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ABSTRACT 
 

The 2012-2014 severe drought in California was notably destructive due to especially high 

temperatures and precipitation amounts lower than climatological means. This drought caused 

calamitous and far-reaching effects for the environment, economy and public health. Unlike 

previous periods of drought, understanding the causes of the most recent drought can now be 

accomplished through satellite-based measurements. Satellites offer global measurements of 

precipitation, temperature and aerosol; all of which can be used to estimate drought severity and 

impact. This study offers a 14-year climatology of precipitation, the Palmer Drought Severity 

Index (PDSI) and aerosol optical depth. The National Center for Environmental Information 

(NCEI) computes the monthly averaged PDSI for the state of California. Using this climatology 

of drought severity and MODIS Level 3 aerosol optical depth we can evaluate the impact 

drought intensity has on atmospheric aerosol loading. Increased aerosol has significant regional 

impacts including effects that directly impact communities, such as air quality and visibility, and 

impacts on the regional hydrological cycle by impacting cloud microphysical characteristics and 

precipitation. Precipitation observations from TRMM and GPCP are also analyzed in relation to 

PDSI. The amount of precipitation, its intensity, and duration are all important for determining 

drought severity and are considered here. The findings suggest a strong correlation between 

drought and aerosol, meaning that periods in severe drought tend to also correspond to high 

levels of aerosol loading in the atmosphere. We will also demonstrate precipitation and drought 

trends over the last 14 years.  
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CHAPTER 1: INTRODUCTION 
 

 1.1 Background 
 

Aerosols are tiny particles suspended within Earth’s atmosphere that can significantly affect 

regional and global weather and climate. These small particles can be emitted to the atmosphere 

in numerous ways, including anthropogenic sources and natural sources, both of which can be 

considered primary (emitted directly to the environment) or secondary (the result of interactions 

between primary pollutants, solar radiation, or other atmospheric constituents). Some of these 

sources include sea salt from oceans, mineral dust from arid locations, sulfate and nitrate from 

natural and anthropogenic sources and finally organic and carbon aerosols from biomass burning 

and industrial combustion. Improvements in remote sensing beginning in the early 2000’s allow 

for better understanding of the Earth’s atmosphere by providing global gridded data sets for a 

number of climate related components like aerosols. Using these tools scientists have been able 

to study many aspects of aerosol forcing, including global radiative forcing of aerosol. In 

addition, aerosols can serve as cloud condensation nuclei (CCN) impacting cloud properties and 

formation by changing cloud droplet size and concentration (Rosenfeld et al. 2008). This 

ultimately leads to changes in cloud properties, convection and precipitation (Koren et al. 2005). 

There is a positive correlation between aerosol and cloud microphysical dynamics suggesting 

aerosol is vital to understanding the earth system (Koren et al. 2010). Satellites have given 

scientists a new tool for investigating the magnitude of aerosol effects on weather and climate.  

1.2 Cloud-Aerosol Interactions 
Understanding the changes in cloud properties by the direct and indirect effects of aerosols is 

important for evaluating and predicting changes in weather and climate. It is known that cloud 
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droplets must form on preexisting particles suspended in the atmosphere or lofted from the 

surface. There are a multitude of aerosol processes that lead to changes in clouds and climate, 

both direct and indirect (Ramanathan et al. 2013). The direct effects of aerosol in the atmosphere 

relate to the influence of the aerosols on the planet's radiative balance by the scattering of solar 

and terrestrial radiation, and absorption effects that relate to Earth’s radiative balance. These 

effects are not a concern for this work and will therefore not be discussed in further detail here. 

The indirect effects of aerosols on climate are the mechanisms by which aerosols modify the 

microphysical properties, amount, location and lifetime of clouds. The two main cloud changing 

mechanisms include the cloud albedo effect and the cloud lifetime effect (Lohmann 2006). Key 

parameters for determining indirect effects is the effectiveness of an aerosol particle to act as a 

cloud condensation nucleus, which is a function of the size, chemical composition, mixing state 

and ambient environment.  

1.2.1 Indirect Effects 
Increasing aerosol can change the characteristics of clouds, influencing cloud formation, 

development and precipitation processes. There are two main mechanisms by which aerosol 

affect precipitation (Sorooshian et al. 2009). The cloud albedo, or Twomey Effect, begins with 

an increase in aerosol that results in a larger quantity of cloud drops that are smaller in size as 

long as liquid water content is kept constant (Twomey 1974). Consequently, these smaller drops 

are slower to coalesce into raindrops. This works to suppress precipitation in shallow clouds and 

clouds with low liquid water content, effectively increasing the albedo of the cloud (Li et al. 

2011). The cloud lifetime effect, or Albrecht effect takes the cloud albedo effect one step further. 

The cloud lifetime effect states that increased aerosol primarily suppresses precipitation resulting 

in clouds with more liquid water, higher fractional cloudiness and longer lifetimes (Albrecht 
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1989). Clouds, cloud systems and precipitation are, by nature, dynamically variable across space 

and time and the existence of many interacting feedbacks makes it difficult to directly attribute 

precipitation changes to aerosol perturbations (Sorooshian et al. 2009).  

The following relationships exist when increases in aerosol concentration occur: (1) cloud 

droplets are smaller in size, (2) the lifetime of the cloud becomes longer, and (3) the cloud 

albedo increases. The connection between aerosol and clouds is relatively clear however, the 

relationship of aerosol to precipitation is not well understood. The number and complexity of the 

steps in the relationship between aerosols and precipitation makes quantifying these indirect 

effects challenging. Considering that precipitation from clouds plays the largest role in many 

drought indices, increased aerosol may be of concern to regions susceptible to drought 

(Rosenfeld et al. 2008).  

1.2.2 Aerosol Studies in California 
Studies on the effects of aerosol on precipitation in California have shown conflicting 

approaches. Some have shown that increases in anthropogenic sources of aerosol have reduced 

precipitation from orographic clouds because of the cloud lifetime effect (Lynn et al. 2007). In 

addition, increased aerosol has been shown to reduce snowfall rate due to the slowing of riming 

efficiency from orographic clouds (Lowenthal et al. 2011). Both of these effects pose a serious 

threat to California, where mountainous regions provide precipitation for much of the state water 

supply. Relatively clean oceanic air with low aerosol concentration flows from west to east over 

heavily populated and polluted locations before ascending over the Sierra Nevada mountain 

range downwind.  

However, other studies contradict precipitation suppression by aerosol loading on the 

west coast (Ault et al. 2011). Besides local anthropogenic sources of air pollution, long range 
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transport of Asian dust via extratropical cyclones has been shown to enhance precipitation in 

California (Neiman et al. 2008). Through observational field studies like the CalWater and 

CALJET Campaigns, Asian dust aerosol has been linked to enhanced precipitation. This is based 

on observations that dust can effectively serve as ice nuclei, leading to increased riming rates and 

enhanced precipitation efficiency, which can contribute to enhancement in precipitation (Ault et 

al. 2011). These two mechanisms likely have counteracting effects on the relationship between 

aerosol, clouds, and precipitation in California. Although much work has been done to 

understand this relationship, including field campaigns and observational studies, distinguishing 

between meteorological, microphysical and thermodynamical factors is difficult. Field 

campaigns, which provide valuable in situ data, are infrequent and sample only small areas for a 

short period of time. By considering data from remote sensors, data can be obtained over large 

areas for extended time periods.  

1.3 Drought Definition 
Because of drought’s far-reaching impacts on society, economy and the environment, 

studying drought is of great importance. Unfortunately, understanding and predicting drought is 

challenging. Even defining when a drought begins is difficult due to the fact that drought varies 

on both a temporal and spatial scale, resulting in many ways to define drought periods (Palmer 

1965).  Additionally, the geophysical, hydrological, meteorological, geological, economic and 

political sciences all understand and define drought from different viewpoints making it 

challenging to develop a definition that suits all cases. This work studies drought and uses the 

Palmer Drought Severity Index (PDSI) since it is the most widely used index in the field of 

Atmospheric Science. Palmer (1965) defines drought as a “prolonged and abnormal moisture 

deficiency.” Although this definition seems vague, the generalized version can help atmospheric 
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scientists study drought in an objective way by providing a rigid and mathematical framework. 

Drought severity is also challenging to define considering it is dependent on duration, intensity, 

geographic extent and human water supply needs. To make quantifying drought more 

complicated, drought impacts is also heightened when a society is ill-prepared and vulnerable by 

reducing self-resilience (Wilhite et al. 2014). In many locations, the lack of proper infrastructure 

and policy further complicates the societal impacts of drought (Wilhite et al. 2014). 

1.4 Societal Effects of Drought 
Due to the nature of droughts, they tend to produce highly complex and spatially variable 

effects for the societal, economic and environmental sectors.  Drought often has wide reaching 

effects that can ripple from regional to national to global in scale. These impacts are mostly due 

to the fact that many industries rely on water and precipitation for their goods and services. 

Destruction from drought, including reduced water supply, failing agricultural yields and even 

job loss, from drought tends to be a product of societal vulnerability and the severity of the 

drought itself. Impacts of drought are classified as direct and indirect (Svoboda et al. 2007). The 

direct effects include increased wildfires and reduction of crop yields. The indirect effects come 

into play as a byproduct of the direct effects. These may include unemployment, rising prices of 

goods and tax increases.  

