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Abstract 
 

This study aims to better understand trust in human-

autonomy teams, finding that trust is related to team 

performance. A wizard of oz methodology was used 

in an experiment to simulate an autonomous agent as 

a team member in a remotely piloted aircraft system 

environment. Specific focuses of the study were team 

performance and team social behaviors (specifically 

trust) of human-autonomy teams. Results indicate 1) 

that there are lower levels of trust in the autonomous 

agent in low performing teams than both medium and 

high performing teams, 2) there is a loss of trust in 

the autonomous agent across low, medium, and high 

performing teams over time, and 3) that in addition 

to the human team members indicating low levels of 

trust in the autonomous agent, both low and medium 

performing teams also indicated lower levels of trust 

in their human team members. 

 

1. Introduction  
In recent years, human-machine interaction has been 

studied in a multitude of research communities 

ranging from human factors, information science, and 

computer science, and from multiple different 

focuses (communication, awareness, trust, etc.). 

Given the increasing pace of technological 

developments in recent years, our understanding of 

human-machine interaction is still relatively limited 

(in comparison to other domains). However, there is 

little doubt of its importance and longevity , moving 

forward. 

As the concept of human-machine interaction 

has grown, it has branched out into related areas. 

Most notably, human-machine teaming has become 

an area of interest. Broadly speaking, human-

machine teaming is when a human and a machine 

have interdependent roles, that require interaction, to 

achieve a common goal. The machine can consist of 

many different technologies, such as a hazard 

warning system, a virtual agent (e.g., Siri), a decision 

support system (e.g., IBM’s Watson), or an embodied 

robot with artificial intelligence (e.g, Baxter).  

Although much discussion has surrounded the 

usage of “autonomy” as a descriptor for any type of 

machine, no matter how capable it is [1]–[4],  we 

follow the practical convention of [5] and [6] and use 

the word to refer to machines that have the ability 

and freedom to make decisions and take actions on its 

own. Traditionally, human-machine teaming is either 

studied from the perspective of human-automation 

teaming or human-autonomy teaming. The 

differences between these two concepts lie within the 

freedom that is given to the technological “machine”. 

Human-automation teaming is dependent on 

technology grounded in principles of automation, 

where technology will take over and perform tasks 

but only if the human controls and directs it to do so. 

Whereas, with human-autonomy teaming, the 

technology is autonomous, meaning that the 

technology has the ability and freedom to make 

choices on its own (i.e., the human is not in direct or 

supervisory control of the machine) [7]. From a 

teaming perspective, human-autonomy teaming is 

more representative of human-human teaming 

because its team members each have their own 

expertise and the authority to take action. They 

interact as peers, rather than as supervisors and their 

subordinates [8]. This difference in relational 

structure has important implications for the way we 

think about and conduct research in human-machine 

interaction.  

Yet, very little is empirically known about 

human-autonomy teaming due to prior limited 

machine capabilities. In more recent years, the advent 

of advanced cognitive modeling techniques [9] and 

artificial intelligence [10] has brought to light the 

possibility of machines serving as peer-like team 

mates, and paved the way for studying human-

autonomy teams. 

More research on human-autonomy teaming is 

needed. We are at an inflection point where there is 

significant need to validate, translate, and possibly 

transfer the assumptions and findings of multiple 
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canonical human-human teaming characteristics, and 

human-machine interaction concepts, to the new 

paradigm of human-autonomy teaming. We need to 

know how human-human teams are similar and 

different from human-autonomy teams. There is often 

an assumption that these two types of teams will be 

similar, and that human-human teaming may be the 

ideal model for human-autonomy teaming, but we 

simply do not know beyond the findings of a few 

early studies. These assumptions need to be tested 

and verified. 

