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GENERAL ABSTRACT

This investigation was undertaken to determine the 

effect of drying and liming on soil nitrogen mineraliza

tion, to measure in N-supplying power of soils and to 

assess the effect of soil type on mineralization of nitro

gen from sewage sludge. Laboratory, greenhouse and field 
experiments were conducted on a number of soils from the 
Hawaiian Islands.

Air and oven-drying for 12 weeks increased the amount 

of mineral-N in five soils studied. Oven-drying released 

about 10-40 times more N than air-drying. Most of the 

mineral-N was released as NH^-N. Cultivation of undis

turbed soil in the field resulted in more N being 

mineralized than from soil which was left undisturbed.

Dry matter yield of corn was also affected when grown on 

air and oven-dried soils. Air-drying was more beneficial 

to corn yield in the Kaiwiki (Typic Hydrandepts). However, 
oven-drying had harmful effects on the growth of corn in 
this soil. Air-drying had little effect on the growth of 

corn in the Maile 7 (Hydric Dystrendept) soil. But in the 

oven-dried soil plants were much more healthy and more dry 

matter yield of corn was produced, compared to the control.

The effect of lime application on N mineralization was 

studied on the Paaloa (Humoxic Tropohumult) and Wahiawa 
(Typic Eutrustox) soils in the field. The Paaloa soil had
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never previously been cultivated or limed. The Wahiawa 

soil had been limed twice before. Liming at 2 and 4 tons/ 

ha resulted in greater N mineralization than the control 

in the Paaloa soil. However, liming from a pH of 4.7 to 

7.1 had little effect on the amount of N mineralized in 

the Wahiawa soil.
An evaluation of the N supplying power of seven soils 

was made. Two chemical extraction methods as well as 
aerobic incubation procedures at 25°C and 35°C were used 

to obtain an index of N availability. Nitrogen mineralized 
was correlated with N-uptake by corn in the greenhouse. 

Aerobic incubation at 25°C was significantly correlated 

(r=0.96) with the N-uptake by corn. Incubation at 35°C 

was also highly correlated (r=0.92). The chemical methods 

employed were, by comparison, unsuitable in evaluating the 

N status of these soils.

The amount of N mineralized from anaerobically-dried 

sewage sludge when mixed with two soils was very small, 
and depended on the soil type and the sludge rate. In the 
Waimea soil (Typic Eutrandept), 3-4% more N was mineralized 

than in the Wahiawa soil (Humoxic Tropohumult) when the 
sludge was applied at 22.4 and 44.8 tons/ha rates. N min

eralization potential (Nq ) did not adequately predict the 

actual N mineralized from the soil: sludge mixtures. A 

two-function equation with two values of N q may be neces
sary to adequately describe N mineralization in sludge
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amended soil, because of two different N mineralization 

rates. One function describes the release of N from a 

readily-mineralizeable fraction in early incubation (0-4 

weeks), while the other function describes the later re

lease of N from the more stable fraction in sewage sludge.
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GENERAL INTRODUCTION

Nitrogen (N) is an essential element required by all 
plants for growth. Although it is present in large quan

tities in the biosphere, only a small amount is in forms 

which can be directly utilized by plants. Nitrogen can be 

supplied to plants from the natural processes of N fixation 
from soil N mineralization and from rainwater, and from in
dustrial process, such as the manufacture of nitrogenous 
fertilizers. In the past, relatively inexpensive and abun
dant supplies of fertilizers were available, so people in 

developed countries tended to use them indiscriminately. 
This gave rise in some instances to higher nitrate levels 

in underground waters. But as the prices of raw materials 

needed for fertilizer manufacture are increasing and people 

are showing more concern about the environment, interest 

is growing in ways to make use of the natural processes of 
supplying N.

I

Of the many natural sources, soil nitrogen is one 
which could contribute towards the N requirement of plants. 

In soil, most of the N exists in organic forms. The organ

ic forms are subject to transformation to inorganic forms 

through the microbially-mediated process of mineralization. 

Similarly, inorganic N may be transformed to organic N by 

immobilization, which is also a result of microbial action. 
The accumulation of mineral nitrogen in soil is a net



effect of these opposing processes which occur simultane

ously. Net changes occur only when one exceeds the other. 

The two processes have been collectively referred to as the 

biological N turnover, or interchange (Hiltbold, et a l ., 

1951; Bartholomew, 1956; Jansson, 1958). Before soil or

ganic N is available to the plant, it usually must be 
converted to ammonium, nitrite and nitrate forms. Since 
these conversions are microbial, they are affected by fac
tors such as aeration, pH, presence of essential nutrients, 
temperature, etc. Factors such as desiccation reduce the 
activity of the nitrifying bacteria more than that of the

c ,
ammonifiers (Lawrence, 1956), resulting in an accumulation 
of NH^ in drought or dry season. Many of these factors are 

not independent. A change in pH due to the addition of 

lime in acid soils might cause a burst of microbial activi
ty which may release inorganic N in soil. Similarly, when 

added to different soils, the addition of materials like 

sewage sludge may not release the same amount of N. If we 
want to make better use of soil N for plants, the effect 

of these factors must be better understood than it is 
today.

Soil scientists are also faced with the problem of 

assessing the nitrogen-supplying power of soils by labora

tory examination. The nitrogen system within soil is so 

dynamic that various forms of N change, even as we try to 
measure them. The most direct measure of plant-available



N supplied by the soil is the analysis of N content of a 
plant grown without N fertilizer (Beckwith, 1963).

Less direct methods of estimating the ability of a 

soil to supply N involve chemical and biological tests in 

the laboratory. Most of these methods have been tried for 

temperate soils, but their performance in tropical soils 
is even more in question. The idea is to find a method 

which produces consistent results and can be correlated 
with N uptake by plants grown on tropical soils. A method 
which will provide significant correlation with N uptake 

by plants could be used to make an assessment of the amount 

of N that will be provided by the soil during a growing 

season of the crop.
Since organic N is a major source of available N for 

plant use, this study was undertaken with the following 

four objectives:
1. Study the effect of air-drying and oven-drying on 

N mineralization in high organic matter soils in 
the laboratory and obtain preliminary information 

in the field;
2. Determine the effect of lime on N mineralization 

in soils of varying organic matter content;

3. Assess the N-supplying power of soil by incubation 

and chemical methods; and

4. Measure N mineralization of sewage sludge as af
fected by sludge rate and type of soil.

Each chapter will treat one of the above objectives.



CHAPTER ONE

EFFECT OF DRYING O N , . 
SOIL NITROGEN MINERALIZATION



ABSTRACT

Laboratory experiments were conducted to determine the 

effect of air and oven-drying on nitrogren mineralization 

and its availability to plants. Oven-drying released about 

10-40 times more N than air-drying. Most of the mineral-N 

was released as NH^-N.
Cultivating undisturbed soil in field, mineralized 

more N when compared with the undisturbed soil.
Dry matter yield of corn was also affected, when grown 

on air and oven-dried soils. Air-drying was more benefi-
c ,

cial to corn yield in the Kaiwiki soil (Typic Hydrandepts). 

However oven-drying had harmful effects on the growth of 

corn in this soil. Air-drying had little effect on the 
growth of corn in the Maile 7 (Hydric Dystrandept) soil.

But in the oven-dried soil plants were much more healthy 
and more dry matter yield of corn was produced, compared 
to the control.



Effect of Drying on Soil Nitrogen Mineralization

INTRODUCTION

As soils dry they undergo a variety of physical, chem

ical and biological changes. Drying leads to accelerated 

decomposition of organic matter (Birch, 1958; Chase and 

Gray, 1957; Cooke and Cunningham, 1958; Stevenson, 1956), 
which may in turn affect the supply of soil nitrogen. Var

ious investigators have shown that ammonia is liberated 
from soil organic matter upon drying of soils (Cairns,
1963; Jenkinson, 1966; Solulides and Allison, 1961; Melo 

and Suzuki, 1976). Birch (1958, 1959, 1960) found a sharp 

increase in N mineralization after three months of storage 

at 35°C in several East African soils, which varied in car

bon content from 1 to 7% with pH values ranging from 5.8 

to 6.4. The amount of N mineralized was greater the longer 

the soil was kept in an air-dry state, and the higher the
4

temperature at which the soil was dried. He attributed 
this increased N mineralization to an enlargement of the 

surface exposed due to fragmentation of organic gels upon 
drying. He also suggested that enhanced N mineralization 

may occur as: (a) a result of the high microbial activity

associated with a freshly-developing population; and (b) a 
result of the decomposition of dead micro-organisms killed 
during the drying.
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Cooke and Cunningham (1958) likewise reported a sub

stantial increase in the amount of N mineralized because 

of air-drying. They attributed this increase to the shat

tering of soil granules and exposure of new surfaces to 
bacterial action.

Heating at higher temperatures enhances N mineraliza

tion (Cairns, 1963; Birch, 1959; Birch and Friend, 1956). 

Broadbent, et a l . (1964) noted that drying at i00°C and 
rewetting stimulated N mineralization in both allophanic 
and non-allophanic soils of New Zealand. Schreven (1967, 
1968) incubated calcareous sandy loam soil at 105°C and 

reported increased N mineralization of humus. He concluded 

that most of the mineral N produced by the end of the ex

periment resulted from drying, and not from biological 

activity. In an effort to determine the effect of room 
temperature and oven-drying on available N content, Singh 

and Kanehiro (1970) reported that long-term storage of 

Akaka (Typic Hydrandept) and Wahiawa (Tropeptic Eutruxtox) 
soils in an oven at 90°C increased NH^-N. The amount of N 
released was several times higher in the Akaka than in the 

Wahiawa soil. They associated this higher NH^-N release 
to the higher organic matter in the Akaka (14.6%) compared 
to the Wahiawa (1.4%) and speculated that NH^-N came from 

the splitting of NH^ from N-bearing organic compounds, es
pecially proteins and amino acids.



Nitrogen Mineralization in the Field
Most of the studies dealing with the effect of drying 

on N mineralization have been carried out in the labora

tory. Of the few field studies reported, Semb, et al.

(1969) measured the magnitude of N mineralization under 

natural field conditions for 13 different soils and climat

ic environments by sampling soils at weekly intervals over 

a period extending from the end of the dry season into the 
following rainy season. They reported a flush of mineral 

N from sites following rewetting of the soil with the be
ginning of the rainy season. The magnitude of the observed 

flush varied from 13 to 183 kg N/ha. They also compared a 

laboratory measure of potentially available N with corres

ponding field observations. On three sites, laboratory 

and field values were similar, but on six sites the observed 

field values were substantially lower than the laboratory 

values. Hoogerkamp (1965, 1966) applied four cultivation 

treatments to plots of permanent pasture, each combined 
with 0, 100, 200 and 300 kg N/ha. The treatments consisted 

of: (a) no cultivation; (b) deep digging to 20 cm depth

with a 10 to 20 cm soil layer replaced by topsoil; (c) ro- 
tovating to 10 cm; and (d) deep digging to 20 cm with the 

top 10 cm replaced by subsoil. Plots receiving treatments 

(b), (c) and (d) were resown with mixed grass sward. The 
fertilizer N applications produced similar increases in 
dry matter yields from the three cultivation treatments.

8



They inferred that cultivation mineralized N from organic 

sources, which was responsible for the high dry matter 

yield.

Effect of Drying Soil on Plant Growth
Recent studies of the effect of drying on the growth 

of plants are quite scarce. Birch and Emecheb (1966) grew 

millet on two tropical soils (A and B) with the following 
treatments: (a) kept moist under aerobic conditions, (b)
air-dried for one week, and (c) dried for 24 hours at 80°C. 
In both soils, air-drying and oven-drying produced dry mat
ter yield higher than in fresh soil. Dry matter yield for 

fresh, air-dried and oven-dried soil for A was 4, 12 and 

22 mg N/pot, while for soil B these values were 18, 28 and 

50 mg N/pot, respectively. However, according to Dawson, 

et al. (1965), lettuce and tomato growth in soils which had 
been heated to temperatures above 80°C was often less than 

in soils heated to 60° to 75°C. They attributed this de

crease to an increase in soluble and exchangeable Mn and , 

NO2 .
Similarly, Boyd (1971) reported that interveinal leaf 

chlorosis occurring in Argentine peanuts grown in auto- 
claved soil was the result of Mn toxicity. A foliar 
analysis showed that Mn level in peanuts grown in auto- 

claved soil was 66 ppm compared to only 6 ppm in the 

control.



Sources of Mineralizeable N

The soil fraction that responds to mineralization on 

drying contains high levels of N (Harmsen and Schreven, 

1955; Harpstead and Brag, 1958). Stevenson (1956) and 

Takai and Harada (1959) reported that the degree by which 

metabolic activity increases in remoistened air-dried soil 

varied directly with the concentration of free amino acids 

and other nitrogenous materials released during the air- 
drying process. Similarly, Paul and Tu (1965) reported 
that air-drying for one week caused a sharp increase in the 
quantities of methionine sulfoxide, glutamic acid and ly-

c ,

sine, as extracted by 1 N ammonium acetate. Steaming and 
oven-drying raised the total free amino acid-content of 

soil by a factor of ten. Soils which were oven-dried con

tained much greater concentrations of methionine sulfoxide 

than fresh soils. Simon, et al. (1978) attempted to trace 
the ammoniacal nitrogen released during steam steriliza

tion. They concluded that steam sterilization leads to the 
formation of free amino acids that consequently undergo 
thermal decomposition, thereby releasing NH^-N. Marumoto 

(1977) reported that in addition to amino acids-N, amino 
sugar-N was also responsible for an increased amount of N 
mineralization due to air-drying. He showed that the 

amount of NH^-N coming from amino acid-N was larger than 
from amino sugars, but amino sugars decomposed more rapid

ly-

10



Russell, et al. (1974) studied the effects of heating 

(200°C) on soil clay-organic complexes and soil organic 

matter from surface horizons of several agricultural soils. 

The absorption bands due to peptides decreased at 1550 cm  ̂

and 1650 cm~^, which they interpreted as the result of de

composition of amide linkages of organic components of 
clay-organic complexes. With the acid-washed complexes, 
the disappearance of secondary amide absorption bands was 
accompanied by the appearance of NH^ absorption near 1410 

and 3250 cm""^. From their work, it seems that NH^-N is re
leased by the decomposition of amide linkages of organic 

components of clay-organic complexes. Watson and Parson 

(1974) showed that the organic matter extracted by formic 

acid behaves similarly to the acid-washed clay-organic 

complexes on heating. Their work supports the observations 

from infrared spectroscopy that amino acid residues in pro

tein-like structures decompose to yield NH^-N on heating. 

Kasarda and Black (1968) used mass spectroscopy to identi
fy products of protein pyrolysis. They suggested that the 

appearance of NH^ is indicative of protein decomposition 

at 130° to 150°C. Juste and Bureau (1967) showed that 
thermal stabilities of amino acids were lower when mixed 
with the clay fraction of a soil than when mixed with 

quartz. They also found that decomposition of amino acids 
by heating was accompanied by a large increase in exchange
able NH^ on the clay.
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Allen, et al. (1973) showed indirect evidence for non- 

biological transformation of amino acids in soil. Using

they compared the distribution pattern for the fertil

izer-derived N and native humus, and showed that 

considerably higher proportions of fertilizer N occurred 

in amino acids (59.0 vs. 36.3%) and amino sugars (9.9 vs. 

