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Abstract

Usually, data is considered as the outcome of probability sources and to get insight from

data, we need to know more about its underlying distribution. Although it is very helpful

to know the precise characterization of the source, most of the time such information is

not available. However, we usually know that the underlying distribution is not completely

arbitrary and belongs to a general class of models, such as the class of i.i.d. or Markov dis-

tributions. While universal compression of finite support distributions has been well studied,

we look into more involved classes—in particular, distributions over countable supports, as

well as the relations between compression and estimation in Markov setups without mixing

assumptions. In the first part of the dissertation, we investigate “compressibility” of a class

of distributions. The exact identity of each distribution in the class is unknown, so we aim

to find a universal encoder to compress all distributions in the class. But since the universal

encoder does not match exactly to the underlying distribution, the average number of bits

we use is higher, and the excess bits used over the entropy is the redundancy. We study

the redundancy of universal encodings of strings generated by independent identically dis-

tributed (i.i.d.) sampling from a set of distributions over a countable support. We show that

universal compression of length-n i.i.d. sequences is characterized by how well the tails of

distributions in the collection can be universally described, and we formalize the later as the

tail-redundancy of the collection. We show that per-symbol redundancy converges to tail re-

dundancy asymptotically and therefore characterize a necessary and sufficient condition for

a collection of distributions to be “strongly compressible”. We also consider the redundancy

of universally compressing strings generated by a binary Markov source without any bound

on the memory. We prove asymptotically matching (in order) upper and lower bounds on

the redundancy.

Apart from the abstract analysis of a collection of unknown distributions, we adapt and im-
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plement an algorithm to compress the data obtained from an unknown source. Compression

can be lossless or lossy. For lossless compression, Lempel and Ziv proposed a universal imple-

mentable algorithm and prove that their algorithm achieves the theoretical bound asympto-

tically. However, many applications can tolerate such amount of distortion which may allow

for additional compression. We adapt Codelet parsing, a lossy Lempel-Ziv type algorithm. It

sequentially parses a sequence to phrases which we call sourcelet and maps them to codelet

in the dictionary. We develop concept “strong match” and use Cycle Lemma to make sure

that strong match method does not remove most of the possible matches from the tree. We

study different properties of this dictionary and monitor how the leaves of the dictionary

evolve.

In the last chapter of the dissertation, we use rate-distortion theory to formulate a problem

in cyber-physical systems. Consider a process being controlled remotely by a controller. Let

an attacker have access to the communication channel so that she is able to replace the signal

transmitted by the controller with any signal she wishes. The attacker wishes to degrade the

control performance maximally without being detected. The controller wishes to detect the

presence of the attacker by watermarking signaling information in the control input without

degrading the control performance. We show that in the one-step version of the problem, if

the watermark is a Gaussian distributed random variable, then the maximal performance

degradation for any given level of stealthiness for the attacker is achieved when the attacker

replaces the control input with the realization of a Gaussian random variable. Conversely,

we show the watermark signal that minimizes the stealthiness of a Gaussian attacker is also

Gaussian.
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1
Introduction

1.1 Universal Compression

Shannon’s fundamental paper on compression assures us that any data obtained from distri-

bution p can be compressed with no more bits than its entropy. In fact, if p is known, we can

use Huffman coding to achieve this theoretical lower bound. But in most of the applications,

p is unknown and the only information we have is that it belongs to a specific collection of

distributions, for example, class of i.i.d. or Markov sources. In this case, we need to find a

universal encoder that can compress all sources in the collection relatively good at the same

time.
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To characterize the performance of such universal encoder several different techniques has

been developed. Let P be a collection of distributions over a countable support X , the most

stringent metric is the worst-case formulation that tries to find a universal probability law

q over X minimizing

sup
p∈P

sup
x∈X

log
p(x)

q(x)
.

The average-case formulations try to find a law q minimizing

sup
p∈P

∑
x∈X

p(x) log
p(x)

q(x)
.

A weaker notion also proposed by Kieffer [1] where for all p ∈ P , the encoder q minimizes

∑
x∈X

p(x) log
p(x)

q(x)
.

Starting from [2], the case where X is either a finite set of size k, or length-n sequences

drawn from a finite set k, and P is a collection of i.i.d. or Markov sources have been studied

extensively. A cursory set of these papers include [3–5] for compression of i.i.d. sequences of

sequences drawn from k−sized alphabets, [6, 7] for context tree sources, as well as extensive

work involving renewal processes [8, 9], finite state sources [10], etc.

However, the finite alphabet assumption is very restrictive. Although usually in classical

information theory and statistics sample size is much higher than the alphabet size, this

assumption does not hold for a lot of problems like text classification, language modeling,

and DNA microarray analysis. For instance, language models for speech recognition esti-

mate distributions over English words using text samples much smaller than the English

vocabulary.

Analyzing large alphabet problems is not an easy extension of finite alphabet ones. In fact,

removing the assumption of the finiteness of alphabet changes some fundamental behaviors.

For instance, while in the finite alphabet case the order of worst-case redundancy and average

2



case redundancy are same, in large alphabet it is possible to construct an example that worst

case redundancy is infinite but average case redundancy is finite.

We first present some preliminaries and basic definitions in universal compression in chapter 2

and briefly review existing works on patterns, weak compression, worst case redundancy

and metric entropy. Unlike the weak compression and worst case formulation that finite

single letter redundancy (worst case redundancy, respectively) implies vanishing per symbol

redundancy (the average case redundancy over the length of the sequence), we show that

it is not true in average case redundancy. We construct an example that single letter is

finite but per-symbol redundancy does not go to zero as n (length of the sequence) goes to

infinity. We study average case redundancy over the countable alphabet and its connection

to tightness in chapter 3 and obtain conditions that characterize in which case per-symbol

redundancy goes to zero. Although this condition is sufficient but is not necessary. However,

this characterization gives us the insight to develop concept tail redundancy which is defined

as

T (P) = lim
m→∞

inf
q

sup
p∈P

∑
x≥m

p(x) log
p(x)

q(x)
,

where the infimum is over all distributions q over N.

In chapter 4, we first study properties of tail redundancy. We show that the limit in the

definition of tail redundancy exists and there is always an encoder that achieves the tail

redundancy. Furthermore, we prove that tail redundancy is always positive. Later, we show

that universal compression of length-n i.i.d. sequences is characterized by how well the tails

of distributions in the collection can be universally described, and we prove that zero tail

redundancy is a necessary and sufficient condition for vanishing per symbol redundancy.

In chapter 5, we study redundancy of Markov processes without any assumption on mixing

and no hard constraint on the memory. Although we look at binary Markov sources, since

we do not impose any hard constraint on the memory, the state space can be large which

makes the problem very similar to large alphabet finite memory classes. Normally, memory

is a natural hierarchy to consider for Markov sources and if the memory is bounded by m

3



then redundancy is 2m−1 log n. But memory it is not a reasonable ordering parameter from

estimation point of view. A long memory source may be easier to estimate than a short

memory source that doesn’t search state space efficiently. We look at Markov sources with

continuity condition. Continuity condition implies that the influence of prior symbols dies

down as we look further into the past. In the absence of an upper bound on the memory, the

continuity condition implies that p(X0|X−1
−m) gets closer to the true probability p(X0|X−1

−∞)

as m increases, rather than vary around arbitrarily.

We then answer two questions. First, what is the Redundancy of a collection of Markov

sources without any mixing assumption and no bound on the memory of the collection?

Second, which sources contribute more to the redundancy? We obtain matching (in order)

lower and upper bound on the memory of Markov sources and we show that in compressing

unbounded Markov sources the primary contribution comes from sources whose state proba-

bilities are not near 0 or 1. To obtain the lower bound we use redundancy capacity theorem.

Although it is the common technique to obtain the lower bound, it is not an easy extension

when there is no hard bound on memory. In fact, the crucial part is bounding the estimation

error. To obtain the upper bound we use the fact that the probability of the collection can

be bounded by an aggregated model with bounded memory with high probability.

1.2 Lossy Compression

In the second part of the dissertation, we study a practical problem. Compression can be loss-

less or lossy. For lossless compression, Lempel and Ziv proposed a universal implementable

algorithm and prove that it achieves the theoretical bound asymptotically. Currently, LZ-

based algorithms are in use different file formats. There are many applications that some

amount of distortion is tolerable to reduce the number of bits required to code. Let xn be a

sequence that we want to represent with another sequence x̂n that needs less bit to describe.

Given a specific distortion level d, what is the minimum compression rate that is achievable?

Shannon formulated this problem as rate-distortion problem and showed that rate-distortion
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function is a lower bound for the compression rate. In fact, he showed that the optimal x̂n

has optimal reproduction type. For example, assume xn ∼ B(p), then for a given distortion

level d, the optimal reproduction type is p−d
1−2d

. Therefore, type (number of one over length

of the sequence) of an optimal representation x̂n must be equal to p−d
1−2d

.

Extending Lempel-Ziv algorithm for lossy compression is not an easy task and in fact con-

structing an online implementable optimal algorithm in lossy compression is still an open

problem. Lossless Lempel-Ziv constructs a tree (also known as a dictionary) from the se-

quence xn, but adapting this tree when there is a room for distortion is a difficult problem.

In fact, in presence of distortion the search space is large so that any naive optimal algorithm

will be computationally infeasible.

We adapt Codelet parsing from [60], a polynomial time lossy Lempel-Ziv type algorithm.

In the heart of the Codelet Parsing is the concept of strong match [11]. We say that two

sequences xn and x̂n matches if

1/j

j∑
i=1

dH(xi, x̂i) < d, 1 ≤ j ≤ n, d ≤ 0.5.

The development of strong match inspired by Cycle Lemma. Cycle lemma is a very profound

but simple result that rediscovered in literature multiple times. To explain it, let us first

define k−dominating sequence. A sequence p1p2...pm+n of zeros and ones is k−dominating if

number of zeros in every subsequence p1p2...pi, 1 ≤ i ≤ m+n is greater than k times of num-

ber ones. For example, sequence “00010010” is 2-dominating, “00101001” is 1-dominating

and “10000000” and “00110001” are not even 1-dominating. Cycle lemma states that for

any sequence containing m zeros and n ones where m ≥ kn, number of cyclic permutation

of which are k−dominating is m − kn. Codelet parsing considers strong match instead of

convention notion of matching which is 1/n
∑n

i=1 dH(xi, x̂i) ≤ d. Cycle lemma guarantees

that with confining to strong match we are not loosing too many matches and at the same

the computational complexity greatly reduces.

Even with considering the strong match, there may be more than one possible match. There-

5



fore, we adapt a different variation of Codelet parsing. In chapter 6, we first explain backbone

of our algorithm and some naive variation that choose the “first match” and “longest match”

and propose simulation results of compression rate and time complexity for different value

of p and d for data dawn from B(p) distribution. Since the shape of the tree that evolves

and type of its leaves has a direct connection to optimality of the algorithm, we monitor

how the leaves evolve. An optimal algorithm will lead to a dictionary where the type of

the reconstructed sequence is close to “optimal reproduction type”. Since the underlying

distribution in unknown, the optimal reproduction type is also unknown. However, in chap-

ter 6, we develop a method to learn the optimal reproduction type. In a comprehensive set

of simulations, we demonstrate different properties of the algorithm. We plot compression

rate, running time, type of the leaves in the dictionary, number of the leaves with an specific

type, distortion evolving and evolution of the length of the leaves.
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Part I

Universal Compression of Unknown

Sources
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2
Preliminaries and Background

2.1 Introduction

A number of statistical inference problems of significant contemporary interest, such as text

classification, language modeling, and DNA microarray analysis are what are called large

alphabet problems. They require inference on sequences of symbols where the symbols come

from a set (alphabet) with size comparable or even larger than the sequence length. For

instance, language models for speech recognition estimate distributions over English words

using text samples much smaller than the English vocabulary.

An abstraction behind several of these problems is universal compression over large alpha-
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bets. The general idea here is to model the problem at hand with a collection of models

P instead of a single distribution. The model underlying the data is assumed or known to

belong to the collection P , but the exact identity of the model remains unknown. Instead,

we aim to use a universal description of data.

2.2 Redundancy

Let P be a collection of distributions over N and Pn be the set of distributions over length-n

sequences obtained by i.i.d. sampling from P . Note that any finite length sequence or any

collection of finite length sequences corresponds to a subset of infinite length sequences. The

collection of such subsets corresponding to finite length sequences and collections of finite

length sequences forms a semi-algebra [12]. Therefore, for all p, the distributions obtained on

finite length sequences by i.i.d. sampling can be extended to a measure over infinite length

sequences. Let P∞ be the collection of all such measures over infinite length sequences of

N obtained by i.i.d. sampling from a distribution in P . In a slight abuse of notation to

simplify exposition where possible, we use the same symbol p to indicate the distribution in

P , Pn, or the measure in P∞.

Let q be a measure over infinite sequences of naturals, and define for any p ∈ Pn, the

redundancy 1

Rn(p, q) =
∑

Xn∈Nn
p(Xn) log

p(Xn)

q(Xn)
def
= D(pXn||qXn), (2.1)

where D() above denotes the KL divergence between the length n distributions induced by

i.i.d. sampling from p to the length n distribution induced by the measure q. Define

Rn = R(Pn) = inf
q

sup
p∈Pn

Rn(p, q).

the redundancy of length-n sequences, or length-n i.i.d. redundancy or simply length-n

1. All the logarithms are in base 2, unless otherwise specified.

9



redundancy. The single letter redundancy refers to the special case when n = 1.

Our primary goal is to understand the connections between the single letter redundancy

on the one hand and the behavior of length-n i.i.d. redundancy on the other. Length-n

redundancy is the capacity of a channel from P to Nn, where the conditional probability

distribution over Nn given p ∈ P is simply the distribution p over length-n sequences.

Roughly speaking, it quantifies how much information about the source we can extract from

the sequence.

We will often speak of the per-symbol length-n redundancy, which is simply length-n re-

dundancy normalized by n i.e., R(Pn)/n. Furthermore, the limit lim supn→∞R(Pn)/n is

the asymptotic per-symbol redundancy. Whether the asymptotic per-symbol redundancy is

0 2 is in many ways a litmus test for compression, estimation and other related problems.

Loosely speaking, if R(Pn)/n → 0 the redundancy-capacity interpretation [13] mentioned

above implies that after a point, there is little further information to be learnt when we see

an additional symbol no matter what the underlying source is. In this sense, this is the case

where we can actually learn the underlying model at a uniform rate over the entire class.

A collection Pn is weakly compressible if there exists a measure q over infinite sequences of

naturals such that for all p ∈ Pn

lim
n→∞

1

n
Rn(p, q) = 0.

A collection Pn is strongly compressible if there exists a measure q such that

lim
n→∞

sup
p∈Pn

1

n
Rn(p, q) = 0.

One can consider weak vs strong compressibility as pointwise convergence in contrast to

uniform convergence. While weak compressibility needs Rn(p, q)to go to zero for each p as

n→∞, strong compressibility needs the uniform convergence of Rn(p, q) toward to zero as

2. We will equivalently say the asymptotic per-symbol redundancy diminishes to 0 to keep in line with
prior literature.
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n → ∞. In fact, we can use Egorov’s theorem to connect weak compressibility and strong

compressibility using Lemma 1.

Lemma 1. [Egorov’s Theorem] Let {fn(θ)}, θ ∈ Θ be a sequence of measurable functions

on measurable space (Θ,Σ, µ) where µ is a finite measure and f(θ) be a measurable functions

on this space. If {fn(θ)} converges to f(θ) pointwise, then for every ε > 0, there is a subset

B ⊂ Θ such that µ(B) < ε and {fn(θ)} converges to f(θ) uniformly on Bc = Θ−B.

2.3 Patterns

Recent work [14] has formalized a similar framework for countably infinite alphabets. This

framework is based on the notion of patterns of sequences that abstract the identities of

symbols, and indicate only the relative order of appearance. For example, the pattern of

PATTERN is 1233456. The kth distinct symbol of a string is given an index k when it first

appears, and that index is used every time the symbol appears henceforth. The crux of the

patterns approach is to consider the set of measures induced over patterns of the sequences

instead of considering the set of measures P over infinite sequences,

Denote the pattern of a string x by Ψ(x). There is only one possible pattern of strings of

length 1 (no matter what the alphabet, the pattern of a length-1 string is 1), two possible

patterns of strings of length 2 (11 and 12), and so on. The number of possible patterns of

length n is the nth Bell number [14] and we denote the set of all possible length n patterns by

Ψn. The measures induced on patterns by a corresponding measure p on infinite sequences

of natural numbers assigns to any pattern ψ a probability

p(ψ) = p({x : Ψ(x) = ψ}).

In [14] the length-n pattern redundancy,

inf
q

sup
p∈Pn

Ep log
p(Ψ(Xn))

q(Ψ(Xn))
,
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was shown to be upper bounded by π(log e)
√

2n
3

. It was also shown in [27] that there is a

measure q over infinite length sequences which satisfies for all n simultaneously

sup
p∈Pn

sup
Xn

log
p(Ψ(Xn))

q(Ψ(Xn))
≤ π(log e)

√
2n

3
+ log(n(n+ 1)).

Let the measure induced on patterns by q be denoted as q
Ψ

for convenience.

We can interpret the probability estimator q
Ψ

as a sequential prediction procedure that esti-

mates the probability that the symbol Xn+1 will be “new” (has not appeared in Xn
1 ), and the

probability that Xn+1 takes a value that has been seen so far. This view of estimation also

appears in the statistical literature on Bayesian nonparametrics that focuses on exchange-

ability. Kingman [15] advocated the use of exchangeable random partitions to accommodate

the analysis of data from an alphabet that is not bounded or known in advance. A more

detailed discussion of the history and philosophy of this problem can be found in the works

of Zabell [16, 17] collected in [18].

2.4 Weak Compression Over Infinite Alphabets

Although arbitrary collections of stationary ergodic distributions over finite alphabets are

weakly compressible, Kieffer [1] showed that the collection of i.i.d. distributions over N is

not even weakly compressible. Indeed the finiteness of single letter redundancy characterizes

weak compressibility. Any collection of stationary ergodic measures over infinite sequences

is weakly compressible iff R1 <∞.

R1 being finite, however, is not sufficient for strong compression guarantees to hold even

when while dealing with i.i.d. sampling. We reproduce the following Example 1 from [19] to

illustrate the pitfalls with strong compression, and to motivate the notion of tail redundancy

that will be central to our main result. Proposition 1 shows that the collection in the

example below has finite single letter redundancy, but Proposition 2 shows that its length n

12



redundancy does not diminish to zero as n→∞.

Example 1. Partition the set N into Ti = {2i, . . . ,2i+1 − 1}, i ∈ N. Recall that Ti has 2i

elements. For all 0 < ε ≤ 1, let nε = b1
ε
c. Let 1 ≤ j ≤ 2nε and let pε,j be a distribution on N

that assigns probability 1− ε to the number 1 (or equivalently, to the set T0), and ε to the

jth smallest element of Tnε , namely the number 2nε + j − 1. B (mnemonic for binary, since

every distribution has at support of size 2) is the collection of distributions pε,j for all ε > 0

and 1 ≤ j ≤ 2nε . B∞ is the set of measures over infinite sequences of numbers corresponding

to i.i.d. sampling from B.

We first verify that the single letter redundancy of B is finite.