One such human-human characteristic that needs 

to be further investigated in human-autonomy teams 

is that of trust, which is found to be fundamental to 

human-human teaming [31]. Trust is one of many 

fundamental characteristics of human-human teaming 

but is often identified as a major concept, and one 

that has been studied in many different ways [46], 

[47]. Specifically, trust has shown to impact team 

performance, indicating that teams with higher levels 

of trust perform better [48]. The concept of trust has 

substantial history within the domain of human-

machine interaction [11]–[14] with only preliminary 

work in human-autonomy teaming [15]. 

Compounding and furthering the significance of the 

lack of work on trust in human-autonomy teaming is 

that autonomy has increased degrees of freedom to 

either develop or diminish trust both at an individual 

and team level. In this paper, we present a study 

focused on better understanding trust in human-

autonomy teaming with a specific focus on how trust 

throughout the team is impacted, and how human 

team members trust a synthetic virtual agent 

operating in the role of a fully capable and 

autonomous team member in a remotely piloted 

aircraft system (RPAS) task and simulation setting.  

 

1.1 An Overview of The Research Study & 

Research Objectives  
This study focuses on the concept of trust in human-

autonomy teaming within the context of the 

development, integration, and validation of a 

computational cognitive model acting as a teammate 

on an otherwise all-human team. The team consists of 

three heterogenous roles working to complete a 

command-and-control task (i.e., team control of an 

RPAS).   
We brought teams into the lab and used a 

wizard-of-oz methodology to simulate an 

autonomous agent as a team member. This 

methodology allows an experimenter to play the role 

of an autonomous teammate (communicating and 

coordinating information in real time to human team 

members) without having to actually program a 

synthetic teammate, and without the other team 

members realizing that it is actually a human 

controlling the synthetic team member.  

Our main research objective of this study focuses 

on the relationship of team performance and team 

social behaviors (specifically those related to trust) in 

human-autonomy teams over time. More specifically, 

we are interested in if high or low performing teams 

trust their autonomous teammate more or less. We 

are also directly interested in how trust changes or 

adapts over time in high and low performing teams 

(high and low). These objectives will help to inform 

the effect that trust has on team performance in 

human autonomy teams. The paper will proceed with 

a background pertaining to trust and human-

autonomy teaming, an overview of methods used in 

this empirical effort, results, and a discussion 

highlighting important findings and suggestions for 

moving forward.  

 

2. Trust and Human-Autonomy Teaming 

   
2.1. Human-Autonomy Teaming  
Autonomous machines that can function in roles 

typically occupied by human team members will 

likely increase in the years to come, particularly as 

work environments become more virtual. Such 

machines should be able to maintain appropriate trust 

over time leading to higher team performance. If 

goals are not met, and uncertainty is high within the 

human-autonomy team, then research has shown 

teams will perceive higher workload and will be less 

able to complete multiple tasks [16]. Effective 

human-autonomy teaming must consider several 

issues, such as: creating an autonomous agent that 

can efficiently work with humans, modeling the team 

interactions, and modeling human cognition to 

incorporate in autonomy design [17], [18]. Therefore, 

human-autonomy teaming research is typically 

grounded in the fields of computer intelligence [19], 

cognitive science [20], [21], and team cognition [22] 

to create the necessary conditions and understanding 

for effective human-autonomy teaming.   

Until recently, there has been a lack of empirical 

human-autonomy teaming research. McNeese and 

colleagues [7] recently published a study looking at 

multiple team characteristics in a human-autonomy 

team. The human-autonomy teaming took place 

within a simulated RPAS and the humans were able 

to chat with an autonomous agent, in real time, using 

restricted natural language [23]. Findings from this 

study highlight that human-autonomy teams 

performed as well as human-human teams in the 

same simulation, but human-autonomy teams were 

deficient in aspects of team-level communication and 
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coordination. Complimentary research using this 

same simulation for the purposes of human-

autonomy teaming has also outlined the importance 

of situational awareness [24] and team synchrony 

[25].   

