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Abstract

Increasing nitrate levels in groundwater have caused growing public health 

concern in recent years. This has prompted research on precision nitrogen 

management to understand and control nitrogen impact on the environment. Many 

nitrogen (N) models have been developed to describe the N status and behavior in soil- 

plant systems, but they are uniformly weak in finding optimal management strategies. 

To model nitrogen management, Management-Oriented Modeling (MOM), a dynamic 

simulation model using artificial intelligence (AI) optimization techniques, was 

developed in this study. MOM was designed as a tool to find optimal solutions for N 

management to minimize nitrate leaching and maximize production and profits.

MOM consists o f a generator, a simulator, and an evaluator. In searching for 

optimal management strategies, the generator produces a group of nodes (management 

choices). The evaluator uses the built-in knowledge and communication with users to 

analyze the outputs o f the simulator and to guide the generator’s work. A mixed 

search method that combines hill-climbing method for a global, strategic search wdth 

best-first method for a local, tactical search was developed to find the shortest path 

from start nodes to goals. In this manner, MOM searches for user-weighted goals by 

simulating the N cycle and management effects on the fate of N in a soil-plant system. 

In addition to general simulation and evaluation of N fertilization, MOM provides real 

time decision-aid for within-season management. MOM-guided within-season 

management uses weather forecasting to estimate rainfall in the near future and
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simulates the consequenees in soil-plant systems. It gives users daily “snapshots” of 

the N status in soil-plant systems without within-season sampling and testing. 

Scenarios show that MOM can provide precision nitrogen management that 

maximizes profits and yields while minimizing nitrate leaching by updating 

management of irrigation and fertilization within-season. MOM-guided within-season 

management is a precision tool with high efficiency, low cost and “transparency” for 

nitrogen management. MOM simulator was evaluated with 11 datasets from Hawaii 

and Brazil. Calibration and validation results suggest that the model prediction 

accuracy was acceptable for the field N management.
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Preface
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agriculture had only began in the last decade. For example, A I Applications, first AI 
journal for natural resources, agriculture, and the environmental science, began 
publication in 1987. As a young field, AI applications in agriculture and the 
environment provide many opportunities for researchers who sense the challenge and 
opportunity the area offers. This study is an exploration in managing quantitative 
agricultural information with AI technologies. Many explorations in the dissertation 
remain unfinished. The dissertation is not an end but may be a beginning for 
Management-Oriented Modeling. I hope that the work presented in the dissertation 
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modeling nitrogen and soil water movement, from his excellent experience in 
chemical movement in soil-water systems. Dr. Stephen Y. Itoga o f the Department o f



Information and Computer Science has guided the dissertation in AI language, 
database construction and choosing programming software.

Many existing N models and datasets helped me develop and validate the 
model presented in the dissertation. I gratefully thank all of model and dataset 
providers: Dr. W.T. Bowen, Dr. Gordon Tsuji, Dr. A.I. El-Kadi, Dr. Ge Ling, Dr.
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Chapter 1 

Introduction

Nitrate levels in groundwater are a growing public health concern in recent 

years. Nitrogen (N) fertilizer applications in excess of crop N removals in agriculture is 

considered an important source of nitrate leaching from the root zone into groundwater. 

This has prompted research on nitrogen budgets in soil-crop systems and the 

development o f nitrogen models addressing N impact on food production, economic 

profitability and environmental health (Bacon, 1995).

1-1. Nitrogen Impact on the Environment

Nitrogen is no doubt one of the most important plant nutrients and Number One 

fertilizer for crop production (Hauck, 1984). Global food production dramatically 

increased in the past two decades of the Green Revolution. Synthetic nitrogen fertilizer 

made a major contribution with the high-yield crop varieties to the Green Revolution. 

World cereal production rose approximately 50 percent from 1.2 billion metric tons in



1970 to about 1.8 billion metric tons in 1989 (Livemash, 1993). During the same 

period, inorganic nitrogen fertilizer consumption increased 267 percent from about 30 

million metric tons to about 80 million metric tons (FAO, 1991). However, nitrate 

levels in groundwater have also been found to increase dramatically in the past decade.

A contractor report prepared for the Office of Technology Assessment found at least 

8,200 wells in vulnerable regions o f the U.S. with nitrate concentration exceeding the 

Maximum Contamination Level (MCL) of 10 mg NOj-N L"', which was established by 

the U.S. Environmental Protection Agency (EPA) to protect public health (U.S. 

Congress, 1990). It was estimated that about 25 percent of the population in the 

European Community (EC) was drinking water with a nitrate nitrogen level greater than 

the EC’s recommended maximum level of 25 mg L"' (Gardner, 1990). A survey from 

14 cities and counties (covered 120,000 km^) in North China found over half o f 69 

surveyed sites with nitrate levels in groundwater or drinking water exceeding 1 0  mg 

NO 3 -N mg L ‘. Nitrate concentration of groundwater in some small towns in vegetable 

production areas was greater than 60 mg NO 3 -N L’' (Zhang et al., 1994). In Hawaii, 

nitrate nitrogen concentrations have been found up to 7-8 mg L ’ in some Board of 

Water Supply wells at the central parts of Oahu (El-Kadi, 1996). This implies the 

aquifer that supplies 48% of the water used on Oahu will become unsuitable for our 

infants unless the increase stops. "The nitrate issue" has shifted in scale from a local 

pollution problem to public concern nationwide and across the world.

