
The Influence of Personality on Code Reuse

Tyler J. Ryan
General Dynamics Information

Technology, Dayton OH
tyler.ryan@gdit.com

Charles Walter
University of Tulsa, Tulsa OK

charlie-walter@utulsa.edu

Gene M. Alarcon
Air Force Research Laboratory,

Wright Patterson AFB OH
gene.alarcon.1@us.af.mil

Rose F. Gamble
University of Tulsa, Tulsa OK

gamble@utulsa.edu

Sarah A. Jessup
Air Force Research Laboratory,

Wright Patterson AFB OH
sarah.jessup.ctr@us.af.mil

August Capiola
Air Force Research Laboratory,

Wright Patterson AFB OH
august.capiola@us.af.mil

Abstract

The ubiquity and necessity of computer software requires

programmers to reuse extant code to keep up with increasing
software demands. Researchers have started to investigate
the underlying psychological processes and the programmer
characteristics affecting code reuse. The present study
investigated the role of programmer personality (propensity
to trust, suspicion propensity) on willingness to reuse code.
Programmers were recruited through Amazon’s Mechanical
Turk. Programmers completed propensity to trust and
suspicion personality inventories and were subsequently
presented with 18 pieces of computer code containing
transparency and reputation manipulations. The results
demonstrated that propensity to trust did not influence
willingness to reuse code. However, facets of suspicion
propensity did affect reuse willingness. Programmers lower
in trait mal-intent perceptions and higher in cognitive
activity were more likely to report they would reuse code.
Implications and applications are discussed.

1. Introduction

Program comprehension concerns a programmer’s
understanding of, and ability to explain, computer software
[1] and is an important aspect of software reuse. New tools
are consistently being developed to assist in program
comprehension. However, the computer science and
psychology literatures have largely ignored the
psychological processes underlying programmer
understanding and performance. The demand for safe and
secure code in a timely manner has led to a proliferation of
code reuse, and psychological theories that can help to
elucidate the relationship between the programmer and the

software, leading to better development and review
practices. In the present study, we examined programmer
propensity to trust and the suspicion propensity facets of
mal-intent and cognitive activity as individual differences
that influence perceptions of code written by someone else.
In addition, we manipulated the code itself according to
factors emphasized by Alarcon et al. [2], namely, readability,
organization, and source of the code. As such, the current
study expands the literature on program comprehension by
modeling both the programmer and the referent (software)
in the software reuse context.

We propose the following hypotheses:

H1: Propensity to trust has a positive effect on code reuse,

such that those with higher propensity to trust will endorse
the code for reuse more than those lower in propensity to
trust.

H2: Perceived mal-intent has a negative effect on code

reuse, such that those with lower perceived mal-intent will
endorse the code for reuse more than those higher in
perceived mal-intent.

H3: Cognitive activity has a negative effect on code

reuse, such that those with lower cognitive activity will
endorse the code for reuse more than those higher in
cognitive activity.

2. Background

Frakes and Kang [3] define code reuse as “the use of
existing software or software knowledge to construct new
software” (p. 529). Reusing code can increase the flexibility
and complexity of the code [4], while reducing the time it
takes to create the code [5]. Reusing code also indicates the
programmer understands the code [1]. Research in the

Proceedings of the 52nd Hawaii International Conference on System Sciences | 2019

URI: https://hdl.handle.net/10125/60016
ISBN: 978-0-9981331-2-6
(CC BY-NC-ND 4.0)

Page 5805

CORE Metadata, citation and similar papers at core.ac.uk

Provided by ScholarSpace at University of Hawai'i at Manoa

https://core.ac.uk/display/211327798?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

 2

computer science literature [6] has started exploring how
programmers read code with the use of eye trackers, showing
that programmers who spend more time scanning the code
before taking a more in-depth look are better at defect
detection. Other research has focused on programmer
experience as a factor influencing whether they notice
vulnerabilities or bugs within a program [6, 7]. The
aforementioned research indicates a trend in the literature of
focusing on psychological processes rather than strictly
management or productivity concerns with code reuse.
These studies and others [7, 8, 9, 10, 11] have started
focusing on the psychological perceptions and processes as
aspects of program comprehension and reuse. Additionally,
research has begun to explore the role of programmer’s
perceptions of trustworthiness in code.

2.1. Trust

Trust is a multifaceted process that can be broken up into
several distinct components, namely trust beliefs, trust
intentions, and trust actions [12]. Trust beliefs are the
trustor’s perceptions of a person’s trustworthiness. Trust
intentions are a willingness to be vulnerable to the referent,
such as the willingness to trust management [13] or a
coworker. Trust actions are the actual behaviors the trustor
performs, such as not monitoring a coworker or reusing a
class of code from a coworker. There are also dispositional
facets of trust, such as one’s propensity to trust, that can
influence trust beliefs, intentions, and actions. For a
conceptual diagram of the trust process, refer to Mayer,
Davis, and Schoorman [13].

Trust has traditionally been thought of as strictly an
interpersonal process. However, recent interest has extended
trust research to automation [14], trust in robots [15], and
perceptions of trustworthiness of computer code [8, 16].
Research in the computer science literature has explored
aspects of the trust process, although the research was not
labeled as such. Kelly and Shepard [17] explored the number
of coding errors generated when code inspections were
performed in a group setting versus individual setting. Their
results indicated group inspection of code resulted in fewer
defects than individuals inspecting code. Although the
research did not specifically state they were examining
psychological variables, they were exploring social
influences on detecting vulnerabilities in code. Albayrak and
Davenport [18] degraded code naming conventions and
indentation to explore the influence on programmers’
detection of functional defects. When the code was degraded
in both aspects, participants reported a higher number of
defects in the code that were not actually defective (false
positives) and a lower number of actual defects were
detected (misses). This study illustrated that changing
aspects of the referent (i.e., the code) can influence trust.