In addition, other work has developed a 

naturalistic decision-making based cognitive agent 

that helps people make decisions by improving 

situational awareness but increases cognitive load 

[26]. Other research has utilized a wizard-of-oz 

methodology to simulate an autonomous agent as a 

team player [27]. Research that tested human-

autonomy teaming in a joint resource management 

and scheduling task also found that different 

cooperative strategies of a machine agent’s behaviors 

[28] and social exchange structures [29] can impact 

human teaming behavior and overall team 

performance.  

 
2.2 Trust in Human-Autonomy Teaming 
Trust, as a psychological state, is an important 

construct needed to develop confidence and 

productive interactions among team members. Trust 

in human-human teams has been defined as “the 

extent to which a person is confident in, and willing 

to act on the basis of, the words, actions, and 

decisions of another” [30].  

As previously noted, an autonomous agent used 

in human-autonomy teaming can come in many 

different forms (e.g., software agent, embodied 

robots) and will need to participate in developing a 

level of trust within the team. The level of team trust 

could be a critical element in determining how teams 

will perform in situations that are suboptimal.  

Trust is a multidimensional construct that has 

been investigated in different areas of research, 

interpersonal relationships [30], in teams [31], and 

with automation [11]. Specific to the study presented 

in this paper, we adopt [30]’s definition of trust for 

the context of human-autonomy teaming. Specific to 

this study, our focus is during situations under 

degraded conditions, when different levels of trust 

are likely to have the most observable impact on team 

performance.  

Organizing trust from a team perspective should 

be considered by affording three characteristics of 

trustworthiness [32]: 1) ability (e.g., what action the 

autonomous agent can perform and the skill 

associated), 2) integrity (e.g., agent-based policy), 

and 3) benevolence (e.g., agent intentions). These 

characteristics allow autonomous agents to be 

perceived and recognizable as trustworthy for human 

team members. Ability is the agent’s skills, 

competencies, and characteristics that enable 

individual team members to have influence within a 

specific domain. Integrity, a set of policies, will have 

a set degree of acceptability that autonomous agents 

will need to adhere to. In agent and distributed 

computing model contexts, the policy can be defined 

as “an enforceable, well-specified constraint on the 

performance of a machine-executable action by a 

subject in a given situation” [33]. Benevolence is the 

motivation that should align to some extent to the 

team goal, and includes the willingness to sacrifice 

individual goals for the team goal [28].  

Many factors related to trust in automation and 

autonomy have been investigated. Olesen and 

colleagues [34] outline that there are multiple 

variables that can impact a human’s level of trust in 

an autonomous teammate: 1) human influences (such 

as, individual differences in personality, experience, 

and culture), 2) machine influences (such as, robotic 

platform, robot performance in relation to 

automation, failure rates, and false alarms), and 3) 

environmental influences (such as, task type, and 

operational environment). Two specific areas that 

have garnered a substantial amount of attention in the 

trust and HAT domain are that of anthropomorphism 

and transparency.  

de Visser and colleagues [35] found that 

anthropomorphic cues reduced initial expectations of 

automation to execute flawlessly, and when trust was 

violated there was a higher chance that trust would be 

repaired. This suggests that qualities such as 

perceived agency, intentionality, physical presence, 

and biological motion can elicit anthropomorphic 

perceptions of autonomous agents. Therefore, 

anthropomorphism could be one additional way to 

investigate a team’s ability to trust an autonomous 

agent. Recent work examining how different levels of 

intelligent agent transparency impact trust in human-

agent teaming found that trust increased as a function 

of transparency level, meaning that the more 

transparent the agent was, the more trust humans had 

in it [36]. Finally, scholars have highlighted the 

importance of communicating intent to engender trust 

in human-autonomy teaming [37], and understanding 

how to repair trust in human-autonomy teaming [38].  

 

3. Methods  

 
3.1 Participants & Experimental Context 
This study was conducted in the Cognitive 

Engineering Research on Team Task (CERTT) 

RPAS-Synthetic Task Environment (STE) [27]. The 

RPAS-STE is based on the United States Air Force 

Predator RPAS ground control station. The RPAS-

STE task requires three different, interdependent 

teammates within the RPAS team; each with a unique 

role relevant to the team’s objective of efficiently 
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taking good photos of target waypoints. Further, the 

CERTT RPAS-STE is dynamic and taking good 

photographs of designated waypoints requires 

information to be shared among teammates in a 

timely manner. 