What negative impacts does nitrate impose on the environment? One of the 

impacts is eutrophication of water bodies. The algal bloom resulting from enrichment
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of surface water by nitrogen and phosphorus will disturb the ecological balance in 

freshwater and marine ecosystems. Drinking-water is also contaminated by algae 

because many algae are toxic to humans (Heathwaite et al., 1993). The most important 

impact o f nitrate on the environment, however, is its direct toxicity to humans. The 

lethal nitrate dose in human adults is 4 to 50 g of nitrate and 1. 6  to 9.5 g o f nitrite. A 

small amount of nitrate salts is not harmful directly. Its toxicity is because ingested 

nitrate can be reduced to nitrite (Mirvish, 1991). High concentration of nitrite can react 

with hemoglobin in the bloodstream to form methemoglobin. This causes a medical 

condition called methemoglobinemia (mostly in babies less than six months old), in 

which the ability o f hemoglobin to carry oxygen is restricted and results in oxygen- 

starved or bluish-tinged baby ('blue-baby' syndrome). There were 320 cases of 

methemoglobinemia in infants drinking well water with high concentration nitrate in US 

from 1939 to 1950 (Walton, 1951), 745 cases in Germany from 1956 to 1960 (Mirvish,

1991), and 2,000 cases worldwide reported by WHO between 1945 and 1986 

(Heathwaite et al., 1993). Among these infants, 160 died as a result of drinking water 

with nitrate concentrations greater than 25 mg NO3-N L ' from unsterilized feeding 

bottles (Heathwaite et al., 1993). Walton (1951) reported from a survey that infant 

methemoglobinemia occurred in 0%, 2.3%, and 17% of cases who drank water with 

nitrate nitrogen concentrations of less than 10, 10 to 20, and 20 to 40 mg L ‘ 

respectively. This finding provided the basis for US EPA and WHO to establish the 

upper limit of 11.3 mg NO3-N L ‘ in drinking water (Mirvish, 1991). Some 

epidemiologic studies further indicate an association between nitrate and non-Hodgkin’s
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lymphoma (HNL), stomach cancer, and possibly birth defects (National Coalition for 

Agricultural Safety and Health, 1989).

In addition to pesticides, nitrate has become a source of nonpoint pollution, and 

the most widespread nutrient contaminant in the past decade. In contrast to point source 

pollution, nitrate pollution o f groundwater from nonpoint sources is difficult to eradicate 

by regular treatment technologies. Drinking water cleanup from agrochemical nonpoint 

source contamination is likely to be very costly, and may be technically infeasible if the 

concentration is low. A study of potential costs o f groundwater contamination 

estimated that initial household monitoring alone would cost approximately $1.4 billion 

(Nielsen and Lee, 1987). If nitrate level in an aquifer reaches the EPA Maximum 

Contamination Level (MCL), the remedial actions of groundwater cleanup would 

impose a large burden on rural homeowners and small communities. The only choice 

may be closing wells. For example, Hawaii Department of Health shut down several 

public wells on Oahu in 1983, because the nematicides EDB, DBCP, and 

trichloropropane were detected (Lau and Mink, 1987). Some residents of central Oahu 

had to obtain drinking water from a tank truck. A public well was shut down and seven 

others were placed under monitoring in Honolulu in 1996 due to traces of termite 

poison found in the wells (Wright, 1996). Nonpoint pollution, including contamination 

by pesticides and nitrate, has been a challenge to not only communities and scientists, 

but also the whole society and political leaders.

U.S. Congress enacted several Acts regulating the contaminations associated 

with agricultural chemicals, for example. Coastal Zone Management Act o f 1972, Safe
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Drinking Water Act o f 1974 and amended in 1986, Water Quality Act of 1987, and 

Coastal Zone Act Reauthorization Amendments of 1990 (CZARA). These Acts 

addressed several concerns. A major one was the impact of nonpoint source pollution 

on coastal water (EPA, 1993). Some statements in section 6202 (a) o f CZARA are 

quoted below;

“ 1. Our oceans, coastal waters, and estuaries constitute a unique resource. The 
condition of the water quality in and arovmd the coastal areas is significantly declining. 
Growing human pressures on the coastal ecosystem will continue to degrade this 
resource until adequate actions and policies are implemented.

“5. Nonpoint source pollution is increasingly recognized as a significant factor in 
coastal water degradation. . . .
“ 6 . Coastal planning and development control measures are essential to protect coastal 
water quality, which is subject to continued ongoing stresses. Currently, not enough is 
being done to manage and protect coastal resources.”

To address more specifically the impacts o f nonpoint source pollution on coastal 

water quality. Congress enacted section 6217 “Protecting Coastal Water,” which was 

codified as 16 U.S.C. §1455b (EPA, 1993). This section provides that each State with 

an approved coastal zone management program must develop and submit to EPA for 

approval a Coastal Nonpoint Pollution Control Program. The purpose of the program 

“shall be to develop and implement management measures for nonpoint source 

pollution to restore and protect coastal waters, working in close conjunction with other 

State and local authorities.” These acts reflected public concerns about possible 

groundwater contamination and changed goals of nitrogen management. Since the 

middle o f 1970s, many nitrogen investigations have targeted improving nitrogen 

management in reducing nitrate leaching to groundwater (Smika et a l ,  1977; Timmons
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and Dylla, 1981; Hergert, 1986; Follett et a l,  1991; Bacon, 1995). In the 1990s, a 

major agricultural theme has been shifted from increasing production and economic 

return to concern about environmental health while maintaining food production.