Proposition 1. Let q be a distribution that assigns q(Ti) = 1
(i+1)(i+2)

and for all j ∈ Ti,

q(j|Ti) =
1

|Ti|
.

Then

sup
p∈B

∑
x∈N

p(x) log
p(x)

q(x)
≤ 2.

However, the redundancy of compressing length-n sequences from B∞ scales linearly with n.

Proposition 2. For all n ∈ N,

inf
q

sup
p∈B∞

Ep log
p(Xn)

q(Xn)
≥ n

(
1− 1

n

)n
.

Proof Let the set {1n} denote a set containing a length-n sequence of only ones. For all

n, define 2n pairwise disjoint sets Si of Nn, 1 ≤ i ≤ 2n, where

Si = {1, 2n + i− 1}n − {1n}

is the set of all length-n strings containing at most two numbers (1 and 2n + i − 1) and at

least one occurrence of 2n + i− 1. Clearly, for distinct i and j between 1 and 2n, Si and Sj

13



are disjoint. Furthermore, the measure p 1
n
,i ∈ B∞ assigns Si the probability

p 1
n
,i(Si) = 1−

(
1− 1

n

)n
> 1− 1

e
.

From Lemma 3 in [19], it follows that length-n redundancy of B∞ is lower bounded by

(
1− 1

e

)
log 2n = n

(
1− 1

e

)
.

2.5 Worst-Case redundancy

It is possible to define an even more stringent notion—a worst-case-regret. For length-n

sequences, worst case regret is defined as

inf
q

sup
p∈Pn

sup
Xn

log
p(Xn)

q(Xn)
,

single letter regret is the special case where n = 1 and asymptotic per-symbol regret is the

limit as n→∞ of the length-n regret normalized by n.

Recent work in [20] has shown that if the single letter worst-case redundancy of P is finite,

then length-n i.i.d. sequences from P can be compressed with worst-case redundancy that

is sublinear in n. Since the average case redundancy of any scheme is upper bounded by its

worst case redundancy, it follows then that there is a universal measure q over infinite length

strings of natural numbers such that

lim
n→∞

sup
p∈P

1

n
Ep log

p(Xn)

q(Xn)
→ 0. (2.2)

However, what happens when the worst case redundancy of a class P is not finite? Since

the underlying support of distributions in P is countably infinite, it is easy to construct

14



collections P whose single letter average-case redundancy is finite, i.e.,

inf
q

sup
p∈P

∑
x∈N

p(x) log
p(x)

q(x)
<∞ (2.3)

even when the single letter worst-case redundancy is not. Suppose, we only knew that the

single letter average-case redundancy of P is finite, namely that (2.3) holds. We note that

in general, the guarantee (2.2) need not hold (see Example 1).

In finite alphabet regime length−n redundancy and worst case redundancy have a same

behavior. They grow in a same order with length of the sequence. However, for infinite

alphabet it is possible to construct classes with finite length−n redundancy and infinite

regret. In the next example we construct a collection of distributions where the worst case

regret is infinite but average case redundancy is finite. Other similar examples can be found

in [21] and [22].

Example 2. Let pk(x), x ∈ X ,X = {2, 3, 4, . . .},

pk(x) =


1− 1

log k
x = 2,

1
k log k

k ≤ x < 2k,

0 other wise.

and P = {p2, p3, . . .}. Then the worst-case redundancy is

log
∑
x∈X

sup
pk∈P

pk(x) ≥ log
∑
k

1

k log k
,

and since
∑

k
1

k log k
diverges, the worst case redundancy is infinite. To see finiteness of average
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case redundancy, let q(x) = 1/a

x log2(x)
where a =

∑
x

1
x log2(x)

. Then

D(pk||q) = (1− 1

log k
) log 2a(1− 1

log k
)

+
1

k log k
log

1
k log k

1
ak log2 k

+
1

k log k
log

1
k log k

1
a(k+1) log2(k+1)

+ · · ·+ 1

k log k
log

1
k log k

1
a2k log2 2k

≤ (1− 1

log k
) log 2a(1− 1

log k
) +

1

k log k
log

1
k log k

1
a2k log2 k2

+ · · ·+ 1

k log k
log

1
k log k

1
a2k log2 k2

= (1− 1

log k
) log 2a(1− 1

log k
) +

log 8a log k

log k

≤ 1 + log 16a2.

2.6 Bayes Redundancy

A well known lower bound on the average case redundancy relates it to Bayes redundancy

of any given prior. This result can be obtained from general minimax theorem. Here we

provide a version from [23].

Lemma 2. LetM(xn) show the set of all probability measure on xn. Denotes elements of

Pn as pθ, θ ∈ Θ. Then the redundancy is lower bounded by Bayes redundancy of any given

prior π on Θ. i.e.

R(Pn) ≥ inf
q∈M(xn)

EπD(pθ||q)

Lemma 3. [Minimax Theorem [23]] Let M(xn) show the set of all probability measure

on Xn. Denotes elements of Pn as pθ∈Θ. Then

R(Pn) = sup
π∈M(Θ)

inf
q∈M(xn)

EπD(pθ||q) = sup
pθ∈Pn

inf
q∈M(xn)

D(pθ||q)
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2.7 Metric Entropy

A prior work on connecting single letter metric to length−n redundancy is in [21], where

authors find lower and upper bound on redundancy using Hellinger distance.

Definition 1. [Hellinger Distance] Let p1 and p2 be two distributions in P . The Hellinger

distance h is defined as

h(p1, p2) =
∑
x∈N

(√
p1(x)−

√
p2(x)

)2

.

Lemma 4. [24], [21] Let π be any prior on Pn then

R(Pn) ≥ Ep1∼π

[
− logEp2∼πe

−nh(p1,p2)
2

]
,

where p1 and p2 drawn independently according to π.

Proof See [21].

2.7.1 Totally Boundedness

To study the connection of length−n redundancy to single letter redundancy, Haussler and

Opper [21] characterize collections with finite single letter redundancy but infinite length−n

redundancy using totally boundedness of a collection.

Definition 2. [Totally Bounded Set [21]] Let (S, ρ) be any complete separable metric

space. A partition Π of set S is a collection of disjoint Borel subsets of S such that their

union is S. Then diameter of a subset A ⊂ S is d(A) = supx,y∈A ρ(x, y) and diameter of

partition Π is supremum of diameters of the sets in the partition. For ε > 0, let Dε(S, ρ) be

the cardinality of the smallest finite partition of S of diameter at most ε. We say S is totally

bounded if Dε(S, ρ) <∞ for all ε > 0.
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Note that if we use Hellinger distance h as a metric, (P , h) is a metric space.

Lemma 5. [21] If length−n redundancy is finite it can grow at most linearly in n. If

(P , h) is not totally bounded and single letter redundancy is finite then lim infn→∞
1
n
R(Pn)

is bounded away from zero and lim supn→∞
1
n
R(Pn) <∞.

Proof See [21, Theorem 4, part 5].

In the next example we construct collection U that is totally bound.

Construction Let U be a countable collection of distributions pk, k ≥ 1 over Z+ = N∪{0},

where

pk(x) =

1− 1
k2 x = 0,

1

k22k2 1 ≤ x ≤ 2k
2
.

Proposition 3. (U , h) is totally bounded.

Proof To show that (U , h) is totally bounded we need to show that for any ε > 0 there

exists a partition on U with diameter ε and finite cardinality. For any given ε > 0 let

m =
√

3
ε

+ 1. We construct Partition Π so that it packs p1 through pm in m singletons

and all other distributions in the collection in a single set. Therefore the cardinality of the

partition is m+ 1 <∞. Now we show that the diameter of each set in Π is less than ε.

For singleton the diameter is zero. For a single set containing all distributions in the collection

we can bound the diameter as below. Let i < j then

h(pi, pj) =
∑
x∈Z+

(√
pi(x)−

√
pj(x)

)2

=

(√
1− 1

i2
−
√

1− 1

j2

)2

+ 2i
2

(√
1

i22i2
−
√

1

j22j2

)2

+ (2j
2 − 2i

2

)
1

j22j2

≤ 1

i2
+

1

i2
+

1

j2

≤ 3

m2
< ε.
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Where the last step is using the fact that i > m.
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3
Length-n Redundancy

3.1 Tightness

We focus on the single letter redundancy in this section, and explore the connections between

the single letter redundancy of a collection P and the tightness of P .

Lemma 6. A collection P with bounded length-n redundancy is tight. Namely, if the

single letter redundancy of P is finite, then for any γ > 0

sup
p∈P

F−1
p (1− γ) <∞.
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Proof P has bounded single letter redundancy. Let q be a distribution over N such that

sup
p∈P

D(p||q) <∞,

and we define R = supp∈P D(p||q) where D(p||q) is Kullback-Leibler distance between p and

q. It follows that for all p ∈ P and any m,

p(

∣∣∣∣log
p(X)

q(X)

∣∣∣∣ > m) ≤ (R + (2 log e)/e)/m,

To see the above, note that if S is the set of all numbers such that p(x) < q(x), a well-known

convexity argument shows that

∑
x

p(x) log
p(x)

q(x)
≥ p(S) log

p(S)

q(S)
≥ − log e

e
.

We prove the lemma by contradiction. Pick m so large that (R+ (2 log e)/e)/m < γ/2. For

all p, we show that

p
(
x : x ≥ F−1

q (1− γ/2m+1)
)
≤ γ.

To see the above, observe that we can split the tail x ≥ F−1
q (1− γ/2m+1) into two parts (i)

numbers x such that log p(x)
q(x)

> m. This set has probability < γ/2 under p. (ii) remaining

numbers x such that log p(x)
q(x)

< m. This set has probability ≤ γ/2m+1 under q, and therefore

probability ≤ γ/2 under p. The lemma follows.

The converse is not necessarily true. Tight collections need not have finite single letter

redundancy as the following example demonstrates.

Construction Consider the following collection I of distributions over N. First partition

the set of natural numbers into the sets Ti, i ∈ N, where

Ti = {2i, . . . ,2i+1 − 1}.
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Note that |Ti| = 2i. Now, I is the collection of all possible distributions that can be formed as

follows. For all i ≥ 1, we pick exactly one element of Ti and assign it probability 1/(i(i+1)).

Note that the set I is uncountably infinite. �

Corollary 7. The set I of distributions is tight.

Proof For all p ∈ I, ∑
x≥2k

x∈N

p(x) =
1

k + 1
,

namely, all tails are uniformly bounded over the collection I. Put another way, for all δ > 0

and all distributions p ∈ I,

F−1
p (1− δ) ≤ 2b

1
δ
c − 1.

On the other hand,

Proposition 4. The collection I does not have finite redundancy.

Proof Suppose q is any distribution over N. We will show that ∃p ∈ I such that

∑
x≥1
x∈N

p(x) log
p(x)

q(x)

is not finite. Since the entropy of every p ∈ I is finite, we just have to show that for any

distribution q over N, there ∃p ∈ I such that

∑
x≥1
x∈N

p(x) log
1

q(x)

is not finite.

Consider any distribution q over N. Observe that for all i, |Ti| = 2i. It follows that for all i

there is xi ∈ Ti such that

q(xi) ≤
1

2i
.

But by construction, I contains a distribution p that has for its support {xi : i ≥ 1} identified
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above. Furthermore p assigns

p(xi) =
1

i(i+ 1)
∀ i ≥ 1.

The KL divergence from p to q is not finite and the Lemma follows.

The collection of monotone distributions with finite entropy is known to be weakly com-

pressible. We now use Lemma 6 to verify that it is not strongly compressible.

Example 3. LetM be the collection of monotone distributions over N with finite entropy.

Let M∞ be the set of all i.i.d. processes obtained from distributions in M. For all p ∈ M

and all numbers n, we have

p(n) ≤ 1

n
.

So ∑
n≥1

p(n) log n ≤
∑
n≥1

p(n) log
1

p(n)
≤ ∞,

and from Kieffer’s condition M∞ is weakly compressible.

However, it is easy to verify thatM is not tight. To see this, consider the collection U of all

uniform distributions over finite supports of form {m,m+ 1, . . . ,M} for all positive integers

m and M with m ≤ M . Let U∞ be the set of all i.i.d. processes with one dimensional

marginal from U . Consider distributions of form p′ = (1 − ε)p + εq where q ∈ U ∩ M

is a monotone uniform distribution and ε > 0. The `1 distance between p and q is ≤ 2ε.

For all M > 0 and δ ≤ ε, we can pick q ∈ U over a sufficiently large support such that

F−1
p′ (1− δ) > M , so M is not tight.

Since M is not tight, from Lemma 6 its single letter redundancy is not finite. Hence the

length-n redundancy cannot be finite for any n andM∞ is not strongly compressible.
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3.2 Sufficient Condition

We study how the single letter properties of a collection P of distributions influences the

compression of length-n strings obtained by i.i.d. sampling from distributions in P . Namely,

we try to characterize when the length-n redundancy of P∞ grows sublinearly in the block-

length n.

Lemma 8. Let P be a collection of distributions over a countable support X . For some

m ≥ 1, consider m pairwise disjoint subsets Si ⊂ X (1 ≤ i ≤ m) and let δ > 1/2. If there

exist p1, . . . ,pm ∈ P such that

pi(Si) ≥ δ,

then for all distributions q over X ,

sup
p∈P

D(p||q) ≥ δ logm.

In particular if there are an infinite number of sets Si, i ≥ 1 and distributions pi ∈ P such

that pi(Si) ≥ δ, then the redundancy is infinite.

Proof This is a simplified formulation of the distinguishability concept in [13]. For a proof,

see e.g. [25].

W show a sufficient condition on single letter marginals of P and its redundancy that allows

for i.i.d. length-n redundancy of P∞ to grow sublinearly with n. This condition is, however,

not necessary—and the characterization of a condition that is both necessary and sufficient

is as yet open.

For all ε > 0, let Ap,ε be the set of all elements in the support of p with probability ≥ ε, and

let Tp,ε = N− Ap,ε. Let G0 = {φ} where φ denotes the empty string. For all i, the sets

Gi = {xi : A
p,

2 ln(i+1)
i

⊆ {x1, x2, . . . ,xi}}

where in a minor abuse of notation, we use {x1, . . . ,xi} to denote the set of distinct symbols
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in the string xi1. Let B0 = {} and let Bi = Ni − Gi. Observe from an argument similar to

the coupon collector problem that

Lemma 9. For all i ≥ 2,

p(Bi) ≤
i+ 1

2 ln(i+ 1)

(
1− 2 ln(i+ 1)

i

)i
≤ 1

(i+ 1) ln(i+ 1)
.

Theorem 10. Suppose P is a collection of distributions over N. Let the entropy of p ∈ P ,

be uniformly bounded over the entire collection, and in addition let the redundancy of the

collection be finite. Namely,

sup
p∈P

∑
x∈N

p(x) log
1

p(x)
def
= H <∞ and ∃q1 over N s.t. sup

p∈P

∑
x∈N

p(x) log
p(x)

q1(x)
def
= R <∞.

Recall that for any distribution p, the set Tp,δ denotes the support of p all of whose proba-

bilities are < δ. Let

lim
δ→0

sup
p∈P

∑
x∈Tp,δ

p(x) log
1

p(x)
= 0 and ∃q1 over N s.t. lim

δ→0
sup
p∈P

∑
x∈Tp,δ

p(x) log
p(x)

q1(x)
= 0.

(3.1)

Then, the redundancy of length-n distributions obtained by i.i.d. sampling from distributions

in P , denoted by Rn(P∞), grows sublinearly

lim sup
n→∞

1

n
Rn(P∞) = 0.

Proof Let q
Ψ

be the optimal universal pattern encoder over patterns of i.i.d. sequences

from Section 2.3. Recall that the redundancy of P is finite, and that q1 is the universal

distribution over N that attains redundancy R for P .

In what follows xi represents a string x1, . . . ,xi, and x0 denotes the empty string. For all n,

we denote Ψ(xn) = ψ1, . . . ,ψn and Ψ(Xn) = Ψ1, . . . ,Ψn.
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We consider a universal encoder as follows:

q(xn) = q(xn,Ψ(xn))

= q(ψ1, x1, ψ2, x2, . . . ,ψn, xn)

=
∏
i≥1

q(ψi|ψi−1
1 , xi−1

1 )
∏
j≥1

q(xj|ψj1, x
j−1
1 )

def
=
∏
i≥1

qΨ(ψi|ψi−1
1 )

∏
j≥1

q(xj|ψj1, x
j−1
1 ).

Furthermore we define for all xi−1
1 ∈ Ni−1 and all ψi ∈ Ψi such that ψi−1 = Ψ(xi−1),

q(xi|ψi1, xi−1
1 )

def
=

1 if xi ∈ {x1, . . . ,xi−1} and Ψ(xi) = ψi

q1(xi) if xi /∈ {x1, . . . ,xi−1} and Ψ(xi) = ψi.

Namely, we use an optimal universal pattern encoder over patterns of i.i.d. sequences, and

encode any new symbol using a universal distribution over P . We now bound the redundancy

of q as defined above. We have for all p ∈ P∞,

Ep log
p(Xn)

q(Xn)
=
∑
xn

p(xn) log
∏
i≥1

p(ψi|ψi−1
1 , xi−1

1 )

qΨ(ψi|ψi−1
1 )

∏
j≥1

p(xj|ψj1, x
j−1
1 )

q(xj|ψj1, x
j−1
1 )

=
∑
xn

p(xn)
n∑
i=1

log
p(ψi|ψi−1

1 , xi−1
1 )

qΨ(ψi|ψi−1
1 )

+
∑
xn

p(xn)
n∑
j=1

log
p(xj|ψj1, x

j−1
1 )

q(xj|ψj1, x
j−1
1 )

.

Since ψ1 is always 1, p(ψ1) = qΨ(ψ1) = 1. Therefore, we have

∑
xn

p(xn)
n∑
i=1

log
p(ψi|ψi−1

1 , xi−1
1 )

qΨ(ψi|ψi−1
1 )

=
∑
xn

p(xn)
n∑
i=2

log
p(ψi|ψi−1

1 , xi−1
1 )

qΨ(ψi|ψi−1
1 )

.
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The first term, normalized by n, can be upper bounded by as follows

1

n

∑
xn

p(xn)
n∑
i=2

log
p(ψi|ψi−1

1 , xi−1
1 )

qΨ(ψi|ψi−1
1 )

≤ 1

n

n∑
i=2

∑
xi1

p(xi1) log
p(ψi|ψi−1

1 , xi−1
1 )

p(ψi|ψi−1
1 )

+
1

n

(
π log e

√
2n

3
+ log n(n+ 1)

)

=
1

n

n∑
i=2

(H(Ψi|Ψi−1
1 )−H(Ψi|X i−1

1 )) +
1

n

(
π log e

√
2n

3
+ log n(n+ 1)

)

≤ 1

n
(nH)− 1

n

n∑
i=2

H(Ψi|X i−1
1 )) +

1

n

(
π log e

√
2n

3
+ log n(n+ 1)

)

where the last inequality follows since

H(Ψn) ≤ H(Xn) = nH.

Now for i ≥ 2,

H −H(Ψi|X i−1
1 ) =

∑
xi−1

p(xi−1
1 )

∑
x/∈{x1,...,xi−1}

p(x) log
1

p(x)

≤ p(Gi−1)
∑

x∈T
p,2 ln i

i−1

p(x) log
1

p(x)
+ p(Bi−1)H

≤
∑

x∈T
p,2 ln i

i−1

p(x) log
1

p(x)
+

H

i ln i
.

