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Abstract 
 

Among the existing solutions for protecting privacy 
on social media, a popular doctrine is privacy self-
management, which asks users to directly control the 
sharing of their information through privacy settings. 
While most existing research focuses on whether a user 
makes informed and rational decisions on privacy 
settings, we address a novel yet important question of 
whether these settings are indeed effective in practice. 
Specifically, we conduct an observational study on the 
effect of the most prominent privacy setting on Twitter, 
the protected mode. Our results show that, even after 
setting an account to protected, real-world account 
owners still have private information continuously 
disclosed, mostly through tweets posted by the owner’s 
connections. This illustrates a fundamental limit of 
privacy self-management: its inability to control the 
peer-disclosure of privacy by an individual’s friends. 

Our results also point to a potential remedy: A 
comparative study before vs after an account became 
protected shows a substantial decrease of peer-
disclosure in posts where the other users proactively 
mention the protected user, but no significant change 
when the other users are reacting to the protected 
user’s posts. In addition, peer-disclosure through 
explicit specification, such as the direct mentioning of 
a user’s location, decreases sharply, but no significant 
change occurs for implicit inference, such as the 
disclosure of birthday through the date of a “happy 
birthday” message. The design implication here is that 
online social networks should provide support alerting 
users of potential peer-disclosure through implicit 
inference, especially when a user is reacting to the 
activities of a user in the protected mode. 
 

1. Introduction  

Online social networks (OSNs), like Facebook and 
Twitter, enable highly interactive communications for 
online users but also introduce significant privacy risks 

through the potential exposure of users’ identity and 
personal information. As a result, extensive research 
has been done on how users view and protect their 
privacy in OSNs [31]. 

Among the existing solutions, privacy self-
management [30] has been a popular choice. It 
comprises privacy-enhancing technologies and tools 
that allow users to protect their own privacy by directly 
controlling access to their personal data or shared 
information. Twitter’s “Protected Mode” is one such 
example. After switching to protected mode, a user’s 
past and future tweets, along with replies to these 
tweets, will be removed from the public view and 
become visible only to followers approved by the user. 

Given its popularity, the effectiveness of privacy 
self-management, especially whether users are able to 
make informed and rational choices, has been debated 
for a long time, leading to many recent advances 
aiming at helping users with making better decisions 
[3, 8]. Notably missing, however, is a careful study of 
whether the choices themselves - as offered by a 
privacy self-management scheme – truly provide the 
protections that their descriptions would imply. For 
example, when Twitter boasts “protect your tweets” as 
the most prominent option under “Twitter Privacy”, 
does it truly imply that a user’s privacy can be 
protected once he/she starts protecting tweets? This is 
an important question because if none of the choices 
properly protects privacy, then self-management will 
not be effective no matter how user-friendly the 
privacy-setting interface is or how much decision 
support the user gets for making an informed decision. 

This paper aims to address the gap in the literature 
by assessing the real-world effectiveness of privacy 
self-management choices. Specifically, we study the 
effectiveness of “protected mode” on Twitter, given its 
role as the most prominent privacy setting (see Figure 
1) for an extremely popular OSN. 

The first research question we study is whether 
private information about a Twitter user is still 
disclosed even after the user switches to protected 
mode. Unfortunately, recent behavioral research hint at 
a negative answer: Given the highly interactive nature 
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of interpersonal communications in OSNs, there has 
been a growing recognition of conceptualizing privacy 
as interdependent phenomenon between an individual 
and online contacts [5, 9]. These studies found while 
individuals are free to decide what information they 
disclose, they often have control over what others 
disclose about them. In the case of Twitter, while users 
can protect their own tweets through the privacy 
setting, they cannot prevent others from mentioning 
them (i.e., @UserA) in a public tweet and “peer-
disclosing” certain private information about them. 

 

 

Figure 1. Twitter protected-mode: top shows its 
prominence in privacy settings; bottom shows a 
lock icon when mentioning a protected user. 

While the intuition behind this “privacy peer-
disclosure” is straightforward - and empirical evidence 
of its existence on Twitter has been reported [4] for 
non-protected Twitter users - this paper reports the first 
evidence showing that, even after a Twitter user elects 
to protect all tweets, substantial private information, 
including photos, protected tweets, and sensitive 
information such as date of birth and home address, are 
still continuously disclosed to the public through peer-
disclosure. Such peer-disclosure takes place in a 
variety of forms, e.g., the mentioning of a user (“@”) 
in a tweet, a well-known “off-the-book” trick (“dot-
start”) of replying publicly to a protected tweet that is 
otherwise prohibited (by the Twitter system design) 
from being retweeted or quoted, etc. 