A total of 44 participants from a large 

southwestern university community were recruited 

and participated in the study. Two participants per 

team were formed (22 teams) to fulfill photographer 

and navigator roles, and the pilot position was filled 

by a well-trained experimenter who mimicked a 

synthetic agent in terms of communication and 

coordination (Figure 1). Participants were informed 

that the pilot was a synthetic agent, but not that it was 

a trained experimenter.  

Specific information about each role follows. 1) 

navigator – provides a dynamic flight plan and sends 

the information to the pilot about the targeted altitude 

and the airspeed of the current target waypoint; 2) 

pilot – controls the RPA’s heading, altitude, and 

airspeed, and negotiates with the photographer about 

the targeted speed and altitude restrictions for the 

current target waypoint); and 3) photographer – 

monitors sensor equipment, negotiates with the pilot, 

and takes photographs of target waypoints, and sends 

feedback regarding whether the team has a good 

photo or not. 

Participation required normal or corrected-to-

normal vision and fluency in English. Participants 

ranged in age from 18 to 36 (Mage = 23, SDage = 3.90), 

with 21 participants self-reporting as male, and 23 as 

female, and were either graduate or undergraduate 

students. Each team participated in two  seven-hour 

sessions (with one or two-week lapsing between the 

two sessions), and each individual was compensated 

for participation by payment of $10 per hour. Two 

separate sessions were completed to empirically 

evaluate if trust changed over time and to better 

inform how autonomy should change or interact with 

humans over an extended time period.  

 

 
 

Figure 1. CERTT RPAS-STE team roles and task 

(the red dashed line indicates two different 

environments: the simulated operational environment 

and the ground control station; modified from [24]). 

3.2 Experimental Task and Procedure 
The task was carried out over a series of 10 

missions (see Table 1), wherein all interactions took 

place via a text-based communications system. A 

single RPAS-STE mission consists of 11-12 targets 

and lasts a maximum of 40 minutes.  After signing 

consent forms, the participants were randomly 

assigned to their roles and started their role-specific 

training. The navigator and the photographer sat in 

one room (but separated via partitions, and no face-

to-face contact), and the pilot sat another room.  

 

Table 1. Experimental Sessions and Task Duration 
Session-I (Total Session with 

breaks  6 hours) 

Session-II (Total Session with 

breaks  7 hours) 

1) Consent forms (15 min) 1) Mission 5 (40 min),  

2) PowerPoint (30 min) and 

hands on training (30 min) 

2) NASA TLX I (15 min) 

3) Mission 1 (40 min) 3) Mission 6 (40 min),  

4) NASA TLX I (15 min) 4) Mission 7 (40 min),  

5) Missions 2 (40 min) 5) Mission 8 (40 min), 

6) Mission 3 (40 min),  6) Mission 9 (40 min),  

7) Mission 4 (40 min),  7) Mission 10 (40 min), 

8) NASA TLX-II, Trust & 
Anthropomorphism, and 

Demographics (30 min) 

8) NASA TLX-II, Trust, 

Anthropomorphism, 

Demographics, and Debriefing 

(30 min) 

 
9) Post-Check Procedure (15 

min) 

Note. Between two sessions, there were one or two-week intervals. 

From the hands-on training through the post-check procedure, a 
15-minute break was applied after each task; and there was also a 

half-hour lunch break. Therefore, the total approximate time for 

the experimental session was eight hours. 

 

The “synthetic agent” pilot communicated and 

coordinated with the navigator and the photographer 

in a timely manner but with restricted vocabulary. 

