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Abstract 
 

This study investigates whether computer science 
students' unit tests can positively verify acceptable 
implementations. The first phase uses between-subject 
comparisons to reveal students' tendencies to write 
tests that yield inaccurate outcomes by either failing 
acceptable solutions or by passing implementations 
containing bugs. The second phase uses a novel all-
function-pairs technique to compare a student's test 
performance, independently across multiple functions. 
The study reveals that students struggle with positive 
verification and doing so is associated with producing 
implementations with more bugs. Additionally, students 
with poor positive verification produce similar number 
of bugs as those with poor bug identification. 
 
 
1. Introduction  
 

Although software engineering commonly expends 
about half of a project's costs on testing [16], learning 
how to test is neglected in most computer science 
curricula. However, Association for Computing 
Machinery's (ACM) most recent recommendation [1] 
recognizes a need to incorporate testing within two 
core knowledge areas: Software Development 
Fundamentals and Software Engineering. The 
recommendations specifically identify unit testing as a 
topic that may be appropriate to explore as early as 
introductory programming (CS1) courses. By 
incorporating more testing in computing education, 
students may learn to improve their debugging 
strategies and further their metacognitive problem-
solving skills [9]. 

Accordingly, educators have been exploring how to 
both effectively teach and evaluate testing in computer 
science classes. Pedagogical tools [6,13,19] and 
approaches [7,12] have been developed to help 
introduce students to testing throughout the curricula. 

However, there is not yet a de facto standard for 
evaluating the quality of students' tests. Studies of 
software testing quality predominantly concentrate on 
three factors: cost, code coverage, and the ability to 

find software faults [16]. Automated assessment of 
students' tests (autograders) typically use coverage, a 
measurement of how much code has been executed by 
their tests. Otherwise, some tools and studies evaluate 
students' tests with a concentration on their ability to 
identify bugs, as accomplished by failing known faulty 
implementations [11,13,19]. However, there has 
neither been thorough discussion nor evaluation of how 
well students' tests accurately confirm acceptable 
solutions. To depend on tests as diagnostic tools for 
software verification, they should effectively 
differentiate between acceptable and faulty 
implementations [5]. Most research has focused its 
attention on the latter. 

From an educational perspective, Edwards 
recognized that "Software testing promotes the 
hypothesis-forming and experimental validation that 
are central to […] reflection in action" [9]. However, 
experimental validation via software testing requires 
not only failing faulty code, but also passing proper 
implementations.  

In the studies described in this paper, we 
investigate the significance of students' ability to 
positively verify acceptable solutions. In the first phase 
of the study, we identify trends in students' test 
outcomes by investigating the relationship between 
mistakenly failing good implementations and passing 
those with bugs. In a second phase of the study, we 
examine each student’s testing outcomes as their unit 
tests were measured against individual functions-
under-test.  

Both phases of the study explore the role of 
positively verifying software and its relationship with 
the complementary goals of discovering bugs and of 
producing solutions with fewer bugs. Specifically, we 
address the following research questions: Do novice 
testers struggle with positive verification? What are the 
ramifications of deficiencies in positive verification? 
Within a given student’s test suite, how does their test 
performance compare across different functions?  The 
study reveals a need for more attention to be given to 
students’ abilities to positively verify acceptable 
solutions in addition to failing implementations with 
bugs. 
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2. Background  
 

Goldwasser proposed a novel approach to 
integrating software testing in programming courses by 
running each student's assignment solution against 
each other student's tests and evaluating the quality of 
the tests accordingly. The initial experiment with all-
pairs analysis found that students who produced correct 
solutions for a programming assignment also produced 
tests that exposed 87% of flawed programs while the 
tests of those students with incorrect solutions only 
exposed 63% [14]. 

Edwards, et al. provided an update to the all-pairs 
approach to support more flexibility in design as well 
as integration with an online autograder [12]. In their 
study of 101 students' solutions, they found that a 
majority of students passed at least 90% of the test case 
corpus but only 5 students managed to pass all test 
cases. In a later study, Edwards and Shams found that 
while students achieved high coverage scores, most 
students produced "happy path" tests that the 
researchers described as "writing basic test cases 
covering mainstream expected behavior rather than 
writing tests designed to detect hidden bugs" [10]. 
However, with the prevalence of coverage tools and 
their ability to provide quick analysis of tests, many 
instructors use coverage as a basis for assessing 
students' unit tests. 

