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ABSTRACT

NASA’s Kepler Mission revealed that the majority of planets orbiting close to Sun-like stars are

between the size of Earth and Neptune. Yet these “super-Earths” and “sub-Neptunes” are absent

from our Solar System. The distributions of planet properties measured by Kepler — radii and

orbital periods — have been precisely measured, but we do not yet have a good understanding

of their masses and bulk compositions, which can ultimately be linked to their origins. Follow-up

measurements of the masses of a few dozen Kepler planets demonstrated that planets smaller than

∼ 1.5 Earth-radii are predominantly rocky, while larger planets typically have gaseous envelopes.

Measurements of mass and radius do not provide a one-to-one relationship, indicating that com-

positions might depend on environmental parameters like temperature, and properties of the host

star. Building on this, we leverage NASA’s K2 mission to identify and measure the masses of

dozens more small planets orbiting bright stars. After nearly doubling the number of small planets

with measured densities, and precisely characterizing each host star, we re-examined the distribu-

tion of planet bulk compositions, the transition from rocky to gas-dominated planets, and their

dependencies on temperature and host star properties. Planet core mass is correlated with host

star metallicity, suggesting that the availability of solids affects planet composition. There are two

distinct planet populations — “super-Earths” consisting of 1–2 R⊕ cores with little to no gas, and

larger “sub-Neptunes” with H/He envelopes comprising & 1% of their total mass. The gap be-

tween these populations appears devoid of sub-Neptunes with the most tenuous atmospheres (<1%

H/He), indicating that such planets experience complete photoevaporation.
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CHAPTER 1
INTRODUCTION AND MOTIVATION

Our understanding of planet formation has grown via an explosion of exoplanet discoveries over

the past few decades. Before the first exoplanets were confirmed (Mayor & Queloz, 1995), theo-

ries of planet formation had to explain just the planets in the Solar System, often grouped into

three general classes: Cold gas giants (Jupiter, Saturn), ice giants (Uranus, Neptune), and rocky

terrestrial planets (Mercury, Venus, Earth, Mars). However, the first detected exoplanet orbiting

a Sun-like star was a hot, Jupiter-size planet orbiting 51 Pegasi, providing the first evidence that

nature produces planets with a more diverse range of properties than those found in our Solar

System. This new class of “hot Jupiter” planets was just the tip of the iceberg.

1.1 Lessons from Kepler

NASA’s Kepler mission (2009–2013) discovered thousands of exoplanets transiting their host stars,

enabling the first detailed study of planet demographics.

1.1.1 An abundance of small planets

Kepler revealed a surprising abundance of planets between the size of Earth and Neptune (hereafter

“small” planets), which are absent from our Solar System. Approximately half of Sun-like stars

have at least one small planet with an orbital period P < 100 days (Howard et al., 2012; Fressin

et al., 2013; Petigura et al., 2013a). The large population of sub-Neptune-size planets orbiting close

to their host stars poses fundamental challenges for planet formational theory. Small planets might

form in-situ like the terrestrial planets in our Solar system, but this requires protoplanetary disks

with surface densities several times that of the Minimum Mass Solar Nebula (MMSN) (Chiang &

Laughlin, 2013; Hansen & Murray, 2013). Alternatively, these planets could have migrated inwards

from several AU, where more material is available and ices speed the assembly of cores (Ida & Lin,

2010; Alibert et al., 2011; Rogers et al., 2011). Migration might occur via interactions with the

protoplanetary disk (“Type-I” or “Type-II” migration, Terquem & Papaloizou, 2007; Ida & Lin,

2010), gravitational scattering (Kennedy & Kenyon, 2008; Ida & Lin, 2010), shepherding by giant

planets (Tanaka & Ida, 1999; Mandell et al., 2007; Raymond et al., 2008), or Kozai oscillations

(Rice, 2015). In any migration scenario, material from the outer disk—either planetary building

blocks or whole planets—must be transported to sub-AU distances, but not fall onto the star. Of

course, small planets might be a mix of both in-situ and migrated populations.
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1.1.2 Planet compositions in the Kepler era

While the radius and orbital period distributions of small planets are well constrained from Kepler,

our knowledge of their compositions — one of the best links to their formation histories — has been

limited by a combination of observational challenges and measurement degeneracies. Compositions

are often inferred from bulk densities, which combine radius and mass measurements. Masses can

be measured from transit timing variations (TTVs), but this requires multiple transiting planets

and the signals are typically weak unless the planets are close to orbital resonance (e.g. Carter et al.,

2012; Hadden & Lithwick, 2017). In contrast, Doppler (radial velocity) measurements can probe

planet masses in a diverse range of system architectures. However, only a small fraction of Kepler

planet hosts are bright enough for RV follow-up. The study of bulk compositions of small planets is

further complicated by degeneracies between mass, radius, and composition. For example, relative

amounts of core rock, iron, and water can be traded with the H/He envelope mass fraction without

changing mass or radius.

By the end of the prime Kepler mission in 2013, only a few dozen small planets had precisely

measured masses. Even from this small population, compositional trends emerged, offering clues

about the processes of planet formation. Figure 1.1 shows a mass-radius and density-radius diagram

from Weiss & Marcy (2014) of all small planets whose mass and radius had been measured either

by RVs or TTVs. While there are no well-characterized exoplanets smaller than Earth, the inner

planets of the Solar System are all primarily rocky. At the other extreme, planets larger than

Neptune (4 R⊕) have low densities consistent with H/He envelopes; there are no examples of rocky

planets this large. In the 1–4 R⊕ domain, the mass-radius landscape is more complicated and

poorly understood. Somewhere between ∼1.5 and 2.0 R⊕, planet density peaks and begins to drop

with increasing radius, which has been interpreted as a transition point for atmospheric accretion

(Weiss & Marcy, 2014; Marcy et al., 2014a,b).

There is significant scatter about the mean mass-radius relation, indicating compositional diver-

sity, even for a fixed planet radius (e.g. Weiss & Marcy, 2014; Wolfgang & Lopez, 2015; Wolfgang

et al., 2016). For example, Kepler-138d, a “fluffy”, ∼ 1.3 g cm−3 planet, which seems to be an

exception to the otherwise rocky population of planets smaller than ∼1.5 R⊕. The noticeable di-

versity raised many important questions: To what extent is the mass-radius relation influenced by

environmental factors such as temperature? Does composition correlate with the overall system

architecture or properties of the host star?

1.1.3 The Importance of Photoevaporation

There is growing evidence that the mass-radius relation is sculpted by the photoevaporation of

planetary envelopes driven by incident stellar radiation at X-ray and EUV wavelengths. Such

high-energy radiation is capable of heating a planet’s upper atmosphere via ionization of atomic

hydrogen (Hunten, 1982), which can produce hydrodynamic winds that drive significant mass loss
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(Kasting & Pollack, 1983). The majority of envelope erosion is expected to occur during the first

100 Myr, when the star is most active at these high energies (Ribas et al., 2005) and the planet is

still cooling and contracting (Lopez et al., 2012).

The rate of photoevaporative erosion strongly depends on planet composition, which makes it

possible to break the degeneracies between mass, radius, and composition by studying the flux

dependence of the mass-radius relation. For example, the susceptability of a planet to photoevapo-

ration depends on the mass of its core and the chemical consitituents of its envelope. Massive cores

have a stronger hold on their surrounding gas, making them more resistent to photoevaporation at

a given level of incident flux. Moreover, H/He will be lost much more readily than heavier atmo-

spheric constituents like water. The compositional dependency of this evolution is steepened by the

fact that radii of low-mass planets are particularly sensitive to their H/He content (Fortney et al.,

2013; Valencia et al., 2013). Therefore, if most small planets are solid cores surrounded by H/He

envelopes, signatures of photoevaporation should be prominent in the mass-radius-temperature

distribution.

Over the past few years, several observational signatures of photoevaporation have been discov-

ered, suggesting that most small planets are rocky cores surrounded by varying amounts of H/He

while water-dominated worlds are rare or non-existent. These signatures are outlined in the next

three subsections:

1.1.4 Ultra-short-period Planets

The vast majority of known planets with orbital periods < 1 day, known as ultra-short-period

(USP) planets, are smaller than 2R⊕ (Sanchis-Ojeda et al., 2013). This suggests that they are

remnant cores of planets stripped of any H/He they might have acquired during formation. If these

planets formed with water-rich envelopes, a large fraction of them would not be eroded, leaving a

significant population of USPs larger than 2R⊕, which is at odds with observations (Lopez, 2017).

It has been argued that even some close-in giant planets can lose their entire envelopes via

Roche lobe overflow (RLO) and become bare cores (e.g. Valsecchi et al., 2014, 2015; Jackson et al.,

2016). However, the metallicity distribution of USP planets agrees with that of small planets on

1–10-day orbits, but not hot-Jupiters (Winn et al., 2017). This suggests the that the majority of

USPs are more likely to be the remnants of photoevaporated Neptune- or sub-Neptune-size planets

than cores of hot-Jupiters that experienced RLO.

1.1.5 The Sub-Neptune Desert

Supporting the claim that USPs are remnants of photoevaporation, there is a paucity of ∼ 2–4

R⊕ planets with Sinc & 1000, often referred to as the “sub-Neptune desert” (Mazeh et al., 2016;

Lundkvist et al., 2016). While there are distinct populations of such highly irradiated planets with

RP < 2 R⊕ and RP > 4 R⊕, intermediate-size planets are relatively rare at such temperature
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extremes, although not completely non-existent (Berger et al., 2018). This feature has been in-

terpreted as a “photoevaporation desert”, in which hot planets that formed with modest H/He

envelopes were completely stripped to their cores, shrinking to < 2 R⊕ (Lopez, 2017). Consistent

with the photoevaporation hypothesis, Fulton & Petigura (2018) find that the desert extends to

lower Sinc for stars of lower mass, which emit a larger fraction of their total radiation in the X-ray

and EUV.

1.1.6 The Planet Radius Valley

Another crucial clue that photoevaporation significantly influences the mass-radius relation is the

discovery of gap in the planet radius distribution at 1.5–2.0 R⊕. By collecting spectra of 1300 Kepler

planet hosts, the California Kepler Survey (CKS Petigura et al., 2017b; Johnson et al., 2017) shrunk

the typical Kepler stellar radius uncertainties from ∼ 25–40% to 10%, revealing finer details of the

planet radius distribution. Fulton et al. (2017) discovered a bimodal planet radius distribution with

peaks at ∼ 1.2 R⊕ and 2.5 R⊕ and a valley between 1.5–2.0 R⊕. This valley divides the population

of small planets into “super-Earths” comprised of bare cores, and “sub-Neptunes”, which contain

low-density gaseous envelopes. Fulton & Petigura (2018) further improved the Kepler stellar radii

by incorporating stellar parallaxes from Gaia and confirmed that the valley is not devoid of planets.

Numerical simulations by several studies had predicted that this radius valley should arise from

the photoevaporation of H/He envelopes (Owen & Wu, 2013; Lopez & Fortney, 2014; Jin et al.,

2014; Chen & Rogers, 2016; Lopez, 2017). After the valley was observed, Owen & Wu (2017)

constructed a simple analytical model of photoevaporation to demonstrate it naturally produces

one population of bare cores and a second population at twice the typical radius, where H/He

envelopes comprise a few percent of the planet mass. This bifurcation occurs because planets are

least susceptible to photoevaporation when the core radius is half of the total planet radius (Rcore

= 0.5RP ). At lower envelope fractions (Rcore > 0.5RP ), the radius is minimally sensitive to changes

in mass and so the photoevaporation cross-section remains constant as the envelope erodes until it

is completely lost. At the other extreme, if the planet forms with Rcore < 0.5RP , the radius (and

therefore the irradiation cross-section) grows more quickly per addition of H/He mass, increasing

the rate of photoevaporation. The end result is that puffier planets quickly shrink to twice the size

of their core (fenv ≈ 1%), while planets that form with modest envelopes (fenv . 1%) are rapidly

stripped to their cores.

Alternative explanations to the photoevaporation hypothesis include the erosion of lighter en-

velopes driven by luminosities of cooling planet cores (Ginzburg et al., 2018). However, Fulton

& Petigura (2018) observed that the sub-Neptune population shifts to higher bolometric incident

fluxes for stars of higher mass, which emit a smaller fraction of radiation at the X-ray and EUV

energies, consistent with photoevaporation.
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1.1.7 The diversity of small planet cores

Much can be learned about planet formation by measuring the distribution of planet core masses

and its dependence on host star properties. For example, it has been firmly established that metal-

rich stars are more likely to host Jovian-mass planets (Gonzalez, 1997; Reid, 2002; Santos et al.,

2004; Fischer & Valenti, 2005), which remains the best evidence that giant planets form by core

accretion.

One way to constrain the distribution of core masses and compositions of small planets is to

subject different simulated populations to a photoevaporation model and see which populations

produce a radius distribution most consistent with observations. Using this approach, Owen & Wu

(2017) argued that the specific location of the planet radius valley indicates that the majority of

small planets have ∼ 3 M⊕ cores with Earth-like compositions (∼ 30% iron, 70% rock by mass).

However, Wu (2018) claim that the methodology of Owen & Wu (2017) was sensitive to the pipeline

completeness corrections of Fulton et al. (2017). To circumnavigate this issue, Wu (2018) generated

synthetic populations of observed planet radii by applying completeness corrections to their model

predictions. They found that the super-Earth population has a typical core mass of ∼8 M⊕ with

compositions likely similar to Earth.

It is important to consider that the typical core mass might change as a function of stellar

properties such as mass and metallicity. Fulton & Petigura (2018) found that the radius valley shifts

to larger radii with increasing stellar mass, suggesting that smaller planet cores form around smaller

stars. However, they note that smaller stars tend to be metal-poor, so it could be a metallicity

effect. The link between the properties and occurrence of small planet and stellar metallicity has

been widely debated (Buchhave et al., 2012, 2014; Schlaufman, 2015). While the overall correlation

between the radius of small planets and stellar metallicity is weak at best, the occurrence of small

planets at short orbital periods does depend on metallicity. Petigura et al. (2018) found that the

occurrence of planets < 1.7R⊕ at P < 10 days increases with host star metallicity. For planets

1.7–4R⊕, this correlation extends out to P ∼ 50 days.

For small planets, the dependence between planet mass and stellar metallicity has been investi-

gated much less extensively than the radius-metallicity relationship due to a limited sample of small

planet masses. However, in principle, a mass-metallicity assessment would be more conclusive. In

a universe where the core mass of small planets strongly correlates with stellar metallicity, the

correlation between radius and metallicity would likely be more subtle because the radius of planet

cores grows slowly with increasing mass — as MP
1/4 after accounting for compression. Moreover,

correlations between radius and metallicity could be influenced by differences in irradiation and

photoevaporative effects around stars of different masses (and thus metallicities). Therefore, the

lack of a strong radius-metallicity correlation does not preclude a strong mass-metallicity correla-

tion.

In this work, I estimate the distribution of core masses and compositions of small planets directly
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from measurements of their masses. I present evidence that the masses of planet cores are dictated

by stellar metallicity more than stellar mass.

1.2 From Kepler to K2

In 2013, the loss of a second reaction wheel on the Kepler telescope motivated a repurposing of

the Kepler mission into a new mission called K2. Since February 2014, the two-reaction-wheel

Kepler telescope has pointed at 19 different fields (“campaigns”) spread along the ecliptic, each

for 75 days. Despite the substantial pointing drift of the telescope, clever reduction pipelines have

achieved photometric precision comparable to the prime Kepler Mission. Thanks to these efforts,

hundreds of transiting planets have been discovered in the K2 photometry, most of which are Earth-

to Neptune-size (Vanderburg et al., 2015; Sinukoff et al., 2016; Crossfield et al., 2016).

Since K2 covers significantly more sky than Kepler , it surveys more bright stars, which are

amenable to RV follow-up. As high-precision RV measurements of the brightest and quietest planet

hosts in the Kepler field had already been made, K2 presented a new opportunity to measure

the masses of small planets. To this end, I joined a collaborative effort to detect and precisely

characterize K2 planets. Our team has found hundreds of planet candidates, most of which we

validated through spectroscopy and AO imaging. These observations yielded a fresh supply of

bright planet hosts. I played a lead role in planning and conducting Doppler observations of more

than 50 K2 stars, nearly doubling the number of small planets with measured masses. Armed

with a larger statistical sample, one can probe the transition from rocky to gaseous planets and its

dependence on other parameters like temperature and the nature of the host star.

1.3 Plan

This thesis comprises four previously published papers on which I am first author, as well as

one paper in preparation. Chapter 2 is a reproduction of Sinukoff et al. (2013), which reviews

of planet formation and outlines prospects of detecting and characterizing planets smaller than

Earth. Chapter 3 is a reproduction of Sinukoff et al. (2016). There, I present a catalog of 11

multiplanet systems from K2 and quantify the K2 planet “multiplicity boost” — the reduction in

the false positive probability of a planet candidate by virtue of it being in a multi-planet system.

I also report the first of many K2 planet mass measurements. The masses and properties of seven

additional K2 planets are highlighted Chapters 4 and 5, which are reproductions of Sinukoff et al.

(2017a) and Sinukoff et al. (2017b) respectively. In Chapter 6, I construct a catalog of ∼ 150

planets spanning 1–8 R⊕, constituting nearly all such planets with measured masses, and re-derive

planet masses and radii using a precise and homogeneous catalog of host star properties. I use this

catalog to answer key questions about the compositions of small planets at short orbital periods. I

constrain the diversity of planet cores and discover a positive correlation between the core masses
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Figure 1.1: Copy of Figure 2 from Weiss & Marcy (2014). Updated versions of these plots are
shown in Chapter 6.

of small planets and the metallicities of their host stars. The updated density-radius relation is

characterized by two distinct populations — “super-Earths” consisting of 1–2 R⊕ cores with little

to no gas, and “sub-Neptunes” with H/He envelopes comprising & 1% of their total mass. The

gap between these populations is where cores with <1% H/He would reside, indicating that such

planets are quickly stripped of their envelopes by photoevaporation. This supports the leading

interpretation of the observed planet radius valley.

7



CHAPTER 2
BELOW ONE EARTH: THE DETECTION, FORMATION,

AND PROPERTIES OF SUBTERRESTRIAL WORLDS

This chapter is a reproduction of Sinukoff et al. (2013).

2.1 Uncovering the Sub-Earth Realm

The detection of Earth-size planets around other stars has long been a goal of astronomy. The

Kepler space mission has discovered many such candidates (Borucki et al., 2011; Batalha et al.,

2013), some of which are confirmed, and seeks to determine the fraction of solar-type stars that

harbor Earth-size planets in their habitable zones (Borucki et al., 2010). While it is human nature

to search for analogs of our home planet, the distribution of objects in our Solar System extends

well below one Earth mass, i.e. Mars, Mercury, the “dwarf planets” Pluto and Ceres, and large

planetary satellites such as Titan and Ganymede. However, the sub-Earth realm remains largely

unexplored around other stars due to the limits of present detection methods. Like Mars, Europa

and Titan, sub-Earth-mass objects in other planetary systems may prove to be of astrobiological

interest.

For the purposes of this paper, we define sub-Earths or subterrestrial exoplanets (hereafter

STEPs) as planets with radius Rp < 0.95 R⊕. For a rocky planet this corresponds to a mass

Mp < 0.82 M⊕. Under this definition, a Venus twin (0.95 R⊕, 0.82 M⊕) is not a STEP, while

analogs to Mercury (0.38 R⊕, 0.055 M⊕) and Mars (0.53 R⊕, 0.11 M⊕) are1. Throughout this

paper, we will refer to mass and radius interchangeably. Conceivably, planets might exist that have

a radius smaller than 0.95 but a mass exceeding that of Earth (e.g. an “iron planet”), but we

assume a single mass-radius relation appropriate for an Earth-like composition (i.e., Valencia et al.,

2007, see §2.6 for more on expected STEP properties).

One of the first exoplanets discovered was the 0.02 M⊕ pulsar planet PSR B1257+12A (Wol-

szczan, 1994), however the Kepler mission is the primary source of STEP discoveries: As of April

2013, Kepler has discovered 7 STEPs and 36 candidates. Table 2.1 lists the parameters of all

reported candidate and confirmed STEPs. Figure 3.4 plots the planets’ radii Rp and orbital peri-

ods P . We include all confirmed and candidate planets with Rp + σRp < 1 R⊕, where σRp is the

uncertainty in radius.

STEPs may be very abundant. The distribution of planets rises steeply with both decreasing

mass and decreasing radius down to 3 R⊕ (Howard et al., 2010b, 2012) but appears to be flat from

3 R⊕ to 1 R⊕, the completeness limit of Kepler (Fressin et al., 2013). A data pipeline sensitive to

planets as small as 0.5 R⊕ suggests that the Kepler planet size distribution for P = 5.0–10.8 days

1We discuss large satellites of exoplanets, or “exomoons” in §2.4.3.
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either remains flat or increases below 1 R⊕ (Petigura et al., 2013b). Although the detection rate in

this region of parameter space is <50%, these findings indicate that STEPs are relatively common.

STEPs occupy diverse environments. Three STEPs orbit the M dwarf Kepler-42 (Muirhead

et al., 2012b). Kepler-20e is part of a five-planet system that includes three gas giants and an

Earth-size planet (Fressin et al., 2012). Contrary to the configuration of the Solar System, the

two smallest planets of Kepler-20 orbit amongst the giants. KOIs 55.01 and 55.02 orbit within

0.008 AU of a B subdwarf and have day side temperatures exceeding 8000 K, allowing Kepler

to detect their thermal emission at visible wavelengths (Charpinet et al., 2011). They somehow

survived or avoided engulfment by the star during its red giant phase. An object transiting Kepler

star KIC 12557548 every 15.7 hr is thought to be a disintegrating Mercury-size planet surrounded

by a cloud of dust (Rappaport et al., 2012).

STEPs are part of the complete picture of planet formation and evolution. Although planet

formation is thought to be a stochastic process, statistical quantities and occurrence patterns, e.g.

mass distribution or metallicity correlation, presumably reflect underlying processes common to

all systems. Any planet formation theory is incomplete if it cannot account for such trends in

the sub-Earth population. Historically, the study of exoplanets in previously unexplored regions

of parameter space has provoked new ideas: The discovery of “hot Jupiters” (Mayor & Queloz,

1995) led to proposals for orbital migration (Lin et al., 1996), that of “super-Earths” (Rivera et al.,

2005) kindled interest in volatile-rich “ocean planets” (Kuchner, 2003; Léger et al., 2004), and the

hot rocky planet CoRoT-7b (Queloz et al., 2009) stimulated the concept of “lava planets” (Léger

et al., 2011) and “Chthonian” planets, the remnant cores of evaporated gas giants (Hébrard et al.,

2004). STEPS should likewise expand our appreciation for — and demand the explanation of —

the diverse outcomes of planet formation.

In this review, we address the capability of both the Kepler space mission (§2.2) and ground-

based Doppler observations (§2.3) to detect STEPs. In §2.4 we consider the original (pulsar timing)

and one future (microlensing) method by which STEPs can be detected, as well as the potential for

discovery of exomoons. In §2.5 we discuss the predictions of planet formation theory, and in §2.6 we

speculate on the properties of STEPs and how they might be established by follow-up observations.

We summarize our conclusions and recommend future studies in §5.4.

2.2 Detection of Sub-Earths by Kepler

Since most of the currently known sub-Earth planet candidates were discovered by Kepler, it is

useful to study the sensitivity of Kepler observations to such planets. This will provide an estimate

of the number of stars in the Kepler sample around which the mission could detect transiting

sub-Earth planets as well as identify those stars most suitable for such a search.

The Kepler spacecraft was launched in 2009 with the primary goal of discovering an Earth-

size exoplanet in the habitable zone of a solar-type star (Borucki et al., 2010; Koch et al., 2010).
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Table 2.1: Confirmed and Candidate Sub-Earths (STEPs)a

Name Rp (R⊕) Mp (M⊕)a Period (d) Method Referenceb

Confirmed planets
Kepler-20e c 0.87 0.59 6.10 transit F12
Kepler-37b 0.30 0.01 13.37 transit BA13
Kepler-37c 0.74 0.32 21.30 transit BA13
Kepler-42b 0.78 0.39 1.21 transit M12
Kepler-42c 0.73 0.30 0.45 transit M12
Kepler-42d 0.57 0.12 1.87 transit M12
Kepler-62c 0.54 0.10 12.44 transit BO13
PSR B1257+12 A 0.36 0.02 25.27 pulsar W94

Candidate planetsd

KIC 12557548be 0.38 0.03 0.65 transit R12
KOI 55.01e 0.76 0.35 0.24 transit C11
KOI 55.02e 0.87 0.59 0.34 transit C11
KOI 82.04 0.70 0.26 7.07 transit NEA13
KOI 82.05 0.52 0.08 5.29 transit NEA13
KOI 251.02 0.82 0.47 5.77 transit NEA13
KOI 283.02 0.84 0.51 25.52 transit NEA13
KOI 321.02 0.84 0.51 4.62 transit NEA13
KOI 430.02 0.77 0.37 9.34 transit NEA13
KOI 568.02 0.74 0.32 2.36 transit NEA13
KOI 605.02 0.61 0.15 5.07 transit NEA13
KOI 672.03 0.55 0.10 0.57 transit NEA13
KOI 952.05 0.86 0.56 0.74 transit NEA13
KOI 1499.02 0.66 0.20 0.84 transit NEA13
KOI 1612.01 0.78 0.39 2.47 transit NEA13
KOI 1618.01 0.77 0.37 2.36 transit NEA13
KOI 1619.01 0.80 0.43 20.67 transit NEA13
KOI 1692.02 0.84 0.51 2.46 transit NEA13
KOI 1964.01 0.73 0.30 2.23 transit NEA13
KOI 1977.02 0.69 0.24 7.42 transit NEA13
KOI 2006.01 0.88 0.61 3.27 transit NEA13
KOI 2013.01 0.86 0.56 2.41 transit NEA13
KOI 2029.02 0.82 0.47 10.06 transit NEA13
KOI 2059.01 0.80 0.43 6.15 transit NEA13
KOI 2079.01 0.66 0.20 0.69 transit NEA13
KOI 2169.04 0.50 0.07 2.19 transit NEA13
KOI 2247.01 0.89 0.64 4.46 transit NEA13
KOI 2421.01 0.72 0.29 2.27 transit NEA13
KOI 2426.01 0.79 0.41 4.16 transit NEA13
KOI 2527.01 0.57 0.12 1.39 transit NEA13
KOI 2657.01 0.60 0.14 5.22 transit NEA13
KOI 2693.01 0.70 0.26 4.08 transit NEA13
KOI 2693.03 0.66 0.20 6.83 transit NEA13
KOI 2792.01 0.61 0.15 2.13 transit NEA13
KOI 2838.02 0.61 0.15 4.77 transit NEA13
KOI 3083.03 0.59 0.13 8.29 transit NEA13
UCF-1.01 0.66 0.20 1.37 transit S12
UCF-1.02 0.65 0.19 — transit S12

aAssuming M/M⊕=(R/R⊕)3.817 appropriate for an Earth-like composition (Valencia
et al., 2007).

bBA13: Barclay et al. (2013), BO13: Borucki et al. (2013), C11: Charpinet et al. (2011),
F12: Fressin et al. (2012), M12: Muirhead et al. (2012b), NEA13: NASA Exoplanet Archive
(January 2013), R12: Rappaport et al. (2012), S12: Stevenson et al. (2012), W94: Wolszczan
(1994).

cKepler detections include Quarters 1-8 observations. We exclude Kepler candidates with
Multiple Event Statistic (a measure of signal-to-noise) <7, which are statistically unreliable
detections (Jenkins et al., 2010). We omit targets that are unclassified in the Kepler Input
Catalogue (Brown et al., 2011).

dCandidate planets have estimated Rp < 1.0 R⊕ to within 1σ.
eQuoted Mp and Rp are lower limits.
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Figure 2.1: Radii and orbital periods of confirmed (blue diamonds) and candidate STEPs (red
triangles). The latter, all but one of which are Kepler detections, are included only if they have
estimated radii at least 1σRp below 1 R⊕ according to the NASA Exoplanet Archive. The void
near 1 R⊕ is a result of this criterion. Where uncertainties are unavailable, we include R < 1 R⊕.
We equate radii and mass using a relation for low-mass rocky planets with negligible water content
(Valencia et al., 2007).

As of January 2013, the Kepler mission has discovered 105 bona fide planets and more than 2700

planetary candidates using the transit detection method, i.e. by detecting the decrease in flux as the

planet passes in front of its host star. Most candidates are likely to be planets (Colón et al., 2012;

Morton, 2012; Fressin et al., 2013), but the stars are either too faint or the planets too small to be

confirmed by the radial velocity method (§2.3). The unsurpassed precision of Kepler photometry

and the fact that the transit method is sensitive to the cross-section (∝ R2
p) of the planet, not its

mass (∝ R4
p, Valencia et al., 2007) makes Kepler our most powerful tool for detecting STEPs.

2.2.1 Direct transit detection

We assess the ability of Kepler to directly detect STEPs via transits of their host stars. The

transit signal is proportional to (Rp/R∗)
2, where R∗ is the radius of the star. At a given detection

limit for a transit signal, smaller planets can be found around smaller stars. For example, a 0.5

R⊕ planet produces a signal of ∼20 parts per million (ppm) if it transits a G5 dwarf, but ∼50

ppm if it transits an M2 dwarf. All else being equal, late-type M dwarf stars should be more

desirable targets for searches for STEPs. We first consider the fraction of sub-Earths that would

be detected around the planet-hosting Kepler M dwarfs characterized by Muirhead et al. (2012a)
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(hereafter M12). These stars have radii and masses inferred from a comparison of spectrocopically-

determined effective temperatures Teff and metallicities with stellar evolution models. These allow

us to convert a detection threshold into equivalent planet radii. Furthermore, these stars are likely

to host additional planets (Wright et al., 2009; Lissauer et al., 2011b), and these planets are also

likely to transit because of orbital coplanarity (Sanchis-Ojeda et al., 2012; Hirano et al., 2012).

The radius of the smallest detectable planet Rp with an orbital period P observed for a time

tobs is:

Rp = R∗

√(
P

tobs

)1/2

S/N · CDPPd, (2.1)

where the threshhold signal to noise S/N for detection is 7.1 (Jenkins et al., 2010; Tenenbaum et al.,

2012), and CDPP is the effective Combined Differential Photometric Precision over a time interval

d (Koch et al., 2010). CDPPd is a measure of the noise of a light curve within a specified time

interval d and is similar to the standard deviation of the photometry binned over that interval.

To determine the sensitivity of the survey to sub-Earth planets around the M12 stars, we first

calculate the transit duration (d) for a range of possible planet orbital periods using the stellar

masses and radii from M12. To determine CDPPd we fit a second-order polynomial in 1/
√
d to the

d = 3, 6, and 12 hour CDPP values of each of the ∼168,000 stars observed by Kepler. Assuming

that every planet transits, and that the observing timespan is equal to the total length of the

Kepler primary plus extended mission2 (tobs = 6.8 yr), Kepler should be able to detect transiting

sub-Earth-size planets with periods as long as ∼60 days around ∼50% of the stars in the M12

catalogue (Fig. 2.2).

Although the transit signal for a given planet size is inversely proportional to the square of

the stellar radius, the transit signal-to-noise also depends on the noise due to both intrinsic stellar

variability and photometric error (Gilliland et al., 2011). The smallest planets can be detected

around the smallest, brightest, and most intrinsically quiet stars. All of the stars in the M12

catalogue are early- to mid-M-type stars: Gilliland et al. (2011) shows that only 7% of M dwarfs,

but 76% of G5 dwarfs have CDPP6 < 50 ppm. In addition, late-type stars are much less luminous

and thus under-represented in the magnitude-limited Kepler survey.

The results of Gilliland et al. (2011) motivate us to identify the subset of Kepler targets that

are best suited for detecting transits of sub-Earth-sized objects. These same arguments will also

apply to any future space-based transit survey if the photometric precision is limited by stellar

variability. Since transit signal-to-noise scales inversely with the product of R2
∗ and CDPP, we

define a parameter D ≡ R2
∗CDPP6 to identify the most suitable stars for which to search for small

planets. We use CDPP6 as our reference because the corresponding orbital period of a transiting

planet is 40 d, within the range considered here. (The other available precision metrics are for 3 hr

and 12 hr, corresponding to orbital periods of 5 d and 320 d).

2The extended mission may be terminated due to the failure of a second reaction wheel on the spacecraft.
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Figure 2.2: Detectable fraction vs. period and planet radius for hypothetical additional planets
orbiting planet-hosting stars in the M12 catalogue. All planets are assumed to be on coplanar orbits
and transiting. The dashed lines show the best current radial velocity capability (0.5 m s−1) and
future radial velocity capability (2 cm s−1) for instruments such as CODEX (see §2.3) assuming the
median stellar mass (0.53 M�) of the M12 sample and a planet mass-to-radius relation for rocky
planets from Valencia et al. (2007). The detectable fraction is defined as the fraction of M12 stars
around which a planet of a given radius and period would produce a detectable (7.1 σ) transit
signal over the course of the extended Kepler mission (6.8 yr, see section 2.1).

Smaller planets can be detected around stars with lower values of D. Figure 2.3 shows the

distribution of D for those stars observed by Kepler, binned by the Teff reported in the Kepler Input

Catalogue (KIC, Brown et al., 2011). The curves are cumulative with Teff from coolest to hottest:

the uppermost curve is the total over all Teff . These distributions peak near D ≈ 80 ppm, close to

the signal from the single transit of an Earth twin around a solar analog (84 ppm). This means that

the signal-to-noise of individual transits of an Earth twin would be ∼1 and highlights the challenge

of detecting such a planet with Kepler. Planets on shorter-period orbits will produce more transits

and are more readily detected. About one quarter of all Kepler targets have D < 70 ppm. Figure

2.3 indicates that no particular spectral type is optimal, although stars with 5450 K < Teff < 5700

K have a D distribution slightly skewed toward lower values. This contrasts with the common

perception that M dwarfs are favorable targets because, among Kepler stars, M dwarfs are fainter

and photometrically noisier. However, the stellar radii of very low-mass stars in the KIC catalogue

are systematically too large (Muirhead et al., 2012a; Mann et al., 2012). If the radii were corrected,

this would push the distribution of D for the M-dwarfs towards smaller values of D, making them

slightly better targets.

In order to estimate the fraction of stars around which sub-Earth-size planets are detectable in
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the Kepler photometry via transits, we select the 25% (32,721) of stars with the smallest values

of D and calculate the percentage of sub-Earth planets that would be detected if each star was

orbited by a planet with a given period. We assume isotropically-oriented orbits, such that the

transit probability is R∗/a, where a is the semi-major axis, using R∗ from the KIC and the scaling

relation M∗ ∼ R0.8
∗ (Cox & Pilachowski, 2000) to determine a from P . Figure 2.4 shows that

Kepler should find ∼ 1% of planets with R ∼ 1 R⊕ out to P ∼ 80 d around these stars. Thirty-six

sub-Earths found by Kepler orbit at 1 < P < 10 d where the detection efficiency is ∼5-10% (Fig.

3.4).
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Figure 2.3: Distribution of D ≡ R2
∗CDPP6 for all ∼168,000 stars observed by Kepler in Quarter 10.

The colored lines are cumulative bins of stars grouped by Teff and the black line is the distribution
of the entire sample. The vertical dashed red line indicates the 25th percentile cut of stars used to
produce Fig. 2.4.

2.2.2 Detection by transit timing variations

Additional, non-transiting planets can be detected when mutual gravitational perturbations cause

sufficient variation in the ephemeris of the transiting planet (Miralda-Escudé, 2002; Holman &

Murray, 2005; Agol et al., 2005). The amplitude of these transit timing variations (TTVs) in the

case of an inner transiting planet being perturbed by a longer period companion is (Holman &

Murray, 2005):

∆t ' 45π

16

(
Mp

M∗

)
P1α

3
e

(1−
√

2α
3/2
e )2

, (2.2)

where the subscripts 1 and 2 indicate parameters of the transiting and perturbing planet, respec-

tively, P is the orbital period, Mp is the perturbing planet mass, M∗ is the mass of the host star,
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Figure 2.4: Detectable planet fraction vs. period and planet radius of the 25% most detection-
favorable Kepler targets, i.e. smallest D ≡ R2

∗CDPP6, accounting for transit probability. The
sharp rise of the contours (decrease in detectability) at long periods is a result of the geometric
probability of transit being very low for long-period planets. The detectable fraction is defined
as the fraction of KIC stars around which a planet of a given radius and period would produce a
detectable (7.1 σ) transit signal (see Section 2.1).

αe = a1/[a2(1 − e2)], and e is the eccentricity. ∆t depends on the mass of the perturber (not the

transiting planet), and sub-Earth-mass perturbers will produce only a very small TTV signal. The

amplitude of a TTV signal also depends on the period ratio and orbital eccentricities of the two

planets and is maximized when the periods are commensurate. Dynamical simulations show that

the maximum TTV signal from an Earth-mass planet will be ∼20 s (Holman & Murray, 2005).

Kepler can measure the time of transit center with a precision of ∼20 s for the deepest transits

of the brightest stars, but for the majority of stars the precision is much worse (Ford et al., 2011).

The highest precision that has ever been achieved is ∼5 s using the Hubble Space Telescope (Brown

et al., 2001; Pont et al., 2007), and ground-based observations can achieve precisions of ∼60 s

(Fulton et al., 2011; Maciejewski et al., 2013). Although Hubble may be able to detect TTVs due

to sub-Earths, the telescope’s short observing window (due to its low Earth orbit) makes it less than

ideal for this type of observation. It seems unlikely that TTVs will be a viable method to detect

STEPs until the advent of a more capable observatory such as the James Webb Space Telescope

(JWST).
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2.3 Doppler detection

The radial velocity (RV) or Doppler method was used to discover and confirm the first exoplanet

around a main-sequence star (Mayor & Queloz, 1995), and is responsible for nearly half of all

exoplanet discoveries to date (Schneider et al., 2011). Although this statistic is changing because

of the success of transit surveys such as Kepler, RV measurements are required to rule out certain

false positive scenarios and measure planetary mass. For a circular orbit, RV semi-amplitude K

scales as

K ≈ 64
Mp sin i

M⊕

(
P

1 d

)−1/3(M∗
M�

)−2/3

cm s−1. (2.3)

where i is the orbital inclination of the planet with respect to the plane of the sky. As of January

2013, the smallest reported signal is 51 cm s−1 from a planet with a minimum mass of 1.3 M⊕

on a 3.2 d orbit around α Cen B (Dumusque et al., 2012, but see Hatzes (2013)). This detection

was made by the High Accuracy Radial velocity Planet Searcher (HARPS) instrument installed

on the ESO La Silla 3.6 m telescope in Chile, which represents the state of the art in operational

spectrographs. Other instruments achieve an RV stability in the 1–3 m s−1 range (Table 2.2).

This performance falls well short of what is needed to detect Earths or sub-Earths with P � 1 d

around solar-type stars, but leaves open the possibility of discovering or confirming “hot” STEPs

on extremely close orbits (P ∼ 1 d) around M dwarfs (Fig. 2.2).

Detection of STEPs at larger orbital distances will require greatly improved sensitivity: A 0.5

M⊕ planet on a 10 d orbit around a 0.53M� star produces a maximum Doppler signal of ∼ 22

cm s−1, or roughly half that of the current best precision reported by HARPS. The same planet

with the same orbit around a solar-type star would produce a Doppler signal of only ∼ 14 cm

s−1. Although this precision is beyond the abilities of current instruments, there are already plans

in place to improve the performance of existing instruments, such as HARPS, and to build new

instruments which will achieve the precision needed to detect STEPs. In order to do this, new

instruments must overcome both instrumental and stellar noise. The solutions come from multiple

approaches, and we address each below.

Spectrographs mounted directly on telescopes experience flexure, pressure variations, and tem-

perature variations that produce systematic errors. These effects can be minimized by placing the

instrument in a temperature-stabilized dewar fed by a fiber from the telescope, as is done with

HARPS (Lovis et al., 2006). Imaging a star directly onto a spectrograph slit engenders noise from

guiding errors and changes in the point spread function (PSF) (Valenti et al., 1995; Endl et al.,

2000). These issues can be partially addressed by high-cadence pointing corrections, but a more

elegant solution is to stabilize the PSF by transmitting the light to the instrument by a fiber (e.g.,

Spronck et al., 2012; Bouchy et al., 2013). Isolating and finely controlling the environment of the

instrument is necessary to maintain both short-term (single observation) and long-term (survey-

spanning) instrumental precision.
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Another source of error is the wavelength calibrator against which Doppler shifts are measured.

A molecular iodine gas absorption cell, placed in the beamline, provides a forest of fiducial ab-

sorption lines at λ < 650 nm (Butler et al., 1996). While iodine works well for observations of

solar-type stars, which have significant signal at blue wavelengths, it becomes a limiting factor for

Doppler observations of M dwarfs, which have peak emission at redder (λ > 800 nm) wavelengths.

An alternative gas is ammonia, which has a large number of lines in the K (2.2 µm) band (Reiners

et al., 2010). An ammonia gas cell is used with the CRyogenic high-resolution InfraRed Echelle

Spectrograph (CRIRES) at the ESO Very Large Telescope (VLT) for radial velocity searches for

planets around M dwarfs (Bean et al., 2010).

There are also alternatives to gas absorption cells. The HARPS spectrograph uses the emission

lines from a thorium-argon lamp, but such lamps also have fewer lines in the near infrared and the

light from the lamp does not follow the exact same path as that from the star. A laser frequency

“comb” combined with an etalon interferometer can create a uniform ladder of equally bright

emission lines across a selectable wavelength range. Steinmetz et al. (2008) suggest that, with more

development, laser combs should permit RV measurements with a precision of ∼1 cm s−1.

The ultimate limit to the Doppler method is intrinsic stellar noise or “jitter” from granulation,

oscillations, plages, and star spots. One strategy is to average over these noise terms. Dumusque

et al. (2011) conclude that a scheme where three 10-minute spectra are obtained 2 hours apart on

each of 10 nights per month yields the best radial velocity precision and minimizes problems from

stellar variability.

Forthcoming instruments will take advantage of these technologies and strategies (Table 2.2).

HARPS-North, installed on the Telescopio Nazionale Galileo (TNG) on La Palma Island in the

Canary Islands (Cosentino et al., 2012), is based on the design of the original HARPS instrument

but will use a laser comb to achieve a precision of ∼10 cm s−1 (Li et al., 2012). The Echelle

SPectrograph for Rocky Exoplanet and Stable Spectroscopic Observations (ESPRESSO) on the

ESO VLT is expected to reach an RV precision of at least 10 cm s−1, with a goal of a few cm s−1

(Pepe et al., 2010). The design specifications of CODEX, planned for the European Extremely

Large Telescope, call for <2 cm s−1 RV precision (Pasquini et al., 2010). If there is an equivalent

suppression in the effect of stellar “jitter”, such instruments should be able to find STEPs orbiting

close (P < 10 d) to nearby bright stars (Fig. 2.2). However, estmating the yield of a survey is

difficult because of the lack of data on stellar noise at such precision, and thus any empirical means

to construct a suitable target catalog of Doppler “quiet” stars. However, should an instrument

such as CODEX achieve ∼ 2 cm s−1 precision it could, in principle, detect Mars-size planets with

P < 100 d (Fig. 2.2).
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Table 2.2: Current and Future Spectrographs for Radial Velocity Measure-
ments.