The vocabulary used by the “synthetic agent” pilot 

was similar to the vocabulary used by a real-synthetic 

agent that served as a pilot during a previous 

experiment [1]. During the training and the task, the 

navigator and the photographer used templates of 

allowable utterances provided to them by the 

researchers to communicate effectively with the 

synthetic agent via text-chat.  
Throughout the experiment, a series of failures or 

anomalies were injected into the team task that fall 

within the three categories of: automation failure, 

autonomy failure, and malicious cyber-attacks. Each 

failure was applied to selected targets throughout the 

mission and the teams had a specific time limit to 

overcome each failure. Whether the team overcame 

the failure or not, the mission continued. These 

failures or anomalies are important to the overall 
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design of the experiment as they have the ability to 

impact team performance, which is a key metric in 

this study. 

 

RPAS Degraded Conditions 

 Automation failure is the first category of RPAS 

failure which occurs on the pilot and photographer’s 

shared information display. The shared information 

display contains information such as the current and 

next waypoint information, distance and time from 

the current target. In order to overcome the 

automation failure, teams need to communicate 

effectively in a timely manner and take a good photo 

in 400 seconds. 

 Autonomy failures include two comprehension 

failures and one anticipation failure which would 

arise from the synthetic teammate failing to 

understand a message or to anticipate (such as taking 

a good photo) the status of the team. In order to 

overcome the autonomy failures, human team 

members need to consistently send the correct 

information about the target waypoint to the synthetic 

team member 

Malicious cyber-attacks are cyber-attacks on the 

synthetic agent which have the effect of flying the 

RPA into forbidden enemy territory while the agent 

denies that this is the destination. The malicious 

attack happened only once for each team during the 

last 10-minutes of Mission 10 (i.e., the last mission).  

If either the navigator or the photographer notices 

that the RPA is off-route and is going to an enemy 

designated area, they let intelligence (i.e., the 

experimenter) know this via a chat message so that 

the mission will be aborted and the team will have 

overcome the failure. During training sessions, the 

experimenters highlighted this specific waypoint to 

the navigator role and noted that human team 

members should avoid that waypoint and alert intel 

that there is a problem if the RPAS is moving 

towards it.  

 

3.3 Measures 
Measures of team performance (mission and target 

level) and team process (process ratings, 

communication flow, coordination, situation 

awareness (i.e., number of failures overcome), and 

verbal behavior were collected, in addition to 

measures from the human team members: facial 

expression, heart rate (ECG), team trust, electrical 

activity of the brain (EEG), NASA TLX workload 

[40], and demographics. For this present study, we 

consider only the following measures: 

Team Trust was measured by a modified 

questionnaire originally developed by Mayer et al. 

(1995) [32]. In the questionnaire, we asked 25 

questions with Likert scale responses ranging from 

“1” = Strongly Agree to “5” = Strongly disagree. To 

assess how team trust changed across time, the 

questionnaire was administered twice: once after 

each session (i.e., after missions 4 and 10).  

Mission level performance score was a weighted 

composite score containing team level mission 

parameters, including time spent in warning and 

alarm states, number of missed targets, and rate of 

good target photographs per minute (which was 

weighted the heaviest among the parameters). Each 

team began with the maximum score of 1000, but 

then lost points depending on the final values of the 

mission parameters [41].   

Target Processing Efficiency (TPE) score 

accounted for the time spent inside a target waypoint 

to get a good photo (higher scores equate to more 

efficiency, in this case, the maximum score per target 

is 1000) [41].   

Number of failures team overcome. If a team 

successfully overcame any type of the failure by the 

end of a mission, then we counted “1” and took the 

sum across 10 missions. Therefore, we only 

considered the sum of the failures overcome by each 

team. The proportion of the 22 teams that overcame 

failures was approximately equal for automation 

(65%) and autonomy (64%). However, only 41% of 

teams overcame malicious cyber-attacks. 

 

4. Results  
4.1 High-, Medium-, and Low Performing 

Teams. 
As the relationship of performance and trust is a focal 

point of this study, we clustered teams into high, 

medium, and low performing groups. By doing this, 

it allows for more finite statistical observations to be 

made across multiple levels of performance.  