After identifying the privacy leakage under 
protected mode, we looked for potential remedies by 
digging into how peer-disclosures occur for protected 
users. Note that Twitter prominently displays the 
protected status of a user when he/she is mentioned in 
a tweet or when his/her tweet is replied (see Figure 1)1 
- leading to the intriguing question of whether others 

                                                
1 Of course, we have no way of knowing whether others indeed see 
or understand the icon – an issue we leave for future studies. 

will consider a user’s desire to remain private when 
publicly disclosing information about the user. 

To this end, we compared the distributions of 
multiple types of peer-disclosures before and after a 
user set his/her tweets to protected. Interestingly, the 
answer to the above question depends on the form of 
disclosure, for which we introduce a 2×2 typology: 
1) whether the peer user is proactively mentioning or 

reactively interacting with the protected user. The 
former occurs when the peer is initiating an activity 
that mentions (e.g., “@” in Twitter) the protected 
user; while the latter is incurred by the peer user 
reacting (e.g., replying) to an activity initiated by 
the protected user. 

2) whether the disclosure is by explicit specification or 
implicit inference. The former represents activities 
that directly state the protected user’s information 
(e.g., spelling out the user’s full name), while the 
latter captures a peer’s activities that do not directly 
state such information, yet allow a third party to 
infer certain information about the protected user, 
e.g., gender through a “girl’s night out” message. 
Equipped with this typology, we have a surprising 

finding that, once a user switches to the protected 
mode, there is a significant decrease of peer-disclosure 
by proactive mentioning and explicit specification, but 
not by reactive interactions and implicit inference, 
which remain unchanged. This suggests an interesting 
possibility that, while Twitter users do adjust their 
peer-disclosure behavior based on the observed 
“protected” status of others, they might not see the 
necessity of adjustment when the interaction was 
initiated by the protected users; and they might not be 
aware of the peer-disclosure when it happens through 
implicit inferencing. This possibility, in turn, suggests 
a remedy: alerting a user of potentially disclosing a 
protected user’s information, especially when the user 
is reactively interacting with the protected user and/or 
the disclosure is through implicit inference. We leave 
the study of this remedy to future work. 

The contributions of this paper are summarized as 
follows. First, it provides empirical evidence that, even 
with proper choices on privacy settings, an individual 
is still unable to control how his/her own private 
information is disclosed in online communications, due 
to the behavior of others. Our findings also suggest that 
users do consider others’ privacy settings when peer-
disclosing information about them, yet not enough 
support is provided in existing systems to help users 
identify potential peer-disclosures.  

Second, unlike prior privacy studies which focused 
on theory-based positivist approaches and relied on 
self-reported data, this research pursues a data-driven 
method with observational data to test the real-world 
effectiveness of privacy choices. This helps address the 
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researcher-practitioner gap identified repeatedly in 
recent research, e.g., “some of us are increasingly 
raising doubts about whether we can relate what we 
have found in our research to what practitioners or 
policymakers truly experience in reality” [6].  

The rest of the paper is organized as follows. The 
next section presents a review of the related literature. 
Following that, we define the research questions and 
describe our research methodology, including the data 
collection and analysis processes on Twitter. We then 
describe our research results and explain how these 
results address the research questions. We conclude the 
paper with discussions of implications, limitations, and 
future extensions of our work. 

2. Literature review 

2.1 Privacy self-management 

The past decade has witnessed significant advances 
in understanding the human aspect of privacy research, 
from conceptualizing the norm of information 
disclosure [19] to studying the behavioral dynamics of 
privacy decision-makings (see [1] for a review). Given 
the complex contextual nature of privacy, many 
behavioral studies have repeatedly reported that users 
have difficulty making decisions for privacy self-
management, due in part to their bounded rationality 
[22], which prevents them from systematically 
evaluating costs and benefits before making privacy 
decisions [1]. 

Also, in the past decade, much research has been 
done to design more effective mechanisms for privacy 
self-management. Such mechanisms include privacy 
nudges [3, 27, 32], which offer subtle yet persuasive 
cues to help users make the “right” decisions with 
minimum cognitive efforts; tools to facilitate the 
understanding of privacy policies [8, 24]; and better 
permission request schemes, like constructing 
permissions based on the purpose of use [28]. 
Recognizing that users’ privacy decisions often vary by 
demographics and context, there were also work [12, 
13] that provide personalized support for privacy 
decisions based on predicted user preferences. 

The research in this paper is orthogonal to prior 
research, as its focus is on the effectiveness of privacy 
choices on managing real-world privacy disclosure, not 
on the effectiveness of these choices on inducing a 
proper decision from an end user. 

