 236 (1.3) 112 (1.9) 124 (0.8) NT 
Dengue virus-IgG 551 (3.4) 112 (7) 124 (3.2) 315 (1.6) 
Dengue virus-IgM 551 (0.9) 112 (0) 124 (0) 315 (1.5) 
West Nile virus-IgG 551 (12) 112 (4.5) 124 (17) 315 (12) 
West Nile virus-IgM 551 (0.7) 112 (1.8) 124 (0) 315 (0.6) 
Values represent total number of samples tested (% positive) 
*Only samples from febrile patients with diarrhea were tested.  
**Only samples from febrile patients with signs and symptoms consistent with respiratory 
infection were tested  
NT= not tested  
 
 

RTIs were more common in Bamenda and Maroua, as compared to Nkolbisson. RSV was the 

most common respiratory virus in all study sites (Table 3). The prevalence of respiratory viral 

infections was highest in children less than five years (57%) of age (Figure 2A). RSV was the 
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most common respiratory pathogen in children less than five years of age, while in adults 

7influenza A virus was the most common pathogen (Figure 2B). We found 0.9% probable 

DENV, 1.3% acute chikungunya virus and 0.7% recent WNV infections, and evidence of prior 

WNV infection in 12% of the population. Prior WNV infection was most common in Maroua. 

 
 
Figure 2A. Distribution of common causes of fever according to age group 
*IgM positive, ** Influenza A and B, parainfluenza, adeno and RSV 
*** E. histolytica, Salmonella and Shigella species 
 

 
Figure 2B. Distribution of acute respiratory tract infections according to age group  
 

We measured PCT levels in plasma samples from 42 study participants who were negative for 

all pathogens tested in this study and met SIRS criteria. We were able to identify eight 

individuals with suspected local bacterial infection, eight with suspected systemic infection 

(sepsis) and one with severe bacterial sepsis (septic shock). The remaining 25 individuals had 

PCT levels that were unlikely to be associated with systemic infection (sepsis). PCT levels were 

undetectable in all healthy control samples (Table 4).  
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Table 4. Assessment of sepsis risk in individuals without a diagnosis meeting SIRS criteria  
Category n PCT levels (ng/mL) 

(Mean ± SD) 
  Body temp. (oC) 

  (Mean ± SD) 
WBC count (mm3) 

(Mean ± SD) 

Suspected local 
bacterial infection  

8 0.23 ± 0.09 39 ± 0.99 12.3 ± 6.59  

Systemic infection 
(sepsis) possible  

4 0.95 ± 0.23 37.46 ± 1.7 27.3 ± 3.25  

Systemic infection 
(sepsis) likely 

4 2.7 ± 0.46 38.7 ± 1.21 15.26 ± 2.03 

Severe bacterial 
sepsis  

1 16.09 40.5 22.6 

Sepsis unlikely  25 0 39.2 ± 0.7 16.1 ± 4.01  
Healthy controls  10 0 37 ± 0.4 10 ± 1.2 
 

Malaria co-infections 

There were 137 patients with febrile illnesses other than malaria. Of these, 44.5% were co-

infected with malaria. Apart from Shigella sp., we observed malaria parasite co-infections with 

all the other pathogens. Of those that were positive for typhoid, 79% (15/19) also had malaria. 

Meanwhile, 83% (10/12) of those positive for toxoplasmosis had malaria (Table 5). 

 
Table 5. Co-infections in malaria-positive individuals  

Pathogen      n 
Malaria, n (%) 

Positive Negative 
Toxoplasma gondii-IgM  12  10 (83) 2 (17) 
Salmonella sp-IgM  19  15 (79) 4 (21) 
Entamoeba histolytica*  10  3 (30) 7 (70) 
Salmonella sp (culture)  4  0 (0) 4 (100) 
Shigella sp (culture)  2  0 (0) 2 (100) 
Influenza A virus-IgM  13  3 (23) 10 (87) 
Influenza B virus-IgM  13  3 (23) 10 (87) 
PIV 1, 2 & 3-IgM  11  6 (54) 5 (46) 
RSV-IgM  27  10 (37) 17 (63) 
Adenovirus-IgM  14  6 (43) 8 (57) 
Chikungunya virus-IgM  3  1 (33) 2 (67) 
Dengue virus-IgM  5  2 (40) 3 (60) 
West Nile virus-IgM 4  2 (50) 2 (50) 
* Microscopic examination for cysts in stool samples 

 
Predictors associated with detection of infectious etiologies  
We used a prediction model to identify signs and symptoms that were significantly associated 

with the detection of infectious etiologies of febrile illnesses in patients with evidence of one 

pathogen only. Patients with asthenia, headache and vomiting were 4.0, 2.5 and 1.8 times 

respectively, at higher odds to be malaria positive compared to those without these symptoms. 

Meanwhile, those with vomiting and abdominal pain were 3.5 and 4.5 times respectively, at 
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higher odds to have typhoid fever compared to those with no vomiting or abdominal pain. Our 

model showed a high prediction power (Table 6).  

 
Table 6. Multivariate logistic regression analysis of predictors significantly associated with 
detection of infectious etiologies in febrile patients with evidence for one pathogen  
Category Subcategory OR (95% CI) p-value 
Malaria*     
Asthenia  Yes 4.01 (1.57-10.2) 0.004 
Headache Yes 2.48 (1.52-4.03) 0.000 
Vomiting  Yes 1.76 (1.06-2.94) 0.030 
Typhoid**     
Vomiting  Yes 3.45 (1.20-9.89) 0.021 
Abdominal pain Yes 4.52 (1.53-13.3) 0.006 
*C-statistic for malaria = 0.793, 95% CI=0.755 – 0.831 
**C-statistic for typhoid = 0.832, 95% CI=0.741 - 0.923 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



   

	 82 

Discussion 

Cameroon is known to be one of the malaria-endemic countries in sub-Saharan Africa (15). 

However, there is a lack of information on the prevalence of non-malarial febrile illnesses with 

similar clinical presentation. The purpose of this study was to identify infectious causes of febrile 

illnesses in Cameroon to improve awareness amongst HCW of the diseases in the country. This 

study revealed that different etiologic agents of febrile illness, including malaria parasite, 

Salmonella sp, Shigella sp, Entamoeba histolytica, respiratory viruses, DENV, chikungunya 

virus and WNV, are present in Cameroon.  

 

Malaria is the main cause of febrile illnesses in Cameroon 

We identified pathogens that cause febrile illnesses in 67% of the study participants. Our 

findings convincingly demonstrate that malaria is a significant cause of febrile illnesses in 

Cameroon with a heterogeneous distribution. This is in sharp contrast with recent studies from 

Tanzania and Kenya in which, up to 65% of febrile illnesses were due to acute RTI with few 

malaria cases (7, 16, 17). Effective malaria control measures in these countries may have been 

responsible for the low malaria prevalence. Our data also suggest that periodic outbreaks of 

febrile illnesses in Maroua, the Far North region of Cameroon, are due to seasonal malaria 

transmission. Further, this study corroborates with reported outbreaks of febrile illnesses in 

Maroua (11, 18). 

 

Seasonal factors determine the heterogeneity in the etiologies of febrile illnesses 

More than half of the study participants in Maroua and Nkolbisson had malaria. However, in 

Bamenda malaria prevalence was low. Instead, RTI were more common in Bamenda. In 

general, respiratory viral infections were more common in Bamenda and Maroua as compared 

to Nkolbisson. These variations in the distribution of infectious etiologies could be due to the 

difference in climatic conditions at the various study regions. In Nkolbisson, we carried out the 

study during the rainy season, while in Maroua samples were collected during the transition 

period between the rainy and the dry season, and in Bamenda, it was during the dry season. 