Recently, the field of psychology has taken an interest in
how programmers perceive and trust code. Alarcon et al. [2]

performed a cognitive task analysis (CTA) to determine
what psychological factors influenced the perceptions of
code trustworthiness and the decision to reuse code. In the
CTA, three factors emerged: reputation, transparency, and
performance. The reputation factor concerns aspects of the
code that are obtained through external information, such as
research and professional network. Reputation can be
influential for code trustworthiness and reuse even without
directly examining the code. The transparency factor
concerns aspects of the code that influence a programmer’s
ability to comprehend what the code is doing. This includes
code organization, readability, architecture, and style.
Lastly, the performance factor concerns the capacity of the
code to meet the necessities of the current project, such as
the code flexibility, freedom from errors, and efficiency.
Alarcon et al.’s CTA also found the programmer’s
environment has an impact on their perceived
trustworthiness and their likelihood to reuse the code. That
is, a programmer may trust and reuse code differently than a
programmer in a situation with higher consequences of
failure. For example, a programmer working with online
education software containing no personally identifying
information may trust and reuse code differently compared
to a programmer working on code relevant to a nuclear
reactor. Although it was not explored directly, Alarcon et
al.’s [2] model of code trustworthiness included individual
difference variables. That is, variables such as personality
and past experience may impact one’s perceived
trustworthiness of code and subsequent reuse.

Recently, researchers [8] hypothesized an information
processing model of code trustworthiness. In their paper,
they describe a dual process model, with heuristic processing
and systematic processing underlying trustworthiness
perceptions of code and code reuse. Heuristic processing is
automatic and less effortful, in which the programmer
assesses the referent (i.e., code) with quick judgements such
as rules of thumb, standard operating procedures, or norms.
Heuristic processing saves time, but is not as accurate as
more effortful processing. In comparison, systematic
processing is an active cognitive effort. When engaging in
systematic processing, programmers offer a more in-depth
cognitive assessment of the referent, increasing scrutiny and
attention to detail. Heuristic and systematic processes are not
mutually exclusive. Indeed, research has demonstrated that
one process can later influence the decision to perform the
other [2]. Both heuristic and systematic processing influence
a programmer’s comprehension of code. In addition, it is
hypothesized programmers work on a select-out process,
abandoning code that appears too difficult to comprehend [8,
19].

2.2. Code Trustworthiness

Research on trustworthiness perceptions of code has
illustrated aspects of the code that influence trust perceptions

Page 5806

 3

and program comprehension. Manipulating the code’s
comments had an influence on coder’s trustworthiness
perceptions and time spent on the code, despite no
manipulations to the source code [19]. Another study found
readability, organization, and source of the code influenced
programmer’s perceptions of trustworthiness and time spent
on the code [20]. As the three factors of the code were
degraded, trustworthiness perceptions and time spent on
code changed, despite the fact that all the code in the study
compiled and was free from vulnerabilities. These studies
illustrate the importance of the trust process in program
comprehension.

The aforementioned studies have demonstrated that
relevant code factors can influence programmer’s trust
beliefs, but trust beliefs are different than trust intentions
[12]. Trust beliefs are perceptions of the referent. In the
programming context, the referent is computer code. Trust
intentions are a willingness to make oneself vulnerable, such
as reusing code written elsewhere or by other developers.
The interpersonal trust literature has demonstrated that trust
beliefs influence trust intentions and subsequent behaviors
[21]. However, there is additional variance that is
unaccounted for as beliefs, intentions, and behaviors do not
correlate highly enough in the literature to indicate
convergent validity of the two constructs [22]. As such,
although readability, organization, and source have been
related to trustworthiness perceptions of the code, no
research to date has explored the influence of these three
factors on intentions to reuse code.

For the current study, we used previously established
stimuli of transparency and reputation [20], manipulating the
transparency of the code by degrading readability,
organization, and reputation. Readability was defined as the
grammar of the code. Code that was low in readability did
not follow the rules and norms for formatting code.
Degradations to readability included: 1) misuse of cases, 2)
misuse of indentation, 3) misuse of braces, and 4) improper
line length and line wraps. Thus, for the readability
manipulations, code was degraded aesthetically. In contrast,
organization degradations affected the structure of the code.
Less organized code was difficult to comprehend due to a
poor arrangement. Organization degradations included: 1)
statements requiring unnecessary additional review, 2)
ambiguous control flow, 3) improper exception handling, 4)
poor grouping of methods, and 5) misuse of declarations.
Reputation was also manipulated in the stimuli. Code stimuli
was labeled as “reputable” or “unknown.” The two
reputation conditions were chosen so participants would rely
on their own cognitive heuristics for interpretation. If code
was labeled coming from a specific source (i.e., Microsoft),
individuals may have different attitudes towards the target,
some good and some bad. These attitudes may impact the
heuristics used to evaluate the code, thus influencing
trustworthiness and subsequent reuse intentions. As such,
simply stating if code was reputable or unknown allowed the

user’s heuristic to drive the trust intention, which reduced
error variance.