8.0%). They pointed out that the fertilizer N was initial

ly incorporated into amino acids, amino sugars and other 
abundant compounds of the soil biomass, and later trans
formed into more stable humus forms. When conditions are 

right for N mineralization, the above process reverses.

The increase of NH^-N as a result of drying may be 

due to; 1) the change in the soil's physical condition, 

especially that of the gel-like materials in soils; 2 ) the 
change in the chemical composition, especially the modifi

cation of soil organic matter, increasing its solubility;
3) the destruction of a large number of soil micro-organ

isms, making their bodies available as sources of energy 
for surviving micro-organisms; 4) the fact that bacteria 

use organic nitrogenous substances as well as other carbon 

compounds as a source of energy and liberate ammonia as a 

waste product.

Theories Explaining Increased N Mineralization

An excellent account of the theories proposed so far 
to explain the mechanism of N release following partial

13



sterilization by drying and heating can be found in Jenkin- 

son (1966), and Schnitzer and Khan (1978). There is 

general agreement that the mineralization of N following 

various drying treatments is the result of increased micro

bial activity.

One group of workers suggested that microbial activity 
is inhibited in unsterilized soil (Greig, 1911) and that 

the toxin restraining the microbial growth is destroyed 
by partial sterilization.

Another group provides theories postulating the stim

ulation of microbial activity (Birch, 1958; Coleno et a l ., 

1965; Gooding and McCalla, 1945; Kubista, 1966). Yet 

another group proposes an ecological theory that following 

partial sterilization a section of population previously 

kept in check by antagonism between different sections of 

the population grows, causing an increased release of N 

(Martin, 1963; McLaren et al., 1962).

Another set of theories emphasizes that otherwise 
available substrates are physically protected from micro-* 

bial attack in unsterilized soil and drying and heating 
removes this protection, allowing attack to proceed until 
the newly-exposed substrate is consumed. An example of 
this occurs when drying increases the surface area of or

ganic colloids exposed to microbial attack, either by 

detaching them from other parts of soil or by increasing 
their porosity (Birch, 1960; Russell, 1966). Another set

14



of theories stresses that drying and heating produces 

available substrates from otherwise unavailable material. 

These substrates can be provided by killing and autolysis 

of micro-organisms (Black, 1968) and by chemically altering 

otherwise nonavailable materials (Waksman and Starkey,

1923; Chase and Gray, 1957). Gooding and McCalla (1945) 
suggest that air drying converts the microbial forms into 
inactive spores, and when conditions are favorable for 

growth by the addition of moisture, the organisms pass into 

a vegetative highly active form.

Recently Laura (1974, 1975, 1976) proposed a protoly- 
tic theory. According to him, "The decomposition of 

organic matter in soil is affected by the availability of 

protons in the soil environment. Generally the factors 

which increase the supply of protons in soil increase min

eralization of soil organic matter.” He noted that 

dissociation of water increases as the H 2O content in soil 

samples decreases. Since dry soil contains residual water 
it is possible that the supply of protons from this water 

might cause some chemical changes in humus during drying
which could result in the formation of Nht.4

This study was undertaken with the following objec
tives :

(1 ) to measure the effect of air and oven-drying on 
release of soil N in the laboratory;
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(2) to determine the plant availability of N released 

by air and oven-drying; and

(3 ) to determine if drying of soil in the field could 

mineralize more N.

16



MATERIALS AND METHODS

Description of Soils Used

Five soils, Kaiwiki (Typic Hydrandept), Maile 7 

(Hydric Dystrandept), Maile 9 (Hydric Dystrandept), Waika- 

loa (Ustollic Eutrandept), and Waimea (Typic Eutrandept) 
were collected from the island of Hawaii. The Maile 7 
soil has only recently been cultivated while the Maile 9 
has been cultivated much longer, and should be near an 

equilibrium with management practices. A brief descrip
tion of the soils is as follows.

Kaiwiki Silty Clay is a member of the thixotropic, 

isomesic family of Typic Hydrandepts. The soil has a dark- 

brown A horizon with a moderately prismatic structure. It 

is finely mottled. This soil dehydrates irreversibly into 
gravel-size aggregates. It was covered with vegetation and 

was quite moist at the time of sampling. This soil occurs 

at high elevation, ranging from 240 to 455 m above sea 
level. The mean annual temperature is 15°C and mean annual 

rainfall is 375 to 500 cm. This soil has undergone inten
sive weathering.

Maile Silt Loam is a member of the thixotropic, iso

mesic family of Hydric Dystrandepts. This soil has a dark 

reddish-brown A horizon having a moderate subangular blocky 
structure. It dehydrates irreversibly into sand or silt- 
size aggregates. This soil occurs under a relatively low

17



temperature (15°C) and high rainfall (203 cm). The soil 

has a high clay content.

Waikaloa Fine Sandy Loam is a member of the ashy, 

isothermic family of Ustollic Eutrandepts. This soil has 

a dark reddish-brown A horizon that has a weak granular 

structure, a brown to dark reddish-brown B horizon that 
has a weak prismatic structure, a Ca horizon at about 75 
to 127 cm depth. This soil occurs under arid conditions. 

The mean annual rainfall is 51 cm and mean annual tempera
ture is 16.5°C. In this environment, organic matter 
accumulates in the upper part of the solum and bases are

t ,
maintained at a relatively high level.

Waimea Fine Sandy Loam is a member of the ashy, iso

thermic family of Typic Eutrandepts. The soil has a dark 

A^ horizon with a weak granular structure. The B2 horizon 

is very friable and has a silt loam texture. This soil 

differs from the Waikaloa in that it has no calcium carbon
ate accumulation in the profile. The soil has developed 
under a slightly lower temperature and higher rainfall 
than the Waikaloa soil. The average annual temperature 
and rainfall are 15.5°C and 92 cm, respectively. Chemical 

weathering has progressed a little further than in the 
Waikaloa. Additional properties of these soils are given 

in Table 1-1.
To measure the effect of drying on N mineralization 

a series of experiments were conducted in the laboratory.
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Table 1-1. Some Properties of the Experimental Soils

Soil pH 
(in H 2O)

Total N* 
%

Organic C* 
I

t

C:N

Kaiwiki 3.82 0.90 12.40 13.77

Maile 7 5.58 0.80 11.74 14.67

Maile 9 5.88 0.76 10.04 13.21

Waikaloa 6.32 0.50 7.13 14.26

Waimea 6.94 0.59 6.63 11.23

*Values expressed on oven-dry basis.



greenhouse and in the field.

Air-Drying and Oven-Drying in the Laboratory

Three hundred grams (O.D.) of these soils was weighed 

and spread in aluminum trays (20 x 20 x 5 cm). The soils 

were air-dried (25°C) and oven-dried (105°C) in duplicate 
for 12 weeks. Samples were taken at 0, 2, 4, 8 and 12 

weeks. The soil samples were extracted with 1,N KCl (1:5 
soil to solution), shaken for one hour on a wrist-action 
shaker and filtered. Leachate was saved for the analysis 
of NH^ and NO^-N. Twenty-five ml of the extract was tak
en for steam distillation on a micro-Kjeldahl apparatus 

(Bremner, 1965). Soil moisture was determined at 0, 2, 4,

8 and 12-week intervals.

Effect of Initial Moisture Level on N Mineralization
The effect of initial moisture level of soil on N 

mineralization was measured by adding various amounts of 

water to Maile 7 and 9, Waimea and Waikaloa soils. Twenty- 
five grams (O.D.) of soil were taken in plastic bottles,

H 2O equivalent to (1 ) one-half of field capacity, and (2 ) 
field capacity, were added as treatments to all four soils. 

Soils were dried in oven (105°C) for 48 hours without lids 

on the plastic bottles. Soil was extracted with 1 N KCl 

for determination of NH^ and NO^-N.
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Air- and Oven-Drying of Bulk Samples

Fifteen kg of Maile 7 and Kaiwiki soils were oven- 

dried for two weeks at 105°C and air-dried in a greenhouse 

for 12 weeks. NH^- and NO^-N were determined as described 

earlier at the end of each drying period. These samples 

were later used for growing of corn in the greenhouse.

Plant Availability of Mineralized N
The plant availability of N released as a result of 

air-drying and oven-drying was measured using corn as a 

test plant. Two and one-half kg (O.D.) samples of the 

Maile 7 and Kaiwiki soils, which had been air-dried for 

12 weeks and oven-dried (105°C) for two weeks, were limed 
to give a pH of 6.5. All other nutrients except N were ap

plied as a basal dose at the following rates:

21

Nutrient Rate Form of Application
p 1000 kg/ha as Ca(H2P0^)2*H20

K 500 kg/ha as KCl
Mg 200 kg/ha as MgSO^•7H2O
Zn 20 kg/ha as ZnSO^
B 2 kg/ha as H3BO3

Cu 3 kg/ha as Cu S0^-5H20
Fe 50 kg/ha as FeS0^-7H20
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Treatments were as follows for both the Maile 7 and 

Kaiwiki:

1. Fresh soil

2. Soil which had been air-dried for 12 weeks

3. Soil which had been oven-dried for 2 weeks

4. Fresh soil plus an amount of urea equivalent

to N released by air-drying
5. Fresh soil plus an amount of urea equivalent 

to the N released by oven-drying

Corn (Zea mays L . ) was planted and thinned to two plants/ 

pot after emergence. Urea was applied after two weeks of 

emergence. The experiment was harvested after three 
months. All plants showed N deficiency symptoms at har

vest time. Plants were ground and analyzed on a 

Quantometer.

Field Experiment

The effect of clearing of natural vegetation on N 

mineralization was determined by selecting two sites in . 
the Helemano area, Oahu. Site 1 was drier, more exposed 
to sunlight and heat than site 2 , which was located in a 
forest. The sites were cleared of local vegetation and 
microplots were established using 38-cm diameter metal 

drums. These drums were buried 15 cm deep into the soil, 
while 3 cm of the drum was exposed. The main vegetation 
at site 1 was Melinis minutiflora (molasses grass),



Brachiaria mutica (California grass) and Eucalyptus. Site 

2 was covered with Gleichenia linearis (creeping fern) and 

Acacia k o a .

Soil samples were collected at 0, 4, 8 and 12-week 

intervals and extracted with 1 N K C l ; NH^- and NO^-N were 

determined in the extract by the method of Bremner (1965).

23



RESULTS AND DISCUSSION 

The Effect of Air-Drying on Nitrogen Mineralization

When soils were air-dried, the amount of mineralized 

N increased at 0-12 weeks for the five soils (Table 1-2). 
The magnitude of N(NH^+N0 2 ) which was mineralized upon air- 
drying in these soils gave the following trend: Maile 7 >
Kaiwiki > Waikaloa > Maile 9 > Waimea. The Maile 7 and 

Kaiwiki soil materials mineralized much greater amounts of 

N compared to the Waikaloa, Maile 9 and Waimea soils. Pro-
4‘ ,

longed air-drying (12 weeks) resulted in greater N 

mineralization than short-term air-drying (2 weeks) al
though the percentage of water lost was negligible after 

two weeks (Table 1-3).

The Effect of Oven-Drying on Nitrogen Mineralization

Oven-drying (105°C) enhanced N mineralization in 
these soils much more than did air-drying (Table 1-2).

After 12 weeks of oven-drying, 596.6, 410.1, 391.1, 291.3 
and 153.9 yg/g more N were mineralized than the amounts 

mineralized in fresh soils by the Kaiwiki, Maile 9, Maile 

7, Waikaloa and Waimea soils, respectively. The longer the 
soils were oven-dried, the greater was the amount of N 
mineralized. Also, drying at 105°C released about 10-40
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Table 1-2. Effect of Drying on Nitrogen Mineralization

25

Soil
Air-Drying

Weeks
4 12

• Mg/g ---
Kaiwiki

Increase due to drying
100.0 150.3

50.3
141.1
41.1

151.9
51.9

162.1
62.1

Waikaloa
Increase due to drying

28.5 2 9  A '  
0.6

33.1
4.6

35.4
6.9

39.7
11.2

Maile 7
Increase due to drying

126.3 150.0
23.7

140.9
14.6

153.5
27.2

165.5
39.2

Maile 9
Increase due to drying

24.2 26.5
2.3

27.6
3.4

29.2
5.0

34.7
10.5

Waimea
Increase due to drying

22.5 23.5
1.0

24.0
1.5

30.6
8.1

33.6
11.1

Oven-Drying

Kaiwiki
Increase due to drying

100.0 349.3
249.3

451.2
351.2

579.2
479.2

696.6
596.6

Waikaloa
Increase due to drying

27.8 185.7
157.9

248.2
220.4

283.8
256.0

319.1
291.3

Maile 7
Increase due to drying

124.3 411.5
2 & 7 . 2

463.4
339.1

505.2
380.9

515!4
391.1

Maile 9
Increase due to drying

22.4 293.6
271.2

412.5
390.1

450.8
428.4

432.5
410.1

Waimea
Increase due to drying

27.2 111.0
83.3

136.1
108.9

150.1
122.9

181.1
153.9
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Table 1-3. Amount of Water in 
Different

Air-Dried
Intervals

Soils at

Soil 0 2
Weeks

4
- -  1 -----

8 12

Kaiwiki 228.00 13.37 13.72
/•

12.86 12.86

Waikaloa 54.00 12.48 13.37 13.37 13.37

Maile 7 66.00 18.47 18.48 18.48 18.48

Maile 9 72.00 18.20 19.33 19.33 19.33
Waimea 37.00 11.60 11.60 11.60 11.60



times more N than air-drying for 12 weeks. The increased 
mineralization of N at high temperatures has been observed 

by others (Birch, 1959; Birch and Friend, 1956; Cairns, 

1963; Singh and Kanehiro, 1970). The effect of drying in 

relation to N mineralized was cumulative, as was also ob

served by Birch (1958), Broadbent (1964), Soulides and 

Allison (1961).

Effect of Air-Drying on NH^-N

27

The amount of NH^-N increased in all soils when air- 
dried. In the beginning (up to 4 weeks), air-drying (Fig. 

1-1) caused less NH^-N to be released from the Waimea, 

Waikaloa and Maile 9 soil materials. At the end of 12 
weeks of drying, N mineralization showed the following 

trend: Kaiwiki > Maile 7 > Waimea > Maile 9 > Waikaloa.

Nitrate-N as Affected by Air-Drying
t

The amounts of NO^-N at 0, 2, 4, 8 and 12-week inter

vals are given in Fig. 1-2. Three soils: Waikaloa, Maile
9 and Waimea had very little change in NO^-N after 12 weeks 
of air-drying. However, the Kaiwiki and Maile 7 soils b e 

haved quite differently than the other three soils. The 

Kaiwiki and Maile 7 soils had at the beginning exception
ally high contents of NO^-N. Air-drying for two weeks had
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D— □  KAIWIKI 
MAILE 7 
MAILE 9 

— X WAIKALOA

TIM E IN WEEKS

FIG. 1-1. EFFECT OF AIR-DRYING ON NH,-N IN FIVE 
SOILS.
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TIM E IN WEEKS

FIG. 1-2. EFFECT OF AIR-DRYING ON NO.,-N IN FIVE
SOILS.
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a tremendous effect in increasing the amount of NO3-N in 

these two soils. The amount of NO3 -N leveled off after 

two weeks of drying and continued so for 12 weeks. These 

results are in line with those of Munro and MacKay (1964), 

who found increased NO3-N production by 15-20 yg/g due to 

air-drying for 15 weeks.