We have split the length i−1 sequences into the sets Gi−1 and Bi−1 and use separate bounds

on each set that hold uniformly over the entire model collection. The last inequality above

follows from Lemma 9. From condition (3.1) of the Theorem, we have that

lim
i→∞

sup
p∈P

∑
x∈T

p,2 ln i
i−1

p(x) log
1

p(x)
= 0.
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Therefore we have

lim
n→∞

sup
p∈P

1

n

n∑
i=2

 ∑
x∈T

p,2 ln i
i−1

p(x) log
1

p(x)
+

H

i ln i

 ≤ lim
n→∞

1

n

n∑
i=2

sup
p∈P

∑
x∈T

p,2 ln i
i−1

p(x) log
1

p(x)
+

H

i ln i


(a)
= 0.

The first term on the left in the first equation above is non-negative, hence the limit above

has to equal 0. The equality (a) follows from Cesaro’s lemma asserting that for any sequence

{ai, i ≥ 1} with ai <∞ for all i, if limi→∞ ai exists then

lim
i→∞

ai = lim
n→∞

1

n

n∑
j=1

aj.

Therefore,

lim
n→∞

sup
p∈P

1

n

∑
xn

p(xn)
n∑
i=2

log
p(ψi|ψi−1

1 , xi−1
1 )

qΨ(ψi|ψi−1
1 )

= 0.

For the second term, observe that

∑
xn

p(xn)
n∑
j=1

log
p(xj|ψj1, x

j−1
1 )

q(xj|ψj1, x
j−1
1 )

= R +
∑
xn

p(xn)
n∑
j=2

log
p(xj|ψj1, x

j−1
1 )

q(xj|ψj1, x
j−1
1 )

.

Furthermore,

∑
xn

p(xn)
n∑
j=2

log
p(xj|ψj1, x

j−1
1 )

q(xj|ψj1, x
j−1
1 )

=
n∑
j=2

∑
xj

p(xj) log
p(xj|ψj1, x

j−1
1 )

q(xj|ψj1, x
j−1
1 )

≤
n∑
j=2

∑
xj−1

p(xj−1)
∑

x/∈{x1,...,xi−1}

p(xj) log
p(xj)

q1(xj)

≤
n∑
j=2

p(Gj−1)
∑

xj∈T
p,

2 ln j
j−1

p(xj) log
p(xj)

q1(xj)
+Rp(Bj−1)


≤

n∑
j=2

∑
xj∈T

p,
2 ln j
j−1

p(xj) log
p(xj)

q1(xj)
+

R

j ln j
.
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As before, the last inequality is from Lemma 9. Again from condition (3.1), we have

lim
j→∞

sup
p∈P

∑
xj∈T

p,
2 ln j
j−1

p(xj) log
p(xj)

q1(xj)
+

R

j ln j

 = 0.

Therefore as before

lim
n→∞

sup
p∈P

1

n

 n∑
j=1

∑
xj∈T

p,
2 ln j
j−1

p(xj) log
p(xj)

q1(xj)
+

n∑
j=2

R

j ln j

 = 0

as well. The theorem follows.

A few comments about (3.1) in Theorem 10 are in order. Neither condition automatically

implies the other. The set B of distributions in Example 1 is an example where every

distribution has finite entropy, the redundancy of B is finite,

lim
δ→0

sup
p∈B

∑
x∈Tp,δ

p(x) log
1

p(x)
= 0 but ∀q over N s.t. lim

δ→0
sup
p∈B

∑
x∈Tp,δ

p(x) log
p(x)

q(x)
> 0.

We will now construct another set U of distributions over N such that every distribution in

U has finite entropy, the redundancy of U is finite,

lim
δ→0

sup
p∈U

∑
x∈Tp,δ

p(x) log
1

p(x)
> 0 but ∃q over N s.t. lim

δ→0
sup
p∈U

∑
x∈Tp,δ

p(x) log
p(x)

q(x)
= 0.

(3.2)

At the same time, the length-n redundancy of U∞ diminishes sublinearly. This is therefore

also an example to show that the conditions in Theorem 10 are only sufficient, but in fact not

necessary. It is yet open to find a condition on single letter marginals that is both necessary

and sufficient for the asymptotic per-symbol redundancy to diminish to 0.

Example 4.
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Construction U is a countable collection of distributions pk, k ≥ 1 where

pk(x) =

1− 1
k2 x = 0,

1

k22k
2 1 ≤ x ≤ 2k

2
.

The entropy of pk ∈ U is therefore 1 + h
(

1
k2

)
. Note that the redundancy of U is finite too.

To see this, first note that

∑
x≥1

sup
k≥1

pk(x) ≤
∑
x≥1

∑
pk:k≥1

pk(x) =
∑
pk:k≥1

∑
x≥1

pk(x) =
∑
pk:k≥1

1

k2
=
π2

6
. (3.3)

Now letting R
def
= log

(∑
x≥1 supk≥1 pk(x)

)
, observe that the distribution

q(x) =

1/2 x = 0,

supk≥1 pk(x)

2R+1 x ≥ 1.

satisfies for all pk ∈ U

∑
x≥0

pk(x) log
pk(x)

q(x)
≤ 1 +

R + 1

k2
≤ R + 2,

implying that the redundancy is ≤ R + 2. Furthermore, (3.3) implies from the results on

worst-case regret in [20] that the length-n redundancy of U∞ diminishes sublinearly. Now

pick an integer m ≥ 1. We have for all p ∈ U ,

∑
x∈T

p, 1

m22m
2

p(x) log
p(x)

q(x)
≤ R + 1

m2
,

yet for all k ≥ m, we have ∑
x∈T

p, 1

m22m
2

pk(x) log
1

pk(x)
= 1.

Thus it is easy to see that U indeed satisfies (3.2).
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4
Tail Redundancy and Its Characterization of

Compression of Memoryless Sources

In this chapter, we prove that universal compression of length-n i.i.d. sequences from P is

characterized by how well the tails of distributions in P can be universally described, and we

formalize the later as the tail redundancy of P . We study the tail redundancy of a collection

P of distributions ans show that the per-symbol redundancy goes to tail redundancy as

n → ∞. Therefore, we obtain a single-letter characterization that is both necessary and

sufficient for sequences generated i.i.d. from a collection P of distributions over a countably

infinite alphabet to be (average-case) strongly compressible. Contrary to the worst case

formulation of universal compression, finite single letter (average case) redundancy of P
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does not automatically imply that the expected redundancy of describing length-n strings

sampled i.i.d. from P grows sub-linearly with n.

4.1 Tail Redundancy

We will develop a series of tools that will help us better understand how the per-symbol

redundancy behaves in a wide range of large alphabet cases. In particular, for i.i.d. sources,

we completely characterize the asymptotic per-symbol redundancy in terms of single letter

marginals. Fundamental to our analysis is the understanding of how much complexity lurks

in the tails of distributions.

To this end, we define what we call the tail redundancy. We assert the basic definition below,

but simplify several nuances around it in Section 4.1.1, eventually settling on a operationally

workable characterization.

Definition 3. For a collection P of distributions, define for all m ≥ 1

Tm(P)
def
= inf

q
sup
p∈P

∑
x≥m

p(x) log
p(x)

q(x)
,

where the infimum is over all distributions q over N. We define the tail redundancy is defined

as

T (P)
def
= lim sup

m→∞
Tm(P).

The above quantity, Tm(P) can be negative, and is not a true redundancy as is conventionally

understood. However,

T̃m(P)
def
= inf

q
sup
p∈P

(∑
x≥m

p(x) log
p(x)

q(x)
+ p(x ≥ m) log

1

p(x ≥ m)

)

is always non-negative, and can be phrased in terms of a conventional redundancy. To see

this, let p′ be the distribution over numbers x ≥ m obtained from p as p′(x) = p(x)/p(x ≥ m),
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and note that

T̃m(P) = inf
q

sup
p∈P

p(Sm)D (p′(x)||q(x)) .

4.1.1 Operational Characterization of Tail Redundancy

We refine the above definitions in several ways. First we prove that

T (P) = lim
m→∞

Tm(P) = lim
m→∞

inf
qm

sup
p∈P

∑
x>m

p(x) log
p(x)

qm(x)
. (4.1)

Next, we show that the limit and inf above can be interchanged, and in addition, that

a minimizer exists—namely there is always a distribution over N that achieves the tail

redundancy. This will let us operationally characterize the notions in the definitions above.

Lemma 11. T̃m(P) is non-increasing in m.

Proof Let q be any distribution over N and Sm = {x ≥ m}. We show that

sup
p∈P

(∑
x≥m

p(x) log
p(x)

q(x)
+ p(Sm) log

1

p(Sm)

)
≥ T̃m+1(P),

thus proving the lemma.

To proceed, note that without loss of generality we can assume
∑

x≥m qm(x) = 1. Let

q′m(x) = qm(x)∑
x≥m+1 qm(x)

. We have

sup
p∈P

(∑
x≥m

p(x) log
p(x)

q(x)
+ p(Sm) log

1

p(Sm)

)
(4.2)
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Where in 4.2 we use the fact that
∑

x≥m qm(x) = 1. Therefor, we can rewrite 4.2 as

sup
p∈P

(
p(m) log

p(m)

qm(m)
+ (p(Sm)− p(m)) log

1

1− qm(m)
+
∑

x≥m+1

p(x) log
p(x)

q′(x)

+p(Sm) log
1

p(Sm)

)
= sup

p∈P

(
p(Sm)

(
p(m)

p(Sm)
log

p(m)/p(Sm)

qm(m)
+ (1− p(m)

p(Sm)
) log

(1− p(m)
p(Sm)

)

1− qm(m)

)
+ p(m) log p(Sm)

+ (p(Sm)− p(m)) log
p(Sm)

p(Sm)− p(m)
+
∑

x≥m+1

p(x) log
p(x)

q′(x)
+ p(Sm) log

1

p(Sm)

)

But we can consider first two terms in the last equation as KL divergence between two

Bernouli distributions B(p(m)/p(Sm)) and B(qm(m)). Then

= sup
p

[
p(Sm)D

(
p(m)

p(Sm)
||qm(m)

)
+
∑

x≥m+1

p(x) log
p(x)

q′(x)
+ p(Sm+1) log

1

p(Sm+1)

]
≥ T̃m+1(P). �

Corollary 12. For all classes P , limm→∞ T̃m exists.

Lemma 13. The limit limm→∞ Tm(P) exists and hence T (P) = limm→∞ Tm(P).

Proof If a collection P is not tight then for all m

Tm(P) =∞. (4.3)

To see this, suppose Tm(P) <∞ for some m. Then there exists a distribution qm and some

M <∞ such that

sup
p∈P

∑
x≥m

p(x) log
p(x)

qm(x)
= M.

Consider the distribution q1 that assigns probability 1/(m−1) for all numbers from 1 through
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m− 1. Then the distribution q = (q1 + qm)/2 satisfies

sup
p∈P

∑
x∈N

p(x) log
p(x)

q(x)
= M + logm+ 1,

a contradiction of Lemma 6. We conclude then that Tm(P) = ∞ for all m, and the limit

vacuously exists.

Therefore, we suppose in the rest of the proof that P is tight. Observe that

Tm(P) ≤ T̃m(P).

Let Sm = {x ≥ m} as before and let q be any distribution over N. Then

sup
p∈P

∑
x≥m

p(x) log
p(x)

q(x)

= sup
p∈P

(∑
x>m

p(x) log
p(x)

q(x)
+ p(Sm) log

p(Sm)

p(Sm)

)
≥ sup

p∈P

(∑
x>m

p(x) log
p(x)

q(x)
+ p(Sm) log

1

p(Sm)
+ inf

p̂∈P
p̂(Sm) log p̂(Sm)

)
≥ inf

q′
sup
p∈P

(∑
x>m

p(x) log
p(x)

q′(x)
+ p(Sm) log

1

p(Sm)

)
+ inf

p̂∈P
p̂(Sm) log p̂(Sm)

= T̃m(P) + inf
p̂∈P

p̂(Sm) log p̂(Sm)

Since P is tight, inf p̂∈P p̂(Sm) log p̂(Sm) goes to zero as m→∞. From Corollary 12, we know

that the sequence {T̃m(P)} has a limit. Therefore, the sequence Tm(P) also has a limit and

in particular we conclude

T̃ = lim
m→∞

Tm(P).

Therefore, taking into account the above lemma, we can rephrase the definition of tail
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redundancy as in (4.1),

T (P)
def
= lim

m→∞
inf
qm

sup
p∈P

∑
x≥m

p(x) log
p(x)

qm(x)

We now show that

T (P) = min
q

lim
m→∞

sup
p∈P

∑
x≥m

p(x) log
p(x)

q(x)
.

Note that the limit above need not exist for every q. We take the above equation to mean

the minimization over all q such that the limit exists. If no such q exists, the term on the

right is considered to be vacuously infinite.

Lemma 14. For a collection P of distributions over N with tail redundancy T (P), there

is a distribution q∗ over N that satisfies

lim
m→∞

sup
p∈P

∑
x>m

p(x) log
p(x)

q∗(x)
= T (P)

Proof If P is not tight, the lemma is vacuously true and any q is a “minimizer”.

Therefore, we suppose in the rest of the proof that P is tight. From Lemma 6, we can pick

a finite number mr such that

sup
p∈P

p(x > mr) ≤
1

2r
,

and let qr be any distribution that satisfies

sup
p∈P

∑
x>mr

p(x) log
p(x)

qr(x)
≤ arg inf

q
sup
p∈P

∑
x>mr

p(x) log
p(x)

q(x)
+

1

r
.

We then have

lim
r→∞

sup
p∈P

∑
x>mr

p(x) log
p(x)

qr(x)
= T (P).

Take

q∗(x) =
∑
r≥1

qr(x)

r(r + 1)
.
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Now we also have for r ≥ 4 and any mr < m < mr+1 that

sup
p∈P

∑
x≥mr

p(x) log
p(x)

q∗(x)
≥ sup

p∈P

(
p(mr ≤ x < m) log

p(mr ≤ x < m)

q∗(mr ≤ x < m)
+
∑
x≥m

p(x) log
p(x)

q∗(x)

)

≥ sup
p∈P

(
p(mr ≤ x < m) log p(mr ≤ x < m) +

∑
x≥m

p(x) log
p(x)

q∗(x)

)

≥ − r

2r
+ sup

p∈P

∑
x≥m

p(x) log
p(x)

q∗(x)
.

as well as

sup
p∈P

∑
x≥m

p(x) log
p(x)

q∗(x)
≥ sup

p∈P

p(m ≤ x < mr+1) log
p(m ≤ x < mr+1)

q∗(m ≤ x < mr+1)
+

∑
x≥mr+1

p(x) log
p(x)

q∗(x)


≥ sup

p∈P

p(m ≤ x < mr+1) log p(m ≤ x < mr+1) +
∑

x≥mr+1

p(x) log
p(x)

q∗(x)


≥ −r + 1

2r+1
+ sup

p∈P

∑
x≥mr+1

p(x) log
p(x)

q∗(x)
.

Therefore,

lim sup
m→∞

sup
p∈P

∑
x>m

p(x) log
p(x)

q∗(x)

≤ lim
r→∞

[
sup
p∈P

∑
x>mr

p(x) log
p(x)

qr(x)
+

r

2r
+

log r(r + 1)

2r

]
= T (P).
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Similarly,

lim inf
m→∞

sup
p∈P

∑
x>m

p(x) log
p(x)

q∗(x)

≥ lim
r→∞

[
sup
p∈P

∑
x>mr

p(x) log
p(x)

q∗(x)
− r

2r

]

≥ lim
r→∞

[
inf
q

sup
p∈P

∑
x>mr

p(x) log
p(x)

q(x)
− r

2r

]

≥ lim
r→∞

[
sup
p∈P

∑
x>mr

p(x) log
p(x)

qr(x)
− 1

r
− r

2r

]
= T (P),

and the lemma follows.

Henceforth, we will describe any distribution q that achieves the minimizer in the lemma

above as “q achieves the tail redundancy for P”.

Corollary 15. If a collection P of distributions is tight and has tail redundancy T (P),

then there is a distribution q∗ over N that satisfies

lim
m→∞

sup
p∈P

∑
x>m

p(x) log
p(x)/τp
q∗(x)

= T (P)

Proof The result follows using Lemma 14 and the fact that P is tight.

4.1.2 Properties of the Tail Redundancy

We examine two properties of tail redundancy in this subsection. Note that the tail re-

dundancy is the limit of Tm(P) as m → ∞, but that Tm(P) need not always be negative.

Therefore, we first assert that the limit, the tail redundancy, is always non-negative. The

second concerns the behavior of tail redundancy across finite unions of classes. This property,

while interesting inherently, also helps us cleanly characterize the per-symbol redundancy of
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i.i.d. sources in Section 4.2.

Lemma 16. For all P , T (P) ≥ 0.

Proof Again, if P is not tight, the lemma is trivially true from (4.3). Consider therefore

the case where P is tight. Fix m ∈ N, and let Sm = {x : x ≥ m}. Then,

inf
qm

sup
p∈P

∑
x≥m

p(x) log
p(x)

q(x)
≥ sup

p∈P

{
p(Sm) log p(Sm)

}

Furthermore, supp p(Sm) log p(Sm)→ 0 as m→∞ because supp p(Sm)→ 0 as m→∞. To

see this, note that if supp p(Sm) ≤ 1
e
, then

sup
p
p(Sm) log p(Sm) ≥

(
sup
p′
p′(Sm)

)
log

(
sup
p′
p′(Sm)

)
.

The lemma follows.

Lemma 17. Let {a(j)
i }, 1 ≤ j ≤ k be k different sequences with limits a(j) respectively.

For all i, let

âi = max
j

a
(j)
i .

Then the sequence {âi} has a limit and the limit equals max a(j).

Proof Wolog, let the sequences be such that the limits are a(1) ≥ a(2) ≥ . . . ≥ a(k).

Consider any 0 < ε < a(1)−a(2)

2
. Then for all 1 ≤ j ≤ k, there exist Nj such that for all

i ≥ Nj, |a(j)
i − a(j)| ≤ ε. Let N = maxNj. We now have that for all i ≥ N ,

âi = max
j

a
(j)
i = a

(1)
i ,

and therefore, the sequence {âi} has a limit, and is equal to a(1) = max1≤j≤k limi→∞ a
(j)
i .

Lemma 18. Let T (P1), T (P2), . . . , T (Pk) be tail redundancy of collections P1,P2, . . . ,Pk
respectively. Then

T (∪ki=1Pi) = max
1≤j≤k

T (Pj).
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Proof We first observe T (∪ki=1Pi) ≥ max1≤j≤k T (Pj), since for all q, and all 1 ≤ j ≤ k,

we have

sup
p∈∪iPi

∑
x≥m

p(x) log
p(x)

q(x)
≥ sup

p∈Pj

∑
x≥m

p(x) log
p(x)

q(x)

≥ inf
q′

sup
p∈Pj

∑
x≥m

p(x) log
p(x)

q′(x)

= Tm(Pj)

To show that T (∪ki=1Pj) ≤ maxj T (Pj), let q1, q2, . . . , qk be distributions that achieve the tail

redundancies T (P1), T (P2), . . . , T (Pk), respectively and let q̂(x) =
∑k
i=1 qi(x)

k
for all x ∈ X .