1.5 Drought in California 
Drought is primarily a regional phenomenon. Furthermore, all indicators of drought must 

be considered on a regional basis (Alley 1984).  A good example of an especially severe drought 

with far reaching implications is the most recent California drought between 2012-2014. With 

California’s growing population and corresponding increasing water needs, the influence of this 

drought is of much interest to the scientific community.  A physical representation of California 
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can be seen in Figure 1, showing large areas of desert, agricultural land and forested regions. 

Scientists have found through paleoclimate reconstructions that the severity of the 2014 drought 

is especially severe compared to past records, due to both the low water year precipitation and 

record setting warm temperatures (Griffin and Anchukaitis 2014). In fact, central and Southern 

California have had the lowest precipitation totals in the entire National Center for 

Environmental Information (NCEI) climatic record, going back 123 years. During this period, 

these low precipitation levels coupled with warmer than normal temperatures were found to 

exacerbate the impacts of precipitation reduction (Weiss et al. 2009). Furthermore, extended 

periods of precipitation reduction affect surface and subsurface water supply, reduces 

streamflow, groundwater, reservoir and lake levels. Figure 2 displays the mean temperature trend 

for the state of California showing an increase of roughly two degrees Fahrenheit between 1895 

and 2016 (NCEI 2011).  It has been shown that increasing temperatures in the southwestern 

region worsens precipitation reduction (Weiss et al. 2009). These very warm and dry conditions 

have serious impacts on agriculture, infrastructure, water supply and economic activity.  
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Figure 1. Physical (right) and vegetative (left) map of the state of California. 
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Figure 2. Temperature averaged monthly for the state of California (black line) and the 120-

year trend (red line). The best-fit linear equation is given in the legend. 
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In addition, the population of California is a major concern for drought policy. According 

the United States Census Bureau, more people are moving to California more than ever before 

(U.S. Census 2016). California has seen a roughly 5.4 % increase in population since 2010, a 

factor greater than most other states and now has the largest population in the United States.  The 

three year period from 2012 to 2014 was the most severe drought that California has experienced 

in the last 120 years (Griffin and Anchukaitis 2014). These findings tend to suggest there may be 

anthropogenic ties to drought severity. Furthermore, the number of drought occurrences in 

California has been greater in the past two decades than in the last century (Diffenbaugh et al. 

2015). From climate models with and without anthropogenic influences it was found that human 

activities increase the likelihood that a dry precipitation year is also abnormally warm 

(Diffenbaugh et al. 2015). This human-influence will likely have wide reaching effects, 

especially is those areas of high population that demand strong agricultural production.   

Agriculture is a large part of California’s economy. The state of California is the largest 

contributor to economic and agricultural activity in the United States (Diffenbaugh et al. 2015), 

but unfortunately its biggest agricultural counties are in arid zones. Farmers have adapted to dry 

conditions and are now dependent on water harvesting and irrigation projects because the land is 

sensitive to rainfall and drought conditions. Some of these methods can cause further strain on 

the local water supply like groundwater pumping. The drought year 2014 cost California $2.2 

billion in damages and 17,000 agricultural jobs (Howitt et al. 2014). Livestock was also affected 

due to the loss of usable pasture land. Almost $100 million in losses can be attributed to pasture 

loss from drought conditions in 2014 (Howitt et al. 2014). All in all, the 2014 drought is 

responsible for the greatest absolute reduction to water availability for agriculture ever seen in 

California (Howitt et al. 2014).  This is largely due to the high agricultural demands and low 



 19 

streamflow and reservoir levels. The seasonal cycle of drought in California is depicted in Figure 

3 showing that the lowest and most severe months for drought tend to be in the summer growing 

season (June July and August). In addition, drought is affecting California’s energy supply from 

hydroelectric power. Water reservoirs that also serve turbines supplying power are abnormally 

low.  Reduced snowpack, reservoir levels and streamflow result in diminished surface water 

supply, which is worsened with increasing demand from the rapidly growing population in 

California.  
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Figure 3. The seasonal cycle of PDSI (above) averaged from 1896 to 2016 over the entire 

state of California and the annual precipitation cycle (below) for California. The blue line is the mean 

for each data type.   
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Recent wildfires have worsened this phenomenon by limiting natural environments 

through fires. Drought allows for the extension of the wildfire season further into the fall and 

winter seasons leading to more wildfires with each year (Weiss et al. 2009). In addition, drought 

adds a component to intensify wildfires. Dry, hot and windy conditions along with dry vegetation 

tend to spark wildfires and increase their intensity and duration (Westerling and Swetnam 2003). 

These unpredicted changes to the natural environment of California will likely continue to affect 

the wildlife, wildfires and vegetation.  

 Increased rainfall may not alleviate symptoms of drought. Land-falling winter storms have 

large meteorological impacts on California by way of the precipitation from these systems (Ault 

et al. 2011). However, many factors affect the quantity of precipitation required to end or 

ameliorate a drought. Too much precipitation, like flooding, landslides and heavy snow, in a 

short timespan may not help alleviate a drought.  Multiple winter storms must persist for an 

entire season before PDSI values begin to increase. Negative PDSI values are associated with 

drought and positive PDSI are non-drought or wetter periods. Once surface water recuperates, it 

may take years to fully recover from the depletion of ground water. The typical conditions that a 

region experiences during each month and season of the year is also essential (Karl et al. 1987). 

Given a drought of equal magnitude in a dry and wet climate, the wetter region requires more 

precipitation to end the drought by definition of PDSI. Thirdly, the season in which precipitation 

falls can also influence the amount of precipitation needed to end drought (Karl et al. 1987). All 

of these factors contribute to substantial challenges for water resource management, particularly 

maintaining the balance between water supply and flood mitigation. 
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1.6 Connections to a Positive Feedback Loop 
In order to make connections within this study, a positive feedback loop provides a way to 

visualize the way drought, aerosol, cloud and precipitation relate. First consider some 

mechanism increases aerosol amount and that modifies cloud microphysical properties in the 

ways stated in Chapter 1.2.1. Smaller drops that coalesce into rain less effectively lead to local 

precipitation suppression. Precipitation suppression, if occurring during drought conditions, may 

exacerbate drought due to lack of moisture. Drought affects the amount of moisture in the top 

layer of soil by drying it to the point where individual dust particles can be easily lofted. These 

dust particles would then increase the amount of local aerosol thus completing a positive 

feedback loop. This work will concentrate on just one of the steps in this loop, mainly 

determining if aerosol increases during drought.  

1.7 Study Objectives 
The 2012-2014 Californian drought has been one of the worst in observational history as 

shown in Figure 4. This drought has affected more people and cost more money than any 

previously documented drought in Californian history. Remote sensing provides invaluable tools 

for understanding the mechanisms that cause drought. Using these advances along with surface 

based measurements can provide information about why droughts happen and how drought 

behaves. The first objective of this thesis is to make a quantitative assessments of the relationship 

between aerosol and drought in California. The second objective is to investigate this 

relationship of aerosol during drought and non-drought periods in California. The third objective 

is to understand how precipitation in California relates to aerosol.  
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1.8 Organization of Thesis  
This thesis is organized as follows: Chapter 2 describes the data used for this work. Chapter 3 

outlines the Methodology. Chapter 4 states the Results, Chapter 5 provides discussion and 

conclusions and Chapter 6 provides the references and acknowledgements.  
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CHAPTER 2: DATA 
 

 Aerosol, precipitation and PDSI make up the foundation of the analysis. Unfortunately, no 

instrument exists to measure all three variables in the same spatial, temporal and measurement 

methods. In order to produce the best results, data sources from both satellite and ground based 

sensors were used. The MODerate resolution Imaging Sounder (MODIS) was used for the 

analysis of aerosol (Remer et al. 2005). The Tropical Rainfall Measuring Mission (TRMM) and 

the Global Precipitation Climatology Project (GPCP) were used in conjunction to get the best 

estimate of precipitation (Adler et al. 2003; Kummerow and Barnes 1998). The NCEI’s historical 

temperature and precipitation and PDSI record were used. A summary of each of these data 

sources is included here as well as a summary of how the PDSI is calculated.  

2.1 The Palmer Drought Severity Index  
Drought can be evaluated as a meteorological quantity and characterized by anomalous 

periods of severe precipitation deficit by the use of a drought index. In fact, attempts to quantify 

drought often make generic assumptions and over simplify many computations. Because of these 

simplifications, criticism of these indices is common because of the confusion different indices 

can cause for decision makers. Some even oppose the development of a drought index because a 

single number cannot properly take into account all of the needed environmental factors. 

Typically, drought severity is a function of drought magnitude as well as the duration of moisture 

deficiency (Palmer 1965). PDSI is one such index that considers variables such as temperature, 

precipitation, latitude of the location of interest, and the available water capacity of the soil (field 

capacity) and computes an estimate of drought severity. Some limitations of PDSI have been 

identified by Alley (1984).  
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There are two main issues to consider with the PDSI when calculating drought from a 

meteorological viewpoint. The PDSI algorithm region of interest has no political, geographical 

or vegetative boundaries which leaves this open to interpretation by the researcher. In addition, 

the highly criticized method for quantifying evapotranspiration from Dr, C. W. Thornthwaite 

was used in the calculation discussed in the next section (Palmer 1965; Thornthwaite 1948) .  

These limitations of the PDSI are valid, however, the PDSI is still the most widely used 

meteorological index for drought in the United Stated (Heim 2003) and provides good 

comparisons to larger grid boxes from remote sensors in space.    