The seasonality, distribution, and prevalence of malaria and other vector-borne diseases are 

known to be influenced by climatic factors including temperature, humidity and rainfall (19). RTI 

have also been shown to be associated with climatic conditions including temperature and vary 

by season, with increasing incidence during the cold season (20).  

 

Unwarranted use of antimalarial drugs to treat febrile illnesses  
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Most of the study participants in Bamenda who were negative for malaria had evidence of acute 

RTI and therefore did not require antimalarial treatment but rather an antibiotic treatment for 

those with bacterial complications. Unfortunately, 92% of the study participants in the present 

study were clinically diagnosed with malaria and were prescribed antimalarial drugs. Thus, the 

systematic provision of antimalarial treatment in patients without malaria as observed in the 

present study is clinically detrimental for the patient. Such unwarranted treatment leads to the 

development of drug resistance and exposes the patient to drug-associated adverse events. 

Furthermore, when we conducted multivariable logistic regression models to predict the 

association between clinical signs and symptoms, and infectious etiologies, we found that very 

few signs and symptoms could predict the cause of fever in our study population. Therefore, 

laboratory diagnosis remains the best tool to rule out or confirm a diagnosis for febrile illnesses.  

   

Few patients were found to be acutely infected with Toxoplasma gondii (2%), and viruses such 

as dengue (0.9%), West Nile (0.7%) and chikungunya (1.3%). Most patients infected with these 

pathogens are asymptomatic or suffer a mild febrile illness, which may not warrant seeking 

medical care. Because this was a hospital-based study, it is possible that we missed cases of 

dengue, West Nile and chikungunya viral infections in the community. Previous studies in 

similar settings also recorded few or no cases of acute DENV, WNV and CHIKV infections (6, 7, 

21, 22). Meanwhile, dengue and leptospirosis were common in most studies conducted in South 

East Asia (9, 10, 23, 24). However, on the basis of serodiagnostic tests for Toxoplasma gondii, 

DENV, and WNV, our results show that transmission of these pathogens occurred in all three 

regions of Cameroon. 

 

Malaria and co-infection with other pathogens causing febrile illnesses 

As evident from this study and other studies conducted in similar settings (7, 9), HCW should be 

aware of malaria co-infections when managing febrile illnesses, in particular for patients with 

persistent symptoms who are administered antimalarial treatment. It is a common practice that 

once malaria is confirmed, co-infection with other febrile illnesses is overlooked by HCW, which 

may cause unrecognized deaths. The most common malaria co-infections in this study were 

typhoid, RTI, and toxoplasmosis. A previous study in a different region of Cameroon reported 

malaria and typhoid co-infection prevalence of 6.7% (25). Co-infection of malaria and typhoid 

fever can occur due to overlapping factors in the same area including poor water quality, 

hygiene, ecology, an abundance of vector and high malaria transmission. The presence of co-
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infection makes optimal clinical management of a patient very challenging. Hence, if co-infection 

is misdiagnosed, it can lead to a complicated patient outcome. 

 
Predominance of febrile illnesses in children under five years of age   

The preponderance of febrile illnesses among children 0-5 years' old observed in this study, can 

be attributed to the general susceptibility of this age group to infectious diseases. Children 

under five years of age are particularly vulnerable to malaria due to their poorly developed 

immune system to fight the infection (26). In 2015, children under five years of age accounted 

for approximately 70% of malaria deaths globally (15). Moreover, in our study seven children 

with malaria had convulsions, while 43 had severe anemia due to malaria. Also, the incidence of 

respiratory viral diseases is highest among infants and young children who suffer an average of 

6-8 infections per year, with some developing otitis media or pneumonia, caused by the viral or 

bacterial infections leading to inflammation of the ear drum, which may require antibiotic 

treatment (27-29).  

 
PCT as a surrogate for blood culture in diagnosing sepsis in febrile patients  

Thirty-three (33%) of patients with febrile illness were not diagnosed for any pathogen. This 

could be due to other important causes of fever not covered in this study including pneumonia, 

bacterial and localized infections, and sepsis. In order to determine if some of the participants 

negative for all pathogens tested in this study had a localized infection or sepsis, we measured 

PCT levels in blood samples for those who met SIRS criteria. Sepsis is a potentially fatal febrile 

illness, and early diagnosis and treatment are critical to improving outcome. Blood culture, 

which is considered to be the gold standard for the diagnosis of sepsis is too slow and limited by 

false negative results because microbial organisms are found late during the disease (30). PCT, 

which is currently an FDA-approved test to aid in sepsis diagnosis, has been shown to have a 

unique kinetics that allows it to be used for early detection of sepsis. Further, PCT can 

distinguish between sepsis and host response to inflammation and guide choice of antibiotic 

therapy (31-33). By measuring PCT levels, we were able to identify patients with suspected 

localized bacterial infection, sepsis, and septic shock. Our data clearly show that apart from 

malaria, some febrile patients had sepsis. Therefore, if PCT is made available as a POCT in 

Cameroon and other tropical countries, it will support informed decision on the initiation and 

duration of antibiotic therapy for patients with sepsis. This will improve patient care while 

decreasing antibiotic and antimalarial misuse and resistance. Moreover, the use of PCT levels 

to treat patients with antibiotics was demonstrated to decrease the length of hospital stay (34).  
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Limitations 

Our pilot study has important limitations. Several potential pathogens that can cause febrile 

illnesses were not assessed due to logistical and funding constraints. Also, the study design did 

not permit the collection of convalescent-phase samples. However, IgM seropositivity can 

provide an indication of recent infection. The presence of co-infection is more certain if the 

pathogens are grown in culture or shown by a specific antigen test. Hence, assays based on 

detection of IgM antibodies are at risk of being interpreted as a mixed infection when they 

represent the previous infection. Procalcitonin is not fully specific for sepsis with elevated levels 

being found after trauma, surgery, in those with autoimmune disease, or in severe cases of 

malaria. However, patients who have undergone recent surgery or trauma were excluded from 

this study. 

 

Conclusions 
This study for the first time reports an extensive list of medically important pathogens that cause 

febrile illnesses in Cameroon, which should be considered by HCW in the differential diagnosis 

of patients presenting with fever. Taken together, our results demonstrate that, the distribution 

of febrile illnesses in Cameroon varies by location and age with the possibility of co-infections. 

These data warrant formulation of algorithms to manage febrile illnesses. Moreover, 

heterogeneous distribution of pathogens, age, and the possibility of co-infection should be taken 

into consideration for developing effective algorithms. Also, monitoring of febrile illnesses is 

warranted as disease pattern may change over time. However, lack of easy access to 

diagnostic tests for febrile illnesses impedes precise diagnosis and clinical management of 

patients. 
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Abstract 

Viral hemorrhagic fevers (VHF) are caused by several viruses, some of which are highly 

contagious and can lead to potentially lethal diseases. Early onset of VHF is characterized by 

non-specific signs and symptoms and can be confused with other tropical febrile illnesses.  