Instrument Precision First Light λ Resolution Reference
(cm s−1) (µm)

Keck-HiRES 100 1996 0.3–1.0 85,000 Butler et al. (1996)
UCLES 300 1998 0.48–0.86 45,000 Butler et al. (2001)
HDS 300 2000 0.35–0.65 150,000 Kambe et al. (2008)
HARPS 50 2003 0.38–0.69 115,000 Rupprecht et al. (2004)
SOPHIE 200 2006 0.38–0.69 75,000 Bouchy et al. (2013)
CHRONIS 70a 2011 0.45–0.89 120,000 Schwab et al. (2012)
HARPS-N 50a 2012 0.38–0.69 115,000 Cosentino et al. (2012)
APF-Levy ∼200a 2013b 0.3–0.65 73,000 Radovan et al. (2010)
APF-HWS ∼100a 2014 0.38–0.69 100,000 A. Howard, priv. comm.
ESPRESSO ∼10a 2016 0.35–0.72 150,000 Pepe et al. (2010)
CODEX ∼2a 2025 0.37–0.72 150,000 Pasquini et al. (2010)

aExpected performance
bIn commissioning phase

2.4 Other Detection Techniques and Sub-Earth Objects

2.4.1 Pulsar planets

Since the discovery of the three planets of pulsar PSR1257+12, including one of lunar mass, searches

of several dozen other millisecond pulars have revealed no other systems of similar ilk (Wolszczan,

2012). Pulsar PSR1719-1328 has a single substellar (∼2–3 MJ) companion on a 2.2 hr orbit (Bailes

et al., 2011), but this may be the degenerate helium or carbon/oxygen remnant of a former “donor

star” (van Haaften et al., 2012). Given the exquisite timing stability of millisecond pulsars, the

lack of additional discoveries cannot be an artifact of sensitivity. Miller & Hamilton (2001) propose

that the scarcity of planets around millisecond pulsars can be explained in terms of the “recycling”

hypothesis where accretion of matter from a donor star spins up the pulsar and makes it emit

extremely stable, detectable radio signals. Such accretion produces an X-ray luminosity sufficient

to vaporize any planets, and Miller & Hamilton (2001) argue that PSR1257+12 must be a rare

example of a high primordial spin. Even more problematic is developing a plausible mechanism for

the formation of the planets, either via survival of the supernova explosion that created the neutron

star, by accretion from the disk resulting from the disruption of a companion or supernova fallback,

or by capture from a main-sequence star (Sigurdsson, 1993). We refer the reader to the review by

Phillips & Thorsett (1994) and references therein, as well as the revisit by Hansen et al. (2009) to

this issue. Although additional pulsar planets may be uncovered in the future, their rarity means

that they will not significantly contribute to the catalog of known sub-Earths.

2.4.2 Microlensing

A small planet can also be detected by “microlensing”, i.e. as its host star passes very close to the

line of sight between an observer and a more distant star (Mao & Paczynski, 1991). The effect of the
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planet is to break the radial symmetry of the gravitational lens and produce a distinctive, hours-

long deviation from the symmetric days-long amplification in the light curve of the background

star. Microlensing events are rare and this technique requires simultaneous monitoring of millions

of distant stars, e.g. in the Galactic Bulge.

The method is most sensitive to planets with semi-major axes of a few AU, i.e. the angular

Einstein radius projected to the typical distance of a lens. Sensitivity to small planets is ultimately

limited by the angular size of the background star compared to the Einstein radius of the planet.

In principle, monitoring of giant stars in the Bulge permits the detection of planets as low as 1 M⊕

(Bennett & Rhie, 1996), but because of limited observing cadence and sensitivity, the smallest

planet detected to date has a mass of a few Earths (Kubas et al., 2012). Routine detection of

Earth-size planets will require a second generation of ground-based microlensing surveys (Wright

& Gaudi, 2012).

For dwarf stars at the distance of the Bulge, the theoretical detection limit is a few lunar

masses. However, these stars will be very faint (V > 20), and the projected surface density of such

stars towards the Bulge is several per square arc-second. Therefore, a dedicated space telescope

that can achieve diffraction-limited, high photometric precision observations is required (Bennett &

Rhie, 2002; Bennett, 2008). Such aspirations may eventually be realized in the form of the Euclid

mission (Penny et al., 2012), the Wide Field InfraRed Space Telescope (WFIRST) (Barry et al.,

2011) mission, or the NEW-WFIRST mission (Dressler et al., 2012), which should be capable of

detecting planets as small as Mars (∼0.1 M⊕). In particular, two 2.4 m telescopes, built by the US

National Reconnaissance Office and transfered to NASA offer diffraction limited imaging of 0.16

arc-seconds at λ = 1.6 µm and might triple the yield of Mars-size planets compared to the design

reference mission of WFIRST (Dressler et al., 2012).

2.4.3 Exomoons

Satellites of exoplanets have yet to be discovered but the Copernican idea predicts that the Solar

System is not unique in this way. Given that Ganymede, the largest satellite in our Solar System,

has only 2.5% of Earth’s mass, it seems likely that satellites in other Solar Systems will also be sub-

Earth objects. Satellites can accrete from the circumplanetary disks of giant planets, which accrete

inflowing gas and solid material from the circumstellar disk. Dynamical simulations suggest that if

a satellite grows large enough it will migrate inward and be accreted by its host planet (e.g., Canup

& Ward, 2006; Sasaki et al., 2010). Canup & Ward (2006) found that this process restricts the ratio

of cumulative satellite mass to planet mass to . 10−4 e.g. ∼ 0.1 M⊕ for a Jupiter-mass planet.

This limit depends weakly on model parameters including gas surface density, abundance of solids,

inflow timescale and migration efficiency. If the Canup & Ward (2006) model is representative

of typical circumplanetary disk accretion, we should not expect satellites formed in-situ around

Jupiter-mass planets to greatly exceed the mass of Mars. On the other hand, Ogihara et al. (2012)
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added an inner circumplanetary disk cavity to the model of Canup & Ward (2006), and found that,

in some cases, inward migration was inhibited. An inner cavity can be caused by magnetic coupling

of the planet to the disk, but it is unclear how frequently this occurs.

Not all exomoons would necessarily form in a circumplanetary disk. The irregular orbits of

many Solar System satellites indicate that they were acquired by their giant planet hosts through

one of several proposed capture mechanisms. Dynamical simulations by Ćuk & Burns (2004)

suggest that if a planetesimal encountering a circumplanetary disk experiences sufficient gas drag,

capture could occur. Alternatively, binary planetesimals could become separated by the tidal pull

of a giant planet resulting in the capture of a single planetesimal. In fact, the inclined retrograde

orbit of Neptune’s moon Triton might be the result of the latter mechanism (Agnor & Hamilton,

2006). Even if capture events in exoplanet systems are rare, the rate of survival of captured moons

might be high. Porter & Grundy (2011) considered the post-capture stability of satellites around

non-migrating giant planets in stellar habitable zones and found that about 20–50% of Mars- to

Earth-size satellites enter stable orbits. It is conceivable that terrestrial-size planets could also

be captured by an inward migrating gas giant. However, simulations are needed to estimate the

likelihood of such events as well as the likelihood of long-term orbital stability. As a gas giant

moves closer to its host star, its Hill radius shrinks and stability is limited to tighter orbits.

Close encounters between giant planets might commonly eject their satellites: Gong et al.

(2013) performed dynamical simulations consisting of three satellite-hosting giant planets, with

varying planet mass, planet eccentricity, satellite mass, and satellite semi-major axis. In ∼75% of

their simulations, planet-planet scattering resulted in the ejection of all satellites. If planet-planet

scattering is common among giant planets they are unlikely to retain their primordial satellites.

The prospect for satellites around hot Jupiters would be especially grim if the orbits of these planets

is a result of strong dynamical interactions.

Moon-size or larger satellites could of course form in the manner of the Moon’s proposed origin

— from the collision of two (proto)planets. Elser et al. (2011) predict that satellites with >0.5 lunar

masses form around approximately 1 in 12 rocky planets. The most massive satellite produced in

their simulations has three lunar masses.

In principle, Kepler can discover massive exomoons in the same manner it finds sub-Earths. An

exomoon can transit the host star, adding an additional transit signal differing in phase, amplitude,

and duration from that of the planet. Satellites on wide orbits could induce detectable reflex motions

in the planet (Kipping et al., 2009), while satellites on close-in orbits are more likely to transit the

planet as the planet transits the star. The latter is called a “mutual event” during which the transit

signal temporarily decreases (Ragozzine & Holman, 2010; Pál, 2012). Satellites with large orbital

inclinations relative to their host planet’s orbital plane could transit the star even if the planet does

not.

Satellites can also be detected by TTVs as well as the transit duration variations (TDVs)
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that they induce on their planetary hosts. The TTV signal is shifted in phase by π/2 relative to

the TDV signal, allowing it to be distinguished from the effect of another planet (Kipping et al.,

2009). Moreover, TTV amplitudes scale differently with satellite mass and orbital distance than

TDV amplitudes, and these complementary measures thus provide unique solutions for these two

parameters. Mass-dependent TTV and TDV detections can be combined with a (radius-dependent)

transit signal to calculate the satellite’s bulk density and infer its composition. Kipping et al. (2009)

found that, using TTV and TDV measurements alone, Kepler may be sensitive to exomoons ≥
0.2 M⊕ or about 0.67 R⊕ for an Earth-like composition. Hence, Kepler should be able to detect

both the transit (§2.2.1) and the TTV/TDV signals from such a massive exomoon — if they exist.

The Hunt for Exomoons with Kepler (HEK) has identified the most likely hosts of detectable

exomoons based on Kepler light curves (Kipping et al., 2013). The light curves of selected stars

are compared with planet-only or planet-satellite models in a Bayesian analysis. So far, the HEK

team has shown that the 7 most likely candidates are unlikely to have moons comparable in mass

to their 2–4 R⊕ planet hosts (Kipping et al., 2013).

2.5 Formation of Subterrestrial Planets

According to canonical theory, rocky planets accrete from a disk of gas and dust that surrounds

a protostar. In the first ∼ 104 years, micron-size dust grains coagulate and settle to the disk

midplane. However, growth of particles to sizes larger than a few millimeters cannot be observed

and is poorly understood. Laboratory experiments indicate that collisions of millimeter-size grains

rarely lead to sticking and growth under the assumed dynamical conditions within disks (Blum

& Wurm, 2000; Zsom et al., 2010; Weidling et al., 2012). Moreover, the motion of larger (meter-

size) bodies decouples from the gas and they experience a headwind and orbital decay into the

star (Weidenschilling, 1977a). In theory, meter-size bodies should be lost to the central star in

∼100 years (Youdin & Kenyon, 2013). Possible mechanisms by which nature overcomes these

growth barriers have been proposed (See Chiang & Youdin, 2010; Morbidelli et al., 2012; Youdin

& Kenyon, 2013; Haghighipour, 2013, for reviews). Regardless, bodies large enough (km-size) to

be impervious to this effect must form by some mechanism. Once mutual gravitation begins to

dominate, larger objects experience runaway growth over 105 − 106 years (Morbidelli et al., 2012).

Growth of the largest bodies slows down as they accumulate most of the remaining material within

a “feeding zone”, becoming lunar-to martian-size protoplanets (Chambers, 2006; Kokubo & Ida,

1998, 2000). Once the mass in protoplanets exceeds that of planetesimals, their orbits begin to

cross (Kenyon & Bromley, 2006). Chaotic scattering and collisions ensue for ∼100 Myr until a few

relatively isolated planets remain.

STEPS might emerge from the final stages of planet formation via the same mechanisms pro-

posed for their Earth- and super-Earth-size brethren: (i) as the in-situ products of constructive and

destructive collisions and scattering of smaller planetary embryos (Morbidelli et al., 2012; Kennedy
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& Kenyon, 2008); (ii) from embryos that have migrated inwards as a result of gravitational torques

exerted by the protoplanetary disk (“Type-I migration”, Ida & Lin, 2010; Terquem & Papaloizou,

2007; O’Brien et al., 2006), (iii) by gravitational scattering (Ida & Lin, 2010; Kennedy & Kenyon,

2008; Raymond et al., 2008), or (iv) shepherding by inward-migrating giant planets (Zhou et al.,

2005; Raymond et al., 2006; Fogg & Nelson, 2007; Mandell et al., 2007) or super-Earths (Kennedy

& Kenyon, 2008). A fifth mechanism - evaporation of larger bodies (Valencia et al., 2010), is dis-

cussed in §2.6. The rate of Type-I migration of an object is proportional to its mass (Ward, 1997)

whereas smaller planets are more susceptible to gravitational scattering and shepherding. For a

more detailed review of rocky planet formation see Morbidelli et al. (2012).

Numerical N-body simulations are a popular tool for investigating the late stages of rocky planet

formation (Morbidelli et al., 2012). Such simulations consistently produce planets that have masses

between those of Mars and Venus over a wide range of orbits (e.g. Walsh et al. (2011); Raymond

et al. (2009); Montgomery & Laughlin (2009); Kokubo et al. (2006)). These outcomes are plausible

examples of other planetary systems produced by the stochastic nature of the planet formation

process, suggesting that most STEPs are unlikely to be of similar mass or occupy similar orbits as

Mercury or Mars.

The initial mass surface density of the disk is an important parameter of dynamical models and

it may determine planet size. One common choice of initial condition is the Minimum Mass Solar

Nebula (MMSN; Weidenschilling, 1977b; Hayashi, 1981). However, the MMSN is not necessarily

representative of all disks. For example, Chiang & Laughlin (2013) derive a “Minimum-Mass

Extrasolar Nebula” from the population of Kepler -detected super-Earths that is ∼5 times denser

than the MMSN. Figure 2.5 shows the average mass of the largest and second-largest planets that

form between 0.5 and 1.5 AU in simulations by Kokubo et al. (2006). The authors varied the

mass surface density of the disk at 1 AU (Σ1) while maintaining a power-law radial surface density

profile with index -3/2. The MMSN corresponds to Σ1 = 7 g cm−2. The average masses follow

power laws with disk surface density having indices close to unity. If low-mass stars have disks of

lower surface density, then the results of Kokubo et al. (2006) predict that small planets are most

common around M-dwarfs, at least at 0.5–1.5 AU. However, the evidence for a relation between

disk surface density and stellar mass is tentative (Williams & Cieza, 2011; Andrews et al., 2013).

The limited supply of disk material and hence the surface density likely governs the in-situ

formation of close-in and especially detectable planets. Raymond et al. (2007) show that a MMSN

disk rarely forms planets more massive than Mars within '0.1 AU of late M-dwarfs. However,

Montgomery & Laughlin (2009) find that a disk three times denser than the MMSN instead produces

3-5 planets with an average mass of 0.7–0.8 M⊕. These results suggest that the formation of STEPs

depends on surface density. However, Kepler observations show that the occurrence of Earth- to

Neptune-size planets does not depend on stellar metallicity, a potential proxy for disk surface

density (Buchhave et al., 2012; Mann et al., 2013b).
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STEPs may also migrate to close-in orbits after forming at larger orbital distances. Kennedy

& Kenyon (2008) conclude that the minimum mass of a planet able to migrate to a short-period

orbit is proportional to the distance at which ice condenses in the disk (the “snow line”). This

distance scales with stellar luminosity and hence stellar mass. The same study shows that planets

also tend to scatter to smaller orbital distance around low-mass stars, again suggesting that low-

mass stars might commonly host detectable STEPS. Because (Type I) orbital migration scales with

planet mass and mutual gravitational interactions will preferentially scatter less massive planets,

we expect scattering to be more efficient than migration in dispersing the orbits of STEPS.

Figure 2.5: Mean masses 〈M〉 of the largest (filled circles) and second largest (open circles) planets
formed in simulations of rocky planet formation as a function of disk surface density (Kokubo et al.,
2006). The disk surface density depends on radius as a power-law with index -3/2, and is Σ1 at
1 AU. Best-fit power law relations between Σ1 and 〈M〉 have indices of 1.1 and 0.97 (solid and
dashed lines, respectively).

2.6 Properties of Subterrestrial Planets

Although our Solar System lacks objects with radii between that of Mars and Venus, the diversity

among smaller bodies (e.g., Ganymede, Titan, Mercury, and Mars) suggests that STEPs might

have diverse characteristics depending on composition, distance from the star, and contingencies

such as giant impacts. While there are many properties of such bodies that are of interest, we focus

on two that may be ascertainable in the near future: mean density, and the presence or absence of

an atmosphere.

The mean density ρ̄ of a planet can be estimated if both radius and mass are measured (by the

transit and Doppler methods, respectively). These can be compared with theoretical mass-radius

relations to infer composition (e.g. Valencia et al., 2007; Seager et al., 2007; Grasset et al., 2009;
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Rogers & Seager, 2010). Although such interior models have not been applied to STEPs per se,

there have been detailed comparisons of similar models with Mercury (Hauck et al., 2013) and Mars

(Sohl et al., 2005). Comparison with STEPS will be limited by Doppler precision (discussed in §2.3),

sensitivity to planet radius and hence stellar radius (≥3% Torres et al., 2010), and degeneracies

between composition and mean density (Rogers & Seager, 2010). Because of these limitations,

observations will likely be able to discriminate only between the most extreme compositions, i.e.

very volatile-rich, rocky, or metal-rich planets.

Mercury, as the Solar System’s smallest and innermost planet, is arguably the most appropriate

analog to those sub-Earths that can be detected by the transit (§2.2) and Doppler (§2.3) methods.

Mercury’s salient bulk properties are a comparatively large iron core comprising most of its volume

and mass (Hauck et al., 2013), and a lack of volatiles or substantial atmosphere. Whether its

oversized core reflects a non-chondritic composition for the primordial disk close to the Sun (Lewis,

1972; Weidenschilling, 1978; Ebel & Alexander, 2011), or is a consequence of removal of most of

the silicate mantle by a giant impact (Benz et al., 1988, 2007; Gladman & Coffey, 2009) is debated.

Both of these mechanisms are more effective on orbits closer than Mercury (P = 88 d), where

temperatures in a planet-forming disk and the kinetic energy of impacts, which scales with orbital

velocity, are higher. This implies that STEPs close to their host stars may have comparatively

large cores as well.

Like Mercury, STEPs on close-in orbits are likely to lack any substantial atmosphere because

of their weak gravity and heating of their upper atmospheres by stellar X-ray, extreme ultraviolet

(EUV) and Lyman-α radiation. Rapid atmospheric escape is predicted for their more massive

super-Earth counterparts (Tian, 2009; Pierrehumbert & Gaidos, 2011). In the limit that the thermal

speeds of atoms become comparable to escape speeds, hydrodynamic escape ensues and mass loss

rate is limited only by the rate at which energy is absorbed by the atmosphere:

Ṁ =
3εF

4Gρ̄
, (2.4)

where F is the incident flux absorbed by the atmosphere, G is the gravitational constant, and ε

is an efficiency factor that accounts for the inflation of the atmosphere and radiative, conductive,

and evaporative cooling. In this regime, absorption of energy E per unit area results in a loss of

atmosphere (in units of pressure) of E/(4πRp). Given realistic models of the evolution of the X-ray

and UV output of dwarf stars (Ribas et al., 2005; Sanz-Forcada et al., 2011), a Mercury-size planet

on a 10-day orbit around its host star is expected to lose thousands of bars of atmosphere over

billions of years.

Hydrodynamic escape will occur from the top of the atmosphere (the exobase) only if it is hot

enough and the Jeans parameter λ = GMpµ/(RekBT ), the ratio of the gravitational potential to

the thermal energy, is <2.8 (Johnson, 2010), where µ is the atomic mass, Re is the distance of

the exobase from the planet’s center, and kB is the Boltzmann constant. As the thermal energy
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approaches the escape energy, the atmosphere inflates, Re > Rp, and the escape energy decreases.

Approximating this inflation as Re ≈ Rp + h, where h = kBTR
2
p/(GMpµ) is the atmospheric scale

height, the required exobase temperature is ∼0.29GMpµ/(RpkB). Under all plausible conditions,

the light elements H and He will hydrodynamically escape from close-in planets, carrying some

heavier elements with them.

A more germane question is whether hydrodynamic escape continues when H and He are ex-

hausted, e.g., by the atomic oxygen produced by dissociation in a CO2-dominated Venus-like atmo-

sphere. For atomic oxygen on Venus, the required temperature is 3×104 K, but only ∼5000 K on a

planet the size of Mercury. Figure 2.6 plots the λ = 2.8 condition for planets with CO2 atmospheres

and the expected combination of X-ray, EUV and Lyman-α irradiation (Ribas et al., 2005; Sanz-

Forcada et al., 2011) for Sun-like (solid lines) and M0 dwarf (dashed lines) stars at three stellar

ages. Hydrodynamic escape (λ < 2.8) occurs to the lower left of each boundary. These calculations

assume that all incident X-ray plus UV (XUV) energy is absorbed at the top of the atmosphere

and conducted downward, principally by atomic oxygen, to the homopause, then radiated away

in the infrared by CO2. We follow the procedure in Pierrehumbert & Gaidos (2011), except that

by assuming a constant thermal conductivity k, an analytical solution is available for the required

irradiation q as a function of λ:

q =
GMpµk

R2
pkb

ln
σRpp0

λkBT0

[
ln

GMpµ

λRpkBT0

]−1

, (2.5)

where p0 and T0 are the pressure and temperature at the homopause, and σ is the collision cross-

section. We calculate the k of atomic O using Dalgarno & Smith (1962), assume a homopause

pressure like that of Venus (10−3 Pa) and homopause temperature equal to the planet’s equilibrium

temperature, and adopt σ = 2 × 10−19 m2 (Tully & Johnson, 2001). Equation 2.5 approximately

reproduces the Jeans parameter for O on current Venus (λ = 260) and predicts that it lost at-

mosphere by hydrodynamic escape prior to 3.5 Ga (if indeed it had a CO2 atmosphere). It also

predicts the hydrodynamic escape of CO2 from Mars in the past. Mercury would have suffered

hydrodynamic escape of any CO2 atmosphere throughout its history. Any sub-Earth on a closer

orbit would have experienced yet greater loss. This is in addition to any removal by the stellar

wind (Zendejas et al., 2010) or impacts (Ahrens, 1993).

The presence or absence of a substantial atmosphere might be discernable by follow-up obser-

vations, at least if the planet is very close to its star, very hot, and tidally locked. By detecting the

infrared emission from the planet and measuring its variation with phase, the redistribution of heat

around a synchronously rotating planet can be estimated (e.g., Gaidos & Williams, 2004; Lewis

et al., 2010; Cowan & Agol, 2011; Demory et al., 2012). Planets lacking an atmosphere will have no

redistribution, their substellar hemispheres will be hotter, and their phase curves more pronounced.

Planets with a thick, circulating atmosphere will have cooler illuminated hemispheres because some
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Figure 2.6: Combinations of rocky planet radius and orbital period for which the Jeans parameter
λ of a CO2 atmosphere is 2.8, the condition for hydrodynamic escape. The combined fluxes of
stellar X-ray, EUV, and Lyman-α radiation at ages of 0.5, 1, and 4.5 Gyr are used (Ribas et al.,
2005; Sanz-Forcada et al., 2011). Solid lines are for a Sun-like star and dashed lines are for an
M0 dwarf star host. Atmospheres below and to the left of these lines will have λ < 2.8 and be
hydrodynamically escaping. The inner planets of the Solar System are plotted.

of the heat is transferred to the night side, and their emission will exhibit little or no variation

with phase. The boundary between these two regimes has not been theoretically established for

planets on close-in orbits but is probably equivalent to a surface pressure of a fraction of a bar.

The emission from an unresolved transiting planet can be detected by differencing the signal in and

out of secondary eclipse. In exceptional cases, it might be possible to determine the planet’s phase

curve by measuring the small variation in total flux over a complete orbit.

The most promising (and perhaps only) tool with which to carry out such observations will be

JWST using either the Near Infrared Camera (NIRCam) or the Mid Infrared Instrument (MIRI)

(Clampin, 2012). Figure 2.7 shows estimated detection thresholds vs. orbital period for sub-Earths

orbiting an M0 dwarf star at 10 pc. Breaks in the curves mark transitions between the regimes

where one instrument is favored over the other. Two cases are considered: a Venus-like planet

with an albedo of 0.9 and efficient heat redistribution (black curves), and a Mercury-like planet

with an albedo of 0.068 and no heat redistribution (grey curves). For each case, we calculate a

10σ detection threshold in terms of the minimum angular radius of the planet, i.e. its physical

radius at a distance of 10 pc (solid curves). We assume blackbody emission, a 104 s integration

and the sensitivities from the JWST website3. In principle, JWST can detect the thermal emission

3http://www.stsci.edu/jwst/science/sensitivity/jwst-phot
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from very small hot planets. However a more relevant measure of sensitivity is the accuracy with

which the stellar signal can be subtracted, i.e. the photometric stability. The dotted curves in Fig.

2.7 correspond to a fractional detection threshold of 10−4 relative to the host star. This level of

stability has been achieved with the Spitzer infrared space telescope (Demory et al., 2012). The

two dashed curves are for a hypothetical stability of 10−5 (the actual stability will not be known

until JWST is in space). It appears that sub-Earths can be detected by JWST only if its stability

significantly exceeds that of Spitzer and only if the planets lack substantial atmospheres.
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Figure 2.7: Detection by differential photometry of an eclipsing STEP around a M0 dwarf star
at 10 pc with the James Webb Space Telescope and either MIRI or NIRCam. Two cases are
considered: a Venus-like albedo and efficient re-distribution of heat around the planet (black lines),
and a Mercury-like albedo, no redistribution of heat, and isotropic emission (grey lines). The
solid lines are the 10σ detection of an isolated source, while the dotted and dashed lines are the
detection limits if the stellar signal is removed with a photometric accuracy of 10−4 (typical of
Spitzer observations) or 10−5. The actual stability of these instruments will not be known until
JWST is launched.
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Removal of mass from sub-Earths may not stop with a CO2 atmosphere. On close-in, tidally-

locked planets, substellar surface temperatures are T ≈ 2800(L∗/L�)1/4(P/1d)−1/3 where L∗ is

the stellar luminosity and a weak dependence on stellar mass is ignored, and a Mercurian albedo

(0.068) is assumed. If temperatures exceed the melting point of silicates, a magma “sea” would

be present (Léger et al., 2011), and a tenous silicate vapor (SiO, O, and Si) atmosphere would

form (Miguel et al., 2011). Continuous escape of this atmosphere would cause gradual mass loss4.

Valencia et al. (2010) assumed ε ≈ 0.4 in Eqn. 2.4 and estimated that the hot “super-Earth”

CoRoT-7b (P = 0.85 d) may have lost about half of its mass. This phenomenon would occur even

more readily on smaller planets. Extreme rates of evaporation and a coma of silicate condensates

have been proposed to explain the variable transit depth of whatever object orbits the Kepler star

12557548 with a period of 0.65 d (Rappaport et al., 2012).

In this scenario, the silicate mantles of sub-Earths close to solar-type stars may largely evap-

orate. As evaporation proceeds, the residual mantle, mixed by melting, would become steadily

enriched in more refractory, heavier elements. It could eventually founder and/or dissolve into the

core, whereupon the object would become an “iron planet”, a naked core with a relatively high

mean density. Without a comparatively light element such as O, hydrodynamic escape would halt,

although the stellar wind might continue to erode an iron vapor atmosphere. This scenario would

not unfold around M dwarfs with L∗ as low as 10−4L�; the equilibrium temperatures of sub-Earths

around such stars would be up to 10× cooler and they would retain their silicate mantles.

2.7 Discussion

Over the past two decades, successive discoveries enabled by improvements in ground-based in-

struments and space missions such as Hubble, Spitzer, CoRoT, and Kepler have uncovered brown

dwarfs, Jupiter-like gas giants, volatile-rich Neptunes, “super-Earths”, and now Earth-size and

presumably rocky planets. The discovery and characterization of sub-Earths, planets with masses

significantly less than that of Earth, is the next and perhaps ultimate leg of the scientific journey

to enumerate the worlds on close-in orbits around main-sequence stars. This step has just begun,

but we can already draw the following conclusions:

• Several dozen confirmed or candidate sub-Earths have already been discovered by Kepler

(plus 3 others by the Arecibo telescope and Spitzer). We expect that number to grow as the

remaining Kepler data is analyzed. Studies of Kepler transit light curves may also reveal

exomoons, if sufficiently massive ones exist.

4Cameron (1985) and Fegley & Cameron (1987) proposed that the mantle of Mercury was evaporated, but this
is inconsistent with the MESSENGER estimate of volatile radioactive potassium in the Mercurian crust (Peplowski
et al., 2011).
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• Enumeration of Kepler sub-Earths will determine whether the planet distribution with radius

remains flat (Fressin et al., 2013), rises, or falls below ∼1 R⊕ (Petigura et al., 2013b). Based

on the number of Kepler discoveries to date (∼40), and a detection efficiency of 5% among the

∼33,000 most suitable stars (Fig. 2.4), we estimate that at least 2–3% of stars have planets

with 0.5 R⊕ < Rp < 1 R⊕ and P < 10 d.

• Sub-Earths are at the limit of Kepler ’s detection threshold and any estimate of their oc-

currence is sensitive to completeness for very small signals, which is still being determined

(Petigura et al., 2013b). Moreover, the estimated radii of transiting planets depend on the

radii of the host stars; those of Kepler targets are being refined as stellar parameters are

measured and improved models are applied (Muirhead et al., 2012a; Mann et al., 2012). As

a result, our estimate of 2–3% should be considered very tentative and probably a lower limit.

• With forseeable instruments, only STEPs with orbital periods of a few days will be detectable

by Doppler (Fig. 2.2). Kepler stars are too faint for observations of such precision, but it

is conceivable that a sample of nearby, much brighter stars could be interrogated by the

Doppler method and the two populations compared by statistical techniques (e.g., Gaidos

et al., 2012). The occurrence of close-in STEPs could be compared with the number of such

objects detected on wider orbits by a microlensing mission such as WFIRST or NEW-FIRST.

Such a study would investigate whether sub-Earths preferentially form on close-orbits, or are

dynamically scattered onto distant orbits by their more massive counterparts.

• Planet formation theory predicts that the surface density of disks influences the size of planets

that form in-situ. This linkage may be difficult to reconcile with the apparent independence

of small (Earth- to Neptune-size) planet occurrence and host star metallicity, unless migra-

tion is common. Determining whether or not these parameters remain independent in the

sub-Earth regime, where orbital migration is expected to be less efficient, will help resolve

this apparent discrepancy.

• If the mass or surface density of planet-forming disks scales with that of the star, then M

dwarfs may preferentially host sub-Earths, boding well for their detection (Fig. 2.2). How-

ever, this premise is only weakly supported by the available data and the occurrence of small

planets may not depend on stellar mass (Fressin et al., 2013), as was originally thought

(Howard et al., 2012). The Atacama Large Millimeter Array (ALMA) will help to clarify any

relation between surface density and stellar mass in the context of planet formation. Other

millimeter arrays have already yielded masses and surface density profiles of many tens of
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disks by measuring continuum dust emission, e.g. Isella et al. (2009); Guilloteau et al. (2011).

ALMA is expected to increase the yield to hundreds or thousands of disks on account of its

order of magnitude better sensitivity and angular resolution (Williams & Cieza, 2011).

• STEPs may be diverse objects with compositions that reflect initial conditions, formation

mechanism, and environment. Sub-Earths close to their parent stars may be rich in water

and other volatiles if they originated on wider orbits past the “snow line” and subsequently

migrated or were scattered inwards. However, stellar XUV heating and winds are expected

to remove their atmospheres (Fig. 2.6), and, around solar-type stars, the silicate mantles of

these planets may evaporate, leaving bare iron cores. Indeed, some sub-Earths may be the

product of evaporation of more massive planets. Observations of nearby transiting sub-Earths

by JWST may be able to discriminate between tidally-locked planets lacking atmospheres,

which will be hotter and brighter, and those with atmospheres, which will be fainter and

perhaps undetectable (Fig. 2.7).

The immediate scientific return from the study of sub-Earths will be tests of models of planet

formation and evolution. Descriptions of their occurrence and distributions with mass and orbital

period is essential for a complete description of the planetary kingdom, and any over-arching theory

must explain them. The possible role of subterrestrial planets as habitats for life should also not

be overlooked. Although sub-Earths on very close orbits may not be suitable abodes for life, those

further out may orbit in the circumstellar habitable zone and retain atmospheres and water. We

who inhabit a comparatively small planet around a “dwarf” star should not presume that one Earth

mass is the optimum for life.
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CHAPTER 3
ELEVEN MULTI-PLANET SYSTEMS FROM K2 CAMPAIGNS

1 & 2 AND THE MASSES OF TWO HOT SUPER-EARTHS

This chapter is a reproduction of Sinukoff et al. (2016).

3.1 Introduction

The prime Kepler mission (2009–2013) demonstrated that compact, multi-planet systems are com-

mon (Howard et al., 2012; Fressin et al., 2013; Petigura et al., 2013a). Of the 4,000+ planet

candidates from Kepler , roughly 1500 are in systems with multiple candidates (Mullally et al.,

2015). Some exceptional systems include the high-multiplicity Kepler-11 (Lissauer et al., 2011a)

and Kepler-90 (Schmitt et al., 2014) systems that host six and seven planets, respectively, all

within 1 AU. Another noteworthy system is Kepler-36 which hosts two planets with semi-major

axes differing by 10% but densities differing by a factor of eight (Carter et al., 2012).

The ensemble properties of Kepler multi-planet systems (“multis”) have provided key insights

into the formation, evolution, and architectures of planetary systems (Lissauer et al., 2011b, 2012,

2014; Rowe et al., 2014). Most of the Kepler multis have low (. 3%) mutual inclinations (Fang

& Margot, 2012). Many multi-planet systems are dynamically packed, i.e. adding an additional

planet on an intermediate orbit leads to dynamical instability (Fang & Margot, 2013). While the

distribution of orbital period ratios of Kepler multis is roughly uniform, Fabrycky et al. (2014)

observed an excess of planet pairs with orbital period ratios exterior to first order mean motion

resonance (MMR) and a deficit of planets lying interior to resonance. This feature may be the

outcome of eccentricity damping of resonant planet pairs by the protoplanetary disk (Lithwick &

Wu, 2012; Batygin & Morbidelli, 2013).

Systems with multiple transiting planets are particularly valuable because they are a clean

sample with nearly zero false positive detections (Lissauer et al., 2012, 2014). This is due to

the low probability of having multiple stars with a false positive signals in the same photometric

aperture, i. e. eclipsing binaries are distributed sparsely on the sky.

Given the photometric precision and four year baseline of the prime Kepler mission, dynamical

interactions between pairs of planets are often detected as transit timing variations (TTVs), which

can constrain planet properties such as mass and eccentricity (Holman & Murray, 2005; Agol

et al., 2005). The analysis of the Kepler-36 system by Carter et al. (2012) demonstrated the

power of TTV observations. They measured a mass of 4.45+0.33
−0.27 M⊕ for Kepler-36b, a planet with

RP = 1.486 ± 0.035 R⊕. Currently, Kepler-36b has the best-constrained mass of any exoplanet

smaller than 2 R⊕.

The prime Kepler mission came to an end in 2013, following the failure of a second reaction
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wheel. Beginning in March, 2014, NASA began operating the telescope in a new mode called K2

(Howell et al., 2014). During K2 operations, the spacecraft observes a different region of the ecliptic

plane every ∼ 85 d.

Kepler planet catalogs (Borucki et al., 2011; Batalha et al., 2013; Burke et al., 2014; Rowe

et al., 2015; Mullally et al., 2015) spawned numerous statistical studies on planet occurrence, the

distribution of planet sizes, and the diversity of system architectures. These studies deepened our

understanding of planet formation and evolution. Continuing in this pursuit, K2 planet catalogs

will provide a wealth of planets around bright stars that are particularly favorable for studying

planet compositions—perhaps the best link to their formation histories.

The first four K2 campaigns (C0–C3) plus an additional engineering test campaign have yielded

over 230 planet candidates at the time of writing 1. Moreover, ∼ 40 of these planet candidates

have been either statistically validated as planets at better than 99% confidence or confirmed

via radial velocity (RV) or TTV detection, including several noteworthy discoveries. Super-Earth

HIP 116454b, discovered in the K2 engineering test field, orbits a bright K dwarf. Its mass is well-

constrained from follow-up RV measurements (Vanderburg et al., 2015). From C1, Crossfield et al.

(2015) announced three super-Earths orbiting a nearby M0 dwarf, K2-3. Almenara et al. (2015)

and Dai et al. (2016) detected the RV signature of the inner planet, which is consistent with a

mostly rocky composition, although the water fraction could be as large as 60%. Foreman-Mackey

et al. (2015) discovered two planets of Neptune- and Saturn-size near a 3:2 MMR around K2-19.

Armstrong et al. (2015) used TTVs to constrain the mass of the larger outer planet and the masses

of both planets were measured by Dai et al. (2016) using RVs. Vanderburg et al. (2016a) reported a

third Earth-size planet candidate, K2-19d, at P=2.5 d. The first K2 planet catalogs have already

been assembled; Foreman-Mackey et al. (2015) reported 36 planet candidates, 21 of which were

validated at > 99% confidence by Montet et al. (2015b). These include four validated multi-planet

systems (K2-3, K2-5, K2-16, K2-19) and one system, K2-8, with one validated planet and a second

planet candidate. More recently, Vanderburg et al. (2016a) presented 234 planet candidates in

C0–C3, including 20 systems with multiple planet candidates.

In this paper, we present 11 multi-planet systems with a total of 26 planets detected by our

team in K2 photometry from Campaigns 1 and 2 (C1 and C2). We detected no multi-planet

systems in Campaign 0. We adopt a “confirmed” disposition for planet candidates with detected

RV or TTV signatures and, following Montet et al. (2015b), a “validated” disposition for planet

candidates found to have a false positive probability, FPP < 1%. Under this definition, 13 of the

26 planet candidates are previously confirmed or validated, 11 are newly validated, and two are

newly discovered and confirmed. Most importantly, 9 of the 13 newly validated or confirmed planet

candidates orbit stars V ≤ 12.5 mag, amenable to RV follow-up. For one system, K2-38, we obtained

radial velocity measurements using Keck/HIRES to constrain planet masses. The remainder of this

1NASA Exoplanet Archive, UT 28 April 2016, http://exoplanetarchive.ipac.caltech.edu.
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paper is organized as follows: In Section 5.2 we describe the photometric detection of multis in K2

photometry along with follow-up observations that confirm the planets and characterize the their

stellar hosts. Section 3.3 details the physical properties of stellar hosts. Section 3.4 outlines our

validation of each planet via AO images, archival images, as well as vetting of the light curves and

spectra. In Section 3.5, we describe our light curve modeling and present derived planet properties.

We present our RV measurements of K2-38 and the derived planet masses in Section 3.6. In

Section 3.7, we summarize the most noteworthy characteristics of each system, including additional

findings of other studies where relevant. We discuss the likely compositions of the K2-38 planets,

summarize the ensemble properties of our planet sample, and compare our results to other studies in

Section 5.4. Our RVs, spectra, AO images and contrast curves will be uploaded to the ExoFOP-K2

website2. We note that throughout this paper, systems are ordered by EPIC number.

3.2 Detection and Observations of K2 Multis

3.2.1 K2 Planet Search Program

During the prime Kepler mission, the project office selected nearly all of the stars that were ob-

served. This target list was dominated by a magnitude-limited set of F, G, K, and M dwarfs

(Kp < 16) from which the major planet catalogs and occurrence analyses were derived. K2 is

entirely community-driven with all targets selected from Guest Observer proposals. Our team

has proposed large samples of G, K, and M dwarfs for every K2 Campaign (to date, Campaigns

0–10). For the G and K dwarfs, our proposed sets of stars are magnitude-limited at Kp < 13

or 14 (depending on crowding) and ∼3,500–10,000 stars per Campaign have been selected for K2

observations. During each K2 Campaign, the Kepler telescope observes the selected stars nearly

continuously for ∼75 d.

This catalog of multi-planet systems is based on photometry collected by K2 during Campaign

1 (2014 May 30–2014 Aug 21) and Campaign 2 (2014 Aug 23–2014 Nov 13). The stars were part

of K2 Guest Observer proposals led by I. Crossfield, R. Sanchis-Ojeda, A. Scholz, A. Sozzetti, P.

Robertson, D. Stello, V. Sanchez Bejar, N. Deacon, B.-O. Demory (Campaign 1) and E. Petigura, R.

Sanchis-Ojeda, and D. Stello (Campaign 2). We searched for transiting planets in the photometry

of all stars observed by K2 , not just those in the above programs.

3.2.2 K2 Photometry & Transit Detection

During K2 observations, solar radiation pressure exerts a torque on the spacecraft that causes the

telescope to roll around its boresight. Consequently, stars trace out small arcs of ∼1 pixel every

∼6 hr. As the stars sample different pixel phases, inter-pixel sensitivity variations cause their

2https://cfop.ipac.caltech.edu/k2/
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apparent brightnesses to change. Disentangling stellar variability from spacecraft systematics is

non-trivial when working with K2 data.

We extracted the photometry from the K2 target pixel files, which are available at the Mikul-

ski Archive for Space Telescopes (MAST)3. Our photometric extraction procedure is detailed in

Crossfield et al. (2015). In brief, for a given target star we compute raw aperture photometry

using a soft-edged circular aperture. For every frame in a K2 campaign, we solve for the roll angle

between the target and an arbitrary reference frame using several hundred stars. We model the

time- and roll-dependent variations using a Gaussian process, which are then subtracted from the

raw photometry to produce calibrated photometry. This process is repeated for different aperture

sizes, and we adopt the aperture size which minimizes photometric noise on three-hour timescales.

Specifically, we use the median absolute deviation (MAD) of the three-hour Single Event Statistic

(SES) as our noise metric. We define the SES as the depth of a box-shaped dimming relative to the

local photometric level. Conceptually, this is similar to the three-hour Combined Differential Pho-

tometric Precision (CDPP-3) metric used by the Kepler project. We compute a three-hour SES at

every long cadence measurement as part of our transit search 4. This method of aperture selection

favors small apertures for faint stars (where background noise dominates) and large apertures for

bright targets.

To search the calibrated photometry for planetary transits, we use the TERRA algorithm (Petigura

et al., 2013a). We have adapted TERRA to search for multi-planet systems. When TERRA identifies

a candidate transit, it flags that star for additional analysis. TERRA masks out the transit of the

first candidate along with a buffer of ∆T on either side, where ∆T is the transit duration. TERRA

then repeats the transit search in the masked photometry. This process continues until no transits

with signal-to-noise ratio (SNR) > 8 are detected or when the number of iterations exceeds 5.

Table 3.1 lists coordinates, proper motions, and multi-band photometry for the 11 stars around

which we detect multiple transiting planets.

3.2.3 AO Imaging

We obtained near-infrared adaptive optics images of the 11 EPIC sources at the W. M. Keck

Observatory on the nights of 1 April 2015 UT (K2-8, K2-36, K2-19, K2-35, K2-24, K2-37, K2-32),

7 April 2015 UT (K2-3, K2-5), and 25 July 2015 UT (K2-38) UT, and at Palomar Observatory

on the night of 29 May 2015 UT (K2-19). The observations were obtained with the 1024 × 1024

NIRC2 array at Keck Observatory behind the natural guide star AO system and the 1024 × 1024

PHARO array behind the PALM-3000 natural guide star system (Dekany et al., 2013). In all cases,

the target star was bright enough to be used as the guide star. NIRC2 has a pixel scale of 9.942

3https://archive.stsci.edu/k2/
4As an example, to compute the SES on 1 hour timescales (corresponding to 2 Kepler long cadence measurements),

we construct the following kernel, g = 1
2
[0.5, 0.5,−1,−1, 0.5, 0.5], which is convolved with the measured photometry.

See Petigura & Marcy (2012) for further details.
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Table 3.1. K2 multi-planet host stars

K2 EPIC No. C# RA Dec. µRA
a µdec

a V b Kpa Ja Ksa

Name (J2000) (J2000) (mas yr−1) (mas yr−1) (mag) (mag) (mag) (mag)

K2-5 201338508 C1 11:17:13 − 01:52:41 −10.3± 4.4 +32.6± 4.6 14.91± 0.03 14.36 12.45± 0.03 11.60± 0.02
K2-3 201367065 C1 11:29:20 − 01:27:17 +88.3± 2.0 −73.6± 2.7 12.17± 0.01 11.57 9.42± 0.03 8.56± 0.02
K2-8 201445392 C1 11:19:10 − 00:17:04 −34.7± 4.9 −16.7± 4.1 14.61± 0.03 14.38 12.83± 0.03 12.25± 0.03
K2-19 201505350 C1 11:39:50 + 00:36:13 −18.7± 1.7 +4.5± 2.0 13.00± 0.01 12.81 11.60± 0.02 11.16± 0.03
K2-35 201549860 C1 11:20:25 + 01:17:09 +10.4± 6.4 −16.8± 5.2 14.35± 0.06 13.92 12.14± 0.02 11.42± 0.02
K2-36 201713348 C1 11:17:48 + 03:51:59 −17.5± 2.3 +23.5± 2.5 11.80± 0.03 11.53 10.03± 0.02 9.45± 0.03
K2-16 201754305 C1 11:40:23 + 04:33:26 −3.8± 3.2 +21.8± 3.9 14.67± 0.04 14.30 12.76± 0.03 12.09± 0.02
K2-24 203771098 C2 16:10:18 − 24:59:25 −60.6± 2.5 −65.4± 2.4 11.07± 0.11 11.65 9.64± 0.02 9.18± 0.02
K2-37 203826436 C2 16:13:48 − 24:47:13 −9.4± 1.9 +3.8± 2.6 12.52± 0.06 12.24 10.69± 0.02 10.14± 0.02
K2-38 204221263 C2 16:00:08 − 23:11:21 −55.6± 3.4 −38.3± 3.7 11.39± 0.03 11.21 9.91± 0.02 9.47± 0.02
K2-32 205071984 C2 16:49:42 − 19:32:34 −16.4± 1.2 −52.5± 1.3 12.31± 0.04 12.01 10.40± 0.02 9.82± 0.02

aFrom Ecliptic Plane Input Catalog (EPIC)

bFrom AAVSO Photometric All-Sky Survey (APASS) 9th Data Release

mas/pixel with a field of view of 10′′; PHARO has a pixel scale of 25 mas/pixel with a field of view of

25.′′6. The observations were taken in either the Ks or Br-γ filters; Br-γ has a narrower bandwidth

(2.13–2.18 µm), but a similar central wavelength (2.15 µm) compared the Ks filter (1.95–2.34 µm;

2.15 µm) and allows for longer integration times before saturation. For the Keck observations, a

3-point dither pattern was utilized to avoid the noisier lower left quadrant of the NIRC2 array; the

3-point dither pattern was observed three times for a total of 9 frames. The Palomar observations

were obtained with a 5-point dither pattern with 3 observations at each dither pattern position for

a total of 15 frames.