Coverage is a metric commonly used in industry 
that indicates what code has been executed after test 
cases have been invoked. The most common form (i.e. 
"line coverage") refers to the percentage of statements 
or non-comment/non-blank lines of code executed. 
There are also more comprehensive forms, such as 
condition/decision coverage, which evaluates whether 
control operations (decisions) have been evaluated for 
both true and false outcomes as well as whether each 
atomic conditional (within boolean expressions) has 
been evaluated as both true and false. However, as the 
aforementioned study demonstrated, high coverage 
does not necessarily signify effective tests. 

To the contrary, mutation testing is an approach 
employed in industry that bears similarity to all-pairs 
analysis by examining test outcomes on buggy 
solutions. Instead of depending on a corpus of student 
solutions, mutation testing tools generate bugs by 
altering the current implementation. For example, a 
tool can automatically generate a 'mutant' by changing 
a condition by replacing an equality comparison to a 
less-than-or-equal-to operator. Each mutant is intended 
to change the behavior of the program. Mutation 
testing involves creating many of these synthetic 
mutants and assessing the test suite by measuring the 
percentage of mutants 'killed' by failing them. 
Aaltonen, et al. recommend combining mutation 

testing with coverage as complementary assessments 
of test effectiveness [2]. However, in an experiment 
comparing techniques for assessing test quality, neither 
coverage nor mutation testing were as effective as all-
pairs testing at predicting how well tests find bugs 
[11]. 

There are also eLearning tools specifically for 
fostering testing skills. Smith, et al. created an 
automated tool that evaluates students' tests against a 
large dataset of known buggy solutions and provides 
feedback based on how well a test fails those bugs 
[19]. However, like both all-pairs analysis and 
mutation testing, their tool concentrates on the ability 
to fail bugs and does not measure rates of positive 
verification. 

On the other hand, Bradshaw recognized that, "a 
perfect test will only accept implementations that are 
correct and reject all other incorrect implementations." 
Accordingly, Bradshaw's Ante Up tool first compares 
students' tests to the instructor's (correct) solution to 
make sure they pass, before allowing students to 
progress onto developing their own solutions. While 
the tool offers a unique reinforcement of test-first 
workflows, it does not support other testing methods. 
Bradshaw has yet to report on the tool's effectiveness 
and consequently has not published analysis of positive 
verification [6]. 

Meanwhile, Bowes, et al. collaborated with 
industry partners to compile a list of best practices in 
testing, along with corresponding metrics for 
evaluating those practices. Their recommendations 
include the principle of "Happy vs. Sad tests [which 
are] associated with the goals of testing: to verify the 
system (also known as happy tests) vs. to break the 
system (also known as sad tests)" [5]. However, they 
did not identify any associated metrics to measure 
these goals.  

Consequently, we studied students' abilities to 
produce happy tests as well as sad tests. The previous 
research indicates that effective sad tests are associated 
with creating implementations with fewer bugs. To 
supplement replication of those findings, we 
investigated potential relationships between happy tests 
(or a lack thereof) and the prevalence of bugs.  
 
3. Method  
 

We considered the possibility that students may not 
exhibit the problem of failing acceptable solutions. 
Consequently, the first research question we addressed 
was: (RQ1) do novice testers struggle with positive 
verification? Upon observing any struggles, we also 
set out to investigate (RQ2) what are the 
ramifications of deficiencies in positive verification; 
and (RQ3) within a given student’s test suite, how 

Page 7615



 

 

does their test performance compare across 
different functions?  We studied students' positive 
and negative testing outcomes with an in-class learning 
activity. 

To emphasize the purpose of differentiating 
between good and bad implementations, students were 
randomly assigned to either implement a working 
solution or to write an implementation that compiles 
but does not behave correctly. However, all students 
were instructed to the common task of writing unit 
tests along with their implementations that should be 
able to distinguish the good implementations from the 
faulty ones. 

To ensure that students' test cases would be 
compatible with each other's implementations, they 
were provided with a common build script and 
interface for a class—which specifies the signatures of 
all public functions—along with plain-word 
descriptions of each function's expected behavior. For 
our study, the programming assignment was a data 
model for a Tic-Tac-Toe board with functions to: place 
pieces onto the board, inspect a location for its piece 
(or lack thereof), toggle turns between players, and 
determine the game state (e.g. is game ongoing without 
a winner, completed as a tie, or which player has won). 