Effect of Oven-Drying on NH^-N

Oven-drying (105°C) gave greater increases in NH^-N 

than air-drying (Fig. 1-3). The soils gave a very distinct 
initial flush of NH^-N followed by a more gradual and 

steady increase. After 12 weeks of drying at 105°C, 19 to 

150 times more NH^-N was mineralized for all five soils 
over the controls. A comparison of Table 1-2 and Fig. 1-3 

reveals that most of the mineral N was NH^-N rather than 

NO3 -N. One possibility for the low amount of NO3-N is that 

nitrifiers may have been killed under such severe condi
tions of low water supply and high temperatures. According 

to Gibbs (1919) the Nitrosomonas bacteria are killed be
tween 53°C to 55°C but Nitrobacter can withstand such 

severe conditions. Similarly, Harmsen and Kolenbrander

(1965) and Panganban (1925) noted that ammonification pro

ceeded vigorously in the temperature range of 50°C to 70°C. 

But Nevo and Hagin (1966) found that changes occurring dur
ing three months of drying were independent of the presence
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TIME IN WEEKS
FIG. 1-3. EFFECT OF OVEN-DRYING ON NH,-N IN FIVE

SOILS.



of microorganisms and were mainly due to change in the

physical structure of the organic matter fraction. It may

be possible that drying caused some physical as well as 

chemical changes in the soils reported in this study. As 

a result of dehydration these amorphous materials might 

have changed to crystalline oxides. Thus exposure of new 
surfaces of soil and increased solubility of organic matter 

(due to high temperature) may have increased the amount of 
NH^-N as a result of drying of these soils. Sherman, et 

al. (1954) reported that amorphous hydrated oxide systems 

which consist of materials ranging from gels to cryptocrys

tallines upon dehydration produce crystalline oxides.

The Effect of Oven-Drying on NO^-N

Amounts of NO^-N produced as a result of oven-drying
for 0. 2, 4, 8 and 12-week periods are given in Fig. 1-4. 

While NO^-N remained almost unchanged in the Waimea, Maile 
9 and Waikaloa soils, there was a sharp decrease in NO^-N* 
in the Kaiwiki and Maile 7 soils. After 12 weeks of oven- 

drying there was a decrease of 72 and 58 pg/g NO^-N in the 

Kaiwiki and Maile 7 soils, respectively. Similar results 
were reported by Kelley (1919) who found decomposition of 

NO^-N in several Hawaiian soils when they were heated at 
150°C for two hours. He further reported that there was a 
total decomposition of NO^-N at 200°C and 250°C. Ekpete
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FIG. 1-4. EFFECT OF OVEN-DRYING ON NO.,-N IN FIVE
SOILS.



and Cornfield (1964) also noted a 10.3 and 21.7 percent 

loss in NO3 -N when an alluvial sandy loam soil with pH 6 .5 

was incubated at 20 and 50 percent of the maximum water- 

holding capacity, respectively.

The Effect of Initial Water Content on Nitrogen Mineralized 
Due to Drying

Amounts of released NH^-N due to air-drying and oven- 
drying are given in Table 1-4. Oven-drying released 
approximately 10 times more NH^-N than air-drying. A 

linear regression between the initial moisture content and 

the N mineralized upon air-drying, NH^-N released upon air 
and oven-drying gave significantly high correlation (Table

1-4) coefficients.

Effect of Changing Initital Moisture Content on Nitrogen 
Mineralization

High amounts of NH^-N being released as a result of 

air and oven-drying may either be due to water loss or the 

effect of temperature to which soils were exposed upon 
oven-drying. Since effects of both these parameters were 
confounded, this experiment was conducted to determine how 
a change in initial moisture content of soil would affect 
the amount of NH^-N released. Fig. 1-5 gives the amounts 
of NH^-N when the Waikaloa, Waimea, Maile 7 and Maile 9 

were oven-dried for 48 hours after adding varying amounts 

of water (control, soil + water equivalent to one-half 
field capacity, and soil + water equivalent to field
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Table 1-4. Initial Moisture Content and Various Forms of 
N Released Due to Drying,

Soil Moisture NH^+NO^-N NH^-N NH^-N
1 Air-dried Air-dried Oven-dried

y g / g ----------
Kaiwiki 228.00 162.13 51.28 686.46

Waikaloa 54.00 39.69 11.79 228.57

Maile 7 66.00 165.50 26.90 452.21

Maile 9 72.00 34.67 12.52 407.40

Waimea 37.00 33.64 14.60 157.52

Equation y=34. 06 + 0.58x y=5+0 .2x y= 181.24+2.28x
r 0.64 0.93 0.89
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FIG. 1-5. AMMONIUM-N RELEASED DUE TO DRYING AFTER 
ADDING DIFFERENT AMOUNTS OF WATER.



capacity). All four soils released greater amounts of 

NH^-N at both added water levels, indicating that initial 

moisture content does affect the amount of NH^-N released 

upon drying. However, no clear trend was found in NO^-N 

(Fig. 1-6).

Reasons for Increased Nitrogen Mineralization
There are several reasons which have been.given for 

the increase in mineral N. All of these may be involved 

to some extent in this flushing phenomenon, and are as 

follows.
(1) Microbial Stimulation: The increased amount of

NH^-N on drying has often been attributed to microbial

stimulation (Birch, 1958; Singh and Kanehiro, 1970; Woold

ridge and Glass, 1937). On the other hand. Cornfield 

(1963) reported that this increase in NH^-N and decrease 

in NO^-N was due to a partial sterilization effect. Am- 

monifiers, being spore formers (while nitrifiers are not), 
can withstand longer periods of drying than nitrifiers. 
However, Nevo and Hagin (1965) and Schreven (1967) claim 
that changes occurring in N due to drying are independent 

of microorganisms. They feel the major factor involved 

was a change in the physical structure of organic matter.

(2) Increased Solubility of Organic Matter Due to

Chemical Alterations: It is possible that drying of soil
might lead to the increased solubility of organic matter.
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FIG. 1-6. NITRATE-N RELEASED DUE TO DRYING AFTER 
ADDING DIFFERENT AMOUNTS OF WATER.



When a dry soil is moistened organic matter goes into solu

tion and rapidly decomposes. The magnitude of this flush 

of decomposition depends on the percentage of carbon in the 

soil (Birch, 1958) and length of the drying period. The 

drying effect may bring about changes in organic fraction, 

especially organic colloids. Boutaric and Thevenet (1937) 
showed that solutions of humus colloids decline in viscos
ity with time and that decline is hastened at higher 

temperatures. This idea has been supported by Birch (1959) 

and Chase and Gray (1957).
(3) Killing of Microorganisms and Autolysis: It may

also be possible that under such severe conditions of air 

and oven-drying, part of the biomass is killed, which on 

subsequent autolysis may be a source of NH^-N. Although 

the biomass and its decaying products appear to constitute 

a small proportion of total N in the system, the fast turn

over time of this fraction makes it a very important 

constituent in terms of mineral N released (Clark and Paul, 
1970; Schreven, 1967; Soulides and Allison, 1961). Jenkin- 
son (1966), using the tracer technique, indicated the 

biomass of the soil organic matter is the fraction of soil 
organic matter which is most influenced by drying. This 
idea has also been supported by Swaby and Ladd (1962),

Birch (1959) and Black (1968). In support of this theory 

are the findings of Stevenson (1956), Takai and Harada 
(1959) that drying increased the amino acid concentration
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in water extracts.

The killed microorganisms are partly mineralized and 

partly used for the synthesis of new microbial materials 

and contributes to the formation of humus (Jager, 1968). 

Jensen (1932) observed that 19 to 60 percent of the killed 
and air-dried fungal mycelia and bacterial cells were min
eralized during a 60-day incubation period. Jenkinson

(1966) observed a 30 percent decomposition of bacterial 

cells (Nitrosomonas) in ten days.

(4) Exposure of New Surfaces Due to Drying; Pro

longed drying may affect the physical conditions of soil 

(shrinking of colloids, etc.), leading to greater exposure 
of new organic surfaces. Jones and Uehara (1973) have con
firmed the presence of gel-like material on the crystalline 

particles in Andepts from Hawaii. These gels become porous 

on drying (Lykov, 1947). Void, et al. (1952) found that 
on drying and aging the structure of the cells disinte

grates, giving rise to more surface area. As these 
surfaces were previously protected by the coatings, they 

are not exposed because of disintegration and more mineral 

N could be a result of these newly-exposed surfaces. Sher

man, et al. (1964), working with Akaka and Waimea soils, 

reported that when these soils are exposed to dehydration, 

crystallization occurs, causing an increase both in bulk 
density and particle density. On crystallization the 
material will not rehydrate to its former amorphous state.
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(5) Splitting off of NH^-N from Nitrogen-Bearing 

Organic Compounds: Drying changes the soil both physically

and chemically. The chemical fractions of organic matter 

which are influenced most by drying seem to be the amino 

acids, amino sugars and amides (Cheng and Kurtz, 1963; Chu 

and Knowles, 1966; Freeney and Simpson, 1969; McGill, et 
al. 1973). Sowden, et a l . (1976) reported that volcanic 
tropical soils contained higher amounts of acidic amino 

acids (glutamic and aspartic acid) than non-volcanic tropi

cal soils. They speculated that accumulation of the amino 
acids was a result of the interaction between allophane and 

these acids. But Carle and Decaue (1960) reported that in 
tropical soils basic amino acids accounted for one-half the 

total amino acids. They also suggested that high amounts 

of amino acids may be due to the interaction of amino acids 

with the amorphous hydrous aluminum and iron oxides. It 

is possible that peptides containing amino acids are selec

tively, physically adsorbed on or interact chemically with 
amorphous allophanic materials and thus are protected 
against further degradation. Perhaps upon drying these 

nitrogenous materials are split apart, giving rise to free 

amino acids in soil systems.

Various methods of drying (air, oven, steam) alter 

the concentration of free amino acids in ammonium acetate 

extracts (Paul and Tu, 1965 ; Invarson and Sowden, 1966). 
Table 1-5 indicates the free amino acid content of soils
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Table 1-5. Free Amino Acid Content (pg/g) of the Summer 
Fallow Hoey Soil Sample Before and After 
Physical Treatments (after Paul and Tu, 1955)

Amino Acid Untreated Air -Dried Oven-Dried Steam<
1 week 24 weeks 2 hours 2 hou]

Methionine
Sulfoxide 0.57 1.89 1.12 7 .7 3 ' 2.74

Aspartic
Acid 0.38 0.57 0.25 2.84 3.14

Glutamic
Acid 0.94 3.31 2.39 9.76f , 9.80

Lysine ■k 1.74 0.80 3.20 4.42

All Others 3.54 6.09 3.35 34.91 44.47

TOTAL 5.43 13.60 7.91 58.44 64.57

Free Amino 
Acid N 0.10 1.70 1.00 7.00 7.70

Aiiuiionium N 6.60 10.20 4.60 25.00 29.80
Soluble 

Amino N 3.00 3.40 3.20 11.70 11.90

* Not present in measurable concentrations.



before and after different drying treatments of other 

studies (Paul and Tu, 1965). In general, air-drying for 

one week caused a sharp increase in the quantities of methion

ine sulfoxide, glutamic acid and lysine. With extended 

drying, the concentration of these amino acids decreased 

somewhat but were still above those found in the untreated 
sample. Twenty-four weeks of air-drying increased the 
amino acid concentration slightly. Steaming and oven-dry

ing raised the total free amino acid content of the soils 

by a factor of ten. It is also possible that free peptides 
or proteins (released by drying treatments) may also be 

present in soil. Paul and Tu (1965) reported the presence 
of peptides in ammonium acetate extracts in some soils.

(6) Increased Supply of Protons: Another hypothesis

has been recently proposed by Laura (1974, 1975, 1976) who 

suggests that the decomposition of organic matter in soil 

is affected by the availability of protons in the soil en

vironment, and that drying increases the availability of 
protons due to the increased dissociation of water. The 
dissociation of water increases as the water content de

creases. However, Laura's protolytic theory seems to be 

more chemically oriented and too simple to explain such 

complex changes taking place when soils are dried. If his 

theory on supply of protons as a result of residual water 
is accepted, then addition of dilute acid (which also sup
plies protons) should also result in release of NH^-N from
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soil. But there is no evidence in the literature suggest

ing that the addition of acid increases NH^-Nmineralization 

from soil. Another reason for rejecting Laura's protolytic 

theory is that experiments in which four soils with three 

different moisture levels were dried in an oven for 48 

hours gave different results that what would be expected 

from the proton-supply theory. According to Laura, soils 
in which no water was added should have had less residual 
water than those in which additional water was added, and 

thus should have provided more protons in the system and 
hence more mineralization. But soils in which additional

4 ,

amounts of water were added released more NH^-N than the 

controls (Fig. 1-5).
This investigation indicates that there is no single 

simple reaction to explain the results from drying of these 

soils. Drying affects both the soil microbial population 

and the soil organic matter. Microorganisms are affected 

by autolysis of their cells and the production of microbial 
intermediates such as free amino acids, peptides and pro-' 

teins.

Effect of Drying in the Field

The changes in mineral N (NH^ and NO^) due to drying 
soils in the field are presented in Fig. 1-7. It is clear 

that drying (exposure to sunlight) mineralized considerably 
more N as compared with the undisturbed area. The effects
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FIG. 1-7. NITROGEN MINERALIZATION AS AFFECTED BY 
DRYING OF PAALOA SOIL IN THE FIELD.



of drying appeared much more quickly at location 1 than at 

location 2. This may be attributed to more exposure of 

site 1 to sunlight and drying. Also, location 2 was wetter 

than site 1 at all times, whenever samples were taken 

(Table 1-6). There could be several possibilities for in

creased N at both sites because of removal of vegetation. 

These are:
1. Improved aeration and drying that might directly 

increase microbial activity or indirectly affect 
microflora by removal of volatile toxic substances 

or may increase chemical oxidation of the soil 

organic matter;
2. Break-up of clumps of bacteria and fungal hyphae 

to give better distribution throughout the soil; 

and

3. Exposure of organic matter previously protected 
from microbial attack by its location in inacces

sible sites.
4

Effect of Soil Drying on Corn Growth
The effect of drying soil on corn growth was deter

mined in a greenhouse experiment. Corn was grown on two 

soils which received five treatments: fresh, air-drying,

oven-drying; fresh plus urea applied equivalent to N min

eralized upon air- and oven-drying (Fig. 1.8). The Maile 
7 soil produced higher dry matter yield of corn in all

46



47

Table 1-6. Percentage of Water at Time of Sampling.