2.3. Personality

Personality is defined as a set of characteristic behaviors,
cognitions, and emotional patterns that are a result of both
biological and environmental factors [23]. Trait theories
posit that personality is composed of individual difference
variables, or traits, that are relatively stable. These traits have
a long history of being related to behaviors from work
performance [24] to health behaviors [25]. Personality has
also been explored in the computer science literature. Cho
and colleagues [26] found neuroticism and agreeableness
were associated with perceived trust, risk of a phishing scam,
and decision performance. However, no research has linked
personality to code reuse intentions. Aspects of personality
can influence cognition. Researchers have found that
personality influences the cognitive responses to stressors
[27]. Personality also influences the formation of trust
perceptions [22, 28]. Specifically, personality influences
initial perceptions of others, but as participants have more
interaction with a referent, personality plays less of a role.

In our study, we examined the influence of two relevant
traits – propensity to trust and suspicion propensity – on
perceived trustworthiness and intentions to reuse code.
Propensity to trust is a stable personality trait that reflects
one’s general expectancy of the trustworthiness of others and
a general willingness to trust others [13, 29]. Propensity to
trust has demonstrated a relationship with trust behaviors,
trust intentions, and trust beliefs [2, 8, 22]. Although
propensity to trust has demonstrated a relationship within
interpersonal trust intentions and behaviors [21], it remains
to be seen if this personality trait influences intentions to
reuse code. Research on propensity to trust indicates general
expectancies influence trust intentions. Specifically, people
higher in propensity to trust are more likely to trust
automation in experimental [30] and real-world settings
[14]. However, propensity to trust is less contextually
influential as the trustor becomes more familiar with the
referent [12, 28]. It remains to be seen if propensity to trust
influences the decision-making process after controlling for
perceptions of the code (i.e., the manipulations mentioned
above). The current study seeks to remedy this shortcoming
in the literature.

Suspicion propensity is a newer personality trait in the
literature and has been defined as a “tendency to
concurrently (i) perceive the potential for mal-intent, (ii) be
uncertain about the meaning of the information, and (iii)
engage in cognitive activity that attempts to explain, or
generate alternative possible meanings for, that information”
[31, p. 13]. Although suspicion propensity is a new construct
in the psychological literature, it has clear implications for
the trust process in code reuse. People that display a

Page 5807

 4

tendency to perceive an environment as hostile will be more
reluctant to reuse code, as they perceive ill-will in the
environment. In addition, programmers that are confronted
with code that seems suspicious may engage in additional
cognitive effort to determine whether they should use the
code or not. The uncertainty dimension of suspicion can also
have negative effects on reuse intentions. For instance, a
programmer may have doubts about the referent code and
perceive possible vulnerabilities within the code, which may
influence their willingness to reuse the code. In the present
context, all code evaluation initially involves uncertainty.
That is, the programmer is tasked with a demand (i.e.,
evaluate code) that is laden with uncertainty. Therefore, we
focused on mal-intent and cognitive activity because the
code evaluation task does not inherently evoke these
components of suspicion.

The authors are not aware of any research in the
psychology or computer science literatures that has sought
to associate stable trust beliefs (personality) with intentions
to reuse code. As mentioned above, personality has been
linked to a variety of intentions and behaviors in the
psychology literature. For example, propensity to trust has
been related to intentions to trust in occupational contexts
[21] and interpersonal trust behaviors in economic games
[32]. Personality variables may influence the cognitive
comprehension of the variables through the process
mentioned in past research [8]. As such, the current study
seeks to extend the personality literature to trust intentions
in code reuse.

1 A power simulation study was conducted for a GEE with small to
moderate effect sizes for the factors and covariates and N = 73, suggesting

3. Method

A total of 127 programmers were recruited for an online
study via Amazon Mechanical Turk (MTurk). For inclusion
in the study, participants had to know Java and have at least
3 years of programming experience. We excluded any
participant that did not have 3 years of programming
experience or any variance in their trustworthiness scores,
which indicated the participant was not taking their
performance in the study seriously. We were only interested
in experienced programmers, therefore we excluded any
participant that reported “student” as their profession. This
left a total of 73 participants in the final sample.1 Many
Mturk tasks provide small payments. However, given the
task for the present study and the targeted population,
participants were paid $10.00 USD. The sample had a mean
age of 29 years (range 20 to 54), an average experience of
7.7 years (range 3 to 32), was primarily male (89%), and
41% listed Java as their primary programming language.

The study was a 3 x 3 x 2 factorial within-subjects
design, consisting of the readability, organization, and
source degradations derived from a previous study [20].
Readability and organization consisted of “High”,
“Medium”, and “Low” quality levels, and source consisted
of “Unknown” and “Reputable” levels. A description of the
code degradations is provided below.

3.1. Stimuli

Our study focused primarily on readability and
organizational degradations to Java code. These
degradations were derived from Java Style Guides [33, 34,
35], an extensive search of stackoverflow.com’s style
sections, and a commonly used undergraduate textbook [36]
intended to teach new programmers correct Java style.

 Table 1 illustrates readability degradations. We
categorized degradations into a total of 4 primary and 14
subcategories. For example, misuse of case is subdivided
into misuse of case for packages, classes and interfaces,
methods and variables, and constants. Each of these
categories has a unique case standard in Java, meaning that
what may be correct for a constant is incorrect for a package
or method.

Programmers often use consistent brace placement to
allow them to find the beginning and end of methods and
blocks quickly and easily. Java style guides are very clear
regarding accepted use of braces. Thus, we divided misuse
of braces into a line break before an opening brace, no break
after an opening brace, no break before a closing brace, a
line break after a brace preceding an else, and missing space

power between .84 and .97 for the personality covariates of concern.
Details are available from the first author.