The function for placing and inspecting pieces on a 
board were not just one-line accessors/mutators (i.e. 
getters and setters with no logical branches). Their 
expected behaviors included validation of the 
coordinates provided with special return values to 
indicate out-of-bound coordinates or when preventing 
a piece from being placed where there is already 
another. 

Although students were assigned to different roles 
for implementing incorrect and correct solutions, 
students may not achieve those goals. Therefore, it is 
necessary to characterize each solution based on its 
performance against the instructor's reference tests. 
Using an automated script, the reference tests were run 
against each student's implementation and recorded the 
solution as positive if it passed all tests or negative if it 
failed any tests. To be consistent with unit testing 
conventions, failures included tests that timed out 
(usually indicating an infinite loop) or exited with an 
unexpected fault or uncaught exception. 

In addition, to promote confidence in accuracy of 
the all-pairs analysis, we reviewed the results for 
potential mistakes or gaps in their reference tests. It is 
possible, for example, that a student writes a test case 
that identifies a bug that the instructor's reference tests 
did not consider. In that example, the reference tests 
might pass a negative solution that contains that bug 
while the student's tests (correctly) fail it.  

During this process, special attention should be 
given to test suites that demonstrate high, but not 

perfect rates of failing negative solutions and passing 
positive ones. If the instructor discovers any 
shortcomings in their test suite, it will be necessary to 
revise the reference tests accordingly and repeat both 
phases of reference tests against each solution and all-
pairs analysis. This process can be repeated as 
necessary as a feedback loop to ensure comprehensive 
and accurate assessment. 

In similar instrumentation to all-pairs analysis 
[12,14], each student's test suite runs against each other 
student's solution and records whether it passes or fails 
each implementation. A perfect test suite should pass 
all positive solutions and fail all negative solutions. 
Table 1 illustrates how test suite outcomes are assessed 
based on how well they pass positives (True Positive) 
and fail negatives (True Negative) and conversely, how 
they incorrectly fail positives (False Negative) and pass 
negatives (False Positive).  

Both False Positives and False Negatives indicate 
inaccurate conclusions from the test suite, comparable 
to Type I and Type II errors in hypothesis testing [18]. 
However, classification terminology used in this paper 
should not be confused with their application in 
medical diagnosis testing, where a positive diagnostic 
test result usually indicates presence of a disease or 
condition (i.e. confirming bad news). Instead, in the 
context of software testing, we refer to positive 
verification (true positive) as confirmation of an 
acceptable solution. 

False Negatives mislead software developers to 
thinking an acceptable solution contains faults. This 
inaccurately describes the expected behavior from the 
software. Consequently, False Negatives may add cost 
to development by dedicating time to trying to discover 
a non-existent fault or by errantly changing the 
software's behavior to satisfy the inaccurate test. 

On the other hand, False Positives result from tests 
passing a faulty implementation. Overlooked bugs 
have negative repercussions since they result in poor 
quality software. This can be particularly costly if 
those bugs are not discovered before the software is 
deployed and faulty software is delivered to the 
customer. However, False Positives are costly even 
when the fault is later discovered because localizing 
and fixing a bug can be more difficult when inaccurate 
unit tests give a false sense of confidence in a 
function's acceptability. 

 
 

Table 1. Classification of Verification 
 

 Implementation Acceptability 
 Positive Negative 

Test 
Outcome 

Pass True Positive False Positive 
Fail False Negative True Negative 
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3.1. Phase one: between-subject design 
  

In two Software Engineering classes (one upper-
division undergraduate requirement, the other a 
graduate level requirement in a Masters-only program), 
students were introduced to the aforementioned 
learning exercise during a course module on testing. 
All students had previous object-oriented programming 
courses but did not have formal instruction to testing in 
the curriculum. Students were taught how to set up and 
run GoogleTest (an open source xUnit framework for 
C++ [15]) on a project and were introduced to the 
syntax and semantics of unit tests. Students were 
randomly assigned correct/incorrect implementation 
roles by the course management system; random 
assignment was independent for either course so that 
undergraduate (n=40) and graduate (n=8) classes were 
each split evenly between the roles. Both the graduate 
and undergraduate courses had multiple object-oriented 
programming course prerequisites, but no prior classes 
explicitly taught unit testing. 