To optimize our use of NIRC2 and PHARO, we pre-screened three of the targets by acquir-

ing visible-light adaptive optics images of K2-3, K2-19, and K2-36 on 8–9 March 2015 using the

Robo-AO system (Baranec et al., 2013, 2014) on the 1.5 m Telescope at Palomar Observatory. Ob-

servations comprise a sequence of full-frame-transfer EMCCD detector readouts at the maximum

rate of 8.6 Hz for a total of 120 s of integration time with a long-pass filter cutting on at 600 nm,

with longer wavelength sensitivity limited by the quantum efficiency of the silicon detector out to

1000 nm. The individual 44′′× 44′′ images are corrected for detector bias and flat-fielding effects

before being combined using post-facto shift-and-add processing using the source as the tip-tilt star

with 100% frame selection to synthesize a long-exposure image (Law et al., 2014). Sensitivity to

faint stellar companions matched that of the high-performance detectable magnitude ratio in Law

et al. (2014), typically ∆ mag = 5 at 5σ at 0.′′5. For these three sources, no stellar companions were

detected.
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3.2.4 Spectroscopy

Keck/HIRES

We used HIRES (Vogt et al., 1994) at the W. M. Keck Observatory to measure high resolution

optical spectra of all 11 stars except for the coolest and faintest star, K2-5. Our observations

followed standard procedures of the California Planet Search (CPS; Howard et al., 2010a). We

used the “C2” decker (0.′′87 × 14′′ slit) for a spectral resolution R = 55,000 and subtracted the

faint sky spectrum from the stellar spectrum. The HIRES exposure meter was set to achieve the

desired SNR, which varied with stellar brightness. For our K2 follow-up program we generally

obtain spectra of stars V ≤ 13.0 mag having SNR = 45 per pixel at 550 nm, while spectra of fainter

stars (K2-8, K2-35) have SNR = 32 per pixel. These exposure levels were chosen to be sufficient

for determination of stellar parameters while keeping exposure times relatively short (1–10 min).

Figure 3.1 shows a wavelength segment of our HIRES spectra. Some of these spectra are higher SNR

than prescribed because we obtained additional HIRES spectra for potential Doppler campaigns.

IRTF/SpeX

For two K2 multi-planet candidates with near-IR spectral types consistent with M dwarfs (J−Ks &

0.8), we obtained spectra using the near-infrared cross-dispersed spectrograph SpeX (Rayner et al.,

2003) on the 3.0-m NASA Infrared Telescope Facility (IRTF). These stars are K2-3 and K2-5. Our

SpeX observations and analyses of K2-3 are described in detail in Crossfield et al. (2015) and we

adopt those results here.

We observed K2-5 on 2015 May 5 UT under clear skies with an average seeing of 0.′′5. We used

SpeX in short cross-dispersed mode using the 0.′′3 × 15′′ slit which provides wavelength coverage

from 0.68 to 2.5 µm at a resolution of R ≈ 2000. The star was dithered to two positions along

the slit following an ABBA pattern for sky subtraction. The K2-5 observing sequence consisted of

8× 75 s exposures for a total integration time of 600 s. We also observed an A0 standard and flat

and arc lamp exposures immediately after the target star for telluric correction and wavelength

calibration.

The data were reduced using the SpeXTool package (Vacca et al., 2003; Cushing et al., 2004).

SpeXTool performs flat fielding, bad pixel removal, wavelength calibration, sky subtraction, spectral

extraction and combination, telluric correction, flux calibration, and order merging. The final

calibrated K2-5 spectrum had JHK-band signal-to-noise ratios ∼ 50/75/60. The spectrum is

compared to late-type standards from the IRTF Spectral Library5 (Cushing et al., 2005; Rayner

et al., 2009) in Figure 3.2.

5http://irtfweb.ifa.hawaii.edu/\mytildespex/IRTF\_Spectral\_Library/
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Figure 3.1: A representative segment of our HIRES spectra spanning λ = 5220–5260 Å. The
observed stellar spectra are shown in black and the best-fit SpecMatch models (Petigura, 2015) are
overplotted in red. Note that this represents only about 10% of the wavelength coverage modeled
by SpecMatch.

3.3 Host Star Characterization

We used SpecMatch (Petigura, 2015) to determine stellar properties from our HIRES spectra for

nine stars with spectral types of ∼K4 and earlier. SpecMatch estimates effective temperatures,
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Figure 3.2: JHK-band IRTF/SpeX spectra of K2-5 compared to late-type standards from the
IRTF spectral library. All spectra are normalized to the continuum in each of plotted regions. The
star is a best visual match to spectral type ∼K7 across the three near-IR bands. This is consistent
with the results from our analyses using spectroscopic indices.

surface gravities, metalicities, and rotational velocities by matching HIRES spectra to an inter-

polated library of model spectra from Coelho et al. (2005). These models are in good agreement

with the spectra of well-characterized stars for Teff > 4700 K. See Petigura (2015) for details on

SpecMatch including demonstration that the uncertainties on Teff , log g, and [Fe/H] are 60 K,

0.08–0.10 dex, and 0.04 dex, respectively. Figure 3.1 shows the best-fit SpecMatch model spectra

for all nine stars with results.

We estimated stellar masses and radii from spectroscopic parameters (Teff , log g, [Fe/H]) by

fitting them to a grid of models from the Dartmouth Stellar Evolution Database (Dotter et al.,

2008). We used the isochrones Python package (Morton, 2015a), which interpolates the Dart-

mouth model grid (mass-age-[Fe/H]) and estimates uncertainties via the emcee Markov Chain

Monte Carlo (MCMC) package (Foreman-Mackey et al., 2013). This procedure gives mass and ra-
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dius uncertainties as small as ∼ 2%, not accounting for the intrinsic uncertainties of the Dartmouth

models, which are most uncertain for cool stars. For M? < 0.8 M� , Feiden & Chaboyer (2012) find

that most Dartmouth evolution models agree with observed stellar radii to within ∼4%. Therefore,

for the nine stars analyzed with SpecMatch, we conservatively adopt minimum uncertainties for

stellar mass and radius of 5%. Our final stellar mass and radius uncertainties range from ∼ 5−10%.

We also used the HIRES spectra to measure stellar activity. The HIRES spectra span the Ca 2 H

& Klines (3969 Å, 3934 Å) that are sensitive to chromospheric activity (Wilson, 1968). Following

Isaacson & Fischer (2010), we measured SHKindices—the ratio of flux in Ca 2 H & Kline cores

to flux in nearby continuum bands. These are converted into logR′HKvalues (tabulated in Table

3.2), which account for differences in continuum flux levels with spectral type (Noyes et al., 1984;

Middelkoop, 1982). Since the conversion to logR′HKis only calibrated for stars with B − V < 0.9

(Teff ∼ 5000 K), we provide only logR′HKvalues for stars Teff > 5000 K and SHKvalues for the cooler

stars. For reference, the Sun varies in the range logR′HK= −4.85 to −5.05 dex through the solar

cycle (Meunier et al., 2010). K2-19 and EPIC 201713348 are moderately active (logR′HK= −4.66

dex and SHK= 0.46, respectively), while the other GK dwarfs are inactive.

Stellar parameters for the two cooler stars (K2-3, K2-5) are derived from infrared spectra

discussed in Section 3.2.4. Determination of stellar parameters for K2-3 are detailed in Crossfield

et al. (2015). Here we discuss characterization of K2-5 using similar methods.

We used our SpeX spectrum to measure the near-IR H20-K2 index (Rojas-Ayala et al., 2012)

to estimate a spectral type for K2-5 of K7.5 ± 0.5. This index-based measurement is consistent

with the visual best match presented in Figure 3.2. Following Crossfield et al. (2015) and Petigura

et al. (2015), we estimated metallicity ([Fe/H]), effective temperature (Teff), radius (R?), and mass

(M?) using the methods presented in Mann et al. (2013a) and Mann et al. (2013b). Metallicity is

estimated using spectroscopic index and equivalent width based methods (Rojas-Ayala et al., 2012;

Terrien et al., 2012; Mann et al., 2013b) that were calibrated using a sample of M dwarfs having

wide, co-moving FGK companions with well determined [Fe/H]. We use IDL software made publicly

available by A. Mann6 to calculate the H- and K-band metallicities of K2-5. We average the H

and K metallicities and add the measurement and systematic uncertainties in quadrature to arrive

at the final value of [Fe/H] = −0.33± 0.20 dex. This star is metal poor. Effective temperature,

radius, and mass are calculated using temperature sensitive spectroscopic indices in the JHK-

bands (Mann et al., 2013a) and empirical relations calibrated using nearby, bright M dwarfs with

interferometrically measured radii (Boyajian et al., 2012). We calculated Teff in the JHK-bands

and averaged the results. Conservative Teff uncertainties were estimated by adding in quadrature

the RMS scatter in the JHK-band values and the systematic errors in the empirical fits for each

band (Mann et al., 2013a). The stellar radius and mass were computed using publicly available

software from A. Mann7. The resulting fundamental parameters for K2-5 are: Teff = 3930± 375 K,

6https://github.com/awmann/metal
7https://github.com/awmann/Teff\_rad\_mass\_lum
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Table 3.2. Spectroscopic Stellar Properties

K2 Name EPIC Number Teff log g [Fe/H] v sin i logR′
HK

M? R?
(K) (cgs) (dex) (m s−1) (dex) (M� ) (R� )

K2-5 201338508 3930± 375 4.71± 0.21 −0.33± 0.19 – – 0.61± 0.13 0.57± 0.12
K2-3 201367065 3896± 189 4.72± 0.13 −0.32± 0.13 – – 0.60± 0.09 0.56± 0.07
K2-8 201445392 4870± 60 4.52± 0.10 −0.02± 0.04 < 2 – 0.78± 0.04 0.74± 0.04
K2-19 201505350 5430± 60 4.63± 0.10 +0.10± 0.04 < 2 −4.66 0.93± 0.05 0.86± 0.04
K2-35 201549860 4680± 60 4.56± 0.10 +0.04± 0.04 3± 1 – 0.76± 0.04 0.72± 0.04
K2-36 201713348 4924± 60 4.65± 0.10 −0.03± 0.04 2± 1 – 0.80± 0.04 0.74± 0.04
K2-16 201754305 4742± 60 4.51± 0.10 −0.33± 0.04 2± 1 – 0.68± 0.03 0.66± 0.03
K2-24 203771098 5743± 60 4.29± 0.08 +0.42± 0.04 < 2 −5.15 1.12± 0.06 1.21± 0.12
K2-37 203826436 5413± 60 4.52± 0.10 −0.03± 0.04 < 2 −4.85 0.90± 0.05 0.85± 0.04
K2-38 204221263 5757± 60 4.35± 0.08 +0.28± 0.04 < 2 −5.13 1.07± 0.05 1.10± 0.09
K2-32 205071984 5315± 60 4.43± 0.10 +0.00± 0.04 < 2 −4.94 0.87± 0.04 0.87± 0.05

aFor K2-5 and K2-3, Teff , [Fe/H], M?, R? are derived using spectroscopic indices of (Mann et al., 2013a) and empirical
relations of (Boyajian et al., 2012). For the other stars Teff , log g, [Fe/H], and v sin i are derived using SpecMatch (Petigura,
2015), logR′

HK
is derived using the recipe of Isaacson & Fischer (2010), M? and R? are derived using the isochrones Python

package (Morton, 2015a).

bWe only list logR′
HK

for stars with Teff > 5000 K, for which this activity metric is well-calibrated. SHKvalues for cooler stars

K2-8, K2-35, K2-36, and K2-16 are 0.33, 0.33, 0.46, and 0.18, respectively. Spectra of K2-5 and K2-3 come from observations
with IRTF/SpeX and do not contain Ca 2 H & Klines.

R? = 0.57± 0.12 R�, and M? = 0.61± 0.13 M�.

K2-5 was presented as a multi-planet system in Montet et al. (2015b) where their fundamen-

tal parameters were estimated using broadband photometry and model fits. Our spectroscopic

parameter estimates are consistent within uncertainties.

Table 3.2 lists spectroscopically derived stellar parameters.

3.4 Validation of Planet Candidates

There are several potential astrophysical events whose light curves can be confused with transiting

planets. One example is a blended eclipsing binary (EB) system, either bound to the primary or in

the background of the target star’s photometric aperture. Some of these astrophysical false positives

can be distinguished from planet transits by secondary eclipses (SEs), but SEs do not always occur

and are often undetectably small. Even if the primary star does host a planet, blending of other

stars within the photometric aperture can dilute the transit depth causing the planet radius to be

underestimated (Ciardi et al., 2015). Follow-up observations are crucial for identifying any sources

blended within the same 4′′ Kepler pixels.

All of the multi-planet systems presented in this catalog passed a series of complementary vetting

tests: First, from the K2 light curves, we identified eclipsing binaries (EBs) via their characteristic

“V-shaped” dimming profiles and secondary eclipses. We also searched for nearby companions in

AO images and archival images. In addition, we searched for multiple sets of stellar lines in the
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high resolution optical spectra. We also estimate false positive probabilities (FPPs) of each planet

candidate, which are constrained by these follow-up observations.

Even without AO imaging or spectroscopy to screen for these blends, the FPPs for multi-planet

systems are intrinsically lower compared to systems with a single planet candidate (Lissauer et al.,

2012, 2014). For the prime Kepler mission the FPP for a single planet candidate system is ∼ 10%

(Morton & Johnson, 2011; Fressin et al., 2013), but is reduced by factors of ∼ 25 and ∼ 100

for systems with one and two additional planet candidates respectively (Lissauer et al., 2012).

These FP rates apply to the prime Kepler mission and cannot be blindly applied to K2 , which

has a different degree of source crowding as well as different photometric noise properties, target

selection criteria, and vetting procedures, all of which factor into the FP rate and “multiplicity

boost” estimation.

In this section, we summarize the results of our AO and archival image searches, spectroscopic

validation efforts, and FPP assessment. We estimate multiplicity boosts for K2 fields C1 and C2

using available K2 planet candidate catalogs.

3.4.1 AO imaging

For each target star, our AO images were combined using a median average. Typical final FWHM

resolutions were 4–6 pixels for a resolution of ≈ 0.′′05 with Keck/NIRC2 and ≈ 0.′′1 for Palo-

mar/PHARO. For every target considered here, no other stars were detected within the fields of

view of the cameras. For each final combined image, we estimated the sensitivities by injecting fake

sources with a signal-to-noise ratio of 5 at distances of N × FWHM from the central source, where

N is an integer. The 5σ sensitivities, as a function of radius from the stars, are shown in Figure

4.1 along with a full field of view combined image. Typical sensitivities yield contrasts of 2–3 mag

within 1 FWHM of the target star and contrasts 4–6 mag within 3–4 FWHM. In the “flat” (> 6

FWHM) of the image, the typical contrasts were 8–9 mag fainter than the target star.

3.4.2 Archival imaging

We also searched for neighboring stars at separations beyond the edges of our AO images (typically

10′′), but within the K2 photometric apertures (typically 10–15′′). We downloaded 60′′ x 60′′ rP1-

band images from the Pan-STARRS1 3π survey (Kaiser et al., 2010), surrounding each of the EPIC

target stars. The images have a plate scale of 0.′′25 per pixel and average seeing-limited resolution

of ∼1′′. The target stars are generally saturated in these images but background sources can be

easily identified down to a limiting magnitude of rP1 ≈ 23 mag. We used the magnitude zero

points in the FITS headers and performed our own aperture photometry on the images to estimate

the magnitudes of nearby sources. Secondary sources are detected within the K2 aperture of four

systems. For three of these systems (K2-19, K2-37, K2-32) secondary sources were bright enough

to produce observed transit depths. In these three cases, we regenerated the light curves using
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Figure 3.3: AO images and contrast curves for all multi-planet hosts. Targets were imaged using
Keck/NIRC2 AO, with the exception of K2-19, which was observed with Palomar/PHARO. Green
horizontal lines correspond to 1′′in each field. Dotted black lines indicate where companions would
be detectable with 5-σ confidence. No companions were detected near any of the 11 stars.
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smaller apertures that excluded those other stars and verified that the transit signals remained.

We note that all listed transit parameters derive from light curves produced with the original

(larger) apertures because of reduced photometric noise. All secondary sources are sufficiently

faint such that dilution corrections would have negligible effects on measured transit depths —

correction factors would be more than an order of magnitude less than uncertainties on Rp/R?. An

analysis of each EPIC target is given below.

K2-5: No sources fall within the 12′′ aperture to a limiting magnitude of rP1 ≈ 23 mag. The

nearest bright source is 15′′ to the NE with rP1=18.9 mag.

K2-3: No stellar sources fall within the 16′′ aperture to a limiting magnitude of rP1 ≈ 22 mag.

The nearest star detected in the Pan-STARRS1 imaging is 26′′ to the NE with rP1=17.2 mag.

K2-8: No sources fall within the 12′′ aperture to a limiting magnitude of rP1 ≈ 22 mag. No

stars or galaxies brighter than rP1=21.6 mag fall within 30′′ of the target.

K2-19: One faint star falls within the 12′′ aperture 10.7′′ to the NWW with rP1=20.7 mag. We

estimate that this source is contributing 0.6 ppt to the K2 photometry. An eclipse of the secondary

source would not be deep enough to produce the observed transits of K2-19 b or c. Moreover, Narita

et al. (2015) measure a contrast of ∼ 0.1 ppt in H-band and detect the transits of K2-19 b and c

when the faint star lies outside the photometric aperture, localizing them to the primary. However,

an eclipse of the secondary could produce the observed 0.1 ppt transits of K2-19 d. We re-extracted

the photometry using an 8′′ aperture, small enough to exclude the faint nearby source. The transit

signals of all three planets were detected and their depths were consistent with those measured using

the original (larger) aperture. The transits of all three planets are therefore localized to the bright

star of interest. Dilution correction factors are negligible compared to measurement uncertainties

on Rp/R?, so we do not apply them.

K2-35: No sources fall within the 12′′ aperture to a limiting magnitude of rP1 ≈ 22 mag. There

are two nearby stars just outside the K2 aperture. One star is 22′′ to the WNW with rP1 = 15.1

mag, and the other is 27′′ to the NNW with rP1 = 14.3 mag.

K2-36: There are two very bright sources 24′′ to the NE and 24′′ to the SE of K2-36 but both

fall outside the 12′′ K2 aperture. These sources are saturated in the Pan-STARRS1 data but are

of comparable brightness to K2-36.

K2-16: No sources fall within the 8′′ K2 aperture to a limiting magnitude of rP1 ≈ 22 mag.

The nearest detected source is 29′′ to the W with rP1=20.3 mag.

K2-24: One faint star falls within the 12′′ K2 aperture 6′′ to the W of the target. This star

is badly blended with the wings of the saturated PSF of K2-24 so reliable photometry can not be

extracted. However, we estimate that the star is no brighter than rP1 ≈ 18.5 mag, which would

contribute only 0.8 ppt to the light in the K2 aperture and could not be the source of the 2 ppt

and 4 ppt transits of K2-24 b and c, respectively. We do not apply a dilution correction to the

measured transit depths because it would have negligible effect.
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K2-37: Two other stars fall within the 12′′ aperture. One star, rP1=19.1 mag, is located 9.4′′

to the ESE and the other, rP1=19.8 mag, is 8.3′′ to the WNW. Combined, the contaminating

sources contribute 3 ppt to the flux in the K2 aperture. We regenerated the photometry using an

8′′ aperture that excluded the two other stars, and the transits were still visible, confirming that

the primary star is being transited. We do not correct the transit depths for dilution as this would

have negligible effect.

K2-38: No stars brighter then rP1 ≈ 20.3 mag fall within the 12′′ K2 aperture. The nearest

comparably bright source is a rP1 = 19.1 mag star 29′′ to the NW.

K2-32: Several faint sources fall within the 16′′ K2 aperture. The brightest of these is 15′′ to

the south with rP1=18.9 mag. This contaminating source contributes 2 ppt to the K2 aperture

flux and is bright enough to account for the transit depths of planets c and d but not planet b.

We re-extracted the photometry using an 8′′ aperture, small enough to exclude the other nearby

stars and the transits were still visible. The transits are therefore localized to the target of interest.

Changes in transit depths caused by dilution from the secondary sources are negligible.

3.4.3 Spectroscopic vetting

We searched the HIRES spectra for multiple sets of stellar lines using the algorithm of Kolbl et al.

(2015). The algorithm is sensitive to blends from secondary stars in the 0.87′′ × 14′′ HIRES slit that

have effective temperatures Teff = 3400–6100 brightness ratios &1% in V and R bands, and differ

in radial velocity by &10 km s−1 from the primary star. For the 10 targets with HIRES spectra, no

spectroscopic blends were detected.

3.4.4 False Positive Assessment

We estimate the False Positive Probability (FPP) of each planet candidate signal using the Python

package VESPA (Morton, 2015a). We supply VESPA with the phase-folded K2 light curve, photom-

etry from APASS, 2MASS, and WISE, stellar parameters derived from spectroscopy (§3.3), the

contrast curve from AO imaging (§3.4.1), and the maximum allowed contrast and velocity offset

determined by our spectroscopic vetting (§3.4.3). Given these constraints, VESPA estimates the

FPP — the likelihood that the transit signal was produced by a true planet around the target star

and not by an eclipsing binary, hierarchical triple system, or non-associated star with a transiting

planet. The FPPs returned by VESPA are listed in Table 3.3 as well as planet candidate dispositions.

Dispositions take into account this study as well as other previously published studies.

For planet candidates that are not “confirmed” by mass detection, we rely on computing a FPP

as a means of validation. Following Montet et al. (2015b), we assign a “validated” disposition to

planet candidates with FPP <1%. All planet candidates are validated by VESPA to better than

99% confidence, except for K2-8b and K2-32c, which have FPPs of 1.3% and 2.2% respectively.

However, these estimates neglect the “multiplicity boost” — an additional factor of confidence in
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the planet hypothesis gained from the detection of multiple planet candidates in these systems. For

the prime Kepler mission, Lissauer et al. (2012) estimate that the a priori FPP is ∼ 50 × −100×
lower for systems with three or more planet candidates and ∼ 25× lower for systems with two planet

candidates compared to those with one planet candidate. These were derived using two different

methods, each of which assumes that false positives (FPs) are randomly distributed among Kepler

targets, and that the presence of FPs and detectable planet signals are uncorrelated.

We apply the same methods to K2 planets. Following Lissauer et al. (2012), for a system

with two planet candidates, if P1 is the probability of a candidate’s planethood before considering

multiplicity, then the probability of planethood after accounting for multiplicity is

P2 ≈
X2P1

X2P1 + (1− P1)
, (3.1)

where X2 is the “multiplicity boost” for systems of two planet candidates. K2-32c is part of a

three-candidate system but, for argument sake, it is sufficient to assume that the multiplicity boost

for three-candidate systems will be at least as large as that for two-candidate systems. Lissauer

et al. (2012) estimate X2 using two different methods:

The first method compares the fraction of Kepler targets with planet candidates (Fcand ∼ 1/150)

to the fraction of planet candidate hosts with more than one planet candidate (Fmulti ∼ 1/6). If

planets and FPs were randomly distributed among Kepler targets, the detection rate of Kepler

multis would be much lower (Fmulti ∼ Fcand). Assuming that FPs are randomly distributed and

that planets are not, Lissauer et al. (2012) estimate X2 ∼ Fmulti/Fcand = 25. We make the same

assumptions to estimate X2 for K2 fields C1 and C2 using the catalog of Vanderburg et al. (2016a),

who adopt a transit detection threshold of SNR > 9. We assume that the target sample in a given

K2 field consists of all objects denoted as a “STAR” in the EPIC catalog. Combining C1 and C2,

we compute Fcand ∼ (116/32264) = 0.4% and Fmulti ∼ (10/116) = 8.6%. These suggest X2 ∼ 24,

similar to Kepler . Substituting X2 = 24 into Equation 3.1 and setting P1 according to our VESPA

constraints give corrected FPPs, (1 − P2) = 0.06% and 0.09% for K2-8b and K2-32c respectively.

We repeated these estimates for C1 and C2 independently, with similar results. We also applied

these methods to our own catalog of ∼100 planet candidates in C1 and C2 detected by TERRA

(Crossfield et al., submitted), requiring SNR > 12 and three transits. This yields X2 ∼ 34 and

corrected FPPs (1-P2) = 0.04% and 0.07% for K2-8b and K2-32c respectively. The multiplicity

boosts estimated using either catalog are an order of magnitude larger than those needed to validate

K2-8b and K2-32c to better than 99% confidence.

As an additional check, we estimate the multiplicity boost using a second method of Lissauer

et al. (2012). This method assumes that some fraction of candidates Ftrue are true planets in order

to estimate the expected fraction of multi-candidate systems that have at least one FP. Note that

Ftrue is denoted as P in Lissauer et al. (2012) Equations 2 and 4. Those two equations are used

to estimate the expected number of FPs in two-candidate systems based on Ftrue as well as the
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total numbers of observed targets and planet candidates. Subsequently dividing by the number

of candidates in two-planet systems yields the fraction of candidates in two-candidate systems

expected to be true planets. Using this method, Lissauer et al. (2012) estimated X2 ∼ 25 for the

prime Kepler mission, consistent with the first method above. We apply this same method to our

own catalog of K2 planet candidates — unlike Vanderburg et al. (2016a), we compute FPPs for

all candidates, most of which have been vetted via spectroscopy and high-resolution imaging. By

integrating over all FPPs, we estimate Ftrue ∼ 90% and ∼ 60% and X2 ∼ 70 and ∼ 20 for C1 and

C2 respectively. These are similar to the prime Kepler mission (Ftrue ∼ 90%). Plugging these X2

values into Equation 3.1 and setting P1 according to our VESPA constraints yields corrected FPPs,

(1−P2) = 0.02% and 0.12% for K2-8b and K2-32c. For this method, the multiplicity boost is still

effective at validating these two planet candidates to FPP < 1% as long as Ftrue & 15%.

In summary, the multiplicity boosts estimated via both methods, when combined with VESPA

constraints, are large enough to validate K2-8b and K2-32c to much better than 99%.

3.5 Derived Planet Properties

Our light curve analysis follows Crossfield et al. (2015), which we summarize here. Starting with

the detrended light curves from TERRA (Section 3.2.2), we perform a sliding median subtraction to

removes variability on several-day timescales, including stellar modulation. We fit JKTEBOP transit

models (Southworth et al., 2004; Southworth, 2011) to the light curves, using the emcee MCMC

package (Foreman-Mackey et al., 2013) to generate posterior probability distributions for the transit

model parameter. We use the best-fitting transit depth, phase, and orbital period from TERRA for

the initial model guess.

We assume circular orbits and adopt a linear limb-darkening model, imposing a Gaussian prior

on the limb darkening coefficient u. The mean of this Gaussian is selected by interpolating the

limb darkening tables of Claret et al. (2012, 2013) to our spectroscopically measured Teff and log g.

The standard deviation was taken to be 0.05. We tested standard deviations of 0.1 and also tried

propagating our Teff and log g uncertainties through the interpolation procedure, but our results

were insensitive to the chosen method. The use of a quadratic limb darkening model also resulted

in negligible changes to the posteriors.

Detrended light curves, fitted transit models, and derived planet parameters are presented for

all 11 systems in Figures 3.10–3.20 and Tables 3.7–3.17 in the Appendix. Derived parameters

include orbital distance, a, incident flux S⊕, and equilibrium temperatures, Teq. The discoveries of

K2-3 and K2-24 planets are reported in Crossfield et al. (2015) and Petigura et al. (2016), based

on the same data products and analysis methods presented here. We include them in our catalog

for completeness. All stellar and planet parameters will be provided in an online supplementary

table.

Table 3.3 lists key parameters for each multi-planet system. The 26 planets are plotted in
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Figure 3.4: Radii and orbital periods of all 26 planets detected in 11 multi-planet systems in
K2 Campaigns 1 and 2. The points are colored according to host star mass, with redder colors
corresponding to less massive stars. Twenty-one of the 26 planets are likely smaller than 4 R⊕.

radius versus orbital period in Figure 3.4. The points are colored according to host stellar mass.

Twenty-one of the planets are likely smaller than Neptune (Rp < 3.8 R⊕).

Figure 3.5 displays the architectures of all systems. Systems are ordered top to bottom by

decreasing orbital period of the inner planet. The largest planet in each system is colored red, the

second largest planet is green and, the third largest planet (if present) is blue. This ranking scheme

considers posterior medians and does not account for uncertainties, thus providing the most likely

ranking. In six out of seven systems having only planets Rp < 3 R⊕, planet size increases with P .

3.6 Masses of K2-38 Super-Earths

3.6.1 Doppler Measurements

In an initial campaign with Keck/HIRES, we obtained 14 radial velocity (RV) measurements of

K2-38 between 24 June 2015 UT and 3 October 2015 UT. These observations followed the standard

procedures of the California Planet Search (CPS; Howard et al., 2010a). We used the “C2” decker

47



0 10 20 30 40 50
Orbital Period [days]

K2-36

K2-35

K2-19

K2-38

K2-37

K2-8

K2-5

K2-16

K2-32

K2-3

K2-24

Figure 3.5: Architecture of the 11 K2 multi-planet systems in this study. Each row shows the
planets in a particular system ordered top to bottom by decreasing orbital period of the inner
planet. The symbol sizes are proportional to planet sizes. The largest planet in each system is
colored red, the second largest planet is green and the third largest planet (if present) is blue.
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Table 3.3. Summary of K2 multi-planet systems

K2 EPIC No. Teff Kp T0 P Rp Teq FPP Dispo-
Name (K) (mag) (BJDTDB–2456000) (d) (R⊕) (K) sitiona

K2-5 201338508 3930± 375 14.36
K2-5b 201338508b 808.8600± 0.0048 5.73594± 0.00064 1.91± 0.44 565± 84 < 0.001 Valid.
K2-5c 201338508c 814.6010± 0.0052 10.93241± 0.00134 2.26± 0.62 456± 68 < 0.001 Valid.

K2-3 201367065 3896± 189 11.57
K2-3b 201367065b 813.4173± 0.0011 10.05449± 0.00026 2.18± 0.30 463± 39 < 0.001 Conf.
K2-3c 201367065c 812.2812± 0.0022 24.64354± 0.00117 1.85± 0.27 344± 29 < 0.001 Valid.
K2-3d 201367065d 826.2288± 0.0034 44.55983± 0.00590 1.51± 0.23 282± 24 < 0.001 Valid.

K2-8 201445392 4870± 60 14.38

K2-8b 201445392b 813.6114± 0.0030 10.35239± 0.00086 3.58± 0.71 631± 18 0.013 Valid.b

K2-8c 201445392c 813.0707± 0.0033 5.06416± 0.00041 2.41± 0.33 801± 23 0.008 Valid.

K2-19 201505350 5430± 60 12.81
K2-19b 201505350b 813.3837± 0.0003 7.91940± 0.00005 7.74± 0.39 854± 24 < 0.001 Conf.

K2-19c 201505350c 817.2755± 0.0051 11.90715± 0.00150 4.86+0.62
−0.44 745± 21 < 0.001 Conf.

K2-19d 201505350d 808.9207± 0.0086 2.50856± 0.00041 1.14± 0.13 1252± 36 < 0.001 Valid.

K2-35 201549860 4680± 60 13.92
K2-35b 201549860b 810.5871± 0.0085 2.39984± 0.00039 1.40± 0.17 979± 29 < 0.001 Valid.

K2-35c 201549860c 812.1158± 0.0049 5.60912± 0.00071 2.09+0.33
−0.24 737± 22 < 0.001 Valid.

K2-36 201713348 4924± 60 11.53
K2-36b 201713348b 809.4684± 0.0017 1.42266± 0.00005 1.32± 0.09 1232± 36 < 0.001 Valid.

K2-36c 201713348c 812.8422± 0.0008 5.34059± 0.00010 2.80+0.43
−0.31 793± 23 < 0.001 Valid.

K2-16 201754305 4742± 60 14.30
K2-16b 201754305b 811.6871± 0.0038 7.61880± 0.00087 2.02± 0.24 658± 19 < 0.001 Valid.

K2-16c 201754305c 809.4800± 0.0091 19.07863± 0.00327 2.54+1.12
−0.47 485± 14 0.002 Valid.

K2-24 203771098 5743± 60 11.65
K2-24b 203771098b 905.7950± 0.0007 20.88508± 0.00036 5.83± 0.60 709± 36 < 0.001 Conf.
K2-24c 203771098c 915.6250± 0.0005 42.36342± 0.00063 8.10± 0.82 560± 29 < 0.001 Conf.

K2-37 203826436 5413± 60 12.24
K2-37b 203826436b 893.7013± 0.0080 4.44117± 0.00075 1.61± 0.17 974± 32 0.009 Valid.
K2-37c 203826436c 898.8603± 0.0023 6.42904± 0.00036 2.75± 0.27 861± 28 < 0.001 Valid.
K2-37d 203826436d 907.2315± 0.0031 14.09189± 0.00135 2.73± 0.36 663± 22 < 0.001 Valid.

K2-38 204221263 5757± 60 11.21
K2-38b 204221263b 896.8786± 0.0054 4.01593± 0.00050 1.55± 0.16 1184± 51 < 0.001 Conf.
K2-38c 204221263c 900.4752± 0.0033 10.56103± 0.00090 2.42± 0.29 858± 37 < 0.001 Conf.

K2-32 205071984 5315± 60 12.01
K2-32b 205071984b 900.9258± 0.0009 8.99218± 0.00020 5.38± 0.35 769± 25 < 0.001 Conf.

K2-32c 205071984c 899.4306± 0.0101 20.65614± 0.00598 3.48+0.97
−0.42 583± 19 0.022 Valid.b

K2-32d 205071984d 903.7846± 0.0031 31.71922± 0.00236 3.75± 0.40 505± 16 < 0.001 Valid.

T0 = mid-transit time, Teq = equilibrium temperature assuming albedo = 0.3.

aConf. = planet candidate confirmed by RV and/or TTV detections. Cand. = planet candidate (FPP > 1%). Valid. = Statistically validated
planet candidate, >99% confidence (FPP < 1%). Dispositions take into account this study as well as other previously published studies.

bAlthough the FPPs of K2-8b and K2-32c exceed our 1% threshold for a “validated” disposition, FPP values do not account for the “multiplicity
boost” (reduction in FPP) resulting from the presence of additional planet candidates around the same star. We estimate that the multiplicity
boosts for C1 and C2 are large enough by an order of magnitude to validate K2-8b and K2-32c to better than 99% confidence (See §3.4.4).
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(0.87′′ × 14′′ slit) with a cell of molecular iodine gas placed in front of the spectrometer slit to

imprint a dense set of molecular absorption lines on the stellar spectrum, subjected to the same

instrumental effects. Exposure times were typically ∼20 min and were determined by an exposure

meter that terminated exposures when an SNR per pixel of 160 in the continuum near 550 nm

was reached. The iodine lines serve as a wavelength reference and calibration for the point spread

function (PSF) over the entire spectral formal. We also gathered an iodine-free spectrum with

the “B3” decker (0.′′57 × 14′′ slit). RVs were determined by forward-modeling the iodine-free

spectrum, a high-resolution/high-SNR spectrum of the iodine transmission, and the instrumental

response (Marcy & Butler, 1992; Valenti et al., 1995; Butler et al., 1996; Howard et al., 2009). Our

measured RVs are listed in Table 5.3. Individual RV measurement uncertainties are in the range

1.3–1.8 m s−1.

Figure 3.6 shows the measured RV time series for K2-38. The star has low astrophysical jitter

and we were able to make initial mass measurements of the two planets. We fit a two-planet model

using the IDL package RVLIN (Wright & Howard, 2009). Our RV model assumes two planets with

circular orbits, with the orbital periods and phases fixed to the values measured from transits.

We used a likelihood function constructed as in Howard et al. (2014). The model has five free

parameters including the RV semi-amplitude of planets b and c, Kb and Kc, a constant RV offset,

γ, and a constant radial acceleration (RV changing linearly with time), dv/dt. We also include an RV

“jitter” parameter, σjitter, to account for additional Doppler noise, which might have astrophysical

or instrumental origins. We estimate a jitter of 2.4+1.0
−0.7 m s−1 that is consistent with expectations

for old, solar-type star (Wright, 2005; Isaacson & Fischer, 2010).

The RV time series has a negative slope, suggesting that we are seeing a small orbital seg-

ment of a third companion with a wider orbital separation. To test this hypothesis, we compared

models with and without the constant RV acceleration parameter using the Bayesian Informa-

tion Criterion (BIC; Schwarz, 1978; Liddle, 2007). Comparing the the best-fitting models, we find

BICdv/dt − BICdv/dt=0 = −5.6, indicating that the model that includes constant acceleration is

strongly preferred. There is very likely to be a third, more distant companion in this system, and

we constrain its properties in Section 3.6.2. Additional RV measurements in early 2016, when the

target is next observable, will provide a stronger test of the long-term trend.

Using the same RV model and likelihood function, we performed an MCMC analysis of the

RVs to determine parameter uncertainties. We used emcee (Foreman-Mackey et al., 2013) and

adopted Gaussian priors on the orbital periods and phases, with means and widths matching the

posteriors derived from fitting the light curve (Section 3.5). We adopted uninformed priors for Kb,

Kc, σjitter, γ, and dv/dt. By allowing the model to explore unphysical solutions with K < 0, we

did not bias the analysis to positive planet masses. We used the best fits from RVLIN to initialize

the process. We discarded the first 500 steps. Every 2000 MCMC steps thereafter, we computed

the Gelman-Rubin statistic (GRS, Gelman & Rubin, 1992) to assess convergence. We adopted
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Figure 3.6: Top: RV time series observed with Keck/HIRES (red points), and the best two-planet
fit, which includes a significant constant acceleration, dv/dt, evidence of a third bound companion
at larger orbital distances. RV error bars represent the quadrature sum of individual measurement
uncertainty and the best-fit jitter (2.4 m s−1). Bottom: RV time series of planets b (left) and c
(right), folded at the orbital period of each planet with the linear trend and the Keplerian signal
from the other planet subtracted. Transits occur at an orbital phase of 0.5.
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Table 3.4. Relative radial velocities, K2-38

BJD−2457000 Radial Velocity Uncertainty
(m s−1) (m s−1)

197.81009 6.49 1.49
200.88524 6.96 1.42
206.87767 −3.70 1.36
207.86695 −4.20 1.46
208.87926 5.25 1.40
210.87654 −6.06 1.34
215.91724 2.97 1.46
236.80323 4.93 1.40
245.80773 3.87 1.26
255.77713 −0.10 1.44
262.77317 −7.03 1.51
265.74243 −1.96 1.27
290.74044 −8.97 1.75
298.71937 −3.67 1.76

convergence criterion GRS < 1.03 and generated posteriors once this condition was satisfied.

Table 3.5 lists measured RV semi-amplitudes, masses, and bulk densities of K2-38 b and c. We

list posterior medians, with quoted uncertainties being 15.87 and 84.13 percentiles. For the inner

planet, we measure a mass of 12.0± 2.9M⊕. Combining this our planet radius measurement gives

a bulk density of 17.5+8.5
−6.2 g cm−3.The mass and bulk density of the outer planet are 9.9 ± 4.6M⊕

and 3.6+2.7
−1.9 g cm−3, respectively. We discuss possible compositions for both planets in Section 5.4.

The marginalized posterior distribution for the linear trend gives dv/dt = −37± 11m s−1 yr−1.

This linear trend contributes a change in RV of ∼10 m s−1 over the ∼100-day time baseline of our

RV campaign. This suggests a Keplerian signal with semi-amplitude K & 5 m s−1, and P & 200 d

Table 3.5. RV model, K2-38

Parameter Planet b Planet c Units

K 4.6 ± 1.1 2.8 ± 1.3 m s−1

Mp 12.0 ± 2.9 9.9 ± 4.6 M⊕
ρp 17.5+8.5

−6.2 3.6+2.7
−1.9 g cm−3

σjit 2.4+1.0
−0.7 m s−1

γ −1.7 ± 0.9 m s−1

dv/dt −37 ± 11 m s−1yr−1

K = RV semi-amplitude, Mp = planet mass, ρp = planet
density, σjit = RV “jitter”, γ = constant RV offset, dv/dt =
constant RV acceleration
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(a & 0.7 AU).

3.6.2 Constraints on an additional body

We considered the possibility that the source of the linear RV trend is a companion star that

contributes enough light to the K2 photometry to significantly dilute the observed transit depths.

In this scenario we would underestimate the planet radii and overestimate of planet densities

(Ciardi et al., 2015). We assessed this possibility using our AO images and HIRES spectra. We

confined the companion properties to a small domain of companion mass (or contrast with the

primary) and orbital separation. These constraints are summarized in Figure 3.7 and suggest a

low likelihood that the companion is bright enough to affect our measured density by more than

20%. The non-detection of secondary lines in the HIRES spectrum allows us to exclude stars close

in proximity and mass to the primary, specifically ∆Kp ≤ 5 and ∆RV & 10 m s−1 (red dashed

line). The plotted boundary (dashed red line) assumes that the HIRES spectrum was acquired

at an orbital phase of maximum ∆RV. Our Keck/NIRC2 AO contrast curve (blue solid line)

extends the exclusion region to fainter companions at larger separations. Horizontal dotted lines

show stellar companions that would cause planet densities to be overestimated by 10% and 20%.

There is a small window of unvetted parameter space, spanning companion masses ∼0.6–0.7 M� ,

orbital separations ∼4–5 AU, which would cause planet densities to be overestimated by 10–20%

(planet radii underestimated by 3% and 6%, respectively). This potential underestimate is smaller

than our measurement uncertainties. There are a few noteworthy caveats: If the AO imaging

happened to take place when the projected separation was small, then a brighter companion could

go undetected. The same applies if the HIRES spectrum was taken when the difference between the

RVs of the primary star and its companion was low or if the orbit is near face-on (misaligned with

the transiting planets). Note that while a near face-on orbit would limit spectroscopic constraints,

it would maximize detectability by AO imaging.

For the above analysis, we used riJHK photometric calibrations of Kraus & Hillenbrand (2007)

to convert angular separation to orbital distance (∼ 170 pc) and to convert contrasts in the NIRC2-

AO bandpass to contrasts in the Kepler bandpass and to companion masses. Following Winn et al.

(2010), if we assume the companion has a circular orbit and mass M2 � M?, then our measured

dv/dt = −37± 11m s−1 yr−1 implies

M2 sin i ∼ 0.2MJup

( a

1 AU

)2
, (3.2)

where MJup is the mass of Jupiter. If the companion is 1MJup it would be located at ∼ 2 AU.

The constraints given by Equation 3.2 are also shown in Figure 3.7 (green dashed line). However,

we stress that these assume the companion has a circular orbit in the same plane as the planets b

and c, and a mass much lower than that of the primary star. Therefore, it does not decrease the

likelihood of close-in companions bright enough to significantly dilute the transit depth.
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Figure 3.7: Constraints on the properties of an unseen companion. The axes denote a parameter
space of brightness contrast of the companion with K2-38 (alternatively the mass of the companion)
and the orbital separation between the two bodies. AO imaging excludes companions in the hatched
blue region. The dashed red line shows the limits of our search for secondary lines in the high-
resolution optical spectrum from HIRES. The dashed green line (lower right) corresponds to the
masses and orbital semi-major axes consistent with the measured linear RV trend, assuming a
circular, edge-on orbit and a companion mass much lower than that of the primary star (Equation
3.2). The horizontal dashed lines represent companion contrasts at which the dilution of the
observed transit depths would cause planet densities to be overestimated by 10% and 20%. AO
imaging and spectroscopy rule out companions that would cause systematic errors of > 20% in
planet density with high confidence (see Section 3.6.2 for discussion).
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3.7 Individual systems

Here we summarize some of the most important characteristics of each system determined from

this study, as well as other studies where relevant.