1-2. Modeling Approach to Solving N Problems

There have been two different approaches to study the real world: reductionism 

and systems methods. As a method of science, the reductionist approach has a history 

o f hundreds o f years, while the systems approach is an infant discipline, only about 

thirty years old (Checkland, 1989). With the reductionist approach, the complexity of 

the real world is reduced in controlled experiments and hypotheses are refuted to obtain 

knowledge. A common reductionist approach, hypothetic-deductive model of scientific 

justification, could be described as Hypothesis + Experiments = Deduction =- 

Conclusion (Tiles, 1995). This is a typical analysis approach. In contrast to 

reductionism, the systems approach is a synthetic method “which takes a broad view, 

which tries to take all aspects into account, which concentrates on interactions between 

the different parts o f the problem" (Checkland, 1989). Not focusing on a particular set 

o f phenomena, a systems approach is a meta-discipline applied with many other 

disciplines where components interact with each other. Problems in agriculture and the 

environment need cooperative problem solving o f multiple disciplines. The systems 

approach has become an important research method in the sciences of agriculture and 

the environment. For controlling contamination by nitrate leaching, involving many 

physical, chemical and biological processes, systems methods have been useful tools.
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Computer decision aid systems are systems methods applied in agriculture and 

the environment. Some of these decision aid systems could be simply categorized as

(1) Database Management Systems (DBMS), (2) Geographic Information System 

(GIS), (3) Simulation Models (SM), (4) Management Science / Operations Research 

(MS/OR), and (5) Expert Systems (ES). DBMS and GIS are information delivery tools 

which provide easy access to relevant information. SM rapidly simulates consequences 

of varying inputs to explore specific processes in the real world. DBMS, GIS and SM 

were not initially designed to solve problems but to effectively manipulate information. 

MS/OR and ES are often used for problem solving. A common MS/OR method is 

linear programming (LP) that provides optimal numerical solutions for problems 

(Anderson, et al. 1994). ES include knowledge-based systems that can capture 

'knowledge' such as logical rules, experience, and qualitative information in addition to 

handling numerical information. Search and pattern matching techniques are broadly 

used in expert systems as the major problem-solving strategies.

In recent years, many nitrogen models have been developed using one or more of 

the techniques above. These models have been developed with many objectives and 

assumptions. Some are designed to record state-of-the-art knowledge while others are 

designed for ease of use and minimal data requirements. Table 1-2.1 lists some nitrogen 

models that have been developed since 1980.

These models addressed N problems in the estimation of N budget, dynamical 

simulation of the N cycle in soil-plant systems, environmental impact assessments, and 

general management recommendations. Many of these models consist of complex
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Table 1-2.1. Some nitrogen models developed since 1980

Model Authors Application

AGNPS

CENTURY

CERES-N

CREAMS

LEACH-N

NDSS

NITROP

NLEAP

NTRM

QUEFTS

PULSE

SLIM

SOILN

SUNDIAL

TORBERT

Yong, et al., 1989 

Parton, et al., 1988 

Ritchie, et a/, 1986 

Knisel, 1980 

Hutson, et a l,  1991 

Rossiter, 1990 

Osmond, 1991 

Shaffer, eta/., 1991 

Shaffer, Larson, 1987 

Janssen, e ta l ,  1990 

Bergstrom et al., 1987 

Addiscott, 1982 

Johnsson, et a l,  1987 

Smith, etal., 1996 

Torbert, et a/. 1994

Non-point source pollution evaluation for watersheds 

Simulating the cycle of C, N, S, and P through organic matter 

Simulation of maize growth and development, N sub-model 

Chemical, runoff and erosion for agricultural management 

Leaching estimates and chemistry model, N sub-model 

Nitrogen decision support system, N fertilizer calculation 

Nitrogen fertilizer recommendation for maize in the tropics 

Nitrate leaching and economic analysis package 

Nitrogen tillage and residue management 

Quantitative evaluation of the fertility of tropical soils 

Simulation of runoff and nitrogen leaching from fields 

Nitrate movement in the field 

Simulating N dynamics and losses in layered soils 

Turnover model, simulation of N dynamics in arable land 

Simulation of soil-plant N interactions for educational purposes

modules that simulate various N cycle processes in soil-plant systems. SOILN model 

(Johnsson et a l,  1987), for example, was designed to simulate N dynamics and losses in 

layered soils. It consists of the main processes that determine the inputs, 

transformations, and outputs of nitrogen in arable soils. The components include 

fertilizer, manure, atmospheric deposition, mineralization, immobilization, leaching, 

denitrification, and harvest yield. So a good N model would be a very helpful tool in 

decision making for N management.

As discussed in the previous section, removing pollution completely from 

groundwater is almost impossible; cleaning may take years or decades and be extremely 

costly. The best way to control nitrate contamination may be to prevent it in the first



place: where nitrogen fertilizers are applied. Therefore, proper nitrogen nutrient 

management is considered as a crucial part of the solution to nitrate pollution. As an 

important component of precision agriculture, precision nitrogen management has been 

proposed over the few past years (Robert et a l,  1996). Computer nitrogen modeling is 

an important part of precision nitrogen management. In this study, the knowledge 

“gaps” between the requirements of precision nitrogen management and existing 

nitrogen models were discussed first by evaluating existing models in Chapter 3. To fill 

the “gaps,” a modeling method with artificial intelligence technologies, Management- 

Oriented Modeling (MOM), was developed in Chapter 5. MOM simulator, a dynamic 

N model was designed and tested as reported in Chapter 4. Finally MOM-guided 

within-season management was discussed with scenarios to illustrate the potential uses 

of MOM technology in precision nitrogen management in Chapter 6 . Hopefully this 

study will contribute to the improvement of the environment quality and food 

production, as well as contribute to the rapid development of precision nitrogen 

management in precision agriculture, which is called the foundation for the next 

agricultural revolution (Robert, et al., 1996).
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Chapter 2 

Materials and Methods

2-1. Criteria of Model Evaluation

Model evaluation in this study involved learning existing N modeling 

technologies and identifying the knowledge “gaps” needed to be filled. Potential 

evaluation criteria to evaluate models are numerous. For example, two lists of 

standards, mandatory and desirable criteria, were suggested by Meyer (1990) in Table 2- 

1.1 and Table 2-1.2.