In order to determine optimal number of team 

clusters we applied K-means clustring analysis on the 

average mission level team performance score, target 

performance score, and number of failures overcome 

to obtain clusters. We chose this analysis technique, 

because it minimizes the mean measure using 

Euclidian distance and also seeks to partition the 

observations into pre-specified number of clusters 

[42]. In the clustering analysis, we excluded two 

teams because of the paradoxical relationship 

between their team score (mission and target level) 

and number of failures overcome (i.e., high 

performance but few failures overcome). The 

analysis was conducted using the “flexclust” ‘stats’ 

package [43] in R [44].  

During the analysis, first, we randomly 

initialized two points, called cluster centroids, and 

then we checked the within cluster sum of squares, 
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which captures the amount of variability present 

within all of the clusters. However, we need to find a 

value of k (i.e., number of cluster) that avoids 

overfitting the model while clustering the data close 

to the true empirical distribution. To solve this issue, 

we chose the “Elbow Method”, which looks at the 

within groups sum of squares (wss or, equivalently, 

the percentage of variance explained) as a function of 

the number of clusters [45]. According to this 

method, one should choose a number of clusters so 

that adding another cluster does not give much better 

modelling of the data. If the wss is obtained for 

multiple possible values of k, one can plot the wss 

values and find the point where the marginal drops 

and an “elbow” is formed (Figure 2). The graph 

below shows that was sharply drops at 2 clusters. It 

also drops with a milder slope at 3 clusters. Beyond 3 

clusters the graph levels off. Thus, we can suggest 

that the optimal number of clusters is three (K = 3; 

see Figure 2). 

 

 
Figure 2. Total within-cluster sum of squares for K-

means clustering applied to the average team 

performance score, target performance scores, and 

number of failures overcome 

4.2 Team Trust 
To analyze team trust, we first took the average of 

the navigator and the photographer responses (Likert 

scale: “1 = Strongly Disagree” to “5 = Strongly 

Agree”) for each question. Next, we performed a 3 

(condition: Low-, Medium-, and High-Performing 

Team) x 2 (session) x 25 (trust questions) repeated 

measures Multivariate Analysis of Variance 

(MANOVA) on 25 questions, for each session, and 

each performance cluster (condition). Results from a 

MANOVA are summarized in Table 2.   

  

Table 2. Mixed ANOVA Results 

Source df F p 2 

Question 24 14.458 0.000 0.460 

Condition  2 0.324 0.715 0.039 

Session 1 4.405 0.051 0.206 

Question by Condition 48 1.791 0.002 0.174 

Session by Condition 2 0.668 0.526 0.073 

Question by Session 24 2.293 0.001 0.119 

Question by Session by 

Condition 

48 0.942 0.587 0.100 

 
Based on significant interaction effects, we also 

conducted pairwise comparisons (based on LSD test) 

for each interaction, but, due to limited space, we 

only report significant results from the independent t-

tests. Turning to the significant Question x Condition 

effect in the following table, we find that human team 

members (navigator and photographer) in low 

performing teams had lower trust with each other 

than in high performing teams (see Questions 1, 2, 4, 

5 and 6 on Table 3). According to Question 3, human 

team members in medium and high performing teams 

also trusted the synthetic agent more than in the low 

performing teams.  

 

Table 3. Mean and Standard Error of Each 

Significant Question 

Source 
Low 

M(SE) 

Medium 

M(SE) 

High 

M(SE) 

(1) If I had my way, I would 

not let nav./ photog. have any 

influence over issues that are 
important to me. 

3.50* 

(0.33) 

2.88 

(0.21) 

2.58* 

(0.27) 

(2) I really wish I had a good 

way to keep an eye on the nav./ 

photog.. 

4.00* 

(0.29) 

3.40* 

(0.18) 

2.50* 

(0.24) 

(3) I would tell the synthetic 

pilot about mistakes I have 

made on the team task which 
was critical to me, even if I 

could not monitor its actions. 