K2-5 is a ∼K7.5V star, hosting at least two planets with P = 5.7 and 10.9 d and Rp =

1.91±0.44R⊕ and 2.26±0.62R⊕, respectively (Figure 3.10, Table 3.7). Both planets were reported

by Foreman-Mackey et al. (2015), and Vanderburg et al. (2016a) and validated by Montet et al.

(2015b). The large uncertainties on planet radii (∼ 20− 30%) relative to the rest of our targets is

due to the modest SNR of our IRTF-SpeX stellar spectrum (see Section 3.2.4).

K2-3 is a nearby, ∼M0V star hosting three super-Earths with P = 10.1, 24.6, and 44.6 d

and Rp = 2.18 ± 0.30, 1.85 ± 0.27, and 1.51 ± 0.23R⊕, respectively (Figure 3.11, Table 3.8). All

three planets were first reported in Crossfield et al. (2015). Spitzer observations independently

confirmed transits of each planet Beichman et al. (2016). Almenara et al. (2015) and Dai et al.

(2016) measured masses of 8.4± 2.1 M⊕ and 8.1+2.0
−1.9 M⊕ respectively for the inner planet, K2-3b,

which suggests it is composed mostly of rock, but possibly as much as 60% water. The outer planet

receives ∼50% more stellar flux than Earth receives from the Sun, with an equilibrium temperature,

Teq ∼282 K.

K2-8 is a ∼K3V star hosting two planets with P = 5.1 and 10.4 d, near a 2:1 MMR. These

planets have radii of 2.41 ± 0.33 and 3.58 ± 0.71R⊕, respectively (Figure 3.12, Table 3.9). Both

planets were reported in Foreman-Mackey et al. (2015) and Vanderburg et al. (2016a). Montet

et al. (2015b) estimated FPPs using VESPA. In their study, only the outer planet candidate (K2-

8b) was given a “validated” disposition. They listed the inner planet as a “planet candidate”

because the FPP exceeded 1%, dominated by the 1.9% probability of a background eclipsing binary

(BEB). They looked for companions using images from data release nine of the Sloan Digital Sky

Survey (SDSS), which has a 1.4′′ PSF (Ahn et al., 2012). Our NIRC2 AO imaging excludes

the possibility of BEBs several times closer to the star and we compute a lower FPP of 0.8%.

Surprisingly, for the outer planet candidate validated by Montet et al. (2015b) (FPP=0.2%), we

compute a higher FPP of 1.3%, despite better constraints from AO imaging and spectroscopy. The

reason for this discrepancy is unclear but possibly the result of having slightly different stellar

parameter constraints or photometry. Nevertheless, VESPA does not account for the multiplicity

of this system, which would reduce our FPP estimate below 1% (See 4.4). Therefore, we assign

validated dispositions to both K2-8b and K2-8c.

K2-19 is a ∼G9V star hosting three planets. The star is magnetically active; we measure

logR′HK= −4.66 dex and the light curve exhibits quasi-periodic variations in brightness by ∼ 1%

over 15–20 d. The inner planet, P = 2.5 d, is near Earth-size with Rp = 1.14± 0.13R⊕. The outer

two planets are larger and near 3:2 MMR having P = 7.9 and 11.9 d and Rp = 7.74 ± 0.39R⊕

and 4.86+0.62
−0.44 R⊕, respectively (Figure 3.13, Table 3.10). The two outer planets were reported as

planet candidates by Foreman-Mackey et al. (2015) and first confirmed by Armstrong et al. (2015),

55



who used ground based telescopes to detect additional transits and measure hour-long TTVs for

the middle planet. A similar study by Narita et al. (2015) found consistent TTVs and precisely

characterized the star via AO imaging with Subaru-HiCIAO and high resolution spectroscopy with

Subaru-HDS. Barros et al. (2015) simultaneously modeled K2 and ground-based photometry and

RVs from the SOPHIE spectrograph of ∼16 m s−1 precision. They find that planet b has mass

44± 12 M⊕ and radius 7.46± 0.76 R⊕, while planet c has mass 15.9+7.7
−2.8 M⊕ and radius 4.51± 0.47

R⊕. Dai et al. (2016) measured Mb = 28.5+5.4
−5.0 M⊕ and Mc = 25.6 ± 7.1 M⊕. Planet d was first

reported as a planet candidate by Vanderburg et al. (2016a). The 2.5-day period of the transits

is ∼10x the spacecraft thruster firing period of 6 hours. However, in our planet search and light

curve fitting, we omit all photometry collected during a thruster firing. Thus, we are confident that

thruster firings are not the source of the transit. As an additional test, we visually inspected the

complete set of photometric measurements phased at the transit period and found there was no

excess of thruster firings during the transits. Thus, even if these data points were included in our

fitting, they would not significantly bias the derived planet properties. We also verified that the

photometric scatter during the transit phase is not systematically different than the out-of-transit

phase.

K2-35 is a bright ∼K4V star hosting two close-in super-Earths with P = 2.4 and 5.6 d. The

planets are 1.40±0.17R⊕ and 2.09+0.33
−0.24 R⊕ respectively (Figure 3.14, Table 3.11). The outer planet

was reported as a planet candidate by Foreman-Mackey et al. (2015) and Montet et al. (2015b).

Both were listed as planet candidates by Vanderburg et al. (2016a).

K2-36 is a bright ∼K2V star hosting two hot super-Earths with P = 1.4 and 5.3 d, first reported

as planet candidates by Vanderburg et al. (2016a). The inner planet, Rp = 1.32± 0.09R⊕, has Teq

∼1200 K and the outer planet, Rp = 2.80+0.43
−0.31 R⊕ has Teq ∼ 800 K (Figure 3.15, Table 3.12). The

light curve shows 1–2% modulation with a period of ∼10 d and the spectrum has strong Ca 2 H &

Kemission lines (SHK=0.46), indicating that the star is magnetically active.

K2-16 is a faint, ∼K3V star having two planets with P =7.6 and 19.1 d and Rp = 2.02±0.24R⊕

and 2.54+1.12
−0.47 R⊕, respectively (Figure 3.16, Table 3.13). These planets are near 5:2 MMR. They

were first detected by Foreman-Mackey et al. (2015) and validated by Montet et al. (2015b). Both

planets were detected by Vanderburg et al. (2016a).

K2-24 is a bright ∼G9V star with two cool, sub-Saturn-size planets near 2:1 MMR, P = 20.9

and 42.4 d, Rp = 5.83± 0.60R⊕ and 8.10± 0.82R⊕ (Figure 3.17, Table 3.14). Using Keck/HIRES

RVs, Petigura et al. (2016) measured masses of 21 ± 5.4M⊕ and 27 ± 6.9M⊕ and densities of

0.63±0.25 g cm−3 and 0.31±0.12 g cm−3 for inner and outer planets, respectively. Dai et al. (2016)

measured masses of 19.8+4.5
−4.4 M⊕ and 26.0+5.8

−6.1 M⊕ respectively. The transit signals of both planets

were also detected by Vanderburg et al. (2016a).

K2-37 is a bright ∼G3V star with three small, tightly packed planets having P = 9.0 d, 24.6

d, and 44.6 d and Rp = 1.61 ± 0.17, R⊕ 2.75 ± 0.27R⊕ and 2.73 ± 0.36R⊕, respectively (Figure
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3.18, Table 3.15). These were reported as planet candidates by Vanderburg et al. (2016a).

K2-38 is a bright ∼G2V star, with two hot super-Earths, P = 4.0 and 10.6 d and Rp =

1.55 ± 0.16R⊕ and 2.42 ± 0.29R⊕, respectively (Figure 3.19, Table 3.16). We measure planet

masses of 12.0±2.9M⊕ and 9.9±4.6M⊕ and densities of 17.5+8.5
−6.2 g cm−3 and 3.6+2.7

−1.9 g cm−3 (Table

3.5). These indicate that the inner planet is likely rocky and possibly iron-rich, while the outer

planet is likely to have an envelope of low-density volatiles (Section 3.8.1). A linear RV trend also

suggests a third companion at larger orbital distances (Section 3.6). None of these planets were

previously reported.

K2-32 is a bright ∼G9V star with three planets, P = 9.0, 24.6, and 44.6 d, Rp = 5.38± 0.35,

R⊕ 3.48+0.97
−0.42, R⊕ and 3.75 ± 0.40R⊕, respectively (Figure 3.20, Table 3.17). Vanderburg et al.

(2016a) reported these as planet candidates. The outer two planets are near 3:2 MMR. Dai et al.

(2016) confirmed the inner planet b, using RVs to measure a mass of 21.1± 5.9 M⊕. For planet c,

VESPA returns a FPP of 2.2%, which does not meet our criterion for a “validated” disposition (FPP

< 1%). However, VESPA does not account for the “multiplicity boost”, which is more than the

factor of 2.2 necessary to reduce the FPP of K2-32c below 1% (See discussion in §3.4.4). Therefore

we deem all three planet candidates in this system “validated”.

3.8 Discussion & Conclusions

We have detected, validated, and characterized 11 multi-planet systems comprised of 26 planets

in K2 fields C1 and C2. Seven of these systems have two detected planets and four of them have

three detected planets, the majority of which are smaller than Neptune. Moreover, seven of the

stars have Kp < 13 and are amenable to RV follow-up to measure planet masses and densities.

This study is distinguished from previous K2 catalogs because it focuses on multi-planet systems

with intrinsically low false positive probabilities and we have characterized each host star with high

contrast imaging and spectroscopy. We detected the RV signatures of K2-38b and K2-38c, allowing

us to constrain their masses and densities and infer their bulk compositions.

3.8.1 Compositions of K2-38 Super-Earths

Figure 5.2 shows the mass-radius and density-radius distributions of all planets with Rp ¡ 4.0 R⊕

whose mass and radius are measured to better than 50% precision (2σ) either by RVs or TTVs 8.

Solar System planets are included as well as theoretical mass-radius relations for pure iron, rock,

and water compositions, based on models by Zeng & Sasselov (2013). The red points in Figure 5.2

show our mass and radius constraints of K2-38b and K2-38c.

The measured mass and radius of K2-38b are consistent with a rocky or iron-rich composition,

matching K2-3d and KOI-94b within uncertainties. Comparing mass and radius estimates to com-

8NASA Exoplanet Archive, UT 13 November 2015, http://exoplanetarchive.ipac.caltech.edu
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positional models of Zeng & Sasselov (2013) gives a 97.7% probability that the planet is denser than

pure rock. With a bulk density of 17.5+8.5
−6.2 g cm−3, K2-38b could be the densest planet discovered

to date, but additional RV measurements are needed to confirm this. While our 1σ measurement

errors do not rule out densities exceeding that of pure iron, we can reject such compositions on

the basis that there are incompatible with planet formation theory and the low abundances of

heavy elements in planet-forming disks. Iron-rich planets (e.g., Mercury) might result from colli-

sional stripping of the rocky mantle of a larger, differentiated, planet. Simulations by Marcus et al.

(2010) suggest that collisional stripping is unlikely to produce super-Earths with iron mass fractions

exceeding ∼ 70%. The initial assembly of an iron-rich core might be expedited by photophoretic

segregation of metals and silicates in the inner protoplanetary disk, which preferentially drives

the rocky material outward (Wurm et al., 2013). With an equilibrium temperature, Teq ∼1200 K,

K2-38b is perhaps a remnant core of a larger planet whose atmosphere was removed by photoe-

vaporation. In such a scenario, the precursor could have been a gas giant that formed beyond the

snow line and migrated inwards. Indeed, such a massive core would have rapidly accreted nebular

gas, if still present. Alternatively, if the planet assembled in-situ, photoevaporation might have

been less important to its present composition; nebular gas might have dispersed before the core

was massive enough to accrete, or atmospheric accretion could have been limited by the creation

of a gap in the disk (Hansen & Murray, 2012).

The mass and radius of the outer planet, K2-38c, are consistent with many other planets, includ-

ing GJ 1214b, Kepler-68b, Kepler-96b, Kepler102-e, Kepler-106c, HD 97658b, and HIP 116454b.

Its equilibrium temperature of 858± 37 K is intermediate to those of the other planets, which have

Teq spanning ∼550–1150 K. This planet is unlikely to have experienced significant atmospheric pho-

toevaporation. We measure the planet’s mass to ∼50% (2σ) precision, which allows for a range

of possible compositions — even with smaller measurement uncertainties, planet compositions in

this region of the mass-radius diagram are highly degenerate (Seager et al., 2007; Adams et al.,

2008; Valencia et al., 2013). K2-38c likely contains an outer envelope comprised of low-density

volatiles. It could have a small rocky core, with an extended H/He envelope or steam atmosphere.

Alternatively, since the measured density is consistent with pure water, the planet could be a

“water-world”, with a core rich in water ice and interior to a mostly steam atmosphere. A more

precise mass is needed to meaningfully constrain core to envelope mass ratios and possible mass

fractions of rock, water, and H/He. Due to the mass-radius degeneracies between water-worlds and

rocky cores with extended H/He atmospheres, the atmospheric composition must be measured by

other means (e.g. transmission spectroscopy) in order to distinguish between these two different

archetypes.
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3.8.2 Orbital Stability

We analytically assess the orbital stability of each system by comparing orbital separations of each

planet pair to their mutual Hill radii, which is the length scale applicable to dynamical interactions:

RH =

[
Min +Mout

3M?

]1/3 (ain + aout)

2
. (3.3)

Here, Min and Mout are the masses of the inner and outer planets and ain and aout are their

respective orbital distances from the host star. For planets Rp = 1.4–4.0 R⊕, we use the power-law

scaling Mp = 2.69R0.93
p from Weiss & Marcy (2014)to convert radii to masses. For planets Rp > 4.0

R⊕ we use Mp = 1.6R1.8
p (Wolfgang & Lopez, 2015). The one exception is K2-38, for which we use

our measured RV masses (Section 3.6). We compute orbital separations in units of RH :

∆ =
aout − ain

RH
. (3.4)

For a two-planet system, if ∆ < 2
√

3 then even circular orbits are likely to be unstable on short

timescales (Gladman, 1993). All of our K2 multis have ∆ > 5, so we have no reason to suspect that

their orbits are unstable. While there are no such analytic criterion to assess the orbital stability of

three planet systems, Fabrycky et al. (2014) suggest ∆in +∆out > 18 as a conservative requirement.

All four of the triple-planet systems presented here satisfy this criterion.

3.8.3 Orbital Resonances

In multi-planet systems, the distribution of planet orbital period ratios contains important clues

regarding their formation and evolution. Fabrycky et al. (2014) found that the distribution of period

ratios among Kepler multis was fairly uniform. They noted, however, a slight overabundance of

planet pairs just outside first order mean-motion resonances, and an underabundance of pairs just

inside. Lithwick & Wu (2012) and Batygin & Morbidelli (2013) interpreted this feature as a natural

outcome of resonant pairs of planets that experience eccentricity damping. Figure 3.9 shows the

distribution of period ratios for planet pairs discovered during the prime Kepler mission. In order

to make a more direct comparison to our K2 planets, we have restricted to orbital periods < 50

d. We have indicated the period ratios for the planet pairs presented in this paper. While there

are too few planet pairs for a detailed comparison, the distribution of period ratios is qualitatively

similar: fairly uniform with a few planet pairs lying just out side the 2:1 and 3:2 MMR.

Two planet pairs, K2-19 bc and K2-32 cd, are just wide of 3:2 MMR, having Prel = 1.5036 and

1.5351, respectively. Two pairs, K2-24 bc and K2-8 bc, orbit just outside of 2:1 resonance (Prel

= 2.0284, 2.0441). The TTV signals of these planet pairs will be significantly enhanced by their

near-resonant orbits (Holman & Murray, 2005; Lithwick & Wu, 2012).
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Table 3.6. Comparison with other studies

EPIC Rp (this study) Rp (other) R? (this study) R? (other) Referencea

201338508b 1.91± 0.44 1.92±0.23 0.57± 0.12 0.52±0.01 M15
201338508c 2.26± 0.62 1.92±0.20 0.57± 0.12 0.52±0.01 M15
201367065b 2.18± 0.30 1.98±0.10, 2.14±0.27 0.56± 0.07 0.52±0.02, 0.56±0.07 M15, C15
201367065c 1.85± 0.27 1.56±0.10, 1.72±0.23 0.56± 0.07 0.52±0.02, 0.56±0.07 M15, C15
201367065d 1.51± 0.23 1.52±0.21 0.56± 0.07 0.56±0.07 C15

201445392b 3.58± 0.71 2.97±0.51 0.74± 0.04 0.74+0.02
−0.03 M15

201445392c 2.41± 0.33 2.31±0.33 0.74± 0.04 0.74+0.02
−0.03 M15

201505350b 7.74± 0.39 7.11±0.81, 7.23±0.54, 7.46±0.76 0.86± 0.04 0.81+0.09
−0.05, 1.03±0.2, 0.91±0.09 M15, A15, B15

201505350c 4.86+0.62
−0.44 4.31±0.49, 4.21±0.31, 4.51±0.47 0.86± 0.04 0.81+0.09

−0.05, 1.03±0.2, 0.91±0.09 M15, A15, B15

201549860c 2.09+0.33
−0.24 2.20±0.40 0.72± 0.04 0.69±0.02 M15

201754305b 2.02± 0.24 2.13±0.37 0.66± 0.03 0.64±0.03 M15

201754305c 2.54+1.12
−0.47 2.14±0.41 0.66± 0.03 0.64±0.03 M15

203771098b 5.83± 0.60 5.68±0.41 1.21± 0.12 1.21±0.11 P15
203771098c 8.10± 0.82 7.82±0.72 1.21± 0.12 1.21±0.11 P15

aCitation key: M15 = Montet et al. (2015b), C15 = Crossfield et al. (2015), A15 = Armstrong et al. (2015), B15 = Barros et al. (2015), P15
= Petigura et al. (2016)

3.8.4 Comparison with other studies

Table 3.6 compares our measured planet radii and host star radii with those published in other

studies. All measurements agree within 1σ. Montet et al. (2015b) derive the radii of all 11 stars from

photometry, yet their quoted uncertainties are often comparable to or smaller than our spectroscopic

constraints. For example, for the two reddest stars (K2-3, K2-5) they estimate uncertainties . 2%.

They interpolate Dartmouth stellar evolution models, which, as the authors acknowledge, might

systematically underestimate M-dwarf radii by as much as 15% (Montet et al., 2015a; Newton et al.,

2015). Moreover, below ∼0.8M� , the scatter relative to precisely measured stellar radii is ∼4%

(Feiden & Chaboyer, 2012). For the nine hotter stars, uncertainties from our stellar characterization

algorithm Specmatch are well calibrated large samples of exquisitely characterized stars (Petigura,

2015). Therefore, we believe that our typical ∼5–10% uncertainties are appropriate. Although the

photometric derived uncertainties of Montet et al. (2015b) agree with our measurements, as both

studies acknowledge, one should be cautious of adopting them for other analysis.

This appendix provides light curves and parameters for each planetary system. We show K2

aperture photometry corrected for spacecraft systematics, de-trended photometry with planet tran-

sits identified by colored vertical ticks, and photometry phased to the orbital period of each planet.

We also provide a table of physical, orbital, and model parameters for each planetary system. The

most important stellar and planetary properties are summarized in Table 3.3.
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Figure 3.8: Radii and masses of all confirmed planets whose mass and radius are measured to better
than 50% (2σ) precision (blue triangles). Solar System planets are represented as black squares.
Red circles indicate our measurements of K2-38b and c (top and bottom points, respectively). Green
curves show the expected planet mass-radius curves for pure iron, rock, and water compositions
according to models by Zeng & Sasselov (2013). K2-38b likely has a large iron fraction and could
be the densest planet detected to date. The composition of K2-38c is less certain, but the planet
likely possesses an outer envelope comprised of low-density volatiles.
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Figure 3.9: Histogram of the distribution of period ratios for planets from the prime Kepler mission
(Fabrycky et al., 2014). In systems with three or more transiting planets, all pairs of planets are
considered, not only adjacent pairs. In order to make a more direct comparison to the population
probed by K2 , we have only shown Kepler planets having P < 50 d. The period ratios of K2
planet pairs presented in this work are shown using blue triangles. The K2 distribution of period
ratios is qualitatively similar to the period ratios from the Kepler prime mission.
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Figure 3.10: Top: K2 photometry for K2-5 after subtracting variations caused by telescope roll.
Middle: Calibrated K2 photometry. Vertical ticks indicate times of planet transits. Bottom:
Phase-folded photometry and best fitting light curves for each planet.

Table 3.7. Planet properties, K2-5

Parameter Planet b Planet c Units

Transit Model

T0 808.8600 ± 0.0048 814.6010 ± 0.0052 BJDTDB–2456000
P 5.73594 ± 0.00064 10.93241 ± 0.00134 d
i 87.35+1.88

−3.37 86.95 ± 2.47 deg
Rp/R? 0.03031+0.00412

−0.00236 0.03601+0.00805
−0.00475 –

R?/a 0.0712+0.0487
−0.0159 0.0639+0.0448

−0.0272 –
u 0.62 ± 0.05 0.62 ± 0.05 –
b 0.65+0.22

−0.41 0.83+0.09
−0.43 –

t14 2.654+0.607
−0.268 3.498+1.420

−0.580 hrs
Rp 1.91 ± 0.44 2.26 ± 0.62 R⊕
ρ?,circ 1.59+1.80

−1.25 0.60+2.59
−0.48 g cm−3

Derived Properties

a 0.0532 ± 0.0038 0.0818 ± 0.0059 AU
Sinc 24.1+18.4

−11.3 10.2+7.8
−4.8 S⊕

Teq 565 ± 84 456 ± 68 K

T0 = mid-transit time, i = orbital inclination, a = orbital semi-major axis, u =
linear limb-darkening coefficient, b = impact parameter, t14 = transit duration, ρ?,circ

= stellar density, Sinc = incident stellar flux, Teq = equilibrium temperature
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Figure 3.11: Top: K2 photometry for K2-3 after subtracting variations caused by telescope roll.
Middle: Calibrated K2 photometry. Vertical ticks indicate times of planet transits. Bottom:
Phase-folded photometry and best fitting light curves for each planet.

Table 3.8. Planet properties, K2-3

Parameter Planet b Planet c Planet d Units

Transit Model

T0 813.4173 ± 0.0011 812.2812 ± 0.0022 826.2288 ± 0.0034 BJDTDB–2456000
P 10.05449 ± 0.00026 24.64354 ± 0.00117 44.55983 ± 0.00590 d
i 88.80+0.84

−1.12 89.12+0.62
−0.86 89.38+0.43

−0.64 deg
Rp/R? 0.03534+0.00286

−0.00153 0.03007+0.00304
−0.00203 0.02453+0.00267

−0.00182 –
R?/a 0.0391+0.0138

−0.0057 0.0237+0.0123
−0.0053 0.0161+0.0093

−0.0038 –
u 0.60 ± 0.05 0.60 ± 0.05 0.59 ± 0.05 –
b 0.54+0.23

−0.35 0.65+0.20
−0.40 0.67+0.20

−0.40 –
t14 2.726+0.252

−0.111 3.633+0.491
−0.191 4.325+0.552

−0.256 hrs
Rp 2.18 ± 0.30 1.85 ± 0.27 1.51 ± 0.23 R⊕
ρ?,circ 3.12 ± 1.87 2.34+2.64

−1.67 2.28+2.82
−1.70 g cm−3

Derived Properties

a 0.0769 ± 0.0039 0.1399 ± 0.0070 0.2076 ± 0.0104 AU
Sinc 10.9 ± 3.7 3.3 ± 1.1 1.5 ± 0.5 S⊕
Teq 463 ± 39 344 ± 29 282 ± 24 K

Same footnotes as Table 3.7
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Figure 3.12: Top: K2 photometry for K2-8 after subtracting variations caused by telescope roll.
Middle: Calibrated K2 photometry. Vertical ticks indicate times of planet transits. Bottom:
Phase-folded photometry and best fitting light curves for each planet.

Table 3.9. Planet properties, K2-8

Parameter Planet b Planet c Units

Transit Model

T0 813.6114 ± 0.0030 813.0707 ± 0.0033 BJDTDB–2456000
P 10.35239 ± 0.00086 5.06416 ± 0.00041 d
i 86.42+2.56

−1.37 86.70 ± 2.48 deg
Rp/R? 0.04457 ± 0.00861 0.02990 ± 0.00385 –
R?/a 0.0710+0.0233

−0.0366 0.0743+0.0415
−0.0251 –

u 0.70 ± 0.05 0.70 ± 0.05 –
b 0.88+0.04

−0.36 0.78+0.12
−0.42 –

t14 3.362 ± 0.885 2.080+0.498
−0.253 hrs

Rp 3.58 ± 0.71 2.41 ± 0.33 R⊕
ρ?,circ 0.49+3.85

−0.28 1.79+4.39
−1.32 g cm−3

Derived Properties

a 0.0856 ± 0.0014 0.0532 ± 0.0009 AU
Sinc 37.7 ± 4.4 97.8 ± 11.4 S⊕
Teq 631 ± 18 801 ± 23 K

Same footnotes as Table 3.7
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Figure 3.13: Top: K2 photometry for K2-19 after subtracting variations caused by telescope roll.
Middle: Calibrated K2 photometry. Vertical ticks indicate times of planet transits. Bottom:
Phase-folded photometry and best fitting light curves for each planet.

Table 3.10. Planet properties, K2-19

Parameter Planet b Planet c Planet d Units

Transit Model

T0 813.3837 ± 0.0003 817.2755 ± 0.0051 808.9207 ± 0.0086 BJDTDB–2456000
P 7.91940 ± 0.00005 11.90715 ± 0.00150 2.50856 ± 0.00041 d
i 89.47 ± 0.41 87.99+1.42

−1.99 85.83+2.97
−4.74 deg

Rp/R? 0.07540+0.00060
−0.00043 0.04727+0.00568

−0.00352 0.01109 ± 0.00116 –
R?/a 0.0540+0.0021

−0.0010 0.0553+0.0287
−0.0121 0.1277+0.0586

−0.0254 –
u 0.48 ± 0.03 0.64 ± 0.05 0.64 ± 0.05 –
b 0.17 ± 0.12 0.63+0.20

−0.39 0.59+0.26
−0.38 –

t14 3.502 ± 0.063 4.371+0.939
−0.396 2.170 ± 0.328 hrs

Rp 7.74 ± 0.39 4.86+0.62
−0.44 1.14 ± 0.13 R⊕

ρ?,circ 1.91+0.12
−0.21 0.79+0.87

−0.56 1.44+1.36
−0.97 g cm−3

Derived Properties

a 0.0740 ± 0.0012 0.0971 ± 0.0016 0.0344 ± 0.0006 AU
Sinc 125.9 ± 14.4 73.1 ± 8.4 583.5 ± 66.7 S⊕
Teq 854 ± 24 745 ± 21 1252 ± 36 K

Same footnotes as Table 3.7
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Figure 3.14: Top: K2 photometry for K2-35 after subtracting variations caused by telescope roll.
Middle: Calibrated K2 photometry. Vertical ticks indicate times of planet transits. Bottom:
Phase-folded photometry and best fitting light curves for each planet.

Table 3.11. Planet properties, K2-35

Parameter Planet b Planet c Units

Transit Model

T0 810.5871 ± 0.0085 812.1158 ± 0.0049 BJDTDB–2456000
P 2.39984 ± 0.00039 5.60912 ± 0.00071 d
i 86.10+2.67

−4.43 87.85+1.51
−2.25 deg

Rp/R? 0.01777+0.00234
−0.00166 0.02661+0.00407

−0.00266 –
R?/a 0.1237+0.0539

−0.0230 0.0575+0.0319
−0.0133 –

u 0.72 ± 0.05 0.72 ± 0.05 –
b 0.56+0.26

−0.35 0.66+0.20
−0.40 –

t14 2.064 ± 0.308 2.050+0.343
−0.227 hrs

Rp 1.40 ± 0.17 2.09+0.33
−0.24 R⊕

ρ?,circ 1.73 ± 1.31 3.16+3.79
−2.32 g cm−3

Derived Properties

a 0.0320 ± 0.0005 0.0564 ± 0.0009 AU
Sinc 217.4 ± 25.5 70.1 ± 8.2 S⊕
Teq 979 ± 29 737 ± 22 K

Same footnotes as Table 3.7
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Figure 3.15: Top: K2 photometry for K2-36 after subtracting variations caused by telescope roll.
Middle: Calibrated K2 photometry. Vertical ticks indicate times of planet transits. Bottom:
Phase-folded photometry and best fitting light curves for each planet.

Table 3.12. Planet properties, K2-36

Parameter Planet b Planet c Units

Transit Model

T0 809.4684 ± 0.0017 812.8422 ± 0.0008 BJDTDB–2456000
P 1.42266 ± 0.00005 5.34059 ± 0.00010 d
i 87.75+1.62

−2.40 88.33+1.19
−1.63 deg

Rp/R? 0.01625+0.00093
−0.00060 0.03468+0.00515

−0.00362 –
R?/a 0.1124+0.0201

−0.0091 0.0405+0.0250
−0.0117 –

u 0.69 ± 0.05 0.70 ± 0.05 –
b 0.36 ± 0.26 0.72+0.16

−0.42 –
t14 1.206 ± 0.078 1.267+0.301

−0.104 hrs
Rp 1.32 ± 0.09 2.80+0.43

−0.31 R⊕
ρ?,circ 6.57+1.89

−2.56 9.96+17.74
−7.60 g cm−3

Derived Properties

a 0.0230 ± 0.0004 0.0555 ± 0.0009 AU
Sinc 546.3 ± 63.5 93.6 ± 10.9 S⊕
Teq 1232 ± 36 793 ± 23 K

Same footnotes as Table 3.7
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Figure 3.16: Top: K2 photometry for K2-16 after subtracting variations caused by telescope roll.
Middle: Calibrated K2 photometry. Vertical ticks indicate times of planet transits. Bottom:
Phase-folded photometry and best fitting light curves for each planet.

Table 3.13. Planet properties, K2-16

Parameter Planet b Planet c Units

Transit Model

T0 811.6871 ± 0.0038 809.4800 ± 0.0091 BJDTDB–2456000
P 7.61880 ± 0.00087 19.07863 ± 0.00327 d
i 87.97+1.47

−1.86 87.83 ± 1.68 deg
Rp/R? 0.02796+0.00363

−0.00259 0.03526+0.01553
−0.00650 –

R?/a 0.0525+0.0268
−0.0127 0.0439+0.0285

−0.0210 –
u 0.71 ± 0.05 0.72 ± 0.05 –
b 0.68+0.18

−0.43 0.86+0.07
−0.46 –

t14 2.487+0.382
−0.225 3.859+1.640

−0.728 hrs
Rp 2.02 ± 0.24 2.54+1.12

−0.47 R⊕
ρ?,circ 2.25+2.90

−1.59 0.61+3.71
−0.48 g cm−3

Derived Properties

a 0.0667 ± 0.0011 0.1229 ± 0.0021 AU
Sinc 44.5 ± 5.2 13.1 ± 1.5 S⊕
Teq 658 ± 19 485 ± 14 K

Same footnotes as Table 3.7
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Figure 3.17: Top: K2 photometry for K2-24 after subtracting variations caused by telescope roll.
Middle: Calibrated K2 photometry. Vertical ticks indicate times of planet transits. Bottom:
Phase-folded photometry and best fitting light curves for each planet.

Table 3.14. Planet properties, K2-24

Parameter Planet b Planet c Units

Transit Model

T0 905.7950 ± 0.0007 915.6250 ± 0.0005 BJDTDB–2456000
P 20.88508 ± 0.00036 42.36342 ± 0.00063 d
i 88.95 ± 0.62 89.43+0.26

−0.17 deg
Rp/R? 0.04409 ± 0.00146 0.06147 ± 0.00122 –
R?/a 0.0388+0.0062

−0.0041 0.0224 ± 0.0017 –
u 0.56 ± 0.03 0.57 ± 0.02 –
b 0.47+0.16

−0.27 0.44+0.09
−0.18 –

t14 5.881+0.269
−0.187 7.058 ± 0.179 hrs

Rp 5.83 ± 0.60 8.10 ± 0.82 R⊕
ρ?,circ 0.74 ± 0.28 0.94+0.27

−0.18 g cm−3

Derived Properties

a 0.1542 ± 0.0026 0.2471 ± 0.0041 AU
Sinc 60.1 ± 12.4 23.4 ± 4.8 S⊕
Teq 709 ± 36 560 ± 29 K

Same footnotes as Table 3.7
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Figure 3.18: Top: K2 photometry for K2-37 after subtracting variations caused by telescope roll.
Middle: Calibrated K2 photometry. Vertical ticks indicate times of planet transits. Bottom:
Phase-folded photometry and best fitting light curves for each planet.

Table 3.15. Planet properties, K2-37

Parameter Planet b Planet c Planet d Units

Transit Model

T0 893.7013 ± 0.0080 898.8603 ± 0.0023 907.2315 ± 0.0031 BJDTDB–2456000
P 4.44117 ± 0.00075 6.42904 ± 0.00036 14.09189 ± 0.00135 d
i 87.28+1.95

−3.37 87.37+1.83
−2.50 88.34+1.18

−1.65 deg
Rp/R? 0.01728+0.00188

−0.00109 0.02955+0.00312
−0.00187 0.02950 ± 0.00351 –

R?/a 0.0878+0.0420
−0.0135 0.0739+0.0340

−0.0147 0.0382+0.0259
−0.0123 –

u 0.64 ± 0.05 0.64 ± 0.05 0.64 ± 0.05 –
b 0.55+0.27

−0.36 0.62+0.21
−0.39 0.76+0.14

−0.43 –
t14 2.706+0.325

−0.222 3.127+0.457
−0.198 2.967+0.728

−0.261 hrs
Rp 1.61 ± 0.17 2.75 ± 0.27 2.73 ± 0.36 R⊕
ρ?,circ 1.42 ± 0.95 1.13+1.07

−0.77 1.71+3.80
−1.34 g cm−3

Derived Properties

a 0.0511 ± 0.0009 0.0654 ± 0.0011 0.1103 ± 0.0018 AU
Sinc 213.3 ± 27.8 130.3 ± 16.9 45.7 ± 6.0 S⊕
Teq 974 ± 32 861 ± 28 663 ± 22 K

Same footnotes as Table 3.7
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Figure 3.19: Top: K2 photometry for K2-38 after subtracting variations caused by telescope roll.
Middle: Calibrated K2 photometry. Vertical ticks indicate times of planet transits. Bottom:
Phase-folded photometry and best fitting light curves for each planet.

Table 3.16. Planet properties, K2-38

Parameter Planet b Planet c Units

Transit Model

T0 896.8786 ± 0.0054 900.4752 ± 0.0033 BJDTDB–2456000
P 4.01593 ± 0.00050 10.56103 ± 0.00090 d
i 87.28+1.88

−3.08 88.61+1.00
−1.67 deg

Rp/R? 0.01281+0.00105
−0.00064 0.02004+0.00236

−0.00135 –
R?/a 0.0993+0.0340

−0.0117 0.0381+0.0234
−0.0079 –

u 0.62 ± 0.05 0.61 ± 0.05 –
b 0.48 ± 0.30 0.64+0.23

−0.41 –
t14 2.861 ± 0.220 2.533+0.312

−0.144 hrs
Rp 1.55 ± 0.16 2.42 ± 0.29 R⊕
ρ?,circ 1.20+0.55

−0.70 3.06 ± 2.71 g cm−3

Derived Properties

a 0.0506 ± 0.0008 0.0964 ± 0.0016 AU
Sinc 465.9 ± 80.1 128.3 ± 22.1 S⊕
Teq 1184 ± 51 858 ± 37 K

Same footnotes as Table 3.7
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Figure 3.20: Top: K2 photometry for K2-32 after subtracting variations caused by telescope roll.
Middle: Calibrated K2 photometry. Vertical ticks indicate times of planet transits. Bottom:
Phase-folded photometry and best fitting light curves for each planet.

Table 3.17. Planet properties, K2-32

Parameter Planet b Planet c Planet d Units

Transit Model

T0 900.9258 ± 0.0009 899.4306 ± 0.0101 903.7846 ± 0.0031 BJDTDB–2456000
P 8.99218 ± 0.00020 20.65614 ± 0.00598 31.71922 ± 0.00236 d
i 89.00+0.69

−0.90 88.23+1.32
−2.68 88.40+1.06

−0.65 deg
Rp/R? 0.05635+0.00243

−0.00111 0.03636+0.01024
−0.00384 0.04004+0.00279

−0.00474 –
R?/a 0.0526+0.0078

−0.0029 0.0420+0.0427
−0.0132 0.0355 ± 0.0114 –

u 0.66 ± 0.04 0.66 ± 0.05 0.66 ± 0.05 –
b 0.33 ± 0.22 0.74+0.18

−0.46 0.79+0.07
−0.37 –

t14 3.693+0.193
−0.105 5.024+2.307

−0.492 5.990 ± 0.729 hrs
Rp 5.38 ± 0.35 3.48+0.97

−0.42 3.75 ± 0.40 R⊕
ρ?,circ 1.61+0.30

−0.54 0.60+1.24
−0.52 0.42+1.15

−0.22 g cm−3

Derived Properties

a 0.0808 ± 0.0013 0.1407 ± 0.0024 0.1873 ± 0.0031 AU
Sinc 82.9 ± 10.6 27.4 ± 3.5 15.4 ± 2.0 S⊕
Teq 769 ± 25 583 ± 19 505 ± 16 K

Same footnotes as Table 3.7
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CHAPTER 4
K2-66b AND K2-106b: TWO EXTREMELY HOT

SUB-NEPTUNE-SIZE PLANETS WITH HIGH DENSITIES

This chapter is a reproduction of Sinukoff et al. (2017a).

4.1 Introduction

Approximately one third of Sun-like stars host planets between the size of Earth and Neptune (“sub-

Neptunes”) with orbital periods P < 100 days (Howard et al., 2012; Fressin et al., 2013; Petigura

et al., 2013b; Burke et al., 2015). Most sub-Neptunes detected to date were discovered by the

prime Kepler mission (2009–2013). While Kepler provided a detailed measure of the distribution

of planet radii, only a few tens of stars hosting sub-Neptunes were bright enough for secure mass-

measurements by current generation precision radial velocity (RV) facilities (e.g. Marcy et al.,

2014b). Many other planets have masses measured from transit timing variations (TTVs, Holman

& Murray, 2005; Agol et al., 2005), a technique that is limited to compact, multiplanet systems

(e.g. Carter et al., 2012; Hadden & Lithwick, 2014).

Mass and radius measurements yield planet densities, which can be used to infer bulk com-

positions and probe planet formation histories. From the dozens of sub-Neptunes with measured

densities, bulk compositional trends have become apparent. Most notably, the majority of plan-

ets smaller than ≈ 1.6R⊕ have primarily rocky compositions, whereas most larger planets have

lower densities, consistent with the presence of extended envelopes of H/He and other low-density

volatiles (Weiss & Marcy, 2014; Marcy et al., 2014b; Rogers, 2015; Dressing et al., 2015).

This overall trend in bulk compositions likely has a temperature dependence, which has yet

to be fully explored. The gaseous envelopes of planets at extreme temperatures are subjected to

photoevaporation by the incident radiation from their host stars (e.g. Owen & Wu, 2013; Lopez &

Fortney, 2014). Probing planets at extreme temperatures is crucial to understand these sculpting

effects and the formation histories of planets close to their host stars. If these planets did form

as mini-Neptunes and/or giant planets, studying the masses and compositions of their remnants

provides insight into the nature of the cores of such planets, specifically the mechanisms that formed

them, put them so close to their host stars, and removed their surrounding envelopes.

Recent studies of planet occurrence as a function of radius and temperature have shed light

on the formation and evolution of sub-Neptunes. The prime Kepler mission revealed that the

occurrence of 2–4R⊕ planets drops significantly at very short orbital periods (P ¡ 10 days, Howard

et al., 2012; Fressin et al., 2013). Moreover, from a study of Kepler planets and planet candidates,

including 157 with astroseismically characterized host stars, Lundkvist et al. (2016) reported a

complete absence of planets with radii 2.2–3.8 R⊕ and incident fluxes Sinc > 650 S⊕. Evolutionary
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models have explained this gap as a “photoevaporation desert”, because planets in this size and

temperature regime have their envelopes stripped by photoevaporation (Owen & Wu, 2013; Lopez

& Fortney, 2013). Alternatively, smaller planet cores might form too late and/or too close to the

star to accrete much gas and grow in size (Lee & Chiang, 2016).

Another rare sub-class of small planets are those with orbital periods P < 1 day, known as

“ultra-short-period” planets (hereafter USPs). They exist around ∼ 1% of Sun-like stars (Sanchis-

Ojeda et al., 2014). While it is unclear how USPs form and how they end up so close to the star,

there are several observational clues: Systems with USPs commonly host additional planets, which

might have played a role in their formation and/or migration histories. Moreover, Sanchis-Ojeda

et al. (2014) measured a sharp decrease in the occurrence of USPs larger than ∼ 1.4R⊕, and a

complete lack of USPs >2.0R⊕. Lopez (2017) showed that the observed dearth of USPs RP =

2–4R⊕ suggests that they formed with water-poor H/He envelopes that were subsequently lost via

photoevaporation.

Bulk density measurements of these two rare types of sub-Neptunes can reveal whether they

are bare cores, or contain a significant amount of volatiles. Unfortunately, there have been few

opportunities to study their compositions. The few of them discovered in the prime Kepler field

orbit stars too faint for spectroscopic follow-up. However, in 2014, NASA’s K2 mission began a new

chapter in the search for planets orbiting bright stars. The Kepler spacecraft has been collecting

precise photometry of numerous fields along the ecliptic plane, each for nearly three continuous

months (Howell et al., 2014). With 10,000–20,000 stars per campaign, hundreds of transiting

planet candidates have been discovered (Vanderburg et al., 2015; Pope et al., 2016; Barros et al.,

2016; Adams et al., 2016a), many of which have been statistically validated or confirmed as planets

(Sinukoff et al., 2016; Crossfield et al., 2016). This includes several USPs around bright stars

amenable to Doppler spectroscopy, including WASP-47e (Becker et al., 2015; Dai et al., 2015;

Sinukoff et al., 2017b) and HD 3167b (Vanderburg et al., 2016b). K2 also provides an opportunity

to probe the compositions of planets in and at the boundaries of the photoevaporation desert.

Here we report the first mass and density measurements of a planet in the photoevapora-

tion desert as well as the mass and density of a USP planet in a multiplanet system. K2-66

(EPIC 206153219) is a G1 subgiant star in K2 Campaign 3 (C3), which hosts a transiting sub-

Neptune in the photoevaporation desert. K2-106 (EPIC 220674823) is a G-star in K2 Campaign

8 (C8) with two transiting sub-Neptunes, including a USP sub-Neptune (K2-106b). We note that

K2-66b was first reported as a planet candidate by Vanderburg et al. (2015) and statistically vali-

dated by Crossfield et al. (2016). Both K2-106 planets were first reported and statistically validated

by Adams et al. (2016b) as part of the Short-Period Planets Group effort (SuPerPiG).

In §5.2 we describe the methods by which we generate stellar light curves from raw K2 pho-

tometry and summarize our adaptive optics imaging and Doppler observations. §5.3 explains our

analysis of the resulting light curves, AO images, and RV time-series to precisely characterize the
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host stars and determine planet masses and radii. In §5.4, we present our results, discuss possi-

ble planet compositions, and place these planets in context with other sub-Neptunes. Concluding

statements are provided in §6.6.

4.2 Observations

4.2.1 K2 Photometry

NASA’s Kepler Telescope collected nearly continuous photometry of K2-66 from 2014 November

15 – 2015 January 23 UT (69 days) as part of K2 Campaign 3. K2-106 was observed from 2016

January 04 – 2016 March 23 UT (80 days) as part of K2 Campaign 8. We generated stellar light

curves from the respective target pixel files using the same procedures detailed in Sinukoff et al.

(2016) and Crossfield et al. (2016). The same Gaussian process was used to model and subtract the

spacecraft motion from K2 pixel data. We use the same K2-66 light curve presented in Crossfield

et al. (2016), so we do not display it in this work.

4.2.2 Adaptive Optics Imaging

We observed K2-106 on 2016 August 24 UT with the high-contrast adaptive optics (AO) system on

the Keck-II telescope using the NIRC2 imaging instrument (PI: Keith Matthews). The images were

obtained in the narrow camera mode using a 3-point dither pattern with nods of 2′′ in each cardinal

direction to remove background light. The Ks filter was used for all observations. Conditions were

foggy and the star was at airmass 1.2 with seeing of 0.′′8 during the observations. Crossfield et al.