2.2 Palmer Drought Severity Index Algorithm  
 

The PDSI calculation from Palmer is elaborate, as it incorporates many input variables 

and calculations. The first step in estimating drought severity is the moisture balance calculation 

(Palmer 1965). A two-layer soil concept is used to determine where in the ground layers 

moisture can be removed or added. The upper layer, or plow layer, is generalized to assume a 

holding capacity of one inch (25 mm) of available moisture. Therefore, it is assumed that 

evapotranspiration takes place in this layer until all the moisture is removed and at that time 

moisture from the second layer can then start in the process.  Potential Evapotranspiration (PE) is 

then calculated using Thornthwaite’s method (Palmer 1965; Thornthwaite 1948). Thornwaite’s 

formula is essentially a measurement of potential evapotranspiration representative of the 

climatic demand for moisture (Palmer 1965). Other aspects of soil moisture balance like 

potential recharge (PR), potential loss (PL) and potential runoff (PRO) values are estimated. 

Palmer denotes these quantities as Climatologically Appropriate for Existing Conditions, 

meaning that information is transferred into coefficients that depend on the region being 

analyzed (Palmer 1965). The coefficients are as follows: 
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𝛼𝛼𝑗𝑗=𝐸𝐸𝐸𝐸𝚥𝚥����/𝑃𝑃𝑃𝑃𝚥𝚥�����     ( 1) 

𝛽𝛽𝑗𝑗 = 𝑅𝑅𝚥𝚥� /𝑃𝑃𝑃𝑃𝚥𝚥�����  ( 2) 

𝛾𝛾𝑗𝑗 = 𝑅𝑅𝑅𝑅𝚥𝚥�����/𝑃𝑃𝑃𝑃𝑃𝑃𝚥𝚥�������  ( 3) 

𝛿𝛿𝑗𝑗 = 𝐿𝐿𝚥𝚥�/𝑃𝑃𝑃𝑃𝚥𝚥�����   ( 4) 

where j represents months of year, ET is evapotranspiration, R is recharge, L is soil 

moisture loss, 𝛼𝛼 is the coefficient of evapotranspiration, 𝛽𝛽 is the coefficient of moisture 

recharge, 𝛾𝛾 is the coefficient of runoff and 𝛿𝛿 is the coefficient of moisture loss. The over bar 

represents the average of that quantity for a given monthly time period.  

The second step is to subtract the actual precipitation from the average precipitation using 

the moisture balance coefficients. Note that for equation 1, 𝛼𝛼𝑗𝑗𝑃𝑃𝑃𝑃 = (𝐸𝐸𝚥𝚥�/𝑃𝑃𝑃𝑃𝚥𝚥)𝑃𝑃𝑃𝑃���������� therefore; 

𝑑𝑑 = 𝑃𝑃𝑗𝑗 − (𝛼𝛼𝑗𝑗𝑃𝑃𝑃𝑃𝑗𝑗 + 𝛽𝛽𝑗𝑗𝑃𝑃𝑃𝑃𝑗𝑗 + 𝛾𝛾𝑗𝑗𝑃𝑃𝑃𝑃𝑃𝑃𝑗𝑗 − 𝛿𝛿𝑗𝑗𝑃𝑃𝑃𝑃𝑗𝑗)  ( 5) 

where P is the areal average precipitation for a particular month. 

The right side of the equation 5 is a simple water balance model. The total equation 

represents the departure from normal. It is defined as evapotranspiration plus runoff plus ground 

water recharge minus change in moisture storage. A weighting factor is then used to calculate the 

“moisture anomaly index” so that it can be compared to a variety of locations for any given 

month using the parameter “K” (Palmer 1965).  K is determined from climate records using the 

following equations.   

𝑍𝑍 = 𝐾𝐾𝑗𝑗𝑑𝑑  ( 6) 

where 𝐾𝐾𝑗𝑗  is a weighting factor 𝐾𝐾 = 17.67𝐾𝐾𝚥𝚥 �

∑ 𝐷𝐷𝑖𝑖×𝐾𝐾𝚥𝚥�12
𝑗𝑗=1

  ( 7) 

𝐾𝐾𝚥𝚥� = 1.5 𝑙𝑙𝑙𝑙𝑙𝑙10(𝑇𝑇𝑗𝑗 + 2.8/𝐷𝐷𝑗𝑗) + 0.50  ( 8) 

𝑇𝑇𝑗𝑗 = (𝑃𝑃𝑃𝑃𝚥𝚥�����+𝑅𝑅𝚥𝚥� + 𝑅𝑅𝑅𝑅𝑗𝑗)/(𝑃𝑃�𝑗𝑗 + 𝐿𝐿�𝑗𝑗)   ( 9) 
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where 𝑇𝑇𝑗𝑗  is a comparison between moisture demand and moisture supply. 𝐷𝐷 is the mean 

absolute values of the monthly moisture departure. This moisture anomaly index (Z) varies 

between +/- 4. 

After establishing a value for 𝐾𝐾𝑗𝑗 then the values of Z are used to determine the monthly 

PDSI using the following equation.  

𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑗𝑗 = 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑗𝑗−1 + 1
3
𝑍𝑍𝑗𝑗 − 0.103(𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑗𝑗−1)  ( 10) 

showing that the initial month in a dry or wet period is simply  PDSIj = 1
3

Zj 

The third term on the right hand side of equation number 10 is included so that when 

Z=0, or there is an average month, the PDSI value also approaches zero (Palmer 1965). In order 

to make this index have concrete meaning, Palmer divided the moisture anomaly index into 

different “classes” (Alley 1984). The index ranges from +/- 6 in value denoting dry (-) or wet(+) 

periods. If PDSI ≤ -4 there is extreme drought in that region. For example, a PDSI ≤ -3 is 

considered severe drought, PDSI of ≤ -2 is a moderate drought and a PDSI of ≤-1 is a mild 

drought. Finally, Palmer (1965) requires a reanalysis of the series to determine beginning and 

endings of drought and to develop a formula for drought severity for the region of interest. 

Palmer created a value 𝑃𝑃𝑒𝑒 which can be considered a percentage probability that drought has 

ended.  

𝑃𝑃𝑒𝑒 =
∑ 𝑈𝑈𝑖𝑖−𝑗𝑗
𝑗𝑗=𝑗𝑗∗
𝑗𝑗=0

𝑍𝑍𝑒𝑒+∑ 𝑈𝑈𝑖𝑖−𝑗𝑗
𝑗𝑗=𝑗𝑗∗
𝑗𝑗=0 −𝑈𝑈𝑖𝑖

× 100%  ( 11) 

where 𝑍𝑍𝑒𝑒 = −2.691(𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑖𝑖−1) − 1.5 in a drought 

and 𝑍𝑍𝑒𝑒 = −2.691(𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑖𝑖−1) + 1.5 in a wet spell 

where U is the amount of dryness/wetness effective in ending a drought/wet spell.  
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𝑍𝑍𝑒𝑒 is essentially the number in a single month that is needed to bring PDSI to -0.5 or 0.5. 

U is equal to Z+0.5 in a drought or Z-0.5 in a wet spell. For example, when 𝑃𝑃𝑒𝑒 is 100% the 

drought is over. However, the drought is officially over any time 𝑃𝑃𝑒𝑒 is greater than 0% and then 

continues to stay above 0% for some amount of time until it reaches 100% (Palmer 1965).  

Although PDSI has numerous variable inputs, precipitation is the only term of 

importance for this study because we can consistently and constantly measure it from remote 

sensors.  

2.3 National Centers for Environmental Information: Climate at a Glance 
 

Monthly precipitation and PDSI values from 1895 to 2016 were retrieved from the United 

States Climate Divisional Database, available through the National Oceanic and Atmospheric 

Administration (NOAA) through their Climate at a Glance initiative and available 

from http://www.ncdc.noaa.gov/cag/time-series/us. The National Centers for Environmental 

Information (NCEI) has been monitoring temperature and precipitation across 344 climate 

divisions in the United States since 1895 (Guttman and Quayle 1995). These divisions are 

created to align with county boundaries and as many as 10 can exist in any one state (NCEI 

2011). Users can select the city, state, regional and national data for a number of temperature and 

precipitation variables like average temperature, min and max temperature and heating and 

cooling degree days. Other drought indices include Palmer Modified Drought Index (PMDI), 

Palmer Hydrological Drought Index (PHDI) and Palmer Z index. Drought, and other climate 

indices have been derived from these data. These data are meant to be used to study large scale 

climate features and anomalies within the United States. The two sets of data from the NCEI 

platform were used in this analysis are PDSI and precipitation. PDSI was computed by the NCEI 

using Palmer’s original method.  Figure 4 shows the long term trend of PDSI.  The best fit line 

http://www.ncdc.noaa.gov/cag/time-series/us
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(dashed) shows the 1985-2016 trend. The years 2012, 2013 and 2014 are highlighted, all of 

which are well below the trend line. Initial analysis shows the extreme nature of the 2012-2014 

drought.  

 

 

 

Figure 4. Time series of averaged monthly PDSI for the State of California from 1895 to 2016 

(black) as well as a best fit linear line (blue dashed). The best fit linear equation is given in the top 

right. The 2012-2014 drought is highlighted in red.   
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2.4 MOderate Resolution Infrared Spectrodiometer (MODIS) 
 

The satellite data used in this analysis was taken from the MODIS sensor on the Terra and 

Aqua satellites, which has been orbiting earth since 2002. Due to the nature of polar orbiting 

satellites, Terra MODIS and Aqua MODIS view the entire Earth's surface every 24 to 48 hours. 