2.2 Collective privacy concerns on OSNs 

Recognizing that privacy cannot be theorized solely 
from an individual perspective, researchers developed 

the concept of collective privacy [10, 25, 31] to capture 
how one user’s decisions, e.g., the tagging of a friend 
at Facebook, may affect others’ privacy. Recent work 
on collaborative privacy [11] found the need for users 
to communicate privacy preferences with one another 
in order to solve conflicts and reach agreement on 
ownership, access, and extension of private 
information. Unfortunately, while existing studies have 
proposed behavioral approaches for users to ask each 
other for permission [14] or regulate boundaries with 
each other [29], these behavioral approaches function 
only at a small scale, and become impractical for OSNs 
like Twitter. 

2.3 Re-identification risks 

In today’s digital world, the rising threat to privacy 
is further increased by connecting information about 
one individual found in multiple data sources, both 
online and offline [7, 17, 23]. In the context of OSNs, 
researcher have repeatedly found evidence that today’s 
OSNs afford new capabilities to combine social 
identity elements with personal identity elements, 
which will improve the accuracy of the identity linkage 
techniques [16, 17, 20]. This increases the threats to 
individuals’ privacy and makes OSNs a gateway to 
access individuals’ personal information [2, 18]. 
Because of this linkage threat, no matter how mundane 
the information, its disclosure can have significant 
repercussions [21]. To capture the linkage threat, in 
this paper, we consider the typical identity attributes 
that can be used to link individuals’ online records with 
personal identities - name, gender, age, birthday, home 
address, etc. 

3. Research questions  

Recall from Section 2 recent research that chartered 
the conceptual framework for privacy peer-disclosure 
in OSNs [5, 11, 25] and verified its existence in real-
world OSNs like Twitter [4]. What is missing in the 
literature, however, is a study of the interplay between 
peer-disclosure and a user’s privacy settings. As a 
result, we do not yet fully understand the effectiveness 
of OSN privacy settings in practice, as it is not clear 
whether the change of a user’s privacy setting would 
affect the behavior of others on peer-disclosing private 
information about the user. To address this gap, we 
study two research questions in the paper: 
- RQ1. After a user hides his/her OSN activities 

from public view, are there still new activities by 
the user’s connections on the OSN that reveal 
personal identity information about the user? 
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- RQ2. Does a user’s change to a more stringent 
privacy settings decrease the peer-disclosure of 
the user’s private identity information in future 
activities of the user’s connections (once these 
connections are made aware of the user’s new 
privacy settings)? 

To answer these questions, we need to first build a 
conceptual foundation that defines peer-disclosure in 
OSNs: what actions trigger peer-disclosures, under 
what privacy settings, and what private information 
may be revealed? We develop this framework in the 
next section before using it to enable our research 
design described in latter part of the paper.  

4. Conceptual framework: peer-disclosure 

We develop the conceptual framework of peer-
disclosure in OSNs by building a taxonomy along two 
orthogonal dimensions. One dimension captures the 
various OSN activities that trigger peer-disclosure, 
while the other dimension captures the different kinds 
of privacy leakage stemming from these activities. 

4.1 Peer-disclosure activities 

Recent work [4] identified two main types of 
activities that lead to the peer-disclosure of user A’s 
private information by user B: 1) the proactive 
mentioning of A in B’s OSN activity, e.g., the tagging 
of A in a tweet or a photo posted by B; and 2) B’s 
reactive interactions to A’s activities, e.g., a reply 
posted by B to A’s tweet, or B’s comment on A’s 
Facebook post. 

Since the focus of this paper is on the effectiveness 
of A’s privacy settings, we examined several popular 
OSNs to study how these settings affect the two types 
of activities, with the results summarized in Table 1. 
Each OSN examined has at least 800 million monthly 
active users as of June 2018. 

Table 1. Summary of whether privacy settings 
of user A affect the 1) access privilege and 2) 
interface design of user B’s 1) activities that 
mention A and 2) reactive interactions with A. 

 Proactive Mentioning Reactive Interaction 
 Access Design Access Design 
Twitter No Yes No Yes 
Facebook No Yes Possible Possible 
Wechat No No Possible Possible 

 
Interestingly, none of the OSNs adjusts the access 

rules for B’s proactive mentioning of A based on A’s 
privacy settings. In other words, other users are free to 

mention A no matter how A limits access to his/her 
own activities. Yet some OSNs adjust the design 
workflow - i.e., either A or B sees interface changes on 
B’s mentioning of A - according to A’s privacy 
settings. For example, Twitter displays a lock icon 
alerting B of A’s privacy setting (see Figure 1). 
Facebook offers an option for A to be alerted when 
mentioned by another user, and lets A choose whether 
the mentioning appears on A’s timeline. Note in the 
case of Facebook, if B has a public timeline, then the 
mentioning of A is publicly visible no matter which 
option A chooses. In other words, the access rules of 
B’s activities remain the same. 