(2016) presented NIRC2 adaptive optics imaging of K2-66 obtained by our group, which we do not

show here. The star was found to be single. Moreover, Adams et al. (2016b) presented similar

NIRC2 observations of K2-106, finding no evidence of secondary sources.

4.2.3 Radial Velocity Measurements

RV measurements of K2-66 and K2-106 were made using HIRES (Vogt et al., 1994) at the W.

M. Keck Observatory. We collected 38 RV measurements of K2-66 from 2015 September 20 UT

to 2017 January 07 UT and 35 RV measurements of K2-106 from 2016 August 12 UT to 2017

January 22 UT. Observations and data reduction followed the usual methods of the California

Planet Search (CPS; Howard et al., 2010a). An iodine cell was used for each observation as a

wavelength calibrator and point spread function (PSF) reference. The “C2” decker (0.′′87 × 14′′

slit) provided spectral resolution R ≈ 55,000 and allowed for the sky background to be measured

and subtracted. An exposure meter was used to automatically terminate exposures after reaching

a target signal-to-noise ratio (SNR) per pixel at 550 nm. Most K2-66 exposures were terminated at

SNR ≈ 100 and typically lasted 20 min. K2-106 exposures proceeded until SNR ≈ 125 (∼ 25 min).
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For each star, a single iodine-free exposure was taken at roughly twice the SNR using the “B3”

decker (0.′′57 × 14′′ slit). The standard CPS Doppler pipeline was used to measure RVs (Marcy &

Butler, 1992; Valenti et al., 1995; Butler et al., 1996; Howard et al., 2009). RV measurements are

listed in Tables 4.1 and 4.2 for K2-66 and K2-106, respectively.

4.3 Analysis

Here we describe the methods used to characterize planet host stars and to model our K2 light

curves and RV time series. Measured stellar parameters, light curve model parameters, and RV

model parameters are listed in Tables 4.3 and 4.4 for K2-66 and K2-106, respectively.

4.3.1 Stellar characterization

From the iodine-free HIRES spectra, we measured the effective temperature (Teff), surface gravity

(log g), and metallicity ([Fe/H]) of K2-66 and K2-106, using the updated “Spectroscopy Made Easy”

(SME) analysis tool described in Brewer et al. (2016). Previous comparison of SME results with

astroseismic results demonstrated log g values accurate to 0.05 dex (Brewer et al., 2015). Stellar

masses and radii were estimated using the isochrones Python package (Morton, 2015b), which fit

our Teff , log g, and [Fe/H] measurements to a grid of models from the Dartmouth Stellar Evolution

Database (Dotter et al., 2008). Posteriors were sampled using the emcee Markov Chain

Monte Carlo (MCMC) package (Foreman-Mackey et al., 2013). The adopted uncer-

tainties on stellar mass and radius correspond to 68.3% (1σ) confidence intervals of

the resulting posterior distributions. For K2-66, we measure a mass M? = 1.11±0.04 M� and

radius R? = 1.67 ± 0.12 R� . These are consistent with the values M? = 1.16 ± 0.05 M� , and

R? = 1.71 ± 0.14 R� reported by Crossfield et al. (2016), who used the SpecMatch algorithm

(Petigura, 2015) instead of SME. For K2-106, we measure a mass of 0.92± 0.03 M� and radius of

0.95±0.05 R� . Adams et al. (2016b) measured M? = 0.93 ± 0.01 M� , which is consistent with our

measurement, but they estimated R? = 0.83 ± 0.04 R� , which is smaller than our measurement

at the ∼ 2.5-σ level (see discussion in §4.4.2).

To test for spectroscopic blends, we used the algorithm of Kolbl et al. (2015) to search for

multiple sets of stellar lines. For both K2-66 and K2-106, we ruled out the possibility of companions

in the 0.′′87× 14′′ HIRES slit with Teff = 3400–6100 K, down to 1% contrast in V and R bands, and

∆RV > 10 m s−1.

The magnetic activity of each star was assessed by measuring SHKindices using the Ca II H & K

spectral lines (Isaacson & Fischer, 2010). The SHKmeasurements are listed in Tables 4.1 and 4.2 for

K2-66 and K2-106 respectively. The median SHKvalues from all spectra are 0.128 and 0.140. The

measured Teff and SHKwere converted into logR′HKvalues, a metric of the Ca II flux relative to the

photospheric continuum (Middelkoop, 1982; Noyes et al., 1984). We measure median logR′HKvalues
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Table 4.1. K2-66 Relative radial velocities, Keck-HIRES

BJD RV [m s−1 ] Unc. [m s−1 ]a SHK
b

2457286.044784 6.58 4.19 N/A
2457580.106140 7.14 2.24 0.127
2457583.113840 -13.31 2.18 0.127
2457585.922824 3.35 2.10 0.128
2457586.022505 2.63 2.17 0.128
2457586.073226 4.15 2.20 0.127
2457587.027388 -8.39 2.06 0.129
2457588.028820 -2.36 2.07 0.128
2457595.974851 9.66 2.63 0.116
2457596.997324 -3.35 4.25 N/A
2457599.015841 -7.50 2.21 0.125
2457600.041053 -0.06 1.99 0.128
2457601.008159 5.21 2.29 0.126
2457612.841886 -8.28 2.64 0.128
2457613.983431 -16.35 2.69 0.131
2457615.860156 6.51 2.99 0.133
2457616.885444 13.79 2.84 0.130
2457622.027461 14.11 3.09 0.126
2457622.093780 -1.18 3.37 0.125
2457651.964266 2.48 2.83 0.135
2457652.025942 9.88 2.80 0.128
2457652.937923 -9.59 2.88 0.133
2457653.926554 -7.16 2.76 0.136
2457653.968022 -7.98 2.67 0.135
2457668.732792 -0.47 2.71 0.118
2457678.880082 -1.04 3.05 0.125
2457679.758736 -0.64 2.65 0.130
2457697.840632 -2.61 2.70 0.124
2457711.713727 -3.43 2.79 0.124
2457712.717828 0.82 2.66 0.127
2457713.715934 5.43 2.68 0.129
2457714.779542 -8.83 3.03 0.128
2457716.765754 2.09 2.95 0.125
2457745.716553 -15.72 2.80 0.127
2457745.763482 -24.08 5.15 N/A
2457746.704085 -1.96 2.73 0.128
2457747.720099 -6.56 2.59 0.127
2457760.710967 -6.37 3.04 0.124

aUncertainties estimated from the dispersion in the radial
velocity measured from 718 chunks. These uncertainties do
not include “jitter” which is incorporated as a free parameter
during the RV modeling (σjit, Table 4.3).

bFor three observations, the SHKmeasurement failed due
to a combination of poor seeing, scattered light, and over-
lapping orders at blue wavelengths. These measurements are
listed as N/A.
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Table 4.2. K2-106 Relative radial velocities, Keck-HIRES

BJD RV [m s−1 ] Unc. [m s−1 ]a SHK

2457612.932644 -5.04 1.89 0.149
2457613.967264 -3.25 1.58 0.147
2457614.109833 -2.35 1.50 0.150
2457615.925879 -5.08 1.71 0.148
2457616.925922 -3.58 1.66 0.150
2457617.917421 4.13 1.53 0.148
2457618.926340 5.95 1.53 0.147
2457652.069904 10.72 1.53 0.143
2457653.036506 -0.86 1.64 0.139
2457668.986188 -11.42 1.72 0.137
2457671.780051 -24.84 1.94 0.150
2457672.066034 -5.93 1.66 0.152
2457672.780348 -6.86 1.69 0.153
2457672.964502 -12.31 1.61 0.153
2457697.825599 5.88 1.77 0.142
2457711.823439 -16.01 2.31 0.150
2457711.890113 -4.35 1.52 0.139
2457712.000267 1.74 1.94 0.132
2457712.760228 -0.49 1.75 0.137
2457713.803918 4.51 1.85 0.140
2457713.987377 -7.84 1.55 0.141
2457714.817690 1.62 1.57 0.136
2457714.952333 8.26 2.07 0.134
2457716.798647 1.70 1.91 0.139
2457717.971107 -7.35 2.40 0.124
2457718.905031 4.66 2.21 0.132
2457745.786321 1.55 1.80 0.144
2457746.762857 -5.93 1.74 0.135
2457747.817094 -9.04 1.83 0.134
2457761.774749 6.95 1.63 0.138
2457763.715781 -0.96 1.57 0.142
2457764.733619 2.21 1.79 0.139
2457765.800317 5.55 2.94 0.111
2457774.729422 -0.41 1.53 0.138
2457775.725113 2.53 1.65 0.138

aUncertainties estimated from the dispersion in the radial
velocity measured from 718 chunks. These uncertainties do
not include “jitter” which is incorporated as a free parameter
during the RV modeling (σjit, Table 4.4).
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of −5.27 and −5.15 dex, consistent with magnetically quiet stars from the California Planet Search

(Isaacson & Fischer, 2010). For comparison, the Sun ranges from logR′HK= −5.05 dex to −4.85

dex over a typical magnetic cycle (Meunier et al., 2010).

Our NIRC2 images were processed using a standard flat-field, background subtraction, and

image stacking techniques (e.g Crepp et al., 2012). Figure 4.1a displays the final reduced image

and angular scale. Both raw and stacked images were examined for companion sources. A speckle to

the right of the host star was ruled out as a companion as stacked images in the J-band filter showed

it moving as a function of wavelength. Figure 4.1b shows the sensitivity to nearby companions.

Contrast levels reach ∆K = 7.7 for separations beyond 0.′′75. Adams et al. (2016b) achieve similar

contrast limits from K-band observations of K2-106, also with Keck/NIRC2 AO.

4.3.2 Light curve analysis

We fit transit models to the detrended K2-106 light curve using the same MCMC analysis described

in Crossfield et al. (2016). In brief, our code employs the Markov Chain Monte Carlo (MCMC)

package emcee (Foreman-Mackey et al., 2013) and model light curves are generated using the Python

package BATMAN (Kreidberg, 2015). The model parameters are: time of conjunction (Tconj ), orbital

period, eccentricity, inclination, and longitude of periastron (P e, i, and ω), scaled semimajor axis

(a/R?), ratio of planet radius to stellar radius (Rp/R?), a single multiplicative offset for the absolute

flux level, and quadratic limb-darkening coefficients (u0 and u1). The detrended K2-106 light curve

and fitted transit models for planets b and c are shown in Figure 4.2

4.3.3 RV Analysis

Methodology

To analyze the RV time-series of K2-66 and K2-106, we used the RV fitting package RadVel (B.

Fulton & E. Petigura, in prep.), which is publicly available on GitHub1. RadVel is written in object-

oriented Python. It uses a fast Kepler equation solver written in C and the affine-invariant sampler

(Goodman & Weare, 2010) of the emcee package (Foreman-Mackey et al., 2013). RadVel is easily

adaptable to a variety of maximum-likelihood fitting and MCMC applications. The standard version

allows for modeling of multi-planet, multi-instrument RV time-series, and assumes no interaction

between planets (e.g. Sinukoff et al., 2017b).

1https://github.com/California-Planet-Search/radvel
http://radvel.readthedocs.io/en/master/index.html
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Figure 4.1: Keck/NIRC2 Ks-band adaptive optics imaging of K2-106. (a) Reduced image, showing
no evidence of secondary stars. (b) 5σ contrast limits.
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Figure 4.2: Top: Calibrated K2 photometry for K2-106. Vertical ticks indicate the locations of
each planets’ transits. Bottom: Phase-folded photometry and best-fit light curves for each of the
two planets.

We adopt the same likelihood function for RV modeling as Howard et al. (2014):

lnL = −
∑
i

(vi − vm(ti))
2

2
(
σ2
i + σ2

jit

)
+ ln

√
2π
(
σ2
i + σ2

jit

) ]
,

(4.1)

where vi and σi are the ith RV measurement and corresponding uncertainty, and vm(ti) is the

Keplerian model velocity at time ti. The same RV model parameters are used as MCMC step

parameters. Before starting the MCMC exploration, we first use the minimization technique of

Powell (1964) to find the maximum-likelihood model. Fifty parallel MCMC chains (“walkers”) are

then initialized by perturbing each of the free parameters from the maximum likelihood values by

as much as 3%. An initial round of MCMC exploration continues until the Gelman-Rubin (GR)

statistic (Gelman & Rubin, 1992) drops below 1.10, at which point the chains are reset. Following

this burn-in phase, the remaining chains are kept and the MCMC run proceeds until the GR <

1.03 and the Tz statistic (Ford, 2006) exceeds 1000 for all free parameters. This ensures that the

chains are well-mixed and converged.

The adopted basis for our RV model for both K2-66 and K2-106 is: {P , Tconj , K, γ}, where P

is orbital period, Tconj is the time of conjunction, K is the RV semi-amplitude and γ is a constant

RV offset. For K2-106, we fit for P , Tconj, and K of both planets. We lock the orbital periods and

phases at the photometrically measured values in Tables 4.3 and 4.4. Since the orbital ephemeris

is tightly constrained from photometry, it made no difference whether we fixed the ephemeris or
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assigned Gaussian priors according to uncertainties on P and Tconj. When testing non-circular

orbits, we include two additional model parameters,
√
e cosω and

√
e sinω, where e is the orbital

eccentricity and ω is the longitude of periapsis of the star’s orbit. This parameterization mitigates

the Lucy-Sweeney bias toward non-zero eccentricity (Lucy & Sweeney, 1971; Eastman et al., 2013).

We also search for additional bodies at orbital periods beyond the duration of RV observations by

testing RV models that include a constant acceleration term, dv/dt (i.e. a linear trend in the RV

time series). To assess whether the addition of eccentricity and constant acceleration parameters

are warranted, we use the Bayesian Information Criterion (BIC). When comparing models, we lock

the RV jitter at the values in Tables 4.3 and 4.4.

In §4.3.3, we discuss our search for additional planets in these two systems. We found no

conclusive evidence for additional planets.

K2-66

After testing several different RV model parameterizations for K2-66, we adopt a circular orbit

(sinusoidal) model with zero acceleration (dv/dt ≡ 0). The adopted RV parameters for K2-66 are

listed in Table 4.3, including K =7.4 ± 1.2 m s−1. The maximum likelihood RV fit is shown in

Figure 4.3. When the orbital eccentricity is allowed to float, the MCMC fit yields e=0.10+0.13
−0.07,

and a planet mass consistent with the circular orbit model. The change in the BIC is ∆BIC =

BICecc−BICcirc = 1.0, which indicates that the fit does not improve enough to justify the additional

free parameters (Kass & Raftery, 1995). Similarly, introducing dv/dt as a free parameter yields

∆BIC = BICdv/dt−BICdv/dt≡0 = −0.7, indicating no preference for the more complex model. Each

of the different RV models that were tested resulted in a planet mass within 0.5σ of the adopted

value.

K2-106

The adopted RV model for K2-106 is the sum of two sinusoids (two circular orbits), with dv/dt ≡ 0.

The fitted RV parameters for K2-106 are listed in Table 4.4 and the adopted RV fit is displayed in

Figure 4.4. Overall, the choice of model did not significantly affect the planet mass measurements

— all of the RV models yielded planet mass constraints consistent with the adopted values. For

planet b, we measure K = 7.2 ± 1.3 m s−1, for a 5.5σ detection. For planet c, we measure K =

1.6±1.7 m s−1, which is not a reliable detection. From the posterior distribution, we place an upper

limit, K < 6.7 m s−1 (MP < 24.4 M⊕) at 99.7% confidence. Due to its proximity to the host star,

the orbit of K2-106b has likely been circularized by tidal interactions with the star: We compute

a circularization timescale of ≈ 6000 years using (Goldreich & Soter, 1966) assuming the same a

tidal quality factor Q = 100 estimated for terrestrial planets in the Solar System (Goldreich &

Soter, 1966; Henning et al., 2009; Lainey, 2016). Nevertheless, we tested a fit to the RV time series

in which the eccentricity of planet b was allowed to float. The MCMC fit yielded e = 0.11+0.11
−0.08,

83



and a planet mass consistent with the best circular orbit model. Moreover, the eccentric model

is not statistically favored (∆BIC = 0.1). When the eccentricity of planet c was allowed to float,

the preferred eccentricity was 0.75 and the MCMC chains did not converge. Any orbit e & 0.35

would cross the stellar surface. We also ran a trial with dv/dt as a free parameter, but found this

additional model complexity was not statistically warranted (∆BIC = 0.2). Finally, since planet

c was not significantly detected, we also tried fitting for planet b alone but the measured mass

changes by < 0.5σ.

There are several possible reasons why we do not detect the RV signal of planet c. One possibility

is that K is sufficiently small that more data are needed to securely detect the planet. Alternatively,

stellar activity on the timescale of the planet’s orbital period (13 days) could partially wash out

the planet signal. However, our logR′HKmeasurement of −5.15 indicates a magnetically quiet star.

Finally, the star might host additional planets not included in our RV model.

Search for Additional Planets

We conducted a search for additional planets in both systems using the planet search algorithm

described in Howard & Fulton (2016), which utilizes a two-dimensional Keplerian Lomb-Scargle

periodogram (2DKLS, O’Toole et al., 2009). The periodogram values represent the difference in χ2

between an N -planet model (χ2
N ) and an N+1 planet model (χ2

N+1) for each orbital period value.

When searching for the first planet in a given system we compare χ2 for a 1-planet model to χ2 for

a flat line. Figure 4.5 shows the periodograms for N = 0 and N = 1. We estimate an empirical false

alarm probability (eFAP) for any peaks in the 2DKLS periodogram by fitting a log-linear function

to a histogram of periodogram values.

For K2-66, we find no evidence of additional planet signals in the RV time series. In the N = 0

case, the tallest peak in the periodogram occurs at 5.1 days, corresponding to the known transiting

planet K2-66b. For N = 1, which tests the 2-planet hypothesis, the tallest peak is at P = 4.0 days

and has eFAP > 90%. We note that when we tested a 2-planet RV model with an initial period

guess of 4.0 days for the second Keplerian, the measured RV semi-amplitude for K2-66b remains

consistent with the adopted 1-planet model at ≈ 0.3 σ. Therefore, even if there is an additional

planet at P ≈ 4 days, it does not significantly influence our mass measurement for K2-66b.

Similarly, for K2-106, our search for additional planets in the RV time-series yields a null result.

The periodogram for N = 0 has a global maximum at the orbital period of K2-106b (0.57 days).

The N = 1 periodogram does not have any significant peaks — the tallest is at P = 35 days with

eFAP > 90%. We conclude that more RV data are needed to confidently detect any additional

bodies orbiting K2-106. We note that the measured RV semi-amplitude for K2-106b changes by

< 0.5σ when a 3-planet RV model is tested with an initial period guess of 35 days for the third

Keplerian. Thus, even if there is an additional planet at P ≈ 35 days, it has a negligible effect on

our mass measurement for K2-106b.
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Figure 4.3: Single-planet RV model of K2-66, assuming a circular orbit and adopting the ephemeris
from transit fits. a) The RV time-series. Open black circles indicate Keck/HIRES data. The solid
blue line corresponds to the most likely model. Note that the orbital parameters listed in Table
4.3 are the median values of the posterior distributions. Error bars for each independent dataset
include an RV jitter term listed in Table 4.3, which are added in quadrature to the measurement
uncertainties. b) Residuals to the maximum-likelihood fit. c) The RV time-series phase folded at
the orbital period of K2-66b.
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Figure 4.4: Two-planet RV model of K2-106, assuming circular orbits and adopting the ephemerides
from transit fits. Details are same as Figure 4.3, with panels c and d showing the phase-folded
light curves for planets b and c, after subtracting the signal of the other planet. We do not make
a statistically significant measurement of the mass of planet c.
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Figure 4.5: Two-dimensional Keplerian Lomb-Scargle periodograms of the measured RV time series
of a) K2-66 and b) K2-106. Values on the vertical axis represent the difference in χ2 between an
N -planet model (χ2

N ) and an N+1 planet model (χ2
N+1) at each period. The tallest peaks in the

N = 0 cases (top panels) correspond to the periods of known transiting planets, as labeled. For
the N = 1 cases (bottom panels), empirical false alarm probabilities (eFAPs) for the tallest peaks
are > 90%. They are likely to be spurious signals rather than the signals of additional planets.
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4.4 Results & Discussion

4.4.1 No Significant Dilution

Our RV detections of K2-66b and K2-106b confirm that they are bonafide planets. To verify that

the planet radius measurements are accurate, we investigated the possibility that the photometric

aperture contains a blend of multiple stars. Blends would dilute the transit depth, causing the

planet radius to be underestimated (Ciardi et al., 2015). Figure 4.6 shows blend constraints from

the spectroscopic analysis, AO images, and RV measurements. Together, these rule out the presence

of companions that would significantly alter the measured planet radii. Contrasts in the NIRC2-

AO bandpass were converted to the Kepler bandpass and to companion masses using riJHK

photometric calibrations of Kraus & Hillenbrand (2007). A blend with Kepler-band contrast ∆Kp

. 2 mag is required for a 10% error in the measured planet radius. Such companions within ∼
100 AU of K2-66 or K2-106 would have been detected as a linear trend in the RV time-series and

would have been detected inside ∼ 5 AU as secondary lines in the HIRES spectrum. AO imaging

rules out problematic companions beyond ∼ 10 AU. We note that the plotted constraints from RV

observations use Equation 1 of Winn et al. (2010), and conservatively assume dv/dt values equal

to the 3-σ upper limits obtained when dv/dt is included as a free model parameter. The only

conceivable problematic blend that would be undetected is a companion near apastron of a highly

eccentric orbit (hence low dv/dt), at an orbital phase of low projected separation (hence undetected

in AO images) and with a spectrum similar to that of the primary star (hence undetected spectral

lines). However, such a scenario is highly improbable and we conclude that the likelihood of a

problematic blend is negligibly low.

4.4.2 Planetary Bulk Compositions
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Figure 4.6: Constraints on the presence of other stars in the photometric aperture for (a) K2-66
and (b) K2-106, which would dilute the measure transit depth. The vertical axes show companion
brightness contrast and companion mass plotted against orbital separation. NIRC2 AO imaging
excludes companions in the hatched blue region, assuming distances of 400 pc and 250 pc to K2-66
and K2-106, respectively. The dashed red line shows the limits of our search for secondary lines
in the HIRES spectrum. Companions in the hatched green region would induce a linear RV trend
larger than the 3-σ upper limit determined from the RV time-series, assuming a circular, edge-
on orbit. The horizontal dotted lines represent companion contrasts at which the dilution of the
observed transit depths of K2-66b and K2-106b would cause planet radii to be overestimated by
10% and 20%. Together, AO imaging and spectroscopy, and RVs rule out companions that would
cause systematic errors of > 10% in planet radius with high confidence (see §4.4.1 for discussion)
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Table 4.3. K2-66 system parameters

Parameter Value Units

Stellar Parameters

V 11.710± 0.186 mag
Teff 5887± 46 K
log g 4.03± 0.05 dex
[Fe/H] −0.047± 0.02 dex
v sin i 3.7± 2.0 m s−1

M? 1.11± 0.04 M�
R? 1.67± 0.12 R�

Planet b

Transit Model

P 5.06963± 0.00081 days
Tconj 2455817.0092± 0.0051 BJD

Rp/R? 0.01353+0.00174
−0.00080 —

R?/a 0.127+0.048
−0.013 —

u0 0.52± 0.01 —
u1 0.19± 0.01 —
b 0.47± 0.31 —

i 86.6+2.4
−4.4 deg

T14 4.71+0.45
−0.26 hrs

ρ? 0.36+0.14
−0.22 g cm−3

RV Model (circular orbit assumed)

K 7.4± 1.2 m s−1

Derived Planet Parameters

a 0.05983± 0.00072 au
Sinc 840± 125 S⊕
Teq 1372± 51 K

RP 2.49+0.34
−0.24 R⊕

MP 21.3± 3.6 M⊕
ρp 7.8± 2.7 g cm−3

Other

γ −2.5± 1.0 m s−1

σjit 5.0± 0.8 m s−1

Note. — Sinc = incident flux, Tconj = time of
conjunction. Teq = equilibrium temperature, as-
suming albedo = 0.3
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Table 4.4. K2-106 system parameters

Parameter Value Units

Stellar Parameters

V 12.102± 0.212 mag
Teff 5496± 46 K
log g 4.42± 0.05 dex
[Fe/H] 0.06± 0.03 dex
v sin i < 2.0 m s−1

M? 0.92± 0.03 M�
R? 0.95± 0.05 R�

Planet b

Transit Model

P 0.571336± 0.000020 days
Tconj 2456226.4368± 0.0016 BJD

Rp/R? 0.01745+0.00187
−0.00079 —

R?/a 0.366+0.121
−0.036 —

u0 0.459± 0.001 —
u1 0.225± 0.001 —
b 0.47± 0.32 —

i 80.2+7.0
−12.7 deg

T14 1.79+0.56
−0.23 hrs

ρ? 1.18+0.43
−0.68 g cm−3

RV Model (circular orbit assumed)

K 7.2± 1.3 m s−1

Derived Planet Parameters

a 0.01312± 0.00014 au
Sinc 4293± 483 S⊕
Teq 2063± 58 K

RP 1.82+0.20
−0.14 R⊕

MP 9.0± 1.6 M⊕
ρp 8.57+4.64

−2.80 g cm−3

Planet c

Transit Model

P 13.3387± 0.0018 days
Tconj 2456238.7352± 0.0042 BJD

Rp/R? 0.0265+0.0036
−0.0015 —

R?/a 0.0368+0.0159
−0.0041 —

u0 0.459± 0.001 —
u1 0.225± 0.001 —
b 0.47± 0.32 —

i 89.0+0.7
−1.4 deg

T14 3.50± 0.21 hrs

ρ? 2.13+0.92
−1.40 g cm−3

RV Model (circular orbit assumed)

K 1.6± 1.7 m s−1

Derived Planet Parameters

a 0.1071± 0.0015 au
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Table 4.4 (cont’d)

Parameter Value Units

Sinc 64± 7 S⊕
Teq 722± 20 K

RP 2.77+0.37
−0.23 R⊕

MP 5.7± 6.1 M⊕
ρp 1.3± 1.6 g cm−3

Other

γ −2.2± 1.0 m s−1

σjit 5.1± 0.7 m s−1

Note. — Sinc = incident flux, Tconj

= time of conjunction. Teq = equilib-
rium temperature, assuming albedo =
0.3

The derived planet properties for K2-66 and K2-106 are listed in Tables 4.3 and 4.4 respectively.

Figure 4.7a shows the masses and radii of K2-66b and K2-106b along with all other planets smaller

than 4R⊕, whose masses and radii are each known to better than 50% precision2. Here we discuss

possible planet bulk compositions.

K2-66

For K2-66b, we measure a radiusRP = 2.49+0.34
−0.24 R⊕, and a massMP = 21.3±3.6M⊕, corresponding

to bulk density ρp = 7.8 ± 2.7 g cm−3. It is one of the most massive planets between 2 and 3 R⊕,

and likely has a massive heavy-element core. The compositions of planets in this region of the

mass radius diagram are not uniquely determined and could be a range of different admixtures of

various chemical species including iron, rock, water and H/He (Rogers & Seager, 2010; Valencia

et al., 2013). To assess possible compositions, we considered a couple of different two-layer planet

models and in each case we constrained the mass fraction of each layer.

First, we assumed an Earth-composition core (33% iron, 67% rock) surrounded by a solar-

composition H/He envelope. We used the work of Lopez & Fortney (2014), who started with a

sample of 1–20M⊕ cores surrounded by H/He envelopes that are 0.1–50% of the total planet mass

and recorded the evolution of planet radius and envelope mass over a range of incident fluxes. Their

models consist of planet radii (RP ) computed over a 4-D grid of planet core mass (Mcore), planet

envelope mass (Menv), age, and incident stellar flux (Sinc), i.e. RP = RP (Mcore, Menv, age, Sinc).

Following Petigura et al. (2017a), we interpolated this grid to convert our measured MP , RP , Sinc,

and age into a core mass (envelope mass). We generated probability distributions for core mass

fraction (CMF) by randomly sampling the posteriors of MP , RP , and Sinc, assuming an age of 5

2NASA Exoplanet Archive, UT 08 February 2017, http://exoplanetarchive.ipac.caltech.edu
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Figure 4.7: (a) Masses and radii of all confirmed planets whose mass and radius are measured
to better than 50% (2σ) precision (blue triangles). Solar System planets are represented as black
squares. Red circles indicate our measurements of K2-66b and K2-106b. Dark red squares represent
other USP measurements from the literature. Green curves show the expected planet mass-radius
curves for 100% iron, 100% rock (Mg2SiO4), and 100% water (ice) compositions according to models
by Fortney et al. (2007). (b) A zoomed in look of the top panel. The five well-characterized USPs all
have masses and radii consistent with mostly rocky compositions and little to no gaseous envelopes.
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Gyr. Varying the age between 3–8 Gyr had negligible effect, which is explained by the fact that at

Gyr ages, there is little dependence on age as the heating/cooling budget is close to a steady state

value. From the resulting probability distribution, we constrain CMF > 0.96 and Mcore > 10.8

M⊕ at 99.7% confidence (3σ). One potential limitation of our method is that the Lopez & Fortney

(2014) models assume the planet incident flux is constant. However, the luminosity of K2-66 has

increased by a factor of ∼2 since evolving off of the main sequence and therefore the planet incident

flux was twice as low for most of its lifetime. Nevertheless, when we repeated this analysis using

half the incident flux, the 3σ lower limit on the CMF changes by a negligible amount, from 0.96

to 0.95. We conclude that if the planet consists of a H/He envelope atop an Earth-composition

core, the envelope is <5% of the planet’s mass and the core is >10.8 M⊕. If the iron mass fraction

is larger (smaller) than that of Earth, then the planet would need a more (less) extended H/He

atmosphere to maintain the same radius.

We also considered a composition of rock (Mg2SiO4) and water ice. We randomly drew 100,000

planet masses and radii from the posterior distributions, and converted them into a rock-mass-

fraction (RMF) using Equation 7 of Fortney et al. (2007). From the resulting distribution of

RMFs, we conclude that if the planet is indeed a mixture of rock and water ice, then RMF > 81%

at 68.3% confidence (1σ). Moreover, the total mass of rock Mrock > 16M⊕ at 68.3% confidence

and the planet is denser than pure rock at 39% confidence.

K2-106

For the USP planet K2-106b, we measure radius, mass, and density RP = 1.82+0.20
−0.14 R⊕, MP =

9.0 ± 1.6M⊕, and ρp = 8.57+4.64
−2.80 g cm−3. These are consistent with an Earth-like composition.

Assuming the planet is a mixture of iron and rock, we used Equation 8 of Fortney et al. (2007) to

convert our mass and radius posteriors into an iron mass fraction (IMF) probability distribution.

The median IMF is 19% with a 1σ upper limit of 33%, consistent with an Earth-like composition.

With an extremely high incident flux of 4293±483S⊕, and equilibrium temperature of 2063±58 K,

K2-106b is the hottest sub-Neptune with a measured density. At such close proximity to the star,

any volatiles would likely have been lost by photoevaporation, leaving a bare ∼ 9 M⊕ core.

The measured radii of planets b and c are larger than those reported by Adams et al. (2016b)

at the ∼ 2.5σ and ∼ 1σ level respectively. Adams et al. (2016b) measure RP = 1.46 ± 0.14R⊕ for

planet b and RP = 2.53 ± 0.14R⊕ for planet c. Adopting their measured radius for planet b with

our measured mass yields an iron mass fraction, IMF = 0.8 ± 0.2. Although such a large IMF is

unlikely based on simulations of planet formation (e.g. Marcus et al., 2010), we investigated the

source of the measurement discrepancy. We discovered that Adams et al. (2016b) underestimate

the stellar radius due to an unreported error in the Teff -R? relations of Boyajian et al. (2012), which

they used to convert their spectroscopically measured Teff (5590 ± 51 K) into a radius. Equation 8

of Boyajian et al. (2012) was reported as being a third-order polynomial fit to a sample of 33 K–M-
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dwarfs with precisely measured radii and Teff . Equation 9 was reported as a second polynomial fit

that extends to hotter temperatures by including the Sun. However, these equations seem to have

been mistakenly swapped — the polynomial coefficients in Equation 8 belong in Equation 9 and

vice-versa. This can be seen by computing R? (5778 K) = 1.00 and 0.86 R� for Equations 8 and 9

respectively. The two equations diverge as Teff exceeds ∼ 5300 K, which is particularly problematic.

Adams et al. (2016b) used Equation 9 to compute R? = 0.83 R� but would have computed R?

= 0.91 R� if they had used Equation 8, which is consistent with our measurement. Although

Equation 8 is preferred for Teff & 5500 K, neither are particularly reliable for this temperature

regime—the Sun is the only fitted data point beyond 5500 K, which is also where R? and Teff

become significantly age-dependent because of main sequence evolution. We encourage the authors

of any studies who have used Equations 8 and 9 of Boyajian et al. (2012) to verify their results. T.

Boyajian has confirmed the error and is working to publish an erratum.

We note that the Teff and log g measured by Adams et al. (2016b) are higher than our mea-

surements. Our spectroscopic parameters for K2-106 are derived from SME, which has been well-

validated by asteroseismically characterized stars (Brewer et al., 2015). Nevertheless, even if we

run the isochrones Python package assuming the Teff , log g, and [Fe/H] values from Adams et al.

(2016b), we measure stellar parameters M? = 0.96 M� and R? = 0.90 M� , which are within our

measurement errors.

4.4.3 Photoevaporation Desert

The radius and temperature of K2-66b and K2-106b constitute the extremes of planet parameter

space. Figure 4.8 shows the radius and incident flux of confirmed planets from the NASA Exoplanet

Archive3 (NEA). K2-106b ranks among the hottest sub-Neptunes found to date. There is a clear

absence of very hot planets larger than ∼ 2R⊕. Another noticeable feature is that hotter giant

planets tend to have larger radii— the reason for which is highly debated (see Ginzburg & Sari,

2015, and references therein). It would be interesting to see if any trends exist for the larger

sub-Neptunes of similar temperature. K2-66b occupies the region of parameter space found to

be completely devoid of planets by Lundkvist et al. (2016) (2.2R⊕ ¡ RP ¡ 3.8R⊕, Sinc ¿ 650S⊕),

hereafter referred to as the “L16 desert”.

We find that seven other planets fall within the L16 desert. To assess the reliability of these

seven measurements, we examined constraints on the host stellar parameters from spectroscopic and

imaging observations. None of them were asteroseismically characterized by Lundkvist et al. (2016).

According to the Exoplanet Follow-up Observing Program (ExoFOP) database4, five of these stars

(K2-100, Kepler-480, Kepler-536, Kepler-656, and Kepler-1270) have properties constrained from

spectroscopy and AO imaging. One of these five stars, Kepler-536, has a stellar companion at 0.′′56

3NASA Exoplanet Archive, UT 15 February 2017, http://exoplanetarchive.ipac.caltech.edu
4https://exofop.ipac.caltech.edu/cfop.php
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Figure 4.8: Radii and incident fluxes of all confirmed planets from the NASA Exoplanet Archive.
K2-66b and K2-106b are shown in red. The black dashed box encloses the region of parameter
space found by Lundkvist et al. (2016) to completely lack planets, which we refer to as the L16
desert. K2-66b, as well as three other planets (blue) occupy the L16 desert and have host stars
characterized by both spectroscopic and AO observations. Four of these five planets have host stars
with super-solar luminosities. K2-106b is one of the hottest sub-Neptunes found to date.

separation. The planet in this system would be much larger than 4R⊕ if it orbits the companion

star rather than the primary (Law et al., 2014; Furlan et al., 2017) so we deem this measurement

unreliable. We consider the planet parameters for the other four systems to be reliable and confirm

that planets remain in the L16 desert when spectroscopic stellar parameters are adopted. For K2-

100, we adopt the stellar and planet parameters reported in (Mann et al., 2017). The star is a late

F dwarf in the 800 Myr Praesepe Cluster. For Kepler 480, Kepler-656, and Kepler-1270, we had

previously obtained HIRES spectra and used the SpecMatch algorithm (Petigura, 2015) to derive

Teff , log g, and [Fe/H]. We computed stellar masses and radii using the isochrones package (see

§4.3.1). We find that Kepler-480 is an F8 dwarf, Kepler-1270 is a K1 subgiant, and K2-656 is a

high-metallicity G dwarf ([Fe/H] = 0.23 ± 0.05 dex). The planets in the L16 desert that orbit these

four spectroscopically characterized host stars are plotted as blue points and labeled in Figure 4.8.

We examine whether the five planets in the L16 desert share common properties that can be

linked to their origins. First, we note that none of them are USPs — they have orbital periods

of 1.3–6.0 days. Moreover, four of the five host stars have luminosities L > 1.7 L� . Based on

these two observations, we speculate that planets in the L16 desert are 2–4R⊕ cores of larger

planets that were stripped of their gaseous envelopes by means of photoevaporation. Such 2–4R⊕

cores would have higher surface gravities and orbit further from the star than the smaller cores of

USPs. Therefore, the removal of their envelopes by photoevaporation would require stars that are

systematically more luminous than USP hosts, consistent with observations. Mass measurements

of other planets in the L16 desert are needed to test the hypothesis that they are cores surrounded
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by little to no gas.

Given that K2-66 is a subgiant star, we consider the evolution of the planet’s irradiance since

the star left the main sequence. According to Dartmouth stellar evolution models, a star with

mass M? = 1.1 M� and [Fe/H] = 0.05 dex would have had a radius R? ≈ 1.1 R� during its main

sequence lifetime and have luminosity L? ≈ 1.5 L� . Its current luminosity is ≈ 3.0 L� , meaning

that the planet incident flux has increased twofold, from ≈ 420 to 840S⊕ since the main sequence

era. This would have boosted the rate of photoevaporation of low-density volatiles in the planet’s

envelope. Alternatively, EPIC 206153219 might have formed in a gas-poor disk, preventing it from

accumulating much H/He.

If K2-66b was stripped of its envelope as the star became a subgiant, then the rapid post-main

sequence evolution explains the lack of known planets similar in size and density. Perhaps we

are catching a glimpse of a planet from a population that quickly spirals into their host stars as

they evolve off the main sequence (e.g. KELT-8b, Fulton et al., 2015). To test this scenario, we

computed an inspiral time, tinspiral ≈ 370 Gyr for K2-66b using Equation 1 of Lai (2012) assuming

a nominal reduced tidal quality factor Q′? = 107. We conclude that the planet is not on the verge

of spiraling into its host star.

4.4.4 Ultra-short-period Planets

Only five other USPs have measured masses and densities: 55 Cnc (Fischer et al., 2008; Dawson

& Fabrycky, 2010; Nelson et al., 2014; Demory et al., 2016), CoRoT-7b (Léger et al., 2009; Bruntt

et al., 2010; Haywood et al., 2014), Kepler-10b (Batalha et al., 2011; Esteves et al., 2015), Kepler-

78b (Howard et al., 2013; Pepe et al., 2013; Grunblatt et al., 2015), and WASP-47e (Becker et al.,

2015; Dai et al., 2015; Sinukoff et al., 2017b). These planets are plotted on the mass-radius diagram

in Figure 4.7b. The properties of these planets and their host stars are provided in Table 4.5. All of

them have masses and radii consistent with admixtures of rock and iron with little to no surrounding

volatiles. This is consistent with the notion that USPs are the remnant cores of larger planets that

lost their gaseous envelopes or formed without much gas in the first place. It is curious that three

of the six well-characterized USPs have consistent masses and radii that are ∼ 1.7–2.0R⊕ and ∼
8–10M⊕. Perhaps these planets constitute an upper size and mass limit to the cores of the larger

planets from which they form. If all USPs have similar rocky compositions, then the observed

absence of USPs >2.0R⊕ naturally translates to an upper mass limit. Some sub-Neptune-size

planets with P > 1 day have cores > 10M⊕ (e.g. K2-66b), but there are no such examples of

USPs. More well-characterized USPs are needed to reveal their core mass distribution.

We note that the three well-characterized USPs with ∼ 8–10M⊕ cores (K2-106b, 55 Cnc e,

WASP-47e) have host stars with super-solar metallicities, whereas two of the three well-characterized

USPs with masses . 5M⊕ (Kepler-78b and Kepler-10b) have host stars with sub-solar metallicities.

With only six data points, a correlation cannot be claimed, but this motivates a more complete
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analysis of all USPs beyond the scope of this study.

USPs are unlikely to be remnants of hot-Jupiters. While earlier studies argued that USPs could

be the leftover cores of hot-Jupiters that experienced Roche lobe overflow (RLO, e.g. Valsecchi

et al., 2014), simulations by Valsecchi et al. (2015) and Jackson et al. (2016) suggest that RLO of

planets with cores . 10M⊕ would tend to expand their orbits to P > 1 day. Moreover, Winn et al.

(2017) found that the [Fe/H] distribution of USP host stars is inconsistent with that of hot-Jupiter

host stars, and consistent with that of stars hosting hot planets of Neptune-size or smaller. This

suggests the that the majority of USPs are not remnants of hot-Jupiters but could be remnants of

Neptune- or sub-Neptune-size planets.

Five of the six well-characterized USPs have known planetary companions. The single exception

is Kepler-78b, which orbits an active star, hampering the ability to detect planets with longer orbital

periods. The number of detected companions to USPs is consistent with a 50–100% occurrence rate

of additional planets P ¡ 45 days, depending on the assumed distribution of mutual inclinations

and assuming 100% detection completeness (Adams et al., 2016b).

It remains unclear how USPs settle so close to their host stars, but the multiplicity of these

systems (P < 50 days) hints that they form via inward migration mechanisms involving multiple

planets. For example, Hansen & Zink (2015) demonstrated that tidal decay of 55 Cnc e from

beyond its current orbit would have sent the planet through multiple secular resonances, exciting

its orbital eccentricity and inclination. A shrinking periastron distance would subsequently boost

tidal evolution and increase the rate of orbital decay. However, unless the perturber has a mass

comparable to Jupiter, secular interactions are usually too weak to overcome relativistic precession

at short orbital periods (Lee & Chiang, 2017). Thus, secular interactions can only explain USP

systems that also host close-in giant planets like 55 Cnc and WASP-47. Alternatively, USPs might

have migrated through a gas disk to their current orbits via mean motion resonances (MMRs) with

other planets. However, companions of USPs detected to date are not in MMR. It is possible that

resonant companions were engulfed by the star or collided to form a single object. Formation of

USPs via MMR would require the disk to extend very close to the star. USPs could also have been

gravitationally scattered inwards by another companion, but this is difficult to reconcile with the

observed presence of multiple companions on close-in orbits, which would be unstable at modest

eccentricities. Lee & Chiang (2017) show that the observed USP population is consistent with

in-situ formation or disk migration followed by tidal migration. Any complete theory of planet

formation must account for the presence of these rocky ∼ 5-10 M⊕ USPs with close neighbors.

4.5 Conclusion

We have measured the masses and densities of two extremely hot sub-Neptunes, K2-66b and K2-

106b. We have characterized their stellar hosts using high-resolution spectroscopy and adaptive

optics imaging. The radius of K2-66b, RP = 2.49+0.34
−0.24 R⊕ measured from K2 photometry and
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Table 4.5. Ultra-short-period planets with measured masses.