Students worked independently and submitted their 
solutions and test suites at the end of the lecture 
regardless of whether they considered their work 
complete. However, when analyzing the results of 
reference tests ran against the students' solutions, we 
found that none of the solutions passed all of the 
reference tests. Consequently, we decided to extend the 
assignment to a second lecture and we instructed all 
students to attempt a correct solution (including those 
previously assigned to the incorrect group) while 
continuing to improve their tests as well, which yielded 
five positive solutions. 

At the end of the course module on testing, all 
students took a practical quiz with a similar format to 
the assignment. However, while students were still 
instructed to write tests that distinguish between 
positive and negative solutions, all students were asked 
to try to implement a correct solution for the quiz. The 
problem posed to the students for the quiz was of 
similar nature to the Tic-Tac-Toe interface, but used a 
different game of the instructor's creation. The students 
worked on the quiz in lecture but were allowed until 
the end of the day to complete it and submit their work 
online. 

To assess students' ability to positively verify 
solutions and identify faults, we calculated their test 
suites' true positive and true negative rates, 
respectively. The True Positive Rate (TPR) is the 
percentage of positive solutions passed. The True 
Negative Rate (TNR) is the percentage of negative 
implementations failed. From the initial learning 
exercise, students produced TPR (M=0.61, sd=0.42) 
and TNR (M=0.72, sd=0.36) with relatively large 

variance. Similarly, condition/decision coverage 
(M=0.57, sd=0.33) achieved varied considerably, 
within the limited time allowed. We investigated the 
relationships between TPR and TNR with Spearman's 
rank correlation found a strong negative correlation 
(ρ=-0.85, p<.0001) between rates of true positives and 
true negatives.  

A negative correlation between the two 
measurements of testing accuracy may come as a 
surprise. However, Figure 1 reveals that the 
relationship appears to be strongly influenced by test 
suites at the extremes of either rate. The chart also 
illustrates an interesting phenomenon that while some 
students' test suites perform relatively well on both 
TPR and TNR (data in upper-right corner of chart), 
there are also several test suites that perform well on 
one but poorly on the other. There were no students 
who scored below 75% on both TPR and TNR.  

This discovery answers our initial research 
question, (RQ1) do novice testers struggle with 
positive verification? Yes, students' tests sometimes 
exhibit problems with positive verification by 
producing many false negatives. Compounding the 
problem further, those same tests with low TPR also 
tend to have a high rate of TNR. In other words, some 
test suites are effective at failing faulty 
implementations but simultaneously fail good 
solutions. 

In addition, we investigated the relationship 
between test outcomes and their associated 
implementations. We calculated a Multiple Linear 
Regression model for predicting students' 
implementation correctness (as calculated by the 
percentage of reference tests passed) based on TPR, 

Figure 1: Test suites' rate of passing positive 
(acceptable) solutions and failing negative 

(faulty) solutions 
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TNR, and condition/decision coverage as potential 
predictors. After setting a more rigorous standard by 
adjusting the critical value for considering multiple 
factors (α=0.0167), we found that condition/decision 
coverage (Β=0.01, Std. Error=0.07) was not significant 
(p=0.87) while both TPR (B=0.17, Std. Error=0.06, 
p<.01) and TNR (B=0.24, Std. Error=0.07, p<.01) had 
significant coefficients. We recalculated the model by 
excluding the non-significant condition/decision 
coverage factor and found a significant regression 
equation (F(2,27)=10.92, p<.001, R2=0.45) where 
students' predicted implementation correctness is equal 
to 0.06 + 0.25*TNR + 0.18*TPR. Students' solution 
correctness increased 25 percentage points for failing 
all negative implementations and 18 points for passing 
all positive implementations; TNR (p<.001) and TPR 
(p<.001) were both significant predictors. 

Next, we examined whether the students' test suites 
for the quiz also demonstrated similar traits when 
analyzed only with naturally occurring bugs. We 
repeated the automated analysis of characterizing 
implementations as positive or negative and then 
calculated each test suite's TPR (M=0.62, sd=0.39) and 
TNR (M=0.82, sd=0.17) after running all-pairs 
analysis against each implementation. Intentionally 
created bugs from the previous assignment posed a 
potential threat to validity so we also investigated the 
phenomena with the quiz, where all bugs were 
naturally occurring. When plotting the outcomes from 
the quiz, Figure 2 illustrates a similar relationship 
between TPR and TNR as found during the learning 
exercise.  