Table 2-1.1. Mandatory user-interface standards of evaluating models ^

1. Introductory screen(s) displaying the information about authors.
2. Introductory description for inputs.
3. Introductory description for how to get "Help" and "Why" questions.
4. Checking inputs to verify valid responses.
5. At least some “Why” response available for all questions and “Help” for all but trivial 

queries.
6. Some facility within the program to explain the logic pursued to reach the conclusion(s).
7. Documentation for the program, ruiming instructions, installation, technical support, and 

information on limitations of the system.
8. Maximum delay of 5 seconds between a user response and a program response, 

t  Simplified from Meyer (1990).
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Table 2-1.2. Desirable S tandards of evaluating models ^

1. Ability to enter all responses in upper or lower case.
2. All inputs are made via a routine that checks for Help and Why.
3. Reminds user to get Help or ask Why at each response if needed.
4. Clears the screen before each question is displayed.
5. Actions required of user are highlighted to attract user's attention.
6. User can save current run to a disk file.
7. User can back up to the previous question if desired.
8. Provide an operating-system shell.
9. At each question, tell the user where he/she is in the run.
10. The program can be rerun without returning to the operating-system.
11. Help screens can be selected to explain the equations and logic used.
12. Explanations are displayed in common English rather than using an internal rule language.
13. A two-level Why/Help system for novice users to get detailed answers.
14. The ability to edit responses from previous run, and rerun without re-entering all data.

J Simplified from Meyer (1990).

Statistical criteria and graphical displays have been also used to evaluate models 

(Loague and Green, 1991). These criteria are useful to assess N models. Additional 

eriteria described below were designed as an outline to guide the evaluation.

2-1.1. Purposes

•  What are the objectives o f the system?

•  What problems can be solved? What benefits might be obtained from use of 

the system?

•  What functions does the system perform? (interpretation, prescription; 

diagnosis, repair, prediction; design, configuration, planning; monitoring, 

control; instruction; or others)



•  Who are the potential users? (farmers, land owners, government planners, 

agencies, extension specialists, research institutes, universities, the public, and 

others)

•  Can the system address multiple user skill levels?

2-1,2. Inputs and Outputs

•  Are there scenarios or examples to guide data entry?

•  What is the minimum data set (Nix, 1984)?

•  Is the information required difficult or expensive to acquire?

•  How does the system handle default situations? (default system's 

parameters, user's databases, other methods)

•  What are major outputs (results such as predictions, conclusions, or 

recommendations) produced by the system?

•  What methods are used to manage user data? (specific databases, 

spreadsheets, keyboard entered only, others)

2-1.3. Suitability

•  How does the system adapt to various agricultural regions? (user-oriented databases, 

system parameters, other approaches)

•  Is there documented validation in different regions?

2-1.4. Software

•  What development strategies (knowledge representation methods) were 

used? (statistical, mechanistic, simulation, symbolic reasoning, or others)
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•  What development tools were used? (e.g., C++, Pascal, Prolog, Lisp, or

expert system shells)

•  Is the system interface attractive, friendly, and helpful?

•  Are there structure diagrams that describe the system to users?

•  Are the procedures "transparent" (open to view if desired) to the users?

•  How does the system deal with errors and online help?

•  Does the system offer user-guidance? (manual, readme files, examples,

demonstrations, tutorial programs, installation information, troubleshooting,

feedback)

•  Is the system easy to upgrade? Is its knowledge renewable?

2-1.5. Conclusion

•  What are the major strengths and limitations of the system?

Above criteria will be used to evaluate nine existing nitrogen models.

2-2. Tools of Model Development

In order to reach the objectives of this study, discussed in section 4-1.1, the 

development tool must meet several programming requirements. First, the development 

tool must be able to compile source code to native machine code for a high-speed 

simulator. The simulator may be required to complete hundreds of simulations o f the N 

cycle in soil-plant systems during a whole cropping season in acceptable simulation 

time. For example, the simulation of 100 cropping seasons should be finished in 5-10 

minutes on current personal computers. Second, the tool should have database
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development capability and it should easily access commercial databases. The proposed 

models must have a common input/output connection with popular commercial 

software to facilitate use by multiple users for multiple purposes. Third, the tool should 

be a visual programming for Windows applications with Integrated Development 

Environment (IDE). This will help focus the modelers’ creativity on the knowledge 

construction o f models, rather than simply producing Windows interfaces o f the models. 

After comparing many computer programming languages and shells, Borland D elph i' 

nearly matches the requirements and was chosen as the main development tool for the 

proposed N models. Delphi is a Rapid Application Development (RAD) tool for 

Microsoft Windows with Object Pascal. It encapsulates database components that can 

assess Paradox, dBASE, and ODBC tables. Delphi also has a visual, object-oriented, 

and component-based Integrated Development Environment.

2-3. Methods of Model Tests

Two procedures, verification and validation, are often used to test biological 

models. Verification comprises the comparison of the structure and general behavior o f 

a model with the real system and ensuring that the model operates on the data in the 

intended way (Jeffers, 1978; Carter, 1986). A trial-and-error method o f verification 

changes parameter values to improve the fit of the model to observations. In verifying 

the model developed in this study, the trial-and-error method was employed to calibrate
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some parameters that were not available from datasets, literature, or fields and 

experiments. Validation refers to comparison of the model output with observations not 

used to develop the model (Jeffers, 1978; Carter, 1986). The following methods are 

usually used to validate agricultural models.

(1) Graphically represent the predicted and observed results with or without 

associated confidence limits (Grant, 1989, Ingram and McCloud, 1984; Jones et 

a l,  1980; Jones et al., 1991; Loague and Green, 1991; Ling, 1996).

(2) Simply compare the predicted and observed data using 1:1 line graphs without 

testing hypotheses (Jones et a l,  1980; Jones and Kiniry, 1986; Albers and Ward, 

1991; Godwin and Jones, 1991).

(3) Compare the closeness o f the predicted and observed data by agreement index 

(Albers and Ward, 1991).