Sample Number

1
2
3
4

Average

1
2
3
4

Average

1
2
3
4

Average

Location 1 Location 2
FIRST MONTH

18.4
21.8
2 0 . 6
2 2 . 2

20.7

37.7
52.4
39.1
41.1
42.6

37.7 
23.9 
26.6 
19.0
26.8

SECOND MONTH

FOURTH MONTH

35.9
38.2
46.9
33.3
38.6

64.3
59.7
73.6
74.2
67.9

46.2 
43.7 
52.9
54.3
49.3

Table 1-7. Effect on Drying on Growth of Corn in Two Soils

Kaiwiki Maile 7Treatment
Days after Germination Days after Germination

10 20 37 10 20 37
Plant height (cm)

Fresh 26.5 41.2 61.5 31.5 40.5 79.0
Air-Dried 14.7 24.7 55.0 27.7 43.7 76.2
Oven-Dried 11.7 15.3 plants 22.7 37.7 68.2

died
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FIG. 1-8. DRY MATTER YIELD OF CORN AS AFFECTED 
BY DRYING AND FERTILIZER N.



treatments except the air-dry treatment; i.e. air-drying 

was more beneficial to corn growth in the Kaiwiki soil than 

in the Maile 7. King (1961), working on Akaka subsoils, 

also reported significantly higher yields with dry than 

moist Akaka soils. However, the reverse was true for the 

oven-dry treatment. Oven-drying had a detrimental effect 

on the growth of corn in the Kaiwiki soil. Plants that 

were growing in the oven-dried Kaiwiki soil never recovered 
from the injurious effects of drying this soil. In the 
oven-dried Maile 7 soil, plants grew to a larger size than 
in the fresh and air-dried soils. It is possible that both 
beneficial and harmful compounds are produced by drying the 
soil. Schreiner and Lathrop (1912) reported that benefi

cial compounds included nucleic acid, hypoxanthine, 

xanthine, guanine, histidine, arginine and cretinine. All 

of these compounds were shown to be decidedly beneficial 

to the growth of wheat seedlings. They also reported that 

dihydroxystearic acid was responsible for reducing growth 
of wheat seedlings in dried soils. The effect on plant 
growth is the combination of these two influences and thus 

beneficial effects may not be fully apparent unless the 
harmful compounds have been eliminated by oxidation, reduc
tion, cultural or other means. Similarly, the full harmful 

effect of a compound is not attained in the presence of a 
beneficial compound.
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The results of this study may be explainable by hy

pothesis that both harmful and beneficial compounds have 

been produced. The Kaiwiki soil contains beneficial com

pounds as well as harmful compounds. In the Maile 7 soil, 

harmful compounds were either absent or at a minimum. Con

sequently, the beneficial compounds exert their full 

effect. In the case of the Kaiwiki soil, oven-drying 

brings about such a rapid and sudden change that even 
though beneficial compounds are liberated, the effects of 
harmful compounds which are also produced more than over
balances them. The result was that corn seedlings were 
killed.

Corn plant height at various intervals shows that 

seedlings in dried soils grew less rapidly than in fresh 

soils (Table 1-7). This possible toxic effect became less 
apparent after 37 days in the case of the air-dried Kaiwiki 

but was most severe in the oven-dried soils. However, in 

the case of the Maile 7 soil, plants in the air-dried and 
oven-dried soils recovered after 20 days. Dawson, et al. 

(1965) attributed such decreased growth to chemical toxici- 

ties of Mn and NO2 released because of drying, but in this 

case enough lime was applied at the start of the experiment 
that Mn toxicity should not have been a problem. Plant 

analysis (Table 1-8) also did not indicate large amoxints 

of Mn, even in plants grown in the oven-dried Kaiwiki soil 
which died after 37 days. The percentage of N in the
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Table 1-8. Concentration of Various Elements in Corn Plants
Kaiwiki

Treatment N P K Ca Mg A1 Mn
-  _  7 - MS' 6

Fresh 0.80 1.19 1.13 0.21 0.17 98.50 119.50

Fresh + Urea = Air-dry 0.88 0.15 1.18 0.21 0.15 102.00 96.50

Fresh + Urea = Oven-dry 0.87 0.10 0.40 0.28 0.22 103.50 95.00

Air-dried 0.83 0.10 0.55 0.22 0.22 104.00 165.00

Oven-dried 2.78 0.15 0.54 0.82 0.59 795.00 34.00

Maile 7

Fresh 0.80 0.14 1.13 0.18 0.15 105.50 56.50

Fresh + Urea = Air-dry 0.89 0.13 1.22 0^19 0.12 117.50 72.60

Fresh + Urea = Oven-dry 0.86 0.10 0.49 0.22 0.23 78.50 55.50

Air-dry 0.83 0.13 0.86 0.18 0.16 94.50 88.00

Oven-dry 1.18 0.09 0.98 0.32 0.26 232.00 205.50

On



plants which died was extremely high compared to the rest 
of the treatments. The decreased growth of corn may either 

be due to a high concentration of NH^-N and free ammonia 

in the soil or NO2-N (Fig. 1-9). It is evident that the 

concentration of NO2-N in oven-dried Kaiwiki soil was 5 ppm 

after 12 weeks of oven-drying.
Oven-drying of the Maile 7 soil (Fig. 1-8) had a ben

eficial effect on corn growth. Birch (1964) attributed 

this beneficial effect to the greater N availability due 

to drying.

The Effect of Fertilizer on Dry Matter Yield of Corn
The dry matter yield of corn was not different from 

the control when urea was applied in amounts equivalent to 

those amounts of N released by air-drying Kaiwiki and Maile 

7 soils (90 kg/ha in the Kaiwiki and 11 kg/ha in the Maile 

soil) (Fig. 1-10).
Possibly, such small amounts of N were insufficient 

to give a growth response. Fertilizer N applied equivalent 
to air-drying in the Kaiwiki soils gave a dry matter yield 

of corn 3.4 times lower than the air-dried treatment. How

ever, in the Maile 7 soil there was no significant 
difference in the yield of these two treatments. It is 

possible that upon air-drying of the Kaiwiki soil, in addi
tion to mineral N many other organic compounds beneficial 

to corn growth were produced.
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TIM E IN WEEKS

FIG. 1-9. EFFECT OF DRYING ON NO2-N,

KAIWIKl 

MAILE 7
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FIG. 1-10 EFFECT OF DRYING ON N MINERALIZATION 
IN A BULK SAMPLE.



Dry matter yield of corn was significantly affected 

when fertilizer N was applied in amounts equivalent to 

those released upon oven-drying of these two soils (Fig. 

1-8). In the Kaiwiki soil the fertilizer N treatment gave 

a yield 2.1 times higher than the control and 67 times 

higher than the oven-dried treatment. It is possible that 

oven-drying this soil at 105°C produced many organic com
pounds detrimental to corn growth. In the Maile 7 soil, 

both oven-dried and fertilizer N treatments produced sig
nificantly higher yields of corn. Fertilizer N treatment 
out-performed the oven-dried treatment by 1.1 times. This 

may again be explained as the retarding effect of harmful 

organic compounds produced upon oven-drying.

Practical Implications
A change in the available N content of soil upon 

natural drying at normal temperatures in the field suggests 

that prolonged high temperatures will have a great effect 

on the availability of N to agronomic crops. Maximum N 
will be available at the start of rains after a long dry 

spell. Farmers should therefore aim at having their crops 

planted when rains begin, so that the crop gets the maximum 

amount of N produced during the flush of decomposition of 

organic matter.
Intentional burning of crop trash (e.g. sugarcane and 

pineapple trash in Hawaii) in the field also might have a

55



drying effect on the soil and likewise may release some N 

for crop use.
Results of oven-drying show that a large amount of 

NH^-N is released. Thus, unintentional occurrences such 

as forest fires in many parts of the world would be ex

pected to increase the exchangeable NH^ at the soil 

surface. This increased supply of NH^-N may or may not be 

beneficial for plant growth, depending upon the soil type 
and the amounts of other beneficial and harmful compounds 

being produced.
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CHAPTER TWO

THE EFFECT OF LIME ON 

SOIL NITROGEN MINERALIZATION



ABSTRACT

A field study was undertaken to determine the effect 

of liming on N mineralization on the Paaloa (Humoxic Tropo- 

humult) and Wahiawa (Typic Eutrustox) soils. The Paaloa 

soil had never been disturbed and limed. The Wahiawa soil 

had been limed twice before. Liming at 0, 2 and 4 tons/ha 

mineralized more N than the control in the Paaloa soil. 
However, liming from a pH of 4.7 - 7.1 had little effect 
on the amount of N mineralized in the Wahiawa soil.
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The Effect of Lime on Soil Nitrogen Mineralization

INTRODUCTION

Lime is usually added to correct soil acidity. Liming 

increases the pH of the soil, influences the microbial pop
ulation and may affect the availability of many nutrients. 

As a result, the availability of N to plants may also be 
affected. The effect of lime on N mineralization has been 

the source of conflicting reports. Liming of acid soils 

has often been reported to increase N mineralization 

(Broadbent, 1962; Halvorson and Caldwell, 1948; Ogata and 

Caldwell, 1960; Noyes and Conner, 1919; Dean and Smith, 

1933; Choudhury and Cornfield, 1979; El-Shakweer, 1976).
An elaborate discussion of the effect of liming upon the 
mineralization of N has been given by Kappen, et al.

(1949), and Schachtschabel (1953). The latter reported 
carefully-conducted laboratory experiments on the effect 
of liming. He obtained an increase in N mineralization 

varying between 100-150 kg N/ha when acid sandy soils with 

high humus content were limed.
Commenting on why lime increases N mineralization, 

Broadbent (1962) stated that changes in the soil microbial 

population caused by changes in soil pH may result in in

creased mineralization of soil N. Many other investigators 
have reported that increased N mineralization by liming of
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acid soils may be because of direct stimulation of the 

activity or to an increase in bacterial population (Steven

son and Chase, 1953; Allison and Sterling, 1949; Walker, 

et al., 1937). On the other hand, in some cases negative 

effects on the N mineralization have been demonstrated 

(Kaila and Soini, 1957; Kivekas and Kivinen, 1959; Zottl, 
1960, 1963; Viro, 1963). Nommik (1968) limed raw humus at 

0, 1, 2.5, 5 and 10 percent rates. He reported a decrease 
in the amount of NH^-N in limed soils. The rate of NH^ 
accumulation was very little affected because of liming in 
the initial stages. During continued incubation of up to

4 ,

127 days, the CaCO^ additions resulted in marked decreases 

in the net mineralization of N. He attributed this depres

sion to increased microbial activity.

Most of the studies dealing with the effect of lime 

on N mineralization have been done on acid soils of temper

ate regions. Information on this subject in the tropics 
is quite limited. Cornforth (1971) reported that mineral
ization of N in several West Indian soils was related to 

the supply of exchangeable bases in the base-deficient 

soils. Thompson, et al. (1954) reported a positive effect 
of liming in the laboratory, but found no significant 

change in N mineralization with varying pH in the field. 

They suggested that the absence of pH effect in the field 
may be explained on the basis that the effect of liming 
found in laboratory experiments is only temporary.
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MATERIALS AND METHODS

Two field experiments were conducted for assessing the 

effect of lime application on mineralization of organic N. 

One experiment was on a Paaloa silty clay soil (Humoxic 

Tropohumult) in the Helemano area. The area had not been 

disturbed of natural vegetation, nor had it been previously 

limed.
The second experiment was conducted at the University

of Hawaii Poamoho Experimental Farm, which has a history
of lime application. Both sites are located on the island

* ,
of Oahu. Some of the properties of soils used are given 

in Table 2-1.

Experiment One

The Paaloa soil is formed from basalt; the annual 

rainfall is 2000 mm and the elevation is 400 m. The domi
nant minerals present in the soil are kaolinite, iron oxide 

and gibbsite. The soil has a cation exchange capacity of 

35 m  eq/100 g as determined by NH^OAc (pH 7).
Two sites (1 and 2) were selected on this soil. The 

soil in site 1 was covered with a closed 100 percent ground 

cover of two dominant grasses--Melinis minutiflora (molas
ses grass) and Brachiaria mutica (California grass)--but 
the tree canopy layer was relatively open (40 percent
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Table 2-1. Some Properties of the Experimental Soils

Soil pH Total -Total C* C:N
(in H 2O) % I

Wahiawa 5.40 0.16 1.70 10.62

Paaloa Site 1 5.35 0.27 3.26 12.07

Paaloa Site 2 4.94 0.29 3.30 11.37

* Values expressed on oven-dried basis.



cover) and was dominated by planted Eucalyptus. Other 

trees present were native Acacia koa and Meterosideros 

collina. Site 2 was one mile away and covered with a 

closed ground cover of Gleichenia linearis (creeping fern). 

Andropogon virginicus (broom sedge) was also present. The 

tree canopy layer was closed (100 percent) and was dominat
ed by Acacia k o a . Other trees present were Araucaria 
excelsa (Norfolk Island pine) and Psidium cattleianum (pur

ple strawberry guava). Site 1 was relatively drier and
warmer than site 2. Both sites were previously uncultivat-

2ed. On November of 1978 microplots of 0.114 m were 

established by removing saplings, shrubs and other vegeta

tion. The area was cleared without burning and with 
minimum disturbance-of the surrounding area. Metallic 

drums cut 20 cm high were buried 15 cm into the soil at 

both sites. The soil inside the microplots was disturbed 

with a small hoe up to a depth of 15 cm. Lime (CaCO^) was 

applied at 0, 2 and 4 tons/ha and mixed in the surface 15 
cm; soil samples were taken at 0, 1, 2 and 4-month inter

vals; NH^ and NO^-N were determined by the method of 
Bremnar (1965) after extracting with 1 N KCl (1:5 solution 

ratio). pH was determined in saturated paste on the sam

ples collected at 0, 1, 2 and 4-month intervals.
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Experiment Two

The second experimental site was on the University of 

Hawaii Poamoho Experimental Farm. Elevation is 250 m above 

sea level. Mean annual rainfall is 1200-1300 mm, most of 

which falls between October and May. Soil temperature at 

7.5 cm depth at this location is typically about 20°C dur
ing the rainy season. The soil, a Wahiawa silty clay 
(Typic Eutrustox), is generally believed to have developed 
in residuum from basalt, but volcanic ash deposits can be 

recognized in the area and it seems probable that volcanic
t

ash has influenced soils of the area to some degree. The 

dominant soil mineral is kaolinite, but there is also some 

hematite, geothite, gibbsite, mica and manganese oxide.

The field layout was a continuous function design 

(Fox, 1973). It was comprised of 4 blocks, each block hav
ing 16 plots 1 meter wide by 16 meters long (Fig. 2-1).

