
CHARACTERIZATION OF NON-EL NIÑO INDUCED DRY
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ABSTRACT

The U.S. Affiliated Pacific Islands (USAPIs), located in the Western Pacific, have limited

water resources making them very susceptible to severe drought conditions. The annual

cycle and ENSO response of rainfall differs between USAPIs north of 7◦N and those to the

south. Southern stations show a canonical negative correlation between dry season (Decem-

ber to May) rainfall and ENSO. Northern stations, on the other hand, show little correlation

with ENSO if the three super El Niños are excluded. Instead, they exhibit two distinct

rainfall regimes, the Canonical regime, and a Non-Canonical regime, in which the dry season

rainfall is positively correlated with ENSO. Non-canonical years pose an important fore-

casting challenge. Cool Dry events are of particular interest because they have coincided

with several emergency and disaster-level droughts across the Northern USAPIs. Composite

analysis of the Canonical and Non-Canonical regimes show stark differences between dry sea-

son atmospheric and SST patterns. Compared to Canonical composites, the Non-Canonical

composites show clear and previously undescribed anomaly patterns during the dry season.

In Cool Dry events, circulation anomalies over the Western Pacific are anticyclonic, with a

band of anomalous dry conditions extending from the central Pacific towards Micronesia that

causes unexpected droughts in the Northern USAPIs. Canonical Cool Wet events, on the

other hand, show cyclonic West Pacific circulation anomalies and a La Niña like horseshoe

rainfall pattern over the Pacific Basin. Non-canonical Cool events also show SST anoma-

lies narrowly constrained near the dateline, while Canonical Cool events show their largest

anomaly magnitude east of the dateline. Both Non-Canonical and Canonical Cool events

show negative rainfall and Western Pacific anticyclonic anomalies before the onset of the

Dec-May dry season. In Non-Canonical events, these anomalies persist throughout the dry

season, while for Canonical events they shift, rapidly becoming positive rainfall and cyclonic

circulation anomalies during the dry season. SST anomalies also evolve differently, with

Non-Canonical Cool events showing anomalies that extend eastward from the central Pacific

rather than intensifying in place over the eastern Pacific. The features are similar and oppo-

site for Canonical and Non-Canonical Warm events. Differences in the evolution of anomalies

suggest that the physical mechanisms governing the Non-Canonical and Canonical ENSO

regimes are distinct. These differences have been leveraged to develop a novel 2-tier forecast-

ing methodology that combines logistic and linear regression to forecast the Dec-May dry

season Standardized Precipitation Index in the Northern USAPIs. This 2-tier methodology

achieves significant improvement in the forecast of Dec-May rainfall anomalies as compared
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to a benchmark forecast. This type of improved forecasts will help provide local governments

and decision makers with guidance for mitigation and relief during Non-Canonical events.
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CHAPTER 1

INTRODUCTION

The U.S.-Affiliated Pacific Islands (USAPIs) are located in the Western Pacific basin

and are composed of U.S territories and independent nations in free association with the

United States. They are comprised of the U.S. territories of Guam, The Commonwealth of

the Northern Mariana Islands, and American Samoa as well as the Independent Nations of

The Republic of Palau, The Republic of the Marshall Islands and the Federated States of

Micronesia (see 1.1).

Figure 1.1: Map showing the US territories and independent nations that compose the U.S.
Affiliated Pacific Islands. Marked in red are the stations for which the PEAC Center produces
seasonal rainfall forecasts.

Islands in the region are a mix of low lying atolls and islands with higher elevation. In

general, their small size, remote location and limited financial and natural resources make

them very vulnerable to the impacts of climate variability (Shea and Coauthors (2001)).

The Pacific ENSO Applications Climate Center (PEAC Center) was founded in 1994 as
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multi-institutional partnership to provide governments and stakeholders throughout the US-

API communities with resources to support management and mitigation in climate sensitive

sectors. PEAC Center activities include the production of tailored technical climate infor-

mation and seasonal forecasts, the collection of impacts of climate and weather events in the

region, research into Pacific climate variability, and outreach activities to governments and

interested parties in the USAPI. A comprehensive account of PEAC Center activities and

procedures can be found in Schroeder et al. (2012).

Most of the Northern USAPIs are encompassed within or lie very near the border of

the monsoon region as defined by Ramage (1971, 2013). Their annual cycle of rainfall

and temperature is in large part modulated by the northward and southward migration of

the surface monsoon trough and the Intertropical Convergence Zone (Sadler (1978), BOM-

CSIRO (2011)). Low latitude stations such as Koror, Yap, Chuuk, Pohnpei and Majuro tend

to have their rainfall maxima during July/August, while Guam and Kwajalein show annual

maxima during September/October (Yu et al. (1997a)).

The El Niño-Southern Oscillation (ENSO) is likely the largest source of climate variability

in many regions across the globe (McPhaden et al. (2006), Collins et al. (2011)). In the

USAPI, located in the Tropical Western Pacific, this is especially true (Bjerknes (1966),

Bjerknes (1969), McPhaden et al. (2006)).

In the USAPI, ENSO is largely responsible for interannual sea level variability (Chowd-

hury et al. (2007)), with El Niño producing lower than average sea levels and La Niña higher

than average anomalies. These sea level changes produce significant impacts. Low sea lev-

els are associated with coral bleaching events, as well as damage to fisheries and the food

security they provide. High sea levels produce coastal erosion, damage infrastructure and

compromise water sources and food crops.

During the extreme phases of ENSO, El Niño and La Niña, climate variability in the US-

APIs in the northern hemisphere is directly related to the shift in position of the Intertropical

Convergence Zone (ITCZ) (Collins et al. (2011)). As El Niño conditions develop (spring,

summer and fall of the developing year), ITCZ convection begins to shift eastward from the

Pacific Warm Pool towards the dateline, producing wetter than normal conditions in the

USAPIs during fall of the El Niño developing year. During the peak and decaying phase of

El Niño events, enhanced convection is now located east of the dateline and is suppressed to

the west. This leads to dry conditions in the USAPI region during the peak and decaying

phase of El Niño, as were observed during early 1998 and 2016 (Ropelewski and Halpert

(1987)). The intensity of El Niño-induced dry conditions across the USAPIs is proportional
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the magnitude of the event, with the 1982/1983, 1997/1998 and 2015/2016 events producing

intense and widespread droughts throughout the region (Yu et al. (1997b)).

The evolution of rainfall anomalies as El Niño events develop (mentioned above) is closely

linked to the evolution of circulation anomalies over the Tropical Western Pacific. Circulation

anomalies over the Tropical Western Pacific during El Niño events are observed to switch

from cyclonic (enhanced rainfall), as the event develops, to anticyclonic (suppressed rainfall)

during the peak and decaying phase of the event. This change in circulation anomalies has

been proposed to be a result of coupled ocean-atmosphere dynamics over the Western Pacific

(Wang and Zhang (2002)), as well as a result of the interaction between the ENSO cycle and

the annual cycle resulting in the ENSO Combination Mode (Stuecker et al. (2013), Stuecker

et al. (2015)). While the explanation of why the Western Pacific circulation changes sign

from the developing to the decaying phase of El Niño events is still a subject for debate (Li

et al. (2016), Stuecker et al. (2016)), the change in sign of circulation and rainfall anomalies

is a robust feature.

Tropical cyclone behavior in the USAPIs is also strongly modulated by ENSO (Lander

(1994)). Studies relating the total number of cyclones in the Western Pacific to ENSO have

not yielded consistent results (Camargo and Sobel (2005)). Nonetheless, the influence of

ENSO on the genesis location of TCs in the region is well documented (Chia and Ropelewski

(2002), Wang and Chan (2002)). During El Niño years the genesis region of tropical cyclones

in the Western Pacific shifts eastward and southwards away from the Maritime Continent.

This shift means that the USAPIs tend to have more tropical cyclone activity, including

landfalls and associated damages during El Niño years. During La Niña years, TC genesis

tends to concentrate over the westernmost part of the basin, generally reducing tropical

cyclone impact risk in the USAPIs.

Current understanding of ENSO has posed that El Niño events can display different

”flavors”, with distinct characteristics in SST anomaly patterns and local and global impacts

(Kao and Yu (2009); Kug et al. (2009)). Eastern Pacific or Cold Tongue El Niño events are

characterized by having their strongest SST anomalies over the Eastern Pacific, while Central

Pacific or ”Modoki” El Niño events show SST anomalies confined to the Central Pacific near

the dateline. This difference in SST anomaly patterns leads to differences in atmospheric

circulation anomalies, and hence results in differences in the regional and global impacts

of these two types of El Niño events. While the existence of differences between types of

ENSO events is well acknowledged, there is still significant debate as to whether these types

represent distinct modes of variability or whether ENSO should be understood as a diverse
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continuum (Capotondi et al. (2015)).

The oscillatory nature of ENSO is, in part due to the movement of warm water in the

upper ocean layer (above the thermocline) from the equatorial region towards the mid lati-

tude and back. This phenomenon is know and the discharge-recharge oscillator (Jin (1997)).

The equatorial thermocline is shallower in the eastern Pacific than in the western part of the

basin. For this reason changes in thermocline depth associated with the discharge-recharge

process have a stronger effect on SST anomalies in the Eastern Pacific. Another important

process in the formation of SST anomalies during ENSO events is the advection of SST gra-

dients by the anomalous zonal currents (Jin and An (1999)). This zonal advective feedback is

more effective at changing SST anomalies in the Western Pacific, where zonal SST gradients

are strong in the region where the Pacific Cold Tongue and Warm Pool meet. Subsequently,

the relative importance of these two dynamical processes during Eastern and Central Pacific

El Niño changes, with thermocline anomalies and recharge-discharge dynamics being more

prominent in Eastern Pacific El Niño events and zonal advective feedback more prominent

in Central Pacific events (Kug et al. (2010), Capotondi (2013)). Observations also support

the notion of zonal advection being of higher relative importance in the heat budget of SST

anomalies in the Central Pacific but also suggest the importance of air-sea heat fluxes in this

region (Kao and Yu (2009), Kug et al. (2009), Kug et al. (2010), Yu et al. (2010)).

Murphy et al. (2014) provide a detailed account of the impacts of different types of El

Niño events on dry season rainfall across many Pacific Island stations, including most of

the USAPI stations. They found that Cold Tongue El Niño events produced consistent dry

conditions across all of the USAPI stations. Mixed El Niño events were found to produce

dry conditions in the western USAPIs and Southern Marshall Islands only. Finally, Warm

Pool El Niño events were found to produce dry conditions only in the westernmost USAPI

station of Koror.

While the concept of different types of El Niño events is understood, the same is less

true for La Niña events, for which differences in SST patterns do not allow for such a clear

separation into types Kug et al. (2009))). This is because, in general, La Niña events tend

to have peak SST anomalies farther west than El Niño events. This results in less inter

event differences in SST patterns. As a result, the research into ENSO flavors has been

concentrated on warm events exclusively. In fact, Murphy et al. (2014) study all la Niña

events together and find that these produce wet conditions for all the USAPI stations.

On longer time scales, substantial climate variability is observed in the Pacfic Basin

(Power and Smith (2007)). The dominant mode of decadal variability in the basin is the
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ENSO-like natural mode called the Pacific Decadal Oscillation (PDO) (Mantua et al. (1997).

Because PDO patterns are similar to ENSO, this decadal mode of variability has similar

influence on the USAPIs as ENSO but at a lower frequency.

The PEAC Center issues seasonal rainfall forecasts for the USAPI stations on a monthly

basis using a consensus methodology on a suite of 8 statistical and dynamical forecast models

and has kept records of forecast performance since 2007 (more details in Schroeder et al.

(2012)). Time series of the Heidke Skill Score for each model in the PEAC Suite, as well as the

Final Consensus Forecast are shown in Figure 1.2. During the 2009/2010 and 2015/2016 El

Niño events and their associated droughts, PEAC Center seasonal rainfall forecasts achieved

skills well above that during ENSO neutral conditions. This is consistent with what is

generally observed for dynamical models (Wang et al. (2009)) and statistical predictions

(Chowdhury et al. (2007)).

Figure 1.2: Time series of Hiedki Skill Score for each model in the PEAC Center operational
forecasting suite (color lines), the consensus of the suite (dashed black line) and the PEAC
Center final public forecast (solid black line). Color bars represent the Oceanic Niño Index
colored in red for positive values above 0.5C and blue for negative values below -0.5C

Nonetheless, severe droughts can occur in the USAPIs during near neutral ENSO condi-

tions. During the early part of 2013, dryer than normal conditions began affecting many of

the USAPIs and were particularly persistent in the atolls and islands in the northern part of
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the Republic of the Marshall Islands (RMI). In the Northern RMI, small island communities

with little water storage capabilities are especially dependent on rainfall for drinking water

and agriculture. Dry conditions over the northeastern USAPIs started during January 2013

and extended west. By April, most of the USAPI stations, with the exception of Pohnpei and

Kosrae, were located on the dry side of a strong zonal rainfall gradient along 7◦N, with dry

conditions to the north and wet to the south. As the year progressed, wet conditions along

the equator gave way to strong dry anomalies that extended northwestward and covered the

entire Western North Pacific USAPIs by August 2013. The most severe drought impacts

during early 2013 were when abnormally dry conditions coincided with the climatological dry

season. From January to May 2013, Kwajalein, used here as a proxy for the Northern RMI,

received less than 15 inches of rainfall per season. PEAC Center forecasters have determined

that, as a rule of thumb, for many of the more water-precarious islands across the USAPIs,

4 inches of rain a month is the minimum needed to meet basic water needs, with 8 inches a

month being enough to meet most water needs.

The extended lack of sufficient rainfall observed during early 2013 produced severe water

shortages across the northern parts of the RMI which required action from both local gov-

ernment and the international community. Climate impact reports collected by the PEAC

Center during early March, 2013 show that low rainfall during the previous month had

prompted the shipment of reverse osmosis units to the atolls of Mejit and Lae which were

already experiencing water shortages. The RMI government began to hold meetings on

drought assessment and mitigation during March, 2013. On April 19, 2013 the government

of the RMI declared a state of emergency due to drought conditions. As dry conditions con-

tinued and drinking water availability deteriorated, the state of emergency declared by the

RMI government was upgraded to a state of disaster by early May, 2013, due to the imminent

threat to life, according to RMI authorities. Relief efforts on the part of the United States

began on May 3. Initial aid funding was approved by the U.S. embassy in Majuro for relief

efforts through USAID (see Figure 1.3) and The International Organization for Migration

in order to distribute pre-positioned relief materials to drought-affected islands and atolls.

Further relief funding by the U.S. came after U.S. President Barack Obama, at the request

of RMI President Christopher Loeak, issued a declaration of disaster for the RMI under the

Compact of Free Association (COFA) treaty between the two governments. By the end of

this 2013 drought event, a total of about 4.5 million dollars in relief funds had been invested

by the U.S. Government during a drought event that affected an estimated 6,400 people.

PEAC Center rainfall forecasts showed low skill throughout this drought period, even below
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Figure 1.3: Reproduction of a section of a USAID document from September 30th, 2013,
detailing the drought relief efforts in the Northern USAPIs and the Republic of the Marshall
Islands.

the average skill shown by our forecast suite during other neutral periods in our forecast

record.

In this dissertation, we will investigate if the 2013 drought in the USAPIs was a unique

occurrence, and describe the features and evolution of this type of event. Chapter 2 describes

the data and methodology used in selecting and examining the features associated with dry

conditions in the USAPI during near neutral ENSO conditions. In Chapter 3, we present

the results of our observational analysis of the dry season anomaly patterns and evolution of

anomalies that produce dry conditions in the USAPIs during near neutral ENSO conditions.

In Chapter 4, we develop and test a novel forecasting framework tailored to the USAPIs and

designed to capture and forecast dry conditions in the USAPIs during near neutral ENSO

conditions. In Chapter 5, we present final thoughts on our findings.
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CHAPTER 2

DATA AND METHODS

2.1 Data

2.1.1 Station Rainfall Data

Precipitation data is recorded by the NOAA National Centers for Environmental Information

(NCEI) through their Automated Surface Observing System (ASOS), as well as reported

directly to the PEAC Center. PEAC Center rainfall data is consistent with what is archived

for these stations by the NOAA National Centers for Environmental Information. Continuous

monthly total rainfall data for Koror, Yap, Chuuk, Pohnpei, Guam, Kwajalein and Majuro

is available from 1966 to present. For USAPI stations for which the PEAC Center does

not archive rainfall data, monthly rainfall totals from the Cooperative Observer Network

(COOP) stations were used. COOP station data are available for many USAPI stations,

including many outer islands and atolls, and covers areas of interest such as the Northern

RMI atolls of Enewetak and Utirik for which most of the severe impacts of the 2013 drought

were observed. Unfortunately, data for many of these COOP stations in the USAPI suffers

from large data gaps, including no data at many stations during 2013. A total of 35 COOP

stations across the USAPI were used along with the 7 PEAC stations. COOP data was

downloaded from the Western Regional Climate Center (http://www.wrcc.dri.edu/).

2.1.2 Gridded Data

Oceanic Niño Index values made public by the NOAA Climate Prediction Center (CPC) and

based on the ERSST v4 (Boyin et al. (2015)) were used in this work as well as the Gridded

ERSST v.4 data (Boyin et al. (2015)). NCEP/NCAR Reanalysis 1 (Kalnay et al. (1996))

was used for pressure level data of geopotential height and winds. GPCP V2.2 (Adler et al.

(2003)) was used for large scale analysis of rainfall. ERSST, NCEP/NCAR reanalysis and

GPCP data was provided by the NOAA/OAR/ESRL PSD, Boulder, Colorado, USA, from

their Web site at http://www.esrl.noaa.gov/psd/.
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2.1.3 PEAC Impact Reports

The PEAC Center also collects detailed accounts of climate impacts from our contributors

in the USAPIs. These recorded impacts are published in the PEAC Center Quarterly Pacific

ENSO Update newsletter. PEAC Center newsletters extend back to 2005 in digital form

(available to the public at www.weather.gov/peac/update), and back to 1996 in physical

copies archived in our offices.

2.2 Methods

2.2.1 Determining Similarities in Station Rainfall Annual Cycle

Using the monthly data available for all COOP and PEAC stations in the USAPI, a clima-

tological annual cycle of monthly rainfall was calculated for each station. The similarity of

the annual cycles for different stations was estimated using the Monsoon Index (Wang and

Ding (2008)) and K-Means clustering.

The Monsoon index was defined as the annual cycle range calculated as the climato-

logical wet season rainfall (June to November), minus the climatological dry season rainfall

(December to May), divided by the climatological total yearly rainfall and multiplied by 100.

The objective of any clustering algorithm is to separate a large number of observations

into groups with similar features. The K-Means clustering algorithm separates data points

into clusters by minimizing the within-cluster sum-of-square variance, also known as inertia.