Cameroon shares borders with countries that have reported sporadic cases or outbreaks of 

VHF. However, data on the presence of VHF in Cameroon is scanty. It is plausible that VHF 

reported in neighboring countries also occur in Cameroon. The scarcity of reliable data on the 

epidemiology of VHF in most African countries is in part due to the lack of diagnostic tools and 

active surveillance. Therefore, the development of rapid, specific and sensitive diagnostic 

assays for use in surveillance and outbreak investigations of VHF is important even for 

countries without reported cases. In this study, we expressed recombinant proteins of Ebola 

(EBOV), Sudan (SUDV), Marburg (MARV) and Lassa (LASV) viruses and used them to develop 

a multiplex microsphere immunoassay (MIA) for the simultaneous identification of hemorrhagic 

fever virus (HFV) IgG-specific antibodies in plasma samples collected from febrile patients, 

greater than 6 months old in Cameroon between February 2014 and March 2015. Using human 

or humanized monoclonal antibodies for LASV, MARV, SUDV and EBOV, our pre-validation 

experiments showed that the assay was highly sensitive, specific and reproducible. Of the 408 

Cameroonian plasma samples tested, 20 were suspected to be positive for one or more VHF. 

This study reports for the first time, the development of a high-throughput multiplex laboratory 

assay for the serological detection of IgG antibodies against LASV, MARV, SUDV and EBOV. 

Our results suggest that VHF may be occurring unrecognized in Cameroon.  
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Introduction 

Viral hemorrhagic fevers (VHF) are a group of acute viral diseases associated with fever, 

vascular leakage, bleeding, organ failure and shock. Clinically, VHF are not easily distinguished 

from other tropical febrile illnesses, such as malaria, and therefore are often misdiagnosed (1).  

In Africa, there are many species of animals, mosquitoes and ticks that serve as natural 

reservoirs or vectors for viruses that cause haemorrhagic fevers with reported outbreaks in 

several African countries (2).  

 

Currently, confirmation of infection in the acute phase of VHF is achieved by detection of viral 

nucleic acid, viral antigen, and infectious virus, using reverse transcriptase-PCR (RT-PCR), 

antigen-capture ELISA, or virus culture, respectively. (3). RT-PCR and antigen-capture assay 

takes 4–6 hours, whereas virus culture takes 2–5 days or longer, and all three assays require 

relatively large volumes of blood (0.2 to 1.0 mL) and high biocontainment infrastructure. The 

highly infectious and diverse etiologies of VHF underscore the need to develop diagnostic tools 

that are rapid, sensitive, specific, require small sample volume, and can be multiplexed to 

concurrently diagnose multiple VHF. Multiplex assays have the advantage of being able to 

detect different hemorrhagic fever viruses (HFV) simultaneously within a few hours. This could 

allow early triaging, quarantine and discharge of patients with other common infectious 

diseases, such as malaria held in “transit” center, thereby reducing the potential for nosocomial 

transmission. The development and use of a multiplex immunoassay will therefore be ideal for 

diagnosis and surveillance of VHF. Moreover, since the genetic material from HFV does not 

remain detectable in the bloodstream for very long, antibody detection methods are 

indispensable, especially for non-viremic patients and in retrospective epidemiological studies 

and surveillance.   

 

The requirement of a BSL-4 laboratory to work with most HFV and the associated safety 

concerns makes recombinant antigens a valuable alternative to the use of inactivated virus 

antigens. The use of recombinant DNA technology will enable the production of antigens that 

are: of consistent quality, highly purified (well defined composition), safe for the manipulator and 

environment, and less costly than products from natural sources (4). Because recombinant viral 

antigens contain the exact viral amino acid sequence, it means that they contain a region that 

can be recognized by antibodies produced by different individuals, reducing the number of false- 

negative results.   
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Several VHF outbreaks, such as Ebola virus disease (EVD), Crimean Congo hemorrhagic fever 

(CCHF), Rift Valley fever (RVF), Marburg hemorrhagic fever (MHF), Lassa hemorrhagic fever 

(LHF) and yellow fever (YF), have been reported in Africa (2, 5-8). Cameroon shares its border 

with countries that have reported sporadic cases or outbreaks of VHF, including Nigeria (LHF, 

EVD and CCHF), Gabon (EVD), Central Africa Republic (LHF) and Republic of Congo (EVD) (2, 

8). Even though YF is endemic in Cameroon (6), whether other VHF are also present is not 

known. Moreover, it is plausible that HFV reported in neighboring countries also cause infection 

and disease in Cameroon. The scarcity of reliable data on the epidemiology of VHF in 

Cameroon and most African countries is in part due to the lack of diagnostic tools and active 

surveillance. As international trade and travel increases, there is the potential that VHF could be 

introduced from endemic countries into regions that are virus free as was seen with the recent 

outbreak of EVD in several West African countries. Therefore, the development of diagnostic 

assays for use in surveillance and outbreak investigations of VHF is important even for 

countries without reported cases. 

 

In this study, we used LUMINEX® technology to develop a multiplex microsphere immunoassay 

(MIA) for the simultaneous detection of specific antibodies against Lassa (LASV), Ebola 

(EBOV), Sudan (SUDV) and Marburg viruses (MARV) in serum samples collected from febrile 

patients in Cameroon. This is the first, high-throughput multiplex laboratory serodiagnostic 

assay for these viruses.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 



   

	 94 

Methodology 

Clinical samples: Archival plasma samples collected from febrile patients in Cameroon 

between February 2014 and March 2015 were tested. Inclusion criteria were age >6 months 

and axillary temperature >37.5oC at time of recruitment or report of fever within 24 hours 

preceding recruitment. 

 

Ethical considerations: Ethical approvals for the use of archival samples were obtained from 

the Committee on Human Studies of the University of Hawaii (protocol number 2016-30564) 

and from the National Research Ethics Committee of the Ministry of Public Health Cameroon 

(protocol number 2016/06/783/CE/CNERSH/SP).  

 

Expression and purification of EBOV, SUDV, MARV and LASV recombinant proteins 

Gene and primer design 

The gene sequence of EBOV-GP, EBOV-VP40 and EBOV-NP (Mayinga strain), SUDV-GP 

(Boniface strain), MARV-GP (Angola strain) and LASV-GPC (Josiah strain) were obtained from 

NCBI GenBank. C-terminally truncated versions of the various glycoproteins (devoid of 

membrane anchor regions) were designed with the help of Clone Manager Professional 9 

(Scientific & Educational Software, Denver, CO). PCR primers for molecular cloning were 

designed to consist of a hybridization sequence of about 18 to 21 base pairs. Appropriate 

restriction sites were added to the 5’- and 3’-ends of the PCR product using forward and reverse 

primers, respectively, with about 4–6 extra base pairs upstream of each restriction site to 

improve cutting efficiency.   

 

Cloning  

PCR cloning was performed using the previously designed primers to make copies of the gene 

of interest. PCR products were isolated using a PCR clean up kit (Macherey-Nagel, Bethlehem, 

PA). Restriction digests with appropriate enzymes were conducted for PCR products (insert) 

and expression plasmid (pMT/Bip; Invitrogen, Carlsbad, CA). The backbone of the expression 

plasmid and gene of interest were then isolated by gel purification. The insert (gene of interest) 

was ligated into 50 ng of the expression plasmid using quick ligation kit (NEB, Ipswich, MA) with 

a plasmid to insert ratio of 3:1. Chemically competent DH-5a E. coli cells were transformed 

using 1-5 µL of the ligation product and incubated overnight at 37oC. Colony PCR was 

performed to screen E. coli cells for successful ligation/transformation. An individual bacterial 

colony containing the desirable expression plasmid was then scaled-up using a 50 mL shaker 
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flask. The expression plasmid was purified using a commercial plasmid DNA purification kit 

(Macherey-Nagel, Bethlehem, PA) and verified by restriction digest and sequencing prior to 

further use.   