For reactive interactions, whether the access rules 
change varies by OSN. Twitter makes no adjustment to 
access. If a public user B replies to A’s protected 
tweet, then the reply will be public (just like the case 
when A is public), along with the fact that B is 
replying to A2. But even Twitter makes changes to the 
workflow design. For example, no user will be able to 
retweet (with or without comment) A’s protected 
tweets, as the option is disabled on the interface when 
A switches to the protected mode. 

For Facebook and Wechat, access to interactions is 
determined by privacy settings of the initiator. That is, 
if A is the initiator, then B’s reactive interactions are 
governed by A’s privacy settings. For example, B’s 
comments on A’s Facebook post follow the same 
access rules as A’s original post. On the other hand, if 
A comments on B’s post, then the initiator becomes B, 
and both B’s post and A’s comment follow the privacy 
settings of B. In this scenario, even when A sets default 
access to “Only Me”, A’s comments on B’s posts are 
publicly accessible so long as B’s post is public. 

In summary, one can see from Table 1 peer-
disclosure might happen in all three OSNs through 
being mentioned by others, interactions with others, or 
both. Mentioning is particularly dangerous because the 
user being mentioned may not be aware of it - losing 
privacy even after stopping all activities in an OSN. 

4.2 Leakage from peer-disclosure activities 

Numerous types of private information may be 
revealed through peer-disclosure - some, like the direct 
reference of one’s name, are obvious to anyone, while 
others, like vague references to common past 
experience, may only be recognizable by a selected 
few. Furthermore, what one individual considers as 
highly private information may look completely 
irrelevant to another [25]. Such complexity makes it 
impossible to capture all privacy peer-disclosure that 
may occur from OSN activities. As a result, it is 

                                                
2 A’s original tweet being replied to remains hidden.  
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important for us to properly define the scope of peer-
disclosure studied in this paper. 

We focus on peer-disclosures that trigger a 
particular type of threat to privacy: the ability for an 
adversary to associate an OSN user with his/her real-
world identity. That is, we focus on the disclosure of 
personal identity elements such as name, gender, age, 
birthday, home address, etc., which can be linked with 
external sources, e.g., credit reports, Whitepages.com, 
etc., to unveil the real-world identity of an OSN user. 

Two types of leakages are common for these 
personal identity elements: 
- Explicit specification, i.e., the direct exposure of 

one’s identity element. An example is “visiting 
@A’s home in Washington, DC”, which explicitly 
states the city A lives in.  

- Implicit inference, i.e., revealing an identity 
element without explicitly stating its value. For 
example, when B tags A in a “happy birthday” 
post, the birthday of A is revealed without being 
explicitly specified. Another example is when A is 
tagged in many tweets of B with geotags all in 
DC. Even though non-deterministic, one can infer 
with a high likelihood that A lives in the city. 

Note the type of leakage is, in theory, orthogonal to 
the identity element being leaked. For example, besides 
implicit inference of birthday, explicit specification is 
also possible through a post: “@A born on Christmas 
1979”. In practice, however, the peer-disclosure of an 
element may be much more likely through one type vs 
the other - e.g., for birthday, implicit inference is more 
“natural” than explicit specification. Also note that 
either type of leakage may happen from not only the 
content of an OSN activity but also metadata. The 
aforementioned geotag (for inferring the city A lives 
in) and activity timestamp (for inferring A’s birthday) 
are examples of the latter type. 

5. Research methodology  

We now describe the detailed methodology used in 
our empirical study of the two research questions. We 
chose Twitter as the OSN to study because its privacy 
settings mostly resemble a “clean” dichotomy - one 
either sets all OSN activities to be public (the default 
option) or hides (nearly) all from public view (the 
protected mode). This sharp contrast significantly 
simplifies the study of the research questions. 

5.1 Data collection 

Finding protected users: We started with a uniform 
random sample of 1 million Twitter users [15], and 
used the Twitter RESTful API, specifically the GET 

users/show command, to find whether the user is in the 
protected mode. This process yielded a total of 4,715 
Twitter users in the protected mode. 

For the purpose of this paper, we also applied a 
subsequent filtering process. First, since the personal 
identity elements vary significantly from one country 
to another, we chose to concentrate on the US 
population, and therefore filtered out users outside the 
US. We did so by excluding a user if either location or 
time-zone attribute of the user profile indicates a 
location outside the country. Second, we also removed 
users who did not have meaningful activities on 
Twitter, i.e., those with either a tweet count of 0 or a 
total of 0 followers and followees. These statistics are 
shown by Twitter on the user profile page no matter if 
the user is in protected mode or not. After applying 
these filters, we were left with 2,608 protected users. 