Furthermore, for all distributions q over naturals and collections of distributions P , let

Tm(P , q) = sup
p∈P

∑
x≥m

p(x) log
p(x)

q(x)
.

Clearly, we have

T (∪ki=1Pi) = lim
m→∞

inf
q
Tm(∪ki=1Pi, q).

We will attempt to understand the behaviour of the sequence Tm(∪ki=1Pi, q̂) first. Observe

that

Tm(∪ki=1Pi, q̂) = max
1≤j≤k

sup
p∈Pj

∑
x≥m

p(x) log
p(x)

q̂(x)

= max
1≤j≤k

Tm(Pj, q̂). (4.4)

The limit limm→∞ Tm(Pj, q̂) exists and is equal to T (Pj). This follows because

Tm(Pj, q̂)
(a)

≤ sup
p∈Pj

(∑
x≥m

p(x) log
p(x)

q1(x)
+
∑
x≥m

p(x) log k

)

≤ sup
p∈Pj

(∑
x≥m

p(x) log
p(x)

q1(x)

)
+ sup

p∈Pj

∑
x≥m

p(x) log k,
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where (a) follows because for all x, q(x) ≥ q1(x)/k. Let δm = supp∈Pj p(x). Note that since

Pj is tight, we have limm→∞ δm = 0. Thus

inf
q

sup
p∈Pj

∑
x≥m

p(x) log
p(x)

q(x)
≤ Tm(Pj, q̂) ≤ sup

p∈Pj

(∑
x≥m

p(x) log
p(x)

q1(x)

)
+ δm log k

and both the lower and upper bound on Tm(Pj, q) are sequences whose limit exists, and both

limits are T (Pj). We conclude then, that for all 1 ≤ j ≤ k,

lim
m→∞

Tm(Pj, q̂) = T (Pj). (4.5)

From (4.4), (4.5) and Lemma 17, we have that the sequence Tm(∪ki=1Pi, q̂) also has a limit

and that

lim
m→∞

Tm(∪ki=1Pi, q̂) = max
1≤j≤k

T (Pj).

Putting it all together, we have

T (∪ki=1Pi) = lim
m→∞

inf
q
Tm(∪ki=1Pi, q) ≤ lim

m→∞
Tm(∪ki=1Pi, q̂) = max

1≤j≤k
T (Pj).

The lemma follows.

4.2 Main Result

In [19] we showed that if a collection of distributions has finite single letter redundancy, then

a couple of technical conditions, one of which was similar to but not the same as the the tail

redundancy condition being 0, then the collection was strongly compressible. At the same

time, we also had noted that the technical conditions therein were not necessary. The main

result of this section is that the per-symbol redundancy goes to tail redundancy as n increase.

In fact, we first show that per-symbol redundancy is always greater than or equal to tail

redundancy n→∞ and conversely we show that tail redundancy is always greater than or
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equal per-symbol redundancy as n→∞. This result implies that zero tail redundancy is a

necessary and sufficient condition for a collection to be strongly compressible.

Lemma 19. Consider collection P . if single letter redundancy R1(P) =∞ then T (P) =

∞.

Proof Assume on the contrary that T (P) is finite, then for any m,

inf
q

sup
p

∑
x≥m

p(x) log
p(x)

q(x)
= M <∞.

Let qm be the encoder that achieves M , i.e.

sup
p

∑
x≥m

p(x) log
p(x)

qm(x)
= M.

Consider q0 = ( 1
m
, . . . , 1

m
), a uniform distribution over {1, 2, 3, . . . ,m}, and let q(x) =

q0(x)+qm(x)
2

. Then for all p ∈ P ,

R1 =
∞∑
x=1

p(x) log
p(x)

q(x)
≤ log 2m+M + 1 <∞,

which is a contradiction.

Theorem 20. Let P be a collection of distributions over N and P∞ be the collection of all

measures over infinite sequences that can be obtained by i.i.d. sampling from a distribution

in P . Then

lim
n→∞

1

n
Rn(P∞) = T (P).

A couple of quick examples first.

Example 5. Proposition 2 proved that B∞ is not strongly compressible, and we note that

T (B) > 0.

Example 6. Let h > 0. Let Mh be the collection of uniform distributions over N such
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that

Ep

(
log

1

p(X)

)2

< h.

LetM∞
h be the set of all i.i.d. distributions with one dimensional marginals fromMh. Then

it is easy to verify that T (Mh) = 0 and that M∞
h is strongly compressible. Specifically, we

can construct a measure q∗ over infinite sequences of naturals whose per-symbol length-n

redundancy against sources in M∞
h is upper bounded by (see [26])

2h3/2

√
log n

+ π

√
2

3n

so M∞
h is strongly compressible.

4.3 Proof of Theorem 20

If P is not tight then using Lemma 6, R1 = ∞ and using Lemma 19, the tail redundancy

T (P) is infinite. Also, R1 =∞ results in 1
m
Rm(P∞) =∞, so if P is not tight, 1

m
Rm(P∞) =

T (P) = ∞. If P is tight we first show that 1
m
Rm(P∞) ≥ T (P) and then we show that

1
m
Rm(P∞) ≤ T (P).

4.3.1 Direct Part

In this section, we show the direct part of theorem 20, i.e. we prove that

lim
n→∞

1

n
Rn(P∞) ≥ T (P).

If P is tight, then for any c > 0, we can find a finite number mn such that ∀p ∈ P ,

p(x ≥ mn) <
c

n
.
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Let τ pn
def
= p(x ≥ mn) be the tail probability past mn under p. For each sequence xn, let the

auxiliary sequence yn be defined by

yi =

 xi if xi ≤ mn

−1 if xi ≥ mn.

Let Y = {−1, 1, 2, . . . ,mn}, then yn ∈ Yn. For n ≥ 1, let rXn be distributions over length−n

strings of natural numbers. We show that ∀n, and for all rXn ,

∑
p(xn) log

p(xn)

rXn

≥ T (P).

Proving also that

lim
n→∞

inf
q

sup
p∈P∞

∑
p(xn) log

p(xn)

rXn

≥ T (P).

Now

r(xn) = r(xn, yn) = r(xn|yn)r(yn),

and

sup
p∈Pn

D(pXn||rXn)

= sup
p∈Pn

∑
Xn

p(Xn) log
p(Xn)

r(Xn)

= sup
p∈Pn

( ∑
yn∈Yn

p(yn)
∑
Xn

p(Xn|yn) log
p(Xn|yn)

r(Xn|yn)

+
∑
yn∈Yn

p(yn)
∑
Xn

p(Xn|yn) log
p(yn)

r(yn)

)
(a)

≥ sup
p∈Pn

∑
yn∈G

p(yn)
∑
Xn

p(Xn|yn) log
p(Xn|yn)

r(Xn|yn)
.

Where (a) is using the fact that KL divergence is greater than or equal to 0 and G =

{yn : only one element of yn is − 1}. Note that for a given yn ∈ G, it is easy to see that

p(x|x ≥ mn) = p(Xn|yn). Also, we can characterize a single letter encoder r(yn(x) from
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r(Xn|yn). Therefore,

sup
p∈Pn

∑
yn∈G

p(yn)
∑
Xn

p(Xn|yn) log
p(Xn|yn)

r(Xn|yn)

≥ sup
p∈P

∑
yn∈G

p(yn)
∑
x≥mn

p(x|x ≥ mn) log
p(x|x ≥ mn)

r(x|yn)

= sup
p∈P

∑
yn∈G

p(yn)

τ pn

∑
x>mn

p(x) log
p(x)/τ pn
ryn(x)

.

For all p ∈ P , let

ȳ∗(p) = arg min
yn∈G

∑
x≥mn

p(x) log
p(x)

ryn(x)
.

Then,

sup
p

∑
yn∈G

p(yn)

τ pn

∑
x>mn

p(x) log
p(x)/τ pn
ryn(x)

≥ sup
p

p(G)

τ pn

∑
x≥mn

p(x) log
p(x)/τ pn
rȳ∗(p)(x)

.

From the fact that ∀p ∈ P , p(G) = n(1− τ pn)n−1τ pn, we therefore have

sup
p
D(pXn||rXn) ≥ sup

p

p(G)

τ pn

∑
x≥mn

p(x) log
p(x)/τnp
rȳ∗(p)(x)

≥ sup
p

p(G)

τ pn

( ∑
x≥mn

p(x) log
p(x)

rȳ∗(p)(x)
+ τ pn log

1

τ pn

)
≥ sup

p
n(1− c

n
)n
( ∑
x≥mn

p(x) log
p(x)

rȳ∗(p)(x)
+ τ pn log

1

τ pn

)
. (4.6)

Let Pyn = {p ∈ P : ȳ∗(p) = yn}. Then P = ∪ynPyn . Note that ∪ynPyn is a finite union,

therefore there exists ȳ such that T (Pȳ) = T (P).
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Then

sup
p∈P

[∑
x≥mn

p(x) log
p(x)

ry∗(p)(x)
+ τ pn log

1

τ pn

]
= max

yn
sup
p∈Pyn

[∑
x≥mn

p(x) log
p(x)

ry(x)
+ τ pn log

1

τ pn

]

≥ max
yn

(
inf
q

sup
p∈Pyn

[∑
x≥mn

p(x) log
p(x)

ryn(x)
+ τ pn log

1

τ pn

])

≥ max
yn
T̃mn(Pyn)

(∗)
≥ max

yn
T (Pyn)

= T (P), (4.7)

where (∗) follows since T̃m monotonically decreases to the limit T . Putting (4.6) and (4.7)

together, we obtain

sup
p∈P

D(p(Xn||rXn) ≥ n(1− c

n
)nT (P).

Since the inequality holds for all c > 0, we can keep c small enough , so that

sup
p∈P

1

n
D(p(Xn ||rXn) ≥ T (P).

4.3.2 Converse Part

We now prove the converse part of Theorem 20, i.e. we show that

lim
n→∞

1

n
Rn(Pn) ≤ T (P).

Let rn be an optimal universal encoder for any finite m-ary alphabet, length-n sequences.

Let the redundancy of rn against (m+1)−ary i.i.d. sequences of length n be Sm. It is known

that Sm ∼ m
2

log n [2–4].

Let q∗ be the distribution that achieves T (P). Like we will see later, we set m =
√
n. As
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before, we construct an auxiliary sequence yn from xn where

yi =

 xi if xi ≤ m

−1 if xi ≥ m.

Given any sequence yn ∈ {−1, [m]}n, and xn ∈ Nn, we say xn ∼ yn if yn is consistent with xn

(constructed from xn). Note that without loss of generality we can assume
∑

x≥m q
∗(x) = 1

(otherwise we can construct another encoder from that with smaller redundancy). Then,

construct q by first encoding the auxiliary sequence yn

q(yn) = r(yn),

followed by describing xi for each yi where yi = −1 independently,

q(xn|yn) =
∏
i=1:n

q(xi|yi),

where to describe xi when yi = −1 we use the distribution q∗

q(xi|yi) =


q∗(xi) if yi = −1

1 if yi 6= −1, xi = yi

0 if yi 6= −1, xi 6= yi.

Then,

1

n

∑
xn∈Nn

p(xn) log
p(xn)

q(xn)

=
1

n

∑
yn∈Nm

p(yn) log
p(yn)

q(yn)
+

1

n

∑
xn∈Nn

p(xn) log
p(xn|yn)

q(xn|yn)

≤ Sm
n

+
1

n

∑
yn∈Nm

p(yn)
∑
xn∈Nn

p(xn|yn) log
p(xn|yn)

q(xn|yn)
. (4.8)

Fix yn and let k(yn) be the number of −1 in yn. Let τp = p(x ≥ m), then for a fixed yn,

47



∀xn ∼ yn,

p(xn|yn) =
∏

i:yi=−1

p(xi)

τp
.

We can rewrite the second term in equation (4.8) as

1

n

∑
yn∈Nm

p(yn)
∑
xn∈Nn
xn∼yn

p(xn|yn) log
p(xn|yn)

q(xn|yn)
=

1

n

∑
yn∈Nm

p(yn)
∑
xn∈Nn
xn∼yn

∏
j:yj=−1

p(xj)

τp
log

∏
i:yi=−1

p(xi)/τp
w(xi)

=
1

n

∑
p(yn)A(k(yn)).

We can bound A(k(yn)) as follows,

A(k(yn)) =
∑

j:yj=−1

∑
xj≥m

p(xj)

τp
log

p(xj)/τp
q∗(xj)

≤ k(yn)
∑
x≥m

p(x)

τp
log

p(x)/τp
q∗(x)

.

Now we have,

∑
yn

p(yn)A(k(yn)) ≤
∑
yn

p(yn)k(yn)
∑
x≥m

p(x)

τp
log

p(x)/τp
q∗(x)

=
∑
x≥m

p(x)

τp
log

p(x)/τp
q∗(x)

∑
yn

p(yn)k(yn)

= E(#yi = −1)
∑
x≥m

p(x)

τp
log

p(x)/τp
q∗(x)

. (4.9)

Combining equation (4.8) and (4.9), we have

1

n

∑
xn

p(xn) log
p(xn)

q(xn)
≤ Sm

n
+

1

n
E(#yi = −1)

(∑
x≥m

p(x)

τp
log

p(x)/τp
q∗(x)

)
≤ Sm

n
+
∑
x≥m

p(x) log
p(x)/τp
q∗(x)

,

where the last inequality follows since E(#yi = −1) = nτp. Now, taking the supremum over
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all p and the limit, we have

lim
n→∞

sup
p∈Pn

1

n

∑
xn∈Nn

p(xn) log
p(xn)

q(xn)
≤ lim

n→∞
sup
p∈P

[
Sm
n

+
∑
x≥m

p(x) log
p(x)/τp
q∗(x)

]
.

Since m =
√
n, as n goes to infinity Sm

n
goes to 0 and using Corollary 15 the second term

goes to T (P). Therefore,

lim
n→∞

1

n
Rn(Pn) ≤ T (P).
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5
Unbounded Memory Markov Sources

In this chapter, we study the redundancy of universally compressing strings X1, . . . ,Xn gen-

erated by a binary Markov source p without any bound on the memory. To better understand

the connection between compression and estimation in the Markov regime, we consider a class

of Markov sources restricted by a continuity condition. In the absence of an upper bound on

memory, the continuity condition implies that p(X0|X−1
−m) gets closer to the true probability

p(X0|X−1
−∞) as m increases, rather than vary around arbitrarily. For such sources, we prove

asymptotically matching upper and lower bounds on the redundancy. In the process, we

identify what sources in the class matter the most from a redundancy perspective.

50



5.1 Introduction

Estimation and compression are virtually synonymous in the i.i.d. regime. Indeed, in the

i.i.d. case, the add-half (and other add-constant) estimators that provide reasonable esti-

mates of probabilities of various symbols are described naturally using a universal compres-

sion setup. These estimators simply correspond to the conditional probabilities assigned by

a Bayesian mixture when Dirichlet priors on the parameter space—and indeed encoding the

probabilities given by these Bayesian mixtures yields good universal compression schemes

for these classes of distributions.

In the Markov setup, there is an additional complication not seen in the i.i.d. setup—

mixing—that complicates the relation between compression and estimation. Without going

into the technicalities of mixing, slow mixing sources do not explore the state space efficiently.

For example, consider a memory-1 binary Markov source that assigns conditional probability

of 1− ε for a 1 given 1, and ε for the conditional probability of a 1 given 0. If we start the

source from the state 1, for sample length n� 1
ε
, we will see a sequence of all 1s with high

probability in length-n samples. This sequence of 1s is, of course, easy to compress—but

clearly precludes the estimation of the conditional probabilities associated with 0.

Previous work in the Markov regime, however, has typically considered classes Markov

sources with bounded memory (say, all memory-3 Markov sources) as a natural hierar-

chy of classes. As the prior example shows, these classes are definitely not natural from an

estimation point of view. Small memory sources—even with memory one can be arbitrarily

slow mixing—and hence hard to estimate. On the other hand, sources with longer memory

may be easier to estimate if they are fast mixing and satisfy certain other conditions, as we

will see below.

As a consequence, we look for a different way to resolve the class of all finite memory Markov

sources into a nested hierarchy of classes. Therefore, in [28], a new class of Markov sources

was introduced, one that was more amenable to estimation. These classes of sources were not
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bounded in memory, rather they can have arbitrarily long memory. However, these sources

satisfy a continuity condition [28, 29], as described technically in Section 5.2.1.

Roughly speaking, the continuity condition imposes two intuitive constraints closely related

to each other. Let p be a binary Markov source with finite but unknown memory, and con-

sider p(X0|X−1
−∞). Because the source has finite memory, there is a suffix of the past, X−1

−∞

that determines the conditional probability above. Since we do not have an a-priori bound

on the memory, we cannot say how much of the past we need. Yet, the conditional proba-

bilities p(X0|X−1
−m) are well defined for all m. It is now possible to construct Markov sources

where, unless we have suffixes long enough to encapsulate the true state (or equivalently, m

larger than the true memory), p(X0|X−1
−m) is simply not a reflection of the true probability

p(X0|X−1
−∞).

The continuity condition prohibits this pathological property—imposing on the other hand

that the more of the context (X−1
−m) we see, the better p(X0|X−1

−m) reflects p(X0|X−1
−∞). Sec-

ond, given a history X−1
−m, the continuity condition implies that the conditional information

one more bit in the past, X−1
−m−1, provides on X0 diminishes with m.

The continuity condition may be imagined as a soft constraint on the memory, but it does

not control mixing. Suppose we consider the collection of all Markov sources that satisfy a

given continuity condition. It was shown in [28] that it is possible to use length-n samples

to estimate the conditional probabilities p(1|w) of all strings w of length log n that appear

in the sample, as well as provide deviation bounds on the estimates.

This hints that Markov sources nested by the continuity condition (as opposed to memory)

are a natural way to break down the collection of all Markov sources. In order to better

understand these model classes, we study compressing Markov sources constrained by the

continuity condition, and obtain asymptotically tight bounds on their redundancy.

Part of the reason to study this is to understand what portions of the model classes are more

important (namely, contribute primarily) to the redundancy. Indeed, it turns out that the

primary contribution to the redundancy comes from essentially fast mixing sources whose
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state probabilities that are not towards the extremes (not near 0 or 1), while, of course,

these sources do not complicate estimation at all. On the other hand, slow mixing sources

hit estimation, but do not matter for compression at all—a dichotomy which was hinted at

with our very first memory-1 example.

Our main results are matching lower and upper bounds, in Sections 5.3 and 5.4 respectively.

In Section 5.2, we set up notations, and briefly describe the continuity condition in 5.2.1.

5.1.1 Prior Work

Davisson formulated the average and worst case redundancy in his seminal paper in 1973 [2].

A long sequence of work has characterized the worst case redundancy for memoryless sources

[30] [6] [31] [32]. Average redundancy of Markov sources with fixed memory has been studied

in [33] [34] [35]. In [36], the authors obtain the worst case redundancy of such Markov

sources and later [37] derived the exact worst case redundancy of such Markov sources. The

estimation and compression of finite memory context tree models was studied in [38] and [39].

[29] and [40] studied the estimation of context tree with unbounded memory.

For a different comparison of estimation and compression in Markov settings, see [41]. Here

the authors obtain the redundancy of conditionally describing one additional symbol after

obtaining a sample. Finally, [42] considers compression of patterns of Hidden Markov models.