 

Expression and purification 

1x106 cells/mL of Drosophila S2 cells adapted to ExCell 420 (Sigma, St. Louis, MO) were 

seeded in a 6-well plate. The S2 cells were co-transfected the next day with 2 µg of expression 

plasmids for EBOV-GP, EBOV-VP40 and EBOV-NP, SUDV-GP, MARV-GP or LASV-GPC and 

selectable marker plasmid pCoHygro (Invitrogen, Carlsbad, CA) using lipofectamine transfection 

reagent (Invitrogen, Carlsbad, CA) or the calcium phosphate precipitation method (using 20 µg 

plasmid + 1 µg pCoHygro). Hygromycin B was added to the media the next day for 

lipofectamine and 3 days after transfection for calcium phosphate to start selection of stable 

transformants. After establishing stably transformed S2 cell lines, cultures were scaled up to 1–

5 L scale using a Wave bioreactor (GE Healthcare, Aurora, OH) and protein expression was 

induced by addition of 200 µM CuSO4 to the culture medium. Protein expression was verified by 

SDS-PAGE and Western Blot (probed with EBOV, SUDV, MARV and LASV GP-reactive 

monoclonal antibodies). S2 cells were harvested from the Wave bioreactor and proteins were 

purified using immunoaffinity chromatography (IAC). For this, monoclonal antibodies specific for 

the individual proteins were coupled onto HiTrap columns prepacked with NHS-activated 

Sepharose (GE Healthcare, Aurora, OH). These antigen-specific IAC columns were then used 

for protein purification. 

 

Microsphere Immunoassay(MIA) for VHF 

Assay Design: We adapted xMAP Technology to design an indirect MIA requiring both a target 

protein and an anti-human IgG antibody.  

Coupling of microspheres: Ten µg of each protein (EBOV-GP, EBOV-NP, MARV-GP, LASV-

GPC, SUDV-GP, MSP-1, HSV-1) were conjugated to the surface of 1.25 X 106 beads using a 

two-step carbodiimide process recommended by Luminex Corporation. Magnetic carboxylated 

microspheres (MagPlexTM-C) and the amine coupling kit were obtained from Luminex 

Corporation (Austin, TX, USA). The antigen-conjugated microspheres were stored in 250 µL of 

PBN buffer (Sigma Aldrich) at 4oC until use.  

MIA test: The MIA testing was conducted using the protocol previously described by our group 

(9). Briefly, plasma samples were diluted 1:100 using PBS with 1% BSA. Fifty µL of bead 

dilution (1:200) was added into each well of a 96-well plate followed by the addition of 50 µL of 
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diluted plasma samples. The plate was incubated at room temperature (RT) for 30 minutes on a 

plate shaker. The beads were washed twice with PBS-1%BSA using a magnetic plate holder. 

Finally, 50 µL of 1:250 dilution of goat anti-human IgG phycoerythrin (Jackson Immunoresearch, 

West Grove, PA) was added into the wells and incubated at RT for 45 minutes in dark. After 

washing the beads twice with PBS-1%BSA, supernatants were removed and 100 µL of sheath 

fluid was added into each well and read using the Luminex 200TM system. 

Controls: Ten controls were included on each plate and treated the same way as the test 

samples. Positive controls consisted of EBOV, MARV and SUDV humanized monoclonal 

antibodies (HMB) (MAPP Biopharmaceutical, San Diego, CA), and LASV human monoclonal 

antibody (HumAb) (Zalgen Labs, German Town, MD) and an irradiated serum sample from a 

rhesus macaque experimentally infected with EBOV.  

 As internal controls, we used a subunit of Plasmodium falciparum merozoite surface 

protein (MSP-1) containing the 19K C-terminal sequence of MSP-1, kindly provided by Dr. 

George Hui of the University of Hawaii and human herpes simplex virus (HSV-1) inactivated 

antigens (Meridian Life Science Inc, Memphis, TN). MSP-1 was used as internal control 

because blood samples for this study were collected from Cameroon, which is endemic for 

malaria. Thus, most of the participants are expected to have preexisting antibodies to MSP-1 

due to malaria parasite infection (10). HSV-1 is a highly contagious virus that commonly causes 

infections throughout the world with prevalence of about 87% in Africa (11). Therefore, most of 

our study participants are expected to have antibodies to HSV-1. For negative controls, we 

determined buffer background and samples collected from individuals living in the United States 

with no travel history to regions endemic for any of the HFV covered in this study (US controls).   

Cut-off determination: We determined the cut-off median florescence intensity (MFI) for each 

antigen by conducting MIA on 32 US-control serum samples and calculating the mean +3 

standard deviations. Samples with MFI greater than the cut-off were considered positive for the 

respective antigens.  

 
Pre-validation studies    

Limit of detection: To determine the limit of detection we tested 10-fold serial dilutions of EBOV, 

MARV, LASV and SUDV human or humanized monoclonal antibodies from 1 to 10,000 ng/mL. 

The MIA was conducted using 50 µL of each mAb dilution and 50 µL of diluted antigen-

conjugated microspheres as described previously. We included PBS-1%BSA as blank. 

Linearity: The linearity for each analyte (EBOV-GP, MARV-GP, LASV-GPC, SUDV-GP) was 

assessed by testing several different dilutions of EBOV, MARV, LASV and SUDV mAbs. 
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Standard curves were generated for each analyte by plotting the various antibody dilutions 

against the MFI.  

Specificity: To evaluate the specificity or cross reactivity of the assay, we used 1,000 ng/mL of 

LASV mAb, 10,000 ng/mL of each EBOV, MARV, LASV and SUDV mAbs, and a dengue virus 

(DENV)-IgG positive serum sample. Each monoclonal antibody and DENV-IgG positive control 

were tested against a panel of 8 different antigen-conjugated microspheres including: EBOV-

GP, EBOV-NP, MARV-GP, LASV-GPC, SUDV-GP, MSP-1, HSV-1, PBS and BSA.  

Repeatability: To evaluate the repeatability of the assay, 1,500 ng/mL of LASV mAb, 2,000 

ng/mL each of MARV and EBOV mAb, and cocktail (1500 ng/mL of LASV+ 2000 ng/mL each of 

MARV and EBOV) mAbs were tested 13 times by the same technician on the same plate and 

on the same day.  

Reproducibility (intra-assay variability): To evaluate the reproducibility of the assay 1,000 ng/mL 

of LASV mAbs, 10,000 ng/mL each of MARV and EBOV mAbs, and cocktail (300 ng/mL of 

LASV+ 3,000 ng/mL each of MARV and EBOV) mAbs were prepared and stored at -800C in 

aliquots. Each antibody was tested 2–3 times daily on different plates by two different 

technicians for a period of six days. Each test was performed in duplicate.   

 

Statistical analysis  

Data analysis was conducted using Graph Pad Prism version 7 and Microsoft Excel 2016. 

Coefficient of variation (CV) was calculated for repeatability and reproducibility. The correlation 

between antibody concentration and MFI was determined by calculating the correlation 

coefficient (R2).  
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Results 

Recombinant proteins are immunoreactive 

Recombinant proteins were expressed using S2 cells expression system and purified using 

immunoaffinity chromatography. Figure 1 shows purified recombinant glycoproteins of EBOV, 

MARV, SUDV and LASV. Western blots were probed with different mAbs. The recombinant 

proteins are immunoreactive with little or no cross reactivity.   