In our case, the annual cycle of monthly rainfall at each station represents one 12 dimensional

observation. A total of n = 42 observations are available. These are partitioned into k

clusters so that k <= n by minimizing the cost function:

arg min
S

k∑
i=1

∑
x∈Si

‖x− µi‖2, (2.1)

where S = (S1, S2, . . . , Sk) are the sets the data is being partitioned into, and µi is the

position of the centroid of set Si.

The calculation was done using the K-Means algorithm from the Python Scikit-Learn

package. This K-Means implementation uses a method called Lloyd’s algorithm (Lloyd

(1982)) in which points in the dataset are first assigned to their closest existing cluster

centroid. These cluster centroids are then updated as the mean position of all points assigned

to the same cluster. This procedure is repeated until the assignment of points to clusters no
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longer changes and thus the centroids no longer change position. This iterative procedure is

equivalent to minimizing the cost function in equation 2.1. The number of clusters and their

initial position are free parameters of the method that must be decided by the user and are

discussed in the following paragraphs.

For an a priori chosen number of clusters to partition the data into, the K-Means al-

gorithm requires an initial position for each one of these clusters. The final solution that

the K-Means algorithm arrives at is sensitive to these initial centroid positions. However,

this can be overcome by appropriate initial centroid selection, as well as by performing the

K-Means partition multiple times with different initial conditions and choosing the partition

with lowest inertia. In the most basic implementation of the algorithm, cluster centroids can

be initialized as random points within the space that contains the data to be partitioned.

A more advanced centroid initialization method used in this work is called K-Means++

(Arthur and Vassilvitskii (2007)). In this method, centroids are initialized to the positions

of points in the data using the following steps:

• The first centroid is chosen from the data at random with uniform probability for all

data points

• For each data point x, calculate the distance Dx to the nearest already chosen centroid

• Chose a new data point as a centroid using the weighted distribution so that the

probability of a point being chosen is proportional to the distance D2
x

• Repeat the last two steps until the desired number of k initial centroids have been

chosen

• Carry out K-Means clustering

The K-Means++ method of centroid initialization performs well compared to more prim-

itive methods. When combined with repetitive clustering, K-Means++ provides a good

solution to avoid suboptimal clustering results.

The number of clusters k used in the K-Means clustering algorithm is also a free param-

eter. Usually, the number of clusters is chosen based on intuition of the expected number of

clusters that the data should be able to be separated into. If no intuition is available, some

methods exist for the evaluation of the final clustering which can lead to a selection of an

appropriate number of clusters for the data. In our case, the Davies-Bouldin index (Davies

and Bouldin (1979)) was used as a metric for clustering quality. The Davies-Bouldin Index

10



is defined as follows. Let Ci be a cluster of points in our data with centroid Ai and size Ti

along with X1, . . . , XTi all the data points assigned to that cluster. A measure of the scatter

of the points assigned to that cluster can be defined as:

Si =

(
1

Ti

Ti∑
j=1

|Xj − Ai|p
)1/p

. (2.2)

If p is chosen equal to 2, this scatter (Equation 2.2) is defined based on the Euclidean

distance. Values higher than 2 can be used for cases where an Euclidean distance may not

be appropriate. In our case however, the Euclidean distance is suitable as a measure, so p

is chosen equal to 2. A measure of the distance between clusters Ci and Cj can be similarly

defined as:

Mi,j = ||Ai − Aj||p. (2.3)

For two clusters Ci and Cj, a measure of how good the clustering is, Ri,j, can be defined

as the sum of the scatters of each cluster divided by the distance between the cluster centers,

such that:

Ri,j ≡
Si + Sj
Mi,j

. (2.4)

The similarity of cluster Ci to its nearest neighbor, Di, can be measured as:

Di ≡ max
j 6=i

Ri,j. (2.5)

Finally, for a total number of clusters k, the Davies-Bouldin index is defined as:

DB ≡ 1

k

k∑
i=1

Di. (2.6)

Defined in this way, the Davies-Bouldin index will be smaller for better clustering solu-

tions. This index is defined only for clustering with k ≥ 2. Other methods of choosing the op-

timal number of clusters exist, such as the elbow and silhouette methods (Ketchen and Shook

(1996), Llet et al. (2004)) and information criteria methods such as the Akaike, Bayesian

and deviance information criteria (Goutte et al. (2001)), among others. The Davies-Bouldin

index method used in this work provides a simple, yet quantitative method of determining

the optimal number of clusters in our data. The information criteria measure, in contrast, is
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more complex, while the elbow and silhouette methods rely on visual interpretation of plots.

The optimal number of clusters selected by the user should be chosen considering the

trade off between two extremes. The first is achieving the maximum possible rate of data

compression, obtained by assigning all data points to a single cluster. This single cluster

would retain all the variability of our original data without providing any additional infor-

mation. On the other extreme every single data point could be assigned to its own cluster

achieving maximum classification accuracy and no data compression (Pinto et al. (2015)).

For our station data, clustering with k from 2 to 42 is performed and presented here. The

final number of clusters k was chosen as being the smallest value that achieved a small the

Davies-Bouldin Index.

2.2.2 Standardized Precipitation Index

The Standardized Precipitation Index (SPI) (McKee et al. (1993)) is used as primary rainfall

index. The SPI is calculated by fitting the observed station climatological rainfall data with

a gamma distribution. Using the shape (k) and scale (θ) parametrization of the gamma

distribution, the probability density function (pdf) and the cumulative probability functions

(cdf) can be written as equations 2.7 and 2.8, respectively (Wilks (2005) uses the inverse

scale parameter formulation β = 1
θ
).

f(x; k, θ) =
xk−1e−

x
θ

θkΓ(k)
for x > 0 and k, θ > 0 (2.7)

F (x; k, θ) =

∫ x

0

f(u; k, θ)du =
γ
(
k, x

θ

)
Γ(k)

(2.8)

In equations 2.7 and 2.8, Γ(k) and γ
(
k, x

θ

)
represent the complete and incomplete forms of

the gamma function. Figure 2.1 shows the changes in the probability density and cumulative

probability functions as a result of different combinations of the shape (k) and scale (θ)

parameters.

We use maximum likelihood estimation of the k and θ parameters. For any particular

rainfall observation, the cumulative probability for that value is calculated based on the

gamma distribution fitted to that station’s climatological data. Using a Normal distribution

for a random variable Z, with mean zero and standard deviation of 1, the value of the

variable Z with equal cumulative probability as the rainfall observation is the corresponding

SPI value for that rainfall observation. Figure 2.2 shows a schematic diagram of this process.
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(a) Probability density function (b) Cumulative probability function

Figure 2.1: Changes in the probability density function and cumulative probability function
of the gamma distribution when the shape k and scale θ parameters are changed. Example
plots taken from Wikipedia (2017).

This type of transformation is equivalent to a ”Z-score” calculation. Thus the SPI can be

interpreted as the number of standard deviations away from the climatological mean that a

particular observation falls (the SPI has no units).

The SPI is commonly used as an index to characterize drought conditions (Wu et al.

(2001), Hayes et al. (1999)) and shows good performance as compared to other drought

indices (Guttman (1998), Keyantash and Dracup (2002)) . The SPI can be calculated for

cumulative rainfall deficits for time periods of 3 to 24 months. On short time scales it

can be used as a measure of soil moisture, while on longer time scales it served as a good

indicator of water resource availability (Svoboda et al. (2012)). The SPI is widely used by

the operational drought monitoring community as a tool to quantify meteorological drought

conditions (Keyantash and Staff (2016)). Values of the SPI are usually linked to descriptive

categories of drought conditions. SPI values from -1 to -1.49 are considered to represent

”Moderately Dry” conditions, SPI values between -1.5 and -1.99 are considered to represent

”Severely Dry” conditions, and SPI values of -2 or less represent ”Extremely Dry” conditions

(NDMC (2017)).

The SPI calculation relies on precipitation data only, making it less complex to calculate

than the Palmer Drought Index (Guttman (1998)) and a good tool for monitoring water

resource availability. As a drawback the SPI, by not taking into account temperature and

evapotranspiration, is less suited for long term monitoring of soil moisture in climate change

applications. By virtue of being a Z-score transformation, the SPI is easy to compare across
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Figure 2.2: Schematic figure of the calculation of the Standardized Precipitation Index.

stations with different climatologies. This allows for the calculation of the SPI at each station

for the common dry season and average across all coherent stations to form a single regional

drought index.

The SPI can be susceptible to errors when data is scarce or unreliable, due to requiring

a maximum likelihood fit of a distribution to the data. In our case, while data for the minor

USAPIs can be scarce, good quality data is available for the major USAPI stations for which

the SPI will be calculated.
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2.2.3 Composite Analysis and Significance Testing

The Oceanic Niño Index and the Standardized Precipitation Index are used together to

understand the relationship between ENSO and rainfall anomalies in the USAPIs. Once

specific years are selected for study, composite maps of rainfall, SST, and stream function of

anomalous winds are produced. This is done for the 6 month dry season for which anomalies

are strongest, as well as the 3 month seasons leading up to the dry season.

The mean anomalies of contrasting composite fields were tested for statistically significant

differences. In the case of SST anomalies, a Student t-test was used (Blair and Higgins (1980),

Wilks (2005)). For rainfall and stream function anomalies, a Wilconxon rank-sum test is

used (Wilcoxon (1945), Blair and Higgins (1980), Wilks (2005))

2.2.4 S-EOF Analysis

To understand the features of the different modes of variability as they evolve from season to

season, Seasonal-Reliant EOF (S-EOF) analysis (Wang and An (2005)) is used in this work.

In S-EOF, anomaly maps for consecutive seasons are treated as a single time step, and the

resulting covariance matrix is diagonalized in the same way as in traditional EOF analysis.

The resulting S-EOF modes will have a number of sequential patterns (4 in our case as will

be discussed later on) showing the spatial features of the coherent modes of variability during

each season and a single yearly principal component value for each year of observation.

2.2.5 Physical-Empirical Forecasts and Predictor Selection

A Physical-Empirical forecasting framework is one in which we aim to understand the physi-

cal or dynamic mechanisms of causality that link predictor to predictand variable (Yim et al.

(2014a), Yim et al. (2015)). This in contrast to a purely empirical prediction framework in

which predictors are chosen based on their high correlation to the target variable. This pro-

cedure tends to reduce overfitting, by eliminating predictors that represent the same physical

mechanisms. Most importantly, it provides a context to interpret the predictions based on

the contributions of different processes to the final forecast.

We will develop predictor candidates using two approaches, the first of which is to de-

velop predictors based on the most prominent features of the observed anomaly fields in

the seasons leading up to the target season of the forecast. Once these features are identi-

fied, a predictive index (the area average of anomalies in a certain region, for example) is

formulated to represent them. The second is to use lead-lag correlation analysis with the
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predictand and the relevant anomaly fields in the seasons leading up to it. In our study

we use SST, and 850 hPa geopotential height, winds and stream function of the anomalous

winds in the two 3 month seasons preceding our target forecast season. We also use the

two month tendency fields of these anomalies (October-November minus August-September,

for example) as possible predictor fields. All predictors are normalized by subtracting the

mean and dividing by the standard deviation. This normalization allows for the comparison

of the relative contributions of each predictors to the forecast anomaly by comparing the

magnitude of the regression coefficients assigned to each predictor.

The best subset of these candidate predictors is selected using stepwise regression (de-

scribed in the next section). Once the best set of predictors is chosen, a linear regression

model between the target and predictor variables is formulated.

2.2.6 Linear, Stepwise and Logistic Regression and Cross Valida-

tion Techniques

In this work, we will extensively use linear regression analysis to formulate predictive models.

We will use linear regression fitted by ordinary least squares as implemented in the Scikit-

Learn Python library (scikit-learn developers (2017b), and underlying SciPy implementation

scipy community (2017)). This algorithm calculates the best linear fit between predictor and

predictand variables by minimizing the Euclidean 2-Norm S in equation 2.9:

S =
n∑
i=1

ε2i =
n∑
i=1

(
Yi − Ŷi

)2

, (2.9)

where Yi and Ŷi represent the ith observation and model prediction. We will use this basic

linear regression model, as well as some variations and modifications to it explained in detail

below.

Stepwise regression is a predictor selection methodology for linear regression models,

used to select a subset of all possible predictor variables by choosing the most statistically

significant among them (Draper and Smith (1981), Panofsky et al. (1953)). One predictor

is added to the model at a time (this is called forward selection). After a predictor is added

to the model, the significance of the improvement in the R2 value of the resulting regression,

based on a standard F test, is calculated. If the improvement in R2 is significant at a given

level, the predictor is kept in the regression model. At each step of the process, all predictors

already in the model are removed one at a time and the R2 is checked again to see if the
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removal of that predictor reduces the R2 value significantly. If the removal of a predictor

already in the model does not reduce the R2 significantly, the predictor is removed. This

means that a predictor can be dropped from the model after it’s added if another predictor

takes its place. This differs, for example, from a ”greedy forward” selection method, in which

predictors are added to the model but not taken out. This is done because a predictor that

may have added significant prediction skill at an earlier stage in the process, may later be

made redundant by new variables in the model. This process stops once no more predictors

are able to enter the model and no further predictors are removed.

Stepwise regression tends to choose predictors that maximize the correlation to the target

variable and at the same time minimize the correlation between predictors. This is useful

in our case because we wish to choose predictors that represent independent physical mech-

anisms and interpret the coefficients in the linear regression as relative contributions from

each of these mechanisms. The significance levels for entry into and exit out of the model

are set a priori by the user. In our case, we use 95% significance for both entry and exit.

In this work, we use the implementation of the stepwise regression algorithm implemented

in Matlab (Mathworks (2017)), which follows the algorithm presented By Draper and Smith

(Draper and Smith (1981)).

As part of our forecasting methodology, we will implement a classification forecast. In

this forecast the target variable is binary or logistic in type, predicting if a year will or will

not be of a certain class and taking a value of 0 or 1 depending on the classification of the

particular event. This is opposed to a continuous variable, as is commonly the case in linear

regression. To fit this type of data and produce this model we will need to use a model called

a logistic regression.

A logistic regression is a common machine learning algorithm which predicts the proba-

bility of a target variable Y being 0 or 1 given a set of predictor variables X = x1...n. The

predictive linear model hΘ can be written as

hΘ(X) =
1

1 + e−ΘTX
, (2.10)

where the matrix Θ represents the model parameters. Unlike for a linear regression discussed

before, there is no closed solution to find the values of the coefficients that maximize the

likelihood function, so an iterative process such as gradient descent is implemented. This

model can be thought of as a linear function of the variables given as an argument to a

sigmoid or logistic function. Writing out the entire linear model, the resulting equation is:
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hΘ(X) =
1

1 + e−(θ0+θ1x1+...+θnxn)
. (2.11)

Figure 2.3 shows an example of how a logistic regression would fit categorical data with

1 predictor as compared to a linear regression.

Figure 2.3: Example of a linear (blue) and logistic (red) regression as fit to a classification
dataset (black dots) with 1 predictor variable. Taken from scikit-learn developers (2017d).

We will use the implementation of the logistic regression algorithm found in the Scikit-

Learn Python library (scikit-learn developers (2017c)). For each data point, the logistic

regression calculates the probability of that example belonging to one of the two categories

based on the values of the predictors. The category for which the probability is highest is

chosen as the prediction. In our work, we will use a threshold between prediction categories

of 0.5.

To estimate the predictive power of the models developed here, we will use the cross vali-

dation techniques known as leave-one-out (LOO cross validation) and k-fold cross validation

(Wilks (2005), Picard and Cook (1984)). In the leave-one-out cross validation method, as

the name implies, the model is trained on all data of the training set with the exception of

one year. The prediction error of the model is then calculated on the left out sample. This

process is repeated for all years in the sample, and the error for each year is then averaged

as an estimate of the model predictive power on independent data. This is similar to the

jackknife method, but in that case statistics are computed on remaining samples and not left

out samples (Efron and Stein (1981)). Similarly, with k-fold cross validation, the training set

is divided into k equal parts. One of these subsets is set aside and the model trained on the

k-1 remaining sets. The error is then calculated as the mean of the errors of the predictive

model on the left out set, and then averaged out over all the sets (scikit-learn developers
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(2017a)). Both of these methods are used because, on small training sets such as ours, the

more commonly-used leave-one-out method tends to overestimate the error.
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CHAPTER 3

OBSERVED FEATURES OF SEASONAL RAINFALL

VARIABILITY IN THE USAPIS

3.1 Different USAPI Rainfall Regimes as Described

Using K-Means

The areas in the Northern RMI most severely affected by the 2013 drought suffer from large

rainfall data gaps, including no data at many stations during 2013. This includes the atolls

of Enewetak and Utirik for which severe impacts during the 2013 drought were reported.

In an effort to overcome large data gaps for the stations most affected by possible non

El Niño induced droughts, other USAPI stations with longer and complete rainfall records

were chosen as proxies. To chose proxy stations, the first criterion applied was similarity

in annual cycle. The Monsoon Index and K-Means clustering were used to determine the

similarity of the climatological annual cycle of monthly rainfall for the USAPI stations.

To select the most appropriate number of clusters for our K-Means algorithm, the Davies-

Bouldin index was calculated for K-Means clustering using from 2 to 42 clusters. Because

K-Means clustering is sensitive to centroid initialization and may in some cases produce

suboptimal solutions, the clustering was repeated 200 times for each value of k. The mean

of all Davies-Bouldin index values for each number of clusters was used as a measure of the

appropriateness of the number of clusters. Figure 3.1 shows the mean Davies-Bouldin index

values for all k values in the range from 2 to 42, with the standard deviation of all values

as error bars. Using 2 clusters provides the best clustering in our data, providing the lowest

Davies-Bouldin Index value for a desirable low number of clusters.

Figure 3.2 is a spatial map of USAPI stations assigned into clusters according to their

annual cycle using K-Means clustering and k=2 clusters. Using 2 clusters, the USAPI

stations can be separated into two distinct categories, northern and southern stations. The

mean annual cycle of monthly rainfall, which is also the centroid of each cluster, is presented

in Figure 3.3.

Northern stations show moderate monsoonality to their annual cycle. They have a dry

season from December to June and a wet season from July to November. The Monsoon

Index for the northern stations is above 30% (the difference between wet and dry season

rainfall is 30% of the total annual rainfall). Required values of the Monsoon Index for an
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Figure 3.1: Mean Davies-Bouldin index values for K-Means clustering of USAPI climato-
logical annual cycle of monthly rainfall as a function of number of clusters. Clustering and
calculation of the Davies-Bouldin Index was repeated 200 times per value of k. Error bars
represent the standard deviation of all Davies-Boulding Index values obtained.

area to be considered part of the Global Monsoon domain are of 50% and greater (Wang

and Ding (2008)), placing these stations just outside of it. Stations most severely affected

by the 2013 drought event, such as Enewetak, Utirik and Wotje, are all classified into this

cluster. Anomalous dry conditions during early 2013 coincided with the climatological dry

season and compounded to produce severe drought impacts in these stations.