5.2 Setup and Notation

We denote length-n strings in bold face x or as xn1 , and their random counterparts are X

and Xn
1 respectively. For any x ∈ {0, 1}n and w ∈ {0, 1}` with ` ≤ n, let nw be the number

of appearances of w in x as a substring. For x,y ∈ {0, 1}∗, x ≺ y denotes that x is a suffix

of y (e.g. 010 ≺ 11010), xy is the concatenation of x followed by y (e.g. if x = 010 and

y = 1 then xy = x1 = 0101), and |x| as the length of x.
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We consider a two-sided infinite binary Markov random process p generating a sample

· · · , X−1, X0, X1, · · · . The memory of p is finite (though not bounded a-priori), and let

Sp to be context tree [6] of source p. Sp is a set of leaves of a complete binary tree and p is

completely described by the conditional (transition) probabilities p(1 | s) for s ∈ Sp.

LetM` to be all the Markov chains with memory at most `, andM = ∪`M` be the family

of all the finite memory Markov chains. As mentioned before, while M` is a natural class,

we are looking to break M down into a more natural hierarchy of classes.

5.2.1 Markov Chain with Continuity Condition

Let δ := N → R+ be a function such that δ(n) → 0 as n → ∞. A Markov chain p satisfies

the continuity condition subject to δ if for all s1, s2 ∈ Sp, and a ∈ {0, 1}, we have∣∣∣∣p(a | s1)

p(a | s2)
− 1

∣∣∣∣ ≤ δ(|w|)

for all w ∈ {0, 1}∗ such that w ≺ s1 and w ≺ s2 (namely w is a common suffix of s1 and

s2). For technical reasons, we will assume that δ(n) < 1
4n

, see [28].

DenoteMδ to be the family of all the Markov chains with continuity condition subject to δ

andM`
δ =Mδ ∩M`. Roughly speaking, the continuity condition constraints the transition

probabilities of states with long common suffix to be close.

Let Sp(w) = {s ∈ Sp : w ≺ s}. Clearly we have that the stationary probability p(w) =∑
s∈Sp(w) p(s) and that p(1|w) =

(∑
s∈Sp(w) p(1|s)p(s)

)
/p(w). Let p have memory `. In

analogy to the true conditional probability p(1|w), for a given x ∈ {0, 1}n and past x0
−`+1,

let

p̃(1 | w) =

∑
s∈Sp(w)

nsp(1 | s)

nw

, (5.1)

be the empirical aggregated distribution of p, write it as p̃w for simplicity. In a slight abuse

of notation here, ns (respectively nw) is the number of bits in x with context s (respectively

54



w), i.e., number of bits in x immediately preceded by s (respectively w) when taking the

past x0
−`+1 into account).

5.2.2 The Redundancy

For any distribution family P on {0, 1}n, the worst case minimax redundancy of P is defined

as

R(P) = inf
q

sup
p∈P

max
x∈{0,1}n

log
p(x)

q(x)
,

similarly, the average minimax redundancy is defined as

R̃(P) = inf
q

sup
p∈P

EX∼p log
p(X )

q(X )
,

where q is choosing from all the possible distributions on {0, 1}n. For any given (fixed) past

x0
−∞, we know that for any p ∈M we will have a well defined distribution over {0, 1}n, given

by

p̄(xn1 ) = p(xn1 | x0
−∞).

The main result of this chapter is a lower and upper bound on the average redundancy of

Mδ over {0, 1}n for any past, i.e.

R̃(Mδ)
∆
= inf

q
sup
p∈Mδ

sup
x0
−∞

EX∼p̄ log
p̄(X )

q(X )
.

5.3 The Lower Bound

The Redundancy-Capacity theorem [43] is a common approach to lower bound the minimax

redundancy. This approach gets complicated in our case since there is no universal bound

on the memory of sources in Mδ, rendering the parameter space to be infinite dimensional.

We therefore first consider M`
δ (see Section II), the subset of sources in Mδ which also

have finite memory ≤ `, and obtain a lower bound on R̃(M`
δ). Since R̃(Mδ) ≥ R̃(M`

δ) for
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all `, we optimize over ` to obtain the best possible lower bound on R̃(M`
δ). Recall that

δ(`) ≤ 1/(4`).

Theorem 21. [Lower Bound] For any `, we have

R̃(M`
δ) ≥ 2`−1 log n− 2`(log

1

δ(`)
+ `/2)− 2`−1(log 4πe`+ 1),

and R̃(Mδ) ≥ max` R̃(M`
δ).

Before proving this theorem, we consider specific forms for δ to get an idea of the order of

magnitude of the redundancy in Theorem 21.

Corollary 22. If δ(`) = 1
`c

with c > 1, then we have

R̃(Mδ) = Ω(n/ log2c−1 n),

for ` = log n− 2c log log n+ o(1). If δ(`) = 2−c`, then

R̃(Mδ) = Ω(n1/(2c+1) log n),

for ` = 1
2c+1

log n+ o(1). If δ(`) = 2−2c` , then

R̃(Mδ) = Ω(log1+1/c n),

for ` = 1
c

log log n+ o(1).

For any p ∈ M`
δ, we know that the distribution of p on {0, 1}n can be uniquely determined

by at most 2` parameters, i.e. the transition probabilities p(1 | s). Let

M̂`
δ = {p ∈M`

δ | ∀s ∈ Sp, |p(1 | s)− 1/2| ≤ δ(`)},

be a sub-family ofM`
δ with all the transition probabilities close to 1/2. The following lemma

is directly from Redundancy-Capacity theorem[43].
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Lemma 23. Let εs be the maximum mean square error of estimating parameters p ∈ M̂`
δ

from their length n sample. Then

R̃(M̂`
δ) ≥ 2` log δ(`)− 2`−1 log (2πeεs) . (5.2)

Proof

Consider the following Markov chain

M̂`
δ

(a)→ P
(b)→ Xn

−`+1

(c)→ P̂ ,

where (a) P is a random Markov process chosen from a uniform prior over M̂`
δ, (b) Xn

1 is

a length n sample from distribution P , (c) P̂ is an estimate of P from the sample Xn
1 that

uses the empirical probabilities ns1

ns
to estimate P (1 | s) for any s ∈ {0, 1}`.

By capacity-redundancy theorem one knows that

R̃(M̂`
δ) ≥ I(P ;Xn

1 ) ≥ I(P ; P̂ ),

where the second inequality is by data processing inequality. Note that

I(P ; P̂ ) = h(P )− h(P |P̂ )

= h(P )− h(P − P̂ |P̂ )

≥ h(P )− h(P − P̂ ), (5.3)

where the last inequality follows since conditioning reduces entropy. To bound first term

in (5.3) let P ∈ M̂`
δ be uniform on the hypercube A with edge lengths δ(l). Then

h(P ) = 2` log δ(`).

since h(P ) = log Vol(A).

57



To bound h(P − P̂ ), let K be the covariance matrix of any estimator of parameter space

condition on xn. Then using Theorem 8.6.5 in [44]

h(P − P̂ ) ≤ 1

2
log(2πe)2` |K|.

Let |K| and λi show determinant and eigenvalues of matrix K, respectively. Let εi be the

element diagonal elements of covariance matrix. Then by the definition of trace of a matrix

∑
i

εi = tr(K) =
∑
i

λi.

Using arithmetic-geometric inequality, we get

(∑
i λi

2`
)2` ≥

∏
i

λi. (5.4)

Also
∑

i εi ≤ 2`εs. Then

|K| =
∏
i

λi ≤
(∑

i εi
2`

)2` ≤ ε2
`

s . (5.5)

Applying (5.5) in 1
2

log(2πe)2` |K|, we have

h(P − P̂ ) ≤ 2`−1 log
(
2πeεs

)
.

and lemma follows.

To bound εs one needs to find an estimator that makes it as small as possible. We will show

that the empirical estimation P̂ (s) = ns1

ns
, is sufficient to establish our lower bound. We now

find an upper bound on the estimation error of state s using naive estimator.

Lemma 24. Consider the naive estimator P̂ (s) = ns1

ns
. Then,

E[(P̂ (s)− P (s))2] ≤ min{E
[

1

ns

]
, 1}.
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Proof Note that

E[(P̂ (s)− P (s))2] = E
[
E[(P̂ (s)− P (s))2|ns]

]
.

Condition on ns, the symbols follow string s can be considered as outputs of an i.i.d.

Bernoulli with parameter P (s). For a sequence of zeros and ones with length n drawn

i.i.d. from B(p) with k one, it is easy to see that E[( k
n
− p)2] ≤ 1

n
, so

E
[
E[(P̂ (s)− P (s))2|ns] ≤ min{E

[
1

ns

]
, 1}.

So finding the lower bound on redundancy reduces to find an upper bound on E[ 1
ns

]. We

need two following technical lemmas to bound E[ 1
ns

].

Lemma 25. Let X1, X2, · · · , Xn be binary random variables, such that for any 1 ≤ t ≤ n

Pr (Xt = 1 | X1, · · · , Xt−1) ≥ q,

for some q ∈ [0, 1]. Then, for any 1 ≤ k ≤ n

Pr

(
n∑
i=1

Xi ≤ k

)
≤

k∑
i=0

(
n

i

)
qi(1− q)n−i.

Proof We use double induction on k and n to prove this theorem.

Consider the base case for k = 0, and an arbitrary n, then we need to bound Pr (
∑n

i=1Xi ≤ 0),

which is equal to say that Pr(X1 = 0, X2 = 0, . . . , Xn = 0). But

Pr(X1 = 0, . . . , Xn = 0) = Pr(Xn = 0|X1 = 0, . . . , Xn−1 = 0) . . .Pr(X1 = 0)

≤ (1− q)n

59



where the first equation is using chain rule and the inequality follows by the assumption that

Pr (Xn = 1 | X1, · · · , Xn−1) ≥ q.

If k = n then
n∑
i=0

(
n

i

)
qi(1− q)n−i = 1

so we need to have Pr (
∑n

i=1 Xi ≤ k) < 1 which holds always.

For the induction step we just need to show that if (n′, k′) ≤ (n, k) and

Pr

(
n′∑
i=1

Xi ≤ k′

)
≤

k′∑
i=0

(
n′

i

)
qi(1− q)n′−i,

holds, then

Pr

(
n∑
i=1

Xi ≤ k

)
≤

k∑
i=0

(
n

i

)
qi(1− q)n−i

holds. To see it, define

Ank = {
n∑
i=1

Xi ≤ k},

Bn
k = {X1 = 0 ∧

n∑
i=1

Xi ≤ k}, and

Cn
k = {X1 = 1 ∧

n∑
i=1

Xi ≤ k − 1}.

Define

T nk =
k∑
i=0

(
n

i

)
qi(1− q)n−i.

Using chain rule we have

Pr{Bn
k } = Pr{X1 = 0}Pr{

n∑
i=1

Xi ≤ k|X1 = 0}
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Pr{Cn
k } = Pr{X1 = 1}Pr{

n∑
i=1

Xi ≤ k − 1|X1 = 1}.

Let P (X1 = 1) = q̃ > q, then P (X1 = 0) = 1− q̃ < 1− q.

Note that Ank = Bn
k ∪ Cn

k . Using union bound and since Bn
k and Cn

k and are disjoint,

Pr{Ank} = Pr{Bn
k }+ Pr{Cn

k },

Then

Pr{Ank} = (1− q̃)Pr{
n∑
i=1

Xi ≤ k|X1 = 0}+ q̃Pr{
n∑
i=1

Xi ≤ k − 1|X1 = 1}

(a)

≤ (1− q)T n−1
k + qT n−1

k−1

= (1− q)
k∑
i=0

(
n− 1

i

)
qi(1− q)n−1−i + q

k−1∑
i=0

(
n

i

)
qi(1− q)n−i

=
k∑
i=0

(
n

i

)
qi(1− q)n−i

and (a) follows by using induction assumption.

Lemma 26. For all p ∈ M̂`
δ, we have

p

(
ns ≤

n

2`2`
−
√
n log n

`2`

)
≤ 1

n
,

Proof Divide length n sequence to subsequence of length l and let m = n
`
. Let 1i for

i ∈ {1, 2, . . . ,m} as

1i = 1{s ≺ X i`
(i−1)`}
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Note that

p(1i = 1 | 10, 11, · · · , 1i−1)
(a)

≥
(

1

2
− δ(`)

)`
≥ 1

2`
(1− 2δ(`))`

(b)

≥ 1

2`
(1− 2`δ(`))

≥ 1

2`+1
,

where (a) follows since p(1 | s′) ∈ [1/2 − δ(`), 1/2 + δ(`)] for all s′ ∈ Sp and (b) is by union

bound. Let q = 1
2`+1 in Lemma 25, then

Pr
(
ns ≤ k

)
≤

k∑
i=0

(
m

i

)
(

1

2`+1
)i(1− 1

2`+1
)m−i.

Right hand side in last inequality is the probability that sum of some i.i.d. random variables

(we denote it by S) drawn from B( 1
2l+1 ) with mean µ = m

2`+1 is less than k. Let k = (1− γ)µ

where 0 ≤ γ ≤ 1 is arbitrary. Then

k∑
i=0

(
m

i

)
(

1

2`+1
)i(1− 1

2`+1
)m−i = Pr(S ≤ (1− γ)µ).

Using Chernoff bound, we get

Pr(S ≤ (1− γ)µ) ≤ e−
γ2µ

2 .

Let γ = 2
√

2`` logn
n

, then

e−
γ2µ

2 = e−2 2`+1` logn
n

n

2`+1` ≤ 1

n
.

So k = (1− γ)µ = n
2`+1`

−
√

n logn
2``

and lemma follows.

We now combine Lemma 25 and Lemma 26 to bound E
[

1
ns

]
.
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Lemma 27. For n large enough,

E

[
1

ns

]
≤ `2`+1

n
.

Proof Let k = n
2`+1`

−
√

n logn
2``

, then

E

[
1

ns

]
=
∑
1
ns
≥ 1
k

1

ns

p

(
1

ns

≥ 1

k

)
+
∑
1
ns
< 1
k

1

ns

p

(
1

ns

<
1

k

)

≤
∑
1
ns
≥ 1
k

p

(
1

ns

≥ 1

k

)
+

1

k

∑
1
ns
< 1
k

p

(
1

ns

<
1

k

)
,

where the inequality is by the fact that 1
ns
< 1. Using Lemma 26

∑
1
ns
≥ 1
k

p

(
1

ns

≥ 1

k

)
<

1

n
.

Also
∑

1
ns
< 1
k
p

(
1
ns
< 1

k

)
< 1. So

E

[
1

ns

]
≤ 1

n
+

1

k
.

But k = n
2`+1`

−
√

n logn
2``

= n
2`+1`

(1− 2
√

2`` logn
n

), then

E

[
1

ns

]
≤ 1

n
+
`2`+1

n

(
1

1− 2
√

2`` logn
n

)
.

But we can choose n large enough so that
√

2`` logn
n

< 1
16

, then

1

1− 2
√

2`` logn
n

< 2.
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So

E

[
1

ns

]
≤ 1 + 2`2`+1

n
' 2`2`+1

n
.

We are now ready to give proof of theorem 21.

Proof of Theorem 21

R̃(M̂`
δ)

(a)

≥ 2` log δ(`)− 2`−1 log (2πeεs)

(b)

≥ 2` log δ(`)− 2`−1 log
(
2πeE[

1

ns
]
)

(c)

≥ 2` log δ(`)− 2`−1 log
(
2πe

2`2`+1

n

)
= 2`−1 log n− 2`−1 log 4πe`

− 2`−1 log 2`+1 − 2` log
1

δ(`)

= 2`−1 log n− 2`(log
1

δ(`)
+ `/2)− 2`−1(log 4πe`+ 1)

where (a) is using Lemma 23, (b) is by Lemma 24 and (c) follows by Lemma 27.

5.4 The Upper Bound

To obtain the upper bound, we first show that for any given x ∈ {0, 1}n, the maximum

probability from any distribution in Mδ will not much greater than that from M`
δ for an

appropriate choice of `. This allows us a simple upper bound based on truncating the

memory of sources. Unfortunately (or fortunately), this simple argument does not allow for

tight matching bounds—hence we will need to refine our argument further.

Lemma 28. Fix any past x0
−∞. For any x ∈ {0, 1}n, let p̂(x) = maxp∈Mδ

p(x|x0
−∞) and

p̂`(x) = maxp∈M`
δ
p(x|x0

−∞). Then

p̂(x) ≤ 22nδ(`)p̂`(x).
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Proof The continuity condition implies that for any p ∈ Mδ, we can find p` ∈ M`
δ such

that for all a ∈ {0, 1}, w ∈ {0, 1}` and s ∈ Sp(w), we have

p(a | s) ≤ (1 + δ(`))p`(a | w).

Thus we have p(x) ≤ (1 + δ(`))np`(x) ≤ 22nδ(`)p̂`(x), where the last inequality follows since

(1 + δ(`))n ≈ enδ(`).

Proposition 5.

R(Mδ) ≤ min
`

2`−1 log n+ 2nδ(`).

Proof Shtarkov’s sum [45] gives

2R(Mδ) =
∑

x∈{0,1}n
p̂(x).

Thus by Lemma 28, we have

2R(Mδ) ≤ 22nδ(`)
∑

x∈{0,1}n
p̂`(x) = 22nδ(`)2R(M`

δ).

Therefore,

R(Mδ) ≤ 2nδ(`) +R(M`
δ).

Observe that,

R(M`
δ) ≤ R(M`) ≤ 2`−1 log n,

where the last inequality holds whenever ` > 1, see e.g. [6].

As before, we work out the above bounds for specific δ.

Corollary 29. If δ(`) = 1
`c

with c > 1, then

R(Mδ) = O(n/ logc−1 n),
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for ` = log n− c log log n+ o(1). For δ(`) = 2−c`, we have

R(Mδ) = O(n1/(c+1) log n),

for ` = 1
c+1

log n+ o(1). For δ(`) = 2−2c` , we have

R(Mδ) = O(log1+1/c n),

, for ` = 1
c

log log n.

Comparing Corollary 2 and Corollary 8, the upper and lower bounds on the redundancy

have asymptotically tight order when δ diminishes doubly exponentially. For polynomial

δ the lower bound and upper bound orders differ by log n factors. However, for δ to be

exponential, we have a polynomial gap between the lower and upper bound.

This suggests that either the lower or upper or both bound are too loose. For the lower

bound, recall that the main contribution came from the fast mixing sources in M , while the

other sources—the ones that are problematic to estimate, were summarily ignored.

Yet we will show in what follows that our lower bound given in Theorem 1 is actually tight.

We need the following technical lemmas to refine our upper bound

Lemma 30. [Extended Azuma inequality] Let X1, · · · , Xk, · · · be martingale differences

with |Xi| ≤ 1, τ is a stopping time (i.e. event {τ = k} only depends on σ(X1, · · · , Xk)). If

τ ≤ n, then we have

Pr

(∣∣∣∣∣
τ∑
i=1

Xi

∣∣∣∣∣ ≥ γ
√
τ

)
≤ ne−γ

2/2.

Proof Define Ak = {|X1 + · · ·+Xk| ≥ γ
√
k}, Bk = {τ = k}, let Ck = Ak∩Bk. In fact, Cn

is the event that we stop at n while it is a wrong time to stop. Note that |Xi −Xi−1| < 1,

using Azuma inequality we have

Pr[An] = Pr{|
n∑
i=1

Xi| ≥ γ
√
n} ≤ e−γ

2/2.
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Then

Pr[∪nk=1Ck] ≤
n∑
k=1

Pr[Ak ∩Bk] ≤
n∑
k=1

Pr[Ak] ≤ ne−γ
2/2.

and the Lemma follows.