 

 
Figure 1: SDS-PAGE analysis of purified (A) EBOV, (B) MARV, (C) SUDV and (D) LASV 

recombinant glycoproteins.  

 
MIA for VHF is highly sensitive 

The limit of detection of the MIA was determined by testing serial dilutions of EBOV, MARV, 

LASV and SUDV mAb with microspheres conjugated with EBOV-GP, LASV-GPC, MARV-GP 

and SUDV-GP. The MFI of LASV-GPC conjugated microsphere was 315 at 10 ng/mL of LASV-

GP1 mAB and increased to 13,082 at 10,000 ng/mL of LASV-GP1 mAb (Fig. 2A). Only 

background MFI was observed for EBOV-GP conjugated microsphere at 10 ng/mL of EBOV 

mAb concentration and increased to 7,294 at 10,000 ng/mL concentration of EBOV mAb (Fig. 

2A). Meanwhile, lower MFI were observed for MARV-GP conjugated beads, when 100 ng/mL of 

MARV mAb was used (Fig. 2C), and for SUDV-GP conjugated beads, when 1,000 ng/mL of 

SUDV mAb was used (Fig. 2D), but increased at 10,000 ng/mL of mAb concentration.   
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Figure 2: Limit of detection of MIA for VHF. Microsphere-conjugated beads of (A) LASV-GPC, 

(B) EBOV-GP, (C) MARV-GP and (D) SUDV-GP were tested with different concentrations of 

human or humanized monoclonal antibodies. Values represent the mean of each duplicate 

sample.  

 

Very strong correlation was observed between HFV mAB and MFI 

To determine the correlation between HFV mAb and MFI, several dilutions of each HFV mAb 

were tested and standard curves were generated. As observed in Fig. 3A-D, there was a very 

strong correlation between antibody concentration and MFI for all four mAb. However, SUDV 

mAb was discontinued from further testing due to low MFI resulting most likely from the heavy 

chain structure of the recombinant mAb.  
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Figure 3: Correlation between concentration of HFV monoclonal antibodies and MFI. 
 

Limited cross reactivity to EBOV, LASV and MARV monoclonal antibodies  

To evaluate the specificity of the MIA, seven microspheres coupled with four HFV recombinant 

glycoproteins (EBOV, LASV, MARV and SUDV) and three control antigens (MSP1, HSV and 

BSA) were mixed together and detected using monoclonal antibodies for each HFV 

recombinant protein. As shown in Fig. 4A-C, EBOV, LASV and MARV monoclonal antibodies 

had no apparent cross-reactivity with the other antigens. In a separate experiment in which 

dengue virus (DENV) IgG-positive control serum (confirmed by PRNT) was used, only 

background MFI were observed (Fig. 4D). SUDV GP exhibited the highest background MFI with 

DENV IgG positive control, indicating possible cross reactivity.  
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Figure 4: Specificity of seven-plexed MIA. Seven microspheres coupled with different antigens 

were mixed and tested with monoclonal antibodies to (A) LASV, (B), EBOV, and (C) MARV. 

Microspheres were tested with (D) DENV IgG-positive serum sample. 

 

MIA for VHF is highly reproducible  

The precision of the MIA was expressed by evaluating the repeatability and reproducibility and 

by calculating the CV. After each monoclonal antibody was tested 13 times for repeatability, the 

CV for LASV-GPC, EBOV-GP, MARV-GP and BSA conjugated microspheres was 3.1%, 5.7%, 

7.4%, and 3.7% respectively. Meanwhile, the CV for EBOV positive control NHP sample was 

2.7% (Fig. 5A). The day-to-day variability of the assay conducted by two individuals on 13 

different plates was 6.9%, 8.8%, 11.8%, 7.4% and 5.9% for LASV-GPC, EBOV-GP, MARV-GP, 

BSA conjugated microspheres, respectively and 5.9% for EBOV positive control NHP sample 

(Fig. 5B). Repeatability and reproducibility were not assessed for SUDV due to limited antibody 

availability and low MFI readings.  
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Figure 5: Repeatability and reproducibility of VHF MIA. The same concentration of each 

monoclonal antibody was measured 13 times on one 96-well plate for (A) repeatability and (B) 

reproducibility. * Irradiated serum sample from a rhesus macaque that was previously infected 

with EBOV 

 

MIA can simultaneously detect multiple HFV antibodies    

To determine the ability of the MIA to detect multiple infections in a single individual, a cocktail 

of EBOV, LASV and MARV monoclonal antibodies was tested. As shown in Fig. 6A and 6B, the 

MIA was able to detect and differentiate between the individual monoclonal antibodies of the 

cocktail. The results were repeatable (Fig. 6A) and reproducible (Fig. 6B). The inter- and intra-

assay CV was similar to that observed when individual antibodies were used (Fig. 5 and Fig. 6).  

Specifically, the intra-assay (repeatability) CV for LASV, EBOV and MARV was 2.1, 2.2 and 6.2, 

respectively, while the day-to-day variability was 6.6, 6.8 and 7, respectively, for LASV, EBOV 

and MARV.     
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Figure 6: Detection of multiple HFV antibodies. A cocktail containing three monoclonal 

antibodies was tested with microspheres conjugated with various HFV antigens and evaluated 

for (A) repeatability and (B) reproducibility).  

 
Evidence of silently circulating HFV in Cameroon 

To determine if Cameroonians have been previously infected with HFV, 408 plasma samples 

collected from three regions in Cameroon were tested using the MIA. PBS and BSA were used 

as negative control while MSP-1 and HSV-1 microsphere conjugated beads were used as 

internal controls. As expected, most of the samples had high MFI to MSP-1 and HSV-1. Of the 

408 samples tested, samples 3, 4 and 2 had MFI above the cut-off for LASV, MARV and EBOV, 

respectively (Table 1). However, there were 11 other samples that had MFI higher than the cut-

off for all the microspheres conjugated with HFV antigen. Such samples were considered 

suspected VHF-positive; however, the suspected infecting virus could not be determined. An 

example of such a sample can be found in Table 1 (sample ID, HF10).  
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Table 1: MFI of suspected VHF-positive plasma samples  
 MFI of HFV antigens  

 
ID (Age in Years) 

 
MSP-1 

LASV 
GPC 

MARV 
GP 

SUDV 
GP 

EBOV 
GP 

EBOV 
NP 

EBOV 
VP40 

 
Comments 

HF1 (52) 2570 2934* 218 512 42.5 90 102 LASV 

HF2 (5) 5121 3568* 507 459 145 3002** 1523** LASV 

HF3 (1) 16963 3278* 163 342 87.5 2708** 595 LASV 

HF4 (7) 167 681 4573* 1096 187.5 643 419 MARV 

HF5 (3) 125 168 3558* 754 130 157 838 MARV 

HF6 (5) 167 186 3369* 670 47.5 107 141 MARV 

HF7 (25) 139 471 3696* 1629 446 329 2203** MARV 
HF8 (7) 11517 478 124 227 6461* 676 1896* EBOV 

HF9 (2) 631 193 235 130 1147* 305 324* EBOV 

***HF10(6)  3636 11023 15412 21477 3381 6842 9413 VHF 
*MFI above cut-off, ** Possible cross-reactivity or co-infection, *** Suspected infecting virus 

cannot be determined.   