Identifying past names: To collect the peer-
disclosure activities involving these 2,608 protected 
users, we faced an important technical challenge: 
Twitter allows users to change their user names. If we 
simply search historic tweets with a user’s current 
name, we may miss many peer-disclosure activities 
that mention the user by past names. To ensure a 
proper study of peer-disclosure activities, we must first 
collect all past names used by a user. 

Unfortunately, since the 2,608 users of interest are 
all in protected mode, we cannot retrieve their past 
tweets (which are hidden from public view) to unveil 
their past names. Thus, we resort to an alternative of 
finding replies to their tweets posted by other, public, 
users. Since Twitter API returns along with a public 
reply the numeric ID of the conversation originator 
(i.e., the protected user), which is a persistent identifier 
that remains the same no matter how the user name has 
been changed, we can associate a user name included 
in the content of a reply with the persistent user ID in 
the API-returned metadata, and thereby identify the 
past names used by a protected user.  

Specifically, for each of the 2,608 protected users, 
we first collected all public tweets that mention their 
current name, identified all 100,632 public users who 
posted these tweets, retrieved all replies posted by 
these users, and then identified from these replies the 
old names used by the protected users. In total we 
identified 684 past usernames. 

Determining timeline of public-protected switch: 
Another technical challenge we had to address before 
studying a peer-disclosure activity is that we did not 
know for certain whether the activity occurred after a 
user switched to the protected mode, or when the 
user’s tweets were still public. Note that while Twitter 
reveals whether a given account is currently protected, 
it does not show, through either the web interface or 
the API, when the user started protecting his/her 
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tweets. As such, if we simply considered all peer-
disclosure activities as evidence for privacy leakage 
under protected mode, we would be mischaracterizing 
some activities that indeed occurred when a user’s 
tweets were still public. Furthermore, to study RQ2, we 
need to compare peer-disclosure activities when a user 
was public vs protected. As such, it is critical to 
establish the timing of the public-protected switch. 

To address this challenge, we started by identifying 
upper and lower bounds for the timing of a user’s 
switch from public to protected mode. Establishing an 
upper bound, i.e., when the user is definitely in 
protected mode, is straightforward: We verified all 
2,608 users were in protected mode as of November 
21, 2017 and continued monitoring their account status 
till June 1, 2018. As such, all accounts have an upper 
bound of November 21, 2017 unless they were found 
to later switch back to public mode. 

It is much subtler to establish a lower bound, i.e., 
the most recent timestamp when a user was definitely 
public, because we cannot query a user’s status back in 
history. As such, we had to leverage a covert channel 
created by a special design feature of Twitter: Starting 
in April 2014, any Twitter user can “retweet with 
comments” any public tweet, yet this option is disabled 
for any protected tweet. If the original tweet later 
became protected, the comments part of the retweet 
remains visible to the public3, along with a shortened 
URL pointing to the original (now hidden-from-public) 
tweet which, upon expansion, becomes 

https://twitter.com/user-name/status/tweet-id 
One can see that we can now infer from the URL 

the author of the original tweet. Thus, if we find that 
user A is the original author for a “retweet with 
comment” tweet of timestamp D1, then we know for 
certain that A was not in protected mode at D1, because 
otherwise the “retweet with comment” feature would 
have been disabled. This establishes a lower bound for 
the switch. Since the feature was introduced in April 
2014, we would not be able to find a lower bound for 
users who switched prior to that date. In addition, a 
tacit assumption here is that the switch happened only 
once. For cases where a user switched from public to 
protected and then back, potentially multiple times, 
please refer to discussions in Section 7. 

Finding the timeline of public-protected switch 
leads to further filtering of the collected users. For the 
upper bound, we filtered out 129 users who later 
switched back to the public mode. The remaining 
2,245 users (and the peer-disclosures involving them) 
become our pool of study for RQ1. To answer RQ2, 
we need to further establish the lower bound, which we 

                                                
3 unlike a regular retweet, which would be hidden from public view 
when the original tweet becomes protected 

were able to do for 198 out of the 2,245 users. These 
198 users hence become our pool of study for RQ2. 

5.2 Identification of peer-disclosure 

For each protected user, we first collected all public 
tweets posted by its followers and followees, and then 
identified a subset of them that either mention or are 
part of an interaction with the protected user. This 
subset represents the potential peer-disclosure activities 
involving the protected user. 