Consequently, we combined test suite assessments 
from the exercise and quiz together and performed k-
means clustering (using the R statistical package) to 
identify three primary clusters: False Negatives that 
failed most negative and positive solutions; False 
Positives that passed most positive and negative 
solutions; and True discriminators that had few 
incidences of either type of error. Each cluster's TPR 
and TNR scores are summarized in Table 2 and plotted 
in Figure 2. 

To test both hypotheses and compare how each 
cluster of students performed on their respective 
implementations, we performed three Wilcox-Mann-
Whitney tests for pairwise comparison between each 
cluster's solution correctness. To account for increased 
likelihood of significance when making multiple 
comparisons, we used the Bonferroni method for a 
more conservative critical value (α=0.0167). We found 
that True Discriminators (M=0.94, sd=0.13) had 
significantly better solution correctness (p<.0001) than 
False Negatives (M=0.73, sd=0.31) as well as 
significantly better correctness (p<.0001) than False 
Positives (M=0.77, sd=0.27). However, there was no 

significant difference (p=0.82) in correctness between 
False Negatives (M=0.73, sd=0.31) and False Positives 
(M=0.77, sd=0.27).  

Both False Negatives and False Positives are 
associated with worse solutions than True 
Discriminators, as might be expected. Perhaps the 
simplest explanation could be that students who make 
mistakes in their implementations are also likely to 
make mistakes in their tests. Consequently, we 
investigated whether testing errors could be attributed 
to individual differences between students.  

Findings from our between-subject comparisons 
provide initial insight into our research question (RQ2) 
what are the ramifications of deficiencies in positive 
verification?  Test suites with high rates of any kind of 
outcome inaccuracies are associated with more bugs 
than those with few errors. However, the results from 
this phase also suggest that either type of testing error 
is associated with corresponding implementations with 

 

Figure 2. False positive, True discriminator, and 
False negative clusters 

 

Table 2. Descriptive statistics for true positive 
and true negative rates, grouped by three 

clusters 
 

 True Positive Rate True Negative Rate 
 Mean std dev Mean std dev 
False Negative 0.03 0.06 0.96 0.07 
False Positive 0.99 0.02 0.24 0.19 
True Discriminator 0.82 0.09 0.84 0.14 
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comparable number of bugs. Consequently, 
deficiencies in positive verification were neither more 
nor less harmful than deficiencies in fault 
identification. 

Some might consider it more difficult to write sad 
tests that effectively identify bugs (and produce a high 
TNR) than it is to write happy tests that positively 
verify solutions (with high TPR), deficiencies in either 
appears to be similarly harmful in terms of fault 
prevalence. 

When students attempted the initial learning 
exercise, it resulted in no implementations that passed 
100% of the instructor's tests. Even after more time 
was provided, relatively few students achieved their 
goal of passing all reference tests. This low incidence 
rate of "perfect" solutions uncovers an impediment to 
evaluating test accuracy using all-pairs analysis: it 
depends on some students producing full program 
implementations without any known faults. Low rates 
of students who can produce implementations with no 
bugs was similarly observed in Edwards et al.'s all-
pairs analysis [12].  

It is a hindrance to depend on students producing 
implementations without any bugs when they do so at a 
low rate. In addition, assessing unit tests by their 
ability to find a fault in an entire program ignores the 
primary objective of unit tests: to test individual 
functions rather than a program or module as a whole 
[5].  Given a cohort of students working on the same 
programming assignment, it is more likely to yield 
positive implementations of individual functions within 
a class than it is to yield an entire class comprised of 
entirely positive implementations.  

Furthermore, we considered the possibility that the 
association between implementation and test quality 
might be explained by individual differences in student 
aptitude: strong students may do well at both while 
weaker students may perform poorly at both. 
Consequently, we developed all-function-pairs analysis 
as an approach to assessing whether unit tests 
accurately pass or fail different implementations of 
individual functions. With test outcomes measured at 
the scope of individual functions rather than entire 
programs, all-function-pairs analysis allowed us to 
investigate within-subject performance across testing 
multiple functions. 