MFI cut-off based on mean +3SD: MSP-1, 192; SUDV-GP, 5,532; LASV GP, 2,427; MARV-GP, 

2,838; EBOV-NP, 1,212; EBOV-VP40, 651; EBOV-GP, 210 
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Discussion 

The unprecedented scope of the recent outbreak of EVD in West Africa has underscored the 

need for rapid and accurate diagnosis of HFV. Interrupting the chain of HFV transmission relies 

heavily on laboratory support. Here, we report the development of a Luminex-based multiplex 

MIA incorporating recombinant proteins for the simultaneous detection of HFV-IgG specific 

antibodies. Luminex technology has several advantages over traditional ELISA and IFA 

including high assay throughput, minimal sample volume and multiplexing several analytes. The 

MIA described in this study required only 3 µL of plasma sample to test for four HFV pathogens 

and further includes testing for antibodies against MSP-1 and HSV-1.  

 

Recombinant proteins are valuable alternatives to conventional antigens 

The requirement of using high level biocontainment facilities for conventional antigen production 

and the associated safety concerns to use HFV, makes recombinant antigens a valuable 

alternative. Using S2 cells, we have successfully expressed and purified recombinant EBOV 

(GP, NP and VP40), MARV GP, SUDV GP and LASV GPC, which we used as antigens to 

develop in-house MIA for detection of HFV. The glycoproteins of Ebola, Sudan, Marburg and 

Lassa viruses mediate viral attachment and entry into the host cell and are antigens targeted by 

the host immune system (12-14). Our laboratory recently showed that recombinant EBOV-GP, 

VP 24 and VP 40 are highly immunogenic, stimulating both cellular and humoral responses 

(15). Moreover, EBOV NP shows high expression level in infected cells, making it a good target 

for the immune system (16). Also, antibodies have been shown to be directed against at LASV 

NP, GP1, GP2, and matrix protein (17, 18). Therefore, it is appropriate to use these proteins as 

detection antigens for our MIA.  

  

Performance of MIA 

Due to the logistical and safety issues in obtaining samples from confirmed VHF patients, we 

used human- or humanized -monoclonal antibodies to pre-validate our assay. The LASV-GP1 

mAb was isolated from a patient in West Africa who had survived Lassa fever and who had 

developed sustained antibody titers (19). It was further shown to neutralize LASV Josiah strain. 

EBOV GP-specific mAbs have previously been used to purify EBOV-GP (15). Using these 

monoclonal antibodies, we have been able to show that our MIA is highly sensitive, specific, 

repeatable and reproducible. Our assay was sensitive enough to detect as low as 100 ng/mL 

LASV mAb. However, at this same mAB concentration, lower MFI were observed for EBOV-GP, 

MARV-GP and SUDV-GP conjugated microspheres. This may be due differences in the type of 



   

	 106 

monoclonal antibody used. LASV monoclonal antibody is fully human while EBOV, SUDV and 

MARV monoclonal antibodies are humanized. Humanization, which is the replacement of 

murine constant regions with that of human may alter the properties of the antibody and distort 

the interaction between the primary and secondary antibodies (20). This may probably be 

responsible for the low MFI of the SUDV mAb. The day-to-day variation of our MIA was within 

the general acceptable range of less than 15%. Therefore, the performance of the MIA is 

expected to be similar between operators.  

      Evaluation of cross-reactivity is very important for any serological test. With the use of the 

various HFV monoclonal antibodies, there was no apparent cross-reactivity between the 

different conjugated microspheres. When DENV-IgG positive control samples were used, there 

was also no apparent cross-reactivity with the other antigens. This shows that the MIA is 

capable of distinguishing various HFV. The MIA was capable of detecting individual antibodies 

from a cocktail of three different HFV antibodies. This means the assay is capable of detecting 

antibodies to multiple pathogens in the same individual. This is particularly important because 

once a single pathogen has been identified, healthcare workers may not readily suspect co-

infections.   

 

HFV may be silently circulating in Cameroon  

Our results suggest that some Cameroonians have been exposed to HFV. We observed MFI 

greater than the cut-off for LASV, MARV and EBOV IgG in 2.2% of the samples. However, there 

were some samples where the suspected infecting virus could not be determined most likely 

due to cross-reactivity. In a large community-based survey in Gabon, 15.3% of the participants 

were seropositive for EBOV-IgG antibodies (21). However, in the Gabon study, the authors 

considered samples with optical density (OD) in the antigen-coated well twice as high as the OD 

control well to be positive. We used a more stringent cutoff of three standard deviations above 

negative controls as previously described. Meanwhile in Mali, the annual incidence of LHF was 

6.3% with seroconversion frequently seen in pre-teenagers (22). Most of the presumed VHF-

IgG positive individuals in our study were greater than 5 years old and had high MFI to at least 

one or both of our internal controls, indicating that they were able to mount an immune response 

to known endemic pathogens (malaria parasite and/or HSV-1). Overall, 76% of the 

Cameroonian samples had MFI greater than the cut-off for MSP-1. The four samples with MFI 

lower than the cut-off for MSP-1 in Table 1, were all negative for malaria by PCR. Meanwhile, 

for the US controls, the highest MFI for MSP-1 was only 187. This shows that our internal 

control is working; the samples are of good quality and the study participants were capable of 
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producing antibodies. However, in some of our patient samples, we observed high MFIs to more 

than one of the HFV antigens. In the absence of a confirmatory serological test, it is difficult to 

elucidate if this represents multiple exposure to HFV or cross-reactivity. Mohan and colleagues 

recently showed that human survivors of Ebola or MARV exhibit cross-reactive antibodies with 

NP being the most cross-reactive, while GP was most specific (23). Furthermore, antibodies 

from survivors infected by SUDV exhibited the highest cross-reactivity to EBOV (NP and VP40) 

and MARV (GP and NP), Reston Ebola virus (GP, NP and VP40), as well as against Tai Forest 

Ebola virus (NP and VP40) while MARV was least cross-reactive to the other filoviral antigens.  

       

Conclusions  
This study reports for the first time the development of an MIA incorporating recombinant 

proteins for the diagnosis of VHF. This is the first, high-throughput multiplex laboratory assay for 

serological detection of antibodies against LASV, MARV, SUDV and EBOV. When validated, 

this assay holds great potential to be used for large-scale epidemiology surveys, outbreak 

investigations and rapid diagnosis of VHF. Our results suggest that HFV may be silently 

circulating in Cameroon. We plan to validate this assay with human samples and subsequently 

conduct a community-based epidemiological survey of VHF in Cameroon. 
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Discussion 

At health facilities in tropical countries, fever is the most common presenting symptom, or chief 

complaint, among individuals seeking medical care. Fever invariably signifies systemic 

inflammation, often due to infectious etiologies (bacteria, parasite, fungi and viruses). A survey 

conducted in 2007 in 42 countries in Sub-Saharan Africa estimated 655.6 million fever episodes 

in children under five years of age (1). The incidence of fever varies from one country to another 

with an estimated two to nine febrile episodes per year in children younger than five years.  