After manually examining a sample of the subset, 
we found six personal identity elements that have 
experienced peer-disclosures of significant 
frequencies: name, gender, location, photo, birthday, 
and age. For each type, we found evidence of peer-
disclosure from both proactive mentioning and reactive 
interaction, and also both explicit specification and 
implicit inference. 

We also found that the peer-disclosure of an 
element may occur at different levels of granularity, 
e.g., peer-disclosed names could be first name only, 
last name only, or full name; peer-disclosed locations 
could be precise GPS coordinates, a neighborhood, a 
city, or a state. Because of this varying granularity 
(and, as a result, the varying degree of privacy loss), 
we need a numeric measure of privacy leakage that 
works across different identity elements and different 
granularity levels, so as to fairly compare the degree of 
peer-disclosure for public and protected users. 

To this end, we adopt the information-entropy-
based measure in [4], which quantifies the amount of 
information (in bits) contained in the disclosed identity 
elements at a granularity level. For example, the 
disclosure of gender is ~1 bit, while first name reveals 
more information - about 10.7 bits. While we refer 
readers to [4] for technical definitions of this measure, 
it is important to note that the measure captures the 
correlation between identity elements. For example, if 
both gender and first name are disclosed, the quantified 
amount is not 10.7 + 1 = 11.7 bits, but only ~10.9 bits, 
because first name already reveals certain information 
about gender - hence the increase of only 0.2 bit for 
disclosing gender on top of first name. This ensures a 
fair comparison across the many combinations of 
identity elements peer-disclosed. 

6. Research results: RQ1 and RQ2 

6.1 RQ1 

Table 2 depicts privacy loss from peer-disclosure 
for the 2,245 users in protected mode. Recall from 
Section 5.1 that we are certain these users were in 
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protected mode from November 21, 2017 to May 21, 
2018 - hence this time period becomes what we study 
for RQ1. Table 2(a) shows the number of protected 
users who has an identity element peer-disclosed 
during this period through each of the four possible 
scenarios, while Table 2(b) future calculates the 
average amount of peer-disclosure (in bits) to capture 
the varying granularity of disclosures. 

It is important to note that, in both Table 2(a) and 
(b), the numbers reported in the “overall” column or 
row are not the sum of the corresponding rows or 
columns because a user may have birthday disclosed 
through all four scenarios, yet all will be counted as 
one in the overall column. Also, as explained earlier in 
the paper, the entropy of (name, gender) is not equal to 
the sum of entropy for name and gender, because of the 
correlation between the two elements. 

Table 2. (a) number of protected users with 
peer-disclosure; (b) entropy of peer-disclosure 
in bits. Each table consists of four types of 
peer-disclosures: Proactive mentioning, 
Explicit specification (P/E), Proactive 
mentioning, Implicit inference (P/I), Reactive 
interaction, Explicit specification (R/E), 
Reactive interaction, Implicit inference (R/I) 
(a) P/E P/I R/E R/I Overall 
name 76 19 66 5 111 
gender 70 124 98 125 220 
location 9 60 0 31 74 
photo 67 0 6 0 72 
birthday 0 61 0 3 61 
age 8 7 0 4 17 
Overall 221 168 170 156 538 

 

(b) P/E P/I R/E R/I Average 
name 10.7 12.96 10.7 10.7 11.14 
gender 1 1 1 1 1 
location 6 5 0 5 5.24 
photo 9.3 0 9.3 0 9.3 
birthday 0 9.02 0 8.5 9.02 
age 6.3 6.3 0 6.3 6.3 
Average 3 2.5 1.6 0.7 5.5 

 
One can see from Table 2 that the answer to RQ1 is 

affirmative: Even after a user switches to the protected 
mode, thereby hiding his/her OSN activities from 
public view, it is still highly likely - in our study, 538 
(24%) out of 2,245 protected users - for his/her 
connections’ new activities to reveal personal identity 
elements about the user. The amount of peer-disclosure 
is also significant - an average of 5.5 bits and median 

of 11.2 bits. Specifically, 10% of these users have 
more than 24.3 bits peer-disclosed - sufficient to 
narrow the identity space from 325.7 million (the 
population of US) to just 15.77 individuals. 

6.2 RQ2  

To address RQ2, we compared the degree of peer-
disclosure before and after a user switched to the 
protected mode. Since this study requires a lower 
bound on the time of a user’s switch to the protected 
mode, our study base was reduced to 198 users for 
whom we were able to find the bound. For each of 
these users, we focused on two time periods: 1) public 
period, which we set as the 6-month period 
immediately preceding our established lower bound, 
and 2) protected period, which we set as the 6-month 
period after November 21, 2017, the date we started 
monitoring the protected status of these accounts. For 
each user, we identified all peer-disclosure activities 
that happened during the two periods. 