 
 

3.2. All-function-pairs analysis 
  

The first task in all-function-pairs analysis is to 
determine the acceptability of each function within 
each student's program. Since the instructor reference 
tests already followed suggested practices for proper 
unit testing, each of the reference tests already targeted 

individual functions. We identified subsets (Tfut) of the 
reference test suite by their respective function-under-
test (FUT). Consequently, instead of running our 
automated all-pairs analysis on the entire reference test 
suite at once, we only ran one reference test at a time 
and recorded its pass or failure. If a student's 
implementation passes each of the reference tests in the 
subset for a given function, that function 
implementation is positive.  

For example, the entire reference test suite targeted 
the TicTacToeBoard class, but a subset of the suite 
tests the getWinner function. Passing each unit test in 
that subset indicates getWinner is positive. Otherwise, 
any failures indicate a negative function 
implementation for getWinner. Test runners for xUnit 
frameworks usually include options for specifying 
individual tests to run, including popular packages 
such as GoogleTest (C++), JUnit (Java), and unittest 
(Python). Therefore, this approach can be instrumented 
for popular CS1 programming languages that support 
xUnit testing. 

 Next, all-function-pairs analysis needs to similarly 
identify the function-under-test for each unit test in 
students' test suites. It can be more difficult to identify 
which function a student's unit test intends to verify if 
the student did not adhere to best practices of unit 
testing. There are different plausible solutions to this 
challenge. An instructor may choose to manually 
inspect student tests to identify their functions-under-
test. Alternatively, they may require students to follow 
test naming conventions or annotations to self-identify 
the function-under-test for each unit test they write. 
Otherwise, using static analysis to identify which 
function's return value (or its output or other side-
effect) is used in the test's assertions may serve as a 
sufficient proxy. In an effort to localize bugs in 
students' programs, Buffardi & Edwards [8] proposed 
an automated approach that may also identify the 
functional scope of tests by analyzing their coverage. 
For this study, we manually identified functions-under-
test. 

After identifying the function-under-test for every 
unit test, the subset can be run against the corpus of all 
student implementations, one at a time. If an 
implementation fails on any of the unit tests within that 
subset, the student has produced a true negative (if the 
function implementation is negative) or a false 
negative (if the function implementation is positive). If 
the implementation passes each test in the subset—or 
in the case of a null subset—the student has produced a 
true positive (if the function implementation is 
positive) or false positive (if the function 
implementation is negative). Similarly to the feedback 
loop we recommended for all-pairs analysis, it is 
advisable to examine the test results to revise the 
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reference test suite if any missing test cases are 
revealed by the corpus of student tests.  

We distinguish this approach from Goldwasser's 
and Edwards' previous experiments by referring to it as 
all-function-pairs analysis since it evaluates individual 
functions rather than whole programs. All-function-
pairs analysis benefit from higher probability of 
yielding positive implementations since it only requires 
individual functions—rather than the entire system—to 
behave acceptably. Consequently, the approach allows 
for more granular analysis of both students' 
implementations and their tests. Figure 3 illustrates the 
process involved in all-function-pairs analysis. 
 
3.3. Phase two: within-subject design 
 

In the first part of the study, we implemented a 
between-subject design to evaluate test quality on a 
learning exercise as well as a quiz. Evaluating true 
positive and false positive rates of tests using 
traditional all-pairs analysis depends on some students 
producing complete solution without any bugs. 
However, the all-function-pairs analysis approach 
described in the previous section only depends on 
some students producing implementations of individual 
functions without bugs.  

With insight into test outcomes for individual 
functions, we concentrated on the research question: 
(RQ3) within a given student’s test suite, how does 
their test performance compare across different 

functions? In particular, we needed to test the 
hypothesis that the association between test and 
solution quality could just be attributed to general 
differences in aptitude between individual students. To 
do so, within-subject comparisons were necessary to 
identify whether students tended to produce the same 
kind of testing error (or lack thereof) across multiple 
functions.  