MODIS acquires data in 36 spectral bands ranging from 15 to 41 µm (Remer et al. 2005). For 

example, MODIS is able to measure land,  cloud and aerosol properties, ocean color, 

phytoplankton and biogeochemistry, atmospheric water vapor and temperature, atmospheric 

temperature, cirrus clouds, water vapor, cloud properties, ozone and surface/cloud temperature 

(Remer et al. 2005). This work will use solely, pixel-level retrievals, or MODIS Level 3 (L3). L3 

data is an aggregation of Level 2 (L2) data onto a gridded 1 × 1 degree global grid to represent 

the statistics (mean, weighed means) of L2 products contained within grid square (Remer et al. 

2008). These products are serviced by National Aeronautics and Space Administration (NASA) 

Goddard Earth Sciences (GES) Distributed Active Archive Center (DAAC) 

at http://daac.gsgc.nasa.gov/MODIS/.  

The MODIS aerosol product retrieves ambient aerosol optical depth (AOD), particle size 

parmeters, mass concentration, asymmetry factor, backscattering ratio and the Ångstrom 

exponents over land and ocean globally (Kaufman et al. 1997). AOD is defined as the degree to 

which aerosols transmit solar energy by absorption or scattering and has no unit. It is essenitally 

the amount of aerosol in a column of air over a specific area. Measurments of cloud and aerosol 

using MODIS data have potential sampling and algorithm issues. This is due to the fact that 

MODIS does not have the ability to report cloud and aerosol in the same pixel. To prevent 

further error, the MODIS algorithm only uses pixels that have been recognized as having no 

cloud cover for reporting AOD.  MODIS AOD can be used with a high degree of accuracy as 

http://daac.gsgc.nasa.gov/MODIS/
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long as certain conditions are met. MODIS derived aerosol has been validated using the Aerosol 

Robotic Network (AERONET) measurements. In fact, MODIS has been shown to estimate AOD 

with an accuracy of 60% over water and 72% over land (Remer et al. 2008).  Tanre et al. (1997) 

claims that MODIS derived AOD has an error of +/- 0.03 to 0.05 over oceans and +/- 0.05 to 

0.15. All in all, MODIS allows for the better observations of aerosols because of its higher 

resolution than other existing sensors (Remer and Kaufman 2006).   

Since aerosols are categorized by their size, often through a lognormal distribution, 

MODIS uses radius as a means of classification for their aerosol model (Remer et al. 2005). 

There are two MODIS algorithms, one for land and one for ocean. Depending on the algorithm 

there can be as much as 30% measurement error,  this is partially due to optical geometry, clouds 

and nighttime measurements (Levy et al. 2009). Therefore, for comparison, this work uses 

MODIS Collection 6 (C6) Deep Blue AOD for best results.  

2.4.1 Deep Blue Algorithm 
The L3 Aerosol product from MODIS includes the Deep Blue algorithm which was 

developed to provide aerosol optical thickness over bright land areas like deserts, some of which 

have the greatest amounts of aerosol in the world (Levy et al. 2010). These data were retrieved 

from http://modis-atmos.gsfc.nasa.gov/. The algorithm consists of three separate aerosol optical 

depth retrievals: one for bright land, one for dark land and one for water. This addition to the 

original MODIS algorithm allows for improved sensing over deserts, which cover much of 

California.  Compared to the previous version, MODIS Collection 5 (C5), C6 Deep Blue has 

improved cloud screening, a dust aerosol model and improved quality control screening (Hsu et 

al. 2015). The Deep Blue algorithm expands the coverage of aerosol products to include all snow 

free land surfaces including vegetated areas. C6 Deep Blue shows an improved correlation to 
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AERONET AOD measurements from 0.86 (C5) to 0.93 (C6) (Hsu et al. 2015). In addition, C6 

data has nearly doubled the number of error free estimates, providing more global coverage.   

Satellite retrievals of aerosol properties has proven to be invaluable for numerous fields 

of research, however, MODIS cannot see through cloudy regions. Therefore, spatial averages are 

utilized to get best estimates of aerosols. Although the retrievals will never be “true,” a spatial 

average for a region can be used with confidence. Therefore, this study neglects the natural 

spatial variability of AOD at smaller scales than 1 × 1 degree, the resolution of MODIS AOD L3 

data. Although a L3 global data was originally obtained, a subset for only the area encompassing 

the state of California was used for the years 2002-2016. 

2.5 Global Precipitation Climatology Project (GPCP)  
 

Reliable precipitation data has long been valued in the scientific community for uses in 

climate studies, societal applications, drought and industrial engineering. Therefore, quantifying 

precipitation is of vital importance, yet no single product provides the necessary coverage and 

accuracy to accomplish dependable precipitation estimates. The GPCP project is a combined 

data set that produces a global precipitation analysis. Combining data from many sources to form 

one large global compilation is complex because there is no single type of measurement that 

covers the entire globe with accuracy. Sources of precipitation data include rain gauge and 

soundings as well as low orbit and geosynchronous satellite observations. The data is formatted 

in a 2.5 × 2.5 latitude-longitude grid and covers the time period 1979 to 2016 (Huffman et al. 

1997). The merging of microwave sensors, infrared sensors and gauge data were taken advantage 

of each data sets’ strengths. For example, the remote sensing data has good temporal resolution 

but tends to preform best under deep convection situations (Huffman et al. 1997). In order to 

produce the global gridded dataset, a blending procedure was created for combining these data 
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sets based on Huffman et al. 1997. The initial results of Huffman et al. 1997 show fair agreement 

with existing climatology (Huffman et al. 1997). In addition, the global products include 

uncertainty due to a random error calculation for best analysis due to the high level of difficulty 

in the blending algorithm. The complex nature of adapting satellite data to grid based quantities 

can cause error. This analysis method changed from V1 to V2. Version 2.1 included an update of 

the gauge input dataset and Version 2.3 now includes data from the SSMIS satellite. The data for 

this study was retrieved from https://www.esrl.noaa.gov/psd/data/gridded/data.gpcp.html with 

the product name  

precip.mon.mean.nc.  

2.6 Tropical Rainfall Measuring Mission (TRMM)  
 

Although precipitation is one of the key components of the hydrological cycle, high 

spatial resolution data has long been lacking in measurements of precipitation. Before satellite 

data, rain gauge and other point-measurements were used but provided limited spatial resolution. 

The TRMM mission was developed to address this issue and fill gaps in our knowledge of the 

hydrological cycle (Kummerow and Barnes 1998). The goal of the NASA and the National 

Space Development Agency was to measure rainfall and energy exchange in the tropics and the 

subtropics (Kummerow and Barnes 1998). The last two years (2015 and 2016) of data included 

in this analyses (Product 3B42) is a collection of multiple independent precipitation estimates 

from the TRMM Microwave Imager (TMI), Advanced Microwave Scanning Radiometer for 

Earth Observing Systems (AMSR-E), Special Sensor Microwave Imager (SSMI), Special Sensor 

Microwave Imager/Sounder (SSMIS), Advanced Microwave Sounding Unit (AMSU), 

Microwave Humidity Sounder (MHS), and microwave-adjusted merged geo-infrared (IR) 

(Huffman and Bolvin 2017). GPCP provides longer and more consistent record, from 1979 to 

ftp://ftp.cdc.noaa.gov/Datasets/gpcp/precip.mon.mean.nc
ftp://ftp.cdc.noaa.gov/Datasets/gpcp/precip.mon.mean.nc
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2016, for climatological comparisons. These instruments include a microwave imager (MI), 

precipitation radar (PR) and the Visible and Infrared Radiometer System (VIRS). The satellite 

also caries Earth Observing Systems including the Clouds and Earth’s Radiant Energy System 

and the Lightning Imaging system. This combination of passive and active instruments provided 

three dimensional coverage of the global tropical regions (Kummerow and Barnes 1998). The 

data covers an area from 50° S to 50° N for all longitudes and the satellite orbited at 350 km with 

a 35 degree inclination angle (Kummerow and Barnes 1998). The data became available starting 

in 1997 and ended in 2015, with the combined data set (without TRMM) expected to continue to 

2018 (Kummerow and Barnes 1998). Kummerow at al. (1998) summarizes the updates to the 

TRMM project after two years of use. The improvements of the project show an increase of 24% 

(Version 5) for global monthly averages and show promise for future studies. The data used for 

this study was retrieved from https://pmm.nasa.gov/data-access/downloads/trmm. TRMM 3B43 

Version 7 retrievals between 1998 and 2016 were used at 0.25 by 0.25 ° resolution.  The 3B43 

dataset merges the daily 3B42 dataset with the GPCP rain gauge analysis because it can provide 

better large scale climate estimates when merged with remote sensing techniques. In order to get 

a visual representation of the three precipitation data types that were used in this study, Figure 5 

shows the time-series NCEI precipitation (mm/day) between 1895 to 2016 overlaid with TRMM 

and GPCP precipitation data. It provides visual context and comparison between the three types 

of data. NCEI has the longest record followed by GPCP and TRMM but they all overlap in time 

so comparisons between them are possible. Notice the annual fluctuations patterns agree between 

the three data sets. The TRMM merged satellite analysis indicates fairly close agreement with 

the GPCP estimates however, notice the GPCP precipitation levels show significantly lower 

values of precipitation than NCEI and TRMM. The GPCP analysis is done at 2.5 × 2.5 degree 

https://pmm.nasa.gov/data-access/downloads/trmm
http://rain.atmos.colostate.edu/CRDC/datasets/TRMM_3B42.html
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latitude/longitude resolution and has different retrieval methods and averaging algorithms than 

TRMM. The same features are evident but there are subtle differences in the magnitudes (Adler 

et al. 1999). TRMM based estimates have higher peaks that match up with NCEI peaks. Because 

GPCP emphasizes long term climate trends, data is averaged spatially over a much larger area 

than TRMM, many of the extremes in precipitation can be lost.  