Stations to the south show year-round rainfall, with slightly dryer than average conditions

during February and October. This type of rainfall regime is consistent with a climate

dominated the seasonal migration of the ITCZ. Previous analysis of the rainfall annual cycle

on the USAPIs depicted northern and southern USAPI stations as having similar annual

cycles (monsoon for both) but with a slight difference in the timing of the peak (Yu et al.
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Figure 3.2: Map showing the USAPI stations and their assigned K-Means cluster (color) us-
ing k=2, Monsoon Index (contours), and silhouette score for most relevant stations (number
next to station name).

(1997a)). We argue that the difference in annual cycle between northern and southern

USAPIs is more significant than a shift in peak rainfall timing and justifies separate study

of ENSO impacts on northern and southern stations.

The separation of stations into northern ans southern stations is a robust feature, and

is still present if 3 clusters are used. Figures 3.4 and 3.5 show the spatial map and average

annual cycles of the USAPI stations as described by K-Means clustering using 3 clusters.

Rainfall records for Guam, Kwajalein and Yap are available since 1966 and are all clas-

sified as having the same type of annual cycle as those affected by the 2013 drought. The

correlation between time series of December to May rainfall anomaly for these stations for

the period of 1966 to present exceeds the 99% confidence level. The silhouette score, which

measures the distance between a cluster point and the centroid of the nearest cluster, is 0.30

for Yap. This implies that the annual cycle in Yap is more similar to the mean annual cycle

of southern stations than for other stations in its cluster with higher silhouette scores. Due
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Figure 3.3: Average annual cycle of monthly rainfall for the northern and southern cluster
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Figure 3.4: Map showing the USAPI stations and their assigned K-Means cluster (color) us-
ing k=3, Monsoon Index (contours), and silhouette score for most relevant stations (number
next to station name).

to their very similar annual cycle and coherent interannual variability, Kwajalein and Guam

are chosen as representative stations for rainfall variability in the northern USAPI region,

whereas Koror, Chuuk, Pohnpei, and Majuro are used for the southern stations. The SPI

for total rainfall from December to May was calculated individually for each station and
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Figure 3.5: Average annual cycle of monthly rainfall for the northern and southern cluster
as calculated using K-Means with 3 clusters.

averaged with the other proxy stations in that cluster.

3.2 Impacts of ENSO North vs. South USAPI Stations

The relationship between rainfall (SPI) and ONI differs between the northern and southern

USAPI stations (Figure 3.6). For the strongest El Niño events (i.e., cold tongue events,

ONI > 2◦C) such as 1983, 1998 and 2016, severe drought conditions occur during the dry

season (December of the previous year to May of the referred year) for both northern and

southern USAPI stations. For ONI values less than 2◦C, the southern USAPI stations exhibit

negative correlation (correlation of -0.72, significant at the 99.9% confidence level) between

SPI and ONI, with moderate El Niños producing drier than normal conditions and La Niñas

producing wetter than normal conditions. On the other hand, rainfall at the northern USAPI

stations does not correlate with the ONI, suggesting that other factors contribute to rainfall

variability in this region beyond the amplitude and phase of ENSO.

The years selected for our composite analysis in Section 3.3 are shown in Figure 3.6 with

color makers. We will focus our analysis on the ONI range between −1◦ and 2◦C, where

rainfall variability in the northern USAPI region has highest amplitude. We have excluded

from analysis years with SPI or ONI anomalies close to zero. We will consider years with

ONI values of less than -1◦C separately.

Years with anomalously warm ONI and dry SPI are referred to as Warm Dry years

(red circles in Figure 3.6), and include 1988, 1992, 2005, 2007 and 2010. Similarly, years

with anomalously cool ONI and wet SPI are referred to as Cool Wet years (blue circles in

Figure 3.6), and include 1985, 1986, 1996, 1997 and 2014. In this work, we will consider

Warm Dry and Cool Wet years in the northern USAPIs as Canonical years. This is because
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Figure 3.6: Scatterplots of the dry season SPI (Dec to May) averaged for the northern (left)
and southern USAPI stations (right) vs. the Oceanic Niño Index for the corresponding
December-January-February season as published by NOAA CPC. Color markers represent
years chosen for composite analysis. Diamond markers represent years for which rainfall
anomalies in the Northern USAPIs are of opposite sign to what would be expected from
the ONI conditions. We will refer to these as Non-Canonical years. Circular markers, in
contrast, represent years for witch the rainfall anomalies are as expected considering the
corresponding ONI value. We will refer to these as Canonical years. Vertical dashed lines
represent the 0.5◦C and -0.5◦C ONI values.

these years show the expected negative correlation between ENSO and rainfall in the USAPIs

(Ropelewski and Halpert (1987), Murphy et al. (2014) ). Conversely, Cool Dry (red diamonds

in Figure 3.6) and Warm Wet (blue diamonds in Figure 3.6) represent years for which dry

season rainfall and DJF ONI appear to be positively correlated. These years will be referred

to as Non-Canonical years.

Table 3.1 shows the classification of each of the years chosen for composite analysis

according to CPC operational methodology, as well as by Kug et al. (Kug et al. (2009)) and

Murphy et al. (Murphy et al. (2014)). The methodology used to select composite member
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years yields a very different year selection than previous works in which selection was based

solely on sea surface temperature conditions. In most cases, years with dissimilar rainfall

impacts over the northern USAPI are grouped together into composites, erasing the features

that produce these diverse anomalies. Nonetheless, these differences in rainfall are significant,

with the Warm Wet and Warm Dry events having a difference in SPI value significant at

the 99.9% test level (with a p-value of 10−4), and Cool Dry and Cool Wet events an even

greater difference (p-value of 10−6).

According to the PEAC Center’s ”Pacific ENSO Update” newsletter, dry conditions and

drought impacts were also reported for years that coincided with cool Pacific SST conditions.

These years are selected by our methodology to form part of the Cool Dry composite. The

progression in time of these reported impacts is also similar to those observed in 2013. For

example, dry conditions persisted from the second half of 2005 into 2006 in the Northern

USAPIs. Guam reported a longer than normal wildfire season resulting in evacuations, and

very low levels in the Fena reservoir, which provides water to about 20% of the population.

In Majuro, water rationing was mandated by February 2006 and encouraged though the

following months. Similarly, in 2009, persistent dry conditions in the Northern RMI required

the delivery of drinking water to Utirik in late April and the issuing of special weather

statements for the RMI by the Guam National Weather Service Forecast Office. Neither

2006 nor 2009 is classified as a La Niña events by current methodologies.

Canonical Cool Wet Non-Canonical Warm Wet
Year CPC Kug et al. 2009 Murphy et al. 2014 Year CPC Kug et al. 2009 Murphy et al. 2014
1985 Niña Niña – 1980 Niño – –
1986 – – – 1991 – WP Niño –
1996 Niña – – 1995 Niño WP Niño WP Niño
1997 – – – 2004 – –
2014 – ** – 2015 Niño ** **

Non-Canonical Cool Dry Canonical Warm Dry
Year CPC Kug et al. 2009 Murphy et al. 2014 Year CPC Kug et al. 2009 Murphy et al. 2014
1984 – – – 1988 Niño Mix Niño Mix Niño
2001 Niña Niña – 1992 Niño Mix Niño Mix Niño
2006 – Niña – 2005 Niño WP Niño WP Niño
2009 – ** – 2007 Niño ** WP Niño
2013 – ** – 2016 Niño ** **

Table 3.1: Classification of all events selected for our composite analysis according to CPC
operational methodology, Kug et al. (Kug et al. (2009)) and Murphy et al. (Murphy et al.
(2014)). WP and Mix represent the terms Warm Pool and Mixed El Nino respectively.
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For ONI values of -1◦C or less, both wet and dry rainfall conditions for the northern

USAPIs occur. Rainfall anomalies are not as pronounced as during the Cool Dry years, which

show weaker ONI anomalies. Years included in this category are 1989, 1999, 2000, 2008 and

2011. All of these years are considered La Niña years by CPC operational methodology,

Murphy et al. (Murphy et al. (2014)) and Kug et al. (Kug et al. (2009)) this last reference

leaving out 2008 and 2011 due to the time period considered.

It should also be noted that many of the years selected here which show the strong

impacts over the northern USAPI region are not often studied because they are overlooked

by most ENSO active phase selection criteria. In most cases, SST anomalies during these

years do not meet magnitude or persistence criteria such as the CPC requirement for 5

consecutive seasons of ONI index being below −0.5◦C. Nonetheless, their distinct impacts

over the USAPI region and the severe drought conditions seen during years with negative

rainfall anomalies warrant a closer look at these events.

The results in Figure 3.6 are robust and can be reproduced using GPCP rainfall anomalies

averaged over the Northern USAPIs. The rainfall anomalies averaged in the region defined

by 10◦W to 15◦N and 140◦W to 170◦W reproduce the results obtained for station data

best, but results remain consistent to reasonable changes in the area used to define rainfall

anomalies.

3.3 December to May Dry Season Composites

In this section, we contrast the composite climate anomalies between the Canonical and Non-

Canonical regimes. In Figure 3.7, the top left and bottom right panels are the composites

of rainfall anomalies for the Canonical years. Rainfall patterns during Canonical events are

consistent with the familiar ENSO horseshoe shape. During Warm Dry events, wet anomalies

occur over the central and eastern Pacific and dry anomalies over the western Pacific that

extend northeast and southeast. During Cool Wet years, the opposite pattern occurs. The

central Pacific rainfall anomalies during these events are confined to south of about 5◦N west

of the dateline and increase in latitudinal range to the east. The tropical northwest Pacific

(0 to 30◦N, 120◦E to the dateline) anticyclonic low-level wind anomalies coincide with dry

conditions in the region during Warm Dry years, while cyclonic anomalies coincide with wet

conditions during the Cool Wet years.

In contrast, the lower left and upper right panels of Figure 3.7 show the same composites

for the Non-Canonical Cool Dry and Warm Wet years. Because Non-Canonical Cool Dry
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Figure 3.7: Rainfall (shading), 850 hPa geopotential height (contours) and wind composites for the Canonical Cool Wet
and Warm Dry and Non-Canonical Cool Dry and Warm Wet years. Hatching represents areas where the difference in
rainfall anomalies between composites of the same ONI character (Cool Wet vs. Cool Dry, for example) are significant at
the 90% confidence level according to a Wilcoxon rank-sum test (Wilks (2005)).
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events are of particular interest as they bring unexpected droughts to the USAPIs, we will

focus on comparing the features of these events with those of their Canonical Cool Wet

counterparts. Comparisons for the Warm Dry and Warm Wet events will be assumed to be

opposite (for the sake of brevity) unless otherwise pointed out.

In the Cool Dry composite, an anomalous rain belt extends the dry rainfall anomalies

observed near the dateline toward Micronesia. This rain belt has it’s strongest anomalies

between about 7◦ and 15◦N and is not present in Cool Wet events. Tropical northwest Pacific

circulation during Cool Dry events is dominated by well-defined anticyclonic anomalies,

consistent with the observed rainfall anomalies in the area, while Cool Wet events show the

Western Pacific dominated by cyclonic anomalies.

Canonical Cool Wet and Non-Canonical Cool Dry events differ significantly in their cir-

culation patterns over a large portion of the Pacific Basin, in addition to over the northwest

tropical and subtropical Pacific (Figure 3.8). Strong circulation anomalies in the tropical

western Pacific during the Dec-May dry season are cyclonic for Cool Wet events and anti-

cyclonic for Cool Dry events. In both cases, Tropical Western Pacific circulation anomalies

show support from mid-latitude circulation anomalies of the same sign as observed.

Over the eastern and southern Pacific basin, Cool Wet and Cool Dry events also ex-

hibit significant circulation differences. In the tropical South Pacific, Non-Canonical Cool

Dry events show very strong cyclonic circulation, while the Canonical Cool Dry composite

shows weak anticyclonic anomalies over the entire region. In the tropical eastern Pacific

(140◦W), Cool Wet events show a strong anticyclonic circulation pattern similar to what is

observed during the decaying phase of La Niña events, while during Cool Dry events the

eastern tropical Pacific shows weak cyclonic anomalies. A significant difference between the

Canonical Warm Dry composite and other composites is that the circulation anomalies over

the northern central Pacific and the tropical western Pacific are of opposite sign.

The Canonical and Non-Canonical cool events, even having similar DJF ONI values (all

between 0 and -1◦C), are characterized by very distinct equatorial and off-equatorial spatial

SST anomaly patterns (Figure 3.9). In the equatorial Pacific, Cool Wet years show strongest

negative SST anomalies over the eastern Pacific from around 140◦W extending towards the

South American coast, with peak magnitude around 120◦W. Cool Dry years show strongest

negative anomalies to the east of 140◦W and extend to the dateline. In the tropical western

north pacific, Cool Wet years show weak warm SST anomalies from the equator to about

20◦N, with cool anomalies to the north. During Cool Dry years, warm anomalies dominate

the region.
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Figure 3.8: stream function of the anomalous wind(shading), 850 hPa geopotential height (contours) and wind composites
for the Canonical Cool Wet and Warm Dry, and Non-Canonical Cool Dry and Warm Wet years. Hatching represents areas
where the difference in anomalies between composites of the same ONI character (Cool Wet vs. Cool Dry, for example)
are significant at the 90% confidence level according to a Wilcoxon rank-sum test (Wilks (2005)).
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Equatorial low-level easterly winds in the Cool Wet events are confined east of the dateline

where the strongest SST gradients are observed. Westerly wind anomalies are present in

the western part of the basin. These westerly winds form on the southern side of the

regional cyclonic circulation anomalies observed in the Western Pacific during Cool Wet

events. During Cool Dry events, easterly wind anomalies are only present west of 150◦W,

and extend all the way to the Maritime Continent. These easterly winds form the southern

branch of the regional anticyclonic circulation that characterizes Cool Wet events. Weak

wind anomalies are observed in the eastern Pacific during Cool Dry events.

In the mid latitudes, the Cool Wet composites show a strong low-pressure system and

associated cyclonic circulation, as well as cool and warm SST anomalies (30◦N and dateline

and near the California coast respectively). Mid-latitude anomalies during Cool Dry events

are opposite to those observed during Cool Wet events, with strong high pressure, anticy-

clonic circulation and cool SST anomalies to the east and south, and warm SST anomalies

to the west.

Anomaly patterns for strong La Niña events are consistent with the Cool Dry and Cool

Wet composites discussed above but with some modifications. Composites of La Niña years

with wetter than normal (1989 and 2011) and drier than normal (1999 and 2008) conditions

over the northern USAPIs are shown in Figure 3.10. SST anomalies for both Dry and Wet

La Niña composites are considerably larger magnitude than those of Cool Dry and Cool Wet

composites. The location of the highest SST anomalies is slightly more to the east in the wet

La Niña composites than in the dry La Niña composites, but this shift is not as prominent

and clear as in the Cool Dry and Cool Wet composites.

In spite of this more similar SST pattern between wet and dry La Niña events, local

circulation and rainfall anomalies over Micronesia do show differences between the composites

which are similar to the differences between the Cool Dry and Cool Wet composites. Dry

La Niña events, like Cool Dry Non-Canonical events, show relative high pressure anomalies

over the Micronesia region and large-scale anticyclonic circulation anomalies that produce

a band of negative precipitation anomalies over the region. Wet La Niña composites show

westerly winds over the Micronesia region north of about 5◦N and accompanying positive

rainfall anomalies. In the case of strong La Niña events, both dry and wet, tropical easterly

anomalies are much stronger than those seen in the weak La Niña composites.

Both Dry and Wet La Niña events have stronger equatorial easterly wind anomalies

along the equator than the Cool Wet and Cool Dry events. These stronger equatorial wind

anomalies prevent local circulation anomalies over Micronesia from becoming as well defined
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Figure 3.9: SST anomaly (shading), 850 hPa geopotential height (contours) and wind composites for the Canonical Cool
Wet and Warm Dry and Non-Canonical Cool Dry and Warm Wet years. Hatching represents areas where the difference
in SST anomalies between composites of the same ONI character (Cool Wet vs. Cool Dry, for example) are significant at
the 90% confidence level according to a 2 tailed Student t-test (Wilks (2005)).
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during strong La Niña events as they are in the cool events (compare the bottom panels of

Figure 3.10 with the left panels of Figure 3.8). This, in turn, is likely the reason why strong

La Niña events produce similar but weaker rainfall anomalies over the northern USAPIs as

the cool events.
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Figure 3.10: December-May SST anomaly (shading top), Precipitation anomaly (shading
mid) and stream function (shading bottom), along with 850 hPa geopotential height (con-
tours) and wind composites wet and dry La Niña events. Hatching represents areas where
the difference in anomalies between wet and dry composites are significant at the 90% test
level.

The results of Murphy et al. (2014) are consistent with the observations made here. A

composite of rainfall anomalies for Central Pacific El Niño events (their Figure 5) captures

weak positive rainfall anomalies that extend from the central Pacific into the northern USAPI
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region. This composite is similar to our composite for Non-Canonical Warm Wet events (top

right panel of Figure 3.7). In their case, mean anomalies in this rain belt are not significantly

different from zero. This is because this composite is made by using a mix of Canonical Warm

Dry years and Non-Canonical Warm Wet years. The Central Pacific El Niño events used for

that composite are 1995 (considered in this study to be a Non-Canonical Warm Wet year)

and 2005 and 2007 (considered in this study to be Canonical Warm Dry years).

Similarly, in their composite for La Niña events (also their Figure 5), a belt of anomalous

negative rainfall extends from the central Pacific toward northern Micronesia (not statisti-

cally significant). This composite is similar to our composite of Non-Canonical Warm Dry

events (bottom left panel of Figure 3.7). The years used in their La Niña composite are

1989, 2011 (considered as wet La Niña events in our case), 1999 and 2008 (considered as dry

La Niña events) and 2000 which is left out of our analysis due to its near normal rainfall

anomalies over the northern USAPI.

Murphy et al. (2014) comment on this belt of rainfall anomalies during Central Pacific

El Niño events. In their SST composites for Central Pacific El Niño events, warm SST

anomalies are observed in the Tropical Western Pacific over Micronesia.The authors argue

that these warm SST anomalies serve to directly enhance convection over the region, resulting

in the formation of the anomalous rainfall belt. Our SST composites for Warm Wet events

during the Dec-May season show warm SST anomalies confined near the dateline, with cool

anomalies to the west. This SST dipole suggests that coupled ocean-atmosphere dynamics

play a role in forcing regional circulation anomalies and subsequent rainfall anomalies rather

than direct thermodynamic forcing. Murphy et al. (Murphy et al. (2014)) do not highlight

the other features described here.

It is clear that during the dry season of December to May, Canonical and Non-Canonical

warm and cool events show a distinct set of atmospheric and oceanic anomalies that explain

why their impacts on the northern USAPI region are so diverse. We will discuss in the

following section how the evolution of these anomalies differs between Canonical and Non-

Canonical events.
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3.4 Contrasting Seasonal Evolution of SST and At-

mospheric Anomalies Between the Canonical and

Non-Canonical Responses

The evolution of the ONI index leading up to the December to May dry season for Canonical

events resembles that of typical ENSO events. The onset of the events tends to occur in the

late spring to early summer and peak by the end of the year (Figure 3.11).