Diagnosing and managing febrile illnesses in the tropics is very challenging, especially in the 

absence of diagnostic tools and focal signs/symptoms. But, if local epidemiology on the causes 

of fever is well understood by healthcare workers, the patients’ age and geographic location can 

help in deciding appropriate diagnostic and treatment options. Nevertheless, there remains a 

large gap in our understanding of pathogen profiling in most malaria-endemic countries. The 

paucity of reliable data is in part due to the lack of diagnostic tools, active surveillance systems 

and the misplaced emphasis on malaria as the sole cause of fever. The overall objective of this 

dissertation was to identify infectious causes of febrile illnesses in Cameroon. This is particularly 

important because knowing the causes of fever is the first step in deciding appropriate 

treatment, thereby improving health outcomes.  

 

To achieve our overall objective, we embarked on three aims. In Aim 1, we determined the 

diagnostic accuracy of various malaria testing methods, including clinical diagnosis, thick-film 

microscopy (TFM) and rapid diagnostic test (RDT) using PCR as the reference standard. Aim 2 

assessed the prevalence of infectious causes of febrile illnesses in Cameroon. Lastly, in Aim 3, 

we have developed a novel microsphere immunoassay incorporating recombinant proteins as 

antigens and used it to determine the prevalence of infections with pathogens causing viral 

hemorrhagic fevers (VHF) in Cameroon. Our long-term goal was to develop rapid, sensitive and 

specific diagnostic tools for tropical febrile illnesses. The rationale was that improved accuracy 

in diagnostic testing will result in improved health outcomes and guard against the 

indiscriminate use of antimalarial drugs.  

 

Accuracy of clinical diagnosis, TFM, RDT and PCR in the diagnosis of malaria  

Before 2010, the WHO guidelines on the treatment of malaria recommended empiric treatment 

with oral antimalarial drugs for fever in children less than five years living in malaria-endemic 

regions (2). However, due to control efforts, such as the distribution of insecticide-treated nets 

(ITN), the burden of malaria and the proportion of febrile illnesses attributed to malaria have 



   

	 112 

decreased. Regions with previously high malaria transmission are reporting decline in incidence 

(3). Moreover, the availability of RDTs and rise in antimicrobial resistance, challenges the 

purpose of presumptive treatment of febrile illnesses. The WHO revised its fever treatment 

guidelines in 2010 to recommend antimalarial treatment only for confirmed cases by RDT or 

microscopy (4). To begin with, we investigated the accuracy of the various malaria diagnostic 

test methods in Cameroon. Our results showed that clinical diagnosis was the least accurate 

method of diagnosing malaria with a very low specificity, while RDT was the most accurate 

compared to TFM and clinical diagnosis. However, PCR detected many malaria infections that 

were missed by TFM and RDT, making PCR a valuable diagnostic tool especially for the 

purpose of malaria elimination. Because the symptoms of malaria overlap with that of other 

febrile illnesses, accurate diagnosis of malaria will ensure that patients receive appropriate 

treatment. It has been a common practice for healthcare workers in malaria-endemic countries 

to presume that all fevers are due to malaria. In fact, 98% of our study participants were 

presumed to have malaria because of fever, but less than 50% of them were actually infected 

by the malaria parasite. Surprisingly, most of the malaria-negative patients were treated with 

quinine, which is meant to treat severe or complicated malaria. Apart from the impact on the 

patient, improper use of antimalarial drugs leads to wasted resources and can contribute to the 

spread of drug resistance. Moreover, improper treatment of non-malarial febrile illnesses with 

antimalarial have been shown to lead to higher mortality (5). Therefore, diagnosis of all 

suspected cases of malaria using a parasite-based test, followed by appropriate treatment will 

decrease morbidity and mortality associated with febrile illnesses leading to reduction in the 

development of drug resistance, diagnosis and treatment of malaria negative patients for 

causes of fever other than malaria, and overall cost-effective healthcare services. 

  

Despite ready availability of malaria RDT and microscopy technology in our study, treatment 

decisions by healthcare workers were mostly based on clinical signs and symptoms rather than 

on the parasite-based guidelines recommended by WHO. This further demonstrates that the 

availability of diagnostic tests on its own may not be sufficient to improve fever case 

management. Diagnostic tests results are meant to guide clinical decision-making, hence 

testing should not be separated from treatment decision. Therefore, there is a need for 

additional support, such as well-designed competency-based refresher courses for healthcare 

workers that can have a sustainable impact on treatment practices. Such training courses, as 

evident from a study by Mbacham and colleagues, are supposed to last for at least three days, 

in order to promote the behavioral changes required for healthcare workers to adhere to the 
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WHO treatment guidelines for malaria (6). Mbacham and colleagues report that basic training 

(one day) is insufficient to promote the behavioral change required for healthcare workers to 

adhere to malaria negative results. In reality, changing habitual clinical behavior is difficult. As 

Oxan and colleagues put it, there is no “magic bullet” in improving professional practice (7).  

Several reasons can be associated with poor adherence to malaria test results including, i) lack 

of confidence in laboratory results, ii) patient pressure for treatment with antimalarial drugs, iii) 

the tradition of treatment based on signs and symptoms, iv) lack of diagnostic tests for non-

malarial febrile illnesses, v) limited data on the epidemiology of febrile disease in malaria-

endemic areas, and vi) no clear algorithms for the management of non-malarial fevers. 

 

Infectious causes of febrile illnesses in Cameroon  

In order to improve our understanding of the epidemiology of febrile illnesses in Cameroon, we 

conducted a cross-sectional study to profile infectious etiologies in three different geographical 

regions. Our results showed that malaria was the leading cause of febrile illnesses in 

Cameroon. Our study also confirmed that the yearly outbreak of febrile illnesses in the Far North 

region of Cameroon was due to seasonal malaria transmission. Importantly, we identified other 

etiologies of febrile illnesses, including: dengue virus, Toxoplasma gondii, Entamoeba 

histolytica, Shigella sp, Salmonella sp, West Nile virus, respiratory viruses, chikungunya virus 

and sepsis, all of which should be considered by healthcare workers in the differential diagnosis 

of febrile illnesses in Cameroon. Previous studies from some tropical countries demonstrated a 

predominance of acute respiratory infections in febrile patients with high proportion caused by 

viral pathogens (8, 9). We demonstrated that some of the infectious etiologies differ based on 

age and geographic region. Acute respiratory tract infections were the most common cause of 

non-malaria febrile illnesses in young children while in older children and adults, typhoid and 

dengue fever were more common. In two of our study sites (Nkolbisson and Maroua), malaria 

was the main cause of febrile illnesses, while in Bamenda, respiratory viral pathogens were 

responsible for most of the febrile illnesses. Therefore, in a place like Bamenda, giving 

antimalarial treatment to most of these patients with viral infections will be of no clinical benefit. 

Instead, treating other complications that may arise because of viral infections, like pneumonia 

and sepsis (due to secondary bacterial infection), with antibiotics will benefit the patient. As 

evident in our results, the possibility of malaria co-infections should be kept in mind by 

healthcare workers especially if the patient is not responding to antimalarial treatment. By using 

a combination of white blood cell count, body temperature and procalcitonin levels, we were 

able to identify participants at risk of developing sepsis more rapidly as compared to blood 
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culture. This is particularly important because blood culture is known to lack sensitivity, require 

good laboratory infrastructure, and may take several days for the results to be available. A delay 

in diagnosing sepsis and administering antibiotics increases severity of the condition. Thus, if 

PCT is made available as some POCT in tropical countries, it could greatly improve sepsis 

management.   