 

 

 

 

Figure 5.  Time series for all precipitation data used in this analysis including 1) NCEI (red) 

going back to 1895, 2) GPCP (green) going back to 1979, and 3) TRMM (blue)starting in 1998. 
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Chapter 3: Methodology 
3.1 Data Extraction and Processing 
 

The entire record of precipitation and PDSI from NCEI, precipitation from the TRMM and 

GPCP projects and aerosol from MODIS were obtained. The NCEI data was collected in such a 

way that little data processing was needed to complete the 120-year time series. In contrast, the 

remote sensing data required detailed processing in order to be scientifically valuable to this 

project. For each month, a box roughly 12.5 × 12.5 degrees latitude and longitude was extracted 

around California for each of the following data sets: TRMM, GPCP and MODIS. Then, an 

ocean and land mask was created to fit and applied to the extracted data and applied. This 

allowed for a complete and accurate comparison of the data.  The land-ocean mask only includes 

the land mass area of California but not the ocean for comparison with a collection of ground 

based measurements from NCEI. Figure 6 shows an example of GPCP data with and without the 

ocean mask. 
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Figure 6. An example of the land ocean mask used for TRMM data for the state of California 

averaged for the month of January 1998. Without a mask (top) and with a mask (bottom).  
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3.2 Annual Cycle Selection Periods 
 

Precipitation in California exhibits spatial, topographical and seasonal cycles. Subdividing 

the data into seasons helps to show clear distinctions between wet and dry periods as well as 

revealing their individual trends. Since precipitation patterns along the West Coast are strongly 

related to local and large scale circulation patterns and have high seasonality, there tends to be a 

distinct wet and dry season in California shown in Figure 3 (Cayan and Roads 1984). By looking 

at wet and dry periods individually, more in-depth analysis of drought periods can be achieved. 

The annual precipitation cycle is distinct with a maximum in the winter and a minimum in the 

summer (Cayan and Roads 1984). Winter brings frontal systems with rain and snow while the 

summer is characterized by hot and dry conditions(Weiss et al. 2009). In this work, the “wet” 

season is determined to be December, January and February (DJF) while the “dry” season is the 

months of June, July and August (JJA).  

3.3 PDSI Selection Periods for Wilcoxon Mann Whitney Rank Sum Tests 
 The long term time-series PDSI values for California were examined using the NCEI 

climatological data. Using a 13-month running average, we computed trend lines for two time 

periods: 1895-2016 and 2002-2016. The 13-month average was chosen to avoid yearly average 

issues. From Figure 7, both lines show a substantial decrease over time meaning more severe 

drought is prevalent in recent years. In addition, the difference between the two rates of decrease 

is large. Between 1895 and 2016 there was a reduction of about 0.121 PDSI/decade while the 

2000’s show a more extreme decrease of 2.77 PDSI/10 years. It can be stated that between 2002 

and 2016, drought in California has become more severe than ever in the 120-year climatology. 
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A focused analysis of this same trend reveals 5 local minima and maxima between 2002 and 

2016 seen in Figure 7. 

In order to compare the 2012-2014 drought to other non-drought periods, corresponding 

periods of positive PDSI, negative PDSI and neutral PDSI were chosen. Figure 7 demonstrates 

the PDSI trends between 2002 and 2016. The local minimum and maximums during the 14-year 

period were calculated. These represent the recent drought and non-drought periods in 

California. MODIS Aerosol data was extracted for the 2 months on either side of the local min or 

max, to identify a 5-month period of time, sufficient for the analysis. The five-month extraction 

period was chosen to get the best representation of the drought or non-drought aerosol 

characteristics during that time. By comparing these five 5-month time periods, conclusions can 

be drawn to reveal the relationship between PDSI and aerosol in drought and wet periods. Table 

1 summarizes the 5 periods used for analysis. Each minimum and maximum is labeled period 1 

through 5 consecutively.  
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Figure 7. (Top) PDSI averaged monthly and fit to a 13 month running average (blue) for the State of 

California from 1895 to 2016 as well as a best-fit linear line (red dashed). (Bottom) PDSI for 

California from 2002 to 2016 with the 13-month running mean (blue) the raw data (black), and a 

linear fit (dashed red). The zero line is highlighted in solid red. Black numbers are displayed as the 

five local minimum and maximums between 2002 and 2016.  
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Period 

Number 

Local Min/Max Extracted 5-month period PDSI 

Min/Max 

PDSI 

Classification 

1 May 2003 March 2003 – July 2003 0.5 Near Normal 

2 October 2005 August 2005 - December 2005 4 Extremely Wet 

3 February 2008 December 2007 – April 2008 -4 Severe Drought 

4 March 2011 January 2011– May 2011 4 Extremely Wet 

5 September 2014 July –2014 - November 2014  -6 Severe Drought 

 

Table 1. Table summarizes the selected periods for data analysis extracted from Figure 7.  
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3.4 Data Re-gridding 
 

TRMM data were re-gridded from 1 × 1 degree to match the GPCP grid resolution of 2.5° × 

2.5° using a linear interpolation process in both the latitudinal and longitudinal directions. Both 

data sets were used because of TRMM’s tendency to lose skill at higher latitudes, especially 

poleward of 40 degrees (Nesbitt and Anders 2009). Unfortunately, California is located at the top 

of TRMM’s domain between 30 and 42 degrees north. In addition, the entire TRMM satellite 

was unavailable starting in April 2015. In addition, the comparison between two remote sensing 

packages like TRMM and GPCP provide confidence in the precipitation data used in this study.  

Figure 8 shows an example of TRMM that was re-gridded to match GPCP. Next, statistical 

analysis was done to the monthly averages of GPCP precipitation and TRMM precipitation data, 

to determine specific grid boxes in which the correlations with precipitation and aerosol were 

especially relevant.  

 Both GPCP and TRMM data were used for two reasons. First, they provide additional 

validity to the precipitation data included in this study. Second, TRMM and GPCP products, by 

nature of the products, have different benefits for this analysis. TRMM provides high resolution 

data useful for specific events or locations while GPCP provides a medley of data sources and 

better overall coverage. GPCP tends to be useful for climatological purposes.  
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Figure 8. An example of TRMM precipitation re-gridding from 1x1 degree to 2.5 x 2.5 degrees over 

California view for June 2014.  
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3.5 Wilcoxon Mann Whitney Rank-sum Tests 
 

To statistically analyze two independent data sets that are not necessarily normally 

distributed, the Wilcoxon Rank Sum Test was used (Wilcoxon 1945; Mann and R. 1947). This 

non-parametric test essentially evaluates whether a value (i.e. location) from one sample is 

greater or less than a value from the other sample (Chu and Chen 2005). This produces a yes or 

no that determines if the null hypothesis is accepted or rejected. The null hypothesis is that any 

difference between two samples is due to random chance. The Matlab function ranksum was 

used to calculate both a probability of occurrence (p value) for combinations of precipitation and 

aerosol, drought and aerosol and drought and precipitation. This function calculates a z-statistic 

below to approximate the p-value and then determine if the null hypothesis is rejected. Very low 

p-values indicate the rejection of the null hypothesis of equal medians at the 5% significance 

level (α=0.05).  

𝑧𝑧 =
𝑅𝑅 − 𝜇𝜇𝑔𝑔
𝜎𝜎𝑔𝑔

 

where  

𝜇𝜇𝑔𝑔 =
𝑛𝑛1(𝑛𝑛1 + 𝑛𝑛2 + 1)

2
 

   and  

σg = �n1n2(n1 + n2 + 1)
12

 

R is the sum of ranks for the smaller sample size 𝑛𝑛1. 𝑛𝑛1 is the smaller of the sample sizes. 𝑛𝑛2 

is the larger of the sample sizes. 

p-values were computed for each of the grid boxes encompassing California using a look up 

table and the method stated above. As stated earlier, TRMM data were re-gridded to fit GPCP for 
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better comparisons. Each grid box for the MODIS AOD extracted periods data was compared to 

the corresponding grid box for every combination of time periods 1 through 5. This produced 

maps showing the locations that have statistically significant aerosol between time periods.  
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CHAPTER 4: RESULTS 
 

4.1 Aerosol, Precipitation and PDSI Relationships 
First, Pearson correlations between the ground-based NCEI temperature, precipitation and 

PDSI data were computed as well as MODIS AOD, TRMM precipitation and GPCP 

precipitation in order to investigate their statistical relationships. Daily data from MODIS, 

TRMM and GPCP were converted to monthly averages to allow for a direct comparison to the 

lower temporal resolution NCEI data. The results are summarized in Table 2. The Spearman 

rank-sum correlation is simply the Pearson rank correlation coefficient between two ranked 

variables and measures the strength and direction of the association between them. In addition, 

AOD is correlated with NCEI precipitation (r=-0.652) and PDSI (r=-0.390). AOD and NCEI 

precipitation show a similar relationship to the remote sensors, GPCP and TRMM. This 

relationship is negative suggesting greater precipitation correlates to less aerosol amount. 