Table 3. Peer-disclosure (bits) before and after 
switch to protected mode: (a) Proactive 
mentioning before (P-b), after (P-a), and p-
value for reduction (P-p), and the same for 
Reactive interaction (R-b, R-a, R-p); (b) the 
same for Explicit specification (E-b, E-a, E-p) 
and Implicit inference (I-b, I-a, I-p). 
(a) P-b P-a P-p R-b R-a R-p 
name 3.74 0.75 10-6 4.53 2.70 .01 

gender 0.32 0.09 10-6 0.54 0.41 >.05 
location 0.90 0.34 .05 0.41 0.76 >.05 
photo 2.97 1.36 10-3 0.08 0.08 >.05 
birthday 2.27 0.73 10-4 0.07 0.07 >.05 
age 0.27 0.05 >.05 0 0.05 >.05 
Overall 9.80 3.27 10-8 5.47 3.90 >.05 
 
(b) E-b E-a E-p I-b I-a I-p 
name 6.14 2.40 10-7 0.57 1.05 >.05 
gender 0.47 0.24 10-4 0.45 0.35 >.05 
location 0.14 0 >.05 1.10 1.10 >.05 
age 0.27 0.05 >.05 0 0.05 >.05 
Overall 9.63 3.73 10-10 4.37 3.32 >.05 

 
In Table 3(a), we compared the two time periods 

for proactive mentioning vs reactive interaction. We 
also performed the paired-sample t-test for each 
combination of identity element and activity type to 
determine whether there is a significant statistical 
difference after the switch. For proactive mentioning, 
all elements except age exhibit a significant reduction 
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of peer-disclosure (p<.05). Meanwhile, no identity 
element except name sees a significant reduction for 
reactive interaction. This sharp contrast shows that 
users react to the protected status of a friend differently 
when they proactively mention the friend vs reactively 
interact with the friend’s tweets. 

Table 3(b) depicts the comparison of the two time 
periods for explicit specification and implicit inference. 
Note that we exclude two identity elements, photo and 
birthday, because we found no implicit inference for 
the former and no explicit specification for the latter - 
rendering the comparison moot. Interestingly, a similar 
contrast emerges from the results: a significant 
reduction for explicit specification (overall p∼10-10) 
but not for implicit inference. 

7. Discussions  

7.1 Design implications 

The results described in Section 6 have three main 
design implications. First, the results suggest that users 
do consider their friends’ privacy preferences when 
engaging in peer-disclosure activities, as evidenced by 
the significant decrease of proactive mentioning or 
through explicit specification. The design implication 
of this finding is that an OSN should provide a user 
with information about the privacy preferences of other 
users involved in an OSN activity, in order to allow the 
user to consider such preferences.  

Second, the results indicate that the decrease on 
peer-disclosure is much more pronounced on proactive 
mentioning than reactive interactions. This indicates 
the possibility that a user might not be aware of the 
potential violation of a friend’s privacy when the user 
is merely responding to the friend’s activities instead 
of initiating an activity on his/her own. The design 
implication here is that an OSN provider may alert 
users of such danger during interactions, e.g., by 
informing users that replies to a protected tweet will 
not be protected, but instead can be seen in public. 

Finally, the results show little change on implicit 
inference regardless of the protected status of the user 
being mentioned, indicating the possibility that users 
might not be aware of such (tacit) disclosure of private 
information. Again, the design implication here is to 
raise awareness. Specifically, an OSN may proactively 
offer users a snapshot of their friends’ public profiles, 
including whether a friend has ever revealed his/her 
birthday, location, etc., so users can make more 
informed decisions that affect others. For example, 
when a user posts a happy birthday message tagging a 
friend, the OSN may popup an alert dialog stating 

“Your friend’s birthday has never been disclosed here. 
Are you sure on posting this message?” 

While our scope here is limited to examining the 
effectiveness of privacy self-management in OSNs, the 
findings may apply to other related areas as well. For 
example, when a user allows a photo-editing app to 
access photos taken with friends, the friend’s private 
information becomes accessible to the app owner, 
incurring similar peer-disclosure as discussed in this 
paper. We leave the study of privacy self-management 
in these related domains to future work. 

7.2 Limitations 

Approximated lower bound: We acknowledge 
several limitations in our study. First, the way we 
established the lower bound on a user’s switch from 
public to protected mode is approximate in nature, 
because we cannot completely rule out the possibility 
of repeated switches in the 6-month period preceding 
the lower bound. That is, the user might have switched 
from public to protected and the back to public before 
the date we identified. 