A J  1 \PredictedValue-ObservedValue\Agreementlndex=l  ------------------------------------------ 1
ObservedValue

(4) Use mean squared error, root mean square error, standard deviation, coefficient 

of determination between the observed and predicted values (Wallach and 

Goffinet, 1989; Loague and Green, 1991).

(5) Use linear regression analysis of observations against the predicted to test the 

hypothesis that the regression line should have a slope not significantly different 

from unity and an intercept not significantly different from the origin (Draper 

and Smith, 1966; Dent and Blackie, 1979; Zhang, 1992).
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Carter (1986) suggested two important criteria for biological simulation models: 

( 1 ) is the general shape o f the curve correct? (2 ) is the quantitative agreement 

reasonable? Graphical representation of model predictions and observations was used 

to evaluate the models developed in this study with all datasets. Quantitative evaluating 

a biological model with statistical tests has been questioned by many investigators. For 

example, root mean square error was criticized as a poor indicator of the performance of 

models, which gives no indication o f bias (Mitchell and Sheehy, 1997). Regression as a 

quantitative method of empirical validation, another example, has been questioned as a 

misapplication (Harrison, 1990; Mitchell and Sheehy, 1997). They argued that this kind 

of regression application was ( 1 ) not satisfying the regression assumptions, (2 ) 

ambiguous results of null hypothesis tests, and (3) fitted line being irrelevant to model 

performance. However, regression was promoted as a quantitative method to 

statistically validate models by other investigators (Reckhow et al., 1990; Flavelle,

1992; Mayer et al., 1994). Little and Hills (1978) suggested that linear regression can 

be employed to analyze two types of data: (1) The data that conform to model I  in which 

the X values are fixed and usually refers to the independent variable. (2) The data that 

conform to model II  in which X values are random or subject to error. An example of 

regression of data that conform to model II is dealing with bivariate normal distribution. 

Neither variable can be designated as dependent on the other in this case. A reasonable 

degree of closeness o f the two variables is primarily interested, not estimating the value 

of one variable from the other (Little and Hills, 1978). Linear regression with pairs of 

model predicted and observed data may be a model II regression problem.
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Because the statistical validation of models has been open to question and the 

primary purpose of this study is not to evaluate validation methods, a simple 1 : 1  line 

scatter graph was used to evaluate model accuracy. The term of model accuracy in this 

study refers to the degree o f agreement or closeness between the model predicted results 

and observed data, not to the degree of closeness between the model predictions and the 

true values in the real-world.

2-4. Datasets of Model Tests

In this study, dynamic N data refer to N status of a soil-plant system measured at 

several intervals during the experimental period in addition to the initial measurement. 

Other measured data included daily or weekly rainfall, ET, or temperature. A total of 

eleven dynamic N datasets were collected from Hawaii and Brazil. The datasets 

represent a range of conditions described by three crops at five locations and a 

laboratory experiment.

2-4,1, Maize, Legume Green Manure Experiment, Brazil

Two datasets that were used for testing the CERES-Maize model, maize {Zea

mays L.) cropped with a legume green manure and control, were provided by Dr.

Bowen (IFDC, P.O. Box 2040, Muscle Shoals, AL 35662). The data came from the
«

three irrigated dry season experiments and one rainfed wet season experiment that were 

conducted at the Cerrado (Savanna) Agricultural Research Center (CPAC-EMBRAPA; 

15°35' S, 47°42' W) near Brasilia, Brazil from 1984 through 1987. The soil of the 

experiments was classified as clayey, oxidic, isothermic Anionic Acrustox (Bowen et al..
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1988). The data used for our simulation came from the experiment during the 1984- 

1985 wet season. In the experiment, a commercial maize hybrid (Cargill 111) was 

planted on Dec. 26, 1984 and harvested May 24, 1985 during the wet season (rainfed). 

An amount of 5590 kg ha"’ of green manure with 3.33 % N content, a legume species 

{Mucuna aterrima (Piper & Traey) Merr.), was incorporated three days before planting 

as green manure (GM) fertilizer treatment. No surface residue was incorporated as the 

control treatment. Both the GM treatment and the control received 10 kg N ha"’ urea 

fertilizer three days before planting. The experiment design was a randomized complete 

block with four replicates. The soil profile was sampled in 15 cm increments to a depth 

o f 120 cm. Inorganic soil nitrogen was analyzed using the steam distillation method 

(Keeney and Nelson, 1982).

2-4.2. Maize, N Fertilizer Experiment, Hawaii

A field experiment of maize with N fertilizer was conducted by the Benchmark 

Soil Project (Benchmark Soil Project Staff, 1982) in Waipio, Oahu, Hawaii 

(approximately 21 °25' N, 158° W), November 1983 to April 1984. The soil is an 

Oxisol (Wahiawa series) with moderately rapid permeability and slow runoff. A 

randomized complete block design was used for the experiment with three N levels (0, 

51, 201 kg N ha"’), two varieties o f maize (‘X304C’, Pioneer Hi-Bred International; 

‘H610', Ant 2D x B14A), and three replicates. The experiment was originally designed 

to study effects o f variety and N rates on maize growth and yield (Singh, 1985). The 

maize was planted on November 30, 1983 and harvested on April 15, 1984. Drip 

irrigation was applied when tensiometer readings were less than 0.2 MPa. Dr. Gordon
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Tsuji (Benchmark Soil Project, CTAHR, University of Hawaii) provided two datasets 

from the experiment for this study. The datasets were from maize variety ‘X304C’ with 

urea treatments of 51 and 201 kg N ha"', which were split in three applications.