In Non-Canonical Warm Wet events, the evolution of the ONI matches that seen during

the Canonical events, with onset during late spring to early fall and intensification and peak

during the winter. For Non-Canonical Cool Dry events, the seasonal evolution of the ONI

shows less consistency. The onset of these events happens later in the year toward late

summer, with ONI values during the preceding JJA season showing a wide range of values.

For the 2013 event, ONI values are weak positive in 2012 as late as the November-December-

January season, much later than any of the other years in this category.

Rainfall over the northern USAPI is strongly modulated by the anomalous circulation

over the tropical western north Pacific. Figure 3.12 shows the composite time series of

northern USAPI 6-month period SPI overlaid on the tropical western Pacific stream function

of anomalous winds averaged from the equator to 30◦N and 120◦W to the dateline.

During Canonical events, we observe how rainfall anomalies over the northern USAPI

shift sign from the developing to the decaying stage of the events. This shift in rainfall

anomalies coincides with a shift in sign of circulation anomalies over the tropical western

Pacific. For Canonical Warm Dry events, a wetter than normal June to November wet

season transitions to a drier than normal December to May dry season. This transition in

rainfall anomalies was described for El Niño events by Ropelewski and Halpert (1987). In

compliment to this, for Canonical Cool Wet composites dry anomalies leading up to the

Dec-May dry season sharply transition to wet anomalies.

Non-Canonical events, on the other hand, show persistence of rainfall anomalies from the

June to November wet season through the December to May dry season that are linked to

the persistent anomalous circulation anomalies over the tropical western Pacific. For Cool

Dry events, a drier than normal June to November wet season is then followed by a dry

December-May dry season. The effects of these long term dry conditions are compounded,

making for severe drought impacts across the northern USAPI during Non-Canonical Cool

Dry events.

Figure 3.13 shows a progression of seasonal SST, 850 hPa winds and geopotential height
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Figure 3.11: Time series of the Oceanic Niño Index for each year selected for composite
analysis. ONI index as published by the Climate Prediction Center. Bars represent the
average of all events in each category. Bars are colored red where the average is greater than
0.5◦C and blue where it is less than -0.5◦C. The time series are labeled using the year 0. Red
arrows depict the extend of the climatological Dec-May dry season.

anomaly composites from the March-April-May season on to the December-May dry season

for each of our composite categories. These composites show the differences in evolution of

equatorial SST and tropical western north Pacific circulation between Canonical and Non-

Canonical events that we have discussed before. These composites also show differences in

the evolution of off-equatorial SST anomalies and their link to circulation anomalies.

For Cool Dry events, the tropical western Pacific anticyclonic anomalies observed during

the dry season (and produce dry season droughts) are already established in the March-

April-May season (MAM). These tropical western Pacific circulation anomalies are linked

to anticyclonic anomalies over the subtropical central Pacific. These subtropical circulation

anomalies provide support for the localized central Pacific easterly wind anomalies observed

in the MAM, JJA and SON seasons leading up to the Dec-May dry season in the Cool

Dry composites. SST anomalies in these leading seasons are cool to the east and south of

the tropical and subtropical circulation anomalies, and warm to the north and west. This

coinciding pattern of circulation and SST anomalies suggests ocean-atmosphere coupling
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Figure 3.12: Time series of the northern USAPI (Kwajalein and Guam) Standardized Pre-
cipitation Index (SPI) averaged for the members of each composite categories (black lines).
The SPI in this figure is calculated for consecutive 6 month seasons. Bars represent the
composite time series of the average stream function of anomalous winds over the Tropical
Western Pacific. Red arrows depict the extent of the climatological Dec-May dry season.
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Figure 3.13: Seasonal composites of SST (shading), 850 hPa geopotential height (contours) and wind anomalies for the
three 3-month seasons leading up to the December-May dry season, as well as the December-May dry season composite.
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Figure 3.14: Seasonal composites of stream function (shading), 850 hPa geopotential height (contours) and wind anomalies
for the three 3-month seasons leading up to the December-May dry season, as well as the December-May dry season
composite.
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could play an important role in the development and maintenance of these anomalies. While

the link between subtropical and tropical circulation anomalies appears clear in the Cool Dry

events, it is less so for their Warm Wet Non-Canonical counterparts, which show similar and

opposite SST anomaly patterns but less clear circulation anomalies during the MAM and

JJA seasons. For Canonical events, the off-equatorial SST and wind anomalies are weaker

than for the Non-Canonical cases, with the exception of the JJA and Dec-May seasons of

the Cool Wet event composites, which show an opposite SST and circulation pattern to the

same seasons in the Cool Dry composite.

Anomalous SST along the equator for Canonical and Non-Canonical events also evolves

differently from each other (Figure 3.15). During Canonical events, SST anomalies dominate

the entire basin well ahead of the Dec-May dry season, extending from about 160◦E to the

South American coast. In the case of Cool Wet events, strong cool SST anomalies appear

over the eastern Pacific off the South American coast during April and May of the developing

year. As the event evolves, these precursor SST anomalies intensify and extend from east to

west, peaking near 140◦W (160◦W for Warm Dry events).

Non-Canonical events are characterized by an evolution of equatorial SST that is quite

different (Figure 3.15). In the late spring and early summer of the developing year, Non-

Canonical years are characterized by an SST dipole pattern between the central and eastern

Pacific. Cool Dry events show warm SST anomalies off the South American Coast and and

cool SST anomalies over the central Pacific (bottom left panel of Figure 3.15). These cool

central Pacific anomalies then extend eastwards, covering most of the region east of the

dateline but with peak intensity strongly localized near the dateline. Thermocline anomalies

mirror this difference in zonal propagation. Negative thermocline depth anomalies first

appear off the South American Coast and propagate west during Canonical Cool Wet events,

while during Non-Canonical Cool Dry events, they appear first over the Central Pacific and

propagate east.

Wet and Dry La Niña events also exhibit this different evolution of equatorial SST anoma-

lies (Figure 3.16). For wet La Nina events, as in Cool Wet events, strong negative SST and

thermocline anomalies are observed off the South American coast as early as May leading up

to the dry season. These negative SST and thermocline anomalies are then seen propagating

westward. Dry La Niñas on the other hand, like Cool Dry events show warm SST anomalies

off the South American coast. The propagation of cool SST anomalies from the dateline

toward the east is very clear in Cool Dry events, but during Dry La Niña events this signal

is much weaker, with negative SST anomalies appearing to first develop around 140◦W and
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Figure 3.15: Hovmöller diagrams of composite monthly SST (shading) and GOADS 20
Degree Celsius depth (contours) anomalies averaged from 6◦S to 6◦N. Black horizontal lines
represent December and May, which are the start and end of the northern USAPI dry season.

propagate slightly westward.

Figure 3.17 shows Hovmöller diagrams of monthly rainfall anomaly composites averaged

between 5◦N and 15◦N along with the stream function of the anomalous winds averaged from

the equator to 30◦N for each composite category. Over the western Pacific and the USAPI

region (130◦W to the dateline), monthly rainfall shows behavior consistent with what was

described before using the time series of SPI. Canonical events show rainfall anomalies that

change sign as the event progresses and Non-Canonical events show rainfall anomalies that

persist.

Canonical events are also characterized by an eastward propagation of rainfall and cir-

culation anomalies from the western Pacific towards the east (top left and bottom right
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Figure 3.16: Hovmöller diagrams of composite monthly SST (shading) and GOADS
20◦Celsius depth (contours) anomalies averaged from 6◦S to 6◦N for La Niña events and
Canonical Cool Wet and Non-Canonical Cool Dry events. Black horizontal lines represent
December and May which are the start and end of the northern USAPI dry season.

panels of Figure 3.17). During Cool Wet events, negative rainfall and anticyclonic circula-

tion anomalies first appear over the western Pacific as early as March and propagate east,

being confined east of 160◦W by the start of the Dec-May dry season. This progression is

consistent with previous observations (Wang and Zhang (2002)).

Eastward propagation of rainfall and circulation anomalies is not observed in the Non-

Canonical composites (bottom left and top right panels of Figure 3.17). During Non-

Canonical years, homogeneous rainfall and circulation anomalies occupy most of the Pacific

basin and persist from the developing year of the events through the dry season of the target

year. It is seen that Non-Canonical events are characterized by the persistence of anomalies,
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not only over the tropical western Pacific, but also across a large part of the central Pacific,

from about 140◦E to 120◦W.
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Figure 3.17: Hovmöller diagrams of composite monthly rainfall anomalies averaged from 5◦N
to 15◦N (shading) and the stream function of the anomalous winds averaged between the
equator and 30◦N (contours). Contours range between +/−36 in intervals of 35 m2/s. Black
horizontal lines represent December and May, which are the start and end of the northern
USAPI dry season.

Wet and dry La Niña events are also characterized by propagation vs. persistence of

rainfall anomalies over the western Pacific in a way similar to Canonical Cool Wet and Non-

Canonical Cool Dry events (Figure 3.18). Wet La Niña events show eastward propagation

of rainfall anomalies that is less pronounced than in the Cool Wet events. Similarly, Dry

La Niña events show some propagation of rainfall anomalies toward the west, instead of no

propagation as is seen in Cool Dry events.
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Figure 3.18: Hovmöller diagrams of composite monthly rainfall anomalies averaged from 5◦N
to 15◦N (shading) and the stream function of the anomalous winds averaged between the
equator and 30◦N (contours) for Wet and Dry La Niña events and Cool Wet and Cool Dry
events (see also Figure 3.17). Contours range between +/−36 in intervals of 35 m2/s. Black
horizontal lines represent December and May, which are the start and end of the northern
USAPI dry season.

To understand the evolution of mid-latitude anomalies and their possible role in the sup-

port of tropical anomalies during Non-Canonical events, Figure 3.19 represents the evolution

of SST anomalies between 20◦ and 30◦N and, in contours, the 850 hPa geopotential height

anomalies averaged from 30◦ to 50◦N. Over the northern Pacific, Non-Canonical events show

a strong relationship between geopotential height anomalies north of 30◦N and SST anoma-

lies south of 30◦N. Pressure anomalies over the northern Pacific and associated anomalous

circulation coincide with strong SST anomalies. In the case of Cool Dry events, high pres-
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sure anomalies to the north are followed by cool SST anomalies east of about 160◦E and

warm SST anomalies to the west. For Canonical events, Cool Wet events show a similar but

opposite behavior over the northern pacific as Cool Dry events, but Warm Dry events show

weak mid-latitude anomalies both in geopotential height and SST, suggesting that Warm

Dry events have less of a mid latitude influence than their Cool Wet Canonical counterparts

and Non-Canonical events.
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Figure 3.19: As in Figure 3.17, but for monthly SST anomalies averaged from 20◦ and 30◦N
(shading) and 850 hPa geopotential height anomalies from 30◦ to 50◦N (contours).

The differences between peak dry season SST maxima coupled with their differences in

evolution for Canonical and Non-Canonical events described here are consistent with some

previous results. Modeling studies have shown that Eastern Pacific and Central Pacific El

Niño events have peak SST anomaly patterns that evolve from distinct initial condition

patterns (Newman et al. (2011a), Newman et al. (2011b)). Precursor conditions in those
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studies were derived using observed SST, thermocline and surface wind stress anomalies. The

precursor conditions derived in those studies for Eastern Pacific El Niño events are similar

to the precursor season composite maps observed here for Canonical Warm Dry events, with

SST anomalies first appearing off the South American coast and extending west as the event

matures (Newman et al. (2011b)). Likewise, the precursor conditions derived for Central

Pacific El Niño events are remisniscent of the composites produced here for Non-Canonical

Warm Dry events. In these cases, an SST dipole is observed between the central and eastern

Pacific (Newman et al. (2011b)).

Observations of the seasonal evolution of anomalies of Eastern and Central Pacific El

Niño events also show that their seasonal evolution of SST anomalies are different (Kao

and Yu (2009), Yeh et al. (2014)). Eastern Pacific El Niño events show SST anomalies

that appear off the coast of South America during the spring and extend west as the event

matures, just as is observed for Canonical Warm Dry events. On the other hand, similar to

our Non-Canonical events, Central Pacific El Niño events show SST anomalies that extend

from the eastern subtropical Pacific towards the central Pacific during spring and summer.

S-EOF analysis is performed on GPCP gridded rainfall anomalies for the JJA, SON, DJF

and MAM seasons over the northern USAPI region defined between 5◦ to 20◦N and 140◦E

and the dateline (Figure 3.20). This type of seasonal analysis is capable of separating modes

of variability that evolve differently from season to season, even if during one particular

season these modes show similar patterns. In our case, years in the Canonical Warm Dry

and Non-Canonical Cool Dry composites have similar rainfall anomalies over the USAPI

region. However, the seasonal evolution of these rainfall anomalies is different (as revealed

by previous analysis). S-EOF analysis is particularly suited for this scenario and allows for

the separation of Canonical and Non-Canonical variability into orthogonal S-EOF modes.

Regressions of each PC time series to rainfall, SST, winds and geopotential height are used

to capture the large scale spatial features of these S-EOF modes across the Pacific basin.

The first two S-EOF modes of precipitation anomalies over the northern USAPI capture

the Non-Canonical and Canonical modes (respectively) of variability previously described

using composite analysis. These modes account for 17.5% and 12.8% of the total precipitation

variance in the region. The PC time series of these first two S-EOF modes are given in Figure

3.20.

The first S-EOF mode captures, as in the previous composite analysis, the persistence

of circulation anomalies over the western tropical Pacific from the JJA to the MAM season,

causing the continuous rainfall anomalies in the northern USAPI that characterize the Non-
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Figure 3.20: Seasonal EOF of rainfall in the region from 5◦ to 20◦N and 140◦E to the dateline. Panel A shows the PC time
series for the first two S-EOF modes. Triangular markers represent the years chosen for the Non-Canonical composites,
with red representing Cool Dry years and blue Warm Wet years. Panels B, C, D and E show the regression of the PC1 to
rainfall, geopotential height and wind anomalies during the JJA, SON, DJF and MAM seasons, respectively. Panels F,
G, H and I show the regression of PC1 to SST anomalies for the JJA, SON, DJF and MAM seasons. Panels J, K, L and
M show the same as B through E but for PC2, while N trough Q are analogous to F through I but also for PC2. Circular
hatching represents areas for which correlations are significant at the 90% confidence level.
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Canonical events. Linked to these circulation anomalies, the first S-EOF mode also captures

the persistent rainfall anomalies that extend eastward along 10◦N across a large portion

of the Pacific basin observed in Non-Canonical event composites. This suggests that this

mode captures the meridional modulation of the ITCZ activity by atmospheric and ocean

anomalies. The PC time series of the S-EOF 1 mode has positive values for 4 out of 5 of the

years chosen by our previous methodology to be in our Non-Canonical Cool Dry composite,

and negative values for 4 out of 5 of the years in our Warm Wet composite.

The second S-EOF mode encompasses many of the hallmark features of the development,

peak and decay of ENSO events. Circulation anomalies in this mode shift from cyclonic to

anticyclonic over the tropical western north Pacific as the events develop, and SST anomalies

develop close to the equator and intensify as the events progress. The PC time series of S-

EOF 2 has strong positive values for the Eastern Pacific El Niño events of 1983, 1998 and

2016, as well as positive values for all of the years chosen to be members of the Canonical

Warm Dry composite, and 4 out of 5 member years of the Cool Wet composite.

3.5 Discussion

A schematic diagram of anomaly differences for Canonical and Non-Canonical events during

the peak dry season from December to May illustrate the principal differences between the

two categories (Figure 3.21). We contend that Canonical events represent current under-

standing of the ENSO events. Rainfall anomalies in Canonical events are consistent with

what is generally described as the ENSO horseshoe rainfall pattern over the Pacific, with

opposite anomalies in the central and eastern Pacific and the westernmost part of the basin.

Canonical events are characterized by having strongest SST anomalies east of the dateline

and opposite wind anomalies on either side of the dateline.

Non-Canonical events, on the other hand, show a modified horseshoe rainfall anomaly

pattern characterized by a belt of rainfall anomalies that extends from the central Pacific

toward Micronesia. This rainfall belt is driven by western Pacific circulation anomalies of

opposite sign than those observed for Canonical events of similar ONI sign and intensity.

Non-Canonical events have the strongest SST anomalies over the central Pacific near the

dateline, with weak SST anomalies to the east and opposite signed anomalies to the west,

as well as having the strongest equatorial wind anomalies in the western Pacific.

The difference in evolution of anomalies leading up to the December to May dry season

suggests different physical mechanisms behind the Canonical and Non-Canonical modes of
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Figure 3.21: Schematic diagram of relevant December to May ocean surface temperature
and atmospheric circulation anomalies that lead to difference in rainfall conditions over the
USAPI region. Rainfall anomalies are represented as contours, with red for dry and green
for wet anomalies, SST anomalies are represented as filled shapes and geopotential height
anomalies as grey contours, solid for positive and dashed for negative. Winds are represented
as black arrows, with equatorial wind anomalies represented in bold black arrows.

variability. During Canonical Cool Wet events for example, anticyclonic circulation anoma-

lies over the western Pacific are observed in the 6 months previous to the Dec-May dry

season. The southern branch of this cyclonic pattern are the anomalous easterly winds near

the equator and west of the dateline that trigger the development via Kelvin Waves of cool

SST anomalies over the eastern Pacific. Evidence for this is the observed thermocline deep-

ening anomalies that appear off the South American Coast preceding the SST anomalies in

the same region. As eastern Pacific SST anomalies intensify, the anticyclonic circulation over

the western Pacific migrates eastward, and allows for cyclonic circulation anomalies to de-
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velop over the Western Pacific. This eastward migration of anticyclonic circulation anomalies

produces the shift in rainfall anomalies, from drier than normal during the months leading

up to the Dec-May dry season, to wetter than normal during the peak and post dry season.

Canonical Warm Wet events show a similar progression of events with opposite sign.

Non-Canonical Cool Dry events also show anticyclonic circulation anomalies over the

tropical western Pacific in the months leading up to the Dec-May dry season, but these

fail to trigger the development of more intense SST anomalies over the eastern Pacific.

Anticyclonic circulation anomalies hence do not migrate eastward during these events and

remain anchored over the western Pacific, with regional air-sea interaction likely playing a

significant role in their maintenance (as suggested by the complementary circulation and

SST anomaly patterns observed). The persistent anticyclonic circulation over Micronesia

and resulting persistent dry rainfall anomalies in the northern USAPI region then lead to

the severe droughts observed during these types of events. Because Non-Canonical Warm

Wet events show similar but opposite dry season anomalies as well as anomaly evolution, it

seems appropriate to think of these events as the two sides of a single mode of variability.