Table 1. Readability degradations (adapted from [20])

1. Misuse of case

a) For packages
b) For classes and interfaces
c) For methods and variables
d) For constants

2. Misuse of braces

a) Line break before an opening
brace

b) No line break after an opening
brace

c) No line break before a closing
brace

d) Line break after a brace that
precedes an else

e) Missing a space before an
opening or closing brace

3. Misuse of indentation
a) Improper indentation given

code position
b) Inconsistent indentation

4. Improper line length
and line wrapping

a) Unnecessarily exceeds
character limit without
wrapping

b) Missing blank lines to indicate
logical grouping

c) Use of too many and
unnecessary blank lines

Page 5808

 5

before an opening or closing brace. Note that not all of these
degradations are always a problem. For example, in the case
on one line ‘if’ statements, it is acceptable to not have a line
break after an opening brace or before a closing brace.
However, in this case, it is important to include a space
between the braces and the single line of code.

Misuse of indentation is a noticeable readability
degradation. While indentation does not affect the code
function in Java, a lack of indentation can confuse a
reviewer, making them think the code they are examining is
associated with a different code block or method. Two ways
to degrade readability are with improper indentation for the
codes position and through inconsistent indentation
throughout a code block.

Improper line length and line wrapping can introduce
some frustration during code review. Java standards indicate
that after 80 characters the code should wrap to the next line.
It is not required from compilation, but can cause issues with
review depending on the code display method (e.g., terminal,
IDE, etc.). This degradation was broken down into
unnecessarily exceeding the character limit, missing blank
lines for grouping, and using too many blank lines to group.

Table 2 shows the organization degradations, separated

into 5 primary and 15 sub categories. Poor grouping of
methods may indicate that the code has been modified by
multiple programmers who are inconsistent and prone to
mistakes. Misuse of declarations could indicate a coder is

likely a novice and does not understand the conventions
associated with the declaration they are using. Ambiguous
control flow can reduce code comprehension. Improper
exception handling is considered poor programming practice
in any form, causing difficulty during debugging. Finally,
statements which require extra review (i.e., a “second look”)
can mean initial confusion in trying to determine the initial
intent of the original programmer(s).

Participants reviewed 18 artifacts of Java code. Each
artifact was displayed on its own page with a brief
description of what the class was intended to do at the top of
the page. The source manipulation was also displayed at the
top of the page. Figure 1 illustrates a sample page from the
study. All artifacts are available for download from
[https://doi.org/10.1080/23311908.2017.1389640].

Figure 1: Example stimulus presented to subjects
(adapted from [20])

To craft the stimuli shown to the programmers, we
selected a total of 18 code artifacts from open source
software projects hosted on github.com. Each stimulus was
chosen from a highly reviewed project. Each sample was
first cleaned to ensure they all followed the Java guidelines
or accepted practices. Once cleaned, each code sample was
degraded to assign a level of low, medium, or high
readability and organization.

An example of the stimuli as seen by participants is
shown in Figure 1, as found in Alarcon et al.’s study [2]. This
code sample includes two organization degradations,
specifically O3.b and O4. These both refer to the multiple
layers of try/catch blocks being used as control flow, forcing
the code to have errors which are then ignored intentionally.
If there is an error it is likely that it would be seen as part of
the normal control flow, making this small code sample
difficult to debug.

Table 2. Organization Degradations (adapted from [20])
1. Poor grouping of

methods a) Any form

2. Misuse of
declarations

a) Import statements used improperly
b) More than one variable per line
c) Variables not initialized as soon as

possible
d) Overuse of public instance and class

variables

3. Ambiguous
control flow

a) Improper, unnecessary, or confusing
use of “break” or “continue”

b) Unnecessary or confusing nesting of
blocks

c) Multiple function calls or
unnecessarily grouping block on one
line

d) Switch statement does not have a
default case

e) Switch statement with no “break” does
not comment explicit continuation to
next statement group

4. Improper
exception
handling

a) Any form

5. Statements
unnecessarily
require additional
review

a) Compressed if statements
b) Unusual return statements
c) Multiple classes
d) Inconsistent blocks

Page 5809

 6

Below the code sample, a Likert scale was displayed
asking the subjects to rate the trustworthiness of the code
from 1 (Completely untrustworthy) to 7 (Completely
trustworthy). Upon making a trustworthiness rating,
participants could select if they would use the code. The two
ratings allowed for a user to find a sample untrustworthy but
still deem the code usable. Should a subject choose not to
use the code, a comment box would appear requesting them
to elaborate on why they did not trust the code sample.

3.2. Measures

3.2.1. Propensity to Trust. Propensity to trust was assessed
using Mayer and Davis’ [37] propensity to trust scale. The
scale consists of 8 items assessing general propensity to
trust. An example item is “Most experts tell the truth about
the limits of their knowledge.” Participants responded to the
items using a Likert-type response scale ranging from 1
(Strong Disagree) to 5 (Strongly Agree). The internal
consistency of the scale for the current study was 0.71.
3.2.2. Suspicion Propensity. Suspicion propensity was
assessed using Calhoun et al.’s [31] Suspicion Propensity
Index. The scale consists of 11 scenarios that involve
uncertainty, as all suspicion must involve a degree of
uncertainty. Participants respond to the scenarios on a
Likert-type scale of 1 (Not at all accurate) to 5 (Very
accurate) in agreement to interpretations of the scenario.
Two of the four response items are suspicion propensity,
namely cognitive activity and mal-intent. For example, a
response to a scenario of not getting a job of “I would follow
up with someone at the company and request more
information about why I wasn’t chosen” would indicate
cognitive activity. For the same scenario, a response of “I
would wonder if there was someone at the company who I
had contact with who purposely wanted to keep me from
getting the job” would indicate cognitive activity and mal-
intent. The internal consistency of the cognitive activity
subscale for the current study was 0.77. The internal
consistency of the mal-intent subscale for the current study
was 0.76.
3.2.3. Use. Participants were asked to decide whether they
would “Use” or “Don’t Use” the code. Although the scale is
only one item, single item measures have demonstrated
appropriateness when the item is not ambiguous and to avoid
response fatigue [38].