2-4.3. Maize, Field Sampling, Hawaii

Datasets of nitrate content in soil profiles from maize fields, sugarcane fields 

(See section 2-4.4) and pineapple fields (See section 2-4.5) in Kunia and Wahiawa,

Oahu, were provided by Dr. El-Kadi (Department of Geology and Geophysics,

University of Hawaii at Manoa, 1996) and Dr. Ling (Department of Geology and 

Geophysics, University o f Hawaii at Manoa, 1996). Total of 5,048 soil samples were 

collected for the project “Nutrient Use Assessment in the Kunia Watershed” from 1993 

to 1994 (El-Kadi, 1996). The field information of cropping, irrigation and fertilization, 

soil sampling and analysis procedures were described in detail in Ling’s dissertation 

(1996). A brief description o f the datasets follows.

The sampled maize fields, ICI Seeds Company, are located in Kunia, a central 

Oahu watershed. The soil is an association of an Inceptisol {Kunia series) with an 

Oxisol {Wahiawa series). The sampled fields are located within the mapunit KyA 

(Kunia silty clay) but only about 100 m to the very highly weathered soil in mapunit 

WaA (Wahiawa silty clay). A total of 1452 soil samples were collected with 10 cm 

bucket augers from 1 2  holes to a depth 150 cm ( 1 1  soil layers) over about one hectare 

for two cropping seasons. Nitrate was analyzed for all soil samples while ammonium 

was determined only in selected samples. Winter maize was planted on Nov. 12, 1993, 

four days after the first soil sampling. Fertilizer UAN-32 (a mixture of urea, ammonium
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and nitrate) was applied for four times during the cropping. The crop was irrigated. 

Summer maize was planted on May 26 and harvested on September 1, 1994. Soils were 

sampled beginning on May 23, 1994. Fertilizer UAN-32 was split into three 

applications on June 10, June 23, and July 7, 1994.

2-4.4. Sugarcane, Field Sampling, Hawaii

Soil samples were collected from a sugarcane field of Waialua Sugar Company, 

near the UH Poamoho Experiment Station, Oahu, Hawaii. The soil is an Oxisol 

(Wahiawa series). Total of 559 soil samples were collected from 12 holes to a depth 

150 cm (11 soil layers) over four hectare area to analyze for nitrate content. Sugarcane 

was planted on June 16, 1994. The crop was irrigated and a liquid urea fertilizer, Urea- 

46, was applied during the crop.

2-4.5. Pineapple, Field Sampling, Hawaii

The pineapple dataset consists of soil nitrate analysis data for a total o f 2640 soil 

samples collected from 24 holes with 11 soil layers to a depth 150 cm over three hectare 

area during first 400 days of cropping. The sampled field, on Del Monte Fresh Produce 

Inc. land, is located in Kunia, Oahu, Hawaii, where soil is an Oxisol {Wahiawa series). 

Pineapple was planted on September 30. During sampling period, fertilizer UAN-32 

was applied using truck-mounted sprayers on the 64, 76, 83, 90, 98, 119, 154, 161, 180, 

191, 196, 218, 226, 230, 237, 249, 259, 266, 278, 295, 314, 326, 334, 364 days of after 

planting.

C h a p t e r  2  Ma t e r i a l s  a n d  M e t h o d s  2 0



2-4.6. Nitrate Leaching, Column Experiment, Laboratory

Jonathan L. Deenik (1997) provided a nitrate leaching dataset from a soil 

column experiment in the laboratory. The soil column experiment was originally 

conducted to measure the effect of surface applied lime and gypsum on nitrate mobility 

in subsoil. An Oxisol {Wahiawa series) and an Ultisol (Leilehua series) were used in 

the experiment, collected at two depths (the surface layer, 0-15 cm, and the subsoil, 80- 

100 cm) from sugarcane fields in the Waialua area of Oahu, Hawaii. The soils were air- 

dried, sieved and packed into PVC columns to form soil columns with the diameter of 

5.6 cm and height o f 51 cm (15 cm o f surface soil, 36 cm of subsoil), achieving a bulk 

density of 1.0 g cm'^. Before packing, the surface soils were mixed with 0.355 g KNO 3  

(equivalent of 200 kg N ha ') for each column, 0.36 g of Ca(0 H ) 2  (equivalent of 4 ton 

ha *) and 0.68 g o f CaS0 4  (equivalent of 3 ton ha'*) for corresponding treatments. Forty 

ml o f deionized water was added to the columns in 1 0  ml increments at a set time once 

daily to simulate a 16.2 mm daily rainfall over the leaching period. Leachate was 

collected and analyzed for nitrate every two days. The experiment was executed in 

three replicates. The Leilehua columns and the gypsum treatment of the Wahiawa soil 

columns were dismantled after 6  weeks while the control and lime columns continued 

for additional 2  weeks.

2-5. Soil Sample Analysis

In addition to collected datasets, soil ammonium, nitrate and nitrate adsorption 

coefficients in Hawaii soils were determined by the procedures described below.
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2-5.1. Soil ammonium and nitrate

Soil samples (of Hawaii in sections 2-4.3, 2-4.4, 2-4.5) were stored in the freezer 

room until analysis. 7.000 g of soil samples at field moisture were weighed into 100 ml 

plastic cups to which 50 ml o f 2MKC1 solution was added. The cups were covered and 

agitated on an automated shaker for two hours. Then the supernatant liquid in the cups 

was filtered through a medium filter paper (pre-treated by deionized water to remove 

ammonium and nitrate). The extracted liquid was analyzed for ammonium 

colorimetrically (Willis and Gentry, 1988) and for nitrate by the colorimetric cadmium 

reduction method (Maynard and Kalra, 1993).

2-5.2. Nitrate adsorption coefficients

Duplicate 7.000 g soil samples at field moisture and 25.00 ml of 3.000 rtiM 

nitrate were placed in pre-weighed 40 ml plastic centrifuge tubes (soihwater 1:5). The 

tubes were agitated for two hours (Cahn, 1992) to reach equilibrium nitrate adsorption, 

then centrifuged at 5000 RPM for 10 minutes. The supernatant was decanted and 

weighed, then filtered through a medium filter paper. The supernatant was analyzed for 

nitrate with the colorimetric cadmium reduction method (Maynard and Kalra, 1993).