In each block lime was applied to systematically increase 
pH on one axis. The plots were first limed in 1973 and 

then relimed in 1976. For this experiment plots were again 

limed (or acidulated) to produce a desired gradient of pH 

ranging from 4.7 to 7.1. After the lime or acid was added, 
the plots were rototilled to a depth of 15 cm across the 

lime strips, K was applied as K2S0  ̂ (130 kg per ha) and P 

as triple super phosphate (0.2 ppm) as the basal dose.
Three rows of corn were planted in each block. The rest
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FIG. 2-1. LAYOUT OF ONE BLOCK AT POAMOHO FIELD.



of the area was used for another experiment. One block was 

heavily damaged by birds and was therefore not reported in 

the study. Ear-leaf samples were taken after two months 

and corn was harvested after 2% months. Soil samples were 

collected one month after the lime application, NH^ and 

NO^-N in soil were determined by steam distillation by the 
method of Bremner (1965) after extraction with 1 N KCl. 
pH of soil samples was determined in saturated water paste. 
Total N in ear leaves and corn plants was determined by a 

semi-automated method using sodium thiosulfate, sodium sul

phate, and H2S0  ̂ containing selenium and salicylic acid 

for digestion, and then steam distilled using NaOH. The 

distillate was absorbed in 4 percent boric acid and titrat
ed by standard H 2S0^.
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RESULTS AND DISCUSSION 

Experiment One

68

Effect of Liming on Release of NH^-N
Liming released significantly larger amounts of NH^-N

at both the two and four tons/ha lime rates compared with
the control at both sites. Changes in the NH^-N content

during four months is shown in Table 2-2. At site 2 the

amount of NH,-N released at two and four ton/ha lime rates 4
was much greater than site 1. This m a y ,be due to the high

er pH of soil at site 2, especially at four months/ha rates 

(Fig. 2-2). In both the two and four ton/ha rates, the 
maximum accumulation of NH^ was two months after the lime 

application at both the sites. This may be due to the time 
taken by microbes to build up their population. Extract- 

able NH^ decreased by four months after lime application 

at site 1 , with a particularly marked loss at the four ton/ 
ha rate. The NH^ level was even less (51%) where four tons 
of lime/ha had been applied, than in the control. This may 

have been due to a volatilization loss of N because the pH 
of the soil at both sites was close to 7. At site 2, there 

was only a small decrease in the NH^ at two and four ton/ha 

rates after four months of equilibration.
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Table 2-2.

Lime Rates 
tons/ha

0
2

Changes in Various Forms of Inorganic Nitrogen 
(NH^- and NO^-N) in the Paaloa Soil Due to Lime

Incubation Time 
months

% Increase over Control 
% Increase over Control

0 1 2 4

Site 1
NH^-N Vig/g

3.7 44.7 36. 4 38.,7
3.2 54.2 58. 8 53..6

21.0 61. 0 39..0
3.2 69.7 70. 0 18..9

56.0 94. 0 -51.,0
NO3-N

0 4.4 6.7 8.6 7.8
2 4.3 4.8 6.3 11.8
4 4.3 . 6.2 8.2 25.4

NH4 + NO3 -N
0 8.0 51.4 45.0 46.5
2 7.5 58.9 65.2 65.4

% Increase over Control 14.8 44.8 40.6
4 7.5 75.8 78.3 44.3

% Increase over Control 47.6 73.9 -4.8
Site 2 
NH^-N

0 4.7 5.9 6.2 9.3
2 4.8 25.6 30.0 23.7

% Increase over Control 334.0 383.0 155.0
4 4.8 32.9 36.0 36.3

Z Increase over Control 457.9 479.7 289.7
NO3 -N

0 7.1 5.3 12.8 18.4
2 7.2 6.7 5.2 18.1
4 7.2 4.6 4.8 21.4

NH^ + NO3-N
0 11.8 11.2 19.0 27.7
2 12.0 32.3 35.2 41.8

Z Increase over Control 189.3 84.8 51.0
4 12.0 37.6 40.8 57.6

Z Increase over Control 236.4 114.5 107.9
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TIME IN MONTHS

FIG. 2-2. CHANGES IN pH WITH VARYING AMOUNTS OF 
LIME APPLICATION.
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Changes in NO^-N

The NO3-N content was little affected by lime applica

tion during the two months after liming (Table 2-2). 

However, by the fourth month nitrate values had increased. 

The percent increase over control was 50 and 225 for site 

1 at both the two and four ton/ha rates, respectively.

The corresponding value for site 2 at four ton/ha rate was 
16%. This difference between the two sites may be due to 
a higher leaching loss at site 2 (this site received more 
rainfall than site 1 ).

Changes in Total Nitrogen Mineralized

The beneficial effect of lime in increasing the amount 
of N mineralized (NH^ + NO3 ) was apparent the first month 

after liming (Table 2-2). The maximum values were attained 
in the second month in site 1. These values were 45, 65 

and 78 yg/g for site 1. For location 2 maximum N mineral

ization occurred in the fourth month (Table 2-2). These 

values were 27.7, 51.0 and 107.9 yg/g for 0. 2 and 4 ton/, 
ha rates at site 2 , respectively.

Correlation Studies

A regression analysis of various forms of N as affect
ed by time was prepared for both sites. These results are 

presented in Fig. 2-3 through Fig. 2-6. The prediction 

equations for these curves are also given on the graphs. 
Each point on the curve represents values obtained from



samples taken at monthly intervals.

Ammonium Nitrogen Content of Soil as Affected by Liming

The amount of NH^-N released increased with increasing 

rate of lime at both sites (Fig. 2-3 and 2-4). The statis

tical analysis of the data showed significant differences 
among lime rates. The amount released was much higher at 
site 1 than at site 2. A possible reason for this higher 
NH^ level at site 1 may be that more NH^-N was released 
even in the control at site 1 , since this site was more 

open to drying, which might have caused this difference.
4 ,

Nitrate Nitrogen Content of Soil as Affected by Liming

There was no clear-cut difference in the NO^-N due to 

lime at either site (Fig. 2-5). At site 1 NO^-N released 
in the control treatment was higher than at two and four- 

ton lime rates for all months. These differences were not 
so pronounced at site 2 .

Nitrogen Mineralization as Affected by Liming
The amount of N mineralized increased two months after 

lime application at site 1 (Fig. 2-6) followed by a de

crease at all rates. The decrease was most noticeable at 
the four ton/ha rate. This may be due to the reason that 
microbial population at this rate was so much stimulated 

that they exhausted the mineralizeable N reserve of the 
soil at a faster rate than at the other two rates. At site
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TIME IN MONTHS
FIG. 2-3. CHANGES IN EXCHANGEABLE NH,-N DUE TO LIMING AT 

SITE 1. ^



□  CONTROL 
O 2 TONS/ha 

A  4 TONS/ha
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TIME IN MONTHS

FIG. 2-4. CHANGES IN EXCHANGEABLE NH,-N DUE TO LIMING AT 
SITE 2.
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TIME IN MONTHS

FIG. 2-5. CHANGES IN NO^-N DUE TO LIMING.
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FIG. 2-6. CHANGES IN MINERAL-N DUE TO LIMING,
TIME IN MONTHS



2 there was an increase in the amount of mineral N up to 

four months after lime application.

The beneficial effects of lime in increasing the 

amount of N mineralized may be due to a more favorable en

vironment for the microorganisms provided by neutralizing 

the excess acidity and supplying calcium. It has been h y 
pothesized (Stevenson and Chase, 1953; Allison and Sterling, 

1949; Walker et a l ., 1937) that lime stimulates microorgan
isms involved in N transformation by bringing about a 

favorable change in soil conditions. This suggestion 

agrees with the results of many investigators who have re
ported that adding lime to acid soils markedly increases 

N mineralization (Halvorson and Caldwell, 1948; Ayers,

1961; Bornemisza, 1967; Stevenson and Chase, 1953; Allison 
and Sterling, 1949; and Walker et al., 1937). Chaudhury 

and Cornfield (1979) suggested that increase in mineral N 

may be attributed either to a direct stimulation of the 

microbial population or to a decreased level of Al in the 
soil due to lime. Matsuda and Nagata (1957) and Yoshida 

and Sakai (1964) reported that numbers of bacteria, acti- 
nomycetes and fungi decreased when Al concentration in soil 
increased.

Agarwal, et al. (1972), working with the Paaloa soil, 

reported N availability was increased when the soil was 

treated with Ca(0H )2 and CaCl2 - They proposed the in
creased N is derived from the breaking down of microbial
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cells and N-containing organic/inorganic complexes. Waks- 
man and Starkey (1923) argued that marked evolution of 

CO2 due to addition of CaCO^ may not be due to biological 

action, but to a result of chemical reactions taking place 

between CaC02 and acid-producing material in the soil.
They also reported a limited increase in bacterial numbers. 

Recently, Laura (1974) put forward the hypothesis of chem
ical decomposition of organic matter in soil due to 
protolytic action of H 2O. Water, being amphoteric in n a 
ture, may lose or gain protons depending on the pH of the 

medium: in an acid medium, it acts as a base; in a basic 

medium, it acts as an acid, readily giving its protons to 
other bases. Therefore, an increase in pH might increase 
the supply of protons from water. This might explain the 
increased mineralization of organic matter with increased 

pH due to liming.

Experiment Two

Dry Matter Yield of Corn
Table 2-3 gives dry matter yield data on mature corn 

plants grown on plots limed from pH 4.7 to 7.5. Above pH 
5.6, a small increase in yield occurred. The dry matter 

yield of corn ranged from 3.5 to 6.5 kg/plot, indicating 

that the "best" plot had a dry matter yield only 1.85 times 
higher than the "poorest” plot. Calculation of a simple
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Table 2-3. Dry Matter Yield of Corn

Meter Number pH Yield

1 4.7

kg/m

3.9

2 4.8 3.5

3 4.9 4.4

4 5.0 4.4

5 5.1 r , 4.9

6 5.2 4.4

7 5.3 4.7

8 5.4 4.2

9 5.6 5.4

10 5.7 4.6

11 5.9 5.6

12 6.1 5.1
13 6.4 6.3

14 6.7 5.7

15 7.0 6.5

16 7.5 5.3



linear correlation (Fig. 2-7) between pH and dry matter 

yield for 16 plots showed a significant correlation (0.79). 

These increased yields may not necessarily be due to higher 

N mineralization; increased Ca supply and reduced Mn toxi

city may also be responsible for the increased yield. 

Similar observations were made by Soares, et al. (1974), 
who found a yield increase (15-40%) of corn when 5 t/ha of 
lime was applied to dark red Latsols in four locations in 

central Brazil. Soil pH in unlimed plots was less than

5.0. Also, in Brazil, Freitas, et a l . (1960) reported a 

strong response by corn to liming from two Humic Latosols 

with initial pH values of 4.3 and 4.5, and only traces of 
exchangeable Ca. They suspected that the increased supply 

of Ca was responsible for this increase. The amount of N- 

uptake by corn from limed plots was very poorly correlated 

with pH of the plots.

Nitrogen-Supplying Power of Soil
Table 2-4 gives values of mineral N determined in soil 

samples taken one month after lime application. The data 
indicates quite a narrow range of values, from 12.8 to 

19.4 yg/g, with a pH change from 4.7 to 7.5. A linear re

gression between soil N mineralized and plant N was very 

poor (0.27). The possible reasons for such results from a 

soil with a history of three years of liming may be: (1)
whatever temporary stimulating effect lime had on native
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FIG. 2-7. EFFECT OF LIME ON DRY MATTER YIELD OF CORN.
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Table 2-4. Effect of Lime on Nitrogen Mineralization and
Nitrogen Uptake by Corn

Plot number Soil N N Uptake
yg/g g

1 14.7 43.9
2 13.6 35.9
3 19.4 51.1
4 15.5 44.5
5 13.9 47.6
6 12.8 44.0
7 14.7 63.2
8 13.9 34.1
9 13.4 64.2

10 16.1 46.6
11 13.1 52.9
12 13.6 55.2 '
13 16.4 74.0
14 15.8 64.6
15 16.6 68.9
16 17.7 51.2

y = 26.04 + 1.76x



soil N mineralization might have already occurred during 

the first years of liming of these plots in 1973; and (2) 

the Wahiawa soil did not contain as much organic matter or 

total N as the Paaloa soil. Thus, less N was available for 

mineralization (Table 2-1).

It can be concluded from this study that accelerated 
release of N as a result of liming could increase the N 
supply to the crops. Nitrogen mineralization during the 

first season might well prove desirable. Release of sub

stantial amounts of N however may also result in leaching 
and denitrification losses. Thus, if heavy liming is to

4- ,
be practiced in soils high in organic N, some modification 

in the N fertilizer application may be desirable to take 

into account additional N being made available from native 
source.
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CHAPTER THREE

NITROGEN-SUPPLYING POWER OF SOILS



ABSTRACT

An evaluation of the N supplying power of seven soils 

was made. Two chemical extraction methods as well as aero

bic incubation procedures at 25°C and 35°C were used to 

obtain an index of N availability. Nitrogen mineralized 
was correlated with N-uptake by corn in the greenhouse. 
Aerobic incubation at 25°C was significantly correlated 
(r=0.96) with the N-uptake by corn. Incubation at 35°C 

also gave high correlation (r=0.92). Chemical methods are 

a poor index of N availability for these soils.

85



Nitrogen-Supplying Power of Soils 

INTRODUCTION

For efficient use of nitrogenous fertilizers, it is 

important that their indiscriminate use be avoided. To ac
complish such a purpose, it is necessary that rates and 
timing or fertilization be controlled so that the farmer 
gets the maximum benefit out of every dollar invested.

The quantity that needs to be supplied through fertilizers 
is the difference between that required^for a specified 
yield and the quantity supplied by the soil. Of the many 
methods of determining the quantity of fertilizer needed 

for a specific yield, one has to take into account the in

ternal N requirement of various crops (Stanford et al., 

1970). For example, the internal N requirement for corn 

is 1.2% N in the total dry matter, 1 to 1.3% for small 
grain crops, and 0.2% for sugarcane. But determining the 
N-supplying power of soils is still a problem because so 
many factors affect mineralization and the immobilization 

processes in soil. Biological N availability indices are 

considered by many to be the most reliable because the 

same organisms (Nitrosomonas, Nitrobacter) which mineralize 

N in the field are involved (Dahnke and Vasey, 1973). The 

procedures most widely used are based upon the aerobic in
cubation technique developed by Stanford and Hanway (1955).
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This technique was later modified by Stanford and Smith 

(1972), and Stanford, et al. (1973). They determined po

tentially mineralizeable N (Nq ) from aerobic incubation at 

35°C for 30 successive weeks. They concluded that cumula

tive N mineralized over time conformed to the first order 

equation:
log (Nq - N^) = log N q - kt/2.303 

N q = potentially mineralizeable N 

N^ = N mineralized in time (t) 
k = the mineralization constant 

Later Stanford, et a l . (1974) showed that reasonable esti

mates of the potentially mineralizeable N could be made 
from short term (3 to 4 week) incubations. In subsequent 

studies, Stanford, et al. (1977) found a highly significant 

(>0.80) correlation between N-uptake by sugar beets and the 

potentially mineralizeable N in southern Idaho soils.

Biological methods, however, are time consuming and 

may not be convenient for large-scale soil testing. In 
search of a reliable chemical method for a measure of N 
availability, Stanford and Demar (1970), and Smith and 
Stanford (1971) recommended autoclaving the soil with 0.01 

M CaCl2 for 16 hours. Stanford and Smith (1976) reported 
that N mineralized under aerobic and anaerobic incubation, 

correlated well (r=0.93) with the amount of NH^-N extracted 

by autoclaving in 0.01 M CaCl2 for 16 hours at 121°C for 
212 surface soils. Smith, et al. (1977) compared
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autoclaving, aerobic, and anerobic incubation to field 

incubation studies. For the latter study they put eight 

soil samples in polyethylene bags and filter tubes, and 
buried them in the field for two seasons. They reported 

a significant correlation between calculated values from 
the incubation method and autoclaving.