Strong La Niña events can also produce dry or wet conditions over the northern USAPI

region. Rainfall anomalies (both wet and dry) during strong La Niña events are of lesser

magnitude than those observed for the Cool Dry and Cool Wet years. Stronger equatorial

easterlies during strong La Niña events prevent local circulation anomalies over Micronesia

from developing. During dry La Niña events, equatorial easterlies push farther west past

Micronesia toward the maritime continent, and stronger high pressure anomalies over the

Northern Pacific prevent the formation of a strong anomalous anticyclonic circulation over

Micronesia, producing weaker dry conditions than those observed during Cool Dry events.

During wet La Niña events, strong easterlies push anomalous westerlies over Micronesia

north, extending equatorial dry conditions northward and weakening wet anomalies over

Micronesia. The difference in the location of maximum SST anomalies between wet and dry

La Niña is not as large as observed between Cool Dry and Cool Wet events. Dry La Niña

events show SST anomalies slightly shifted toward the dateline compared to wet La Niña,

however, they are not located as far west as in Cool Dry events. For this reason, we observe

some migration of rainfall anomalies from east to west during dry La Niña events. It appears

that La Niña events follow similar dynamics as Cool Wet and Cool Dry events, but stronger

SST anomalies with less difference in their location result in events which show less distinct

characteristics.

The stark separation between Canonical and Non-Canonical events used in this study

50



is valuable to the PEAC Center because these events show such distinct impacts on the

Center’s area of responsibility, although it may not be adequate for the ENSO community

at large. As pointed out in the previous sections, many of the most distinct features of

Non-Canonical events have not been analyzed in detail. Nonetheless, some of the results

presented here are consistent with previous findings from ENSO diversity studies. Canonical

Warm Dry events show peak dry season anomalies and seasonal evolution of those anomalies

consistent with some previous observation and modeling results found for Eastern Pacific

El Niño events. Similarly, our results for Non-Canonical events show some overlap with

previous results obtained for Central Pacific El Niño events. (See Capotondi et al. (2015),

Newman et al. (2011a), Newman et al. (2011b), Kao and Yu (2009), Yeh et al. (2014), Wang

and Zhang (2002), Ropelewski and Halpert (1987), and Stuecker et al. (2015)). It may be

that Non-Canonical events can be incorporated into the larger landscape as being thought to

represent the most extreme of Central Pacific ENSO events. In these extreme Central Pacific

events, SST anomalies are so strongly constrained to the central Pacific that the evolution of

western Pacific circulation, and subsequently, rainfall, is dramatically different from that of

events in which SST anomalies peak farther east. This is not unlike the fact that the most

extreme Eastern Pacific El Niño events, such as 1983-83, 1997-98 and 2015-16, share their

own set of distinguishing features that separate them from events with peak SST anomalies

farther to the west.

The event selection methodology used in this work allows for a framework to examine

the causes of dry season rainfall anomalies in the northern USAPI region outside traditional

ENSO events. It has the virtue of highlighting years that do not show the expected impacts

of ENSO over the region, such as 1995 which produced wetter than normal conditions over

the northern USAPI, or would be overlooked by selection criteria based only on SST, such

as 2013 whose drought impacts were described in the introduction.

The analysis is limited by the small sample size of 5 members per composite category

out of 36 years. This makes detailed analysis of the finer differences in our composites con-

tentious, but the most important features highlighted in our work are considered statistically

significant. While the analysis shown here is suggestive of differences in physical mechanisms

acting during Canonical and Non-Canonical events, future work should be aimed at verifying

the physical mechanisms proposed here.
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CHAPTER 4

FORECASTING

In this chapter we will develop forecasting methodology better suited to handle the

diverse impacts of Canonical and Non-Canonical events on rainfall anomalies in the Northern

USAPIs. Our forecasting target will be the Standardized Precipitation Index (SPI) in the

Northern USAPIs during the December-May dry season and our methods will be based on

the Physical-Empirical forecast methodology (Yim et al. (2014b), Yun et al. (2015)). In

section 4.1, we will establish a simple benchmark model to predict Dec-May SPI which we

will refer to as a 1-tier model. In Section 4.2, we will develop a 2-tier prediction methodology

that will rely first on predicting if an event will be Canonical or Non-Canonical, and then

predict their different impacts on rainfall in the Northern USAPIs.

Data used in this section is extended to the periods of 1950 to present. We will separate

our data into a training period from 1950 to 2007 and an independent test period, on which

we do not train the model, spanning from 2008 to 2017. This selection of test period is made

because it coincides with the span of the PEAC Center operational forecast database with

which we wish to compare the performance of our forecasting scheme.

As described in the methodology section, a Physical-Empirical forecasting methodology

requires us to choose predictors that not only show statistical correlation with the target

variable, but can also be understood in a physically meaningful context. The first step

is to identify possible predictors from the lower level boundary conditions that are most

likely to affect the evolution of relevant climate fields. In our case we will use Sea Surface

Temperature (SST) and 850 hPa geopotential height as possible predictor fields. We will

also use 850 hPa winds and stream function of the anomalous winds. Although wind fields

are not lower boundary conditions and therefore tend to make less powerful predictors,

we include them in the predictor search because their evolution differs markedly between

Canonical and Non-Canonical events. We will construct a 0 lead forecasting scheme using

the anomaly fields in the June-July-August and September-October-November seasons prior

to the target December-May dry season. We will also use anomaly tendency fields, defined

as the October-November anomaly minus the August-September anomaly. All predictive

indexes will be normalized by subtracting the mean and dividing by the standard deviation

of the index.

52



4.1 Simple Linear Regression Model

As a benchmark, we will establish a forecasting model that forecasts Dec-May SPI under all

conditions (Canonical or Non-Canonical) using the observed anomaly fields in the preceding

seasons. To establish predictor candidates, the correlation maps of Dec-May SPI with pre-

ceding season anomaly fields were calculated. We begin with a large set of predictors that

may be physically meaningful and then use stepwise regression to select a small subset.

Figure 4.1: Correlation coefficient maps of Dec-May SPI and SST (top) and Stream Function
(bottom) of the anomalous wind fields (PSI) for the June-July-August (JJA) and September-
October-November (SON) seasons. Hatching represents significance at the 95% confidence
level using a Student t-test with a sample size of 58 years. Boxes represent regions chosen
for predictor index average calculations (more details in text).

The correlation maps of Dec-May SPI to preceding SST and zonal wind component

anomalies for the preceding JJA and SON seasons are given in Figure 4.1. In the tropical

Pacific, the correlation to SST maps show a clear ENSO ’horseshoe’ pattern with negative

correlation in the cold tongue region and the central Pacific east of the dateline, and positive

correlation to the west. This pattern captures the Canonical relationship between ENSO

and Northern USAPI Dec-May SPI, with El Niño producing negative SPI anomalies and La
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Niña positive SPI anomalies. As a predictor for the impact of ENSO on Northern USAPI

rainfall, the area averaged SST anomaly in the region from the dateline to 80◦W is defined

as the Central Pacific SST Index (4.1, solid black rectangle in top panels).

A similar procedure will be done for all other fields, constructing predictive indexes as

area averages of the anomaly maps where high correlation is observed. Table 4.1 shows the

name, region and a short description of all predictor candidates developed for this benchmark

model.

In the subtropical northwestern Pacific, an area of high correlation between SST anomaly

and Dec-May SPI is also observed. This feature may form part of the ENSO SST anomaly

pattern, but it may also capture local ocean-atmosphere interaction between the regional

circulation anomaly in the western Pacific and the upper ocean. The development of this

western Pacific circulation also plays an important role in the modulation of rainfall anoma-

lies in the Northern USAPIs. The dashed box in the top panels of Figure 4.1 represents the

area used for the anomaly index representative of this feature.

The bottom panels of Figure 4.1 represent the correlation maps of Dec-May SPI to JJA

and SON stream function of the anomalous wind field. In both the JJA and SON seasons, the

western Pacific shows areas with high correlation between Dec-May SPI and stream function

north and south of the Equator. This correlation pattern is dominated by the Canonical

correlation between Northern USAPI SPI and ENSO. Circulation anomalies in this region

are cyclonic during the onset of El Niño and anticyclonic during the onset of La Niña.

North of the equator, positive stream function is collocated with anticyclonic circulation,

so during the onset of a Canonical Cool Wet event, the western Pacific is dominated by

anticyclonic circulation (positive stream function) that then shifts to cyclonic during the dry

season, producing above average rainfall and positive SPI values. This relationship results in

correlations between Dec-May SPI and stream function in the western Pacific in the previous

season (the correlation is negative in the south Pacific because the relationship between

stream function and cyclonic/anticyclonic circulation reverses). From this correlation map

we define two predictor candidates, the West Pacific Stream Function Index (solid box in

bottom panels of Figure 4.1, 5◦N to 15◦N, 150◦E to 170◦W) and the South Pacific Stream

Function Index (dashed box in bottom panels of Figure 4.1, 5◦S to 30◦S, 160◦E to 140◦W).

Figure 4.2 shows the correlation patterns of Dec-May SPI to 850 hPa zonal wind and

geopotential height. The top panels in Figure 4.2 show strong correlation between Dec-May

SPI and zonal winds along the equatorial belt in the central Pacific. These equatorial wind

anomalies are a crucial part of the onset of ENSO events and thus should be considered as a
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Figure 4.2: Correlation coefficient maps of Dec-May SPI and 850 hPa zonal wind (top)
and geopotential height (bottom) for the June-July-August (JJA) and September-October-
November (SON) seasons. Hatching represents significance at the 95% confidence level using
a Student t-test for a sample size of 58 years. Boxes represent regions chosen for predictor
index average calculations (more details in text).
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1-tier Model Predictors

Predictor Name Variable Region Description

Central Pacific

SST Index

SST Fig 4.1 Dateline to

80◦W, 6◦S to

6◦N

The SST anomalies in this region capture the intensity of

ENSO (Bamston et al. (1997)).

Subtropical

northwestern

Pacific SST

Index

SST Fig. 4.1 160◦E to the

Dateline, 25◦N

to 45◦N

SST anomalies in this region likely to reflect the Ocean-

Atmosphere interaction between circulation in the western

Pacific and underlying ocean (Wang and Zhang (2002)).

West Pacific

Stream Function

Index

Stream Function

Fig 4.1

5◦N to 15◦N,

150◦E to 170◦W

Captures the anomalous circulation in the western Pacific

linked to the evolution of ENSO (Wang and Zhang (2002),

Li et al. (2016))

South Pacific

Stream Function

Index

Stream Function

Fig 4.1

5◦S to 30◦S,

160◦E to 140◦W

Captures the anomalous circulation in the south Pacific linked

to the evolution of ENSO (Trenberth (1997))

Equatorial Wind

Index

850 hPa Zonal

Wind Fig 4.2

5◦S to 5◦N,

160◦E to 160◦W

Captures the anomalous winds in the western Pacific linked

to the onset of ENSO events (Yu et al. (2003))

South Pacific

Pressure Gradi-

ent Index

850 hPa Geopo-

tential Height

Fig 4.2

5◦S to 25◦S,

120◦E to 140◦E

minus 15◦S to

45◦S, 120◦W to

160◦W

Captures the Southern Oscillation, atmospheric component of

ENSO (Trenberth (1997)).

Central Pacific

SST Tendency

Index

SST Tendency

Fig 4.3

5◦S to 5◦N, from

the Dateline to

120◦W

The SST anomalies in this region capture the development of

ENSO (Bamston et al. (1997)).
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West Pacific

Stream Function

Tendency Index

Stream Function

Tendency Fig

4.3

5◦N to 30◦N,

150◦E to 140◦W

Captures the intensification of anomalous circulation in the

western Pacific linked to the evolution of ENSO (Wang and

Zhang (2002))

South Pacific

Stream Function

Tendency Index

Stream Function

Tendency Fig

4.3

The Equator to

30◦S, 160◦E to

160◦W

Captures the intensification of anomalous circulation in the

western Pacific linked to the evolution of ENSO (Trenberth

(1997))

Equatorial Wind

Tendency Index

850 hPa Zonal

Wind Fig 4.2

5◦S to 5◦N,

160◦E to 120◦W

Captures the intensification of anomalous winds in the west-

ern Pacific linked to the onset of ENSO events (Yu et al.

(2003))

Eastern Pacific

Geopotential

Height Ten-

dency Index

850 hPa Geopo-

tential Height

Fig 4.2

15◦N to 25◦N

and 110◦W to

160◦W

Captures the migration of circulation anomalies from the

western Pacific to the east as ENSO events develop

Table 4.1: Description of all predictors developed for the 1-tier Northern Station Dec-May SPI forecast model. Includes
predictor name, variable used, region and a short description of the physical mechanism it represents.
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predictive feature. An Equatorial Wind Index is defined as the zonal wind anomalies from 6◦S

to 6◦N and from 160◦E to 160◦W, where correlations are highest. For 850 hPa geopotential

height, areas of high correlation are prominent in the southern Pacific. A see-saw pattern

between the western Indian Ocean and the south Pacific near 140◦W clearly captures the

Southern Oscillation usually represented as the surface pressure gradient between Tahiti and

Darwin in northern Australia. Similar to the Southern Oscillation Index, we will define a

South Pacific Pressure Gradient Index as the difference between the 850 hPa geopotential

height anomalies in the region over northern Australia (solid box in Figure 4.2 5◦S to 25◦S,

120◦E to 140◦E) and the southern Pacific (dashed box in Fig 4.2, from 15◦S to 45◦S, 120◦W

to 160◦W).
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Figure 4.3: Correlation coefficient maps of Dec-May SPI and SST, 850 hPa stream func-
tion of anomalous winds, zonal winds and geopotential height tendency fields. Tendency
fields are defined as the October-November mean anomaly minus August-September mean
anomaly. Hatching represents significance at the 95% confidence level using a Student t-test
for a sample size of 58 years. Boxes represent regions chosen for predictor index average
calculations (more details in text).

The last predictors developed for our 1-tier model are made using the anomaly tendency

fields of SST and 850 hPa stream function of the anomalous wind field, zonal wind, and

geopotential height. Tendency fields are defined as the October-November mean anomaly

field minus the August-September mean anomaly field. Correlation maps between Dec-
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May SPI and anomaly tendencies are shown in Figure 4.3. Strong negative correlation

between Dec-May SPI and SST anomaly tendency is observed in Central and Eastern Pacific

east of the dateline. Intensification of SST anomalies in this region is characteristic of

the development of ENSO events with warming (positive tendency) related to El Niño and

cooling (negative tendency) to La Niña resulting in negative correlation to SPI. An Equatorial

SST Tendency Index is formulated as the area average of SST tendency from 5◦S to 5◦N,

from the Dateline to 120◦W (solid box in the top left panel of Figure 4.3).

For stream function we define predictors for the intensification of circulation anomalies

in both the western north and south Pacific (dashed and solid box in the top right panel of

Figure 4.3). Similarly, the intensification of zonal wind anomalies in the equatorial region are

strongly correlated to Dec-May SPI. An Equatorial Zonal Wind Tendency Index is defined

as the average zonal wind tendency from 5◦S to 5◦N and 160◦E to 120◦W (solid box in

the bottom left panel of Figure 4.3). Finally, the geopotential height tendency over the

tropical eastern Pacific shows significant correlation to Dec-May SPI. As discussed in the

previous section, the circulation and geopotential height anomalies over the western Pacific

during the onset of ENSO events migrate eastward as the events mature. The tendency

of geopotential height anomalies in the eastern Pacific is likely related to this migration of

circulation anomalies. To capture this, an Eastern Pacific Geopotential Height Tendency

Index is formed as the average tendency in the region from 15◦N to 25◦N and 110◦W to

160◦W.

We use stepwise regression to reduce the number of predictors to those which hold the

highest predictive power and are independent from each other. The stepwise regression

methodology is set up with a 95% confidence level for both entry into and exit from the

model. The selected predictors are the Equatorial Wind Index during the JJA(-1) season

and the West Pacific Geopotential Height Tendency. Table 4.2 shows the correlation table

of the chosen predictors for the 1-tier linear model with the target Dec-May SPI as well as

with each other (a complete correlation table of all formulated predictors can be found in

the appendix A.1).

Using the selected predictors, The Equatorial Wind Index in JJA(-a) and the Eastern

Pacific Geopotential Height Tendency Index ON-AS(-1), a linear regression model is con-

structed to predict Dec-May SPI in the Northern USAPIs. Equation 4.1 is the prediction

equation for our 1-tier P-E model.
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Stepwise Regression chosen 1-tier Model Predictors correlation table

Dec-May SPI
Equatorial

Wind Index
JJA(-1)

Eastern Pacific Geopotential
Height Tendency Index

ON-AS(-1)
Dec-May 1 -0.496 0.318

Equatorial
Wind

JJA(-1)
1 -0.178

West Pac Hgt
ON-AS(-1)

1

Table 4.2: Correlation table of predictors and target Northern Station Dec-May SPI for the
1-tier P-E model. Values in bold represent correlations significant at the 95% test level for
a 58 year sample size.

SPI = −0.34×
(

Equatorial Wind

Index JJA(-1)

)
+ 0.22×


Eastern Pacific

Geopotential Height

Tendency Index

ON-AS(-1)

+ 0.07 (4.1)

Figure 4.4 shows the predicted vs. observed Northern USAPI Dec-May SPI for both

the 1950-2007 train period as well as the 2008-2017 independent test period. The 1-tier

predictive model achieves a correlation skill for the training set of 0.50 and 0.33 for the

independent test set.

We compare the performance of this 1-tier model over the independent 2008-2017 test

period with that of a more complex or 2-tier model that takes into account the existence of

Canonical and Non-Canonical events explicitly.

4.2 2-tier Logistic Regression Forecasting Model

Our 2-tier model approach consists of two steps. We will first predict if the coming Dec-May

season will show a Canonical or Non-Canonical relationship between Northern USAPI Dec-

May rainfall and ENSO conditions. This will be done using a ”classification” or ”logistic”

type of forecast. Depending on the result of this first forecast we will use one of two linear

prediction equations (one for Canonical years and one for Non-Canonical years) for the

Standardized Precipitation Index (SPI) for the Dec-May season. Details on the formulation
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Figure 4.4: Predicted vs observed Northern USAPI Dec-May SPI form our 1-tier P-E model.
The left panel shows the predicted v observed SPI for the model training period 1950-2007
while the right panel shows the same for the independent test period 2008-2017.

of the logistic forecast and the linear regressions are given in subsections 4.2.1 and 4.2.2

respectively.

4.2.1 Logistic Regression Forecast for Canonical vs. Non-Canonical

Years

Our understanding of the difference in evolution of the anomaly patterns between Canonical

and Non-Canonical years gleamed in Chapter 3 has been leveraged here to develop physically

meaningful predictors that can differentiate between the two types of events. Once mean-

ingful predictors are developed, a Logistic Regression will be trained on data from 1950-2007

to develop a predictive model capable of determining whether a particular year will evolve

to have a Canonical or Non-Canonical relationship between rainfall and Central Pacific SST

anomalies.