3.31* 

(0.37) 

4.35* 

(0.24) 

3.79 

(0.31) 

(4) I would tell nav./photog. 

about mistakes I have made on 

team task, even if they could 

damage my reputation.  

3.50* 

(0.27) 

4.30 

(0.17) 

4.33* 

(0.22) 

(5) I would share my opinion 
about sensitive issues with the 

nav./ photog. even if my 

opinion were unpopular. 

3.25* 
(0.31) 

4.05* 
(0.19) 

3.83 
(0.26) 

(6) If the nav./ photog. asked 

why a problem happened, I 

would speak freely even if I 
were partly to blame. 

3.81* 

(0.25) 

4.60* 

(0.16) 

4.125 

(0.21) 

Note. Navigator (Nav.) and Photographer (Photo.); * and ** 

indicate p < 0.05 and p < 0.001, respectively.  

 
According to the significant interaction effect 

of Question x Sessions, team members in high 

performing teams increasingly viewed the 
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synthetic agent as a machine from Session 1 to 

Session 2 (i.e., in response to the question, “While 

chatting with the synthetic pilot, it felt like I was 

talking to a real person” (MSession1 = 2.76, 

SESession1= 0.45, MSession2  = 2.34, SESession2= 0.50, p 

< 0.05). Also, human team members in high 

performing teams considered the synthetic agent 

less enjoyable (i.e., “I enjoyed working with the 

synthetic agent”, MSession1 = 3.19, SESession1= 0.30, 

MeanSession2 = 2.55, SESession2= 0.42, p < 0.05). 
Based on the significant session main effect, 

team trust (MSession1 = 3.24, SESession1= 0.15,  

MeanSession2 = 2.35, SESession2= 0.26, p< 0.05) and 

also trust in the synthetic agent (MSession1= 4.09, 

SESession1= 0.20, MeanSession2= 3.54, SESession1= 0.25) 

significantly decreased from Session 1 to Session 2 

(p < .05). Probing into the significant main effect of 

question brought up some interesting results across 

individual questions. During the task human team 

members trusted each other more than the synthetic 

agent (see Table 4).  

 

Table 4. Mean and Standard Deviation of Each 

Significant Question 

Question 

(1) if I had my way, I would not let agent (M = 3.56, SE= 0.18) 

or human (M= 2.99, SE=0.16,  p< .05) team member have any 

influence over issues that are important to me. 

(2) I would be willing to let agent (M = 2.30, SE= 0.23) or 

human team member (M = 2.91, SE= 0.17,  p< .05 )  have 
complete control over my task in the team. 

(3) I really wish I had a good way to keep an eye on the agent (M 

= 4.18, SE=0.15) or human (M = 3.30, SE= 0.14,  p< .05) team 

member. 

(4) I would be comfortable giving the agent (M = 2.67, 

SE=0.21) or  human (M = 3.63, SE=0.14,  p< .05) team member 

a task or problem which was critical to me, even if I could not 
monitor his/her/its actions. 

(5) If someone questioned the agent’s (M = 3.21, SE= 0.21)  or 

human team member’s (M = 3.76, SE=0.13, p< .05) motives, I 

would give the agent/ nav./ photo.  the benefit of the doubt. 

 

4.3 Results Overview 
The summary of these findings are depicted in Table 

5. 

 

Table 5. Mean and Standard Deviation of Each 

Significant Question, by Performance Cluster (Low, 

Medium, and High) 

Question 

(1) Human team members had trust issues with each other:  
Low = Medium > High 

(2) Human team members' trusted the synthetic agent:  

Medium > Low; High  Low 

(3) Team members  increasingly viewed the synthetic agent as a 

machine: Only for High performing: Session 2 > Session 1  

 

(4) Trust in synthetic agent: Session 1 > Session 2 

 

5. Discussion  
This study provides further understanding of the 

impact an autonomous agent team member can have 

on trust within a team, that trust can change over 

time, and low trust causes team performance issues. 