Another chemical method being widely used as an index 

of N availability is extraction of soil with 0.01 M NaHCO^ 
(MacLean, 1964). MacLean found a correlation coefficient 

of 0.85 between N extracted with 0.01 M NaHCO^ and N uptake 
by oat plants in 24 soils. Fox and Piekielek (1978a) using 

corn as a measure of N uptake, compared 0.01 M NaHCO^ with 

four other methods (0.025 M Al2 (SO^)3 , 1 N KCl, boiling 

with 0.01 M CaCl2 , and autoclave-extractable NH^-N), and 
reported a high correlation coefficient (r=0.94) for Mac- 

Lean 's extractant. Later (1978b) they reported the UV 
absorbance of the soil extracts with NaHCO^ to be a measure 

of concentration of organic matter in a particular soil. 
They suggested absorbance at 260 nm was proportional to 
soil organic matter. If the soil is rich in NO^-N, then 

UV absorbance at 205 nm should be a better measure of NO^-N 

and of mineralizeable organic matter. The obvious advan

tage of this method is that no reagents or color forming 

complexes are required for the determination.

Considerable effort has been expended to evaluate the 
N-supplying power of temperate region soils. But little
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is known about the N-supplying power of tropical soils or 

applicability of the above methods to tropical soils. 

Lathwell, et al. (1972), working with ten soils from Puerto 

Rico, compared the aerobic incubation method with four chem

ical extractants (1 N KCl, 1 N K 2S0 ^, boiling with 0.01 M 

CaCl2 , and sodium pyrophosate) to predict N availability 
for corn. Mineralizeable N which was (1) produced during 

incubation, (2) extracted with 0.01 N CaCl2 , and (3) ex

tracted with 1 N K 2S0^, was highly correlated with N uptake 
by corn.

The present study was undertaken to (1) compare vari
ous incubation methods of measuring available N released 

from tropical soils at 25°C and 35°C; (2) determine whether 
chemical methods can provide reasonable indices of N avail
ability; (3) correlation of these methods with N-uptake by 

corn grown in the greenhouse.
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MATERIALS AND METHODS

Description of Soils Used

Seven soils were used for this study: the Kaiwiki
(Typic Hydrandept), Waikaloa (Ustollic Eutrandept), Waimea 

(Typic Eutrandept), Maile 7 and Maile 9 (Hydric Dystran
dept), Lualualei (Typic Chromustert) and Halii (Typic 

Gibbsihumox) soils. The Kaiwiki, Waikaloa, Waimea, Maile 
7 and Maile 9 were described in Chapter 1. The Lualualei 

and Halii soils are described as follows.

The Lualualei is a member of the very fine, montmoril- 

lonitic isohyperthermic family, and is formed from deep 
alluvium with an annual rainfall of 500 mm at an elevation 

of 5 m. The average air temperature for this soil site for 

the months of January and July is about 21.7°C and 26.6°C, 

respectively. Mean annual temperature is about 23.9°C.

The dominant clay mineral is montmorillonite.

The Halii consists of well-drained and moderately- 
drained soils from the uplands of the island of Kauai. It 
is highly weathered and developed from igneous rock. It 

is rich in iron and aluminum oxides and also contains tita

nium oxide concretions. Important properties of the 

Lualualei and Halii are given in Table 3-1.
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Table 3-1. Some Properties of Experimental Soils

4'  ,

Soil pH Total N Organic C C;N
% %

Lualualei 7.7 0.09 1.06 10.7

Halii 5.2 0.31 4.31 14.0



Incubation Studies
The seven soils (40 g O.D.) were mixed with perlite 

(7 g) and placed in leaching tubes. The tubes were leached 

with 100 ml of 0.01 M CaCl2 solution followed by N-free 

nutrient solution (Stanford et al., 1974) to remove inor
ganic N initially present in the soil. The leaching tubes 
were then subjected to a uniform suction (60 cm Hg) to re

move excessive liquid. The tubes were covered and 
incubated at 25°C and 35°C. The tubes were extracted week

ly for eight weeks with CaCl2 and N-free nutrient solution. 
NH^- and NO^-N were determined in the weekly extracts by 

the micro-Kjeldahl distillation procedure of Bremner (1965).

Autoclave-Extractable N H ^̂ -N
Ammonium-N was determined by the method of Stanford 

and Demar (1970). Ten grams (O.D.) of soil were placed in 

50 ml centrifuge tubes with 25 ml of 0.01 M CaCl2 and auto- 
claved at 15 lbs pressure for 16 hours at 121°C. The 

suspension was centrifuged and the supernatant decanted.
The soil sediment was resuspended twice in 25 ml of 0.01 M 

CaCl2 , recentrifuged, and the supernatant was combined with 
that from the prior centrifugation. The extract plus two 

rinses were placed in a steam distillation flask, 1 ml of 

10 N NaOH was added, and the NH^ present was steam dis
tilled into boric acid and titrated with standard H 2S0 ^.
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NaHCOp-Extractable Nitrogen 

NaHCO^-extractable N w£
MacLean (1964). Five-gram soil sample was shaken in 100 ml

NaHCO^-extractable N was extracted by the method of

of 0.01 M NaHCO^ for 15 minutes in 250-ml Erlenmeyer 
flasks. The suspension was suction-filtered through What

man #42 filter paper. The UV absorption was measured with 

a model Unicam SP 1800 ultraviolet spectrophotometer. When 

UV measurements were made at 205 nm to estimate the NO^-N 
content of the extract, two drops of concentrated HCl were 

added to eliminate HCO^ (which also absorbs in this range).

Five soils: The Kaiwiki, Waikaloa, Waimea, Maile 7

and Maile 9 soils were used to obtain an index of N avail
ability. A greenhouse experiment was conducted using Zea 

mays (corn) as the indicator plant. Four kg/pot of soil 

was used for the Waikaloa, Waimea, Maile 7 and Maile 9 

soils. The Kaiwiki was taken on a volume basis to the 
equivalent of 4 kg/pot. All nutrients except N were ap

plied at optimum rates as follows;
:rient Rate Form of Application

P 800 kg/ha Ca(H2P0^)H20

K 500 kg/ha KCl

Mg 200 kg/ha MgSO^-7H20

Fe 50 kg/ha FeS0^-7H20

Zn 20 kg/ha ZnSO^

B 2 kg/ha H3BO3

Cu 3 kg/ha CuSO,



RESULTS AND DISCUSSION

Effect of Incubation Temperature on Nitrogen Mineralization

The amounts of N (NH^ + NO^) mineralized weekly in 

seven soils at two temperatures is shown in Table 3-2. 

Cumulative N mineralized (N^) after eight weeks at 25°C 
showed the following increasing trend: Kaiwiki < Lualualei

< Waimea < Maile 9 < Maile 7 < Waikaloa < Halii.
These soils when incubated at a higher temperature 

(35°C) gave the following trend in N mineralization: Lua
lualei < Maile 9 < Waimea < Kaiwiki < Maile 7 < Waikaloa < 

Halii. These values were higher than those at 25°C for 

all soils. The Q^q values for N mineralization over the 

temperature from 25°C to 35°C were: 1.2, 1.3, 1.4, 1.7,

2.0, 2.0 and 1.3 for the Lualualei, Halii, Maile 9, Waika

loa, Waimea, Maile 7 and Kaiwiki soils, respectively. Some 

of these values are not in agreement with the commonly-

held notion that the "temperature coefficient" of N 
mineralization is approximately 2 (Bray and White, 1957; 
Stanford et al., 1973). However, Meyer and Anderson (1963) 

suggested that the range of Q^ q values for most enzymatic 
reactions falls between 1.4 and 2.0. In this case only 
Q^q for the Kaiwiki soil was higher than this range, which 

may be due to the unique properties of this soil, being 

thixotropic, and that it dries irreversibly.
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Table 3-2. Soil Nitrogen Mineralized from Seven Soils When Incubated
at Two Temperatures

Soil
25°C

Incubation Time (Weeks)
0 1 2 3 4 5 6

1
7 8 Total

Kaiwiki 4.0 4.3 6.1 7.2
UR/ ft

7.4 5.5 6.1 6.1 5.5 51.6
Waikaloa 13.4 29.7 30.8 14.8 11.4 11.7 10.4 10.0 9.9 142.1
Maile 7 28.4 14.4 9.5 9.3 8.1 9.1 8.6 9.3 9.3 106.0
Maile 9 10.4 8.0 5.5 6.6 8.0 7.4 '' 8.3 5.1 5.1 64.4
Waimea 6.1 6.4 6.4 5.9 5.5 7.6 8.3 6.3 6.3 58.8
Halii 86.8 60.8 34.5 23.2 14.7 11.3 8.9 8.8 8.8 257.6
Lualualei 4.2 12.4 7.6 6.0 6.2 4.7 5.1 3.8 3.8 53.8

35°C
Kaiwiki 3.4 7.8 14.6 14.0 16.3 20.3 19.5 21.6 20.3 137.9
Waikaloa 14.6 51.3 40.9 22.9 26.3 22.7 21.0 18.6 18.6 236.9
Maile 7 28.4 28.9 26.5 21.2 25.9 24.2 18.4 20.6 18.4 212.4
Maile 9 10.8 11.9 11.7 9.7 7.6 11.2 9.4 11.0 9.4 92.8
WaImea 4.2 20.8 16.1 16.5 15.1 12.7 10.6 11.9 10.6 118 .'5

Halii 95.4 69.7 38.3 28.4 30.2 22.6 15.3 11.4 11.4 322.7
Lualualei 4.5 10.5 7.6 6.8 7.2 6.6 6.2 7.8 6.2 63.4



Nitrogen Mineralization Potential

Values in Table 3-2 were used to calculate N mineral

ization potential (Nq ) using the approach of Stanford and 

Smith (1972). First estimates of N q were obtained from 

the following expression:

1/N^ = 1/Nq + b/t

where N^ = ppm N mineralized (cumulative); t = time (weeks); 
and b = the slope of regression line between 1/N^ vs 1/t. 

Estimates of Nq are given in Table 3-3. These Nq values 
were derived from regression analysis based on cumulative 
N mineralized (N.) from one to eight weeks of incubation. 

Coefficients of determinations for soils were at least 0.98 
for all soils.

The hypothesis that the rate of mineralization is pro

portional to the amount of potentially-mineralizeable N 

is expressed by the first order reaction equation: dN/dt =

-kN (Stevenson, 1965). Integration of this expression 
gives:

log (Nq - Nj.) = log N q - k(t)/2.303 
where the terms are as described before.

This equation was employed to calculate N q giving the 

best linear fit for the regression of log (Nq -N^) on t 
(Table 3-4). N q values for this equation were used from 

estimates based on the 1/Nq v s 1/t regression. It is clear 
from Table 3-4 that N q values at 35°C were higher for all 
soils except the Waimea, where N q at 25°C is very high
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Table 3-3. Estimates of Soil Nitrogen Mineralization
Potential Based on 1/N^ vs 1/t

98

Soil Regression Equation r ^0

Kaiwiki y = 0 . 2 2 4 x - 0 . 1 6 0
r  ,

0 . 9 9 6 0 . 6

Waikaloa y = 0 . 0 2 5 X + 0 . 0 0 4 0 . 9 9 2 2 1 . 8

Maile 7 y = 0 . 0 6 4 X + 0 . 0 0 6 0 . 9 9 1 5 5 . 9

Maile 9 y = 0 . 1 2 3 X + 0 . 0 0 4 0 . 9 9 2 1 5 . 2

Waimea y = 0 . 1 5 7 X - 0 . 0 0 0 3 0 . 9 9 3 0 6 2 . 1

Halii y = 0 . 0 1 2 X + 0 . 0 0 3 0 . 9 9 2 5 5 . 2

Lualualei y = 0 . 0 6 8 X + 0 . 0 1 3 0 . 9 9 7 6 . 6
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Table 3-4

Soil

Kaiwiki

Waikaloa
Maile 7
Maile 9

Waimea
Halii

Lualualei

Estimates of Nitrogen Mineralization Potential 
at Two Temperatures

25°C
----------------------------------------------  y g / g  -------------------------------------------------

N„ N

47.6 
128.6
77.6 

53.9

52.7 
170.8

49.6

0
1/t vs 1/N^ 

60.6 2 2 1 . 8
155.9
215.8 

3062.1
255.2 

76.6

0
log (Nq -N^) vs t

76.3 
' 2 0 1 . 2
157.2

214.8 

3062.0 
201.5

71.9

35°C
Kaiwiki

Waikaloa

Maile 7
Maile 9
Waimea
Halii

Lualualei

134.5

222.3 

183.9
82.0

114.3

227.3 

58.5

70.9

434.9
967.8
386.0
369.7 
371.2

131.7

79.3

409.5

960.7 
385.3
362.2

323.2

131.8



(3062), which shows that this approach may not be a good 

criterion for calculating N-supplying power of this soil 

because it is based upon the reciprocal of the intercept 

of the regression line. In case the intercept value is 

extremely small, its reciprocal values tend to be large, 

giving rise to erroneous N q values.
Stanford, et a l . (1974) suggested that estimates of

Ng from short-term incubation could be made from the equa

tion :
log (Ng - N^) = log Ng - kt/2.303 

Solving for N g :

>̂ 0 - J _ ^Q-kt/2.303

Hence, for the one-week period of incubation at 35°C 

(k - .054), Ng = 19.05 N̂ ..
For an eight-week period of incubation it will be

2.85 N^.
Values of Ng calculated are given in Table 3-5.
All these approaches were used to calculate Ng in this 

study, and will be related to plant estimates of N avail

ability later in this chapter.
The following example will illustrate how N g , soil 

temperature and soil water content may be used to calculate 

field N mineralization. Suppose that Ng measured in the 
laboratory is 100 yg/g, and the first week average soil 
temperature and water content in the field are 25°C and 75%
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Table 3-5 Nitrogen Mineralization Potential of Seven 
Soils Using N q = ^_^^_kt/2.307

-------------  Nq (yg/g) ------
Soil 25°C 35°C
Kaiwiki 257.7 383.4

Waikaloa 695.8 633.6

Maile 7 419.9 524.3

Maile 9 292.1 233.6

Waimea 283.6 325.6

Halii 924.0 647.9

Lualualei 265.1 167.7



field capacity, respectively. Then the amount of N min

eralized for the week would be:

100 X 0.0270 X 0.75 = 2.01 yg/g, 

where 0.027 is the rate constant/month for 25°C (Stanford 

and Smith, 1972).

Autoclaving with 0.01 M CaClp

Autoclaving soil with 0.01 M CaCl2 for 16 hours gave 
values of N released ranging from 27.6 to 338.8 yg N/g 

soil. The values of N released by 16 hours autoclaving in 
the Lualualei, Waimea, Waikaloa, Maile 9, Halii, Maile 7 
and Kaiwiki were 27.6, 92.0, 161.3, 253.'5-, 293.8, 338.8 and
386.0, respectively. A comparison with Table 1-2 in Chap

ter One shows that the amounts of N released due to oven 

drying and autoclaving are quite comparable. Thus it can 

be inferred that approximately similar changes in N are 
taking place due to both these treatments.

Nitrogen Extractable with 0.01 M NaHCO^
Typical ultraviolet (UV) absorption of the 0.01 M 

NaHCO^ extracts from soils are shown in Fig. 3-1. The UV 

absorbance of the soil extract is a measure of the concen
tration of organic matter (Rao, 1967). As the wavelength 

increases from 230 to 310 nm, there is a parallel linear 

decrease in the absorbance of extracts.
For the determination of NO^ in the soil, the absorp

tion at 204 nm was taken as a measure of NO^ and organic
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WAVE LENGTH (nm)

FIG. 3-1. THE ULTRA VIOLET ABSORPTION 
OF 0.01 M NaHCO., EXTRACTS 
FROM FIVE s o i l s :



matter content of the extract.