However, the AOD and PDSI analysis shows a poor negative correlation with scatter around -2 

PDSI. Scatterplot analysis was also completed for other aerosol and precipitation relationships as 

seen in Figure 9 and 10.  

Figure 9 shows the NCEI PDSI and precipitation anomaly scatterplot highlighting the 2012, 

2013 and 2014 values. A best-fit line is used to mimic the trend of the data to provide 

information about the actual relationship. This line is not a threshold for drought, it just provides 

a linear regression. It is clear that most the 2012-2014 values are below the zero-line, 

demonstrating the severity of the drought. PDSI and precipitation show a slightly positive 

correlation meaning that with greater precipitation, greater values of PDSI are likely. Note that 

that any PDSI value less than zero are considered drought. Although not very strong, the PDSI-

Precipitation correlation suggests that even greater levels of precipitation do not correlate exactly 



 47 

to more positive PDSI (wetter). There is much variation in PDSI at periods which are close to 

zero.  These data are considered “transition periods” meaning they are times when the PDSI is 

transitioning from negative to positive.  These variable PDSI values show that even though 

precipitation is considered to be in a “moisture deficit”, PDSI values are not always raised by a 

particular precipitation event or even several precipitation events.  Thus varying amounts of 

precipitation and negative PDSI values are possible. 

Figure 10 shows that both GPCP and TRMM precipitation with MODIS AOD show negative 

correlation coefficients of r = -0.690 and r = -0.657 respectively. This means that for greater 

AOD, less precipitation is likely. This trend of greater precipitation matched with decreased 

observed aerosol is expected because of precipitation scavenging. This process involves the 

removal of particulate matter from the atmosphere by hydrometers (Radke et al. 1980). As part 

of this process, the atmosphere is “cleansed” and balanced between the sources and sinks of 

aerosol.   
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 MODIS AOD NCEI PDSI 

GPCP precipitation -0.690 X 

TRMM precipitation -0.657 X 

NCEI precipitation -0.652 0.317 
Wet Season 0.637 
Dry Season 0.190 

NCEI PDSI -0.390 X 

 

Table 2. A compilation of spearman Rank coefficients for each combination of PDSI, AOD and 

precipitation data.  
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Drought 
Non-Drought 

 

Figure 9. PDSI and precipitation anomaly data from NCEI matched for monthly means. 2012 values 

(yellow), 2013 (cyan) and 2014 (red) circles dots represent these years’ values.  

The best fit line is given in red and written in the bottom right hand corner.  
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Figure 10. Scatterplot displaying the correlation between MODIS AOD and NCEI precipitation and 

PDSI (a + b) and MODIS AOD with TRMM and GPCP precipitation (c + d). 2012 values (yellow), 

2013 (cyan) and 2014 (red) circles dots represent these years’ values.  You need to fix those text 

boxed, they looked weird and then I found all that random text hidden.  

 
a.  
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4.2 Box plot Analysis 

An analysis of the seasonal differences of PDSI and precipitation from NCEI surface 

observations from 1895 to 2016 was completed. Looking back to Figure 3, we see the seasonal 

rainfall cycle averaged for the state of California. Although precipitation does occur in the 

months of November, March, and April, the highest precipitation accumulations tend to be 

during the winter months of DJF. Box and whisker plots for both precipitation and PDSI data for 

each wet (DJF) and dry season (JJA) are shown in Figure 11. The boxplots represent the median, 

the 25th, 50th and 75th percentile of the data as well as any outliers above 3/2 of the upper quartile 

and below the lower quartile.  

As expected, mean precipitation in the dry season (0.251 mm) is much less than the wet 

season (3.84 mm) and varies less, suggesting different mechanisms work to enhance or suppress 

precipitation and these mechanisms vary throughout the year. These mainly include the albedo 

and lifetime effect as mentioned in Section 1.2.1. Yet in general, both wet and dry season 

precipitation is positively skewed, suggesting lighter precipitation over California is more likely 

than heavy precipitation. The width of the distribution for the wet month’s precipitation is much 

broader than that of the dry month’s suggesting greater variation in precipitation in the wet 

months. The wet and dry season PDSI boxplots show an evenly distributed sample. The wet 

season mean PDSI is slightly lower than that of the dry season even though the dry season has a 

greater standard deviation. This result warrants some possible explanations. Because of the way 

the index was designed, the PDSI algorithm does not depend on precipitation alone. The 

calculation involves many input variables and climatological indices that may affect the entire 

PDSI calculation, even when precipitation occurs. Furthermore, in a drought situation, even 
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though precipitation may be much greater in the wet months, the amount may not be enough to 

fully modify the state out of drought.   
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Figure 11. Box and whisker plots of NCEI data on the y-axis, with PDSI values (above) and 

precipitation in mm (below) on the left describes the wet season (DJF) and the right describes the dry 

season (JJA). The red lines represent the median point in the data. The red plus signs represent any 

outliers in the data that are more than 3/2 times the upper quartile. 

 



 54 

4.3 Aerosol and PDSI Trends 
Time series plots provide a descriptive analysis for the trend estimations, seasonal patterns, 

and predictions. However, the biggest advantage of time series analysis is that it can be used to 

understand the past as well as provide some estimation of future values. This feature of time 

series analysis is ideal for studying drought because of its strong ties to cyclical patterns.  

The entire MODIS AOD record was used to create a 14-year time series of monthly averaged 

aerosol for the state of California. From Figure 12, AOD shows no distinct long-term trend, with 

minima and maxima varying in which months they occur throughout the record. For example, 

the peak aerosol occurs in October 2002, August 2003, July 2004 and September 2005. These 

produce time differences in maximum aerosol of 11, 9 and 14 months respectively. A large spike 

much greater than the third standard deviation of aerosol occurred in 2008, likely due to the 2008 

Northern California wildfires (Gyawali et al. 2009). The 2012 to 2014 drought is highlighted in 

red and this period shows a very similar and unchanging trend over the three years with peak 

aerosol occurring in October 2012, September 2013 and October 2014. However, in all every 

year beginning in 2012, a second maximum occurs during the month of July. This bimodal 

characteristic of AOD in recent years is likely due to a couple of phenomenon. Since much of the 

Southern half of California is desert, high winds in the spring and summer cause statewide spikes 

in AOD (Frank et al. 2007). Another possible producer of peak AOD is the seasonal fire patterns 

in California. Since California has two dominant wind seasons, the amount of wild fires peak 

during this time. One peak occurs in October through April and the other occurs from June 

through September (Jin et al. 2015). Both of these can provide enough airborne aerosol for the 

state average to reach two maximums throughout the year, however, likely a combination of both 

dust and fire season is more realistic.  
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Figure 12. MODIS aerosol time series beginning in 2002 and ending in 2016. The red solid line 

is the zero line. The black dashed lines demonstrate the first, second and third standard deviations of 

MODIS AOD. The red region highlights the 2012-2014 drought.  
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4.4 Northern and Southern California AOD Trends  

The 14-year time series of monthly averaged AOD in California showed that all three 

drought years had similar bimodal peaks, though it is noted that aerosol did not increase during 

the drought when averaging AOD over the entire state of California. Unfortunately, the NCEI 

PDSI calculations are averaged over the state making it difficult to distinguish the spatial 

characteristics of PDSI and aerosol relationships. However, by splitting California into two 

sections and computing AOD averages for the Northern and Southern halves, the mechanisms 

that might affect the Northern and Southern halves of California separately can be understood. 

From Figure 13, the Northern California peak aerosol occurs in August between 2002 and 2016 

and Southern California has peaks occurring in May. This addresses the fact that the original 

AOD double peaks are coming from different parts of the state because separately, the Northern 

and Southern peaks are in different months. In addition, the different the characteristics of the 

two halves become apparent.  For example, Southern California has a much greater mean 

(0.0855) AOD than Northern California (0.0432). Also, the 2008 wildfires appear much more 

prominently in Northern time series than the Southern (Gyawali et al. 2009). This split analysis 

suggests the need for smaller regions for drought analysis, especially in California where the 

Northern and Southern halves have many different characteristics.  
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Figure 13. MODIS aerosol time series beginning in 2002 and ending in 2016. The red solid line is 

the zero line. The black dashed lines demonstrate the first, second and third standard deviations of 

MODIS AOD. The top panel is averaged over the Northern half of California and the bottom panel is 

averaged over the Southern half. 
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4.5 Precipitation Statistical Significance between Five Selected Periods  
 
 To address the precipitation differences between drought and non-drought years, the 

Wilcoxon Mann Whitney Rank Sum-Test was computed for each GPCP and TRMM grid box for 

the state of California as shown in Figure 13. A period is considered to be significant when 

compared another period and the z –value is 1, using the Wilcoxon-Mann-Whitney Rank Sum-

Test. TRMM data was re-gridded from 0.25 x to 2.5 degree for best comparison to GPCP 

resolution. Period 1 and 5, because period 1 is a neutral level of PDSI and period 5 is considered 

to be extreme drought from were selected from Figure 7 for analysis in Figure 13. The results 

show a similar pattern between the two remote sensing methods, with wetter conditions in the 

north and drier in the south. Few significant grid boxes with dots to denote significance occur. 

However, when they occur they tend to be located in the Northern half of California. Table 3 

summarizes the percentage of California that shows significant differences in precipitation 

between the two periods for all combinations of PDSI selection periods. GPCP and TRMM show 

good agreement from this analysis. However, it is interesting to note that the comparison 

between periods 3 and 5, both drought periods, have greater than 10% of California as 

significantly different between the two periods being compared. This is surprising considering all 

other PDSI selection period comparisons reveal under 10% significant.  This result essentially 

demonstrates the severity of the 2012-2014 drought.  