The first predictor developed to differentiate between Canonical and Non-Canonical

events will be referred to as the ”SST and Stream Function Index”. As we discussed in

Chapter 3 and showed in Figures 3.13 and 3.14 Canonical and Non-Canonical events of the

same type (cold or warm) show stream function anomalies of the same sign over the western
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Pacific and SST anomalies of opposite sign over the Eastern Pacific during the JJA season

preceding the onset of the Dec-May dry season. Figure 4.5 reproduces the JJA(-1) panels

from Figures 3.13 and 3.14 and with boxes for the regions used in the development of this

Index.

For Cool cases for example, stream function anomalies in the western Pacific are anticy-

clonic, corresponding to positive stream function values, for JJA(-1) in both Canonical Cool

Wet and Non-Canonical Cool Dry cases. If the area average of Stream Function anomalies

over the western Pacific from the Equator to 30◦N, 140◦E to the dateline (boxes in top

panels of Figure 4.5) is taken, positive values are expected for both Canonical Cool Wet

and Non-Canonical Cool Dry years. Over the Eastern Pacific on the other hand, Canonical

Cool Wet and Non-Canonical Cool Dry events show SST anomalies of opposite sign. Taking

the area average of SST anomalies in the region from 15◦S to 5◦N, 80◦W to 100◦W (boxes

in bottom panels of Figure 4.5) positive values are expected for Canonical Cool Wet years

while negative values are expected for Non-Canonical Cool Dry years. These differences are

equal but of opposite sign for the Warm counterparts of these events. By taking the product

of the western Pacific area average stream function anomaly times the Eastern Pacific area

average SST anomaly we obtain a predictor index that is expected to have negative sign

for Canonical events and positive sign for Non-Canonical events, regardless of if the event is

cold or warm, as shown in the bottom of figure 4.5. We are then able to separate all Canon-

ical from Non-Canonical events with a single index. The area average stream function and

SST anomalies are normalized by subtracting the mean and dividing the standard deviation

before being multiplied to form the ”SST and Stream Function Index”.

Figure 4.6 shows the spatial patterns of the first two Seasonal EOF modes of rainfall in

the region from 5◦N to 20◦N and 140◦E to the dateline. As discussed in the previous section,

Non-Canonical events show, in contrast to Canonical events, strong mid latitude support

for the equatorial SST anomalies. To measure the relative strength of the mid latitude

SST anomalies relative to the equatorial SST anomalies a ”Tropical to Mid Latitude SST

gradient Index” is developed. The absolute value of area average SST anomalies in the

region from 120◦W to 140◦W, 10◦N to 30◦N (red box in Figure 4.6) are subtracted from

the area average anomalies in the region from 120◦W to 140◦W, 30◦N to 50◦N (blue box

in Figure 4.6). For Non-Canonical events, for which the mid latitude SST anomalies are of

comparable magnitude as the tropical SST anomalies, the ”Tropical to Mid Latitude SST

gradient Index” is near 0 while for Canonical events, for which the equatorial SST anomalies

are much greater than the mid latitude anomalies, this index should be strongly negative.
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Avg(PSI) > 0 Avg(PSI) < 0Avg(PSI) > 0 Avg(PSI) < 0

Avg(SST) > 0 Avg(SST) > 0Avg(SST) < 0 Avg(SST) < 0

Avg(PSI)*Avg(SST) > 0 Avg(PSI)*Avg(SST) > 0Avg(PSI)*Avg(SST) < 0 Avg(PSI)*Avg(SST) < 0

Figure 4.5: JJA (-1) anomaly composites for Canonical Cool Wet and Warm Dry and Non-Canonical Cool Dry and Warm
Wet Stream Function (top) and SST (bottom). The top panels are the same as in figure 3.14 and the bottom are the
same as figure 3.13. The boxes show the regions where area averages are taken to develop the ”SST and Stream Function
Index”. Below each panel the expected sign of the area average for each type of events is shown. At the bottom of the
figure, the expected sign of the complete multiplicative ”SST and Stream Function Index” in shown (more details in text).
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Non-Canonical Mode Canonical Mode

JJA

SON

DJF

MAM

Figure 4.6: Spatial patterns of the first two seasonal EOF modes (same as Figure 3.20) of rainfall in the region from 5◦N
to 20◦N and 140◦E to the dateline. The blue and red boxes represent the regions where area average of SST anomalies
are taken to develop the ”Tropical to Mid Latitude SST gradient Index”.
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In an effort to supplement the two predictive features described before, a general analysis

of the correlation between the incidence of Canonical and Non-Canonical events with SST

and 850 hPa geopotential height, circulation, and zonal winds was performed. This was done

by calculating the correlation between a ”classification time series”, or time series with 0

values for observed Canonical events both warm and cool and 1 values for Non-Canonical

events, and anomaly fields of the variables mentioned. Correlation fields with both the

anomaly and the absolute value of anomalies were explored.
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Figure 4.7: Correlation fields between the Canonical/Non-Canonical ”classification time
series” and SST anomalies (top) and absolute values of SST anomalies (bottom) for the JJA
and SON seasons leading up to the Dec-May dry season. Boxes show the regions where the
”Mid latitude SST index” (black box in top right panel) and the ”Absolute Value East Pacific
SST Index” (blue box in bottom right panel). Hatching shows regions where correlation is
significant at the 90% confidence level using a Student t-test.

The top panels of Figure 4.7 show the correlation of the Canonical/Non-Canonical classi-

fication time series to SST anomalies in the JJA and SON seasons leading up to the Dec-May

dry season. During SON, the region in the north Pacific from 40◦N to 60◦N and 140◦E to

the Dateline shows significant correlation between SST anomalies and the incidence of Non-

Canonical events. The positive correlation in this region with our classification time series
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implies that Non-Canonical events, both warm and cool show are linked to armer than nor-

mal SST anomalies in this region while Canonical events show cool SSTs in the same region.

This is consistent with the SST anomaly composites for the SON season for Canonical and

Non-Canonical events shown in Figure 3.13 and could be exploited as a predictive feature.

The reason as to why Non-Canonical events both cool and warm show warm SST anomalies

in this region while their Canonical counterparts show cool SST anomalies is not clear yet

and will be investigated in the future. Nonetheless, a ”Mid latitude SST index” index is

formulated as the area average of SST anomalies in the region from 40◦N to 60◦N and 140◦E

to the dateline, which is shown as a black box in Figure 4.7. Comparing the top panels

of Figure 4.7 we observe that the SST anomalies in the north western Pacific captured by

the ”Mid latitude SST” index develop remarkably fast from JJA to SON. To capture this

rapid development, simple tendency predictor is also calculated as the difference between

the absolute values of the SON(-1) and JJA(-1) ”Mid latitude SST” index values.

The bottom panels of Figure 4.7 show the correlation of the Canonical/Non-Canonical

classification time series and the absolute value of SST anomalies in the JJA and SON

seasons leading up to the Dec-May dry season. Over the Eastern Pacific the absolute value

of SST anomalies show a strong negative correlation to the classification time series. This

implies that Canonical events, which are represented as 0 in our classification time series

coincide with strong SST anomalies in the Eastern Pacific. This is consistent with our

observations of the difference in SST patterns associated with Canonical and Non-Canonical

events shown in Figure 3.9 for the dry season and Figure 3.13 for the SON season before the

Dec-May dry season. Canonical events show SST anomalies with their largest magnitudes

over the Cold Tongue region east of the dateline while Non-Canonical events show largest

SST anomalies confined to the central Pacific. An ”Eastern Pacific SST anomaly magnitude”

index is developed as the absolute value of area average SST anomalies in the region from

5◦S to 15◦N, 80◦W to 140◦W to represent this feature. All predictors with the exception of

the Mid Latitude SST Tendency index show correlations to the Canonical/Non-Canonical

Classification time series with significance at the 90% confidence level (Table 4.4 ).

To chose the best subset of predictive indexes for our model, we use forward feature

selection for classification to select the indexes that are predictive of the Canonical/Non-

Canonical classification at the 90% confidence level using a Student t-test. The selected

predictors for the final logistic regression model are the SST and Stream Function index and

the Tropical to mid latitude SST gradient index. The prediction equation for our Logistic

Regression model is shown in 4.2.
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2-tier Model Logistic Regression Predictors
Predictor
Name

Variable Region Description

”SST and
Stream Func-
tion index”

SST and
Stream Func-
tion Fig
4.5

Stream
Function
anomalies.
Equator-
30◦N, 140◦E-
Dateline.
SST anoma-
lies 15◦S-5◦N,
80◦-100◦W

Measures the relationship be-
tween western Pacific circulation
and eastern Pacific SST anoma-
lies. Index positive for Non-
Canonical events, Negative for
Canonical Events

”Tropical to
mid latitude
SST gradient
index”

SST anoma-
lies Fig 4.6

SST anoma-
lies 120◦W-
140◦W,
30◦N-50◦N
minus SST
anomalies
120◦W-
140◦W,
10◦N-20◦N

Measures the relative strength of
tropical vs. mid latitude SST
anomalies. Near zero for Non-
Canonical events Negative for
Canonical events.

”Mid latitude
SST anomaly
index”

SST anoma-
lies Fig 4.7

SST anoma-
lies 40◦N-
60◦N and
140◦E to the
Dateline

Measures the strength of SST
anomalies over the north western
Pacific. Warm

”Mid latitude
SST anomaly
tendency in-
dex”

SST anoma-
lies Fig 4.7

Absolute
value of ”Mid
latitude SST
anomaly in-
dex” SON(-1)
minus abso-
lute value of
”Mid latitude
SST anomaly
index” JJA(-
1)

Measures the intensification of
SST anomalies over the north
western Pacific.

”Eastern
Pacific SST
anomaly
magnitude
index”

Absolute
Value of SST
anomalies Fig
4.7

Absolute
Value of SST
anomalies
5◦S-15◦N and
80◦W-140◦W

Reflects Eastern Pacific SST
anomaly max during Canonical
Events vs. Central Pacific max
during Non-Canonical events.

Table 4.3: Description of all predictors developed for the logistic regression forecast in the
2-tier forecasting model. 67



2-tier Model Logistic Regression Predictor correlations

Canonical
Classification

SST and
Stream

Function
index

JJA(-1)

Mid latitude
SST anomaly

index
SON(-1)

Mid latitude
SST

anomaly
tendency

index

Tropical
to mid
latitude

SST gradient
index

SON(-1)

Eastern
Pacific SST

anomaly
magnitude

index
SON(-1)

Canonical
Classification

1 0.361 0.183 0.233 0.301 -0.235

SST and
Stream

Function
index

JJA(-1)

1 -0.08 0.13 0.038 -0.712

Mid latitude
SST anomaly

index
SON(-1)

1 -0.084 0.451 0.006

Mid latitude
SST

anomaly
tendency

index

1 0.151 -0.221

Tropical
to mid
latitude

SST gradient
index

SON(-1)

1 0.003

Eastern
Pacific SST

anomaly
magnitude

index
SON(-1)

1

Table 4.4: Correlation table for predictors developed for the logistic regression forecast in
the 2-tier forecasting model. All predictors with the exception of the Mid Latitude SST
Tendency index are correlated to the Canonical/Non-Canonical Classification time series
with significance at the 90% confidence level using a Student t-test.
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Because our model has a low number of predictors compared to the total number of

observations, it is less likely that our linear regression will be over fit to the training data.

Nonetheless, to further guard against over fitting a regularization parameter was added to

our logistic regression cost function. Because the regularization parameter is an indepen-

dent parameter, it most be optimized by minimizing the error of the linear model on an

independent dataset. Because we want our independent test period, 2008-2017, to remain

truly independent from all model development, we further divide the training period into a

training set, 1950-1999 and a cross validation set 2000-2007 over which we will choose the

regularization parameter.

Regularization parameters in the range of 10 to 1010 were used to fit the model on the

1950-1999 period and the error of each model was estimated on the 2000-2007 period. In our

case, because the number of predictors is small and the predictors chosen are independent,

the model does not greatly over fit the training data so the error over the 2000-2007 cross

validation period remains constant at 0.75 for all values of the regularization parameter. For

this reason we can choose a small regularization parameter of c = 10 that will not greatly

penalize our model.

Canonical/Non−Nanonical =
1

1 + e

−


1.2×

SST and

Stream Function

Index JJA(-1)

+0.89×

Tropical to

mid latitude

SST gradient

Index SON(-1)

−0.72


(4.2)

This logistic regression model achieves a classification accuracy over the training set

of 1950-2007 of 0.74 and a Hiedke Skill score of 0.43. Our logistic regression has a good

performance for predicting Canonical events correctly. As table 4.5 shows, 31 out of 36

Canonical events during the training period are classified correctly. For Non-Canonical

events, about half (12 out of 22 4.5) of events are correctly classified as correctly as Non-

Canonical. This makes for a False Alarm Ratio of 0.24 for Canonical Events and 0.3 for

Non-Canonical events.

Figure 4.8 shows a scatter plot of Dec-May SPI and DJF ONI for the 1950-2007 training

period with colors representing the Canonical (green) and Non-Canonical (purple) classifica-

tion. On the left, classification is shown correctly based on the observed Dec-May SPI and

DJF ONI while on the right, colors represent the logistic regression prediction for each year.
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Training Period
Observations

Canonical Non-Canonical

Forecast
Canonical 31 10

Non-Canonical 5 12

Test Period
Observations

Canonical Non-Canonical

Forecast
Canonical 5 2

Non-Canonical 1 2

Table 4.5: Contingency tables for the Train (1950-2007) and Test (2008-2017) periods for
our Logistic Regression forecast of Canonical vs. Non-Canonical events.

A first test of our models predictive ability is to correctly classify extreme ENSO events.

As we see in the right panel of Figure 4.8, our model is able to correctly classify strong

Canonical El Niño and La Niña events, with years in the extreme upper left and lower right

of this plot being classified correctly.

During the training period, our model performs well in classifying the Non-Canonical

Cool dry events (lower left quadrant, right panel, Figure 4.8) missing only one strong event.

We also observe that our model does not greatly misclassify Canonical Warm Dry events

(lower right quadrant, right panel, Figure 4.8). With droughts being of grave concern in the

USAPI, it is encouraging to observe our model has good performance during both Canonical

Warm Dry and Non-Canonical Cool Dry events.

Furthermore, our model performs well in correctly classifying most Canonical Cool Wet

events (upper left quadrant, right panel, Figure 4.8). This means that, at least during the

training period, we observe a low false alarm rate for Non-Canonical Cool Dry events. The

worst performance of our model is for Non-Canonical Warm Wet years (upper left quadrant,

right panel, Figure 4.8).

The performance of this logistic regression model, while far from perfect with a prediction

accuracy of 70%, is greatly complimentary to the performance of the PEAC Center oper-

ational forecasting suite. Drought conditions in the Northern USAPIs pose the high risk

to the health, food security and livelihood of the local populations. PEAC Center models

show good skill in forecasting Canonical Warm Dry or El Niño induced droughts but fail to

capture Non-Canonical Cool Dry conditions for which our model performs well. A lingering

issue with both PEAC Center forecasts and our logistic regression model is false alarms
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Figure 4.8: Dec-May SPI and DJF ONI for the 1950-2007 training period. Colours plot
represent the Canonical (green) and Non-Canonical (purple) classification. On the left panel,
correct classification based on the observed Dec-May SPI and DJF ONI. on the right panel,
colors represent the logistic regression prediction of Canonical or Non-Canonical for each
individual year.

for drought conditions during Non-Canonical wet events, which are not well captured by

both PEAC Center forecasts and our logistic regression model. While these false alarms for

drought during warm conditions pose a challenge in that they can erode user confidence in

future forecasts, from an impact mitigation perspective they are less detrimental than failing

to forecast droughts.

Using this ahead of time prediction of whether a particular year will show a Canonical

or Non-Canonical relationship between rainfall and ENSO we will use one of the two lin-

ear regression prediction models developed in the following section to predict the Dec-May

Standardized Precipitation Index for the Northern USAPIs.
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4.2.2 Linear Prediction Equations for the SPI During Canonical

and Non-Canonical Years

We will develop two separate linear prediction equations to be used depending on the result

of the logistic regression forecast. The training data, 1950-2007, will be separated into

two independent training sets. We will separate the training set using the prediction of

our logistic regression model. Years in the training set predicted to be Canonical will be

separated into a Canonical training set while years predicted to be Non-Canonical will be

used to create the Non-Canonical training set. In the 1950-2007 training set, there are 41

years predicted to be Canonical (36 observed) and 18 years predicted to be Non-Canonical

(22 observed).

We will search for predictors for each linear model independently. We will produce

correlation maps of the SPI to JJA and SON anomaly fields of relevant variables as well

as the tendency fields of anomalies calculated as the October-November anomaly minus

August-September anomaly. From these correlation maps, the most relevant and physically

meaningful predictors will be isolated and used in a stepwise regression model to select the

most significant and produce a predictive model.

Figure 4.9 shows the correlation maps of SPI during Canonical years to Septermber-

October-November (SON) SST anomaly, SON 850 hPa geopotential height anomalies, June-

July-August (JJA) 850 hPa zonal wind anomalies and 850 hPa zonal wind tendency from

August-September to October-November. We will describe the formulation of each predictor

here in detail, but a short description of every predictor, the anomaly field and region used

to define it as well as a short description of the mechanisms captured is found in Table 4.6.

Table 4.7 shows a correlation table for all the Canonical predictors as well as the Dec-May

SPI for Canonical events.

SPI in the Canonical training set show correlation to SST anomalies (Figure 4.9 upper

left panel) consistent with the ENSO SST horseshoe pattern with negative correlations in

the eastern Pacific east of the dateline and positive correlation to the west. To represent the

relationship between canonical SPI and SST anomalies the area average of SST anomalies

in the Nino3.4 region (120◦W-170◦W and 5◦S- 5◦N) is used as a predictive index. This

predictor is as expected highly correlated with the Dec-May SPI during Canonical years with

a correlation value to Dec-May SPI of -0.59 exceeding significance at the 99% confidence level

for 41 years in the Canonical training set.

850 hPa geopotential height anomalies (Figure 4.9 upper right panel) show strong correla-

tion to SPI in the Canonical training set over the south Pacific in a dipole pattern consistent
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Figure 4.9: Correlation coefficient maps of Dec-May SPI for years in the Canonical training
set and SON SST (top left), SON 850 hPa Geopotential Height (top right) and, 850 hPa
zonal winds (lower left) anomalies, as well as ON-AS 850 hPa zonal wind anomaly tendency
(lower right). Hatching represents significance at the 95% confidence level using a Student t-
test for a sample size of 41 years. Boxes represent regions chosen for predictor index average
calculations (more details in text).

with the Southern Oscillation, with high pressure over the eastern south Pacific accompanied

by low over north Australia and the Indian Ocean during negative phases on ENSO. This

results in positive correlations to Dec-May SPI over the southeastern Pacific and Negative

over the West. To capture these anomalies, a substractive index is defined as the area aver-

age 850 hPa geopotential height anomalies from 100◦W to the Dateline 40◦S to 5◦S minus

the area average anomalies in the region from 80◦E to 140◦E 30◦S to the Equator (dashed

and solid boxes in the top left panel of Figure 4.9). We will refer to this index as the ”South

Pacific Geopotential Height Gradient Index”. From Table 4.7, this index is highly correlated

to both the Dec-May SPI and the SON Nino3.4 index.