Lemma 31. For any p ∈Mδ, we have

p

 ∑
w∈{0,1}`

|nw1 − nwp̃w| ≤ log n
√
n2`

 ≥ 1− 2`

n3
,

for n large enough that log n ≥ 6, where p̃w is defined in Section II.

Proof Define

1i(s) =

 1, the i-th appearance of w in w ≺ s

0, otherwise.

Let Wi =
∑

w�s 1i(s)p(1|s), and define

Yi(w) =

 1, the i-th appearance of w happens follows by one

0, otherwise.

Let Zi = Yi −Wi, then by Lemma 2 in [46], Zi are martingale differences and |Zi| < 1.

Note that nw1 =
∑

i Yi and nwp̃w =
∑

iWi and

|nw1 − p̃wnw| =
∑

s∈Sw(p)

|ns1 − p(1|s)ns| = |
nw∑
i=1

Zi|

Define zw = |nw1 − p̃wnw|. Then using Lemma 30,

p

(
zw ≥ log n

√
nw

)
≤ ne− logn2/2

= nelogn− logn/2

=
n

nlogn/2

≤ 1

n3
.
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Let Aw = {zw < log n
√
nw}. Then

p(∪wA
c
w) = p(∪w{zw ≥ log n

√
nw})

≤
∑

w∈{0,1}`
p(zw ≥ log n

√
nw)

≤
∑

w∈{0,1}`

1

n3

=
2`

n3
.

Therefore,

p(∩wAw) = 1− p(∪wAcw) ≥ 1− 2`

n3
.

Note that event {∩wAw} implies event {
∑

w∈{0,1}` zw <
∑

w∈{0,1}` log n
√
nw}, so

p

( ∑
w∈{0,1}`

zw <
∑

w∈{0,1}`
log n

√
nw

)
≥ p(∩wAw) ≥ 1− 2`

n3
.

Also,

p

( ∑
w∈{0,1}`

zw <
∑

w∈{0,1}`
log n

√
nw

)
= p

(( ∑
w∈{0,1}`

zw

)2

<
( ∑
w∈{0,1}`

log n
√
nw

)2
)
.

Using Cauchy-Schwartz inequality we have,

( ∑
w∈{0,1}`

log n
√
nw

)2

≤
∑

w∈{0,1}`
log2 n

∑
w∈{0,1}`

nw = n2` log2 n.

So,

p

( ∑
w∈{0,1}`

zw <
∑

w∈{0,1}`
log n

√
nw

)
= p

( ∑
w∈{0,1}`

zw <
√
n2` log n

)
,

and the Lemma follows.

Consider a sample x from p ∈ Mδ, past x0
−∞ and consider the empirical aggregated prob-

abilities in (5.1) for w ∈ {0, 1}`. We now consider a memory ` Markov source that has its
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conditional probability of 1 given w ∈ {0, 1}` equal to the empirically aggregated probabili-

ties in (5.1), call the source p̃`. Note that p̃` need not be in the class M`
δ or Mδ, and while

we do not explicitly say so in notation for ease of readability, p̃` depends on the sample x.

For any x and p ∈Mδ, and for w ∈ {0, 1}`, let z` =
∑

w zw.

Lemma 32. For any p ∈Mδ and x ∈ {0, 1}n, we have

p̃`+1(x) ≤ 22nδ2(`)+2z`+1δ(`)p̃`(x).

Moreover, we have

p
({

x : z`+1 ≤ log n
√
n2`+1

})
≥ 1− 2`

n3

Proof

Note that

p̃`+1(x) =
∏

w∈{0,1}l
p̃n1w1

1w (1− p̃1w)n1w−n1w1 p̃n0w1
0w (1− p̃0w)n0w−n0w1

, and

p̃`(x) =
∏

w∈{0,1}`
p̃nw1
w (1− p̃w)nw−nw1

So we just need to show that

∏
w∈{0,1}l

p̃n1w1
1w (1−)n1w−n1w1 p̃n0w1

0w (1− p̃0w)n0w−n0w1

≤ 22nδ2(`)+2z`+1δ(`)
∏

w∈{0,1}`
p̃nw1
w (1− p̃w)nw−nw1

To see it, note

p̃wnw = p̃1wn1w + p̃0wn0w.
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Let

p̃1w = p̃w + p̃wδ1,

p̃0w = p̃w + p̃wδ0,

for some |δ1| < l and |δ0| < l. Then

n0wδ0 + n1wδ1 = 0.

Let

n1w1 = p̃1wn1w + z′1 = p̃wn1w + p̃wn1wδ1 + z′1,

n0w1 = p̃0wn0w + z′0 = p̃wn0w + p̃wn0wδ0 + z′0,

for some z′0 and z′1. Also

log p̃n1w1
1w (1− p̃1w)n1w−n1w1 = n1w1 log p̃w

+ n1w0 log(1− p̃1w)

≤ n1w1(log p̃1w + δ1)

+ n1w0(log(1− p̃w)− p̃w
1− p̃w

δ1))

= A1w + (p̃w +
p̃2
w

1− p̃w
)n1wδ

2
1

+ (
p̃w

1− p̃w
)δ1z

′
1

≤ A1w + 2n1wδ(`)
2 + 2δ(`)|z′1|.

where

A1w = n1w1 log p̃w + n1w0 log(1− p̃w).
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Similarly,

log p̃n0w1
0w (1− p̃0w)n0w−n0w1 = n0w1 log p̃0w + n0w0(1− log p̃0w)

≤ n0w1(log p̃w + δ0)

+ n0w0(log(1− p̃w)− p̃w
1− p̃w

δ0))

= A0w + (p̃w +
p̃2
w

1− p̃w
)n0wδ

2
0

+ (
p̃w

1− p̃w
)δ0z

′
0

≤ A0w + 2n0wδ(l)
2 + 2δ(l)|z′0|,

and A0w = n0w1 log p̃w + n0w0 log(1− p̃w). Summing over all w, we have

∑
w

log p̃n1w1
1w (1− p̃1w)n1w−n1w1 p̃n0w1

0w (1− p̃0w)n0w−n0w1

≤
∑
w

(A1w + A0w) + 2nδ(`)2 + 2δ(`)z`+1

= log p̃nw1
w (1− p̃w)nw−nw1 + 2nδ(`)2 + 2δ(`)z`+1,

where we use the fact that z`+1 =
∑

w |z′0|+ |z′1|. Also using Lemma 31 one can see that

p
({

x : z`+1 ≤ log n
√
n2`+1

})
≥ 1− 2`

n3

Lemma 33. For any p ∈Mδ, we have

p ({x : p(x) ≤ 2r` p̃`(x)}) ≥ 1−
∑2`

k=` 2k

n3
,

where

r` = nδ(2`) +
2∑̀
k=`

2nδ2(k) + 2 log n
√
n2k+1δ(k).
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Proof Using Lemma 28 we have

p(x) ≤ p̃2`(x)22nδ(2`). (5.6)

Also,

p̃`+1(x) =
∏

w∈{0,1}`
p̃n1w1

1w (1− p̃1w)n1w−n1w1 p̃n0w1
0w (1− p̃0w)n0w−n0w1

≤ 22nδ2(`)+2z`δ(`)
∏

w∈{0,1}`
p̃nw1
w (1− p̃w)nw−nw1 .

Similarly,

p̃2`+1(x) ≤
2∑̀
k=`

22nδ2(k)+2zk+1δ(k)
∏

w∈{0,1}k
p̃nw1
w (1− p̃w)nw−nw1

= 2
∑2`
k=` 2nδ2(k)+2zk+1δ(k)p̃`(x). (5.7)

and using equation (5.6) and equation (5.7), we have

p(x) ≤ p̃`(x)2nδ(2`)+
∑2`
k=` 2nδ2(k)+2zk+1δ(k).

but note that for all k

p
({

x : zk+1 ≤ log n
√
n2k+1

})
≥ 1− 2k

n3
,

Using union bound

p

({
x :

2l∑
k=l

zk+1 ≤
2l∑
k=l

log n
√
n2k+1

})
≥ 1−

2l∑
k=l

2k

n3
,

and the lemma follows.
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Theorem 34. [Improved Upper Bound] Redundancy of Mδ is upper bounded by

R̃(Mδ) ≤ 2`−1 log n+ nδ(2`) +
2∑̀
k=`

(
nδ2(k) + log n

√
n2kδ(k)

)
+ (22`+1 − 2`)

n

n3

for any integer ` ∈ N.

Proof Let Tp = {x : p(x) ≤ 2r` p̃`(x)} be the set of good sequences and T cp = {x : x /∈ T }.

Let c(x) be the best code for memory ` sources. Let |c(x)| denote the length of c(x). Let

q(x) = 2−c(x)+2−n

2
. We can choose c(x) tight enough so that

∑
2−c(x) = 1.

Then

R̃(Mδ) = max
p∈Mδ

∑
x

p(x) log
p(x)

q(x)

= max
p∈Mδ

∑
x∈Tp

p(x) log
p(x)

q(x)
+
∑
x∈T̄p

p(x) log
p(x)

q(x)

≤ max
p∈Mδ

∑
x∈Tp

p(x) max
x∈{0,1}n

log
p(x)

q(x)
+
∑
x∈T̄p

p(x) max
x∈{0,1}n

log
p(x)

q(x)

≤ max
p∈Mδ

∑
x∈Tp

p(x) max
x∈{0,1}n

log
p`2

r`

q(x)
+
∑
x∈T̄p

p(x).n

≤ max
p∈Mδ

max
x∈{0,1}n

log
p`2

r`

q(x)
+ n

∑2`
k=` 2k

n3

= max
p∈Mδ

max
x∈{0,1}n

[log p`(x) + c(x) + 1] + r` + n

∑2`
k=` 2k

n3

= 2`−1 log n+ r` + (22`+1 − 2`)
n

n3
.

Where r` = nδ(2`) +
∑2`

k=` nδ
2(k) + log n

√
n2`δ(k). Note that first term in the last equation

follows since the worst case redundancy of Markov sources with memory ` and is bounded
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by 2`−1 log n. So

R̃(Mδ) ≤ 2`−1 log n+ nδ(2`)

+
2∑̀
k=`

(
nδ2(k) + log n

√
n2kδ(k)

)
+ (22`+1 − 2`)

n

n3
.

Corollary 35. For δ(`) = 2−c`, we have

R̃(Mδ) = O(n1/(2c+1) log n).

Proof Note that,

R̃(Mδ) ≤ 2`−1 log n+ nδ(2`)

+
2∑̀
k=`

(
nδ2(k) + log n

√
n2kδ(k)

)
+ (22`+1 − 2`)

n

n3
,

let δ(k) = 2−ck then

2∑̀
k=`

δ2(k) =
2∑̀
k=`

2−2ck = 2−2cl + 2−2c(l+1) + · · ·+ 2−2c(2`)

= 2−2c`
(
1 + 2−2c + · · ·+ 2−2c`

)
= 2−2c`1− 2−2c(`+1)

1− 2−2c

=
2−2c` − 2−2c(2`+1)

1− 2−2c
,

74



and

2∑̀
k=`

2k/2δ(k) =
2∑̀
k=`

2(−c+1/2)k

= 2(−c+1/2)` + 2(−c+1/2)(`+1) + · · ·+ 2(−c+1/2)2`

= 2(−c+1/2)`
(
1 + 2−c + · · ·+ 2−2c`

)
= 2(−c+1/2)`1− 2−c(`+1)

1− 2−c

=
2(−c+1/2)` − 2(−2c+1/2)`−c

1− 2−c
.

Let ` = c′ log n, then

R̃(Mδ) ≤
nc
′

2
log n+

n

n−2cc′

+ n

(
n−2cc′ − n−4cc′

2−2c

1− 2−2c

)
+ log n

√
n

(
nc
′(−c+1/2) − n(−2c+1/2)c′

2c

1− 2−c

)
+ (2n2c′ − nc′) n

n3
.

Let c′ = 1
2c+1

R̃(Mδ) ≤
1

2
n

1
2c+1 log n+ n

1
2c+1

+
n

1
2c+1 − n

−2c
2c+1

2−2c

1− 2−2c

+ log n

(
n

1
2c+1 − 1

2c
n
−c+1
(2c+1)

1− 2−c

)
+ (2n

2c
2c+1 − n

1
2c+1 )

n

n3

= O(n
1

2c+1 log n).
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Part II

Lossy Compression of Memoryless

Sources
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6
An Online Polynomial-Time Algorithm for

Lossy Compression of Unknown Memoryless

Sources

6.1 Introduction

There are two different stories in communication, source coding which is removing redun-

dancy to reduce the number of bits needed to send the data and channel coding which is

adding redundancy to have more reliable communication. Source coding also known as data
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compression can be done with or without distortion. While in some applications it is required

to losslessly reconstruct the data, in many of them some amount of distortion is allowed to

improve compression rate.

6.1.1 Lempel Ziv Algorithm

In lossless case, an algorithm have been developed by Huffman which is optimal when the

underlying distribution of the source is known.

When statistics of the source is unknown, Lempel and Ziv proposed an optimal adaptive

polynomial time algorithm which does not need to know the distribution of the data. LZ

algorithm has two main parts: distinct parsing and coding.

Distinct Parsing

To explain distinct parsing, let proceed with an example. Consider sequence

X = AAABBABABBB.

After distinct parsing, every phrase must be the “shortest identical phrase”. For example,

first parsed phrase in X is “A”, the second one is “AA” (It cannot be “A” because “A”

already exists in the set of parsed phrases), next one is “B”, continuing in a similar way, the

set of the parsed phrase of X is

{A,AA,B,BA,BAB,BB}.

Coding

In this step, an index must be assigned to every phrase in the parsed set. Table 6.1 shows

the corresponding number of each phrase in the previous example.
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Table 6.1: Assigning Index to Parsed Phrases

Phrase Index

A 0
AA 1
B 2

BA 3
BAB 4
BB 5

To code each phrase it is enough to send an index which points to the part of the phrase that

we have already seen. For example, the code assigned to “BAB” is (4, B) where 4 refers to

the index of the phrase “BA” and B is the last letter in “BAB”. Table 2 lists the assigned

codes for each sequence.

Table 6.2: Coding Parsed Phrase

Phrase Index Code

A 1 (0,A)
AA 2 (1,A)
B 3 (0,B)

BA 4 (3,A)
BAB 5 (4,B)
BB 6 (3,B)

6.1.2 Length of The Code

The maximum number of bits needed to compress a sequence with LZ algorithm is (log2 c(n)+

log2 α) where c(n) is the number of parsed phrases and α is the alphabet size. In fact, log2 c(n)

and log2 α refer to first (number) and the second part (alphabet) of the codes, respectively.

Therefore, total number of the bits needed to code a sequence is c(n)
(

log2 c(n) + log2 α
)
.
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6.2 Lossy Compression

There are many applications that some amount of distortion is tolerable to reduce the number

of bits required to code. This alternative compression problem is known as lossy compression

and has been formulated by Shannon [47] which is also known as Rate-Distortion problem.

6.2.1 Prior Work

Unlike lossless compression, there is no “optimal sequential universal adaptive” algorithm

for lossy case. We briefly review some of the works in this area with emphasis on the LZ

extension algorithms.

One of the early work for extending LZ lossless to the lossy version is in [48]. Morita and

Kobayashi presented a lossy version of the LZW algorithm. Between multiple matches they

choose the one with minimum distortion. Also, a fixed-database version for LZ lossy is

in [49] and [50], but Yang and Kieffer [51] showed that all these fixed-database extensions of

the Lempel-Ziv algorithm are suboptimal. Later, Zamir and Rose [52] used a natural type

selection method.

Attallah, et.al [53] and Navarro [54] used an approximate match method and Yang and

Kieffer [55] have proposed an exponential-time universal Lempel-Ziv-type block codes. To

see more about exponential time algorithms look at [56].

In a non-LZ approach, Jalalli and Weissman [57] used a Markov Chain Monte Carlo method.

Korada and Urbanke [58] applied polar codes for source coding. In a very recent work, Jun

Muramatsu [59] used a constraint random number generator to present a lossy source coding

algorithm.
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6.2.2 Rate Distortion

The rate distortion problem has been formulated by Shannon [47] where he showed that “rate

distortion function” is a lower bound for the compression rate. To define rate distortion

function we introduce some notation. Let Xn = X1X2 . . . Xn be a sequence drawn i.i.d.

according to p(X = x), x ∈ X . Let Y n = Y1Y2 . . . Yn be the lossy representation of Xn,

Y ∈ X̂ . Let d(Xn, Y n) be the distortion measure between Xn and Y n where

d(Xn, Y n) =
n∑
i=1

d(Xi, Yi)

and d(x, y) is the Hamming distortion given by

d(x, y) =

 1, if x 6= y

0, if x = y.

Let E[d(Xn, Y n)] be the expected distortion. The rate distortion function is defined as

r(D) , min
p(y|x):E[d(Xn,Y n)]≤D

I(X;Y )

where I(X;Y ) is the mutual information between X and Y [44] and the minimization is

over all possible conditional distributions p(y|x) which satisfies E[d(Xn, Y n)] < D. The

rate-distortion theorem states that the r(D) is the asymptotic lower bound for compression

of the sequence constraint to distortion D.

6.2.3 Optimal Reproduction Type

Let be p∗(y|x) be the optimal distribution achieves rate-distortion function. The optimal

reproduction distribution is

q∗(y) =
∑
x∈X

p(x)p∗(y|x)
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For a sequence Xn, type of the sequence, τ(Xn), is defined as total number of one in the

sequence over length of the sequence. For example, for X9 = 111010111, τ(X9) = 0.7778.

A sequence Y n has “optimal reproduction type” if it generates using optimal reproduction

distribution.

6.3 Codelet Parsing

Codelet parsing is a lossy Lempel-Ziv type algorithm first presented in [60]. In the case

of no distortion it reduces to lossless LZ algorithm. It sequentially parses a sequence to

phrases which we call “sourcelet” and maps them to “codelet” in the dictionary. We use

an example to better explain the algorithm. Let X11 = 10111001101 and d = 0.5. We

initialize the dictionary with {0, 1} (Figure 6.1). Therefore, in the beginning, the codelets

in the dictionary are {0} and {1}. We parse 10111001101 to get a sourcelet which is in

distortion 0.5 of a codelet in the dictionary. In the first step, the only possible sourcelet is

{1}. The distortion between sourcelet {1} and codelet {0} is 1 which is greater than 0.5 and

the distortion between sourcelet {1} and codelet {1} is 0 which is less than 0.5, so the only

possible codelet is {1} and consequently the chosen codelet is {1}. Now, we extend the chosen

codelet {1} in the dictionary to {11, 10} (Figure 6.2) and the unparsed string is 0111001101.

In this step, possible sourcelets are {0, 01}. Although sourcelet {01} is in distortion 0.5 of

codelet {11}, we only consider “strong match” which means that not only {11} must be in

distortion 0.5 of sourcelet {01}, but also all of their prefix must satisfy distortion constraint.

(We will explain strong match in the next section in more detail). In this case, length one

prefix of {01},( i.e. 0) has higher distortion than 0.5 with a length one prefix of {11}. So it

can not be a candidate. Therefore, we choose sourcelet {0} and codelet {0}. Now, we extend

the codelet {0} in the dictionary ( Figure 6.3 ) and the unparsed string will be 111001101.