A way to address the limitation is to simultaneously 
monitor many public Twitter users, hoping to capture 
the exact moment of their switch to protected mode. 
Unfortunately, the rarity of such switch events, coupled 
with the cost associated with the daily monitoring of 
numerous public accounts, makes this approach 
infeasible for our study. Fortunately, we observed from 
our monitoring of protected users that the repeated 
switch between public and protected is rare, as we only 
observed 129 switches over a 6-month period for the 
2,608 users (4.9%). Thus, we believe this limitation 
does not affect the validity of conclusions in this paper. 

(In-)comprehensiveness of peer-disclosure: We 
identified many ways for identity elements to be 
disclosed through implicit inferences, e.g., the date of a 
“happy birthday” tweet discloses birthday, while the 
semantics of “girls’ night out” reveals the gender. 

While our manual examination strove to enumerate 
all peer-disclosures through implicit inferences, it had 
two inherent limitations: first is that it hindered scaling 
up the study to more users, and second is the ad hoc 
nature of the examination which left the possibility of 
certain implicit inferences not being captured. For 
example, consider the tagging of a user in a tweet 
about movie “Twilight”. One familiar with the movie 
could infer the tagged user’s age range given the 
movie’s adolescence target. But this may be missed by 
someone unfamiliar with the movie. Such uncertainty 
makes it infeasible to guarantee the identification of all 
implicit inferences. 

Despite the lack of a comprehensiveness guarantee, 
it is our belief that the results of our study remain valid 
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even after considering other inferences because of two 
reasons: For RQ1, more inferences can only amplify 
the risk of peer-disclosure for protected users. For 
RQ2, we applied the same examiner and same 
standards when examining peer-disclosures before and 
after the switch. In future studies, we plan to address 
this limitation by first assembling a training dataset 
that consists of Twitter users with known identity 
elements and their tweets, then using a combination of 
Natural Language Processing (NLP) and machine 
learning techniques to auto-identify potential inference 
channels from the training data. Given the existing 
research demonstrating the correlation between 
personal identity elements and language characteristics 
like word choices [26], we conjecture this automated 
approach could improve the comprehensiveness of 
identified peer-disclosures with new inferences.  

Limited scale: Our study is limited in scale by the 
query access limitation enforced by free Twitter APIs, 
i.e., 180 requests per every 15-minute window. This 
constraint limited the number of users we could track, 
especially given our need to search for all tweets 
mentioning every user we track, and further download 
everything posted by authors of these tweets. We plan 
to expand the scope of the study in future work to 
address this limitation. 

Different time windows for public and protected 
modes: In studying RQ2, we compared the amount of 
peer-disclosure for a user before and after the user’s 
switch from public to protected mode. Since the time 
window for activity measurement in public mode is 
bound to be before that for protected mode, doing so 
introduces potential extraneous factors explaining the 
change of peer-disclosure amounts, e.g., the overall 
decrease of peer-disclosure activities on Twitter over 
time. A between-subject design would address this 
limitation but requires a higher sample size than what 
our study currently has. Thus, we leave the study of 
this issue to a larger-scale study in future work. 

General limitations of using observational data: 
We argued in earlier part of the paper that the usage of 
observational data helped us address the researcher-
practitioner gap identified in privacy research [6]. 
Nonetheless, we also must admit that observational 
data also have limitations. For example, we cannot 
infer with certainty causation from observational data, 
due to reasons such as the existence of potential 
extraneous factors, e.g. increased privacy awareness 
due to news coverage during the observation period. 

8. Conclusions  

In this paper, we presented a data-driven study 
examining whether privacy self-management tools 

provided by real-world OSNs are indeed effective for 
protecting a user’s privacy. Specifically, we analyzed 
the public disclosure of a Twitter user’s identity after 
the user chose to protect his/her account and eliminate 
public access to all tweets. Our findings show that even 
when in protected mode, users still have private 
information continuously disclosed on Twitter, mostly 
through the activities of the user’s connections. This 
shows a key limitation of privacy self-management: its 
inability to control privacy peer-disclosure by others. 

Our examination of how peer-disclosures change 
after a user switches from public to protected mode 
reveals two surprising patterns: 1) a sharp decline of 
proactive mentioning, but little change on reactive 
interaction; 2) a sharp decline on explicit specification, 
but little change on implicit inference. These findings 
show that other users are considering the switched 
user’s privacy preferences when engaging in OSN 
activities, but they need further support on identifying 
peer-disclosures (in reactive interactions and through 
implicit inference). We discussed design implications 
of our findings for OSN providers. It is our hope that 
this work will inspire more data-driven studies on the 
state of OSN users’ privacy in practice. 
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