Period 3, a drought, was chosen for many of the comparisons between other PDSI 

selection periods. However, the results were different than the other drought, period 5.   

Since these two periods are considered to be in severe drought one would expect that the results 

show similar precipitation and aerosol patterns. However, period 3 showed much more similarly 

to period 2 and 4, which are wet periods. Because of the impartial way the PDSI selection 
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periods were chosen, Period 3 happened to occur during February 2008. Selecting the two 

months before and after produced an extraction period from December 2007 to April 2008. 

Through a time-series analysis of precipitation and aerosol not pictured here, greater than normal 

precipitation occurred during period 3. In addition, there was a drop in aerosol levels, likely 

caused by precipitation “washing out” aerosol in the atmosphere. A closer look at Figure 7b 

reveals a small maximum in PDSI between December 2007 and April 2008.  This is another 

example of the greater than normal precipitation occurring during drought yet not increasing to 

positive PDSI levels.  
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Figure 14. P-values from the computed Wilcoxon Rank-sum test between (a) GPCP Precipitation and 

(b) TRMM precipitation for periods 1 and 5. The dots show the significantly different regions.  

 

a. 

 

 

 

 

 

 
 

 

 

 

 

 

b
 

 

 

 

 

 

 
 



 61 

Time 
Period 

Number 

Category of 
Time Period 

Ratio 
Significant 

to total 
boxes 
GPCP 

Percentage of 
California 

GPCP 

Ratio 
Significant to 

total boxes 
TRMM 

Percentage of 
California 
TRMM 

1 
2 

Neutral, 
Positive PDSI 

0/15 0 % 0|15 0 % 

1 
3 

Neutral, 
Negative PDSI 

0/15 0 % 0|15 0 % 

1 
4 

Neutral, 
Positive PDSI 

1/15 6.7 % 0|15 0 % 

1 
5 

Neutral, 
Negative PDSI 

1/15 6.7 % 2|15 6.7 % 

2 
3 

Positive PDSI, 
Negative PDSI 

0/15 0 % 0|15 0 % 

2 
4 

Positive PDSI, 
Positive PDSI 

0/15 0 % 0|15 0 % 

2 
5 

Positive PDSI, 
Negative PDSI 

1/15 6.7 % 0|15 0 % 

3 
4 

Negative PDSI, 
Positive PDSI 

0/15 0 % 0|15 0 % 

3 
5 

Negative PDSI, 
Negative PDSI 

2/15 13.3 % 6|15 40 % 

4 
5 

Positive PDSI, 
Negative PDSI 

7/15 46.7 % 5|15 33.2 % 

Table 3. Percentage area (significant boxes to total boxes) of California that shows precipitation 

significantly different between the two chosen five month periods of time. 
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4.6 Aerosol Statistical Significance between five selected periods  
Each grid box in the MODIS domain was analyzed with a similar method to Section 4.4. 

Figure 14 shows four examples of comparisons between PDSI selection periods as described in 

Section 3.3 and Figure 7. By comparing the four PDSI selection periods, we can analyze aerosol 

during drought and non-drought periods. Period 1, or neutral PDSI, was compared to each of the 

following wet or dry periods. As the analysis moves through time, it becomes clear that each 

successive period has significantly different aerosol amounts, whether that means higher during 

drier periods or lower during wetter periods as compared to the original neutral period.  

Furthermore, AOD increases 44 % from 0.0663 to 0.0955 between periods 1 and 5 with the 

greatest increase in AOD and the highest number of statistically significant gird boxes in 

Northern California. This suggests that aerosol in Southern California did not change as much as 

Northern California between periods 1 and 5. As expected, however, there is a large “hot spot” 

of significantly increased aerosol around Los Angeles, a highly populated and polluted region 

that is characteristically dry (as seen in Figure 1). 

Table 4 summarizes the percent of California that has significantly different distributions 

of aerosol between the selected time periods. 56 grid boxes of 1 x 1 degree cover the state of 

California; the percent of significant area is based off this number. This result shows that over 

time, the number of significant grid boxes increases from 44.6% (period 1) to 69.6% (period 5). 

In addition, the analysis between periods 4 and 5 reveals that almost all of California has 

significantly different aerosol. 

The Northern Californian region is most significant between all tests of precipitation and 

aerosol. This is because Northern California was greatly affected by the drought in both aerosol 

and precipitation. In contrast, Southern California, tends to be drier and has a background state 

which includes greater concentrations of aerosol. Therefore, the increase in aerosol during 



 63 

drought years was not as significant as the north. Northern California, however, often sees more 

rain and less aerosol. The lack of rain is probably the primary reason for the devastation to 

agricultural productivity. During extreme drought, like the 2012-2014 drought, this aerosol 

increase is significantly different than both wet and normal years.   
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Figure 15. The significant locations (black dots) from the computed Wilcoxon Rank sum test 

between MODIS AOD during the lowest levels of PDSI for the five months of the drought and 

MODIS AOD during the highest levels of PDSI for five month periods between 2002 and 2016. The 

difference between the two time periods is color shaded with greater values in yellow, oranges and 

red and negative values in green, cyan and blue.  
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Time 
Period 
Number 

Category of Time Period Ratio Significant to 
total boxes 

Percentage of 
California 

1,2 Neutral, Positive PDSI 25/56 44.6% 
1,3 Neutral, Negative PDSI 47/56 83.9% 
1,4 Neutral, Positive PDSI 49/56 87.5% 
1,5 Neutral, Negative PDSI 39/56 69.6% 
2,3 Positive PDSI, Negative PDSI 43/56 76.8% 
2,4 Positive PDSI, Positive PDSI 50/56 89.2% 
2,5 Positive PDSI, Negative PDSI 45/56 80.3% 
3,4 Negative PDSI, Positive PDSI 19/56 33.9% 
3,5 Negative PDSI, Negative PDSI 53/56 94.6% 
4,5 Positive PDSI, Negative PDSI 53/56 94.6% 

Table 4. Shows the percentage area (significant boxes to total boxes) of California that shows 

AOD significantly different between the two chosen 5-month periods of time.  

4.7 Sources of Error  
A number of sources of error exist including measurement error, spatial sampling error and 

temporal sampling error. Measurement error is natural in observational studies using remote 

sensors. However, if this error were to be reduced, remote sensing studies would have greater 

confidence of the extreme measurements.  Spatial resolution was also a potential source of error, 

higher spatial resolution would have given this study more spatially specific results, this is 

especially important because of the many differences between Northern and Southern California. 

Higher temporal sampling would have improved both TRMM and GPCP estimations of 

precipitation. Satellite-derived averages of precipitation often include significant sampling 

uncertainties that stem from infrequent satellite overpasses as well as temporal and spatial 

variability in rain fields.  
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CHAPTER 5: SUMMARY 
 

5.1 Conclusions 
This work quantitatively summarizes the precipitation, drought and aerosol trends in 

California for 14 years, between 2002 and 2016. Due to the complex nature of drought, data 

from four sources, including MODIS, TRMM, GPCP and NCEI, were used to investigate the 

relationship of aerosol and precipitation in drought to non-drought periods. Five-month periods 

were selected for examination of aerosol and precipitation distributions. From the Wilcoxon 

Rank-Sum Test, estimates were made as to the percentage of California with significantly 

different aerosol distributions between the PDSI selected periods. Based on our empirical 

analysis of satellite and ground based observations, this study found six core results. The 

following relationships were observed:  

• Precipitation rates in California are different in the summer months than in the 

winter months.  

•  The 2012-2014 drought was the worst drought in over a century of ground-based 

observations and well over two standard deviations from the mean PDSI in 

California.  

• The rate of decrease of PDSI between 2002 and 2016 (2.77 PDSI/10 years) is 

greater than the rate of decrease between 1895 and 2016 (0.121 PDSI/10 years).  

• About 70% percent of the state of California shows significantly greater amounts 

of aerosol between the 2012-2014 drought (period 5) and neutral case in 2002 

(period 1).  

• Statewide aerosol amount increased between the same periods as above by 44 % 

This increased aerosol may have caused changes to cloud properties which would 
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contribute to a situation where clouds would be less likely to produce rain. 

Precipitation suppression completes a positive feedback loop and a mechanism for 

which to exacerbate the drought. This conclusion is supported by theoretical 

relationships found in other studies and Appendix 1 (Albrecht 1989). 

• The Northern portion of California is most impacted by aerosol concentrations 

during drought years. In addition, Northern California showed significant changes 

in precipitation between drought and non-drought years. 

Though it is difficult to fully decouple meteorological influences, this suggests that the 

mechanisms that produce drought are related to the mechanisms that affect the distribution of 

aerosol.   

Drought in the United States seems to be increasing not only in magnitude but also in 

complexity (Weiss et al. 2009). Climate projections show a trend towards greater mean 

temperature and higher extremes, possibly bringing more extreme droughts to California and the 

world (Gregory et al. 1997). Higher temperatures of even 1-3° C will likely modify the 

hydrologic budget leading to a change in global precipitation patterns, essentially making dry 

locations drier and wet areas wetter (IPCC 2014). These trends are driven by anthropogenic 

emissions of greenhouse gases due to growing populations which are increasing demand on 

fossil fuels. It is clear that drought will play an increasingly important role in the future.  
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5.2 Future Work 
The results from this study validate the need for further investigation of drought, particularly 

in the context of aerosol-cloud interactions. Although large scale satellite surveys provide 

invaluable temporal and spatial microphysical information, measurement errors still exist. Future 

work in this area will focus on factors contributing to increased aerosol during drought periods.  