In the next step, the only possible sourcelet is {11} and the codelets satisfying the distortion

level are {01, 11, 10}. However, the codelets which strongly match with {11} are {11, 10}.

(Later we describe in detail how we choose in the case of multiple strong matches.). The

82



Table 6.3: An example of evolution of Codelet parsing

i String Dictionary PS PC CC
1 10111001101 {0, 1} {1} {1} {1}
2 0111001101 {0, 10, 11} {0, 01} {0, 11} {0}
3 111001101 {01, 00, 10, 11} {11} {01, 11, 10} {11}
4 1001101 {01, 00, 10, 110, 111} {10, 100} {10, 00, 100} {10}
5 01101 {01, 00, 110, 111, 101, 100} {01, 011} {01, 00, 111} {01}
6 101 {00, 110, 111, 101, 100, 010, 011} {10, 101} {00, 101, 100, 111} {101}

0

1

1

Figure 6.1: String: 10111001101 Possible Sourcelets: {1}, Possible Codelets: {1},Chosen
Codelet: {1}

algorithm choose codelet {11} and the dictionary updates as Figure 6.4. Table 6.3 shows

the Codelet parsing algorithm applied to string 10111001101 for d = 0.5. Abbreviations PS,

PC, and CC stand for “Possible Sourcelets”, “Possible Codelets”, and “Chosen Codelet”,

respectively. Figures 6.1 to 6.6 show the evolution of the dictionary in each iteration.

6.3.1 Multiple Matches

Here, we propose a mathematical definition for “strong match” and justify the motivation

for our definition. This part is the main difference of the algorithm with its previous version

in [61], [62] and [63]. An initial version of the current algorithm was proposed in [11]. In the

classical LZ algorithm which considers exact matching, we need to traverse just one branch.

Figure 6.7a, shows the traversed path for finding exact match of s = 1101. In approximate
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Figure 6.2: String: 0111001101, Possible Sourcelets: {0, 01}, Possible Codelets: {0, 11},
Chosen Codelet: {0}

0

00

01

1

10

11

1

Figure 6.3: String: 111001101, Possible Sourcelets: {11}, Possible Codelets: {01, 11, 10},
Chosen Codelet: {11}
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Figure 6.4: String: 1001101, Possible Sourcelets: {10, 100}, Possible Codelets: {10, 00, 100},
Chosen Codelet: {10}
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Figure 6.5: String: 01101, Possible Sourcelets: {01, 011}, Possible Codelets: {01, 00, 111},
Chosen Codelet: {01}
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Figure 6.6: String: 101, Possible Sourcelets: {10, 101}, Possible Codelets: {00, 101, 100, 111},
Chosen Codelet: {101}

matching, we must search all branches to find all possible matches so we need to traverse

multiple branches. Figure 6.7b shows the possible matches for string s = 1101. But how can

we reduce number of possible branches without losing “good” matches?

We define concept “strong match” to explain the next step of the algorithm. For a given

distortion d,

Definition 4. Two sequences xn, x̂n match if 1/n
∑n

i=1 dH(xi, x̂i) < d, d ≤ 0.5.

Definition 5. Two sequences xn, x̂n strongly match if 1/j
∑j

i=1 dH(xi, x̂i) < d, 1 ≤ j ≤

n, d ≤ 0.5.

Assume in an specific epoch of algorithm, string is 1101 and dictionary is as Figure 6.7b.

We use strong match to reduce the complexity. Figure 6.8 shows how the strong match

reduces the possible matches. But how do we know that using strong match does not omit

the sequence obtained from optimal reproduction distribution from the dictionary?

The cycle lemma assures us that even with strong match there are enough possible matches

for a given string. In fact, using strong matches helps us to have a smart search.

86



0

00

000

001

0010

0011

01

010

011

1

10

100

1000

1001

101

11

110

1100

1101

111

1

(a) Exact match for s = 1101
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(b) possible approximate match for s = 1101

Figure 6.7: Exact match vs approximate match
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Figure 6.8: Strong match reduces possible branches
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Figure 6.9: Proof of cycle lemma, X = 00001001, k = 2

6.3.2 Cycle Lemma

A sequence p1p2...pm+n of zeros and ones is k-dominating if number of zeros in every subse-

quence p1p2...pi, 1 ≤ i ≤ m+n is greater than k times of number ones. For example, sequence

“00010010” is 2-dominating, “00101001” is 1-dominating and “10000000” and “00110001”

are not even 1-dominating.

Lemma 36. [64] Let X be any sequence containing m zeros and n ones where m ≥ kn.

Then number of cyclic permutation of X which are k−dominating is m− kn.

Proof Write sequenceX on a circle. Removing a subsequence containing k “zeros” followed

by a “one” has no net effect on the result. By removing all such sequences there is m− kn

zeros which can be a start point of a permutation. As long as m ≥ kn, by pigeon-hole

principle, there exists such subsequence (Figure 6.9).

6.4 Variation of the Codelet Parsing Algorithm

Choosing a codelet affects the way we form the dictionary (the codebook), thus selecting

between multiple candidates is a delicate task. Not only we need to find a codelet which

reconstructs the corresponding sourcelet and satisfy the distortion constraint, but also this

codelet will add to dictionary and its leaves will be the next possible matches. But even

using strong match constraint there can be multiple matches for a certain sourcelet. There
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are different ways to choose between them in this case. 1 Perhaps the easiest way is choosing

a candidate that has been selected first.Another naive way is choosing the longest candidate.

We implemented both methods. Simulation results show that in non of these methods type

of the leaves of the dictionary goes to the optimal reproduction type. But in an optimal

dictionary, type of the leaves converges to the “optimal reproduction type” asymptotically.

In fact, in each step we may choose a candidate which its type has minimum distance to

“optimal reproduction type”. For example, for B(p), q∗ = p−d
1−2d

. But in general the underlying

distribution is unknown and we don’t know the q∗. We simulate the algorithm assuming that

we know q∗ and from now on we refer to it as “optimal reproduction type” method. 2

In this section we present simulation results using three different approaches: (i) “Optimal

Reproduction Type” method, (ii) “First Match” method, and (iii) “Longest Match” method

which correspond to choosing a codelet “closest to optimal reproduction type”, a codelet

which “has joined to tree sooner” and a codelet which “has the longest length”, respectively.

By “closest to optimal reproduction type”, we simply mean that the absolute value of the

difference between type of the chosen codelet and optimal reproduction type is the minimum

among all codelets that strongly match with the sourcelet.

6.4.1 Optimal Reproduction Type

6.4.1.1 Compression Rate

Figures 6.10 to 6.12 show the compression rate of the codelet parsing algorithm versus log n

for different p, d and n using “optimal reproduction type” method.

The plots for codelet rate reveals a linear relationship between compression rate and block

length n. We use Matlab curve fitting to find the parameters of a simple linear curve for

1. Note that this step is after adding the strong match constraint. There are a few other papers discussing
choosing between possible candidates but their search space is much bigger than here.

2. We resolve this problem in the next chapter by developing a method that learn the “optimal repro-
duction type”
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Table 6.4: Curve fitting parameters for compression rate of “Optimal Reproduction Type”
method

p d Optiaml Rate a b Norms of Residuals
0.1 0.01 0.3882 4.1052 0.38938 0.0059518
0.2 0.01 0.6411 4.6803 0.64638 0.0075957
0.3 0.01 0.8005 4.6661 0.82459 0.0022734
0.1 0.03 0.2746 3.9942 0.39698 0.010753
0.2 0.03 0.5275 4.7179 0.64329 0.0050521
0.3 0.03 0.6869 3.2343 0.82459 0.0022734
0.1 0.05 0.1826 4.2348 0.24596 0.025721
0.3 0.05 0.5949 3.3878 0.81001 0.0061762
0.5 0.1 0.5310 1.1876 1.0413 0.0082403
0.375 0.1 0.4854 3.4434 0.8215 0.0075243
0.375 0.2 0.2325 6.3382 0.41135 0.0041889
0.375 0.3 0.0731 6.8354 0.12459 0.0024781
0.25 0.05 0.5249 3.6944 0.70688 0.0026598
0.25 0.1 0.3423 4.9278 0.52882 0.0059882
0.25 0.2 0.0894 6.6757 0.074766 0.0012464

different p and d. In fact if we approximate compression rate r by r = a ∗ (1/ log n) + b,

table 6.4 below gives the corresponding parameters a and b.

6.4.1.2 Running Time

Since we are interested in an implementable algorithm, it is very important to monitor how

the processing time increases as length of the sequence increases. Figures 6.13 and 6.14 show

the running time t vs logarithm of block length n for “Optimal Reproduction Type” method.

We use curve fitting to fit a linear model to each figure. The linear model estimates a and b

in equation log t = a log n+ b, where from the curve fitting parameters, a is around 1.7 to 2

and b is in range −17 to −21. It shows that the time complexity is of order O(n2).
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Figure 6.10: Compression rate using “Optimal Reproduction Type” method
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Figure 6.11: Compression rate using “Optimal Reproduction Type” method
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Figure 6.12: Compression rate using “Optimal Reproduction Type” method
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Figure 6.13: Time Complexity for different values of p and d
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Figure 6.14: Time Complexity for different values of p and d
96



Table 6.5: “Optimal Reproduction Type” method

n p d NumLeaf ProcTime targRate ComRate
10000 0.1 0.01 674 0 0.3882 0.7007
100000 0.1 0.01 4804 9 0.3882 0.6356
200000 0.1 0.01 8809 32 0.3882 0.6212
400000 0.1 0.01 16207 109 0.3882 0.6071
1000000 0.1 0.01 36708 510 0.3882 0.5933

Table 6.6: “Longest Match” method

n p d NumLeaf ProcTime targRate ComRate
10000 0.1 0.01 674 0 0.3882 0.700731
100000 0.1 0.01 4804 9 0.3882 0.63557
200000 0.1 0.01 8809 32 0.3882 0.621244
400000 0.1 0.01 16207 109 0.3882 0.607128
1000000 0.1 0.01 36708 534 0.3882 0.593341

6.4.2 “First Match” and “Longest Match”

As we explained before, in the case of multiple strong match, we can simply choose one with

longest lengths or the first match. We plot the compression rate for different p, d and n. In

the case of small distortion, the results are very similar to “Optimal Reproduction Type”

method (Tables 6.5 to 6.7 show this similarity). But for other values “optimal reproduction

type” apparently works better.

Tables 6.8 to 6.10 compare the compression rate and time complexity of these methods.

Table 6.7: “First Match” method

n p d NumLeaf ProcTime targRate ComRate
10000 0.1 0.01 674 0 0.3882 0.7007
100000 0.1 0.01 4804 19 0.3882 0.63557
200000 0.1 0.01 8809 31 0.3882 0.621244
400000 0.1 0.01 16207 109 0.3882 0.607128
1000000 0.1 0.01 36708 521 0.3882 0.593341
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Table 6.8: “Optimal Reproduction Type” method

n p d NumLeaf ProcTime targRate ComRate
100000 0.25 0.2 4931 53 0.0894 0.654229
200000 0.25 0.2 8823 112 0.0894 0.622333
400000 0.25 0.2 15843 489 0.0894 0.592194
1000000 0.25 0.2 34646 3189 0.0894 0.557122

Table 6.9: “Longest Match” method

n p d NumLeaf ProcTime targRate ComRate
100000 0.25 0.2 6040 20 0.0894 0.819044
200000 0.25 0.2 11021 62 0.0894 0.795053
400000 0.25 0.2 20208 236 0.0894 0.773089
1000000 0.25 0.2 45434 1491 0.0894 0.748365

Table 6.10: “First Match” method

n p d NumLeaf ProcTime targRate ComRate
100000 0.25 0.2 8233 58 0.0894 1.15321
200000 0.25 0.2 15309 250 0.0894 1.14068
300000 0.25 0.2 22063 593 0.0894 1.13473
400000 0.25 0.2 28583 1127 0.0894 1.12923
1000000 0.25 0.2 65716 8094 0.0894 1.11743
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6.4.3 Analysis of Type

In an optimal set up, type of the leaves of the dictionary converges to “Optimal Reproduction

Type”, so monitoring them helps us to get a better insight of the way the algorithm evolves.

Usually (but not necessarily) longer leaves come in the later steps of the algorithm. We plot

type of all 6f the leaves of the dictionary versus their length. (Since different leaves may

have same length and type, a singlet dot in plot may represent more than one leave. We

later use heat plots to show if more than on leave have a specific length and type.) Different

methods result in different type evolution. We plot type of the leaves versus length of the

leaves for different method for some p, d, and n. Figures 6.15 refers to n = 106, p = 0.25 and

d = 0.2, so q∗ = 0.083 and Figure 6.16 refers to n = 106, p = 0.1 and d = 0.05, so q∗ = 0.056.

Simulation results show that using “Optimal Reproduction Type” method, type of the leaves

of the tree are more close to q∗ compare to “First Match” and “Longest Match”. This is

analogous to the results we obtained so far that compression rate of “Optimal Reproduction

Type” method is better than other variants of the algorithm.

6.5 Learning the Optimal Reproduction Type

In the previous section, we showed that when we use the optimal reproduction type, q∗, to

select between multiple matches, the compression rate is better than the case when we choose

either the first match or the longest match. However, since the underlying distribution is

unknown we do not know what is the optimal reproduction type.

6.5.1 Algorithm

To keep the algorithm universal, we propose a method that learns the optimal reproduction

type. In this method, we count the number of times a leaf is a possible candidate (and may

or may not be selected) and call it “match index”. When we have more than one candidate,
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Figure 6.15: Type of the leaves vs length of the leaves for n = 106, p = 0.25 and d = 0.2
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Figure 6.16: Type of the leaves vs length of the leaves for n = 106, p = 0.1 and d = 0.05
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Figure 6.17: Comparing three leaves at different depth

we compare all candidates in an appropriate level. For example, let y1, y2 and y3 be the

three leaves which match with a given phrase (Figure 6.17). Let y3 be the deepest leaf (i.e.

it has the shortest length). Then to compare their “match index”, the algorithm reaches the

parent of y1 and y2 at the same depth that y3 is (which is y′) and compare its “match index”

(which has been updated based on the number of matches of its leaves). If the parents have

the same “match index” there are two possibilities: We can either (a) choose one of them

at random, or (b) keep both leaves of the parents and then compare their “match index” in

the next level. The variant (b) works better than (a) and even better than the case we know

the optimal reproduction type for some n, p and d.

6.5.2 Simulation Results

Table 6.11 is the simulation results for different p, d and n. Comparing with “First match”

and “Longest Match” method, the results show that this method works obviously better

than them and its performance is close to knowing the true q∗.
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Table 6.11: Performance of the “Most Match” method, “nLeafMost” shows the number of
the leaves in the dictionary, and “TimeMost” is the processing time of the algorithm

n p d nLeafMost TimeMost compressionRate
100000 0.1 0.01 4804 11 0.63557
100000 0.1 0.03 4778 15 0.631756
100000 0.2 0.03 6747 12 0.92569
100000 0.25 0.1 6826 40 0.937676
100000 0.2 0.05 6731 13 0.923265
100000 0.25 0.2 4852 1574 0.642617
1000000 0.1 0.01 36708 513 0.593341
1000000 0.1 0.03 35859 830 0.578407
1000000 0.2 0.03 52647 536 0.878366
1000000 0.25 0.1 50242 2899 0.834852
1000000 0.2 0.05 51519 679 0.857936

6.5.2.1 Type plots

The type plot we used in section 6.4.3 can be misleading since it may indicate that type of

the leaves converges to zero, however the number of leaves with type zero are very small.

So instead of a simple type plot we use a heat plot where the color indicates the number of

leaves with specific type. Figure 6.18 shows the heat plots for different set of p, n, and d.

6.5.2.2 Codelet Frequency

Figures 6.19 to 6.21 shows leaves with specific length vs their length” and “log of number of

leaves with specific length vs their length”.

6.5.2.3 Type of Reconstructed version

To get a better insight of how the leaves of the dictionary evolve, we plot type of the leaves

as we parse the sequence. Figure 6.22 and 6.23 show |q∗ − qi| versus i where qi is the type

of the reconstructed sequence y till iteration i. More specifically, there are i leaves in the

dictionary at iteration i. It is interesting that for higher distortion, |q∗−qi| is still decreasing
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Figure 6.18: Heat plot for most match method
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Figure 6.19: Codelet Frequency
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which shows that convergence time for higher distortion is longer, but then there is a hope

that their compression rate improves by increasing n.

6.5.2.4 Achieved distortion vs desired distortion

In all variants of the Codelet parsing algorithm, real distortion is much less than than the

desired distortion, because we ask every phrase to satisfy the distortion level. For example,

consider parsed sequence X = 1, 0, 11, 01, 111, 00, 011, 1111, 000, 110 and let the distortion

level be 0.25. If we just consider a possible strong match for sourcelet 1111, two codelets are

possible: 1111 and 1110, but considering a prefix of length 17, all 16 possible phrases of length

4 are a valid candidate. To see how the real distortion is different than the reconstructed

distortion we have simulated the algorithm for different n, p, and d. Table 6.12 shows the

simulation results. The last column shows the number of positions that Xn and Y n are

different.
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Figure 6.20: Codelet Frequency
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Figure 6.21: Codelet Frequency
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Figure 6.22: The plots show how |q∗ − qi| changes as we parse the sequence.
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Figure 6.23: The plots show how |q∗ − qi| changes as we parse the sequence.
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Table 6.12: Achieved distortion

n p d nLeafMost TimeMost(s) diffPos
10000 0.5 0.1 1174 0 193
100000 0.3 0.1 7526 22 6095
100000 0.3 0.01 7932 13 0
100000 0.1 0.03 4778 14 336
100000 0.2 0.03 6747 12 0
100000 0.3 0.03 7932 13 0
100000 0.1 0.05 4434 102 2311
100000 0.2 0.05 6731 14 798
100000 0.3 0.05 7938 14 35
100000 0.1 0.05 4434 104 2311
100000 0.5 0.2 7927 85 14851
100000 0.5 0.3 7379 465 23481
100000 0.5 0.4 6337 3017 32679
100000 0.375 0.1 8186 18 6099
100000 0.375 0.2 7043 212 15613
100000 0.375 0.3 5650 1506 24588
100000 0.25 0.05 7424 14 237
100000 0.25 0.1 6826 42 6259
100000 0.25 0.2 4852 1541 16142
1000000 0.1 0.02 36666 535 791
1000000 0.2 0.03 52647 566 173
1000000 0.1 0.01 36708 576 0
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Table 6.13: Achieved distortion for “Most Match” method

n p d nLeafMost TimeMost diffPos compRate dHat hp-hdHat optRate
100000 0.1 0.05 4434 96 2311 0.581492 0.02311 0.3104 0.1826
400000 0.3 0.1 25010 255 26289 0.976029 0.06572 0.5315 0.4123
100000 0.1 0.03 4778 13 336 0.631756 0.00336 0.4365 0.2746
400000 0.1 0.03 15978 160 2310 0.597729 0.005775 0.4177 2746
100000 0.3 0.03 7932 13 0 1.10679 0 0.8813 0.6869
400000 0.3 0.03 27320 133 0 1.07488 0 0.8813 0.6869
400000 0.1 0.05 14355 1696 11250 0.531468 0.0281 0.2842 0.1826
100000 0.5 0.2 7927 85 14851 1.10602 0.14851 0.3939 0.2781
100000 0.5 0.3 7379 445 23481 1.02193 0.23481 0.2137 0.1187
100000 0.375 0.2 7043 201 15613 0.970664 0.15613 0.3295 0.2325
200000 0.375 0.2 12755 841 32075 0.933588 0.160375 0.3192 0.2325

6.5.2.5 Heat Plots

Table 6.13 shows a set of simulation results using most match method. Below is the descrip-

tion for each column:

– “diffPos” number of different positions between original sequence and reconstructed one.