In the western tropical Pacific, the 850 hPa geopotential height anomalies show positive

correlation to Dec-May SPI in the region from about 120◦W to 160◦W and 5◦N to 25◦N. The

geopotential height anomalies are part of the ENSO surface pressure anomaly pattern during
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the developing SON season. Figure B.1 in the appendix shows the correlation maps between

DJF Oceanic Niño Index and preceding JJA and SON SST and 850 hPa geopotential height

anomalies. Nonetheless, the area average of geopotential height anomalies in that region

(blue box top right in Figure 4.9), referred to as the ”Eastern Pacific Geopotential Height

Index”, shows low correlation to contemporary Nino3.4 values as seen from Table 4.7. So

the ”Eastern Pacific Geopotential Height Index” forms a good complementary index to the

”South Pacific Geopotential Height Gradient Index” that measures the geopotential height

and pressure anomalies in the northern Pacific and has high correlation with ENSO intensity

in the following DJF season.

2-tier Model Canonical Linear Regression Predictors
Predictor
Name

Variable Region Description

”Nino3.4” SST anomaly
Fig4.9

SST anoma-
lies 120◦W-
170◦W and
5◦S- 5◦N.

Measures ENSO phase and inten-
sity (Bamston et al. (1997))

”South Pa-
cific Geopo-
tential Height
Gradient
Index”

850 hPa
Height
anomaly
Fig4.9

100◦W to
Dateline,
40◦S to 5◦S,
minus 80◦E
to 140◦E,
30◦S to the
Equator

Measures ENSO phase and in-
tensity. Similar to the ”South-
ern Oscillation Index” (Trenberth
(1997)).

”Eastern Pa-
cific Geopo-
tential Height
Index”

850 hPa
Height
anomaly
Fig4.9

120◦W to
160◦W and
5◦N to 25◦N

Northern Hemisphere ENSO
pressure anomalies.

”Equatorial
Wind Index”

850 hPa
Zonal wind
anomaly
Fig4.9

120◦E to
140◦W, 5◦S
to 5◦N

Captures the western Pacific
zonal wind anomalies related to
ENSO onset (Yu et al. (2003)).

”Western
Pacific Wind
Tendency
Index”

850 hPa
Zonal wind
anomaly
tendency
Fig4.9

Equator to
5◦N, 140◦E to
the Dateline

Measures intensification of west-
ern Pacific zonal wind anomalies
(Yu et al. (2003)).

Table 4.6: Description of all predictors developed for the Canonical linear regression model
in the 2-tier forecasting model.
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Zonal wind anomalies in the JJA(-1) ENSO developing season in the western Pacific

(bottom left panel of Figure 4.9) as well as their tendency (bottom right in Figure 4.9)

are also strongly correlated to SPI during Canonical years. An ”Equatorial Wind Index”

(120◦E to 140◦W, 5◦S to 5◦N, bottom left panel of figure 4.9) and ”Western Pacific Wind

Tendency Index” (Equator to 5◦N, 140◦E to the Dateline, solid box in the bottom right panel

of Figure 4.9) are defined to capture these relationships. These indexes capture the wind

anomalies observed in the onset of ENSO events. Both of these predictors show significant

(99% confidence level) to the target Dec-May SPI as seen in Table 4.7.

Using a stepwise regression predictor selection methodology on these 5 predictors we find

that the best predictors are the ”South Pacific Geopotential Height Gradient Index” and

the ”Eastern Pacific Geopotential Height Index”. Using these two predictors in a linear

regression equation we find the predictive equation for the standardized Precipitation Index

for the Dec-May season during Canonical years to be given by Equation 4.3.

CanonicalSPI = −0.51×



South Pacific

Geopotential

Height

Gradient

Index

SON(-1)


+0.24×


Eastern

Pacific

Geopotential

Height Index

SON(-1)

+0.09 (4.3)

This prediction equation achieves a correlation skill score between observed and predicted

SPI in the Canonical training set of 0.68 as shown in figure 4.11. The average leave one

out cross validation skill score of the Canonical linear regression is 0.51 while the k-fold

cross validation error with k=10 is 0.63 (consistent with the leave one out cross validation

overestimating the error). As the linear relationship between predicted and observed SPI

seen in Figure 4.11 as well as the cross validation scores suggest, our linear regression model

for SPI during Canonical years suffers of high bias. This could be overcome by allowing

for the inclusion of more predictors in the model, the creating of new predictors or using a

higher order model to predict SPI. Nevertheless, all of these solutions are likely to result in

over fitting and thus we run unto the trouble of the bias/variance trade off in the predictive

model. For this work we wish to keep the predictive models simple so that the physical

relationships between predictors and target variable can be understood, so this linear model

to predict the SPI during Canonical years is appropriate.
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2-tier Model Canonical Linear Regression Predictor correlations

Canonical
SPI Dec-May

Nino3.4
SON(-1)

South Pacific
Geopotential

Height
Gradient

Index
SON(-1)

Eastern
Pacific

Geopotential
Height Index

SON(-1)

Equatorial
Wind Index

JJA(-1)

Western
Pacific Wind

Tendency
Index

Canonical
SPI Dec-May

1 -0.592 -0.627 0.369 -0.588 0.54

Nino3.4
SON(-1)

1 0.857 -0.12 0.929 -0.785

South Pacific
Geopotential

Height
Gradient

Index
SON(-1)

1 -0.182 0.859 -0.75

Eastern
Pacific

Geopotential
Height Index

SON(-1)

1 -0.076 0.073

Equatorial
Wind Index

JJA(-1)
1 -0.836

Western
Pacific Wind

Tendency
Index

1

Table 4.7: Correlation table for predictors developed for the Canonical linear regression
forecast in the 2-tier forecasting model. All predictors are correlated to the Canonical SPI
time series with significance at the 90% confidence level using a Student t-test.
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Predictors for SPI during Non-Canonical years were searched for in a similar fashion as

for Canonical years. Figure 4.10 shows the correlation maps of SPI during Non-Canonical

years to SON SST anomaly, JJA 850 hPa stream function of the anomalous winds, JJA 850

hPa geopotential height anomalies and SST anomaly tendency from August-September to

October-November.
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Figure 4.10: Correlation coefficient maps of Dec-May SPI for years in the Non-Canonical
training set and SON SST (top left), SON 850 hPa Geopotential Height (top right) and,
850 hPa zonal winds (lower left) anomalies, as well as ON-AS SST anomaly tendency (lower
right). Hatching represents significance at the 90% confidence level using a Student t-test
for a sample size of 17 years. Boxes represent regions chosen for predictor index average
calculations (more details in text).

SPI in the Non-Canonical training set shows a correlation pattern to previous SON SST

anomalies, shown in the top left panel of Figure 4.10, that is consistent with SST compos-

ites of Non-Canonical events shown in the previous section (Figure 3.9). SST anomalies

in Non-Canonical events are confined to the central and western Pacific and form a dipole

pattern with anomalies of opposite sign over the central Pacific and to the northwest. This

SST pattern is representative of the Ocean/Atmosphere interaction between regional cir-

culation anomalies in the western Pacific and underlying SST anomalies that characterize
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the Non-Canonical events. The Non-Canonical SPI correlation to SST pattern differs with

the composites in that, while Non-Canonical SST composites showed their strongest SST

anomalies along the equator, the strongest Non-Canonical SPI and SST correlations are seen

slightly further north.

To capture the effect of SST anomalies during the SON(-1) season on the Dec-May SPI

during Non-Canonical years an SST gradient index is formulated between the area averaged

SST anomalies in the region from 15◦N to 30◦N, 150◦E to 170◦E minus the area average

anomalies in the region from 5◦N to 25◦N, 140◦W to the Dateline. This predictor will be

referred to as the ”Tropical Western Pacific SST Gradient Index”. Ithas a correlation to the

Non-Canonical Dec-May SPI of -0.6 wich is significant at the 99% confidence level for 17

samples (see Table 4.9).

850 hPa stream function of the anomalous winds (top right panel of Figure 4.10) shows

areas of strong correlation to Non-Canonical SPI located over the tropical western Pacific

over the USAPIs and over Mainland Asia. As was discussed in the previous section based

on composite analysis, circulation anomalies over the western Pacific during the JJA and

SON seasons persist into the Dec-May dry season during Non-Canonical events (as opposed

to migrating east as they do in Canonical events, see Figure 3.14). The stream function

of anomalous winds in the western Pacific captures these regional circulation anomalies in

the SON season by showing significant correlation to SPi during Non-Canonical events. To

represent these regional circulation anomalies in our model, a index of area average stream

function of anomalous 850 hPa winds is used, withing the region from 5◦N to 25◦N, 140◦E to

the Dateline, called the ”Western Pacific Stream Function Index”. This index shows a small

correlation to Non-Canonical SPI of -0.29 which is not significant at the 90% confidence

level using a Student t-test (see Table 4.9) but is highly correlated to the ”Tropical Western

Pacific SST Gradient Index” which represents underlying SST anomalies in the same region.

Over the Asian mainland, the stream function of anomalous 850 hPa winds shows strong

correlation to Non-Canonical SPI. Circulation anomalies in this region, while of opposite

sign, in Dec-May Non-Canonical composites (see Figure 3.8) are not strong. It is not clear

why these anomalies show strong correlation to Non-Canonical SPI over a fairly large area.

This correlation could be representative of the influence of anomalous heating/cooling over

the Asian Mainland inducing circulation anomalies over the continent, but a corresponding

signature in the 850 hPa geopotential height anomalies would be expected and is not observed

(bottom left panel of Figure 4.10). Nonetheless, a predictive index with the are average values

of stream function of the anomalous winds from 80◦E to 140◦E, 30◦N to 50◦N is considered
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2-tier Model Non-Canonical Linear Regression Predictors
Predictor
Name

Variable Region Description

”Tropical
Western Pa-
cific SST
Gradient
Index”

SON SST
anomalies
4.10

15◦N-30◦N,
130◦E-170◦E
minus 5◦N-
25◦N, 140◦W-
Dateline

Represents response of SST
anomalies to Ocean Atmosphere
interaction in the western Pacific
(Wang and Zhang (2002))

”Western Pa-
cific Stream
Function
Index”

SON Stream
Function of
anomalous
850 hPa
winds 4.10

5◦N-25◦N,
140◦E-
Dateline

Represents the circulation re-
sponse to Ocean Atmosphere in-
teraction in the western Pacific

”Asian Con-
tinent Stream
Function In-
dex”

SON Stream
Function of
anomalous
850 hPa
winds 4.10

30◦N-50◦N,
80◦E-140◦E

Measures the relationship be-
tween

”Tropical
Pressure
Gradient
Index”

JJA 850 hPa
Geopoten-
tial height
anomalies
4.10

5◦N-25◦N,
130◦E-170◦W
minus 10◦N-
30◦N, 100◦W-
140◦W

Measures the tropical pressure
gradient related to Walker Circu-
lation anomalies

”Tropical
Western Pa-
cific SST
Tendency
Index”

Aug-Sep to
Oct-Nov SST
tendency,
4.10

15◦N-30◦N,
130◦W-
Dateline

Measures the intensification of
the SST anomaly dipole char-
acteristic of Ocean/Atmosphere
interaction during non-Canonical
events.

Table 4.8: Description of all predictors developed for the Non-Canonical linear regression
model in the 2-tier forecasting model.
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in our model referred to as the ”Asian Continent Stream Function Index”. This index has

a surprisingly high correlation value to non-Canonical SPI of -0.46, significant at the 95%

confidence level using a Student t-test, but is also highly correlated to the ”Tropical Western

Pacific SST Gradient Index” (Table 4.9).

In the Northern Hemisphere, the 850 hPa geopotential height anomalies show a dipole

pattern of anomalies strongly correlated to Non-Canonical SPI values (bottom left panel of

Figure 4.10). This dipole of geopotential height is representative of the Walker Circulation

anomalies linked to rainfall anomalies over the western Pacific. To capture the effect of these

geopotential height anomalies, a gradient index is defined as the 850 hPa geopotential height

anomalies area averaged in the region from 5◦N to 25◦N, 130◦E to 170◦W, minus the area

average anomalies from 10◦N to 30◦N, 100◦W to 140◦W. This ”Tropical Pressure Gradient

Index” shows a correlation to Non-Canonical SPI of -0.54 (significant at the 95% confidence

level using a Student t-test) and is also highly correlated to the ”Tropical Western Pacific

SST Gradient Index” and ”Asian Continent Stream Function Index” (see Table 4.9).

Finally, as seen in the bottom right panel of Figure 4.10, the tendency of SST anoma-

lies from August-September to October-November shows over the Central and western Pa-

cific a pattern of correlated anomaly tendency consistent with the intensification of the

Ocean/Atmosphere coupling between regional circulation and underlying SST anomalies

that characterizes Non-Canonical events. To capture the intensification of this Ocean Atmo-

sphere interaction several indexes were developed, including a gradient index between the

areas of negative and positive correlation and independent area average indexes over each

area. All of the resulting indexes were highly correlated, thus the most effective index, as

measured by it’s correlation to Non-Canonical SPI target variable was chosen. The resulting

index was taken as the area average of SST anomaly tendency from 15◦N to 30◦N, 130◦W to

the Dateline and will be referred to as the ”Tropical Western Pacific SST Tendency Index”

which has a correlation of -0.59 to SPI values during Non-Cannical years (Table 4.9).

We use stepwise regression on the 5 predictors for the Non-Canonical SPI and find that

the tropical western Pacific SST Gradient Index during SON is the only predictor selected

for the linear model. Using this predictor in a linear reggression equation we find the pre-

dictive equation for the standardized Precipitation Index for the Dec-May season during

Non-Canonical years to be given by Equation 4.4.
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2-tier Model Non-Canonical Linear Regression Predictor correlations

Non
Canonical

SPI
Dec-May

Tropical
Western
Pacific

SST Grad
Index

SON(-1)

Western
Pacific
Stream

Function
Index

SON(-1)

Asian
Continent

Stream
Function

Index
SON(-1)

Tropical
Pressure
Gradient

Index
JJA(-1)

Tropical
Western
Pacific
SST

Tendency
Index

Non
Canonical

SPI
Dec-May

1 -0.6 -0.29 -0.46 -0.54 -0.59

Tropical
Western
Pacific

SST Grad
Index

SON(-1)

1 0.78 0.41 0.48 0.45

Western
Pacific
Stream

Function
Index

SON(-1)

1 0.33 0.23 0.17

Asian
Continent

Stream
Function

Index
SON(-1)

1 0.54 0.4

Tropical
Pressure
Gradient

Index
JJA(-1)

1 0.67

Tropical
Western
Pacific
SST

Tendency
Index

1

Table 4.9: Correlation table for predictors developed for the Non-Canonical linear regression
forecast in the 2-tier forecasting model. All predictors with the exception of the Western
Pacific Stream Function Index are correlated to the Non-Canonical SPI time series with
significance at the 90% confidence level using a Student t-test.

81



Non− CanonicalSPI = −0.35×



Tropical

Western

Pacific

SST Grad

Index

SON(-1)


− 0.026 (4.4)
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Figure 4.11: Predicted vs. Observed SPI for the Canonical training set (left) and the Non-
Canonical training set (right). The blue line represents the 1 to 1 line while the red line
represents the linear regression of observed SPI onto predicted SPI values. The correlation
values are presented above and are significant at the 95% confidence level using a Student
t-test in both cases (41 year sample size for Canonical years and 17 for Non-Canonical years)

This prediction equation achieves a correlation skill score between observed and predicted

SPI in the Non-Canonical training set of 0.6 as shown in Figure 4.11 which is comparable

to the 0.68 obtained by the Canonical prediction equation on the Canonical Training set.

The average leave one out cross validation skill score of the Non-Canonical linear regression

is 0.30 while the k-fold cross validation error with k=10 is 0.46. As in the Canonical case,

the linear relationship between predicted and observed SPI seen in Figure 4.11 as well as

the cross validation scores suggest, the Non-Canonical linear regression model suffers of high

bias. This problem is more severe in the Non-Canonical case given that the training set size

is about half of the Canonical set.

4.2.3 Test Period Forecast

In this section we will bring together the two tiers of our prediction methodology and produce

a forecast for the 2008-2017 period which has been kept independent from any training
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process of the models and should provide a measure of our models predictive ability.

Figure 4.12 shows the observed Dec-May SPI plotted vs the DJF ONI were the colors of

the markers represent the correct Canonical/Non-Canonical classification, in the left panel,

and the logistic regression forecast of the Canonical/Non-Canonical classification, in the right

panel.

3 2 1 0 1 2 3
DJF ONI (C)

2

0

2

SP
I

2008

2009
2010

2011

2012

2013

2014
2015

2016

2017

Northern USAPI Dry Season SPI vs ONI Manual Classification

3 2 1 0 1 2 3
DJF ONI (C)

2

0

2

SP
I

2008

2009
2010

2011

2012

2013

2014
2015

2016

2017

Northern USAPI Dry Season SPI vs ONI Log Reg Prediction
Canonical Years
Non-Canonical Years

Figure 4.12: As in Figure 4.8. Dec-May SPI and DJF ONI for the 2008-2017 test period.
Colours plot represent the Canonical (green) and Non-Canonical (purple) classification. On
the left panel, correct classification based on the observed Dec-May SPI and DJF ONI. on the
right panel, colors represent the logistic regression prediction of Canonical or Non-Canonical
for each individual year.

During the independent test period our logistic regression achieves an accuracy of 0.7

and a Hiedke skill score of 0.35; 5 out of 6 Canonical events are classified correctly while half

of Non-Canonical events are classified correctly (see Table 4.10). False Alarm Rates for the

independent training period are 0.28 for Canonical events and 0.5 for Non-Canonical events.

The strong El Niño of 2009/2010, the very strong El Niño of 2015/2016, and the strong

La Niña event of 2010/2011 are correctly classified by our logistic regression method. The
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Test Period
Observations

Canonical Non-Canonical

Forecast
Canonical 5 2

Non-Canonical 1 2

Table 4.10: Contingency tables for the Test (2008-2017) periods for our Logistic Regression
forecast of Canonical vs. Non-Canonical events.

strong El Niño of 2009/2010 as well as the very strong El Niño of 2015/2016 are correctly

classified by our logistic regression forecast as well as the strong La Niña event of 2010/2011.

Three years are misclassified by our logistic regression forecast: two La Niña events, 2008

and 2012, which produce weak SPI anomalies over the Northern USAPIs (2008 slightly dry

and 2012 slightly wet) and the Non-Canonical Warm wet event of 2014/2015 which produced

strong wet conditions during El Niño like SST conditions.

The behavior of our logistic regression forecast is very consistent with what was expected

from our diagnostics of the model during the training set, with comparable accuracy and

score and showing difficulties in classifying the same type of non-Canonical Warm Wet events

like 2015.