Nitrogen-Uptake by Corn

All corn plants showed N deficiency symptoms at har
vest time, i.e. yellowing of older leaves of plants. The 

N-supplying power of each soil was therefore under stress, 
and may have been reflected by plant yield and N uptake.

The highest dry matter yield of corn (Waikaloa) was 

13 times higher than the lowest (Kaiwiki) yield (Fig. 3-2). 

Similarly there was a wide range in the ability of the five 
soils to provide N for corn growth. Uptake of N from soils 
without any N fertilizer ranged from 22!3 to 362.9 mg/pot, 
indicating that the best soil had a N-supplying capacity 

of 16 times greater than the poorest soil. This may serve 

as a good criterion for comparing the N-supplyi6g capabili
ties of these soils obtained from incubation studies. As 
is clear from Fig. 3-2, the Waikaloa soil provided the most 
N that the plants could actually use, followed by Maile 7, 

Maile 9, Waimea and Kaiwiki.
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Correlation Between N-Uptake by Corn and N Measured by Chem
ical and Incubation Methods

Simple linear correlations between the soil N test 

values and N uptake by corn in the greenhouse are given in 
Table 3-6.
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FIG. 3-2. DRY MATTER YIELD OF CORN GROWN ON FIVE 
SOILS IN GREENHOUSE.



106

Table 3-6. Linear Correlation Co-efficients of N-Uptake 
by Corn for Several N Availability Methods

25°C 35°C
Initial N 0.76 --

N Released 0.96 0.92

Initial + Released 0.96 0.92

1/N^ vs 1/t -0.21 0.07

log (Nq - N^) vs t 0.57 0.68

N  -0  ̂ _ ^Q-kt/2.303 0.88 0.88

Autoclaving 0.43

UV Absorbance 0.40



Aerobic Incubation at 25°C: Nitrogen released during eight
weeks incubation at 25°C was significantly correlated 

(r = 0.96) with the capacity of the various soils to supply 

N to plants. The initial amount of inorganic N in the 

soils gave r = 0.76. When the initial amount of N in the 

soil and N released during eight weeks incubation were 

added together a very high correlation (0.96) was obtained 

with N uptake by corn.

Aerobic Incubation at 35°C: The correlation values for N
released during eight weeks of incubation, and initial plus 

N released, are given in Table 3-6. These N release values 

were highly correlated (0.92 for both incubation and ini

tial plus N released) with N uptake by corn.

Correlations Between N q and N-Uptake: Nitrogen mineraliza

tion potentials (Nq) did not correlate well with plant 
uptake of N (Table 3-6) and thus do not seem to be good 
N-availability indices. These observations are not in 

agreement with those of Stanford and Smith (1972), Stan.- 
ford, et al. (1977), and Stanford, et al. (1974) who found 

the N q approach to be quite satisfactory for estimating the 
N-supplying capacity of soils. It may be significant that 

none of their 39 soils were Andepts as were the soils in 

this study.
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Autoclaving with 0.01 M CaClp: N released when the soils

were autoclaved with 0.01 M  CaCl2 gave a low correlation 

of 0.43 with N uptake by corn and may not be a good criter

ion for estimating the N-supplying power of soils studied. 

Autoclaving, in addition to speeding up the mineralization 

of N, should have killed microorganisms in the soil and 
perhaps solubilized more organic matter than would have 
been under normal conditions of N mineralization.

These results are not in agreement with those of Ryan 
et al. (1971), who found significant correlation between 

the method of autoclaving the soil w i t h 0̂.01 M CaCl2 and 
the third harvest of sorghum from pot experiments with 15 

soils from Kentucky, and Lathwell, et al. (1972) also found 

a significant correlation between autoclaving and N uptake 

by maize and sorghum grown in pots in ten different soils 
from Puerto Rico.

O.Ql M NaHCOp Extractable N : Ultraviolet absorption of

0.01 M NaHCOg extracts gave a low correlation (r = 0.40) ,
with N-uptake by corn. These results are not in line with

those of Fox and Piekielek (1978) who got high correlation
with N-uptake by field grown corn on eight soils from
Pennsylvania.
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CHAPTER FOUR * ,

SOIL INFLUENCES ON THE MINERALIZATION 

OF NITROGEN IN SEWAGE SLUDGE



ABSTRACT

A laboratory incubation study showed that soils with 

varying characteristics mineralize significantly different 

amounts of N.
The amount of N mineralized from anaerobically-dried 

sewage sludge when mixed with two soils was very small, and 
depended on the soil type and the sludge rate. In the 
Waimea soil (Typic Eutrandept), 3-4 percent more N was min

eralized than in the Wahiawa soil (Humoxic Tropohumult) 
when the sludge was applied at 22.4 a n d ^44.8 tons/ha rates. 

N mineralization potential ( N q ) did not adequately predict 

the N-supplying power of the sewage sludge. A two-function 

equation with two values of Nq may be necessary to ade

quately describe N mineralization in sludge-amended soil 

because of two different N mineralization rates. One 

function describes the release of N from a readily-mineral- 

izeable fraction in early incubation (0-4 weeks), while 
the other function describes the release of N from the more 

stable fraction which is mineralized later in sewage 

sludge.
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Soil Influences on the Mineralization 
of Nitrogen in Sewage Sludge

INTRODUCTION

With an ever-increasing urban population, the disposi

tion of large amounts of sewage sludge is a major concern.
In large amounts, sewage sludge can be a pollution hazard. 
However, if properly used it can be an energy-efficient 

source of many nutrients required by crops .
Several methods of disposing of wastes have been 

tried; e.g. application to agricultural'lands, incineration, 

composting and recycling (Morgan, 1971). Application of 

sewage sludge to soil is considered one of the most ecol

ogically and economically viable methods (Seabrook, 1973; 
Thomas and Law, 1968).

Among many nutrients contained in sludge, N is the one 

found in largest quantity. However, this N is mostly in 

organic forms which must mineralize before being used by , 
plants. Mineralized N, when oxidized to nitrate, is not 

only available to plants but may leach out of the soil pro
file with water. Therefore, the mineralization rate of 

sludge is an important factor in determining the amount of 

N that will be available for a crop under different soil 
conditions.

Chemical and physical properties of a soil determine 

the loading rates of sewage sludge which are appropriate



for a particular soil. The soil environment affects the 

composition of the soil microbial population both quanti- 

tively and qualitively (Alexander, 1961). The rate of 

decomposition of an organic waste depends primarily on 

those factors which affect the microbial population. Thus, 

soil properties having the greatest effect on microbial 
growth and activity will have the greatest potential for 
altering the rate of sludge decomposition.

It has been estimated that from two per cent to great
er than 50 per cent of the organic N in sewage sludge 

becomes available in one growing season^(Sabey, 1977).

While determining the effect of sewage sludge addition on 

nitrification of the added NH^-N (as sewage sludge), Ryan, 

et al. (1973) reported that 48, 20, 11, 11 and 4 per cent 

of the N added as NH^ was mineralized for 47, 94, 141, 188 

and 235 yg/g rates of sewage sludge, respectively. The 
per cent of organic N mineralized was inversely related to 

the quantity of organic N added. Relatively little infor
mation is available on the effects of soil pH, soil N and 
sludge rates on decomposition of sewage sludge. Some in

vestigators have found that the percentage of organic C 

evolved as CO2 decreased with increasing sludge rates 
(Abgim et al., 1977). Similar results were reported by 

Premi and Cornfield (1969), who mixed 10 g of soil with
0.25, 0.5, 1 and 2 ml of digested sewage sludge slurry, 
providing 25.5, 51, 102 and 204 ppm NH^-N rates.
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respectively. They reported that the addition of sewage 

sludge stimulated the mineralization of native soil organic 

N by 14 and 17 ppm (NH^ and NO^-N) at 0.25 and 0.5 ml/10 g 

soil rates, respectively. Nitrification of NH^-N from the 

sewage sludge was also rapid at these two rates, while at 

higher rates there was a lag phase before nitrification 

started. The apparent stimulating effect of the two lower 
levels on the mineralization of native soil organic N was 
attributed to trace elements (Zn and Cu) in the sludge.

But reasons for inhibiting mineralization and nitrification 
at higher levels were not clear. These workers suggested 

that higher levels of heavy metals associated with the high 

rates of sludge probably did not cause the inhibition of 

nitrification. In 1971, they also found that per cent N 

mineralized decreased with increasing rates of sewage 

sludge application (Premi and Cornfield, 1971). The delay 
in nitrification at 2%, the highest application rate of 

sewage sludge, was attributed to some organic material in 
sludge and a relatively high content of NH^-N at this rate, 

which resulted in a high pH (>7.3), which in turn might 

have caused a temporary inhibition of the activity of n i 

trifying bacteria. In another study, Wilson (1977) tested 

domestic and industrial sludges. Dried sewage sludge from 
both sources was incorporated into soil at 0 , 1 , 4 and 16 

mg/g rates. These mixtures were incubated with or without 
the addition of 100 pg/g NH^-N (as NH^Cl) for six weeks.
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Reduction in nitrification was reported at 4 and 16 mg/g 
rates of industrial sewage sludge for the first three to 

four weeks. Domestic sewage sludge reduced nitrification 

only at the highest application rate (16 mg/g). He asso

ciated this inhibition with higher levels of Zn, Cd and 

P b . However, other researchers have observed the same de
gree of mineralization at various sludge loading rates 

(Tester et al., 1977). Similar observations were made by 
Milne and Graveland (1972), who suggested that nitrifica
tion was only slightly affected by the rate of air-dried 

sludge. Likewise, Madgoff and Chromec (1977) mixed two 

different sludges with soil to obtain application rates of 

0, 150, 300 and 900 ppm N. They reported no significant 

difference in the amount of N mineralized for the 150 and 
300 ppm treatments for either sludge.

While there are many studies dealing with rate of 

sewage sludge loading, why various soils will affect the 

nitrogen mineralization of sewage sludge differently is 
seldom known. Terry, et al. (1979) reported that soil fac
tors such as texture, pH and moisture content had little 
effect on sludge decomposition rate.

The present study was undertaken to measure:
1. the effect of sewage sludge rate on N mineraliza

tion ,

2. the effect of incubation time on N mineralization,
and 3. the effect of soil type on N mineralization.
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MATERIALS AND METHODS

Two Hawaiian surface soils, the Wahiawa and Waimea, 

were used for this study. These soils have developed under 

two very different climatic conditions and have different 

physical, chemical and mineralogical properties.
The Wahiawa silty clay, a member of the clayey, kao- 

linitic, isohyperthermic family of Tropeptic Eutrustox, is 
derived from basalt and developed under an annual rainfall 

of 250 cm. The average air temperature for this soil site 

for the months of January and July is about 20.6°C and 

22.8°C, respectively. Mean annual temperature is about 

21.7°C. The clays are predominantly kaolin with some iron 

oxide; buffering capacity is low.
The Waimea soil, fine sandy loam, a member of the 

ashy, isothermic family of Typic Eutrandepts, has a dark A 

horizon with a weak granular structure. This soil has an 
average annual temperature of 15.5°C and average annual 
rainfall of 102 cm.

The sewage sludge, which was obtained from the Wahiawa 

Wastewater Treatment Plant had been processed anaerobical

ly. The sludge was oven-dried at 60°C and finely ground 
to pass through a 4 mm sieve. It was stored in polyethy

lene bags for two months before use.
The important properties of soils and sludge are also 

described in Table 4-1.
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Table 4-1. Some Properties of Soils and Sewage Sludge
Studied

Soil pH Total N 
%

Organic C 
%

C:N

Wahiawa 5.55 0.18 1.70 9.44

Waimea 6.94 0.59 6.63 11.23

Sewage Sludge 5.81 4.00 29.50 7.37

Concentrations of Cu, Ni, Cd and Zn in Sewage Sludge*

Cu Ni Cd Zn
-------  yg/g ■■

191.00 56.90 9.40 1731.00

* Sewage sludge digested by 70% perchloric acid, conc. 
Nitric acid digestion (1:2) and determined for heavy 
metals by Perkin Elmer model 103 atomic absorption 
spectrophotometer.



Total N in the soils and sludge was determined by the 
semi-micro Kjeldahl method (Bremner, 1965), organic C by 

the Walkley and Black method (1934), pH in a saturated wat

er paste and NH^ and NO^-N by the micro-Kjeldahl methods 

(Bremner, 1965) after extraction with 1 N KCl (1:5 ratio 

soil to solution).

Incubation of Soils and Sludge

The soils (40 g OD) were mixed with perlite (7 g) and 
various amounts of sludge to provide the equivalent of 0 ,

22.4 and 44.8 tons/ha rates. The total amount of N added 
in the form of sewage sludge was 0, 400*and 800 yg/g for 

0, 22.4 and 44.8 tons/ha rates, respectively. The soil 

and sludge mixtures were put into leaching tubes. The 

tubes were leached with 100 ml of a 0.01 M CaCl2 solution 

followed by 25 ml of N-free nutrient solution (Stanford, 
1974) to remove inorganic N initially present in the soil 

sludge mixture. The leaching tubes were then subjected to 
a uniform suction (60 cm Hg) to remove excess liquid. The 
tubes were covered and incubated at 25°C. The soil and 

sludge mixtures were extracted weekly with CaCl2 and N-free 
nutrient solution for eight weeks and NH^ and NO^-N were 
determined in the extracts by steam distillation.
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RESULTS AND DISCUSSION

Effect of Sludge Rate on Nitrogen Mineralization

Nitrogen mineralization in sludge mixed soils was af

fected by the rate of sludge application. More N was 

mineralized with increasing rates of sludge (Table 4-2).

In the Wahiawa soil, 75 and 154 yg/g more N was mineralized 
compared to the control, when the soil was mixed with 

sludge at 22.4 and 44.8 tons/ha rates, respectively (Fig. 
4-1). The corresponding values for the Waimea soil were 

90 and 179 yg/g for 22.4 and 44.8 tons/ha rates, respec

tively .
After eight weeks incubation, approximately 19% of 

the total N applied in the form of sewage sludge was min
eralized in the Wahiawa soil at both sludge rates. In the 

Waimea soil over 22% of the total N applied was mineralized 

at both the 22.4 and 44.8 tons/ha rates. Thus total net 

mineralization data in Table 4-2 shows that, irrespective 
of the rate of sludge application, the per cent of added 
N mineralized remained essentially the same for individual 

soils.
Weekly N mineralization data in Table 4-2 also reveals 

that after four weeks of incubation, most of the easily- 

mineralizeable N had been released at both sludge rates. 

From five to eight weeks a steady state was reached, and 
N was coming from a fraction which apparently is not
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Table 4-2. Nitrogen Mineralization as Affected by Sewage 
Sludge Rate of Application and Soil Type

Sludge N mineralized from Soil and Z* of
Soil Rate Sewage Sludge Total added

N Min-
-- Incubation Time ( w e e k s )   —
1 2 3 4 5 6 7 8  

t o n s / h a --------- yg N/g s o i l -----------

Wahiawa 0 17 13 9 7 8 8 8 8 ' 78
(0 )**

22.4 31 37 19 14 13 13 13 13 153 18.70

(400)
c ,

44.8 50 59 34 20 17 17 18 17 232 19.21

(800)

Waimea 0 13 14 7 7 7 9 9 8 74 ---

(0 )
22.4 50 23 16 13 15 16 16 16 164 22.5

(400)
44.8 83 41 23 20 21 21 22 22 253 22.41

(800)

* Percent of N mineralized calculated as follows 
100 X  total N mineralized - woil minerlized.
N added initially (rate) as yg N/g soil.