Name M? R? [Fe/H] P RP MP ρp Npl References

(M� ) (R� ) (dex) (days) (R⊕) (M⊕) (g cm−3)

55 Cnc e 0.905 ± 0.015 0.943 ± 0.010 0.31 ± 0.04 0.74 1.92 ± 0.08 8.08 ± 0.31 6.3+0.8
−0.7 5 V05, V11, D16

CoRot-7b 0.91 ± 0.03 0.82 ± 0.04 0.12 ± 0.06 0.85 1.585 ± 0.064 4.73 ± 0.95 6.61 ± 1.33 2 L09, B10, H14

Kepler-10b 0.913 ± 0.022 1.065 ± 0.009 −0.15 ± 0.04 0.84 1.48+0.05
−0.03 4.61+1.27

−1.46 8.0 ± 3.0 2 B11, E15

Kepler-78b 0.83 ± 0.05 0.74 ± 0.05 -0.08 ± 0.04 0.36 1.18+0.16
−0.09 1.86+0.38

−0.25 5.57+3.02
−1.31 1 S13, H13, P13

WASP-47e 0.99 ± 0.05 1.18 ± 0.08 0.36 ± 0.05 0.79 1.87 ± 0.13 9.11 ± 1.17 7.63 ± 1.90 4 B15, S17

K2-106b 0.95± 0.05 0.92± 0.03 0.06± 0.03 0.57 1.82+0.20
−0.14 9.0± 1.6 8.57+4.64

−2.80 2 This study

Note. — V05: Valenti & Fischer (2005), V11: von Braun et al. (2011), D16: Demory et al. (2016), L09: Léger et al. (2009), B10: Bruntt et al. (2010),
H14: Haywood et al. (2014), B11: Batalha et al. (2011), E15: Esteves et al. (2015), S13: Sanchis-Ojeda et al. (2013), H13: Howard et al. (2013), P13:
Pepe et al. (2013), B15: Becker et al. (2015), S17: Sinukoff et al. (2017b).

mass, MP = 21.3 ± 3.6M⊕ measured from Keck-HIRES RVs are consistent with a mostly rocky

composition and little to no low-density volatiles, making it one of the densest planets of its size. It

is one of the few known planets in the “photoevaporation desert” (RP = 2.2–3.8R⊕, Sinc ≥ 650S⊕),

and the first such planet with a measured mass. These planets tend to orbit stars more luminous

than the Sun, which suggests that they might have systematically higher densities due to increased

photoevaporation. The measured radius, RP = 1.82+0.20
−0.14 R⊕ and mass, MP = 21.3±3.6M⊕ of K2-

106b indicate an Earth-like composition, similar to the four other USPs with measured densities.

It is the hottest sub-Neptune with a measured mass, and could be the stripped core of a more

massive planet. K2-66b and K2-106b join the rare class of planets larger than 1.5 R⊕ with mostly

rocky compositions.
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CHAPTER 5
MASS CONSTRAINTS OF THE WASP-47 PLANETARY

SYSTEM FROM RADIAL VELOCITIES

This chapter is a reproduction of Sinukoff et al. (2017b).

5.1 Introduction

Approximately 1% of Sun-like stars host giant planets on short-period orbits (P < 10 days), known

as hot Jupiters (HJs, Howard et al., 2012; Wright et al., 2012). These planets are thought to

have migrated to their observed locations from beyond the ice-line at several AU. One proposed

migration mechanism involves dynamical interaction between the planet and protoplanetary disk

(e.g. Lin et al., 1996). In this case, the planet maintains a low eccentricity. Other “high-eccentricity

migration” (HEM) modes have been proposed including planet-planet scattering (e.g. Rasio & Ford,

1996), Kozai oscillations induced by either a nearby star (e.g. Wu & Murray, 2003) or planet (e.g.

Naoz et al., 2011), and secular interactions (e.g. Wu & Lithwick, 2011). In the HEM scenario,

gravitational perturbations excite planets onto eccentric orbits, which subsequently shrink and

circularize due to stellar tides. Other proposed dynamical effects include misalignment between

the orbital axis of the HJ and the stellar spin axis, as well as the destabilization of close-in planets

encountered upon migration.

Observations of systems with HJs are difficult to reconcile with HEM theory. For example,

Schlaufman & Winn (2016) found that HJ host stars are no more likely to host additional giant

planets than stars with giant planets at P > 10 days. Knutson et al. (2014) found no difference

between the occurrence of additional giant planets at 1–20 AU in systems with HJs whose orbits

are eccentric or misaligned versus circular and aligned with the stellar spin. Moreover, Dawson

et al. (2015) concluded that the number of migrating Jupiters on highly eccentric orbits is lower

than predicted by HEM theory (Socrates et al., 2012).

In support of HEM theory, Steffen et al. (2012) found an absence of HJs in close proximity to

smaller planets (0.7–5 R⊕) discovered by Kepler. However, it remains unclear whether HJs are

intrinsically lonely or if their close neighbors have merely evaded detection. For example, Batygin

et al. (2016) proposed a mechanism for in-situ formation of HJs, which predicts a population of

small planets mutually inclined to the HJ, and therefore unlikely to transit. While HJs are observed

to be lonely, Huang et al. (2016) found that roughly half of transiting “warm-Jupiters” (P = 10–

200 days) are accompanied by transiting planets ∼ 2–6R⊕ on interior orbits P < 50 days. They

proposed that the warm-Jupiters in these multi-planet systems formed in-situ and that occasionally

this same mechanism might produce a very small fraction of HJs. These latest theories add to the

diversity of theories to explain HJ formation.
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WASP-47 is the first star known to host a Jovian-size planet with P < 10 days and additional

close-in planets—proof that not all HJs are isolated and strengthening the argument that HEM

alone cannot produce the entire population of HJs. The Jovian-size planet WASP-47b orbits the

star every 4.2 days. It was first reported and confirmed by Hellier et al. (2012) who detected

both its transit and radial velocity (RV) signatures. Becker et al. (2015) detected two additional

transiting planets using K2 photometry. One of these planets, WASP-47e, is an ultra-short-period

(USP) super-Earth (P = 0.79 days). WASP-47d is Neptune-size (P = 9.0 days). Becker et al. (2015)

detected transit timing variations (TTVs) of both planets. Their TTV signals are anticorrelated and

have a super-period consistent with 52.67-days — the expected super-period for two such planets

near 2:1 orbital mean-motion-resonance (Lithwick et al., 2012). Becker et al. (2015) reported planet

mass constraints Mb = 341+73
−55M⊕, Md = 15.2± 7M⊕, and Me < 22M⊕ based on dynamical fits

to the observed transit times. Measurements of the Rossiter-McLaughlin effect by (Sanchis-Ojeda

et al., 2015) ruled out orbits that are strongly misaligned with the stellar spin axis. Crossfield et al.

(2016) independently validated the planetary system by demonstrating that the star is unlikely to

be a blend of multiple stars, via Keck-NIRC2 adaptive optics images and a search for secondary

lines in the stellar spectrum.

A fourth planet, WASP-47c, was detected with an orbital period of 572 ± 7 days by Neveu-

VanMalle et al. (2016) from 32 RV observations with the Euler/CORALIE instrument spanning

almost 3 years1. Neveu-VanMalle et al. (2016) measure a minimum mass Mc sin i = 394± 70M⊕.

WASP-47c joins the population of giant planets beyond 1 AU that have been found in systems with

HJs (Knutson et al., 2014).

WASP-47d and WASP-47e are examples of super-Earth- and Neptune-size planets, which are

common around Sun-like stars (Howard et al., 2012; Fressin et al., 2013; Petigura et al., 2013b;

Burke et al., 2015). Only a handful of these planets have precisely measured masses and bulk

densities. Compositional trends have emerged from this limited sample. Planets smaller than ≈
1.6R⊕ typically have high densities consistent with Earth-like bulk compositions, while most larger

planets have low densities that require thick envelopes of H/He (Weiss & Marcy, 2014; Marcy et al.,

2014b; Lopez & Fortney, 2014; Rogers, 2015; Dressing et al., 2015). However, there is significant

scatter about the mean mass-radius relationship, indicating compositional diversity, even for a

fixed planet radius. Due to the limited number of known sub-Neptunes with bright host stars,

mass measurements are scarce, and this compositional diversity has yet to be fully explored.

Dai et al. (2015) obtained 26 RVs of WASP-47 with the Carnegie Planet Finder Spectrograph

(PFS), measuring Mb = 370± 29M⊕, Me = 12.2 ± 3.7M⊕, and Md = 10.4 ± 8.4M⊕, consistent

with TTV measurements by Becker et al. (2015). Dai et al. (2015) measure a bulk density of WASP-

47e of 11.2 ± 3.6 g cm−3, consistent with a rocky and potentially iron-rich composition. Their ∼
80% measurement uncertainty on the mass of planet d is insufficient to constrain the planet’s bulk

1WASP-47d and WASP-47e were published before WASP-47c, which was named while the work of Neveu-VanMalle
et al. (2016) was still under revision.
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composition.

Here we present improved mass constraints of all four planets in the WASP-47 system by

combining Keck-HIRES RVs with the previously published RVs of Hellier et al. (2012), Dai et al.

(2015), and Neveu-VanMalle et al. (2016). This work is part of a NASA “Key Project” to measure

K2 planet masses using Keck-HIRES. Section 5.2 of this manuscript summarizes our Doppler

observations and spectroscopic constraints of stellar parameters. Our analysis of the RV time-

series and resulting planet mass measurements are detailed in Section 5.3. In Section 5.4, we

discuss possible compositions of WASP-47e and WASP-47d, eccentricity constraints of the Hot-

Jupiter, and interpret these in the context of planet formation and evolution.

5.2 Observations

5.2.1 K2 Photometry

WASP-47 was observed by the Kepler Telescope for 69 consecutive days in Campaign 3 (C3) of

NASA’s K2 mission (Howell et al., 2014). It was one of only 55 targets in K2 Campaign 3 that

was observed in short-cadence mode (60 sec), enabling precise measurement of transit parameters.

We adopt the orbital ephemerides, and transit depths reported by Becker et al. (2015).

5.2.2 Radial Velocity Measurements

We collected RV measurements of WASP-47 using HIRES (Vogt et al., 1994) at the W. M. Keck

Observatory from 2015 August 10 UT to 2016 October 7 UT (424 days). We followed standard

procedures of the California Planet Search (CPS; Howard et al., 2010a). For each RV observation,

we used the “C2” decker (0.′′87 × 14′′ slit), which yields a spectral resolution R = 55,000 and is long

enough for sky subtraction. Before the starlight entered the spectrometer slit, it first passed through

a cell of iodine gas, which imprints a dense set of molecular absorption lines on the stellar spectrum.

These iodine lines were used for wavelength calibration and PSF reference. We used an exposure

meter to terminate exposures after reaching a SNR per pixel of ∼100 at 550 nm (typically ∼15

min). A single iodine-free spectrum was obtained as a stellar template using the “B3” decker (0.′′57

× 14′′ slit). RVs were measured by forward modeling each observed spectrum as the product of

an RV-shifted iodine-free spectrum and a high-resolution/high-SNR iodine transmission spectrum.

The latter was first convolved with an instrumental PSF, modeled as the sum of 13 Gaussians with

fixed centers and widths but variable amplitudes (Marcy & Butler, 1992; Valenti et al., 1995; Butler

et al., 1996; Howard et al., 2009). Our measured RVs are listed in Table 5.3.
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5.2.3 Stellar Parameters

We measured the effective temperature (Teff), surface gravity (log g), and metallicity ([Fe/H]) of

WASP-47 from our iodine-free HIRES spectrum using the updated SME analysis of Brewer et al.

(2016). This new methodology yields log g values that are accurate to 0.05 dex, as determined

from careful comparisons against stars with log g determined from asteroseismology (Brewer et al.,

2015). We find Teff = 5475 ± 60 K, log g = 4.27 ± 0.05 dex, and [Fe/H] = 0.36 ± 0.05 dex. To

estimate the stellar mass and radius, we fit our spectroscopic measurements of Teff , log g, & [Fe/H]

to a grid of models from the Dartmouth Stellar Evolution Database (Dotter et al., 2008) using the

isochrones Python package (Morton, 2015b) with uncertainties determined by the emcee Markov

Chain Monte Carlo (MCMC) package (Foreman-Mackey et al., 2013). The derived stellar mass

and radius are 0.99 ± 0.03 M� and 1.18± 0.08 R� . These are consistent with the measurements of

1.04 ± 0.08 M� and 1.15 ± 0.04R⊕ by Mortier et al. (2013). Following Sinukoff et al. (2016), we

conservatively adopt uncertainties of 5% on stellar mass to account for the intrinsic uncertainties

of the Dartmouth models estimated by Feiden & Chaboyer (2012).

Following the prescription of Isaacson & Fischer (2010), we measure SHKindices from the HIRES

spectra, which serve as a proxy for stellar activity. Our SHKmeasurements are listed in Table 5.3.

The median SHKindex of 0.132 is consistent with other inactive stars in the California Planet

Search (Isaacson & Fischer, 2010). Consistent with this picture, we measure the stellar jitter to be

3.7± 0.6 m s−1 (Table 5.2).

5.3 Analysis

5.3.1 Radial Velocity Data Analysis

We analyzed the RV time-series using the RV fitting package RadVel (Fulton & Petigura, in prep.),

which is publicly-available on GitHub2. We fit our Keck-HIRES RVs along with previously pub-

lished RV datasets (Hellier et al., 2012; Dai et al., 2015; Neveu-VanMalle et al., 2016), summarized

in Table 5.1. We omit the six RV measurements reported by Neveu-VanMalle et al. (2016) that

were taken after a CORALIE instrument upgrade. These would have added two free parameters

to our RV model, which was not worth the negligible gain in RV measurements. After omitting the

17 HIRES observations JD = 2457244.9366–2457245.07451, taken during a WASP-47b transit, we

still have 12 out-of-transit observations from that night. RVs have astrophysical and instrumental

errors that manifest on a variety of timescales from minutes to year. Therefore, the consecutive

measurements during the same night don’t constitute independent measurements. To guard against

these data from having a disproportionate influence influence on the fit, we bin the 8 pre-transit RV

2https://github.com/California-Planet-Search/radvel
http://radvel.readthedocs.io/en/master/index.html

103



Table 5.1. RV datasets

Referencea Instrument NRV Median Unc. ∆t
[m s−1 ] [days]

This study HIRES 47b 1.8 424
V16 CORALIE 26 11.4 745
D15 PFS 26 3.1 12
H12 CORALIE 19 11.0 560

aV16: Neveu-VanMalle et al. (2016), D15: Dai et al.
(2015), H12: Hellier et al. (2012)

bWe made 74 RV measurements with Keck-HIRES, but
omit 17 RVs measured during the WASP-47b transit event
on 2015 August 10 UT. We binned the remaining 12 RVs
from that night into two measurements for a total of 47 RVs

measurements and bin the 4 post-transit measurements. We note that an analysis of our HIRES

RVs alone gives the same planet masses to within 1σ.

We adopt a four-planet model that is the sum of four Keplerian components. For each of the

four datasets, our model includes an RV offset, γ, as well as an RV “jitter” parameter, σjit, to

account for additional Doppler noise of astrophysical or instrumental origins.

Our likelihood function for this analysis follows that of Howard et al. (2014):

lnL = −
∑
i

(vi − vm(ti))
2

2
(
σ2
i + σ2

jit

)
+ ln

√
2π
(
σ2
i + σ2

jit

) ]
,

(5.1)

where vi and σi are the ith RV measurement and corresponding uncertainty, and vm(ti) is the

Keplerian model velocity at time ti. To increase the rate of convergence and to to counter the

bias toward non-zero eccentricity (Lucy & Sweeney, 1971), we adopt the following parametrization

of our model RV curve: {P, Tc,
√
e cosω,

√
e sinω,K}, where P is orbital period, Tc is the time

of conjunction, e is the orbital eccentricity, ω is the longitude of periastron and K is the RV

semi-amplitude.

We first find the maximum-likelihood model using the minimization technique of Powell (1964),

then perturb the best-fitting free parameters by up to 3% to start 100 parallel MCMC chains. The
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free parameters of the RV model are adopted as the MCMC step parameters. RadVel incorporates

the affine-invariant sampler of the emcee package (Foreman-Mackey et al., 2013). The Gelman-

Rubin (Gelman & Rubin, 1992) and Tz statistics (Ford, 2006) are checked in real-time during the

MCMC exploration and the chains are deemed well-mixed and the MCMC run is halted when the

Gelman-Rubin is within 3% of unity and Tz > 1000 for all free parameters.

We assume circular orbits for WASP-47d and WASP-47e while allowing the eccentricities of

WASP-47b and WASP-47c to vary freely. An N-body dynamical stability analysis by Becker et al.

(2015) showed that the orbits of the inner three planets are unstable when eccentricities of the

three inner planets exceed ∼ 0.05. For the ∼ 4–6 m s−1 RV signals of WASP-47d and WASP-47e,

our signal-to-noise is too low to distinguish between eccentricities of 0.00 and 0.05. The orbital

periods and orbital phases of WASP-47b, d, and e were locked at the values reported in Becker

et al. (2015) from transits. We adopt uninformed priors (i.e. no priors) on all free step parameters

and step in linear parameter space. The median values and the 68% credible intervals are reported

in Table 5.2. The best-fitting RV model is shown in Figure 5.1

We searched for additional companions at large orbital distances by testing RV models with

and without a constant radial acceleration term, dv/dt. We compared these two models using the

Bayesian Information Criterion (BIC), with the RV jitter fixed at the values in Table 5.2. We

compute ∆BIC = BICdv/dt−BICdv/dt=0 = 3.8, indicating that the simpler model is preferred, so

we adopt dv/dt = 0.

We investigated whether the Keplerian orbit approximation is valid for our RV model, given

the dynamical influences of the three inner planets on each other. First, we considered the TTV

amplitudes, which indicate the order of magnitude of non-Keplerian effects. The TTV amplitudes

of planets b, d, and e measured by Becker et al. (2015) of 0.63 min, 7.3 min, and ¡ 1.2 min are

0.01%, 0.06%, and < 0.1% of the respective orbital periods. We assessed whether these deviations

from Keplerian orbits are significant given the precision of our RV measurements. Given RV semi-

amplitude K and assuming a phase shift equal to the TTV amplitude ∆T , the deviation of RV(t)

is:

∆RV(t) =
∂RV

∂t
∆T

=
2πK

P
cos

(
2πt

P

)
∆T.

(5.2)

The maximum ∆RV is 2πKP−1∆T , which evaluates to 0.09 m s−1, 0.01 m s−1, and < 0.03 m s−1 for

planets b, d, and e respectively. These represent upper bounds to the orbit-averaged deviations from

Keplerian over the K2 time baseline. These deviations are much smaller than our RV measurement

uncertainties (1.5–2.0 m/s).

Since the RV time-series is much longer than the K2 baseline, one may wonder if there are

large amplitude deviations from Keplerian orbits that build up over longer timescales. To verify

105



that the TTVs remain small over the timescale of RV observations, we used the symplectic N-body

integrator TTVFast (Deck et al., 2014) to numerically integrate the planet orbits over 2000 days.

The orbital elements were initialized at the maximum-likelihood solution obtained from RVs. The

TTV amplitudes of planets b, d, and e remained at 0.6 min, 7 min and < 1 min respectively over

the 2000 day timespan.

We note that the orbital periods of planets b and d measured by Becker et al. (2015) do not

accurately reflect the average orbital periods that would be measured over many years. Becker

et al. (2015) measured P by fitting a linear ephemeris to the K2 transits. Since the K2 photometry

only spans one TTV super-period, the Becker et al. (2015) orbital periods could be different from

the average orbital periods over the time baseline of our RV measurements, which spans many TTV

super-periods.

To quantify the additional uncertainties of average orbital periods, we used the 2000-day baseline

of transit times obtained with TTVFast. For each planet, we performed a linear fit to every unique

set of N consecutive transit times, where N is the number of transits observed in the K2 photometry.

The resulting distribution of slopes (orbital periods) provides an estimate of the uncertainty of

the average orbital period attributed to the limited timescale of K2 observations. The 1-sigma

uncertainties obtained from these orbital period distributions are ± 0.000019 days and ± 0.00074

days for planets b and d respectively. These are ∼ 4× larger than the uncertainties reported by

Becker et al. (2015). We refit our RV time-series using these larger orbital period uncertainties,

but there was no change in the RV solution or corresponding uncertainties. The scale of these

uncertainties is still a tiny fraction of the RV phase. Nevertheless we recommend that future

studies adopt these larger uncertainties on average orbital period, which are listed in Table 5.2.
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Table 5.2. WASP-47 system parameters

Parameter Value Units Ref.

Stellar Parameters

Teff 5475± 60 K A
log g 4.27± 0.05 dex A
[Fe/H] 0.36± 0.05 dex A

v sin i 1.80+0.24
0.16 m s−1 C

M? 0.99± 0.05 M� A
R? 1.18± 0.08 R� A

Planet Parameters

WASP-47b

P 4.1591287± 0.000019 days A, B
Tconj 2457007.932131± 0.000023 BJD B
Rp/R? 0.10186± 0.00023 — B
a 0.05047± 0.00085 AU A
Sinc 441± 65 S⊕ A
RP 13.11± 0.89 R⊕ A

e 0.0036+0.0049
−0.0026 — A

ω 91+183
−39 deg A

K 142.34± 0.85 m s−1 A
MP 356± 12 M⊕ A
ρp 0.87± 0.18 g cm−3 A

WASP-47c

P 595.7± 5.0 days A
Tconj 2455992± 10 BJD A
a 1.382± 0.023 AU A
Sinc 0.59± 0.09 S⊕ A
e 0.27± 0.04 — A
ω 136± 12 deg A
K 32.62± 1.14 m s−1 A
MP 411± 18 M⊕sini A

WASP-47d (circular orbit assumed)
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5.4 Discussion

Figure 5.2 shows the mass-radius distribution of all confirmed planets with Rp < 4.0R⊕ whose mass

and radius are measured to better than 50% precision (2σ) either by RVs or TTVs3. Previous studies

of small planets from the prime Kepler mission revealed a transition in the typical composition of

planets from mostly rocky to planets having thick envelopes of low density H/He at ≈ 1.6R⊕ (Weiss

& Marcy, 2014; Marcy et al., 2014b; Lopez & Fortney, 2014; Rogers, 2015; Dressing et al., 2015).

An important open question is if and how this transition depends on incident stellar flux. Jontof-

Hutter et al. (2016) illustrate that the population of planets < 30 M⊕ tend to have fewer volatiles

as incident flux increases, consistent with atmospheric loss via photoevaporation. WASP-47e is

among the most highly irradiated small planets with a well-measured mass, and thus helps us to

probe the mass-radius relationship at extreme values of incident stellar flux, in a regime similar to

Kepler-10b, Kepler-78b, and 55 Cnc e.

The measured mass of WASP-47e (9.11± 1.17M⊕) is consistent with the measurement of Dai

et al. (2015) (12.2 ± 3.7M⊕) at the 1σ level. We improve the fractional uncertainty from 30%

to 13%, allowing for a more detailed interpretation of composition. The measurements of Dai

et al. (2015) favored an admixture of 50% iron and 50% rock. Assuming an iron-rock admixture,

we sample our planet mass and radius posterior distributions and compute an iron mass fraction

(IMF) using Equation 8 of Fortney et al. (2007). From 100,000 independent samples, we obtain a

median IMF of 13% and a 1σ upper limit of 24%, suggesting that WASP-47e is mostly rock. Its

IMF is lower than Earth’s IMF (33%) at 80% confidence. Alternatively, WASP-47e could have an

IMF similar to Earth but possess a significant atmosphere of a high mean molecular weight species,

such as water or sulfur.

The measured mass and radius of WASP-47d (12.75 ± 2.70M⊕ and 3.71 ± 0.26R⊕) are con-

sistent with several other planets, including Kepler-94b, Kepler-95b, Kepler-30b, KOI-142b, and

GJ 3470b. With an incident flux Sinc = 157 ± 23 S⊕, the atmosphere of WASP-47d might have

undergone significant photoevaporation. Nevertheless, it must still have an atmosphere containing

some amount of H/He. There are a number of degenerate planet compositions in this region of

the mass-radius diagram with different fractions of rock, iron, water, and H/He (Rogers & Seager,

2010; Valencia et al., 2013). Possible compositions include a small iron-rich or rocky core with

an extended H/He or steam envelope, or a water-world with a modest H/He envelope. Future

transmission spectroscopy observations would help to break these degeneracies.

WASP-47e is among the few known USP planets > 1.5R⊕. Lopez (2017) explains the dearth of

larger USP planets as a consequence of photoevaporation of H/He envelopes of larger planets that

formed water-poor. The one potential counter-example noted by Lopez (2017) is the 1.9R⊕ USP

planet 55 Cnc e. The most recent mass and radius constraints suggest the presence of a water-rich

envelope, 8 ± 3% of the planet’s mass.

3NASA Exoplanet Archive, UT 24 September 2016, http://exoplanetarchive.ipac.caltech.edu

108



Table 5.2 (cont’d)

Parameter Value Units Ref.

P 9.03081± 0.00074 days A, B
Tconj 2457006.36927± 0.00044 BJD B
Rp/R? 0.02886± 0.00047 — B
a 0.0846± 0.0014 AU A
Sinc 157± 23 S⊕ A
RP 3.71± 0.26 R⊕ A
K 3.94± 0.82 m s−1 A
MP 12.75± 2.70 M⊕ A
ρp 1.36± 0.42 g cm−3 A

WASP-47e (circular orbit assumed)

P 0.789597± 0.000013 days B
Tconj 2457011.34849± 0.00038 BJD B
Rp/R? 0.01456± 0.00024 — B
a 0.01667± 0.00028 AU A
Sinc 4043± 593 S⊕ A
RP 1.87± 0.13 R⊕ A
K 6.34± 0.78 m s−1 A
MP 9.11± 1.17 M⊕ A
ρp 7.63± 1.90 g cm−3 A

Other

γHIRES 6.4± 1.5 m s−1 A
γPFS,D15 20.5± 2.9 m s−1 A
γCORALIE,H12 −27070.3± 5.1 m s−1 A
γCORALIE,V16 −27085.3± 2.7 m s−1 A
σjit,HIRES 3.7± 0.6 m s−1 A
σjit,PFS,D15 6.3± 1.2 m s−1 A
σjit,CORALIE,H12 5.9± 3.5 m s−1 A
σjit,CORALIE,V16 6.7± 3.3 m s−1 A

Note. — Sinc = Incident flux, Tconj = Time of conjunction,
A: This study, B: Becker et al. (2015), C: Sanchis-Ojeda et al.
(2015). H12: Hellier et al. (2012), D15: Dai et al. (2015),
V16: Neveu-VanMalle et al. (2016). Orbital periods of planets
b and d are those from Becker et al. (2015), but with larger
uncertainties (See §3).
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e) Pd = 0.79 days
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f) Pe = 9.03 days

Ke = 4.0 ± 0.84 m s-1

ee = 0.00 

Figure 5.1: Four-planet RV model of WASP-47, assuming circular orbits for WASP-47d and WASP-
47e a) The RV time-series. Filled red circles indicate Keck-HIRES data. Orange squares represent
CORALIE data published by Hellier et al. (2012). Purple pentagons represent CORALIE data
published by Neveu-VanMalle et al. (2016). Green diamonds indicate PFS data published by Dai
et al. (2015). The solid blue line corresponds to the most likely model. Note that the orbital
parameters listed in Table 5.2 are the median values of the posterior distributions. Error bars
for each independent dataset include an RV jitter term listed in Table 5.2, which are added in
quadrature to the measurement uncertainties. b) Residuals to the maximum-likelihood fit. c-f)
The RV time-series phase folded at the orbital periods of each of the four planets after subtracting
the other three planet signals.
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Figure 5.2: Radii and masses of all confirmed planets whose mass and radius are measured to
better than 50% (2σ) precision (blue triangles). Solar System planets are represented as black
squares. Red circles indicate our measurements of WASP-47d and WASP-47e. Green curves show
the expected planet mass-radius curves for 100% iron, 100% rock (Mg2SiO4), 100% water (ice),
and Earth-like (67% rock, 33% iron) compositions according to models by Fortney et al. (2007).
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55 Cnc has remarkable similarities to WASP-47. It hosts a USP super-Earth (55 Cnc e), a non-

transiting giant planet (55 Cnc b) at P=15 days, and three additional non-transiting planets at P

= 44, 262, and ∼ 4800 days. The fact that these systems host both a HJ and a USP planet suggests

that their formations are linked in some way. Moreover, the mass and radius of 55 Cnc e (8.3 ±
0.3M⊕, 1.92 ± 0.08R⊕) are consistent with WASP-47e (9.11±1.17M⊕, 1.87±0.13R⊕). Therefore,

both planets could have water-rich envelopes. More well-characterized USP planets ≈ 2R⊕ are

needed to determine if they represent a distinct population of USP planets spawning from unique

formation and/or evolutionary processes. In particular, as proposed by Huang et al. (2016), WASP-

47b and 55 Cnc b might represent the rare close-in extremes of in-situ formation hypothesized to

produce the ∼ 50% of warm-Jupiters (P = 10–200 days) that have small companions at shorter

orbital distances. This highlights the limitations of classifying HJs and warm-Jupiters based on

orbital period alone, without taking the more complete system architecture into account.

One clue about the formation history of 55 Cnc e is the fact that it transits whereas the outer

planet (P ∼4800 days) is claimed, on the basis of HST astrometry, to be inclined to the line of

sight by 30 degrees (McArthur et al., 2004). Hansen & Zink (2015) showed that if 55 Cnc e formed

slightly beyond its current orbit, and migrated inwards through tidal dissipation, it would have

crossed a pair of secular resonances in the system, which could have boosted its inclination and/or

eccentricity. This would increase the tidal heating and potentially devolatilize the planet or drive it

to Roche lobe overflow. The WASP-47 system also shows a potential secular resonance if WASP-47e

once had a semi-major axis of 0.022 AU. Although this system clearly did not experience pumping of

the inclination, a small but finite initial eccentricity for WASP-47d could have driven tidal evolution

of WASP-47e through this resonance and rapidly increased the tidal heating, potentially leading

to strong devolatilization. If WASP-47e and WASP-47d both formed as Neptune-size planets,, but

WASP-47e was heated or tidally stripped, then their current difference in densities reflects their

evolution rather than their origins.

From our MCMC analysis of the RV time-series, we determine the orbital eccentricity of the

HJ to be < 0.021 at 99.7% (3σ) confidence. The very low eccentricity and the alignment between

the orbital axis and stellar spin (Sanchis-Ojeda et al., 2015) are consistent with disk migration,

in-situ formation, and the aforementioned secular interaction scenario. In future, this eccentricity

constraint can be used to inform TTV models.

WASP-47 has a high metallicity (0.36±0.05 dex) which has been shown to be associated with HJ

occurrence and giant planet occurrence (e.g. Fischer & Valenti, 2005; Buchhave et al., 2014). The

Kepler sample of Earth-size planets were found around stars of widely varying metallicity (Buchhave

et al., 2014). However, if USPs are associated with metal-rich stars, it suggests different formation

pathway than the bulk of known Earth-size planets—one that may be more closely associated with

HJs. Although it is beyond the scope of this study, a comparison between the metallicities of stars

hosting HJs with those hosting USPs will provide a useful test of the relationship between the
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formation of USPs and HJs.

We note that while this manuscript was under review, Almenara et al. (2016) reported mass and

radius constraints of the WASP-47 system using a photodynamical model. They simultaneously

fit the K2 photometry and the RV measurements of Hellier et al. (2012), Dai et al. (2015), and

Neveu-VanMalle et al. (2016). Their planet mass measurements are consistent with this study at

the 1-σ level. Future incorporation of our Keck-HIRES RVs into a photodynamical analysis would

further improve constraints of the WASP-47 system.
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Table 5.3. Relative radial velocities, Keck-HIRES

BJD RV [m s−1 ]a Unc. [m s−1 ]b SHK

2457244.871067 0.48 1.67 0.126
2457244.878949 5.92 1.77 0.132
2457244.887016 -1.84 1.66 0.133
2457244.895257 -3.04 1.82 0.135
2457244.903486 -1.37 1.64 0.132
2457244.911878 -3.26 1.84 0.127
2457244.920153 -5.65 1.59 0.135
2457244.928510 -8.04 1.76 0.133
2457244.936600 -8.56 1.66 0.135
2457244.944818 -2.06 1.71 0.135
2457244.953082 -0.15 1.66 0.130
2457244.961427 -0.13 1.62 0.132
2457244.969923 -4.30 1.73 0.131
2457244.978731 -9.13 1.77 0.131
2457244.987215 -20.02 1.73 0.130
2457244.995815 -20.64 1.68 0.136
2457245.004993 -29.55 1.73 0.121
2457245.013720 -32.44 1.66 0.127
2457245.022227 -39.56 1.67 0.135
2457245.030607 -39.94 1.59 0.136
2457245.038917 -43.69 1.62 0.104
2457245.047448 -48.47 1.65 0.129
2457245.056198 -53.78 1.52 0.129
2457245.065700 -50.95 1.79 0.114
2457245.074508 -46.85 1.60 0.123
2457245.083096 -44.16 1.65 0.130
2457245.091812 -48.39 1.52 0.133
2457245.100712 -57.42 1.53 0.129
2457245.110018 -52.81 1.68 0.134
2457256.103458 96.66 2.11 0.135
2457286.030224 87.81 2.19 0.089
2457294.949126 -53.43 2.17 0.115
2457296.992830 -24.59 2.00 0.137
2457298.980931 -15.40 3.62 0.131
2457326.879645 108.91 1.96 0.036
2457353.819776 -133.61 2.05 0.142
2457354.803856 -95.88 1.95 0.128
2457355.794764 88.20 1.99 0.127
2457384.711392 82.45 1.93 0.127
2457521.108185 -64.84 1.86 0.126
2457562.108559 -115.52 1.81 0.160
2457570.076758 -89.15 2.05 0.151
2457580.060228 74.59 1.83 0.140
2457581.046494 167.52 1.81 0.131
2457582.043488 12.38 1.98 0.135
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Table 5.3 (cont’d)

BJD RV [m s−1 ]a Unc. [m s−1 ]b SHK

2457583.061003 -104.76 1.83 0.136
2457583.922512 13.32 1.83 0.133
2457584.109907 59.97 1.80 0.127
2457584.914664 158.68 1.90 0.137
2457585.068538 173.44 1.79 0.135
2457585.911306 62.57 1.98 0.140
2457586.089591 19.48 2.04 0.127
2457586.909613 -110.17 1.72 0.131
2457587.088454 -119.61 1.67 0.138
2457587.950710 -16.79 2.01 0.136
2457588.097234 21.03 1.80 0.141
2457595.894592 -81.36 2.24 0.138
2457596.120574 -37.76 2.18 0.121
2457596.917828 123.24 2.11 0.131
2457598.938091 -51.78 2.07 0.119
2457599.106292 -79.28 1.95 0.135
2457599.928092 -91.45 1.83 0.140
2457600.118064 -63.52 1.87 0.135
2457600.927270 101.12 2.06 0.138
2457602.055444 149.79 2.09 0.132
2457612.852525 -14.58 1.83 0.136
2457614.023768 164.96 1.77 0.135
2457615.871589 -87.25 1.96 0.132
2457616.894897 -37.49 1.90 0.133
2457622.042983 143.94 2.30 0.129
2457651.804239 161.48 1.74 0.128
2457652.803402 -3.55 1.77 0.145
2457653.938888 -80.03 1.86 0.142
2457668.749161 126.48 2.14 0.143

aRVs do not include zero point offset (γHIRES, Table 5.2)

bUncertainties do not include jitter (σjit,HIRES, Table 5.2)
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CHAPTER 6
BULK PROPERTIES OF ROCKY AND GAS-DOMINATED
PLANETS: DISTRIBUTIONS AND INTERPRETATIONS

6.1 Introduction

NASAs Kepler mission discovered thousands of planets transiting their host stars, mapping out

the distribution of planet radii and orbital periods. However, only a small fraction of Kepler

planet hosts are bright enough for Doppler follow-up to measure planet masses and constrain their

compositions — one of the best links to their formation histories.

By the end of the prime Kepler mission in 2013, only a few dozen planets smaller than Neptune

(< 4 R⊕) had precisely measured masses. A transition from rocky to gaseous planets was observed

at a radius of ∼ 1.5–2R⊕ (Weiss & Marcy, 2014). However, there is significant scatter about

the mean mass-radius relation, indicating compositional diversity (e.g. Wolfgang & Lopez, 2015;

Wolfgang et al., 2016). For example, Kepler-138d, a “fluffy”, ∼ 1.3 g cm−3 planet, which seems to

be an exception to the otherwise rocky population of planets smaller than ∼1.5 R⊕.

This noticeable diversity suggested that the planets mass-radius relation might be partially

driven by environmental factors like temperature and host star properties. There is growing ev-

idence that photoevaporation of planetary envelopes by incident X-ray and EUV radiation plays

a key role in sculpting planet radii and densitites. The discovery of valley in the planet radius

distribution at 1.5–2.0 R⊕ by the California Kepler Survey (CKS Petigura et al., 2017b; Fulton

et al., 2017) divided the population of small planets into “super-Earths” and “sub-Neptunes”. This

valley has been interpreted as a natural effect of photoevaporation. Owen & Wu (2017) showed

that planets are least susceptible to photoevaporation when the core radius is half of the total

planet radius (Rcore = 0.5RP ). Puffier planets quickly shrink to twice the size of their core (fenv

≈ 1%), while planets that form with modest envelopes (fenv . 1%) are rapidly stripped to their

cores, creating a gap in planet radius. In order for photoevaporation models to correctly predict the

observed radius distribution, simulated planets had to posses cores with Earth-like compositions

and form with H/He envelopes. In other words, these small worlds had to be water-poor.

In this paper, we study the transition from rocky to gaseous planets (super-Earths to sub-

Neptunes) by examining the mass-radius relation of planets 1–8 R⊕ in unprecedented detail. We

leverage dozens of recent measurements of masses of small planets from the K2 mission to construct

a catalog of 139 planets with measured densities. This includes planets from Kepler , K2 , and other

sources. We spectroscopically characterize all of the host stars and incorporating parallaxes from

Gaia to measure precise planet masses and radii. Armed with a large and precise statistical sample,

we investigate the distribution of planet core masses and the role of photoevaporation in sculpting

the mass-radius relation.
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Table 6.1. Sample Summary

Type Nstars Nplanets

Kepler TTV 19 30
Kepler RV 20 27
K2 RV 54 73
Other RV 8 9

Total 101 139

In Section 6.2, we outline our sample selection and vetting processes. Our stellar characteriza-

tion methods are described in Section 6.3, while Section 6.4 summarized our derivations of planet

radii, masses, and core masses. We present and interpret the resulting catalog of planet masses

and radii in Section 6.5. We observe a gap in the distribution of planet compositions and a posi-

tive correlation between planet core masses and host star metallicities. Concluding statements are

provided in Section 6.6.

6.2 Sample Selection

Our goal is to construct a comprehensive catalog of transiting planets 1–8 Earth radii, whose

masses are constrained either by radial velocities (RVs), or transit timing variations (TTVs). After

selecting the sample, we re-derive properties of each planetary system according to a uniform set of

stellar host parameters derived from spectroscopy of the host star. Since most sub-Jovian planets

were discovered via the transit method, we chose to filter our sample based on planet radius rather

than planet mass. Here, we outline the different resources from which we gathered our sample of

planets.

6.2.1 NASA Exoplanet Archive

We first queried the NASA Exoplanet Archive (NEA) Extended Planet Database1(Akeson et al.,

2013) for all confirmed planets with mass constraints (1461 planets, 2529 references as of March

13 2018) and separately for all confirmed planets with radius constraints (2947 planets, 5119 ref-

erences).2 We selected the 316 planets returned from both queries and had at least one reference

citing Rp < 8 Re. We exclude circumbinary planets (Kepler-38b, Kepler-47b and c, Kepler-64b,

Kepler-413b, Kepler-453b)

1https://exoplanetarchive.ipac.caltech.edu/cgi-bin/TblSearch/nph-tblSearchInit?app=ExoTbls&config=exomultpars
2A joint query of mass and radius would have excluded references that did not include both mass and radius

measurements.
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6.2.2 Hadden & Lithwick (2017)

We also select planets from Hadden & Lithwick (2017), hereafter HL17, who analyzed the TTVs

of 145 planets from 55 Kepler multiplanet systems. Their measurements of planet masses and

eccentricities are not listed in the NEA. The HL17 catalog is a favorable resource for our study for

several reasons: First, it constitutes a uniform analysis of TTVs including most of the planetary

systems that have been analyzed by previous TTV studies. Therefore, it is a natural choice to

avoid selection biases. Second, HL17 use the TTV measurements from Holczer et al. (2016), which

are derived using all 17 quarters of Kepler long-cadence photometry. Finally, HL17 assess the

robustness of each mass constraint. They perform MCMC fits of the TTVs using numerical N-

body integration and use analytical fits as a sanity-check. For the MCMC analysis, they separately

measure masses using two different priors — A “high” mass prior weighted towards high masses

and low eccentricities as well as a “default” mass prior weighted towards low masses and high

eccentricities. When the posteriors from the two different trials agree, it indicates that the mass-

eccentricity degeneracy is broken by chopping and second-harmonic signals, and that the mass

measurement is reliable.

We select the planets listed by HL17 as RP < 8 R⊕ with a “robust” mass disposition. These are

planets with a >1-σ mass detection for which the the peak of the “high” mass posterior is within

the 1-σ confidence interval of the “default” mass posterior. We note that for Kepler-138, we adopt

the masses from Almenara et al. (2018), derived from a photodynamical analysis.

We discovered that several of the planet mass uncertainties in the machine readable versions

of H17 Table 1 are erroneous when compared to the actual table included in the manuscript. In

most cases where the uncertainty is ≥ 10 M⊕, the digits to the left of the ones digit are missing.

For example, the manuscript lists Kepler-56c as 32.0+11.2
−10.5 M⊕, but the machine-readable tables

list 32.0+11.2
−0.5 M⊕. We have corrected our uncertainties to match those in the H17 manuscript and

notified the authors about the error.

6.2.3 Howard et al. K2 planet mass catalog

Howard et al. (in prep), hereafter H18, report masses of ∼ 50 planets discovered by NASA’s K2

mission. Masses were measured by fitting multiple years of Doppler observations of K2 planet

hosts conducted using Keck-HIRES. The HIRES RVs were jointly fit with RVs reported by other

studies, where available. Host stars were precisely characterized using Keck-HIRES spectra and AO

images from a suite of AO instruments. Observations stemmed from a larger K2 follow-up program

dedicated to validation and characterization of K2 planet candidates. Selection of candidates for

RV follow-up was based primarily on the likelihood and efficiency of detecting planet signals — on

the measured orbital period, radius, and host star activity and brightness. Stars were typically not

observed if the RV signals predicted using the mean mass-radius relations of Weiss & Marcy (2014)

and Wolfgang et al. (2016) were . 1.5 m s−1 (see H18 for details). This introduces a bias against
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the detection of planets denser than predicted by these relations.

6.2.4 Removal of stellar blends

While the planets in our sample have confirmed dispositions, some of their radii may be signifi-

cantly underestimated because of transit dilution caused by the presence of secondary stars in the

photometric aperture (Ciardi et al., 2015). We tested each star for blend scenarios using our HIRES

spectra, and previous analyses of adaptive-optics images.

Each HIRES spectrum was examined for multiple sets of stellar lines using the algorithm of

Kolbl et al. (2015). This algorithm can detect secondary stars Teff = 3400–6100 K, down to 1%

contrast in V and R bands, and ∆RV > 10 m s−1.

Furlan et al. (2017) generated a catalog of KOI stellar companions including those previously

discovered by several other high-resolution imaging surveys at optical to near-IR wavelengths (e.g

Lillo-Box et al., 2012, 2014; Law et al., 2014; Baranec et al., 2016; Kraus et al., 2016; Ziegler

et al., 2017). The catalog includes each of the Kepler stars in our sample. They identified and

characterized blends and provide correction factors for planet radii based on the expected dilution

of the transit depth. We exclude all stars with companions bright enough to cause our planet radii

to be underestimated by more than our typical radius measurement uncertainty of 5%, assuming

the planet transits the primary star. In total, we excluded two Kepler stars based on this criterion

(Kepler-345, Kepler-326).

All of the K2 host stars in our sample have been observed by AO instruments. The other

host stars (i.e. non-Kepler/K2) in our sample have been thoroughly vetted for blends using high-

resolution imaging. These stars host some of the first small planets ever discovered and have since

been secured by numerous follow-up observations. We verified that all of these stars have been

validated by high-resolution imaging. Moreover, many of these other stars are nearby and have

high-proper motions. In many cases, archival images from decades ago have been used identify

presently blended background stars that were previously at much larger separations.

6.2.5 Other sample cuts

We further remove all planets with grazing or near-grazing transits. Specifically, we exclude all

planets with transit impact parameter b > 0.7. When the planet grazes the stellar disk, planet

radius uncertainties can be very large and dependent on the choice of stellar limb-darkening models.

We also exclude stars with effective temperatures Teff < 3400 K. The empirical library of stellar

spectra that we use to model our observed spectra has few stars cooler than 3400 K, so that our

empirical matching methods become unreliable (see Section 6.3.1). Finally, we exclude two stars,

WASP-156 and CoRoTID 223977153, as their planets were published recently. So far, we have been

unable to acquire Keck-HIRES spectra of these stars.
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Figure 6.1: Radii and effective temperatures of host stars in our sample. Dark blue circles corre-
spond to stars spectroscopically characterized using Spectroscopy Made Easy (Brewer et al., 2015).
Cyan circles indicate stars characterized with SpecMatch “synthetic” (Petigura et al., 2013b), and
red circles represent stars characterized using SpecMatch-Emp (Yee et al., 2017). The library of
stars used by SpecMatch-Emp are shown as gray points. The sample becomes sparse below ∼ 3400
K, so we exclude cooler stars from our sample.
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Figure 6.2: The distributions of stellar properties Teff , [Fe/H], M?, and R? for our adopted planet
sample.
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Figure 6.3: There is a significant correlation between stellar metallicity and stellar mass, which is
important to the analysis in Section 6.5.3

6.3 Stellar Characterization

Many properties of the planets in our sample, including their masses and radii, are measured in

relation to those of their stellar hosts. Typically, multiple estimates of the same planet parameter

exist in the literature, from a suite of different studies. Systematic differences between stellar

characterization methods used by those studies can manifest as systematic differences in derived

planet properties. These systematics should be considered when stitching together a catalog of

planets from the literature, especially when examining how the distribution of planet bulk properties

depends on characteristics of the host star.