Using our complete two tier model, logistic regression plus Canonical and Non-Canonical

linear regressions, we forecast the SPI for the Dec-May dry season for the independent test set

of 2008-2017. Results are shown in the center panel of Figure 4.13 along with the correlation

values of predicted vs observed SPI. The left panel of Figure 4.13 shows the forecast for the

test period of the benchmark 1-tier P-E model developed in Section 4.1 for comparison. The

right panel of Figure 4.13 shows the result of applying the second stage of the 2-tier forecast

after using the original manual classification of Canonical versus Non-Canonical events–that

is, a perfect logistic forecast. This gives an upper-bound estimate of potential forecast skill.

The 1-tier Model shows a correlation of predicted vs. observed SPI during the training

set of 0.33 while the 2-tier Model shows a correlation of 0.72 and under perfect logistic

forecast a correlation of 0.83. Non-Canonical years in the test period are represented in

figure 4.13 with diamond shaped markers, red for Non-Canonical Cool Dry events and blue

for Non-Canonical Warm Wet events.

84



2 1 0 1 2
Observed SPI

2

0

2

Pr
ed

ict
ed

 S
PI

2008

2009

2010

2011

2012

2013 2014
2015

2016

2017

1 Tier P-E model c= 0.33

2 1 0 1 2
Observed SPI

2

0

2

Pr
ed

ict
ed

 S
PI

2008

2009

2010

2011

2012
2013

2014
2015

2016

2017

2 Tier P-E model c= 0.72

2 1 0 1 2
Observed SPI

2

0

2

Pr
ed

ict
ed

 S
PI

2008
2009

2010

2011

2012

2013

2014

2015

2016

2017

2 Tier P-E model with perfect logistic prediction c= 0.83

Figure 4.13: Scatterplot f the predicted vs observed Standardized Precipitation Index for
our 1-tier benchmark model (left), our 2-tier P-E model (center) and the same 2-tier model
with perfect logistic prediction of Canonical and Non-Canonical events (right). The blue
lines represent the 1:1 line while the red line represent the achieved regression line between
prediction ans observations. Correlation values between predicted and observed SPI values
presented at the top of each panel.

4.2.4 Forecast Discussion

The observational analysis of the modes of rainfall variability in the Northern USAPIs carried

out in Chapter 3 led us to conclude that there are two distinct modes of interannual variability

that govern the tropical western Pacific. The first of these modes is what we call here the

Canonical mode, which is consistent with previously described El Niño/Southern Oscillation

SST, circulation and rainfall anomalies. The second of these modes, referred to here as the

Non-Canonical mode, has not been described in detail prior to this work. We have shown

that it differs markedly from the Canonical mode in the evolution of its anomaly patterns.

In this chapter we leverage the recognition of these distinct Canonical and Non-Canonical

modes of variability to formulate a forecasting framework that is able to more accurately

predict the Standardized Precipitation Index for the Dec-May dry season in the Northern

USAPIs. This is achieved by formulating a 2-tier approach, in which we first predict if a

particular year will be Canonical or Non-Canonical using a logistic regression approach and

then, using separate linear regressions for each type of year, predict the SPI for the Dec-May

dry season.

Predictors for the logistic forecast of Canonical or Non-Canonical conditions are devel-

oped in two ways. In the first method, predictors are crafted from the observed differences in

the evolution of anomaly fields for each type of event. Predictor indexes are then formulated

to represent these differences. In the second method, correlations between a Canonical/Non-
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Canonical classification time series and relevant anomaly fields was carried out and predic-

tor indexes are derived to represent regions with high correlations. Applying a stepwise

regression predictor selection methodology we find that the most significant predictors those

developed from the first method. When the prediction task is, as in this case, a complex one,

where there is strong nonlinear behavior, formulation of predictors via correlation analysis

can prove difficult. Careful analysis of the evolution of these events is important in the

development of appropriate predictors.

Our logistic regression model achieves a classification accuracy of 74% over the 1950-2007

training set and 70% over the independent test set. This classification forecast shows good

performance during Canonical events both Warm and Cool (El Niño and La Niña events) and

Non-Canonical Cool events which represent the poorly forecasted droughts in the Northern

USAPIs. The worst performance of this classification model is during Non-Canonical Warm

Wet events, i.e. El Niño like conditions that do not produce droughts. While a drought

forecast that does not verify is less of a problem from the operational forecast point of view

than an unforecast drought, it still poses a challenge that should be addressed. This might

be achieved by looking carefully at the anomaly fields of strong misclassified Non-Canonical

Warm events (upper right quadrant, right panel Figure 4.8) to understand why these events

are misclassified.

Using this logistic regression model, the training set was separated into two distinct

training sets, Non-Canonical and Canonical, for which independent predictors and linear

regressions between SPi and predictors were developed. In spite of the shortcomings of our

logistic regression model, when used to separate the training set into Canonical and Non-

Canonical years to train the two separate linear regressions, we find that all the predictors

formed for each training set are strongly correlated to each other.

For the Canonical training set, the predictors selected using stepwise regression represent

the intensity of ENSO as measured by the Southern Hemisphere pressure gradient and the

Northern Hemisphere tropical pressure gradient. These effects are represented by the South

Pacific Geopotential Height Gradient Index SON(-1), similar to the Southern Oscillation In-

dex and the Eastern Pacific Geopotential Height Index SON(-1). Our linear regression model

achieves a correlation score on the Canonical training set of 0.68. For the Non-Canonical

training set, the predictor selected via stepwise regression represents the Ocean/Atmosphere

interaction in the western Pacific that characterizes Non-Canonical events, with the linear

regression model achieving a correlation score of 0.6 on the Non-Canonical training set.

The 2-tier forecasting methodology developed in this work, shows promise as a value
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adding tool to the PEAC Center operational forecasting methodology. Our methodology

performs well during the most dangerous of Non-Canonical events, the Cool Dry conditions

that bring unexpected droughts to the Northern USAPIs; The rest of the PEAC Center

forecast suite shows poor skill during these periods (as discussed in the introduction and

seen in Figure 1.2). Both our methodology and the PEAC Center suite perform well during

Canonical events. These features would most certainly make the this model a good addition

go the PEAC Center operational forecasting suite.
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CHAPTER 5

CONCLUSIONS

A thorough study of droughts in the U.S. Affiliated Pacific Islands (USAPIs) has yielded

a more complete understanding of the mechanisms behind interannual rainfall variability in

the region. Southern USAPI region tends to exhibit rainfall variability that is tied to ENSO.

In the Southern USAPIs, El Niño is linked to dry conditions and La Niña to wet conditions

in a way consistent with previously published works. The northern USAPIs on the other

hand do not show such consistent impacts during different ENSO phases. In the Northern

USAPIs, while many years conformed to the expected negative relationship between rainfall

and ENSO (positive ONI value producing dry conditions and vice versa), a similar number

of years appeared to have a positive relationship between rainfall and ENSO. Years with

negative relationship between rainfall and ENSO in the Northern USAPIs are grouped into

two categories, Cool Wet and Warm-dry, and together these categories are described here as

having the Canonical response or simply as being Canonical years. Conversely, years with

positive relationship between rainfall and ENSO are grouped into Cool Dry and Warm Wet

years and these categories together are described as Non-Canonical.

We find that the 2013 disaster level drought that motivated this study and occurred

during cool ENSO conditions was not an isolated event. Another 4 years in the 1979-2016

record were found for which dry conditions in the Northern USAPIs coincide with cool

Pacific SST conditions. Along with 2013, these other 4 years compose the Non-Canonical

Cool Dry category of events. According to reports collected in the PEAC Pacific ENSO

Update newsletter, drought conditions similar to those observed in 2013 were also observed

for other Non-Canonical Cool Dry years. In 2006, persistent dry conditions in Guam led to

a longer than normal wildfire season resulting in evacuations, and very low levels in the Fena

reservoir, which provides water to about 20% of the population. In Majuro, water rationing

was mandated by February 2006 and encouraged though the following months. Similarly, in

2009 persistent dry conditions in the Northern RMI required the delivery of drinking water

to Utirik in late April and the issuing of special weather statements for the RMI by the

Guam National Weather Service Forecast Office. Both 2006 and 2009 are not classified as

La Niña events but are singled out for analysis in our case.

Composites of SST, 850 hPa winds and geopotential height and precipitation were pro-

duced for the Canonical Warm Dry and Cool Wet as well as the Non-Canonical Warm

Wet and Cool Dry years. Composite characteristics during the peak dry season as well as
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the evolution of relevant anomaly fields show clear differences between Canonical and Non-

Canonical events suggesting that the mechanisms that produce events in each category may

be different.

During the Dec-May dry season, Canonical and Non-Canonical events show opposite

circulation anomalies over the Tropical Western Pacific. Canonical Cool Wet events show

cyclonic circulation anomalies over the western Pacific and rainfall anomaly patterns consis-

tent with the commonly described as a La Nina horseshoe pattern, with wet anomalies to

the west and dry anomalies over the central and eastern Pacific. Non-Canonical Cool Dry

events on the other hand have anticyclonic anomalies over Tropical Western Pacific. This

produces a dry anomaly belt that modifies the horseshoe pattern and extends dry conditions

from the central and eastern Pacific into the Northern USAPIs. SST anomalies are also

different, with Non-Canonical events characterized by strongest anomalies constrained to a

narrow region of the Pacific near the dateline and Canonical showing anomalies further east.

These differences are also true when comparing Canonical Warm Dry and Non-Canonical

Warm Wet events, with circulation and rainfall anomalies being opposite.

Equally important as their differences during the Dry season, is the distinct way in

which Canonical and Non-Canonical events evolve leading up to it. Canonical events are

characterized by a transition of circulation anomalies over the western Pacific from the onset

of the events in the spring to the Dec-May Dry season while Non-Canonical events are

characterized by the persistence of these anomalies. For Canonical Cool Wet events, we

observe that anticyclonic circulation anomalies are present in the western part of the basin

in early spring and summer and transition to cyclonic anomalies as Dec-May approaches.

Conversely, in Non-Canonical Cool Dry events western pacific anticyclonic anomalies are

present as early as the preceding March-April-May season and linger through Dec-May.

This makes long term persistent droughts brought on by Non-Canonical Cool Dry events

a concern for the USAPIs. This difference in evolution is also reflected in SST anomalies,

with east to west propagation observed in Canonical events and in situ development over

the dateline observed for Non-Canonical events.

It is proposed here that the division of events into Canonical and Non-Canonical types

can be integrated into the larger ENSO paradigms. It is thought that Non-Canonical events

are the most extreme representatives of the Central Pacific type of ENSO events, with peak

SST anomalies strongly restricted to the Central Pacific. Events with peak SST anomalies

farther east compose the Canonical category. Because of this difference in SST anomaly

location, Canonical and Non-Canonical events show a distinct seasonal evolution and set of
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impacts.

Using the observed differences in the evolution of Canonical and Non-Canonical events,

a forecasting methodology was developed to predict the Standardized Precipitation Index

during both Canonical and Non-Canonical years. This methodology was based on a 2-tier

approach. First, a logistic regression model was used to predict if a Dec-May season will be

Canonical or Non-Canonical. Depending on the outcome of this classification forecast, one of

two independent linear regression models, one for Canonical years and one for Non-Canonical

years, is chosen to predict Dec-May SPI values. These linear regression models were trained

on independent subsamples of the training set and with specific predictors crafter to capture

the relevant features of the anomaly patterns of Canonical and Non-Canonical years.

Model performance was estimated over the training set (1950-2007) and an independent

test set (2008-2017) which was excluded from all model training procedures. This 2-tier

model approach provides a significant improvement of the SPI forecasts compared to a simple

1-tier model which predicts rainfall for all years with a single linear regression equation. Our

2-tier model also shows complementary skill to the PEAC Center operational forecasting suite

of models witch performs poorly during Non-Canonical events but are well forecast in our

2-tier model. The success of this 2-tier approach highlights the importance of recognizing the

existence of both Canonical and Non-Canonical modes of rainfall variability in the Western

Pacific.

Previous published work links the rainfall variability and prediction in the USAPI exclu-

sively to ENSO with dry conditions throughout the region occurring during El Niño and wet

conditions occurring during La Niña. This understanding leaves little guidance for forecast-

ing during neutral or weak ENSO conditions and does not provide context for years during

which rainfall impacts are not as expected based on ENSO conditions. Our work proposes

that differences in SST and circulation anomaly patterns, even during years that do not meet

general criteria to be classified as ENSO events, can produce distinct and significant changes

in local precipitation patterns that can produce severe drought across the USAPI. It is our

hope that these new insights may provide PEAC Center forecasters with better tools in the

forecasting of these types of dry event to improve our ability to deliver timely and accurate

climate forecasts to the communities we serve.
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COMPLETE PREDICTOR CORRELATION TABLES
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supertiny

Dec-May DJF

Central

Pacific

SST

JJA(-1)

Central

Pacific

SST

SON(-1)

MidLat

Pacific

SST

JJA(-1)

MidLat

Pacific

SST

SON(-1)

West

Pac

PSI

JJA(-1)

West

Pac

PSI

SON(-1)

South

Pac

PSI

JJA(-1)

South

Pac

PSI

SON(-1)

Equatorial

Wind

JJA(-1)

Equatorial

Wind

SON(-1)

South

Pac

Hgt

Grad(-1)

South

Pac

Hgt

Grad(-1)

Central

Pacific

SST

ON-AS(-1)

West

Pac

PSI

ON-AS(-1)

South

Pac

PSI

ON-AS(-1)

Equatorial

Wind

ON-AS(-1)

East

Pac

Hgt

ON-AS(-1)

Dec-May 1.000 -0.479 -0.430 -0.435 0.151 0.212 0.160 -0.103 -0.127 0.006 -0.457 -0.438 -0.390 -0.390 -0.422 -0.021 0.002 -0.438 0.298

DJF -0.479 1.000 0.831 0.919 -0.254 -0.485 -0.262 0.026 0.477 0.087 0.825 0.870 0.845 0.845 0.905 -0.104 0.236 0.870 -0.399

Central

Pacific

SST

JJA(-1)

-0.430 0.831 1.000 0.923 -0.278 -0.377 -0.236 0.028 0.275 0.041 0.835 0.832 0.842 0.842 0.930 -0.046 0.104 0.832 -0.166

Central

Pacific

SST

SON(-1)

-0.435 0.919 0.923 1.000 -0.227 -0.404 -0.321 0.024 0.442 0.016 0.846 0.891 0.874 0.874 0.997 -0.077 0.115 0.891 -0.282

MidLat

Pacific

SST

JJA(-1)

0.151 -0.254 -0.278 -0.227 1.000 0.672 -0.234 0.042 0.193 -0.239 -0.434 -0.333 -0.360 -0.360 -0.226 0.093 -0.092 -0.333 0.035

MidLat

Pacific

SST

SON(-1)

0.212 -0.485 -0.377 -0.404 0.672 1.000 -0.072 0.036 -0.032 -0.143 -0.572 -0.521 -0.505 -0.505 -0.395 0.109 -0.117 -0.521 0.408

West

Pac

PSI

JJA(-1)

0.160 -0.262 -0.236 -0.321 -0.234 -0.072 1.000 -0.177 -0.648 0.155 -0.206 -0.276 -0.281 -0.281 -0.332 -0.167 -0.045 -0.276 0.156

West

Pac

PSI

SON(-1)

-0.103 0.026 0.028 0.024 0.042 0.036 -0.177 1.000 0.042 -0.469 0.081 -0.182 -0.044 -0.044 0.012 0.888 -0.291 -0.182 -0.004

South

Pac

PSI

JJA(-1)

-0.127 0.477 0.275 0.442 0.193 -0.032 -0.648 0.042 1.000 -0.321 0.310 0.427 0.362 0.362 0.432 0.026 0.004 0.427 -0.286

South

Pac

PSI

SON(-1)

0.006 0.087 0.041 0.016 -0.239 -0.143 0.155 -0.469 -0.321 1.000 0.003 0.202 0.085 0.085 0.022 -0.557 0.754 0.202 -0.108

Equatorial

Wind

JJA(-1)

-0.457 0.825 0.835 0.846 -0.434 -0.572 -0.206 0.081 0.310 0.003 1.000 0.893 0.869 0.869 0.841 -0.021 -0.013 0.893 -0.349

Equatorial

Wind

SON(-1)

-0.438 0.870 0.832 0.891 -0.333 -0.521 -0.276 -0.182 0.427 0.202 0.893 1.000 0.870 0.870 0.885 -0.272 0.251 1.000 -0.377

South

Pac

Hgt

Grad(-1)

-0.390 0.845 0.842 0.874 -0.360 -0.505 -0.281 -0.044 0.362 0.085 0.869 0.870 1.000 1.000 0.877 -0.138 0.104 0.870 -0.223
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South

Pac

Hgt

Grad(-1)

-0.390 0.845 0.842 0.874 -0.360 -0.505 -0.281 -0.044 0.362 0.085 0.869 0.870 1.000 1.000 0.877 -0.138 0.104 0.870 -0.223

Central

Pacific

SST

ON-AS(-1)

-0.422 0.905 0.930 0.997 -0.226 -0.395 -0.332 0.012 0.432 0.022 0.841 0.885 0.877 0.877 1.000 -0.077 0.106 0.885 -0.253

West

Pac

PSI

ON-AS(-1)

-0.021 -0.104 -0.046 -0.077 0.093 0.109 -0.167 0.888 0.026 -0.557 -0.021 -0.272 -0.138 -0.138 -0.077 1.000 -0.406 -0.272 0.221

South

Pac

PSI

ON-AS(-1)

0.002 0.236 0.104 0.115 -0.092 -0.117 -0.045 -0.291 0.004 0.754 -0.013 0.251 0.104 0.104 0.106 -0.406 1.000 0.251 -0.172

Equatorial

Wind

ON-AS(-1)

-0.438 0.870 0.832 0.891 -0.333 -0.521 -0.276 -0.182 0.427 0.202 0.893 1.000 0.870 0.870 0.885 -0.272 0.251 1.000 -0.377

East

Pac

Hgt

ON-AS(-1)

0.298 -0.399 -0.166 -0.282 0.035 0.408 0.156 -0.004 -0.286 -0.108 -0.349 -0.377 -0.223 -0.223 -0.253 0.221 -0.172 -0.377 1.000

Table A.1: Correlation Table for all predictors considered for the benchmark 1 tier model93



APPENDIX B

SUPPLEMENTAL FIGURES

Figure B.1: Correlation coefficient maps of DJF Oceanic Niño Index for years in the Canon-
ical training set and SST (top), 850mb Geopotential Height (middle). The bottom panel
represent the correlation between Dec-May SPI for years in the Canonical training set and
850mb Geopotential Height. Hashing represents significance at the 95% test level for a sam-
ple size of 17 years. Boxes represent regions chosen for predictor index average calculations
(more details in text).

Subsequent chapters are labeled with letters of the alphabet.
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