** Values in parentheses are amounts of total N 
added as sewage sludge (yg N/g of sludge).
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FIG. 4-1. NET NITROGEN MINERALIZED FROM SEWAGE SLUDGE
DURING EIGHT WEEKS.



readily mineralizeable.

These results are in agreement with those of Sommers, 

et a l . (1976), who reported that 20 to 25% of sludge N was 

mineralized during a 168-day incubation study. Similarly, 

Pratt, et al. (1973) developed decay series as predictive 

models which can be used for determining loading rates of 
organic wastes. They suggest a decay series of 0.35, 0.10 
and 0.05 for the first three years.

The fact that only small amounts (19 to 22%) of added 

sludge N were mineralized suggests that the rest of the 

added sludge N may not be easily mineralizeable in this 

short-term incubation.
There was no extended lag period for N mineralization 

at high rates of sludge application. This was in contrast 

to the findings of Premi and Cornfield (1969), who found 

a lag period at higher levels (> 114 kg/ha) of sludge ap

plication. Miller (1974) also reported a similar 

inhibition at higher rates of sludge application. It has 
been hypothesized that the inhibition is caused by an or

ganic or inorganic toxin in the sludge which decomposes or 
adapts to the soil microbes (Ryan et a l ., 1973).

Effect of Incubation Time on Nitrogen Mineralization

The amount of N mineralized was a function of incuba

tion time. Following initially high rates of N 
mineralization in the first two weeks in the Wahiawa soil
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and the first week in the Waimea soil, there was a rapid 

decrease until after four weeks, when a near steady state 

was reached. The maximum amount of N mineralized occurred 

during the second week of incubation in the Wahiawa soil 

at both sludge rates (first week in the control), and dur

ing the first week in the Waimea soil (Table 4-3). It is 
also clear from the table that the Waimea soil, when mixed 
with sludge, had a much higher steady-state mineralization 

rate compared to the Wahiawa soil.

Effect of Soil on Nitrogen Mineralization
The amount of N mineralized also depended on soil 

type. As indicated in Table 4-2, more N was mineralized 

when sewage sludge was mixed with the Waimea soil than with 
the Wahiawa soil. At the end of an eight-week incubation, 

the amount of N mineralized was 78, 153 and 232 yg N/g soil 

for the Wahiawa soil and 74, 164 and 253 yg N/g soil for 

the Waimea soil at 0, 400 and 800 yg N/g sludge application 
rates. Although the amount of N mineralized from the 
Wahiawa soil (eight week total) without any sludge addition 
was more than in the Waimea soil, when these soils were 

amended with sewage sludge the reverse was true. At 22.4 

and 44.8 tons sludge/ha rates, respectively, 11 and 21 yg 
N per g soil more N was mineralized by the Waimea soil than 

by the Wahiawa soil.
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Table 4-3. Percent* Nitrogen Mineralized at Weekly Intervals in

Sludge-Amended Soils at Varying Rates

Incubation TimeSludge Rates
tons/ha

1 2 3
Weeks

4 5 6 7 8

22.4 3.50 6.00 2.50 1.75 1.25 1.25 1.25 1.25
44.8 4.12 5.75 3.12 1.62 1.12 1.12 1.12 1.12

22.4 9.25 2.25 2.25 1.50 2.00 1.75 1.75 2.00
44.8 8.75 3.37 2.00 1.62 1.75 1.50 1.62 1.70

22.4 3.50 6.40 2.80 1.90 1.45 1.47 1.49 1.51
44.8 4.12 5.99 3.46 1.86 1.31 1.33 1.35 1.37

22.4 9.25 2.47 2.54 1.73 2.35 2.11 2.16 2.52
44.8 8.75 3.69 2.27 1.89 2.07 1.81 2.00 2.20

  * Sludge N mineralized_______ ,
Total N left at the start of the week ^

Waimea Soil

Wahiawa Soil

* Sludge N Mineralized , 
Total N added as sludge ^

Waimea Soil

Wahiawa Soil



Thus, in the Waimea soil conditions were more condu

cive for the mineralization of sewage sludge-N than in the 

Wahiawa soil. It may be possible that some portions of 

the sludge organic material which was readily decomposable 

when mixed with the Waimea soil was somewhat resistant to 
decomposition when mixed with the Wahiawa soil.

Another possible reason may be that microorganisms 
present in the Waimea soil may be more efficient in min
eralizing N from sewage sludge than those in the Wahiawa 

soil.

Changes in NH^-N
Ammonium concentrations were generally a function of 

sludge rate (Table 4-4). There was a rapid increase in 

the concentration of NH^-N during the first week in the 

Wahiawa soil, followed by a gradual decrease up to the 

fourth week. After the fifth week a steady state was 

reached in this soil at 22.4 and 44.8 tons/ha sludge rates. 
In the sludge-amended Waimea soil, NH^-N concentrations 
were not as high as in the Wahiawa soil. There was a small 
increase up to the first three weeks. After the fourth 

week the concentration of NH^-N was almost the same as in 
the control treatment.

Nitrate-N

Increasing rates of sludge resulted in higher concen
trations of NO^-N up to the first three weeks, followed by
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Table h - k .  Excractable NH^ and NO^-N Content of the Wahiawa and 
Waimea Soils with Varying Rates of Sewage Sludge

Sludge Rate Incubation Period
tons/ha Weeks

1 2 3 4
—  - NH^- 

Ug/g 
Wahiawa

5
■ N ---

Soil

6 7 8

0 3.7 2.5 2.7 2.4 2.5 2.5 2 . 5 2.5
22.4 11.0 2.9 2.7 2.8 2.5 2.5 2 . 5 2.5
44.8 31.5 12.0 4.3 2.6

Waimea

2.5

Soil

2.5 2 . 5 2.5

0 2.8 2.4 3.0 2.4 2.5 2 . 5 2 . 5 2.5
22.4 3.9 2.8 3.4 2.2 2.5 2 . 5 2 . 5 2.5
44.8 4.0 2.8 2.6 2.5 2.5 2 . 5 2 . 5 2.5

NO3-N
Wahiawa Soil

0 13.3 10.6 6.0 5.1 8.5 5.6 8.4 7.6
22.4 20.3 34.4 16.0 10.8 13.0 10.4 13.4 13.4
44.8 18.5 46.8 29.6 17.4

Waimea

17.0

Soil

14.4 17.7 17.4

0 10.4 12.0 4.2 4.3 7.3 6.2 8.7 8.5
22.4 46.3 19.7 12.6 10.8 15.1 13.4 16.0 15.5
44.8 79.3 38.0 20.0 19.5 21.4 19.0 22.3 22.0
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a steady state after the fourth week in the Wahiawa sludge 

mixture. The maximum concentration was in the second week 

at both sludge rates in the Wahiawa soil. Nitrate concen

trations in the case of the Waimea sludge mixture were 

significantly higher compared-to the Wahiawa soil. Maximum 

concentration of NO^-N was found in the first week in the 
sludge-amended soil. Most of the N coming into mineral 
form was NO^-N in both the sludge-amended and the control 
soils, possibly suggesting that whatever NH^-N was being 

formed from organic N was rapidly being nitrified to NO^-N. 

It was assumed that denitrification losses were negligible 

during the incubation.
The greater mineralizations of N in the Waimea soil 

versus the Wahiawa soil possibly includes the following 

effects.
(1) The higher pH of the Waimea soil (6.94 before 

incubation) compared to the Wahiawa soil (pH 5.5 before 

incubation) may have favored the growth of ammonifying and 
nitrifying bacteria in the Waimea soil (Alexander, 1965). 

The optimum pH for many of the ammonifying organisms is 
between 7 and 9, and between pH 7 and 8 for the nitrifiers 

(Alexander, 1965). The post-incubation pH values are given 

in Table 4-5.
The pH values of the Waimea soil treatments were 

higher by approximately 0.6 units than for the Wahiawa 
soil at all rates of sludge application. These results



Sludge Rate (t/ha) Wahiawa Waimea

0 6.14 6.70

22.4 6.17 6.76

44.8 6.15 6.73

are not in agreement with those of Terry, et a l . (1979), 
who reported no significant difference in the mineraliza
tion of N in soils having initial pH values of 5.3, 6.0 

and 7.5. But these workers also admit that they failed to 

show the effect of pH on sludge-N mineralization because 

the soil acidity may have been neutralized by CaCO^ in the 

synthetic sludge, which is not the case in the results re
ported h e r e .

(2) The sludge and its decomposition products may 

have accelerated the breakdown of native organic N in the 

soil (priming effect). Possible explanations for the 

priming effect are: 1) As many microorganisms develop due
to addition of sewage sludge, the easily decomposable por
tion of sewage sludge is first consumed after which the 

microorganisms are forced to feed on native soil organic 
matter. 2) Sludge addition may introduce more varied 

microorganisms, which helps in speedy breakdown of soil 

organic matter. 3) Sewage sludge provides an energy source 

for the development of a new population, which once estab

lished, accomplishes greater utilization of soil organic
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Table 4-5. pH Values of Soil and Sludge Mixtures.



matter. 4) Sludge addition may promote the development 

of numerous new microbial cells, which possess great physi

ological vigour and are able to decompose soil organic 

matter more rapidly.

The Waimea soil had a higher natural percentage of 

total N (0.59) than the Wahiawa soil (0.18%). Sommers 
(1975) and Terry (1976) reported a priming effect in the 
mineralization-decomposition of native organic N when sev

eral soils were amended with samples of sewage sludge, from 

sewage treatment plants in 11 Indiana cities.

Calculation of Nitrogen Mineralization Po'tential

Cumulative N mineralization data are presented in Fig. 

4-2 for the Wahiawa soil and Fig. 4-3 for the Waimea soil. 
First estimates of N mineralization potential (Nq) were 

derived from regression analysis based on cumulative N 

mineralized (N^) during eight weeks of incubation, using 

the expression:
i  = i  + b
Nt N q ^ t

This procedure was already discussed in detail in 

Chapter Three. Table 4-6 gives the N q values obtained by 
this approach. Actual values of N q were obtained from re

gression analysis based on the expression: 

log (Nq - N^) = log Nq -
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FIG. 4-2. CUMULATIVE TOTAL N MINERALIZED AT VARYING 
SEWAGE SLUDGE RATES IN THE WAHIAWA SOIL.
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FIG. 4-3. CUMULATIVE TOTAL N MINERALIZED AT VARYING 
SEWAGE SLUDGE RATES IN THE WAIMEA SOIL.
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Table 4-6. Regression of Nitrogen Mineralization Potential (Nq ) 
for Two Soils at Varying Sludge Rates

Wahiawa
First Estimates Based on 1/N^ vs 1/t

Sludge Rate 
tons/ha

Equations r Slope(m) Intercept

0 y -  0 . 0 0 7  + 5x 0 . 9 9 8 0 . 5 0 0 0 . 0 0 7 1 3 4 . 6 5 82 2 . 4 y -  0 . 0 0 2  +  . 0 3 0 x 0 . 9 9 1 0 . 0 2 8 0 . 0 0 2 4 9 4 . 5 0 04 4 . 8 y -  0 . 0 0 1  +  . 0 1 7 x 0 . 9 8 8 0 . 0 1 7 0 . 0 0 1 7 4 7 . 58 0
Second Estimates Based on log (Nq -  Nj.) v s t0 y -  2 . 1 1 4  -  0 . 0 4 3 X - 0 . 9 9 7 - 0 . 0 4 3 2 . 1 1 4 1 3 0 . 23 02 2 . 4 y -  2 . 6 7 0  -  0 . 0 1 7 X - 0 . 9 8 7 - 0 . 0 1 7 2 . 6 7 0 4 6 7 . 7 7 04 4 . 8 y -  2 . 8 4 3  -  0 . 0 1 7 X - 0 . 9 7 8 - 0 . 1 7 0 2 . 8 4 3 6 9 7 . 2 5 6

Waimea
First Estimates Based on 1/Nj. vs 1/t0 y m 0 . 0 0 5  + 0 . 0 6 9 X 0 . 9 9 7 0 . 0 6 9 0 . 0 0 5 1 86 . 60 02 2 . 4 y - 0 . 0 0 4  + 0 . 0 1 5 X 0 . 9 9 0 0 . 0 1 5 0 . 0 0 4 2 1 4 . 9 0 04 4 . 8 y m 0 . 0 0 2  + 0 . 0 0 9 X 0 . 9 8 0 0 . 0 0 9 0 . 0 0 2 3 8 5 . 0 0 0

Second Estimates Based on log (Nq - N^) vs t0 y a 2 . 2 6 0  -  0 . 2 5 0 X - 0 . 9 9 6 - 0 . 0 2 5 2 . 2 6 0 1 82 . 00 02 2 . 4 y - 2 . 3 0 9  -  0 . 0 7 0 X - 0 . 9 8 7 - 0 . 0 7 0 2 . 3 0 9 2 0 3 . 9 7 04 4 . 8 y > 2 . 5 2 0  -  0 . 0 4 8 X - 0 . 9 9 6 - 0 . 0 4 8 2 . 5 2 6 3 3 6 . 3 1 7



Based on this approach N q  values of the sludge-Wahiawa 

mixture were 130, 468 and 697, and 182, 204 and 335 pg/g 

for the sludge-Waimea soil mixture of 0, 22.4 and 44.8 ton/ 

ha rates, respectively (Table 4-6). A closer look at Table 

4-2 and Nq values in Table 4-6 indicates that this method 

of estimating Nq did not adequately predict the actual 
values of N mineralization for sludge-amended soils. A l 

though the sludge-Waimea soil mixture had larger number of 
N mineralized (164 and 253 pg N/g) at the end of the eight- 
week study than the sludge-Wahiawa soil mixture (153 and 

232), the sludge-Waimea mixture had lower values of Nq than 

the sludge-Wahiawa soil at both rates of sludge application.

A plot of weekly N mineralized (Fig. 4-4) shows that:
(1 ) nitrogen mineralization in sludge-amended soils pro

ceeds vigorously during the first four to five weeks while 

a more stable fraction is mineralized later, from five to 

eight weeks; and (2 ) the Nq approach based on the regres

sion of log ( N q  - N^) versus time gives erroneous values 
of N-supplying power of nitrogen-rich materials. This ap
proach might also result in large errors in Nq when N^ 
approaches the value of Nq toward the end of incubation.

Amounts of N mineralized over a prescribed time peri
od and that present before the start of incubation may be 

considered available for plant growth. This quantity could 
roughly be equivalent to inorganic fertilizer N. Thus, 
after taking into account the amount of N that will be

132



133

TIME IN WEEKS

FIG. 4-4. WEEKLY TOTAL N MINERALIZED AT 
VARYING SLUDGE RATES.
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provided by the sewage sludge during the growing season of 

the crop, reasonable estimates of additional amounts of N 

to be supplied in the form of N fertilizer may be made.
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