We mitigate these systematic errors by re-deriving the physical properties of every planet in

our sample using a homogeneously generated catalog of of host star properties. The rank-orders of

our measured stellar properties (i.e relative values) are more secure than if we had assumed values

from the literature.

To this end, we obtained a Keck-HIRES spectrum of each star, many of which were previously

acquired as part of the California Planet Search and K2 planet search. We collected HIRES spectra

of the remaining planet hosts in our sample, with the exception of a two recently identified planet

hosts WASP-156, and CoRoTID 223977153. These stars had already set for the season by the time

we identified them as suitable targets for our sample. Since we do not have a HIRES spectrum, we

omit these stars and their planets from our final sample.

Our complete catalog of stellar properties is listed in Table 6.5. Figure 6.2 displays the distri-
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butions of Teff , [Fe/H], M?, and R?. Here we describe our stellar characterization methods.

6.3.1 Effective Temperatures, surface gravities, and metal abundances

Stellar parameters were derived from each HIRES spectrum using different spectroscopic analysis

tools for stars hotter and cooler than 4700 K (hereafter “hot” and “cool” stars respectively). For

the hot stars we measured Teff , log g, and the abundances of various metals using Spectroscopy

Made Easy (SME, Brewer et al., 2015). Many of the same HIRES spectra were previously analyzed

by Brewer et al. (2016) and Brewer & Fischer (2018) using SME, in which case we adopted the mea-

surements from those catalogs. We ran SME on the remaining spectra and report those results here

for the first time. We followed Brewer & Fischer (2018) equations 1 and 2 to estimate uncertainties

on Teff , log g, and metal abundances as a function of spectral SNR. This yielded Teff uncertainties

smaller than 50 K. However, conservatively adopted 100 K uncertainties for all hot stars to account

for systematic differences between temperatures measured by SME and other spectroscopic mod-

eling tools like SpecMatch (Petigura, 2015) as well as other techniques like interferometry and the

infrared flux method.

The SME code did not successfully run for a small subset of our hot stars, possibly due to

inadequacies in a few of our calibration spectra. In such cases we used SpecMatch (Petigura, 2015),

which matches HIRES spectra to an interpolated library of model spectra from Coelho et al. (2005).

It has been previously demonstrated that spectroscopic parameters derived from SpecMatch and

SME are in good agreement (Petigura et al., 2017b).

Below 4700 K, the onset of dense forests of molecular lines complicates spectral synthesis, limit-

ing the reliability of stellar characterization pipelines such as SME and SpecMatch. Therefore, for

the cool stars we used SpecMatch-Emp (Yee et al., 2017), to measure Teff and [Fe/H]. SpecMatch-

Emp derives these parameters by comparing the spectra with a library of well-characterized stars

spanning ∼ 3000–7000 K. We exclude stars with Teff < 3400 K because SpecMatch-Emp’s spectral

library is sparse at these temperatures, limiting its accuracy.

We derived stellar masses and radii by combining constraints from spectroscopy, astrometry, and

photometry using the publicly available isoclassify code (Huber et al., 2017). Our methodology

is described in detail in Fulton & Petigura (2018). In brief, stellar radius may be determined

from the Stefan-Boltzmann Law given an absolute bolometric magnitude Mbol and an effective

temperature. We derived bolometric magnitudes according to

Mbol = mK −AK − µ−BCK . (6.1)

where mK is the apparent K-band magnitude, AK is the line-of-sight K-band extinction, µ is the

distance modulus, and BCK is the K-band bolometric correction. In our modeling, constraints on

mK come from 2MASS (Skrutskie et al., 2006) and constraints on µ come from Gaia DR2 (Gaia

Collaboration et al., 2018). We derived BCK by interpolating of the grid of BCK computed by
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Conroy et al., (in prep). We account for K-band extinction using the using the 3D dust map from

Bovy et al. (2016). For most targets AK < 0.01 mag, so neglecting extinction entirely would only

amount to a 0.5% error on stellar radius.

Figure 6.1 shows our measured stellar radii as a function of Teff . Typical errors on our stellar

masses and radii are 3–5%.

6.4 Derived Planet Properties

Table 6.6 provides a list of planet parameters. Here we discuss the procedures used to determine

planet radii, masses, and core masses.

6.4.1 Radius

Planet radii were computed by multiplying our measured stellar radii by Rp/R? measurements,

most of which come from the literature. For the Kepler planets, we adopted Rp/R? values from the

Kepler DR25 catalog Thompson et al. (2018). Kepler-78b was not published in Thompson et al.

(2018), so we utilized the transit parameters listed in (Howard et al., 2013).

For the K2 stars we generate the light curves as described in H18. The same methods were used

to produce light curves of a few additional K2 stars in our sample that were not in H18. These

include K2-56, K2-131, K2-141, and HIP 116454. To summarize, we tested both the k2phot and

EVEREST 2.0 (Luger et al., 2016, 2017) pipelines. The everest pipeline yielded better overall

photometric precision than k2phot, but the everest light curves had more significant outliers.

The excess of outliers is partially due to the fact that everest does not automatically exclude

measurements close in time to spacecraft thruster firings, which occur every ∼6 hours. The k2phot

pipeline flags and removes photometry simultaneous with thruster firings by identifying the abrupt

changes in the motion of stars across the detector. We retrieved the points flagged by the k2phot

pipeline and masked the corresponding everest measurements.

We used the same methodology to fit the k2phot and everest light curves. After using a median

filter to remove any long term trends caused by stellar variability or instrument systematics, we

used the Python package emcee (Foreman-Mackey et al., 2013) for Markov Chain Monte Carlo

(MCMC) exploration of the posterior probability surface. To reduce unnecessary computational

expense, we only fit the light curves in 3×T14 windows centered on the individual mid-transit times.

In order to obtain robust parameter estimates for multi-planet systems, we removed the transits of

all other planets from the light curve before fitting each individual planet. We adopted a Gaussian

likelihood function and the analytic transit model of Mandel & Agol (2002) as implemented in

the Python package batman (Kreidberg, 2015), assuming a linear ephemeris and quadratic limb

darkening.

The transit model free parameters we used are orbital period Porb, mid-transit time T0, scaled
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Table 6.2. Source of transit parameters

Stars Light curve Transit parameters

Kepler Thompson et al. (2018) Thompson et al. (2018)
K2 EVEREST 2.0 BATMAN
Other best literature best literature

planet radius Rp/R?, scaled semi-major axis a/R?, impact parameter b ≡ a cos i/R?, and quadratic

limb-darkening coefficients (q1 and q2) under the transformation of Kipping (2013). We also fit for

the logarithm of the Gaussian errors (logσ) and a constant out-of-transit baseline offset, which was

included to minimize any potential biases in parameter estimates arising from the normalization of

the light curves. We imposed Gaussian priors on the limb darkening coefficients, with mean and

standard deviation determined by Monte Carlo sampling an interpolated grid of the theoretical limb

darkening coefficients tabulated by Claret et al. (2012), enabling the propagation of uncertainties in

host star effective temperature Teff , surface gravity log g, and metallicity [Fe/H]. We refined initial

parameter estimates by performing a preliminary nonlinear least squares fit using the Python

package lmfit (Newville et al., 2014), and then initialized 100 “walkers” in a Gaussian ball around

the least squares solution. We ran the MCMC for 5000 steps and visually inspected the chains and

posteriors to ensure they were smooth and unimodal. Finally, we computed the autocorrelation

time3 of each parameter to ensure that we had collected 1000’s of effectively independent samples

after discarding the first 3000 steps as “burn-in.”

For all non-Kepler/K2 stars (“other”), we adopt Rp/R? measurements from the literature.

When multiple measurements of Rp/R? exist in the literature with similar precision, we select the

measurement obtained at the wavelengths closest to the Kepler bandpass for consistency.

6.4.2 Mass

Planet masses were derived by scaling the mass measurements from the literature by a factor

(M?/M
lit
? )x, where M? is our measured stellar mass and M lit

? is the stellar mass from which the

planet mass was derived in the literature. For RV detections, the measured planet mass is pro-

portional to the RV semi-amplitudes, which scales as M
−2/3
? . Therefore, for RV systems we adopt

x=2/3. TTV analyses measure MP /M?, so we adopt x=1. Some TTV studies directly reported the

ratio of planet mass to stellar mass, in which case we simply multiplied that ratio by our measured

M?.

3https://github.com/dfm/acor
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Table 6.3. Planet Groups

Group P RP Number
(days) (R⊕)

sub-Saturn any 4− 8 29
sub-Neptune any 2− 4 66
super-Earth any 1− 2 45
ultra-short-period <1 >1 9

6.4.3 Core Mass

We estimate planet core mass, using the planet structure and thermal evolution models of Lopez &

Fortney (2014), which assume each planet is comprised of an Earth-composition core (30% Fe, 70%

Mg2SiO4) surrounded by a solar-composition H/He envelope. Lopez & Fortney (2014) simulated

the radius evolution of such planets over a grid of planet masses, core mass fractions (CMF), and

incident flux (Sinc). We interpolated this grid to estimate core mass fractions given our measured,

planet masses, radii, incident fluxes, and ages. Note that here, and throughout this text we refer

to Mg2SiO4 as “rock”.

6.5 Results & Analysis

Throughout this analysis, we group planets according to their radius and orbital period as outlined

in Table 6.3. Figure 6.4 shows the distribution of measured planet radii and orbital periods. Our

sample includes nine ultra-short-period planets (USPs, P < 1 day). We note that sub-Saturns

(4–8 R⊕) are overrepresented in our sample due to their higher detectability and Doppler programs

which have specifically targeted them (e.g. Petigura et al., 2017a). While they comprise ∼ 25%

of our planet sample, their occurrence rate is only ∼4% that of 1–4 R⊕ planets for P < 100 days

(Fulton et al., 2017). The fact that most of the planets with P . 3 days are smaller than 2

R⊕ is a characteristic of the general planet population and not the results of detection biases, as

observations are more sensitive to larger planets. However, these small, short-period planets are

overrepresented in our sample due to their high detectability and scientific interest — follow-up

observations are usually conducted at every opportunity. These planets are intrinsically rare, as

planet occurrence drops steadily inside P < 10 days (Howard et al., 2012).
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Figure 6.4: The distributions of planet orbital periods and radii in our sample.
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Figure 6.5: Planet mass-radius diagram for our entire catalog of planets from 1–8R⊕. Blue circles
and orange diamonds indicate planets whose masses were measured from RVs and TTVs respec-
tively. The size of each point scales as 1/σMP

Green letters denote Solar System planets Venus,
Earth, Uranus, and Neptune. Solid black curves show the mass-radius relations of Lopez & Fortney
(2014) for planets with Earth-composition cores surrounded by H/He envelopes with mass fractions
of 0%, 1%, 5%, 20% and 40%. These assume an incident flux of 100S⊕ and an age of 5 Gyr. The
dashed black line indicates the mass-radius relation of a pure iron planet modeled by Fortney et al.
(2007).
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6.5.1 A gap in planet composition

The observed gap in the planet radius distribution (Fulton et al., 2017) indicates two distinct

populations of small planets — “super-Earths” comprised of Earth-composition cores, and “sub-

Neptunes” which are similar cores surrounded by H/He envelopes, comprising a few percent of their

total mass. If the radius gap is caused by the complete photoevaporation of tenuous atmospheres

(. 1% H/He), then there should be similar gap in the planet density-radius distribution, precisely

where planets with tenous atmospheres would reside.

Figure 6.6 reveals a bimodal density-radius distribution that is consistent with the photoevap-

orative interpretation of the planet radius gap. The left panel shows all planets, while the right

panel excludes planets whose masses are measured to better than 33% precision (i.e. a 3-σ detec-

tion). The background shading scales with the number density of points, weighted by measurement

uncertainties. Specifically, we generated 1000 draws of planet density and radius from the mass and

radius posteriors of each planet. We then constructed a 2-D histogram of the entire set of draws

and smoothed it using a 2-D Gaussian kernel.

The resulting distribution is bimodal. The population of ∼ 1–2-R⊕ planets with high densi-

ties is consistent with solid cores surrounded by little to no gas (“super-Earths”). Most of these

planets are highly irradiated (Sinc > 100 S⊕), and susceptible to photoevaporation. The second

population consists of planets 2.2-3R⊕, with lower densities consistent with Earth-composition

cores surrounded by a few percent H/He. Between these two populations, where planets with

trace amounts of H/He ( < 1%), there is a deficit of planets. Note that the compositional curve

corresponding to a 1% H/He envelope assumes an incident flux of 100 S⊕ and age of 5 Gyr.

Th compositional gap becomes even sharper when we exclude planets with poorly constrained

masses (< 3-σ). This is not an artifact of detection biases, as planets in the gap are more detectable

than the super-Earth population. Moreover, there is almost no change in planet mass across the

gap, only a change in radius. Interestingly, there is a small population of 1–2 R⊕ planets, with low

densities consistent with < 1% H/He atmospheres (e.g. Kepler-138d, GJ 9827d). These planets are

relatively cool (Sinc < 100 S⊕) and less susceptible to photoevaporation. They are almost certainly

underrepresented in our sample — their detectability is low because of their small size and long

orbital periods.

6.5.2 Distribution of core masses and compositions

The distributions of planet masses and planet core masses are shown in the top panel of Figure 6.7.

While the observed core mass distribution peaks at ∼ 6–9 M⊕, smaller cores are likely undersampled

due to lower detectability. On the other hand, the steady drop of planet core masses beyond ∼10M⊕

is likely real. Only 13 planets have cores > 10 M⊕ at > 2σ confidence, and 11 of these are sub-

Saturns. The core mass distribution of our sample indicates that super-Earths and sub-Neptunes,

which comprise the bulk of the planet population, rarely possess cores > 10M⊕. If larger cores
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Figure 6.6: The density-radius distribution of our sample. The left panel shows all planets, while
the right panel excludes planets whose masses are measured to better than 33% precision (i.e. a
3-σ detection). Points are colored according to planet incident flux and sizes scale as 1/

√
σρp . The

background shading scales with the number density of points, weighted according to measurement
uncertainties and smoothed using a Gaussian kernel. Distinct super-Earth and sub-Neptune popu-
lations are evident, with a gap between them, which is where planets with Earth-composition cores
and . 1% H/He envelopes would reside. This gap is likely caused by the complete photoevapo-
ration of planets with tenuous envelopes. There is a residual population of 1–2 R⊕ planets with
lower densities. These planets experience low levels of irradiation, so they are less susceptible to
photoevaporation.
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form before most of the gas disperses from the disk, they are likely to experience runaway accretion

and become giant planets.

The bottom panel of Figure 6.7 shows how the distribution of core masses changes with orbital

period. At P . 3 days, cores do not exceed 10 M⊕. In contrast, from 3–10 days, there is a large

diversity of core masses ranging from ∼ 1–40 M⊕. There appears to be a pile-up of 20–40 M⊕

cores, which are not observed beyond 10 days. This resembles the pile-up of hot-Jupiters observed

at similar orbital periods, which has been attributed to net effect of disk migration and planet-star

tides (e.g. Heller, 2018). The sub-Saturn population we observe with 20-40 M⊕ cores could arise

from similar migration and tidal mechanisms. These planets might be former hot-Jupiters that lost

part of their envelopes via photoevaporation or never accreted enough gas to exceed 8 R⊕.

The observed peak in the core mass distribution at 6–9 M⊕ is consistent with the typical core

mass of ∼ 8M⊕ inferred by Wu (2018) from the observed planet radius distribution. Assuming

Earth-composition cores, she simulated the effects of photoevaporation on planet populations with

different core and envelope mass distributions and found that the resulting radius distribution best

matched observations when the characteristic core masses was ∼ 8M⊕.

The assumption of an Earth-composition core was justified based on theoretical expectations

of the efficiency of photoevaporation — cores of lower density (e.g. water ice) must have lower

masses to maintain radii consistent with the “super-Earth” peak of the radius distribution, but

these low-mass cores are expected to be too susceptible to photoevaporation for enough planets

to retain envelopes and preserve the equal height of the two peaks in the radius distribution.

For the two peaks to be equal in height, the cores must have Earth-like compositions, assuming

the photoevaporation efficiency of ∼ 10% predicted by simulations. At least some of the USP

planets are known to have Earth-like compositions (e.g. Kepler-78b). However, it is possible that

photoevaporation models are inaccurate and that the typical core composition differs from Earth.

Fortunately, we can investigate the compositional diversity of small planet cores by directly

examining the density-radius distribution of our super-Earth sample. For this analysis, we select

all planets 1–2R⊕ with ρp > 4g cm−3, as these are likely to be bare cores (super-Earths), or at least

have minimal atmospheres.

We place limits on the compositions of these planets in three different scenarios, each assuming

a different two-component compositional model:

1. Iron/Rock core

2. Rock/Water core

3. Earth-like core + H/He

For Scenario 1, we sample the mass and radius posteriors of each planet 1000 times and, for each

draw, we compute the rock mass fraction, frock, using equation 8 of Fortney et al. (2007). In cases

where the density exceeds that of pure iron, we set frock = 0. If the density is lower than that of
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pure rock, we set frock = Mrock / MP , where Mrock is the mass of a planet with the same radius and

frock = 1 — this is a purely analytic continuation. The median of the resulting frock distribution

is 0.82 (82% rock 18% iron), with a wide 1-σ confidence interval of 0.4–1.3.

We assess whether the breadth of the frock distribution of can be explained by measurement

uncertainties. That is, we test whether our measured distribution is consistent with the scenario

that all of these planets have the same frock. To conduct this test, we simulate a population

of planets that have the same masses as our measured masses, but have radii that are computed

assuming Earth-composition cores. We draw 1000 mass and radius measurements of each simulated

planet assuming the same noise properties as our real mass and radius measurements. For each

draw, we compute frock. The same steps are repeated using the observed masses and radii and

their uncertainties.

Figure 6.8 compares the observed frock distribution with that from our simulated observations of

Earth-composition cores (frock =0.7). The observed distribution is still broader than the simulated

one, suggesting that there is an intrinsic spread of core compositions, some of which are Earth-like.

We repeated the same simulations assuming cores with frock = 0.82, to match the median of the

observed population, but the simulated distribution was still wider than the observed one by the

same amount. We also tried increasing our mass and radius uncertainties, and found that they had

to be scaled by & 50% before there was reasonable agreement with the observed population.

For Scenario 2, we seek to constrain the fraction of cores comprised of more than 10% water

ice (fice > 0.1). Again, we sample the mass and radius posteriors of each planet 1000 times and,

for each draw, we compute fice, this time using equation 7 of Fortney et al. (2007). If the density

is higher than that of pure rock, we set fice = 0. For each planet, we compute the probability that

fice > 0.1. The mean of these probabilities is 0.18, suggesting that, at most, ∼ 18% of these cores

have fice > 0.1, assuming they are composed of rock and water.

For Scenario 3, we sample the fenv posteriors for each of these planets 1000 times. We find

that for all draws, fenv < 10−4. According to the models of Lopez & Fortney (2014), the addition

of H/He at such extreme temperatures rapidly expands the planet radius beyond the measured

value — the atmospheric scale height, H is proportional to planet temperature. Envelopes of

these highly irradiated planets would be quickly photoevaporated, but tenuous hydrogen envelopes

could be maintained by outgassing from the planet interior (Elkins-Tanton & Seager, 2008). While

our conclusions are limited to the uncertainties of the Lopez & Fortney (2014) models, which are

difficult to quantify, it is unlikely that these planets have fenv > 10−3.

In summary, our mass and radius measurements suggest that there is some intrinsic dispersion

in the compositions of super-Earth cores. If most cores are mixtures of iron and rock, then the

typical frock is ∼ 80%, slightly less iron-rich than Earth. If most cores are mixtures of rock and

water ice, then . 20% of them have fice > 10%. Finally, if the cores are mostly Earth-like in

composition, then they have little to no H/He (fenv . 10−3).
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Figure 6.7: Top: Planet mass and planet core mass distributions for our sample. Bottom: Planet
core mass plotted against planet orbital period.
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6.5.3 A correlation between core mass and host star metallicity

In the canonical picture of planet formation, cores of planets assemble from solids in the protoplan-

etary disk. The surface density of disk solids, which dictates core growth, presumably scales with

stellar metallicity, as both star and disk emerge from the same nebula of gas and dust. Since the

efficiency of core growth depends on the available reservoir of solid material, one might expect the

occurrence and outcome of planet formation to be strongly correlated with stellar metallicity.

Studies comparing the occurrence patterns of planets around stars of different metallicities

have already shed light on the planet formation process. The first Doppler detections of giant

planets revealed that metal-rich stars are more likely to host Jovian-mass planets (Gonzalez, 1997;

Reid, 2002; Santos et al., 2004; Fischer & Valenti, 2005), which is a key prediction of core accretion

theory. More recently, numerous studies have used the Kepler sample to investigate the occurrence-

metallicity relation for smaller planets. The emerging consensus is that planets smaller than 4R⊕

orbit stars with a broad range of metallicities, lower on average than the metallicities of giant planet

hosts (Buchhave et al., 2012, 2014; Petigura et al., 2018). There has been much debate about if and

how the metallicity distribution varies with planet radius for RP < 4 R⊕. While Buchhave et al.

(2014) favored the existence of distinct metallicity distributions for planets RP < 1.7 R⊕ and those

1.7–4.0 R⊕, Schlaufman (2015) rebutted that their statistical methods were flawed and suggested

the data favored a linear increase in average host star metallicity with planet radius, extending

from Earth- to Jovian-size planets.

Petigura et al. (2018) used a sample of 1305 spectroscopically characterized planet hosts from

the California Kepler Survey (CKS) to study the metallicity-radius relationship with unprecedented
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precision, including its dependence on orbital period. They found that for P < 10 days, the

occurrence of planets 1.0–1.7 R⊕ and 1.7-4.0 R⊕ both show a positive correlation with stellar

metallicity, consistent with previous studies (Mulders et al., 2016; Dong et al., 2018). Beyond 10

days, this trend vanishes for the super-Earths, but remains for sub-Neptunes. They also found that

the vast majority of planets 4–8 R⊕ orbit stars with super-solar metallicities.

The dependence between planet mass and stellar metallicity has been investigated much less

extensively than the radius-metallicity relationship. This is mostly due to a relative lack of mass

measurements for small planets. Studies of masses and radii as a function of metallicity can offer

complementary insights about planet formation. Planet masses provide a more direct assessment of

the cores of planets whereas radii are very sensitive to changes in envelope mass (Lopez & Fortney,

2014).

The absence of strong trends between planet radius and host star metallicity does not necessarily

reduce the likelihood of a strong mass-metallicity correlation. Radius-metallicity trends might be

weaker than mass-metallicity trends. First, while cores can presumably grow larger and more

efficiently in higher metallicity disks, the envelopes of planets within these disks would tend to

have higher opacities, lowering the rate of cooling and suppressing further gas accretion and overall

expansion. Moreover, the radii of small planet cores grow slowly with mass as ∼Mcore
1/4 (Fortney

et al., 2007), so an increase in core mass with metallicity would show weakly in planet radius space.

On the other hand, the efficiency of photoevaporation is lower for metal-enriched atmospheres,

which would tend to strengthen the correlation between planet radius and stellar metallicity.

These complicating factors can be sidestepped by directly examining the distribution of planet

masses as a function of stellar metallicities rather than planet radii. Our large sample of planet

masses allows for such an investigation, isolating the importance of stellar metallicity in the core

assembly process, and the degree to which it affects bulk compositions. We address these questions

in this section.

Figure 6.9 shows planet core masses (Mcore) plotted against host star iron abundances ([Fe/H])

for our entire planet sample (1–8 R⊕) as well as separately for 1–4 R⊕ planets and 4–8 R⊕ planets.

RV and TTV populations are distinguished to capture any systematic differences that might result

from different formation pathways or detection biases. One striking feature of the entire population

is an overall increase in both the mean and variance of core mass with host star metallicity. For

example, for stars with [Fe/H] < –0.2 dex, core masses are typically 1–8 M⊕, whereas stars with

[Fe/H]>+0.2 dex have planets spanning∼ 4–50M⊕ This is consistent with the analysis by Petigura

et al. (2018), which demonstrated that metal rich stars host planets with a greater diversity of radii.

To quantify the strength and significance of correlations, we perform a weighted-least-squares

regression, using weights of 1 / σMcore . We compute Pearson correlation coefficients (r) and p-

values, which are listed in Table 6.4. We assume correlations are significant if p-values are less

than 0.01. We observe significant positive correlations between planet core mass and host star
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metallicity over the full range of planet sizes (1–8 R⊕), and similarly significant correlations for 1–4

R⊕ planets and 4–8 R⊕ planets individually. Metallicity is evidently an important predictor of the

core masses of planets between the size of Earth and Saturn. This suggests that the assembly of

cores — even those of small planets — is limited by the solid surface density of the protoplanetary

disks.

Core mass is better predicted by stellar metallicity than stellar mass

Here we demonstrate that even though stellar metallicity is correlated with stellar mass, metallicity

is a better predictor of planet core mass for both 1–4 R⊕ planets and 4–8 R⊕ planets.

Even though we observe a correlation between Mcore and [Fe/H], it is important to consider

that metallicity is strongly correlated with stellar mass. Figure 6.3 shows this correlation in our

sample, which naturally arises because high-mass stars have shorter lifespans, so those observed

today formed relatively recently, at times when the Galaxy was more enriched with metals.

Comparing the left and middle columns of Figure 6.10, we see that in every radius bin core

mass correlates more strongly with stellar metallicity than stellar mass. Across the 1–8 R⊕ sample,

there is a significant correlation, but there are a number of outliers, which are better explained by

metallicity effects. For example, GJ 436b, and GJ 3470b, and K2-55b have unusually high core

masses for planets orbiting low-mass stars, yet their host star metallicities are also atypically high.

Within the 4–8 R⊕ range, there is no evidence that core mass and stellar mass are correlated.

The vast majority of these planets orbit stars more massive than 0.8, and the few exceptions have

super-solar metallicities. For planets 1-4R⊕, the correlation between Mcore and M? is of marginal

significance (p-value = 0.02).

There is theoretical and observational evidence that planet core mass scales with both stellar

mass and metallicity. The masses of protoplanetary disks scale with that of the host star, although

there is much scatter in the regime of Sun-like stars (Williams & Cieza, 2011). Therefore, it is

likely that the total reservoir of solid material and the growth of planet cores scales with both

stellar mass and metallicity. Moreover, the planet radius valley shifts to larger radii with increasing

stellar mass, indicating that the core masses of small planets increases with stellar mass (Fulton &

Petigura, 2018; Wu, 2018). Fulton & Petigura (2018) noted that the shifting radius valley could be

a metallicity effect rather than a stellar mass effect.

Wu (2018) came to the opposite conclusion, namely that that planet mass correlates with

stellar mass and not metallicity. This conclusion is based on a statistical analysis of planet radii

(for Rp = 1− 4R⊕), not measured planet masses. Wu (2018) noted that the gap radius shifts as a

function of stellar mass and that this shift can be accounted for semi-analytically by Rcore ∝M1/4
?

and Mcore ∝ M0.95−1.45
? ≈ M1.0

? . Wu (2018) finds no additional variability in gap radius that

correlates with stellar metallicity, after de-correlating against stellar mass. This is in tension with

our observation that stellar metallicity drives planet mass. We note differences between the two

136



studies. First, Wu (2018) is based on planet radii scaled to planet masses, not mass measurements

(as is in our study). Second, the Wu (2018)) conclusion is based on first fitting out the stellar

mass dependence and then failing to find an dependence on stellar metallicity. Wu (2018) did not

describe in their paper running the analysis with stellar metallicity (instead of stellar mass) as

the independent variable. Third, their analysis considers 1–4 Re planets while ours spans 1–8 Re

planets.

Our observations disfavor the conclusion of Wu (2018) that the size of small planet cores increase

with stellar mass, uninfluenced by metallicity. We conclude that core mass is more sensitive to

stellar metallicity than stellar mass.

Negligible influence of detection bias

Here, we show that unlike our planet core masses, our planet radiii are not significantly correlated

with stellar metallicity, suggesting that the observed correlation between core mass and metallicity

is unlikely to arise from biases against detecting small cores around metal-rich stars. These results

are summarized visually in Figure 6.10 and quantitatively in Table 6.4.

For small planets, it is conceivable that the observed correlation between core mass and metallic-

ity is, in part an artifact of detection biases — for a given planet radius, larger stars, which are more

metal-rich than smaller stars on average, yield shallower transits. This limits the detectability of

small planets orbiting high metallicity stars. If this bias is present in our sample, it should manifest

as a correlation between planet radius and stellar metallicity. However, the right column of Figure

6.10 shows a weak and insignificant correlation for planets 1-4R⊕ (r=0.14, p-value=0.12). For

planets 1–2R⊕, which are most likely to suffer from detection biases, the correlation is even weaker

(r=0.09, p-value=0.52). We conclude that the observed correlation is not significantly swayed by

detection biases. Regardless, this bias can not explain the observed deficit of massive cores around

low-metallicity stars, where they are easily detectable, and more detectable than those orbiting

higher metallicity stars.

The trend between core-mass and host star metallicity appears consistent across the entire

population of 1–8 R⊕ planets. However, we cannot simply assume a continuum of planet formation

in the range 1–8 R⊕. Planets spanning 4–8 R⊕ are intrinsically much rarer than 1–4 R⊕ planets and

may have different formation pathways with high-metallicity thresholds. On average, these “sub-

Saturns” form around stars with even higher metallicities than Jovian planets, suggesting they

represent the fringes of planet formation rather than the norm. Some might be the byproducts of

collisions between two massive cores, the formation of which requires an abundance of disk solids.
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Figure 6.9: Planet Core mass plotted against host star metallicity for all planets 1–8R⊕ (top),
1–4R⊕ (bottom-left) and 4–8R⊕ (bottom-right). Blue and orange circles distinguish planets with
masses measured from RVs and TTVs respectively. There is a significant positive correlation for
all populations.
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Figure 6.10: Left column: Same as Figure 6.9. Middle column: Core mass versus stellar mass
for the same three planet radius bins. In all radius bins, core mass correlates more strongly with
stellar metallicity than stellar mass. Right column: Planet radius versus stellar metallicity. For
1–4 R⊕ planets (middle row), planet radius us not significantly correlated with stellar metallicity,
suggesting that the observed correlation between core mass and stellar metallicity is not driven by
detection biases.
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Table 6.4. Correlations between planet and and host star properties for different planet radius
bins

RP Var Y Var X ra p-value Sig.b

(R⊕)

1–4 Mcore [Fe/H] 0.32 7×10−4 Y
1–8 Mcore [Fe/H] 0.39 2×10−6 Y
4–8 Mcore [Fe/H] 0.48 8×10−3 Y

1–4 Mcore M? 0.23 2×10−2 N
1–8 Mcore M? 0.24 5×10−3 Y
4–8 Mcore M? 0.10 6×10−1 N

1–4 RP [Fe/H] 0.14 1×10−1 N
1–8 RP [Fe/H] 0.34 2×10−5 Y
4–8 RP [Fe/H] 0.32 8×10−2 N

aPearson correlation coefficient
bCorrelation considered significant if p-value
≤ 1×10−2

6.6 Conclusion

We assembled a catalog of 139 planets spanning 1–8R⊕ that have measured masses. By character-

izing their 101 host stars using HIRES spectra and Gaia parallaxes, we derived precise stellar and

planet properties with minimal systematic biases in methodology. This constitutes the most com-

prehensive and precise catalog of small planet masses to date. The updated mass-radius diagram

provides an updated picture of the compositional diversity of small planets.

A gap exists in the planet density-radius distribution, separating super-Earths with bare cores

from sub-Neptunes, which possess H/He envelopes comprising a few percent of their mass. Planets

with tenuous H/He envelopes (fenv . 1%) are completely eroded by photoevaporation consistent

with the leading interpretation of the observed planet radius valley. The few 1–2 R⊕ planets

with H/He envelopes have low incident flux (Sinc < 100 R⊕) and are therefore less susceptible

photoevaporation. Collectively, these observations indicate that close to stars, nature produces

cores similar in composition to Earth, surrounded by H/He envelopes, which are then sculpted by

photoevaporation.

We find that small planet cores have typical masses of 6–9 M⊕, although detection biases limit

the number of smaller cores in our sample. All of the planets in our sample with orbital periods

less than 2.5 days have cores smaller than 10 M⊕. The overall core mass distribution drops steadily

beyond 10M⊕ and the majority of cores in our sample that exceed 10 M⊕ belong to sub-Saturns
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(4–8 R⊕), some of which have cores exceeeding 40 M⊕.

We find evidence that small planet cores have a diversity of bulk compositions. The observed

density-radius distribution of super-Earth cores is broader than would be expected for a single

composition. Assuming these cores are admixtures of iron and rock, the median rock fraction of

these cores is 82%, which is slightly larger than that of Earth (70%). If these cores are comprised

of rock and water, then less than 20% of them are more than 10% water by mass.

A positive correlation exists between the core masses of small planets and the metallicity of

their host stars. It is unlikely to be the result of detection biases, as we do not observe a correlation

between planet radii and stellar metallicity. Moreover, even though stellar metallicities strongly

correlate with stellar mass, we find that metallicities are a better predictor of core mass than stellar

mass. The assembly of planet cores is more sensitive to stellar metallicity than stellar mass.

141



Table 6.5. Host Star Properties

Name Npl Teff log g [Fe/H] Speca M? R? Age Isob

[K] [dex] [dex] Method [M� ] [R� ] [Gyr] Method

55 Cnc 5 5250± 100 4.360± 0.079 0.350± 0.043 sme 0.94± 0.03 0.930± 0.039 10.2+2.5
−4.1 direct

BD+20 594 1 5710± 100 4.420± 0.085 −0.160± 0.047 sme 0.89± 0.04 1.135± 0.041 7.4± 3.8 direct
CoRoT-24 2 4634± 110 4.49± 0.20 0.150± 0.080 emp 0.76± 0.04 0.825± 0.046 6.6± 4.7 direct
CoRoT-7 2 5256± 100 4.490± 0.083 0.080± 0.046 sme 0.87± 0.03 0.846± 0.033 7.3± 4.4 direct

CoRoT-8 1 5035± 100 4.400± 0.086 0.260± 0.049 sme 0.87± 0.03 0.835± 0.035 9.5+3.2
−5.0 direct

EPIC 201357835 1 5942± 100 4.580± 0.081 −0.450± 0.045 sme 0.88± 0.03 0.840+0.047
−0.034 3.0+3.1

−2.0 grid

EPIC 202089657 1 6132± 100 4.130± 0.080 −0.140± 0.044 sme 1.06+0.07
−0.05 1.554± 0.058 5.8± 1.3 direct

EPIC 206011496 1 5435± 100 4.470± 0.080 0.050± 0.043 sme 0.90± 0.04 0.924± 0.036 6.7± 4.1 direct

EPIC 211945201 1 6019± 100 4.180± 0.080 0.140± 0.044 sme 1.17± 0.07 1.387± 0.049 4.29+1.42
−0.94 direct

EPIC 212357477 1 5705± 100 4.450± 0.080 0.050± 0.044 sme 0.98± 0.04 0.952± 0.035 4.6± 3.1 direct

EPIC 213546283 1 5685± 100 4.23± 0.10 −0.135± 0.060 syn 0.89± 0.04 1.154± 0.044 11.2+1.7
−2.6 direct

EPIC 216494238 1 5741± 100 4.14± 0.10 0.353± 0.060 syn 1.17± 0.09 1.279± 0.052 5.3+1.9
−1.3 direct

EPIC 229004835 1 5839± 100 4.420± 0.080 −0.110± 0.044 sme 0.95± 0.04 0.998± 0.036 5.3± 3.1 direct
EPIC 245943455 1 5310± 100 4.420± 0.081 0.240± 0.045 sme 0.93± 0.04 0.910± 0.038 8.4± 4.1 direct
EPIC 245991048 1 5773± 100 4.31± 0.10 0.038± 0.060 syn 0.99± 0.05 1.094± 0.041 7.1± 2.9 direct

EPIC 247418783 1 5520± 100 4.500± 0.080 0.080± 0.044 sme 0.93± 0.04 0.899± 0.034 4.8+4.0
−3.1 direct

GJ 3470 1 3550± 70 4.61± 0.20 0.07± 0.12 emp 0.40± 0.06 0.518± 0.021 7.0± 4.6 direct
GJ 436 1 3448± 70 4.67± 0.20 0.01± 0.12 emp 0.32± 0.06 0.433± 0.018 7.0± 4.6 direct
GJ 9827 3 4217± 70 4.62± 0.20 −0.28± 0.12 emp 0.58± 0.03 0.612± 0.021 6.8± 4.7 direct
HAT-P-11 2 4617± 110 4.54± 0.20 0.160± 0.080 emp 0.76± 0.04 0.778± 0.038 6.6± 4.7 direct

HAT-P-26 1 5039± 100 4.450± 0.081 0.050± 0.045 sme 0.81± 0.03 0.851± 0.035 9.0+3.5
−4.9 direct

HD 106315 2 6379± 100 4.230± 0.080 −0.060± 0.044 sme 1.18± 0.05 1.273± 0.042 2.84± 0.88 direct
HD 219134 6 4856± 100 4.49± 0.10 0.123± 0.060 syn 0.80± 0.03 0.73± 0.11 7.7± 4.6 direct
HD 3167 3 5261± 100 4.470± 0.080 0.040± 0.043 sme 0.86± 0.03 0.878± 0.034 8.1± 4.3 direct
HD 89345 1 5607± 100 4.010± 0.080 0.470± 0.044 sme 1.22± 0.10 1.750± 0.065 5.8± 1.8 direct
HD 97658 1 5120± 100 4.570± 0.080 −0.280± 0.043 sme 0.74± 0.03 0.753± 0.030 7.2± 4.5 direct
HIP 116454 1 5011± 100 4.540± 0.085 −0.060± 0.047 sme 0.78± 0.03 0.767± 0.031 7.3± 4.6 direct
K2-10 1 5533± 100 4.470± 0.085 −0.070± 0.047 sme 0.88± 0.04 0.956± 0.037 6.6± 4.1 direct

K2-100 1 6044± 100 4.400± 0.080 0.300± 0.044 sme 1.21± 0.04 1.227± 0.045 1.49+1.28
−0.95 direct

K2-105 1 5373± 100 4.450± 0.085 0.220± 0.047 sme 0.94± 0.04 0.905± 0.035 6.9± 4.2 direct
K2-106 2 5496± 100 4.420± 0.080 0.060± 0.044 sme 0.91± 0.04 0.995± 0.039 7.8± 3.9 direct
K2-108 1 5474± 100 3.990± 0.081 0.330± 0.044 sme 1.10± 0.07 1.760± 0.075 8.6± 2.0 direct
K2-110 1 4868± 100 4.530± 0.080 −0.270± 0.044 sme 0.70± 0.03 0.710± 0.030 8.0± 4.5 direct
K2-111 1 5832± 100 4.430± 0.080 −0.440± 0.044 sme 0.83± 0.03 0.884± 0.063 8.2± 3.7 grid
K2-121 1 4526± 110 4.63± 0.20 0.040± 0.080 emp 0.71± 0.03 0.675± 0.033 6.6± 4.7 direct
K2-131 1 5107± 100 4.540± 0.085 0.010± 0.047 sme 0.82± 0.03 0.733± 0.030 6.9± 4.5 direct
K2-141 2 4452± 70 4.61± 0.20 0.07± 0.12 emp 0.70± 0.03 0.690± 0.023 6.6± 4.7 direct
K2-18 1 3449± 70 4.60± 0.20 0.00± 0.12 emp 0.32± 0.06 0.468± 0.019 7.0± 4.6 direct
K2-180 1 5166± 100 4.630± 0.081 −0.710± 0.045 sme 0.67± 0.02 0.638± 0.020 6.9± 4.6 grid
K2-181 1 5528± 100 4.350± 0.085 0.180± 0.047 sme 0.96± 0.04 1.060± 0.042 8.7± 3.3 direct
K2-189 2 5442± 100 4.510± 0.085 −0.100± 0.047 sme 0.85± 0.03 0.879± 0.034 6.4± 4.3 direct
K2-19 3 5322± 100 4.510± 0.083 0.060± 0.046 sme 0.88± 0.03 0.818± 0.036 6.4± 4.3 direct
K2-199 2 4507± 110 4.61± 0.20 −0.040± 0.080 emp 0.69± 0.03 0.678± 0.034 6.6± 4.7 direct
K2-214 1 5875± 100 4.280± 0.081 0.040± 0.044 sme 1.03± 0.05 1.236± 0.047 6.3± 2.0 direct
K2-216 1 4495± 70 4.60± 0.20 0.08± 0.12 emp 0.72± 0.03 0.699± 0.023 6.7± 4.6 direct
K2-220 1 5612± 100 4.450± 0.080 −0.050± 0.044 sme 0.91± 0.04 1.026± 0.040 6.4± 3.8 direct
K2-222 1 5961± 100 4.330± 0.080 −0.250± 0.044 sme 0.92± 0.04 1.093± 0.038 7.6± 2.6 direct
K2-229 3 5163± 100 4.530± 0.080 0.040± 0.043 sme 0.84± 0.03 0.774± 0.032 6.8± 4.4 direct
K2-24 2 5625± 100 4.290± 0.083 0.340± 0.046 sme 1.07± 0.05 1.158± 0.043 6.5± 2.2 direct
K2-27 1 5246± 100 4.480± 0.081 0.120± 0.045 sme 0.88± 0.03 0.876± 0.036 7.5± 4.4 direct
K2-3 3 3825± 70 4.61± 0.20 −0.27± 0.12 emp 0.45± 0.04 0.548± 0.021 6.9± 4.7 direct
K2-32 3 5274± 100 4.490± 0.083 −0.030± 0.046 sme 0.84± 0.03 0.855± 0.034 7.7± 4.4 direct
K2-36 2 4836± 100 4.550± 0.084 0.000± 0.046 sme 0.76± 0.03 0.717± 0.031 7.3± 4.6 direct
K2-37 3 5352± 100 4.530± 0.083 −0.080± 0.046 sme 0.84± 0.03 0.809± 0.032 6.4± 4.3 direct

K2-38 2 5679± 100 4.320± 0.083 0.230± 0.046 sme 1.04± 0.05 1.131+0.123
−0.095 6.4± 2.5 grid

K2-39 1 4915± 100 3.580± 0.080 0.430± 0.043 sme 1.38± 0.16 3.08± 0.14 4.2+2.5
−1.4 direct

K2-55 1 4275± 70 4.57± 0.20 0.16± 0.12 emp 0.69± 0.03 0.709± 0.025 6.8± 4.7 direct
K2-61 1 5748± 100 4.380± 0.085 0.030± 0.048 sme 0.97± 0.04 0.995± 0.042 6.2± 3.1 direct
K2-62 2 4455± 70 4.57± 0.20 −0.10± 0.12 emp 0.67± 0.03 0.696± 0.023 6.6± 4.7 direct
K2-66 1 5865± 100 3.990± 0.080 −0.050± 0.044 sme 1.06± 0.07 1.79± 0.10 7.3± 1.6 direct
K2-73 1 5867± 100 4.390± 0.081 0.040± 0.044 sme 1.02± 0.04 1.058± 0.039 4.4± 2.5 direct
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Table 6.5 (cont’d)

Name Npl Teff log g [Fe/H] Speca M? R? Age Isob

[K] [dex] [dex] Method [M� ] [R� ] [Gyr] Method

K2-79 1 5853± 100 4.180± 0.081 −0.000± 0.044 sme 1.01± 0.05 1.247± 0.045 8.0± 1.8 direct

K2-98 1 6103± 100 4.120± 0.081 −0.060± 0.044 sme 1.11+0.08
−0.06 1.565± 0.065 5.3± 1.3 direct

KOI-142 2 5393± 100 4.410± 0.084 0.200± 0.046 sme 0.93± 0.04 0.926± 0.035 8.2± 4.0 direct