For the subsequent semester, we designed a 
variation of the learning activity where each student is 
assigned one specific function in which to purposely 
hide a bug, while attempting to correctly implement all 
other functions in the assignment. Instead of just 
differentiating between completely flawless and buggy 
programs, the students were challenged to distinguish 
between acceptable and unacceptable implementations 
of each function. We assigned each student (n=39) 
randomly to one (of four) functions for the 
aforementioned Tic-Tac-Toe data model. As a result, 
for each function, one-quarter of the students 
deliberately hid bugs while the remaining three-
quarters attempted a correct solution. Additionally, 
function implementations are each evaluated 
independently so all-function-pairs analysis yields a k-
fold increase of test outcomes for each student over 
simple all-pairs analysis (where k is the number of 
functions, in this case k=4). 

First, we investigated the relationships between 
tests that produce false positives and false negatives 
with their corresponding implementations to validate 

 

Figure 3. All-function-pairs analysis 
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our analysis from the between-subject study. As we 
gain more granular insight into implementations and 
tests, we expected to find similar phenomena at the 
function-level as we did at the program-level. 

After performing all-function-pairs analysis, we 
found the True Positive Rate (TPR, M=0.75, sd=0.39) 
and True Negative Rate (TNR, M=0.56, sd=0.39) of 
students' tests at testing individual functions. We 
plotted the testing outcomes for each student on each 
function and found a similar pattern to the first part of 
the study: many students had both TPR and TNR 
above chance (True Discriminator), but some students 
had high TPR with low TNR (False Negative) while 
others had high TNR with low TPR (False Positive). 
This result replicates the phenomenon observed in 
phase one and is illustrated in Figure 4 with k-means 
cluster analysis that identifies False Negatives, False 
Positives, and True Discriminator clusters.  

We performed three Wilcox-Mann-Whitney tests 
for pairwise comparison between each cluster and the 
corresponding function correctness (calculated by the 
percentage of reference tests passed from the function-
under-test subset, excluding the function in which each 
student purposely hid a bug) with adjusted critical 
value (α=0.0167). We found that True Discriminators 
(M=0.87, sd=0.18) had significantly better correctness 
(p<.0167) than False Negatives (M=0.7, sd=0.27) and 
approaching significantly better correctness (p=0.029) 
than False Positives (M=0.72, sd=0.3). There was no 
significant difference (p=0.65) in correctness between 
False Negatives and False Positives.  

The insignificant difference between False 
Positives and False Negatives replicates phase one's 
finding that both types of errors are associated with 
implementations containing comparable numbers of 
bugs. Phase two's finding confirms this association 
with implementations of individual functions. 

Nevertheless, we considered the possibility that a 
relationship between test accuracy and implementation 
correctness might result from differences between 
students. For example, highly skilled students may 
produce fewer bugs in their implementations and write 
more accurate tests than students who are less diligent 
or less skilled. Accordingly, weak students potentially 
could be to blame for all of the False Positives and 
False Negatives while only strong students could have 
produced all the True Discriminator function tests. 

We examined each student's three (excluding their 
purposely buggy) functions and identified the cluster to 
which their corresponding tests belonged. We then 
examined how often a student's test belonged to the 
same cluster for multiple functions. Overall, 63% of 
students produced True Discriminator test outcomes 
for at least one function; 56% of students produced 
False Positives for at least one function; and 47% of 
students produced False Negatives for at least one 
function.  

By examining how many different clusters were 
represented among each student's three functions, we 
found that 63% of students had more than one cluster 
type. Since most students produced a mix of different 
test outcomes, we expected that the association 
between test accuracy and function implementation 
was not a simple result of divergent strong and weak 
students.  

For due diligence, we accounted for differences 
between students that could affect the overall 
relationship between test accuracy and implementation 
correctness. Therefore, we performed a repeated 
measures analysis of variance (rANOVA) to compare 
the effect of a student's test clusters on the correctness 
on their (three) corresponding function 
implementations.  

We found a significant effect of test clusters on 
function correctness (F(2,95)=4.34, p<.05) in within-
subject comparisons.  The rANOVAs significant effect 
suggests that unit test accuracy is still associated with 
fewer bugs in corresponding functions when compared 
within subjects. 