– “compRate” compression rate of the algorithm.

– “dHat” is the “diffPos”/n.

– “hp-hdHat” is the h(p)− h(dHat).

– “optRate” is the optimal rate which is h(p)− h(d).

6.5.2.6 Distortion Monitoring

Figures 6.24 and 6.25 show how the distortion of the sequence evolves as we parse it. The x

axis shows the length of the parsed sequence, and the y axis shows the total distortion of it.

For example, for n = 100000, p = 0.1 and d = 0.05, when we parsed half of the sequence the

total distortion is around 0.02 and when we finish parsing the sequence the total distortion

is 0.025 which is closer to desired distortion 0.05.
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Figure 6.24: Distortion Monitoring
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Figure 6.25: Distortion Monitoring
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6.5.2.7 Codelet Parsing as an Iterative algorithm

If the compression rate is always decreasing it will finally converge to a value (although not

necessarily the optimal value). If a convergence rate be always decreasing then it is easy to

see than the length of the parsed sequence in step i is i log i1+ε for some ε > 0. Figures 6.26

to 6.28 show the compression rate vs iteration number and Figures 6.29 and 6.30 shows the

length of the parsed phrase.
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Figure 6.29: length of the parsed sequence vs iteration number
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Figure 6.30: length of the parsed sequence vs iteration number
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Part III

Rate-Distortion Formulation of a

Problem in Cyber-Physical Systems
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7
Designing Optimal Watermark Signal for a

Stealthy Attacker

7.1 Introduction

Cyber-physical system security is by now a well-motivated and popular problem (see, e.g. [65–

68] and the references therein). One typical formulation of the problem considers plants being

controlled remotely. An intruder or an attacker is able to change data transmitted across

one or both of sensor-controller and controller-actuator channels. The intruder may have

constraints in terms of powers, number of components she can act on and so on. The general
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problem is to design strategies for intruder/attacker to gain information and degrade the

performance of the plant maximally and for the sensor/controller to maintain a guaranteed

level of performance in spite of the attacker being present.

We consider the attacker acting on the controller-actuator channel. The two works closest

to the problem we consider are [68] and [66]. In [68], the authors presented an information

theoretic study of the performance degradation that is achievable by an attacker for whom

the only constraint is its desire to remain undetected. When the controller is not constrained

to conduct any particular detection test, [68] characterized the largest possible estimation

error covariance that can be induced by an attacker while remaining stealthy.

However, [68] assumed that the nominal control signal generated by the controller was known

to the attacker. As [66] showed, if this assumption does not hold, then the controller can

use a watermarking strategy for signaling the presence of an attacker to itself. Specifically,

the controller can intentionally add a noisy signal to the nominal control input to detect

if an attacker is present. Obviously, adding a noisy signal to the optimal control input

degrades the performance of the system. In [66], the authors posed the problem of designing

the watermark signal for stationary Gaussian processes to maximize the Kullback-Leibler

distance between the compromised and noisy control inputs in the case of a replay attack

and proposed a particular (although suboptimal) solution.

We consider the same framework as that in [68] but remove the assumption of the attacker

having access to the nominal control input. As mentioned above, this introduces the possibil-

ity for the controller to watermark its input. However, differently from [66], we do not limit

the attacker to a replay attack. The only constraint we place on the attacker is stealthiness.

Intuitively, stealthiness is defined as the difference or distance between the nominal and the

corrupted signal that characterizes the difficulty with which a detector can detect whether

an attack is in progress. We use mutual information for measuring the distance. Mutual

Information (MI) is an information theoretic metric proposed by Shannon which character-

izes the amount of information that one random variable can provide about another random
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variable [44]. After presenting a notion of stealthiness in terms of MI, the main contribu-

tion of this work is twofold. First, we consider the problem of identifying the watermark

signal that minimizes the similarity (as measured by MI) between the watermarked control

input and the control input as corrupted by the attacker, while the degradation in the LQG

performance as compared to the nominal case is bounded. We show that the optimal water-

mark when an attacker is replacing the control input with a values that are realizations of

a Gaussian random variable is a Gaussian signal. Further, this watermark can be obtained

by solving a Semi-Definite Programming (SDP) problem. Then, we consider the problem of

designing the control input that the attacker should substitute that is optimal in the sense

that it is as similar as possible to the watermarked control input (for stealthiness), while

being as dissimilar as possible to the nominal control input (so that the performance degra-

dation is maximized). We show that if the controller is using a Gaussian watermark signal,

the attacker should introduce a control input that is distributed according to a Gaussian

random variable. We consider only the one-step version of the problem.

This chapter is organized as follows. Section 7.2 presents the system model and the problem

formulation. In Section 7.3, we prove that the best watermarking signal for a Gaussian

attacker is given by a Gaussian random variable. In Section 7.4, we prove that the worst

attack for a Gaussian watermark is also Gaussian.

Notation: A sequence of variables {x0, x2, . . . , xN} is denoted by xN0 or simply as xN if the

lower and upper limits are clear from the context. If N →∞ we denote the infinite sequence

by x∞0 . N (µ, σ2) refers to a random variable with a Gaussian pdf with mean µ and variance

σ2. M > N (respectively, M ≥ N) for matrices M and N implies that M − N is positive

definite (respectively, positive semidefinite).

Let f and g be two probability measures on the same measurable space. Let df/dg be the

Radon-Nikodym derivative of f with respect to g [69]. The Kullback-Leiber distance D(f ||g)
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between f and g is defined as:

D(f ||g) =

∫
(log

df

dg
)df, if

df

dg
exists.

The mutual information between two random variable X and Y is defined as:

I(X;Y ) = D(fX,Y ||fX × fY ),

where fX × fY denotes the product measure. E[X] denotes the expectation of random

variable X.

7.2 Problem Formulation

System Model We consider a time invariant process described by:

xt+1 = axt + ut + wt,

yt = cxt + νt.

where xt ∈ R is the state at time t and yt ∈ R is the sensor observation. The process noise

sequence w∞1 ∼ N (0, σ2
ω) and the measurement noise sequence ν∞1 ∼ N (0, σ2

ν) are white noise

sequences. The initial condition x0 ∼ N (0, P0) is independent of these noise sequences. The

control input ut ∈ R is the output of a pre-designed LQG controller.

To detect if an attacker is present, the controller may want to change the control input ut to

a watermarked version u∗t . In the sequel, we consider u∗t to be the control input transmitted

by the controller, with ut = u∗t if no watermarking is performed.

Attack Model The attacker has access to the communication channel from the controller

to the actuator. The attacker can replace any control input u∗t by an input of its choice ũt.
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To design this attack signal, we assume that the attacker has access to the system parameters

(a, c, σ2
ν , σ

2
ω, P0), measurements yt0 and the nominal control inputs ut0. However, even though

the attacker knows that watermarking may be performed, it does not know the watermarked

control inputs u∗t .

Remark We focus on the one step case. In other words, we consider the case when

t = 0. For simplicity, we thus remove the subscript t for all the signals. Extension of the

work to multi-stage case is an interesting problem but beyond the scope of this work.

Problem Statement To motivate the problem statement, let us consider the problem

from the point of view of the controller. The controller wants to design the best possible

watermark, i.e., it wants to design a watermark signal u∗ so that the similarity between

the watermark signal u∗ and the attacker signal ũ is minimized. We propose the use of

mutual information as the similarity metric between u∗ and ũ. At the same time, adding

noise to the nominal control input degrades the performance and the controller wants to

minimize this degradation. As a proxy for the LQG performance, we consider the constraint

E‖u− u∗‖2 < ε. Thus the problem from the point of view of the controller is given by

minimize
p(u∗|u)

I(ũ;u∗)

subject to E‖u− u∗‖2 < ε.

(7.1)

Now, let us consider the problem from the point of view of the attacker. The attacker aims

to generate an attack signal ũ that is as similar as possible to the watermarked control input

u∗ to remain undetected or stealthy. Once again, to capture the notion of stealthiness, we

propose the use of mutual information as the similarity metric between u∗ and ũ. At the

same time, the attacker wants to substitute the nominal control input u by a signal ũ that is

as dissimilar as possible to the nominal control input so that the performance of the process
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is degraded maximally. Thus the problem that attacker is interested in is given by:

maximize
p(ũ|u), I(ũ;u)=Iu

I(ũ;u∗). (7.2)

The main result of this chapter is that (i) if ũ is distributed according to a Gaussian random

variable (i.e., for a Gaussian attacker), the optimal solution of (7.1) is a Gaussian water-

marking signal; and (ii) if u∗ is distributed according to a Gaussian random variable (i.e.,

for a Gaussian watermarking signal), the optimal solution of (7.2) is a Gaussian attacker.

Remark Note that the problem (7.1) is formally similar to the sequential rate-distortion

problem in [70]. However, the problem in [70] considers the same two signals in the opti-

mization objective and the constraint. In our problem, the optimization objective is the MI

between ũ and u∗, while the constraint is in terms of the variables u and u∗. Similarly, while

the problem formulation in (7.1) is similar to privacy-accuracy tradeoff problem in [71], but

the solution here is completely different than the one presented in [71]. The problem (7.2)

is also formally similar to the one considered in [72] and our proof follows similar principles.

7.3 Optimal Watermark for a Gaussian Attacker

In this section, we assume that the attacker’s policy is Gaussian, i.e., p(ũ|u) can be written

in the form of 1

ũ = Σ21Σ−1
11 u+ ξ, ξ ∼ N (0,Σ22 − Σ21Σ−1

11 Σ12) (7.3)

1. The results in this subsection will be stated under general setting in which random variables u, ũ, u∗

are multi-dimensional.
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where ξ is independent of u, and that the joint distribution p(u, ũ) is a zero-mean Gaussian

distribution with a covariance matrix Σ11 Σ12

Σ21 Σ22

 , Ep

 u

ũ

 u

ũ

> . (7.4)

Under this assumption, we next observe that an optimal watermarking policy for (7.1) is

also Gaussian.

Theorem 37. There exists an optimal policy p(u∗|u) for (7.1) that can be written in the

form of

u∗ = Σ31Σ−1
11 u+ η, η ∼ N (0,Σ33 − Σ31Σ−1

11 Σ13) (7.5)

with some matrix Σ31,Σ33 such that Σ33 − Σ31Σ−1
11 Σ13 � 0, where η is independent of u.

Proof Suppose p(u∗|u) is an arbitrary feasible watermarking policy for (7.1) such that the

value of the objective function is c. It is sufficient to prove that there always exists another

feasible watermarking policy p′(u∗|u) in the form of (7.5) such that the value of the objective

function is c′ ≤ c.

To this end, let p(u, u∗) , p(u∗|u)p(u) be a joint distribution induced by a given water-

marking policy p(u∗|u), and without loss of generality, assume p(u, u∗) is zero-mean. Let

 Σ11 Σ13

Σ31 Σ33

 , Ep

 u

u∗

 u

u∗

> . (7.6)

be the covariance matrix. Notice that if p(u∗|u) is given, a joint distribution

p(u, ũ, u∗) , p(u∗|u)p(ũ|u)p(u)
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is also determined, and its covariance matrix is

Σ , Ep


u

ũ

u∗



u

ũ

u∗


>

=


Σ11 Σ12 Σ13

Σ21 Σ22 Σ21Σ−1
11 Σ13

Σ31 Σ31Σ−1
11 Σ12 Σ33

 . (7.7)

We have used the fact that

Epũu∗> = Ep(Σ21Σ−1
11 u+ ξ)u∗> = Σ21Σ−1

11 Σ13.

Now, consider an alternative policy p′(u∗|u) defined by

u∗ = Σ31Σ−1
11 u+ η, η ∼ N (0,Σ33 − Σ31Σ−1

11 Σ13)

where η is independent of u, and denote the induced joint distribution by

p′(u, ũ, u∗) , p′(u∗|u)p(ũ|u)p(u).

Clearly, p(u, ũ, u∗) and p′(u, ũ, u∗) share the same covariance matrix (7.7). Thus, if p(u∗|u)

is a feasible policy (i.e., Ep‖u− u∗‖2 < ε) then p′(u∗|u) is also feasible, since Ep‖u− u∗‖2 =

Ep′‖u− u∗‖2 follows from the fact that p(u, ũ, u∗) and p′(u, ũ, u∗) have the same covariance
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matrix. Moreover,

Ip(ũ;u∗)− Ip′(ũ;u∗) (7.8)

=

∫
log

dpũ,u∗

d(pũ × pu∗)
dpũ,u∗ −

∫
log

dp′ũ,u∗

d(p′ũ × p′u∗)
dp′ũ,u∗

=

∫
log

dpu∗|ũ
dpu∗

dpũ,u∗ −
∫

log
dp′u∗|ũ
dp′u∗

dp′ũ,u∗

=

∫
log

dpu∗|ũ
dpu∗

dpũ,u∗ −
∫

log
dp′u∗|ũ
dp′u∗

dpũ,u∗ (7.9)

=

∫
dpũ,u∗ log

dpu∗|ũ
dp′u∗|ũ

=

∫ (∫
log

dpu∗|ũ
dp′u∗|ũ

dpu∗|ũ

)
dpũ

=

∫
D(dpu∗|ũ||dp′u∗|ũ)dpũ ≥ 0

where (7.9) follows from the fact that
∫

log
dp′
u∗|ũ
dp′
u∗
dp′ũ,u∗ =

∫
log

dp′
u∗|ũ
dp′
u∗
dpũ,u∗ , since log

dp′
u∗|ũ
dp′
u∗

is a quadratic function and p and p′ have the same second order moment. Thus we have

constructed a Gaussian policy p′(u∗|u) attaining the objective value c′ ≤ c.

Our second result presents a computationally efficient method to synthesize an optimal

watermark policy. In particular, we show that optimal watermark policy can be obtained

by solving a semidefinite program. Note that from Theorem 37, to characterize the optimal

watermark policy, we need to specify Σ13 and Σ33.

Theorem 38. Suppose (7.3) and (7.4) are fixed. Then, an optimal watermark policy is

given by (7.5), where Σ13 and Σ33 are obtained as the optimal solution to a determinant-

maximization problem

minimize
Π�0,Σ31,Σ33

1

2
log det Σ22 −

1

2
log det Π

subject to


Σ � 0, Trace(Σ11 − Σ31 − Σ13 + Σ33) ≤ ε Σ22 − Π Σ21Σ−1

11 Σ13

Σ31Σ−1
11 Σ12 Σ33

 � 0.

(7.10)
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Proof We can write the objective function in (7.1) as

I(ũ;u∗) = h(ũ)− h(ũ|u∗)

=
1

2
log det Σ22 −

1

2
log det(Σ22 − Σ23Σ−1

33 Σ32)

=

 minimize
Π

1
2

log det Σ22 − 1
2

log det Π

subject to 0 < Π � Σ22 − Σ23Σ−1
33 Σ32

=

 minimize
Π�0

1
2

log det Σ22 − 1
2

log det Π

subject to Σ22 − Π− Σ23Σ−1
33 Σ32 � 0

=


minimize

Π�0

1
2

log det Σ22 − 1
2

log det Π

subject to

Σ22 − Π Σ23

Σ32 Σ33

 � 0,

=


minimize

Π�0

1
2

log det Σ22 − 1
2

log det Π

subject to

 Σ22 − Π Σ21Σ−1
11 Σ13

Σ31Σ−1
11 Σ12 Σ33

 � 0.

Where h(.) is the differential entropy [44] and Σ23 is the cross-correlation between ũ and

u∗. The constraint in (7.1) can be written in terms of the components of the matrix Σ as

Trace(Σ11 − Σ31 − Σ13 + Σ33) ≤ ε. Combined, we obtain (7.10).

7.4 Worst Attacker for a Gaussian Watermark Signal

We now present the result complementary to Theorem 37 by showing that the solution of

the optimization problem in (7.2) is also a Gaussian signal. In this optimization problem,

the attacker aims to maximize the performance degradation while retaining its stealthiness.

Thus, it wants to design an attack signal that is as similar to the watermark signal to make

sure that the attack ũ is undetectable, and at the same time, it wishes to ensure that the

similarity between the nominal control input and attacker doesn’t exceed an specific level
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Iu.

Theorem 39. The optimal solution ũ of the optimization problem in (7.2) is a Gaussian

random variable.

Proof The proof technique follows from [72] and [73]. We obtain a lower bound for

I(ũ;u|u∗) and show that the lower bound is achieved if and only if u and ũ are jointly

Gaussian. To this end, note that

I(ũ;u|u∗) = I(ũ;u, u∗)− I(ũ;u∗)

= I(ũ;u) + I(ũ;u∗|u)− I(ũ;u∗)

= I(ũ;u)− I(ũ;u∗), (7.11)

where (7.11) is obtained by using the fact that ũ → u → u∗ is a Markov chain. Given that

I(ũ;u) = Iu, maximizing I(ũ;u∗) is equivalent to minimizing I(ũ;u|u∗).

Also, since u and u∗ are jointly Gaussian, we can write u∗ = au + ξ, where ξ is a Gaussian

random variable that is independent of u. Since ξ is also independent of ũ, we can use the

entropy power inequality to write

e2h(u∗|ũ) ≥ e2h(au|ũ) + e2h(ξ|ũ)

= e2h(u|ũ)|a|2 + e2h(ξ|ũ)

= e2h(u|ũ)|a|2 + e2h(ξ)

= e2h(u)−2I(ũ;u)|a|2 + e2h(ξ)

= e2h(u)e−2I(ũ;u)|a|2 + e2h(ξ)

= (2πeΣu)e
−I(ũ;u)|a|2 + 2πeΣξ, (7.12)

where Σξ denotes the covariance of ξ. Note that the above inequality holds with equality if
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and only if u and ũ are jointly Gaussian. Now, note that

e2h(u∗|ũ) = e2h(u∗)−2I(ũ;u∗)

= 2πeΣu∗e
−I(ũ;u∗). (7.13)

Thus, substituting (7.12) in (7.13) we have

2πeΣu∗e
−I(ũ;u∗) ≥ 2πeΣue

−I(ũ;u)

|a|2 + 2πeΣξ

⇒ −I(ũ;u∗) ≥ log

(
(2πeΣu)e

−I(ũ;u)

|a|2 + (2πeΣξ)

)
− log(2πeΣu∗), (7.14)

where, once again, the inequality holds with equality if and only if u and ũ are jointly

Gaussian. Finally, substituting (7.14) in (7.11), yields

I(ũ;u|u∗) ≥ I(ũ;u)

+ log

(
(2πeΣu)e

−I(ũ;u)|a|2

+ (2πeΣξ)

)
− log(2πeΣu∗),

with equality if and only if u and ũ are jointly Gaussian. Now, notice that I(ũ;u) = Iu

which is a constant. Thus, I(ũ;u|u∗) is minimized, and consequently I(ũ;u∗) is maximized,

if u and ũ are jointly Gaussian.
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