In general, we can see multiple issues that arise 

surrounding trust of an autonomous agent team 

member, particularly in low performing teams.  

More specifically, our results indicate that there 

are lower levels of trust (on multiple aspects of the 

interpersonal trust survey) in the autonomous agent in 

low performing teams than both medium and high 

performing teams. This is significant in that there is 

clearly a behavior or perception that emerges in low 

performing teams that results less trust than medium 

and high performing teams. This highlights the 

interesting and open question of whether low levels 

of trust lead to lower performance, or if teams 

destined to have lower performance also produce 

lower levels of trust among its team members. In 

previous studies, the focus has generally been to 

understand how a single human reacts to autonomy in 

a team, not how autonomy impacts human-human 

interaction and behaviors. More research is needed to 

further investigate how autonomy can impact the 

team relationship among other human team members.  

The second interesting finding from this study is 

the loss of trust across low, medium, and high 

performing teams from session 1 to 2. The results 

indicate that there was more trust in the autonomous 

agent at the beginning of the teamwork process than 

at the end of the process. The question becomes why? 

One potential explanation for this is a compounding 

effect that human team members were able to think 

about their experiences with the autonomous agent in 

session 1 and develop an opinion of the agent 

(negative based on data) that bled into session 2.  

Finally, an interesting result of the interpersonal 

trust survey is that in addition to the human team 

members indicating low levels of trust in the 

autonomous agent, both low and medium performing 

teams also indicated lower levels of trust in their 

human team members. For example, the question, I 

really wish I had a good way to keep an eye on the 

mission planner (human role), was found to be 

significant in both low and medium performing 

teams. This indicates that there are issues 

surrounding human-human team member trust and 

these issues are mainly found in low and medium 
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performing teams. High performing teams are not 

exhibiting the same issues of human-human trust.  

This finding also highlights a difference of the 

high performing teams, compared to the low and 

medium performing teams. For some reason, high 

performing teams did not indicate having human-

human trust issues (as compared to low and medium). 

The lack or lessoned human-human trust issue may 

have positively impacted their overall team 

performance. A deeper exploration is needed to 

understand these differences and why higher 

performing teams were able to never develop trust 

issues or possibly overcome trust issues.  

Future studies should investigate if it is the 

manner in which the autonomous agent interacts with 

human team members (communication, coordination, 

cooperation) or if there is a perceptual bias that 

negatively impacts trust in this context. We also 

recommend that future studies provide a qualitative 

component of their data collection allowing human 

participants to openly express in their own words 

issues that stem from trust and additional social 

behavior characteristics. The survey data, in addition 

to our team performance data, sheds light on trust in a 

human-autonomy teaming context, but qualitative 

responses could add an additional a layer of depth to 

our understanding.  

Answering these questions is critical to 

designing more effective human-autonomy teams. It 

is critical to know if the failures are associated with 

the actual behavior of the agent or the human’s 

perception. If we know which of these is impacting 

trust (and it may be both), then we can focus on 

better developing an autonomous agent that is 

demonstrating behavior that is viewed as more 

trustworthy, or if we should implement training 

protocols for the human to better understand the 

agent and hopefully improve their perception of the 

agent.  

 

6. Conclusion 
As human-autonomy teams become more prevalent, 

there is a significant need to better understand the 

novel factors that can influence their performance. In 

this study, we aimed to better understand trust in 

human-autonomy teams, finding that trust is 

important to team performance. A multitude of 

interesting questions stem from this study and need to 

be further studied, such as, 1) is high trust always 

associated with high team performance?, 2) why do 

lower performing teams have lower levels of trust in 

an autonomous agent?, and 3) what causes human 

team members to lose trust in an autonomous 

teammate over time? Future studies should focus 

specifically on the causal direction of the 

performance-trust relationship; and how trust is 

gained or lost in human-autonomy teams, through 

more granular and qualitative analysis of team 

process data. Further understanding the development 

of trust will help to better design human-autonomy 

teams and inform and build the autonomous agent to 

account for the concept of trust. 
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