Finally, we calculated a Multiple Linear Regression 
model for predicting students' function correctness 
based on TPR and TNR as potential predictors (with 
adjusted critical value α=0.025). We found that both 
TPR (B=0.28, Std. Error=0.08, p<.001) and TNR 
(B=0.26, Std. Error=0.08, p<.001) for a function had 
significant coefficients and found a significant 

Figure 4. False positive, true discriminator, 
and false negative clusters for testing 

functions 
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regression equation (F(2,93)=8.064, p<.0001, 
R2=0.13). Students' predicted implementation 
correctness for a given function was equal to 0.43 + 
0.28*TPR + 0.26*TNR for the TPR and TNR of the 
tests for that same function. 

The within-subjects comparison addresses the 
question (RQ3) within a given student’s test suite, 
how does their test performance compare across 
different functions? Most students tested well (with 
high rates of true negatives and true positives) for at 
least one function but also struggled with testing errors 
(either false positives or false negatives) on other 
functions. Individuals did not consistently produce the 
same type of testing deficiencies (or lack thereof) 
across all functions. However, struggling with either 
type of error when testing a function corresponds to a 
comparable number of bugs in the function's 
implementation. This finding even applies to an 
individual student's testing and implementation of 
difference functions, regardless of their overall 
aptitude. 

 
4. Conclusions  
 

In our two-phase study, we explored whether 
novice student testers struggled to positively verify 
software by writing tests that accurately confirm when 
implementations are acceptable. We found that 
students commonly struggled with either positive 
verification or fault identification, but never both 
simultaneously on the same function code to a 
substantial degree. Problems with positive verification 
are demonstrated when tests produce many false 
negatives: failing implementations from a corpus of 
acceptable solutions. Meanwhile, problems with fault 
identification are characterized by producing many 
false positives: passing implementations that contain 
faults.  

Previous studies concentrated on evaluating student 
tests by their performance at fault identification. Our 
results confirmed previous findings that tests' ability to 
identify faults is associated with writing an 
implementation with fewer bugs. However, our study 
also revealed that the rate at which tests positively 
verify a corpus of known good solutions is also 
associated with a corresponding implementation with 
fewer bugs.  

Congruently, we found the rate of positive 
verification (true positive rate, TPR) and the rate of 
fault identification (true negative rate, TNR) are both 
significant predictors of implementation correctness. 
Tests with high rates of both TPR and TNR correspond 
with implementations with fewer bugs than those with 
a low rate of just one or the other. More notably, our 
study suggests that writing tests that produce high rates 

of false negatives or false positives are associated with 
implementations with a comparable number of bugs.  

These relationships between errors in positive 
verification and in fault identification were found both 
when evaluating the quality of an entire programming 
assignment or an individual function. Likewise, a 
within-subject comparison revealed that most students 
wrote tests that performed differently—with a mix of 
test outcomes that discriminated well, produced false 
positives, or produced false negatives—across different 
functions. Accordingly, our results suggest that the 
association between positive verification and 
implementations with fewer bugs cannot just be 
attributed to differences between individual students. 

Consequently, our study concludes that positive 
verification should be considered as a factor when 
assessing the quality of students' unit tests. Although 
there is not yet a consensus on an effective metric for 
evaluating students' tests, we are confident that such a 
metric should consider positive verification in addition 
to (the more widely adopted) fault identification. 
Furthermore, our findings suggest that both factors are 
better predictors of implementation correctness than 
code coverage, despite its popularity. 

While our study revealed an association between 
positive verification and implementation quality, it did 
not explore cost of testing. Our results suggest that 
poor positive verification or poor fault identification 
may have similar impacts on the number of bugs in the 
implementation. However, it is possible that testing 
errors that result in false negatives may be quicker to 
recognize and correct than when false positives fail to 
identify existing bugs. Therefore, further study on the 
cost of either type of error is warranted. 

The conclusions of this study should be considered 
within the confines of its design. When assessing 
students’ tests on the initial assignment, the corpus of 
unacceptable implementations included artificial bugs. 
While similar phenomena were observed between 
those tests and others that only included naturally 
occurring bugs, the artificial bugs may be a threat to 
validity. Similarly, the study only investigated testing 
behaviors of novice testers on two relatively small 
programs and different outcomes may be expected with 
more experienced testers and/or with larger projects. 

Finally, to evaluate test results for individual 
functions, this paper introduces the all-function-pairs 
approach that evaluates students' tests against other 
students' implementations of individual functions, 
rather than only considering programs as a whole. The 
technique may also help improve assessment and 
automated feedback for students as they learn to use 
unit tests to verify their own function implementations. 
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