The tubes with soil and trapped soil solution were weighed for calculation of total 

remaining nitrate. One o f the duplicate samples was extracted with 25.00 ml of 2 M 

KCl and analyzed for total nitrate remaining in the tube. This total amount includes soil 

initial nitrate. To another sample, 25.00 ml of 5 wMKCl solution was added (the ionic 

strength is close to the field level of tropical soils). The tube was agitated for two hours 

and centrifuged at 5000 RPM for 10 minutes. The supernatant was decanted and

C h a p t e r  2  M a t e r i a l s  a n d  M e t h o d s  2 2



weighed, then filtered through a medium filter paper in preparing nitrate measurement 

with the colorimetric cadmium reduction method (Maynard and Kalra, 1993). The tube 

plus soil and trapped solution were weighed for calculation o f current nitrate remaining 

in the tube. Then 25.00 ml of 5 mM KCl solution was added to the tube again and 

above steps were repeated 5-6 times until nitrate concentration of the supernatant was 

less than 0.5 mg L '. The remaining soil sample was extracted with 25.00 ml o f 2 M  

KCl and analyzed for remaining nitrate in the tube.

Adsorbed nitrate in each of the displacement steps was calculated as follows:

In the first displacement step. Apply ml of 3.000 mM nitrate to the tube.

The total nitrate (/.ig) in the tube is 

Ti =

T, = Supernatant + Remains = C, -V, + (C, • V,pj +

where,

-  Concentration of nitrate standard solution (known)

= Volume of nitrate standard solution (known)

C, = Nitrate concentration of supernatant in first displacement (measured)

V; = Volume of supernatant in first displacement (measured or calculated)

V,p, = Volume of trapped solution in first displacement (calculated)

To,/ ^  Total initial nitrate content in the soil (concept only)

T, = Total nitrate in the tube in first displacement (calculated)

r,,/ = Total adsorbed nitrate in the soil in first displacement (calculated).
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Because the bulk density of the 3 nitrate solution = 5 mM KCl solution = pure 

water, 1 ml volume of the solutions = 1 g is acceptable in the experiment. Therefore, 

the weight relationship of centrifuge tubes, soil samples, and solutions is 

Total = Solution(supernatant) + Tube + SolutionCtrapped) + Soil(oven-drv)

= Solution(supernatant) + Tube + Remains

So

V, = Total - (Tube + Remains)

= Remains - Soil(oven-dry)

In the second displacement,

T, = C r  V, ,̂ + T,,

T, = c , - V ,  + (C, • +  r j  =  Q  ■ F , 4- r ,

where,

Q  = Nitrate concentration of supernatant in second displacement 

Fj = Volume of supernatant in second displacement

Volume of trapped solution in second displacement 

T2 = Total nitrate in the tube in second displacement 

Tj = Total nitrate in the tube in third displacement

= Total adsorbed nitrate in the soil in second displacement.

In the th ird  displacement,

Ts = C2-V,^2+T,2

T, = CrV2 + fQ  ■ F,,3 + Ts3) = CrV2 + T,

In the nth displacement.
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T„ -  C„,, • Vtp„_, + Ts„_,

T„ = C„-V„ + (C„ ■ Vtp„ + Ts J  = C„-V„ + T„ ,̂

Suppose displaeement steps end at 5th displacement,

T, = C,-V,^, + Ts4

T, = C r V ,  + (Q  • L ,, + T J  = Q - V ,  + T, 

where = Total remaining nitrate, measured by 2M KCl extraction. Therefore,

T,, = T ,- C r V .^ ,

Generally, for nth displacement,

Ts„ = - C„ • Vtp„

where, Ts„ / soil weight refers to Adsorbed Concentration. C„ is Solution 

Concentration (measured supernatant). An isotherm of nitrate adsorption against the 

equilibrium solution is then plotted. A Freundlich equation is usually used to express 

the adsorption.

X  = a - C \ o r  

L o g X  = Log a + b Log C 

where, X  = (mg nitrate kg ’ dry soil) is the amount of adsorbed nitrate. C = N, (mg 

nitrate L ‘ solution) refers to the amount of nitrate remaining in soil solution. The 

equation parameters a and b are nitrate adsorption coefficients. For low nitrate 

concentrations in field conditions, parameter a could be simply used as adsorption 

coefficient:

^N03 — d — X / C
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Moreover, nitrate adsorption coefficients {a and b) can be used to estimate the amounts 

of nitrate adsorbed and nitrate remaining in solution. Assume 

Total (nitrate) = Adsorbed + Remaining in Solution 

T  = total nitrate in soils (mg nitrate kg ' dry soil, usually estimated with a 2 M  KCl 

extraction).

X  = nitrate adsorbed on the soil solid phase at field moisture (mg nitrate kg dry 

soil).

W = field moisture determined by weight percentage (g solution/g dry soil).

C = nitrate remaining in soil solution (mg nitrate L ' solution, or mg nitrate kg

solution, assume the bulk density of the soil solution = 1 ).

Then,

T = X + W - C  -  T = a -C^ + W - C  

Therefore,

a) if  T  (2 M KCl extraction of soils) is measured, C can be calculated by T = aC* + 

W  • C, and then X  can be calculated.

b) if  C (soil solution) is measured, T can be calculated by T = aC* + W - C, and 

then X  can be calculated.

C h a p t e r  2  M a t e r i a l s  a n d  M e t h o d s  2 6



C h a p t e r  3  E v a l u a t io n  o f  E x is t in g  N i t r o g e n  M o d e l s  2 7

Chapter 3

Evaluation of Existing Nitrogen Models

Many N models have been developed since the 1980s (See section 1-2). In order 

to examine whether these models provide output to satisfy our proposed goals o f N 

management, nine computer programs o f the N model were collected to evaluate under 

the guidance o f the criteria described in section 2 - 1 .