3.3. Procedure

Participants were recruited from MTurk. After
participants accepted the HIT, they were directed to a
website that provided a brief description of the study. After
reviewing the description, participants gave consent by
clicking the ‘next’ button. Participants then completed
background surveys including the personality measures and

demographics surveys mentioned above. Upon completion
of the surveys, participants were shown 18 pieces of code
artifacts, responded to whether they would use the code or
not, and rated the code on perceived trustworthiness with a
7-point Likert-type scale. Participants were also able to
provide remarks about each code artifact they decided they
would not use. Upon completion of the survey, participants
were shown a debriefing message, thanked for their time,
and given a code to enter into MTurk to receive payment.
Participants were compensated within 3 working days for
their participation.

3.4. Data Analysis

We utilized the Generalized Estimating Equation (GEE)
approach for all analyses. Traditional repeated measures
analysis of variance (RM ANOVA) was not used for three
reasons. First, the data was not normally distributed as the
outcome is dichotomous, which is a key assumption of
ANOVA. GEEs do not have an assumption of normality.
Second, RM ANOVA is typically used for longitudinal
analyses as the measurements are assumed to be uniformly
correlated over time. The GEE allows the researcher to
determine the best correlation structure for the data (i.e.,
uniform, autoregressive, unconstrained, or uncorrelated).

We created a full model with propensity to trust, the
suspicion propensity facets, and the code manipulations.
Extensive interpretation of code manipulation effects are
beyond the scope of this paper, as we focused on
investigating the potential influence of personality on
intentions to reuse code. For a more in-depth discussion on
the effects of code manipulations on subsequent trust
intentions and behaviors in coding contexts, see [2, 8, 11].

4. Results

We conducted a point-biserial correlation to determine
the relationship between trustworthiness and intentions to
reuse across all stimuli. The correlation was statistically
significant, r = 0.60, p < .001. However, it should be noted
the correlation, although strong, was not strong enough to
indicate trustworthiness and reuse intentions are the same
construct [39]. This supports the previous literature that the
trust process is composed of trust beliefs, intentions, and
behaviors, which are separate, albeit related, constructs [22].
Table 3 illustrates the reuse intentions for participants
receiving each manipulation. Interestingly, the majority of
participants intended to reuse code across conditions in the
current study.

Page 5810

 7

4.1. Full Model

To test H1-H3, we included personality variables along
with the code manipulations in the model. The model was fit
with an ‘exchangeable' correlation structure providing the
best fit, QIC (9) = 1080.28. Propensity to trust, [Wald χ2 (1,
N = 1314) = 0.20, β = -0.10, p = 0.653] was not a significant
predictor of reuse intentions, indicating no support for H1.
Both mal-intent [Wald χ2 (1, N = 1314) = 7.32, β = 0.51, p =
0.007] and cognitive activity [Wald χ2 (1, N = 1314) = 7.02,
β = -0.50, p = 0.008] facets of suspicion both predicted reuse
intentions. While H3 was supported, the direction of the
effect for mal-intent does not support H2 as it led to an
increased likelihood of code endorsement. The intercept was
still statistically significant when all the personality factors
were included in the model, [Wald χ2 (1, N = 1314) = 6.32,
β = 2.14, p = 0.014].

The main effects of the manipulations in the study were
also significant. Although we refrain from interpreting the
results, we include them as they are important aspects of the
final model. The model effect of readability was statistically
significant [Wald χ2 (2, N = 1314) = 8.66, p = 0.013], such
that code higher in readability (M = 0.90, SE = 0.02) was
more likely to be reused than code low in readability (M =
0.84, SE = 0.022), z = 2.87, p = 0.012. The differences
between both high and medium (M = 0.85, SE = 0.02)
readability, z = 2.02, p = 0.108, and low and medium
readability, z = -0.64, p = 0.798, were not significant.
Organization also demonstrated a significant model effect
[Wald χ2 (2, N = 1314) = 19.29, p < 0.001], such that code
high in organization (M = 0.81, SE = 0.09) was less likely
to be used than low organization (M = 0.89, SE = 0.02), z =
-3.56, p = 0.001 or medium organization (M = 0.88, SE =
0.02), z = -3.55, p = 0.001) code. No differences were found
between low and medium organization, z = 0.33, p = 0.942.
Lastly, a main effect of source was statistically significant
[Wald χ2 (1, N = 1314) = 6.57, p = .010] such that code from
a reputable source (M = 0.90, SE = 0.01) was more likely to
be reused than code from an unknown source (M = 0.83, SE
= 0.02), z = 2.58, p = 0.010. Since the focus of this study is
the effect of personality on trust, we refer the reader to
Alarcon et al. [20], who found similar results, for discussion
on the effects of the code manipulations.