Future topics of interest include: 

• Scientific studies about the relationship between drought and the El Niño Southern 

Oscillation (ENSO). The 2012-2014 drought overlapped with one of worst El Niño 

periods on record (Wang et al. 2014). Understanding large scale climate fluctuations may 

help provide answers about the changes in temperature and precipitation that affect 

drought. 

• A longer aerosol record is necessary for results with higher confidence. Unfortunately, 

aerosol measurements from remote sensors do not provide enough data for long-term 

climatological studies. Future droughts will lead to more opportunities for similar 

analysis.    

• Synoptic level analysis of weather patterns during drought may give insight into aerosol 

sources. A key weather aspect to initiate drought is blocking ridges in the upper 

atmosphere. 

• There is a need for improvement in the measurement of aerosol from remote sensors. 

Vertical distributions of aerosol with high spatial, global coverage and temporal 

resolution could provide additional information about cloud and aerosol relationships.  

• A more comprehensive version of PDSI is necessary. Drought is a regional phenomenon 

that is highly dependent on land surface characteristics. Perhaps a drought index designed 

especially for the regional atmospheric and land characteristics of California is necessary. 
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Considering drought events tend to occur in California every 3-5 years, the frequency of 

this phenomenon warrants greater effort in drought mitigation. 

This work provides only the framework for future studies. It provides a strong base for 

understanding the changes in aerosol amount during drought and why those changes occur. 

Future studies, observations and models are necessary for the building of a comprehensive 

understanding of drought in California.  
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APPENDIX 1 
 

Since aerosols modify cloud properties, with ramifications for the formation of 

precipitation, it is necessary to evaluate how aerosol impacts the microphysical structure of 

clouds. A key microphysical characteristic of clouds that is modified by aerosol amount is cloud 

droplet size. Satellite observations can provide a detailed view of aerosol, cloud and precipitation 

relationships. A commonly used space borne estimate of cloud drop size is cloud drop effective 

radius (CER).  CER is the weighted mean of the size distribution of cloud drops and represents 

the mean cloud particle size. Various satellite-based remote-sensing techniques exist for 

monitoring global CER from space. A case study was completed to understand the relationship 

between CER and AOD in California during the 2014 drought year and a corresponding wet 

period occurring in 2010. We investigate aerosol-cloud impacts during drought and non-drought 

periods in California in three regional subsets: the entire state (Test 1), the Northern portion (Test 

2), and the Southern portion (Test 3).  

This analysis will use MODIS data, as described in Chapter 2.2. Specifically, for this 

analysis we will be using MODIS AOD, and MODIS Level 3 Version C6 CER with product 

name Aerosol_Optical_Depth_Land_Ocean_Mean and Cloud_Effective_Radius_Liquid_Mean 

were obtained from https://ladsweb.modaps.eosdis.nasa.gov/ (Platnick et al. 2003). MODIS CER 

is provided at 1 x 1 degree resolution and is derived using the MODIS visible, near-infrared, and 

shortwave infrared bands including the water absorbing bands at 1.6, 2.1 and 3.7 µm and one 

non-absorbing band of 0.65 µm (Platnick et al. 2003).  

Possible errors in our interpretation of aerosol-cloud interactions occur because of the 

fact that MODIS aerosol cannot be detected when clouds are present. Basically, it is impossible 

to measure both aerosol and cloud properties from MODIS at the same time. The clouds will act 

https://ladsweb.modaps.eosdis.nasa.gov/
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to block any signal from below the cloud layer. However, this problem may be mitigated by the 

fact that aerosol amount is relatively homogenous when compared to cloud spatial distribution 

(Yuan et al. 2008). This means that some aerosol quantities within a grid box may be 

representative of the entire grid box without occurring great error.  

Two periods were chosen from the PDSI values for California: one dry period with 

negative PDSI and one wet period with positive PDSI. From Figure 7, the driest period of the 

2012-2014 drought occurred in the summer months of 2014 therefore June, July and August 

(JJA) chosen to represent a characteristic drought period. Working backwards, the last period 

with maximum positive PDSI occurred in the winter months of 2010 so December, January and 

February (DJF) were chosen to represent a “wet” period. By comparing these two 3-month 

seasons, we can interpret the relationship between aerosol and clouds, and as well as PDSI and 

aerosol in drought and wet periods.  

The study region is the state of California and it is characterized by numerous vegetative 

and land cover types. Northern California consists of mixed forested regions, while Southern 

California is mostly desert and grasslands as seen in Figure 1. Because California exhibits both 

large anthropogenic and natural sources, spatial precipitation and AOD distributions are variable 

throughout the state. To address this issue, the data was sub-setted to reflect the differences in the 

Northern and Southern portions of the state. For each day, an area roughly 12.5 x 12.5 degrees 

was extracted encompassing California. Then, an ocean and land mask was created to fit the 

extracted data and applied. This masks hides parts of Nevada, Arizona, Oregon, Mexico and the 

Pacific Ocean. An example of this mask is shown in Figure A1. The daily MODIS data was 

spatially averaged for three regions which included the entire state (Test 1), the northern half 
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(Test 2) and the Southern half (Test 3). This sub-setting of the data in these three scenarios will 

allow for spatial analysis of the relationship of AOD and CER in California.  

 

 

Figure A1. Images showing the grid boxes that encompass the Northern and Southern 

regions of California. Green represents the area that was spatially averaged for Test 2 and Test 3.  

 

Histograms of AOD and CER for the three tests are shown in Figure A2, A3 and A4. 

Figure A2 examines the relationships between AOD and CER for the entire state of California 

(Test 1). The CER histogram spread is between 6 and 22 µm.  Peak or the most common values, 

occur between 11 and 13 µm for JJA 2014 and between 15 and 17 µm for DJF 2010. It is clear 

that the JJA 2014 CER values are shifted to smaller CER then the DJF 2010 values. Peak AOD 

occurs between 0.05 and 0.15 and varies between 0 and 0.6. In addition, there is a slight increase 

of 0.01 of AOD between DJF 2010 and JJA 2014. JJA 2014 has AOD values greater than 0.3. 

DJF 2010 shows no AOD observations greater than 0.3.  

Figure A3 shows the same analysis for the northern region of California. The most 

frequently occurring CER size for DJF occurs at 36 µm while the JJA CER peaks at 27 µm. In 

other words, the distribution is shifted to smaller size cloud drops by about 9 µm between DJF 
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2010 and JJA 2014. In both cases, CER varies between 7 and 23 µm.  Test 2 shows the same 

pattern as Test 1 occurs with peak JJA 2014 AOD values are shifted to slightly higher levels than 

peak DJF 2010 AOD values by about 0.1. Large maximum AOD values are present in JJA 2014 

when compared to the DJF 2014 varying between 0.3 and 0.6.  

Test 3, for the Southern California region, is shown in Figure A4. The DJF 2010 

Southern California CER values have peak at 29 µm while the JJA 2014 analysis peaks at 25 

µm. However, JJA 2014 is shifted to smaller CER by about 5 µm. The width of the JJA 2014 

distribution is between 7 and 19 µm but the DJF 2010 distribution width is between 7 and 23 

µm. Test 3 has similar results to Figure A3 with JJA 2014 shows a much larger maximum AOD 

value than its corresponding wet period of DJF 2010, however, not to the extent of Test 2. 

Similar to Test 2, the peak AOD values in JJA 2014 and DJF 2010 occur between 0.1 and 0.15 

and 0.05 and 0.1 respectively.  

 

 

Figure A2. Histograms of AOD and CER for DJF 2010 and JJA 2014 averaged for the 

entire state of California.  
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Figure A3. Histograms of AOD and CER for DJF 2010 and JJA 2014 averaged for the 

Northern half California. 

 

Figure A4. Histograms of AOD and CER for DJF 2010 and JJA 2014 averaged for the 

Southern half California. 

This case study examined the effects of aerosol loading and cloud properties a wet and a 

dry season in California. Using MODIS L3 daily AOD and CER data two time periods were 

selected as representative drought (JJA 2014) and non-drought years (DJF 2010). Three different 

tests of these periods were completed to represent different study regions (state-wide, Northern 

and Southern). Our examination of the dependence of CER on AOD allows for the rough 

calculation of the indirect effects aerosols have on the atmosphere.  
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In 1977, Twomey hypothesized that cloud particle size is reduced by adding aerosols as 

cloud condensation nuclei (CCN) for a fixed liquid water amount (Twomey 1977). This theory is 

confirmed in all tests. The CER was smaller during the JJA 2014 drought period than the DJF 

2010 period with aerosol showing a slight increase. This finding is in fact consistent with 

Twomey’s theory and suggests precipitation suppression is possible during dry conditions when 

greater aerosol is present (Twomey 1974). Test 3 demonstrated that Southern California sees 

smaller cloud effective radius in both drought and non-drought periods. In addition, the results 

show that the greatest levels of aerosol were seen in the Northern portion of the state during the 

summer months of 2014. Figure 8 shows that Northern California is normally wetter than 

Southern California. The fact that maximum aerosol is present during the drought is concerning. 

This suggests that Northern California is abnormally dry and that the chance for the aerosol to 

loft and become airborne is easier than it is during non-drought periods. These findings prove a 

negative dependence of cloud particles size on aerosol loading during drought periods when 

compared to non-drought periods.  
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