 

Because of the growing concerns in malaria-endemic regions of non-compliance to malaria 

negative results by healthcare workers, clear algorithms on managing non-malarial febrile 

illnesses are urgently needed. The WHO has published two documents, integrated 

management of childhood illness (IMCI)) and community level integrated community case 

management, to guide healthcare workers to identify and treat children with fever and other 

common childhood illnesses at healthcare facilities (10). The IMCI strategy by WHO uses a 

series of algorithms and flow charts to systematically assess danger signs that can trigger 

immediate hospitalization or referral. It also provides guidelines to classify illnesses like 

diarrhea, pneumonia, measles, fever, otitis media and malnutrition according to severity. Even 

though the IMCI has the potential to increase quality of care, its major drawback is low 

specificity due to overlapping signs and symptoms of some infectious diseases. In fact, our 

results show that very few signs and symptoms can be used to predict the cause of fever in 

febrile patients. As demonstrated by our study and others, algorithms to manage febrile 

illnesses need to take into consideration the heterogeneous distribution of infectious etiologies 

of febrile illnesses and the integration of relevant laboratory tests.  

 

Microsphere immunoassay for detection of viral hemorrhagic fevers (VHF) in Cameroon 

The value of diagnostic tools in the management and control of infectious diseases cannot be 

overemphasized. This dissertation reports the development of a novel multiplex MIA for HFV, 

which can be used for surveillance and also as a readout for vaccine and other immunological 

studies. This represents an important step toward a more effective screening platform for the 

simultaneous detection of multiple pathogens and allows for high sample throughput, fulfilling 

the objectives of a reliable, accurate, and cost-effective process of generating surveillance 

information. Using human/humanized monoclonal antibodies, we demonstrated that MIA is 

sensitive, specific and precise. Furthermore, using a cocktail of monoclonal antibodies we 

demonstrated that MIA can detect and distinguish antibodies directed against multiple HFV. Our 

results suggest that HFV, including EBOV, MARV and LASV, may be silently circulating in 

Cameroon.  
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Because several pathogens can cause febrile illnesses in the tropics, the availability of multiplex 

tests, which can quickly identify a pathogen from a group of pathogens that cause similar 

symptoms is of paramount importance so that appropriate therapy can be initiated and 

appropriate public health measures taken to curb the spread of disease. Furthermore, health 

care providers are faced with the daunting challenge to select the appropriate tests despite the 

fact that febrile illnesses are caused by many pathogens and are clinically indistinguishable.  

 

Lessons learned and limitations 

In the process of conducting these studies, several lessons have been learned that can be used 

to improve future study design. If we were to conduct this study again with enough financial 

resources, we would design the study to include other important pathogens that can cause 

febrile illnesses that were not included in the present study. Also, we would collect urine 

samples, CSF, nasopharyngeal and throat swabs for the diagnosis of urinary tract infections, 

meningitis and acute respiratory tract infections. We would also include chest X-ray to confirm 

diagnosis of pneumonia and blood culture to diagnose septicemia. Other pathogens would 

include HIV and Rickettsia spp. We would include a control group of healthy individuals and 

collect convalescent blood samples for serological diagnosis.     

 

Furthermore, we would include children younger than 6 months, as little research data is 

available on etiologies of fever in young infants. Moreover, febrile illnesses in young infants can 

rapidly progress to severe disease. We would also expand the study sites to include all 10 

regions of Cameroon and collaborate with countries in West and Central Africa for a multicenter 

study (West and Central Africa Febrile Illness Surveillance Network (WCFSN). This will enable 

us to have enough power to conduct statistical analysis including a better prediction model of 

pathogens causing febrile illnesses by using a combination of signs and symptoms, age and 

geographical location. It will be important to also extend the study duration to at least one year. 

This will enable us to have a better understanding of the seasonal variations of the various 

infectious etiologies of febrile illnesses. 

 

In addition, we would devise a means to safely store electronic records of each patient’s 

hospital book. This can be done by using mobile apps such as CamScanner by INTSIG 

Information Co. Ltd, which can be used to scan pages in the patient’s hospital book into clear 

and sharp images or PDF, to email, print or save to a computer. The use of this app does not 

require an internet connection and can therefore be applicable under field conditions. This 
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would enable us to have comprehensive health information of each participant with regards to 

diagnosis and treatment. However, additional measures would have to be taken to ensure the 

safety, security and patient confidentiality of such information.   

 
Conclusions 

Collectively, our data provide the first evidence of several important pathogens that cause 

febrile illnesses in Cameroon. These results will be disseminated to the Ministry of Public Health 

and local medical community in Cameroon, with the potential of improving the health outcomes 

of patients with febrile illnesses. Moreover, our results and others may provide data for the 

development of algorithm for the management of febrile illnesses. This study reports for the first 

time the development of multiplex immunoassay incorporating recombinant proteins for the 

diagnosis of VHF. This assay has the potential to be used for surveillance of VHF in both 

endemic and non-endemic regions without the requirement of a high containment laboratory. In 

our future research, we plan to validate our MIA and will extend the spectrum of pathogens to 

include other causes of fever such as: Zika virus, chikungunya virus, Japanese encephalitis 

virus (JEV), Crimean-Congo hemorrhagic fever (CCHF) virus, and Salmonella typhi/paratyphi. 

We hope to stratify our multiplex diagnostic platform into febrile illness panels such as a 

systemic fever panel, an enteric fever panel and a hemorrhagic fever panel. We have already 

expressed Zika virus envelope protein and are in the process of expressing chikungunya virus 

envelope protein. We hope to express recombinant proteins for other pathogens including Rift 

Valley Fever virus, CCHF virus, Salmonella typhi and JEV.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



   

	 117 

References 
 
1. Herlihy JM, D’Acremont V, Burgess DCH. Diagnosis and Treatment of the Febrile Child.  

Disease Control Priorities, Third Edition (Volume 2): Reproductive, Maternal, Newborn, and 

Child Health. p. 137-61. 2016 

2. WHO. Guidelines for the treatment of malaria. 1st edition. Geneva: WHO. 2006. 

3. WHO. World Malaria Report. Geneva: WHO. 2016. 

4. WHO. Guidelines for the treatment of malaria. 2nd edition. Geneva: WHO. 2010. 

5. Reyburn H, Mbatia R, Drakeley C, Carneiro I, Mwakasungula E, Mwerinde O, et al. 

Overdiagnosis of malaria in patients with severe febrile illness in Tanzania: a prospective study. 

British Medical Journal. 2004;329(7476):1212. 

6. Mbacham WF, Mangham-Jefferies L, Cundill B, Achonduh OA, Chandler CIR, Ambebila JN, 

et al. Basic or enhanced clinician training to improve adherence to malaria treatment guidelines: 

a cluster-randomised trial in two areas of Cameroon. The Lancet Global Health. 2014; 

2(6):e346-e58. 

7. Oxman AD, Thomson MA, Davis DA, Haynes RB. No magic bullets: a systematic review of 

102 trials of interventions to improve professional practice. Canadian Medical Association 

Journal. 1995;153(10):1423-31. 

8. D'Acremont V, Kilowoko M, Kyungu E, Philipina S, Sangu W, Kahama-Maro J, et al. Beyond 

malaria--causes of fever in outpatient Tanzanian children. New England Journal of  Medicine. 

2014;370(9):809-17. 

9. Prasad N, Murdoch DR, Reyburn H, Crump JA. Etiology of severe febrile illness in low- and 

middle-income countries: a systematic review. PLoS ONE. 2015;10(6):e0127962. 

10. WHO. Integrated management of childhood illness and health sector reform. Geneva: 

WHO; UNICEF;. 1999. 

 

 

 
 

 

 