5. Discussion

The current study explored personality as a predictor of
intentions to reuse code. This is the first study the authors
are aware of that has attempted to relate personality to
intentions to reuse code. There is a long line of research in
the psychology literature that has demonstrated personality’s
influence on decision making processes (e.g., [40, 41]). The
constructs of propensity to trust and suspicion propensity
offer insight into how programmers view code for reuse. The

two constructs are generalized beliefs about the world, albeit
one more positive than the other.

Propensity to trust did not account for significant
variance in reuse endorsement. This is interesting for two
reasons. First, propensity to trust represents a general
expectancy about others and a willingness to trust others [13,
29]. The willingness to trust others as conceptualized by the
scale may only be associated with trust in people. In other
words, participants focused on the referent (i.e., code) rather
than relying on heuristics about people. Second,
programmers may be taught to be critical of software so as
to avoid reusing code that is malicious. Thus, other
constructs such as suspicion may play a larger role on reuse
intentions and subsequent reuse behaviors.

Both mal-intent and cognitive activity accounted for
variance in the intercept in the model. However, neither the
effect of mal-intent nor cognitive activity were in an
expected direction. The cognitive activity aspect of
suspicion was negatively related to reuse intentions.
Participants that had a natural propensity to perform in-depth
processing were actually less likely to endorse the code for
reuse. Albayrak and Davenport [18] provide insight, finding
that degrading the code leads to higher rates of false

Table 3. Counts of intentions to use by code
manipulations
 Readability

High Medium Low

Use Don't
Use Use Don't

Use Use Don't
Use

O
rg

an
iz

at
io

n

H
ig

h U
nk

no
w

n

66 7 59 14 50 23

R
ep

ut
ab

le

56 17 61 12 58 15

M
ed

iu
m

U
nk

no
w

n

61 12 59 14 58 15

R
ep

ut
ab

le

67 6 70 3 67 6

Lo
w

 U
nk

no
w

n

69 4 54 19 63 10

R
ep

ut
ab

le

69 4 65 8 65 8

Page 5811

 8

positives. We could suggest that participants whom
scrutinize over the code were able to pick up on several
grammatical errors in the text, despite it being functionally
sound. Perceiving more flaws in the readability and
organization of the text would thus lead coders to reuse less
than those lower in cognitive activation whom do not
scrutinize. Whereas previous research has explored aspects
of the referent (i.e., code) that influence systematic
processing [20], the current study illustrates that aspects of
personality can also influence processing effort.
Additionally, mal-intent was positively related to reuse
intentions. Individuals that perceive the world around them
as more hostile with intent to harm them were oddly more
willing to be vulnerable to a context-dependent referent (i.e.,
higher trust intentions). It may be that those who are more
apt to perceive hostility in the environment are more vigilant
in detecting potential harm in the referent. As such, the
participant will find there are no observably harmful aspects
of the code, (e.g., viruses, functional flaws, etc.), thus
leading to a higher reuse intentions. While this seems to
contradict our interpretation of the effects of cognitive
activation on reuse, we suggest this provides new insight into
the suspicion construct. It may be that persons high in both
cognitive activation and perceived mal-intent are less
predictable in the decisions that they make. Further, the
current study is limited in that it did not investigate the
interaction between cognitive activity and perceived mal-
intent. Individuals high in one suspicion facet, but not the
other, may interpret code differently than those high (low) in
both facets. If this were the case, treating the suspicion
propensity facets as a single suspicion variable could hinder
the predictive utility of the construct. Future research should
investigate the interaction between suspicion facets and their
influence on trust intentions.

The current study explored what code manipulations and
personality traits influence code reuse. The study found
results for reuse intentions similar to results for
trustworthiness perceptions from a previous study [20]. In a
prior study, counting participant remarks on code
manipulations found that as readability was degraded,
participants remarked on the poor readability and the
problems associated with it, which led to decreased
trustworthiness. In contrast, as organization was degraded,
participants also remarked about the degradations, but
trustworthiness increased. This finding supports previous
research on the effects of organization manipulation and
reuse intention [11]. Researchers [20] have noted that with
the current manipulations to the code, trustworthiness
perceptions had interaction effects. If code was from a
reputable source but was disorganized, then participants
were willing to spend more time on the code. This increase
in time spent on the code led to a deeper understanding of
the code, as all code compiled and was free from errors. The
same underlying process may be occurring with reuse
assessments. As participants spent more time on the code,

they became more familiar with the code. Thus, reputable
source led to an increased probability of using the code, as
expected.

The study is not without limitations. The experimental
platform did not allow participants to download the code and
see how it performed. Indeed, in the previous studies using
the same stimuli [20], participants noted they would prefer
to download and explore/test the code themselves. However,
this experiment explored the first view stage of
programmer’s perceived trustworthiness / intentions to reuse
the code, when programmers first view the code then decide
whether it is worth their time and effort to continue effortful
processing. Future research should explore how
programmers inspect the code in subsequent phases of the
model, as well as what they do after downloading the code
for testing.

It is worth noting that participants intended to reuse the
code 85% of the time. Only 197 decisions to not reuse were
recorded in the current study, out of a total of 1,314
decisions. This may be due to the participants being told that
all code compiled at the beginning of the experiment.
However, Albayrak and Davenport [18] found degrading the
code should influence perceptions, namely false positives in
defect detection. The high rate of reuse intention could
possibly indicate the participants were not paying attention
to the task. Future research should implement an attention
check (e.g., single item with a predetermined correct answer)
to detect poor responding, as well as ensure participants
possess the requisite knowledge and experience to complete
the task. The reuse intention rate could also indicate that the
heuristic threshold is lower in the first view phase. That is,
reuse intention may really be a decision to want more
information about the code through subsequent testing
before implementing the code in another architecture or task.
Participants on the MTurk website may have a lower
threshold for acceptance as they may not be programming
for a company, which may have strict rules about reuse. The
placement of the use/don’t use buttons underneath the
trustworthiness scale could have unduly increased the
correlation between trustworthiness ratings and reuse
endorsement, biasing the reusing outcomes. We do not
expect this biasing effect to be large, as trustworthiness and
trust have been found to be highly correlated in previous
research [21]. However, future studies should separate the
two indices to prevent unnatural anchoring. Furthermore,
additional indicators of trust/intention to reuse the code
should be added for greater measurement precision.