Kepler-10 2 5646± 100 4.330± 0.085 −0.190± 0.048 sme 0.86± 0.03 1.090± 0.040 10.8+2.1
−3.5 direct

Kepler-100 3 5857± 100 4.130± 0.085 0.100± 0.048 sme 1.09+0.08
−0.06 1.550± 0.054 6.6± 1.7 direct

Kepler-101 2 5535± 100 4.010± 0.085 0.340± 0.047 sme 1.11+0.08
−0.07 1.763± 0.072 8.1± 2.0 direct

Kepler-102 5 4811± 100 4.560± 0.085 0.130± 0.047 sme 0.79± 0.03 0.738± 0.031 6.8± 4.6 direct

Kepler-103 2 5882± 100 4.160± 0.085 0.130± 0.048 sme 1.11+0.08
−0.06 1.525± 0.056 5.9± 1.6 direct

Kepler-105 2 5957± 100 4.420± 0.084 −0.110± 0.046 sme 0.99± 0.04 1.047± 0.038 4.0± 2.6 direct

Kepler-106 4 5933± 100 4.460± 0.085 −0.070± 0.047 sme 1.00± 0.04 1.064± 0.040 3.2+2.7
−2.1 direct

Kepler-11 6 5820± 100 4.430± 0.085 0.070± 0.047 sme 1.02± 0.04 1.119± 0.041 3.8± 2.6 direct
Kepler-113 2 4647± 110 4.55± 0.20 0.120± 0.080 emp 0.76± 0.04 0.768± 0.037 6.6± 4.7 direct

Kepler-131 2 5749± 100 4.460± 0.085 0.150± 0.048 sme 1.03± 0.04 1.014± 0.036 3.4+2.9
−2.2 direct

Kepler-138 3 3823± 70 4.65± 0.20 −0.16± 0.12 emp 0.48± 0.04 0.537± 0.020 6.9± 4.7 direct
Kepler-1655 1 6047± 100 4.370± 0.085 −0.280± 0.048 sme 0.94± 0.04 1.058± 0.036 5.7± 2.7 direct

Kepler-177 2 5733± 100 4.11± 0.10 −0.106± 0.060 syn 0.94+0.06
−0.04 1.429± 0.071 10.7± 1.9 direct

Kepler-18 3 5361± 100 4.380± 0.085 0.190± 0.048 sme 0.92± 0.04 0.948± 0.037 9.4+3.0
−4.5 direct

Kepler-19 3 5537± 100 4.550± 0.085 −0.080± 0.048 sme 0.89± 0.04 0.889± 0.033 4.4+4.3
−3.0 direct

Kepler-20 6 5482± 100 4.470± 0.085 0.040± 0.048 sme 0.91± 0.04 0.900± 0.033 6.3± 4.1 direct

Kepler-21 1 6207± 100 4.060± 0.085 0.030± 0.047 sme 1.25± 0.09 1.947± 0.065 3.45+1.19
−0.66 direct

Kepler-22 1 5614± 100 4.590± 0.085 −0.260± 0.048 sme 0.85± 0.03 0.849± 0.031 4.1+4.3
−2.8 direct

Kepler-223 4 5803± 100 4.160± 0.089 0.180± 0.051 sme 1.10+0.09
−0.06 1.75± 0.13 6.4± 1.8 direct

Kepler-26 4 4051± 70 4.63± 0.20 −0.18± 0.12 emp 0.55± 0.03 0.596± 0.022 6.8± 4.7 direct

Kepler-279 3 6631± 100 4.42± 0.10 −0.049± 0.060 syn 1.25+0.05
−0.04 1.439± 0.054 0.91+0.80

−0.55 direct

Kepler-29 2 5378± 100 4.64± 0.10 −0.436± 0.060 syn 0.76± 0.03 0.781± 0.042 5.7+5.0
−3.9 direct

Kepler-30 3 5464± 100 4.66± 0.10 0.157± 0.060 syn 0.95± 0.04 0.861± 0.045 2.9+3.5
−2.0 direct

Kepler-305 3 4994± 100 4.410± 0.087 0.070± 0.049 sme 0.81± 0.03 0.812± 0.044 9.5+3.2
−5.0 direct

Kepler-307 2 5456± 100 4.390± 0.085 0.140± 0.047 sme 0.93± 0.04 0.979± 0.038 8.6± 3.8 direct

Kepler-310 3 5429± 100 4.580± 0.086 −0.210± 0.048 sme 0.82± 0.03 0.868± 0.034 5.5+4.8
−3.7 direct

Kepler-33 6 5900± 100 4.020± 0.085 0.100± 0.048 sme 1.15+0.10
−0.07 1.725± 0.069 5.7± 1.5 direct

Kepler-359 3 5659± 100 4.610± 0.087 −0.360± 0.049 sme 0.83± 0.03 0.898± 0.077 4.0+4.3
−2.7 direct

Kepler-36 2 5980± 100 4.050± 0.085 −0.170± 0.048 sme 1.01± 0.06 1.678± 0.061 7.7± 1.5 direct

Kepler-4 1 5782± 100 4.060± 0.085 0.160± 0.048 sme 1.11+0.09
−0.07 1.555± 0.059 6.9± 1.8 direct

Kepler-406 2 5586± 100 4.340± 0.085 0.230± 0.048 sme 1.00± 0.05 1.094± 0.041 7.5± 3.1 direct
Kepler-454 2 5620± 100 4.280± 0.085 0.220± 0.048 sme 1.01± 0.05 1.090± 0.040 8.2± 2.5 direct
Kepler-48 4 5169± 100 4.460± 0.085 0.210± 0.047 sme 0.88± 0.03 0.857± 0.035 8.0± 4.4 direct
Kepler-49 4 4010± 70 4.58± 0.20 −0.13± 0.12 emp 0.55± 0.03 0.627± 0.023 6.8± 4.7 direct

Kepler-51 3 5574± 100 4.600± 0.086 −0.070± 0.048 sme 0.90± 0.03 0.863± 0.037 3.3+3.7
−2.2 direct

Kepler-549 2 5266± 100 4.590± 0.086 0.070± 0.049 sme 0.87± 0.03 0.850± 0.036 4.7+4.7
−3.3 direct

Kepler-56 3 4790± 100 3.270± 0.081 0.420± 0.044 sme 1.41± 0.21 4.32± 0.22 4.0+3.1
−1.6 direct

Kepler-60 3 5887± 100 4.200± 0.085 −0.030± 0.047 sme 1.00± 0.05 1.507± 0.060 7.7± 1.8 direct
Kepler-68 3 5821± 100 4.300± 0.085 0.130± 0.047 sme 1.05± 0.05 1.259± 0.045 5.8± 2.2 direct
Kepler-78 1 5023± 100 4.550± 0.080 0.000± 0.044 sme 0.80± 0.03 0.747± 0.030 6.9± 4.5 direct

Kepler-79 4 6313± 100 4.210± 0.085 0.140± 0.047 sme 1.28± 0.06 1.457± 0.057 2.27+0.64
−0.86 direct

Kepler-80 5 4432± 70 4.57± 0.20 0.08± 0.12 emp 0.70± 0.03 0.720± 0.024 6.6± 4.7 direct

Kepler-85 4 5421± 100 4.560± 0.087 0.050± 0.049 sme 0.90± 0.04 0.898± 0.038 4.4+4.4
−3.0 direct

Kepler-89 4 6144± 100 4.160± 0.084 0.140± 0.047 sme 1.23± 0.07 1.426± 0.050 3.30+0.89
−0.68 direct

Kepler-93 2 5650± 100 4.480± 0.085 −0.160± 0.047 sme 0.88± 0.04 0.941± 0.034 6.0± 3.9 direct
Kepler-94 2 4452± 70 4.52± 0.20 0.22± 0.12 emp 0.74± 0.03 0.781± 0.025 6.7± 4.6 direct

Kepler-95 1 5650± 100 4.180± 0.085 0.240± 0.048 sme 1.05+0.07
−0.05 1.441± 0.055 8.2± 2.2 direct

Kepler-96 1 5740± 100 4.530± 0.085 0.070± 0.047 sme 1.00± 0.04 0.953± 0.034 2.7+2.9
−1.9 direct

Kepler-97 2 5800± 100 4.480± 0.085 −0.210± 0.047 sme 0.90± 0.04 0.997± 0.037 5.0± 3.4 direct
Kepler-98 1 5497± 100 4.490± 0.085 0.130± 0.047 sme 0.94± 0.04 0.934± 0.035 5.1± 3.7 direct
Kepler-99 1 4608± 110 4.54± 0.20 0.120± 0.080 emp 0.75± 0.03 0.771± 0.037 6.6± 4.7 direct
WASP-47 4 5476± 100 4.270± 0.080 0.370± 0.044 sme 1.01± 0.05 1.144± 0.049 9.2± 2.5 direct

aSpectral characterization tool used: SME = Spectroscopy Made Easy (Brewer et al., 2015, 2016; Brewer & Fischer, 2018), EMP =
SpecMatch-Emp (Yee et al., 2017), SYN = SpecMatch-Syn (Petigura, 2015)

bDirect: Rstar, Lum, Distance estimated from Isoclassify “Direct” method (Huber et al., 2017) using Teff , log g, [Fe/H], K mag and parallax
as inputs.
Grid: Mstar, Rstar, Lum, age, Distance posteriors estimated by interpolation of MIST isochrones using Teff , log g, [Fe/H] and K mag (no
parallax)
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Table 6.6. Planet Properties

Name Per Rp/R? RP MP ρp fenv Sinc

55 Cnce 0.737 1.929± 0.076 1.96± 0.11 8.25± 0.34 6.09± 1.08 0± 0 2412± 271

BD+20 594b 41.685 2.259+0.185
−0.094 2.80+0.25

−0.15 15.67± 5.51 3.95± 1.64 2.7+1.7
−1.3 24.0± 2.5

CoRoT-24c 11.759 5.000± 0.010 4.50± 0.25 24.84± 8.62 1.50± 0.58 15.2± 3.1 33.0± 4.6
CoRoT-7b 0.854 1.784± 0.047 1.65± 0.08 4.61± 0.91 5.70± 1.39 0± 0 1741± 191

CoRoT-8b 6.212 7.50± 0.10 6.83± 0.30 68.20± 10.55 1.18± 0.24 39.8+3.4
−4.6 101± 11

EPIC 201357835b 11.894 3.002+0.127
−0.053 2.75+0.19

−0.12 14.73± 26.83 3.58± 6.83 0.19+1.78
−0.19 83.1± 8.7

EPIC 202089657b 1.315 1.968+0.102
−0.049 3.34+0.22

−0.15 −4.20± 5.45 −0.52± 0.78 0+1
−0 5321± 578

EPIC 206011496b 2.369 1.683+0.084
−0.039 1.69+0.11

−0.08 3.07± 2.64 3.33± 3.00 0± 0 592± 66

EPIC 211945201b 19.491 3.749+0.127
−0.058 5.67+0.28

−0.21 6.43± 7.65 0.20± 0.22 23.6+4.3
−23.6 101± 12

EPIC 212357477b 6.327 2.017+0.127
−0.050 2.09+0.15

−0.09 7.42± 3.34 4.17± 2.13 0.33+0.48
−0.33 195± 21

EPIC 213546283b 9.771 2.853+0.171
−0.083 3.59+0.26

−0.17 8.50± 9.23 0.97± 1.10 7.4+2.3
−7.4 168± 18

EPIC 216494238b 19.895 5.362+0.077
−0.038 7.48± 0.31 49.14± 6.39 0.64± 0.12 48.2± 3.9 69.4± 10.0

EPIC 229004835b 16.139 1.899+0.115
−0.065 2.07+0.15

−0.10 18.29± 5.30 10.91± 3.88 0± 0 68.9± 7.4

EPIC 245943455b 6.339 3.791+0.192
−0.072 3.76+0.25

−0.17 4.37± 5.33 0.44± 0.56 9.1+2.3
−9.1 138± 16

EPIC 245991048b 8.583 1.957+0.101
−0.049 2.33+0.15

−0.10 7.99± 5.26 3.33± 2.27 0.84+0.95
−0.62 179± 20

EPIC 247418783b 2.225 1.561+0.122
−0.044 1.53+0.13

−0.07 6.49+4.75
−7.42 9.43± 8.23 0± 0 633± 71

GJ 3470b 3.337 7.642± 0.037 4.31± 0.18 9.98± 1.12 0.69± 0.11 15.9+1.5
−2.1 36.7± 6.8

GJ 436b 2.644 8.22± 0.11 3.89± 0.17 17.99± 2.41 1.69± 0.32 10.0+2.0
−1.4 36.3+10.3

−7.8

GJ 9827b 1.209 2.387+0.155
−0.064 1.59+0.12

−0.07 3.74± 0.49 5.11+1.33
−0.93 0± 0 310± 35

GJ 9827c 3.648 1.926+0.132
−0.071 1.28+0.10

−0.06 1.47± 0.58 3.82± 1.69 0± 0 71.4± 7.9

GJ 9827d 6.201 2.601+0.173
−0.091 1.73+0.13

−0.08 2.38± 0.70 2.52± 0.88 0.31+0.23
−0.16 35.0± 4.0

HAT-P-11b 4.888 5.782+0.035
−0.017 4.90± 0.24 23.16± 1.57 1.08± 0.17 19.0± 2.6 93± 13

HAT-P-26b 4.235 7.37± 0.12 6.84± 0.31 18.40± 2.19 0.32± 0.06 42.5± 3.3 183± 20

HD 106315b 9.550 1.692+0.108
−0.076 2.35+0.17

−0.13 8.26± 2.56 3.48± 1.29 0.97± 0.58 277± 29

HD 106315c 21.056 3.090+0.071
−0.038 4.29± 0.16 16.22± 3.27 1.09± 0.25 13.6± 1.6 96± 10

HD 219134b 3.093 1.89± 0.49 1.51± 0.45 4.67± 0.19 7.43± 6.63 0± 0 180± 36
HD 219134c 6.765 1.78± 0.44 1.43± 0.41 4.32± 0.22 8.20± 7.02 0± 0 64± 12

HD 3167b 0.960 1.830+0.224
−0.088 1.75+0.23

−0.11 4.95± 0.39 5.08+2.01
−1.01 0± 0 1620± 177

HD 3167c 29.845 3.12+0.51
−0.24 2.98+0.50

−0.25 9.71± 1.26 2.02+1.06
−0.57 4.9± 2.5 16.6± 1.8

HD 89345b 11.815 3.663+0.215
−0.078 6.99+0.49

−0.29 34.70± 3.48 0.53± 0.10 43.1+3.6
−5.6 231± 31

HD 97658b 9.490 3.06± 0.14 2.51± 0.15 7.42± 0.72 2.58± 0.53 2.04± 0.79 55.4± 6.2

HIP 116454b 9.120 3.11± 0.17 2.60± 0.18 12.19± 1.42 3.82± 0.90 1.80+1.09
−0.84 53.7± 6.2

K2-10b 19.306 3.724+0.088
−0.047 3.88± 0.17 25.21± 9.42 2.31± 0.95 9.1+2.4

−1.9 42.0± 4.6

K2-100b 1.674 2.669+0.074
−0.030 3.57± 0.15 −1.53± 20.21 −0.06± 2.49 0+3

−0 2078± 207

K2-105b 8.267 3.395+0.126
−0.053 3.35+0.18

−0.14 15.52± 4.52 2.18± 0.75 6.0± 1.5 99± 11

K2-106b 0.571 1.676+0.096
−0.042 1.82+0.13

−0.08 8.02± 0.98 7.10± 1.50 0± 0 4741± 515

K2-106c 13.339 2.692+0.134
−0.077 2.92+0.19

−0.14 5.01± 3.12 0.92± 0.64 4.5± 1.2 71.1± 7.8

K2-108b 4.734 2.879+0.149
−0.058 5.52+0.38

−0.26 54.69± 4.94 1.74± 0.34 18.1± 2.7 767± 94

K2-110b 13.864 3.293+0.110
−0.047 2.55+0.14

−0.11 17.12± 3.15 5.52± 1.30 1.11+0.81
−0.52 25.3± 3.0

K2-111b 5.352 1.332+0.063
−0.038 1.28+0.12

−0.09 5.51± 2.35 13.41+7.95
−5.88 0± 0 256± 33

K2-121b 5.186 10.127+0.176
−0.081 7.46± 0.38 51.68± 11.09 0.67± 0.18 47.8± 5.4 62.7± 9.0

K2-131b 0.369 2.04+0.44
−0.16 1.63+0.36

−0.15 6.62± 1.39 8.44+5.81
−2.89 0± 0 3680± 434

K2-141b 0.280 2.037± 0.046 1.53± 0.06 5.04± 0.42 7.72± 1.13 0± 0 3009± 328

K2-18b 32.941 5.066+0.161
−0.092 2.59± 0.13 7.51± 1.60 2.36± 0.62 3.4± 1.0 1.49± 0.35

K2-180b 8.866 3.207+0.162
−0.079 2.23+0.13

−0.09 7.40± 3.23 3.57± 1.64 0.81+0.80
−0.43 48.3± 5.2

K2-181b 6.894 2.479+0.189
−0.081 2.87+0.25

−0.15 11.72± 17.71 2.51± 4.07 1.4+2.7
−1.4 192± 22

K2-189b 2.588 1.575+0.089
−0.049 1.51+0.10

−0.07 4.51± 3.70 6.71± 5.62 0± 0 497± 55

K2-189c 6.679 2.596+0.151
−0.059 2.49+0.18

−0.11 4.85± 5.59 1.40± 1.91 1.3± 1.3 140± 16

K2-19b 7.919 7.446+0.070
−0.044 6.64± 0.30 27.59± 4.81 0.52± 0.11 39.9+3.5

−5.0 87± 10

K2-19c 11.907 4.436+0.193
−0.089 3.96+0.25

−0.19 24.74± 6.73 2.20± 0.70 9.5+3.0
−2.0 50.5± 5.9

K2-199b 3.225 2.455+0.177
−0.064 1.81+0.16

−0.10 7.80± 2.13 6.86± 2.43 0± 0 119± 17

K2-199c 7.374 3.766+0.171
−0.069 2.78+0.19

−0.14 10.94± 2.70 2.64± 0.85 3.0± 1.2 39.6± 5.7

K2-214b 8.597 1.824+0.100
−0.053 2.46+0.17

−0.12 2.68± 6.43 0.82± 2.31 0.79+1.41
−0.79 238± 26

K2-216b 2.175 2.197+0.169
−0.064 1.68+0.14

−0.07 5.81± 1.73 6.44± 2.36 0± 0 207± 23

K2-220b 13.682 2.153+0.125
−0.061 2.41+0.17

−0.11 0.12± 4.08 0.02± 1.55 0+2
−0 79.7± 8.8

K2-222b 15.386 2.017+0.138
−0.066 2.40+0.19

−0.11 6.18± 2.63 2.30± 1.08 1.72+1.06
−0.75 97.4± 10.0

K2-229b 0.584 1.485+0.221
−0.084 1.25+0.19

−0.09 2.57± 0.43 7.20+3.55
−1.91 0± 0 2289± 265

K2-24b 20.885 4.356+0.085
−0.040 5.50± 0.22 15.99± 2.91 0.53± 0.13 27.2+1.8

−2.6 52.2± 6.2

K2-24c 42.363 5.978+0.099
−0.054 7.55± 0.30 13.27± 4.44 0.16± 0.06 51.2+5.2

−3.7 20.4± 2.4

K2-27b 6.771 4.808+0.131
−0.058 4.59± 0.21 26.96± 5.16 1.47± 0.35 15.6± 2.3 116± 13

K2-3b 10.054 3.513+0.210
−0.084 2.10+0.15

−0.09 5.28± 0.84 3.14+0.85
−0.63 0.85+0.54

−0.40 11.7± 1.7

K2-3c 24.644 2.882+0.231
−0.098 1.72+0.15

−0.09 1.56± 0.89 1.68± 1.03 0.47+0.43
−0.29 3.57± 0.52
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Table 6.6 (cont’d)

Name Per Rp/R? RP MP ρp fenv Sinc

K2-3d 44.560 2.35+0.17
−0.12 1.40+0.12

−0.09 −0.68± 1.62 −1.36± 3.23 0± 0 1.62± 0.24

K2-32b 8.992 5.606+0.107
−0.049 5.23± 0.22 15.46± 2.01 0.59± 0.11 23.9± 2.4 79.3± 8.7

K2-32c 20.661 3.346+0.148
−0.070 3.12+0.19

−0.14 4.50± 2.47 0.79± 0.46 6.1± 1.3 26.3± 2.9

K2-32d 31.717 3.708+0.241
−0.078 3.46+0.26

−0.15 12.27± 2.99 1.58± 0.49 8.2± 1.8 14.8± 1.6

K2-36b 1.423 1.690+0.107
−0.049 1.32+0.10

−0.07 9.34± 3.86 21.03± 9.65 0± 0 493± 59

K2-36c 5.341 3.156+0.330
−0.089 2.47+0.28

−0.12 7.70± 5.88 2.51± 2.14 1.19+1.63
−0.99 84± 10

K2-37b 4.443 1.654+0.124
−0.058 1.46+0.12

−0.08 −0.98± 5.34 −1.75± 9.43 0± 0 192± 21

K2-37c 6.430 2.872+0.181
−0.069 2.53+0.19

−0.11 5.00± 5.24 1.54± 1.73 1.6± 1.6 118± 13

K2-37d 14.092 2.753+0.247
−0.082 2.43+0.24

−0.12 12.59± 6.26 4.33± 2.69 0.95+1.27
−0.69 41.3± 4.5

K2-38b 4.017 1.420+0.103
−0.049 1.75+0.23

−0.16 6.45± 1.99 6.21+3.82
−2.52 0± 0 476± 72

K2-38c 10.561 2.008+0.135
−0.060 2.48+0.32

−0.22 7.73± 2.71 2.61+1.71
−1.13 1.8+1.6

−1.2 131± 20

K2-39b 4.605 1.800+0.114
−0.048 6.05+0.47

−0.31 42.19± 6.85 1.03± 0.26 19.8± 2.9 1374± 204

K2-55b 2.849 5.58+0.22
−0.10 4.31+0.23

−0.17 44.46± 4.47 2.99± 0.51 9.9+2.4
−1.6 125± 13

K2-61b 2.573 1.733+0.098
−0.048 1.88+0.13

−0.09 0.22± 7.90 0.04± 6.03 0± 0 728± 85

K2-62b 6.672 2.602+0.217
−0.075 1.98+0.18

−0.09 −0.99± 4.28 −0.54± 2.82 0+1
−0 46.6± 5.0

K2-62c 16.197 2.555+0.242
−0.091 1.94+0.20

−0.09 1.12± 5.72 1.10± 3.89 0± 0 14.3± 1.5

K2-66b 5.069 1.515+0.087
−0.053 2.96+0.25

−0.19 16.31± 3.93 3.33± 1.14 1.77± 0.90 984± 123

K2-73b 7.496 2.270+0.110
−0.049 2.62+0.16

−0.11 7.63± 3.74 2.12± 1.13 2.13+1.02
−0.71 209± 22

K2-79b 10.995 2.890+0.082
−0.050 3.93± 0.17 4.09± 4.40 0.35± 0.39 10.2+2.1

−10.2 174± 20

K2-98b 10.137 3.015+0.076
−0.041 5.14± 0.24 30.80± 21.69 1.17± 0.90 17.9± 2.6 339± 41

KOI-142b 10.954 3.863+0.041
−0.310 3.90+0.16

−0.34 8.71± 2.58 0.81± 0.29 11.8± 2.3 72.8± 8.1

Kepler-10b 0.837 1.255+0.026
−0.015 1.49± 0.06 3.08± 0.27 5.12± 0.77 0± 0 3960± 402

Kepler-10c 45.294 1.981+0.033
−0.013 2.35± 0.09 7.05± 1.23 2.98± 0.62 1.68± 0.54 19.3± 2.0

Kepler-100b 6.887 0.80820+0.00080
−0.06320 1.37+0.05

−0.12 5.91± 2.52 12.78± 5.99 0± 0 478± 57

Kepler-100c 12.816 1.407+0.159
−0.049 2.38+0.28

−0.12 0.64± 3.19 0.26± 1.31 0+2
−0 209± 25

Kepler-100d 35.333 0.962+0.198
−0.054 1.63+0.34

−0.11 −3.93± 5.47 −5.04± 7.39 0± 0 54.1± 6.5

Kepler-101b 3.488 3.2422+0.0231
−0.0080 6.23± 0.26 49.07± 5.34 1.12± 0.18 22.5+2.0

−2.8 1201± 145

Kepler-102d 10.312 1.656+0.018
−0.146 1.33+0.06

−0.13 4.00± 1.71 9.31± 4.49 0± 0 35.5± 4.2

Kepler-102e 16.146 3.064+0.027
−0.257 2.47+0.11

−0.23 9.19± 2.04 3.38+0.85
−1.22 1.63+1.27

−0.78 19.6± 2.3

Kepler-103b 15.965 2.128+0.014
−0.110 3.54+0.13

−0.22 9.88± 8.53 1.23± 1.08 7.2+1.7
−4.3 151± 18

Kepler-103c 179.612 3.495+0.100
−0.193 5.81+0.27

−0.38 37.69± 25.70 1.06± 0.74 27.9+7.1
−3.9 6.00± 0.73

Kepler-105c 7.126 1.512+0.032
−0.219 1.73+0.07

−0.26 3.60± 1.30 3.85+1.48
−2.22 0± 0 237± 25

Kepler-106c 13.571 2.391+0.041
−0.263 2.77+0.12

−0.32 9.87± 3.07 2.55± 1.03 2.7± 1.3 101± 11

Kepler-106e 43.844 2.5934+0.0027
−0.3042 3.01+0.11

−0.37 10.56± 5.32 2.14± 1.22 3.9+2.2
−1.7 21.2± 2.3

Kepler-11d 22.684 2.802+0.055
−0.018 3.42± 0.14 7.79+0.88

−1.64 1.07+0.18
−0.26 7.5± 1.1 51.6± 5.6

Kepler-11e 32.000 3.611+0.025
−0.214 4.41+0.17

−0.30 8.47+1.65
−2.27 0.55+0.12

−0.19 15.8± 2.3 32.6± 3.5

Kepler-11f 46.689 2.206± 0.041 2.69± 0.11 2.15± 0.95 0.61± 0.28 3.55+0.73
−1.20 19.7± 2.1

Kepler-113b 4.754 2.6463+0.0091
−0.1978 2.22+0.11

−0.20 11.72± 4.03 5.94± 2.41 0.37+0.65
−0.37 97± 13

Kepler-131b 16.092 1.918+0.172
−0.063 2.12+0.21

−0.10 15.91± 3.03 9.20+3.18
−2.23 0± 0 63.1± 7.0

Kepler-138c 13.781 2.593+0.220
−0.073 1.52+0.14

−0.07 4.60+0.71
−0.95 7.23+2.31

−1.79 0± 0 7.2± 1.1

Kepler-138d 23.088 2.258+0.033
−0.047 1.32± 0.05 1.03± 0.22 2.45± 0.61 0.156+0.059

−0.156 3.60± 0.52

Kepler-1655b 11.873 1.9838+0.0054
−0.2721 2.29+0.08

−0.32 4.95± 2.88 2.28± 1.50 1.00+1.04
−0.57 134± 14

Kepler-177b 36.855 2.420+0.088
−0.045 3.77± 0.22 5.40± 0.95 0.55± 0.14 11.9+1.5

−2.2 43.9± 5.1

Kepler-18b 3.505 1.76± 0.16 1.82± 0.18 6.90± 3.40 6.27± 3.60 0± 0 344± 39

Kepler-18d 14.859 5.1590+0.0075
−0.0570 5.33± 0.21 16.40± 1.40 0.60± 0.09 25.9± 2.2 50.2± 5.7

Kepler-19b 9.287 2.378+0.035
−0.011 2.31± 0.09 8.40± 1.55 3.77± 0.82 0.85+0.52

−0.35 97± 10

Kepler-20b 3.696 1.763+0.038
−0.011 1.73± 0.07 9.48± 1.34 10.10± 1.88 0± 0 319± 35

Kepler-20c 10.854 2.960+0.149
−0.052 2.90+0.18

−0.12 12.47± 2.11 2.81+0.73
−0.56 3.5± 1.0 75.9± 8.4

Kepler-20d 77.611 2.568+0.060
−0.027 2.52± 0.10 9.67± 3.74 3.33± 1.36 2.09+1.18

−0.81 5.51± 0.61

Kepler-21b 2.786 0.8919+0.0063
−0.1163 1.89+0.07

−0.25 5.11± 1.62 4.15+1.43
−2.10 0± 0 2893± 335

Kepler-22b 289.862 2.423+0.095
−0.324 2.24+0.12

−0.31 44.47± 62.49 21.74± 31.33 0± 0 0.97± 0.10

Kepler-223b 7.384 1.777+0.260
−0.084 3.38+0.56

−0.29 8.10± 1.16 1.15+0.60
−0.33 5.3± 2.4 530± 76

Kepler-223c 9.846 1.969+0.380
−0.075 3.75+0.78

−0.30 5.57+1.76
−1.21 0.58+0.41

−0.19 9.0± 3.6 360± 53

Kepler-223d 14.789 2.536+0.076
−0.035 4.83± 0.38 8.80± 1.36 0.43± 0.12 19.2± 3.0 209± 30

Kepler-26b 12.283 4.823+0.049
−0.024 3.14± 0.12 6.31± 0.60 1.13± 0.17 6.6± 1.1 11.7± 1.4

Kepler-26c 17.256 4.50± 0.36 2.93± 0.26 6.31± 0.60 1.39± 0.39 5.2± 1.9 7.43± 0.91

Kepler-279c 35.735 2.954+0.071
−0.316 4.64+0.21

−0.52 7.40+2.20
−1.50 0.41± 0.15 13.9± 3.4 68.7± 6.8

Kepler-279d 54.414 2.745+0.029
−0.412 4.31+0.17

−0.67 4.50+1.20
−0.90 0.31+0.09

−0.16 10.9± 3.1 39.3± 3.9

Kepler-29b 10.338 3.133+0.080
−0.043 2.67± 0.15 3.49± 1.10 1.01± 0.36 3.40± 0.93 63.6± 7.6

Kepler-29c 13.288 2.928+0.079
−0.048 2.49± 0.14 3.08± 0.96 1.10± 0.39 2.66± 0.85 45.5± 5.6

Kepler-30b 29.334 2.018+0.076
−0.154 1.90+0.12

−0.17 8.80± 0.55 7.12+1.49
−2.00 0± 0 17.7± 2.2

Kepler-305d 16.739 2.97+0.58
−0.15 2.63+0.53

−0.19 9.10+6.10
−3.80 2.74+2.48

−1.30 2.3+2.6
−1.7 25.7± 3.1
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Table 6.6 (cont’d)

Name Per Rp/R? RP MP ρp fenv Sinc

Kepler-307b 10.421 2.79+0.24
−0.17 2.98+0.28

−0.21 7.58± 0.86 1.58+0.49
−0.38 4.9± 1.5 91± 10

Kepler-307c 13.073 2.51+0.25
−0.18 2.68+0.29

−0.22 3.73± 0.60 1.07+0.39
−0.31 3.9+1.0

−1.5 67.8± 7.5

Kepler-310d 92.876 2.885+0.014
−0.497 2.73+0.11

−0.48 7.00± 3.75 1.89+0.95
−1.50 3.4± 2.0 4.16± 0.44

Kepler-33d 21.776 2.573+0.031
−0.013 4.84± 0.20 4.10± 1.85 0.20± 0.09 17.6± 1.9 126± 16

Kepler-33e 31.784 1.921+0.050
−0.021 3.61± 0.16 5.50± 1.15 0.64± 0.16 9.32+0.84

−1.14 76.1± 9.7

Kepler-33f 41.029 2.119+0.042
−0.017 3.99± 0.17 9.60± 1.75 0.83± 0.19 12.6+1.3

−1.9 54.3± 7.1

Kepler-359c 57.688 4.49+0.10
−0.74 4.40+0.41

−0.80 2.90+2.40
−1.90 0.19± 0.16 11.7+6.3

−9.3 9.8± 1.4

Kepler-36b 13.840 0.840+0.027
−0.018 1.54± 0.07 3.90± 0.20 5.93± 0.87 0± 0 252± 27

Kepler-36c 16.239 2.0452+0.0203
−0.0074 3.74± 0.14 7.50± 0.30 0.79± 0.09 9.9± 1.1 204± 22

Kepler-4b 3.213 2.4470+0.0140
−0.0055 4.15± 0.16 23.00± 3.75 1.77± 0.35 7.28± 0.91 1242± 157

Kepler-406b 2.426 1.327+0.112
−0.086 1.58+0.15

−0.12 5.99± 1.27 8.32± 2.74 0± 0 834± 91

Kepler-454b 10.574 1.7524+0.0017
−0.1673 2.08+0.08

−0.21 6.66± 1.34 4.07+0.95
−1.48 0.44+0.55

−0.30 118± 13

Kepler-48d 42.896 2.097+0.060
−0.023 1.96± 0.09 24.76± 16.17 18.11± 12.09 0± 0 8.9± 1.0

Kepler-49b 7.204 3.824+0.050
−0.023 2.62± 0.10 8.00± 1.75 2.46± 0.61 2.70± 0.79 25.4± 3.1

Kepler-49c 10.913 3.62+0.32
−0.20 2.47+0.24

−0.16 5.90± 1.50 2.15± 0.76 2.4± 1.2 14.6± 1.8

Kepler-51b 45.155 7.207+0.039
−0.022 6.78± 0.30 2.30± 1.65 0.04± 0.03 25+11

−22 11.2± 1.2

Kepler-549b 42.950 2.767+0.098
−0.051 2.57± 0.13 11.00+4.20

−3.20 3.59+1.50
−1.15 1.89+1.24

−0.77 9.5± 1.1

Kepler-56b 10.510 1.192+0.034
−0.021 5.62± 0.31 32.00± 10.85 1.00± 0.38 18.2± 2.1 798± 132

Kepler-60d 11.898 1.185+0.304
−0.092 1.95+0.51

−0.17 3.90± 0.65 2.91+2.33
−0.88 0.44+0.97

−0.44 235± 25

Kepler-68b 5.399 1.690+0.026
−0.011 2.32± 0.09 5.81± 1.67 2.56± 0.79 0.86± 0.28 435± 47

Kepler-78b 0.355 1.420+0.190
−0.070 1.16+0.16

−0.07 1.77± 0.23 6.29+2.76
−1.44 0± 0 3827± 434

Kepler-79e 81.066 2.079+0.509
−0.087 3.30+0.82

−0.19 4.56± 1.26 0.70+0.55
−0.22 7.2+2.3

−3.2 19.0± 2.0

Kepler-80d 3.072 2.100+0.062
−0.016 1.65+0.07

−0.06 3.70+0.80
−0.60 4.56+1.17

−0.87 0± 0 133± 15

Kepler-80e 4.645 2.155+0.059
−0.033 1.69± 0.07 2.10± 0.70 2.39± 0.85 0.23+0.17

−0.23 76.3± 8.3

Kepler-85e 25.215 1.251+0.140
−0.059 1.23+0.15

−0.08 0.60+0.50
−0.40 1.80+1.63

−1.25 0± 0 23.7± 2.7

Kepler-89b 3.743 1.031+0.048
−0.022 1.60+0.09

−0.07 9.27± 4.07 12.40± 5.76 0± 0 1012± 116

Kepler-89c 10.424 2.5563+0.0305
−0.0046 3.98± 0.14 13.54± 9.68 1.19± 0.86 9.5+1.7

−1.3 259± 30

Kepler-89e 54.320 4.178+0.011
−0.093 6.50± 0.25 32.23± 19.52 0.65± 0.40 36.2± 3.9 28.6± 3.3

Kepler-93b 4.727 1.5943+0.0040
−0.0836 1.64+0.06

−0.10 3.92± 0.66 4.93± 1.12 0± 0 290± 31

Kepler-94b 2.508 3.911+0.040
−0.264 3.33+0.11

−0.25 10.68± 1.39 1.59+0.25
−0.42 6.3± 1.5 201± 19

Kepler-95b 11.523 2.029+0.027
−0.013 3.19± 0.13 12.35± 2.30 2.10± 0.46 5.24+1.24

−0.89 184± 22

Kepler-96b 16.238 2.546+0.026
−0.203 2.65+0.10

−0.23 9.13± 4.38 2.72± 1.42 1.98+1.43
−0.91 56.2± 6.0

Kepler-97b 2.587 1.361+0.015
−0.032 1.48± 0.06 3.24± 1.70 5.51± 2.97 0± 0 794± 89

Kepler-98b 1.542 1.579+0.014
−0.046 1.61± 0.07 3.16± 1.47 4.19± 2.02 0± 0 1086± 121

Kepler-99b 4.604 1.868± 0.043 1.57± 0.08 6.20± 1.27 8.82± 2.29 0± 0 99± 14

WASP-47d 9.031 2.961+0.268
−0.082 3.69+0.37

−0.18 12.77± 1.52 1.33± 0.32 9.4± 2.2 145± 17

WASP-47e 0.790 1.484+0.146
−0.046 1.85+0.20

−0.10 7.35± 0.75 6.10± 1.47 0± 0 3744± 438
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CHAPTER 7
CONCLUSION

The work compiled in this thesis improves our understanding of the compositional diversity of

small planets, and the processes that govern their formation and evolution. By nearly doubling of

the number of small planets with measured masses, we were able to explore the transition from

rocky to gaseous planets and its dependence on environmental parameters like temperature and

host-star properties.

In Chapter 2, we provided a review of the formation of small planets and the future detectability

of planets smaller than Earth. The occurrence patterns and compositions of these “sub-Earths”

will be studied by future generations of telescopes. So far, we’ve only been able to measure the

masses and compositions of the three sub-Earths in the Solar system, Mercury, Venus, and Mars.

Following the prime Kepler mission, K2 enabled us to discover hundreds of small planets orbit-

ing bright stars. These discoveries required a large collaborative effort. Countless hours were spent

examining the K2 photometry for planet candidates and conducting follow-up spectroscopic and

AO imaging observations in order to validate them and precisely characterize their host stars. With

each new K2 campaign, new catalogs of bona-fide planets were assembled, including the catalog of

eleven multi-planet systems presented in Chapter 3. There, we also quantified the K2 “multiplicity

boost”, demonstrating that in the first two K2 campaigns, planet candidates in multi-candidate

systems were a priori ∼ 25 times less likely to be false positives than those in single-candidate

systems. This boost was used to validate several planet candidates.

Dozens of planets in these new K2 catalogs orbit stars bright enough for Doppler observations.

Over the course of three years, we took RV measurements of more than 50 planet hosts, and devel-

oped tools to model our RV time-series to estimate planet masses (Fulton et al., 2018). Chapters

3–5 feature mass measurements and compositional constraints of nine of these planets in four dif-

ferent systems. K2-38 hosts a hot super-Earth likely to have been stripped of its H/He envelope

by photoevaporation and a cooler sub-Neptune, which has retained at least part of its envelope.

Similarly, K2-106 hosts an ultra-short-period planet with an Earth-like composition and a cooler

sub-Neptune companion. K2-66 is a subgiant star that hosts a sub-Neptune that is particularly

dense for its size, comprised of a ∼ 15M⊕ core. Finally, WASP-47 is one of the few stars with

a Hot-Jupiter in close proximity to sub-Neptune-size planets — an ultra-short-period planet with

an Earth-like composition and a sub-Neptune with a similar mass, which orbits beyond the hot-

Jupiter. There is also a giant planet on a several year eccentric orbit, which might have played a

role in the formation of the inner planets.

Leveraging the dozens of new mass measurements made by our collaboration, this thesis culmi-

nates in Chapter 6 with the construction and analysis of a catalog of nearly all of the planets 1–8

R⊕ with measured masses — 139 planets in total. We derived stellar temperatures and metallicities
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from HIRES spectra of all 101 host stars, and determined precise stellar radii using our spectro-

scopic constraints in conjunction with Gaia parallaxes. To further minimize systematic biases in

our planet radii, adopted transit parameters for each planet using a consistent methodology for all

Kepler , K2 , and other planets.

This constitutes the most comprehensive and precise catalog of small planet masses to date

and we use it study the bulk compositions of small planets with greater fidelity. The concurrent

discovery of a gap in the planet radius distribution by the California Kepler Survey (Fulton et al.,

2017), and follow-up theoretical work by Owen & Wu (2017), suggested that photoevaporation is

an important sculptor of planet bulk compositions, and provided us a framework within which to

analyze and interpret the mass-radius relationship.

We discover a gap in the planet density-radius distribution, separating two distinct populations

— “super-Earths” consisting of 1–2 R⊕ cores with little to no gas, and “sub-Neptunes” with H/He

envelopes comprising & 1% of their total mass. The gap between these populations would be

occupied by cores with <1% H/He, indicating that such planets are completely stripped of their

envelopes by photoevaporation. We also observe a population of cooler super-Earths, which have

lower densities, suggesting that their lower levels of irradiation have enabled the preservation of

their H/He envelopes.

The typical core of a small planet is 6–9 M⊕ or slightly less considering potential detection

biases. At orbital periods less than 3 days, cores do not exceed 10 M⊕. Beyond 3 days, the

majority of cores are <10 M⊕. Some sub-Saturns, particularly those orbiting metal-rich stars, have

cores as large as 40M⊕. After analyzing the measured density-radius distribution of super-Earth

cores, and accounting for our measurement errors, we conclude that small planet cores likely have

a diversity of bulk compositions. The majority of them may have Earth-like compositions, but not

all of them. Assuming admixtures of iron and rock, we find the median core rock fraction is 82%

— slightly less iron-rich than Earth (70%). Alternatively, if these cores are admixtures of rock and

water, then less than 20% of them are more than 10% water by mass. The lack of water in these

cores suggests that most of them formed interior to the ice-line.

Finally, we discover a positive correlation between the core masses of small planets and the

metallicities of their host stars. Metallicities are a better predictor of core mass than stellar mass.

Even though both parameters have been linked to the availability of solid-material in the proto-

planetary disk, it appears that the assembly of planet cores is more sensitive to stellar metallicity

than stellar mass.

This thesis constitutes an important milestone in the understanding of the compositions of small

planets. We have many more planet hunting and planet characterization missions to look forward

to in the next few years. TESS will find nearly all of the nearby transiting planets orbiting close to

their host stars, and JWST will allow precise characterization of the atmospheres of small planets,

offering new clues about their formation and evolution.
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Torres, G., Andersen, J., & Giménez, A. 2010, A&A Rev., 18, 67

Tully, C., & Johnson, R. E. 2001, Planetary and Space Science, 49, 533

Vacca, W. D., Cushing, M. C., & Rayner, J. T. 2003, PASP, 115, 389

Valencia, D., Guillot, T., Parmentier, V., & Freedman, R. S. 2013, ApJ, 775, 10

Valencia, D., Ikoma, M., Guillot, T., & Nettelmann, N. 2010, A&A, 516, A20

Valencia, D., Sasselov, D. D., & O’Connell, R. J. 2007, ApJ, 665, 1413

Valenti, J. A., Butler, R. P., & Marcy, G. W. 1995, PASP, 107, 966

Valenti, J. A., & Fischer, D. A. 2005, ApJS, 159, 141

Valsecchi, F., Rappaport, S., Rasio, F. A., Marchant, P., & Rogers, L. A. 2015, ApJ, 813, 101

Valsecchi, F., Rasio, F. A., & Steffen, J. H. 2014, ApJ, 793, L3

van Haaften, L. M., Nelemans, G., Voss, R., & Jonker, P. G. 2012, A&A, 541, A22

Vanderburg, A., Montet, B. T., Johnson, J. A., et al. 2015, ApJ, 800, 59

Vanderburg, A., Latham, D. W., Buchhave, L. A., et al. 2016a, ApJS, 222, 14

Vanderburg, A., Bieryla, A., Duev, D. A., et al. 2016b, ApJ, 829, L9

Vogt, S. S., Allen, S. L., Bigelow, B. C., et al. 1994, in Society of Photo-Optical Instrumentation

Engineers (SPIE) Conference Series, Vol. 2198, Instrumentation in Astronomy VIII, ed. D. L.

Crawford & E. R. Craine, 362

von Braun, K., Boyajian, T. S., ten Brummelaar, T. A., et al. 2011, ApJ, 740, 49

Walsh, K. J., Morbidelli, A., Raymond, S. N., O’Brien, D. P., & Mandell, A. M. 2011, Nature, 475,

206

Ward, W. R. 1997, Icarus, 126, 261

Weidenschilling, S. J. 1977a, MNRAS, 180, 57

—. 1977b, Ap&SS, 51, 153

—. 1978, Icarus, 35, 99

164
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