Although cognitive activity and mal-intent accounted for
significant variance in the intercept, the intercept was still
statistically significant indicating other individual
differences may account for aspects of code comprehension
and willingness to reuse code. Aspects such as experience,
cognitive ability, or conscientiousness (e.g., a scrupulous,
careful, hardworking personality) [42] may also account for
willingness to reuse code.

Page 5812

 9

Acknowledgments

This research was funded in part by the Air Force
Research Laboratory (Contract FA8650-16-D-6616/0003.
The findings and conclusions in this report are those of the
authors and do not necessarily represent the official position
of the Air Force.

6. References

[1] T.J. Biggerstaff, B.G. Mitbander, and D. Webster, “The concept
assignment problem in program understanding,” In Proc. of the
15th International Conference on Software Engineering, 1993, pp.
482-498.

[2] G.M. Alarcon, L.G. Militello, P. Ryan, S.A. Jessup, C.S.
Calhoun, and J.B. Lyons, “A descriptive model of computer code
trustworthiness.” Journal of Cognitive Engineering and Decision
Making, vol. 11, pp. 107-121, 2016.

[3] W.B. Frakes and K. Kang, “Software reuse research: Status and
future.” IEEE transactions on Software Engineering, vol. 31. Jul.
2005, pp. 529-536.

[4] M.A. Babar, L. Zhu, and R. Jeffery, “A framework for
classifying and comparing software architecture evaluation
methods,” In Proc. Software Engineering Conference, 2004, pp.
309-318.

[5] W.C. Lim, “Effects of reuse on quality, productivity, and
economics.” IEEE software, vol. 11, pp. 23-30. Sept. 1994.

[6] B. Sharif, M. Falcone, and J.I. Maletic, “An eye-tracking study
on the role of scan time in finding source code defects,” Proc. of
the Symposium on Eye Tracking Research and Applications, 2012,
pp. 381-384.

[7] C.M. Hoadley, M.C. Linn, L.M. Mann, and M.J. Clancy,
“When, why and how do novice programmers reuse code,” In
Empirical Studies of Programmers: Sixth Workshop, pp. 109-129.
Intellect Books, 1996.

[8] G. M. Alarcon and T. J. Ryan, “Trustworthiness perceptions of
computer code: a heuristic-systematic processing model,” In Proc.
of the 51th Hawaii International Conference on System Sciences,
2018, pp. 5384-5393.

[9] M.S. Hsieh and E. Tempero, “Supporting software reuse by the
individual programmer,” In Proc. of the 29th Australasian
Computer Science Conference, 2006, pp. 25-33.

[10] R.J. Norton, D. Banks, and B. Lee, “Reuse of personal
software assets: Theories, practices and tools,” 2003.

[11] T.J. Ryan, C. Walter, G.M. Alarcon, R.F. Gamble, S.A. Jessup,
and A.A. Capiola, “Individual differences in trust in code: The
moderating effects of personality on the trustworthiness-trust
relationship,” In Proc. International Conference on Human-
Computer Interaction, 2018, pp. 370-376.

[12] S.L. Jones and P.P Shah. “Diagnosing the locus of trust: A
temporal perspective for trustor, trustee, and dyadic influences on
perceived trustworthiness,” Journal of Applied Psychology, vol.
101, Sept. 2015, pp. 392-414.

[13] R.C. Mayer, J.H. Davis, and F.D. Schoorman, “An integrative
model of organizational trust,” Academy of Management Review,
vol. 20, Jul. 1995, pp. 709-734.

[14] J.B. Lyons, N.T. Ho, W.E. Fergueson, G.G. Sadler, S.D. Cals,
C.E. Richardson, and M.A. Wilkins, “Trust of an automatic ground
collision avoidance technology: A fighter pilot perspective,”
Military Psychology, vol. 28, Jul. 2016, pp. 271- 277.

[15] P.A. Hancock, D.R. Billings, K.E. Schaefer, J.Y. Chen, E.J.
De Visser, and R. Parasuraman, “A meta-analysis of factors
affecting trust in human-robot interaction,” Human Factors, vol.
53, pp. 517-527, Oct. 2011.

[16] C. Walter, R.F. Gamble, G.M. Alarcon, S.A Jessup, C.S.
Calhoun, “Developing a mechanism to study code
trustworthiness,” In Proc. of the 50th Hawaii International
Conference on System Sciences, 2017, pp. 5817-5826.

[17] D. Kelly and T. Shepard, "An experiment to investigate
interacting versus nominal groups in software inspection," Proc. of
the conference of the Centre for Advanced Studies on Collaborative
Research, 2003, pp. 122-134.

[18] Ö. Albayrak and D. Davenport, "Impact of Maintainability
defects on Code Inspections," Proc. of the ACM-IEEE
International Symposium on Empirical Software Engineering and
Measurement-ESEM'10, 2010, pp. 1-50.

[19] G.M. Alarcon, R.F. Gamble, T.J. Ryan, C. Walter, S.A. Jessup,
D.W. Wood, and A. Capiola. “The influence of commenting
validity, placement, and style on perceptions of computer code
trustworthiness: a heuristic-systematic processing approach.”
Applied Ergonomics, vol. 70, 2018, pp. 182-193.

[20] G.M. Alarcon, R. Gamble, S.A. Jessup, C. Walter, T.J. Ryan,
D.W. Wood, and C.S. Calhoun, “Application of the heuristic-
systematic model to computer code trustworthiness: The influence
of reputation and transparency,” Cogent Psychology, vol. 4 (1),
Advance online version, 2017.

[21] J.A. Colquitt, B.A. Scott, and J.A. LePine, “Trust,
trustworthiness, and trust propensity: A meta-analytic test of their
unique relationships with risk taking and job performance.”
Journal of Applied Psychology, vol. 92, Jul. 2007, pp. 909-927.

[22] G.M. Alarcon, J.B. Lyons, J.C. Christensen, M.A. Bowers,
S.L. Klosterman, and A. Capiola, “The role of propensity to trust
and the five-factor model across the trust process,” Journal of
Research in Personality, vol. 75, 2018, pp. 69-82.

[23] P.J. Corr and G. Matthews, Eds., The Cambridge handbook of
personality psychology, New York: Cambridge University Press,
2009, pp. 748-763.

Page 5813

 10

[24] M.R. Barrick, M.K. Mount, and T.A. Judge, “Personality and
performance at the beginning of the new millennium: What do we
know and where do we go next?” International Journal of Selection
and Assessment, vol. 9 Mar/Jun. 2001, pp. 9-30.

[25] J.M. Malouff, E.B. Thorsteinsson, and N.S. Schutte, “The five-
factor model of personality and smoking: A meta-analysis,”
Journal of Drug Education, vol. 36, Mar. 2006, pp. 47-58.

[26] J.H. Cho, H. Cam, and A. Oltramari, “Effect of personality
traits on trust and risk to phishing vulnerability: Modeling and
analysis,” In Cognitive Methods in Situation Awareness and
Decision Support (CogSIMA), IEEE International
Multidisciplinary Conference, 2016, pp. 7-13.

[27] J.A. Johnson, M.L. Miller, D.R. Lynam, and S.C. South,
“Five-Factor Model facets differentially predict in-the-moment
affect and cognitions,” Journal of Research in Personality, vol. 46,
Dec. 2012, pp. 752-759.

[28] G.M. Alarcon, J.B. Lyons, J.C. Christensen, S.L. Klosterman,
M.A. Bowers, T.J. Ryan, S.A. Jessup, and K.T. Wynne, “The effect
of propensity to trust and perceptions of trustworthiness on trust
behaviors in dyads,” Behavior Research Methods, 2017, Advance
online version.

[29] J.B. Rotter. “A new scale for the measurement of interpersonal
trust.” Journal of Personality, vol. 35, Dec. 1967, pp. 651-665.

[30] S.M. Merritt, H. Heimbaugh, L. LaChapell, and D. Lee. “I trust
it, but I don’t know why: Effects of implicit attitudes toward
automation on trust in an automated system.” Human Factors, vol.
55, Jun. 2013, pp. 520-534.

[31] C. Calhoun, P. Bobko, M. Schuelke, S. Jessup, T. Ryan, C.
Walter…C. Stokes. “Suspicion, trust, and automation.” SRA
International Inc. Publication No. AFRL-RH-WP-TR-2017-0002,
2017.

[32] A.M. Evans and W. Revelle, “Survey and behavioral
measurements of interpersonal trust,” Journal of Research in
Personality, vol. 42, Dec. 2008, pp. 1585-1593.

[33] “Geotechnical Software Services, JAVA Programming Style
Guidelines, http://geosoft.no/development/javastule.html,” 2015.

[34] “Google, JAVA Style Guidelines, http://google.github.io
/styleguide.html,” 2014.

[35] “Sun Microsystems, JAVA Code Conventions,
http://www.oracle.com/technetwork/java/codeconventions-
150003.pdf,” 1997.

[36] T. Gaddis. Starting Out with JAVA: From Control Structures
Through Objects, Boston, MA: Addison-Wesley, 2010.

[37] R.C. Mayer and J.H. Davis, “The effect of the performance
appraisal system on trust for management: A field quasi-
experiment,” Journal of Applied Psychology, vol. 84, Feb. 1999,
pp. 123-136.

[38] J.P. Wanous, A.E. Reichers, and M.J. Hudy, “Overall job
satisfaction: How good are single-item measures?” Journal of
Applied Psychology, vol. 82, Apr. 1997, pp. 247-252.

[39] K.D. Carlson and A.O. Herdman, “Understanding the impact
of convergent validity on research results,” Organizational
Research Methods, vol. 15, Jan. 2012, pp. 17-32.

[40] J.T. Cacioppo and R.E. Petty, “The need for cognition,”
Journal of Personality and Social Psychology, vol. 42, Jan. 1982,
pp. 116-131.

[41] S. Epstein, R. Pacini, V. Denes-Raj, and H. Heier. “Individual
differences in intuitive–experiential and analytical–rational
thinking styles.” Journal of Personality and Social Psychology,
vol. 71, Aug. 1996, pp. 390-405.

[42] R.R. McCrae and P.T. Costa, “Validation of the five-factor
model of personality across instruments and observers,” Journal of
Personality and Social Psychology, vol. 52, Jan. 1987, pp. 81-90.

Page 5814