3-1. NDSS: Nitrogen Decision Support System

3-1.1. System Purposes

NDSS was designed to help users estimate crop N fertilizer requirements. Its 

recommendations are helpful in reducing environmental contamination by appropriately 

applying nitrogen fertilizers, though NDSS was not primarily designed as a dynamic 

model to assess nitrogen leaching. With local database support, farmers and extension 

technicians should be able to use NDSS for the N fertilizer management. To estimate



the amount o f nitrogen fertilizer needed, NDSS uses an adaptation o f the Stanford 

Equation (Stanford, 1973; Rossiter, 1990);

j Y  - n  -m  +n  +m
w  _  crop soil rotation loss rootzone

required r- manure
^feriilizer  [3-1-1]

3-1.2, System Inputs «& Outputs

NDSS associates equation [3-1.1] with four kinds of databases as inputs:

1. Crop databases that contain the N contents of crops.

2. Soil databases that describe N supplied from soils with the soil characteristics 

(e.g., soil name, drainage, tillage depth) and corresponding N utilization 

efficiencies.

3. Fertilizer databases that describe N contents in different fertilizers with their 

formulas.

4. Application records in which user's site data are stored. Besides soil and 

fertilizer information, data regarding the rotation of crops, animal and green 

manures are saved in each record.

NDSS provides several default data sets with the package. The default value o f N 

fertilizer efficiency was 0.65 (F)-„„//2 er in equation [3-1.1]). However, users can establish 

user databases for crops, soils, fertilizers and application sets. All N components in the 

equation [3-1.1] are displayed during NDSS calculation. NDSS output includes the 

recommended amount o f N fertilizer plus some brief comments.
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3-1.3. System Suitability for Various Regions

NDSS should be adaptable to specific sites using local soil and crop databases 

without requirements of weather data. However, recommended fertilizer may vary with 

the value of the N fertilizer efficiency in the Stanford Equation, which varies with soils, 

crops, climates and management practices (Malzer and Graff, 1984, 1985, Bock and 

Hergert, 1991). A large variation would result between actual and predicted N 

requirements if  estimates o f fertilizer efficiency do not fit local conditions.

3-1.4. Software & Hardware Environment

NDSS was developed using Microsoft Foxpro 2.0 '. Besides the default 

databases provided by NDSS, users can store and retrieve their local data in the user's 

databases. NDSS’s procedures were explained by online help (FI or F2 ftmction keys), 

which can 'pop-up' anywhere in the program. FI gives information on the program and 

what to do next. F2 explains how a quantity is calculated. NDSS allows users to 

change default values, databases and settings, including some general settings such as 

'colors', 'units' and the 'ID at startup'. A DEMO dataset was provided to guide the usage 

o f the software.

3-1.5. Conclusion

NDSS is very useful in estimating N fertilizer requirements without the dynamic 

N behavior. The advantage of the model is its minimal data requirements supported by 

soil and crop databases. If the fertilizer utilization efficiency were linked to soil, crop.
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weather, and management factors, the model prediction would fit various situations 

better.
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3-2. QUEFTS: Quantitative Evaluation of the Fertility of Tropical
Soils

3-2.1. System Purposes

QUEFTS was developed to evaluate NPK fertilization needs (Janssen et al.,

1990). It estimates the potential NPK supply from soils, the "actual" NPK uptake by 

crops, and yields. The system is useful for farmers to balance NPK fertilization and 

economic optimization. However, the environmental impact of fertilization was not 

evaluated by QUEFTS. Using a mechanistic approach, QUEFTS takes four steps from 

soil properties to crop yields: soil parameters -  potential nutrient supply -  actual 

nutrient uptake ^ possible yield ranges -  final yield estimation. Relations between the 

steps are determined by a series of fertilizer trials on local soil and climate conditions. 

For example, the fertilizer recovery fraction must be calibrated by users for their crops, 

soils and climate.

3-2.2. System Inputs & Outputs

QUEFTS requires soil data of pH, organic C and N, Olsen P and exchangeable 

K. The output is a list of yields, value o f yields, fertilizer costs and net return to the 

fertilizer. Total outputs correspond to a maximum of 70 combinations o f fertilizer rates. 

Farmers can choose the best rate to meet their desired yields or net returns. A rate may 

be "nutritional optimum" according to optimum yields, but may not be the economic



optimum. The authors found a maximum "total yield-producing uptake efficiency" at 

0.96 under a potential supply ratio of N:P:K = 7.8:1.0:5.8. QUEFTS weighs financial 

optimization more than nutritional optimization and provides a financial optimization 

procedure.

3-2.3. System Suitability for Various Regions

QUEFTS was developed and tested at the Agricultural University of 

Wageningen, Netherlands. It looks as a promising tool for evaluating native fertility of 

tropical soils. QUEFTS was distributed with default soil parameters from Kenya and 

Surinam, where soils are deep, well drained and with properties listed below.

Soil Properties of the Default Param eters

pH (H^O) 4.5 -  7.0
Organic Carbon < 70 g C kg'*
P-Olsen < 30 mg P kg'*
Exchangeable K < 30 mg K kg'*

If users’ soils and climate conditions are significantly different from the default

sites, QUEFTS’s parameters must be reinitialized by users. Initialization requires users 

to calibrate equation coefficients with local fertilizer experiments. So, the system would 

work for various regions if the parameters can be estimated from local experiments.

3-2.4. Software & H ardw are Environm ent

QUEFTS is a combination of statistical and mechanistic models developed using 

Turbo Pascal 5.0. All data are entered and edited through the keyboard, then saved to 

files. Online help guides users step by step and controls data entries within reasonable 

ranges. As a simple system, QUEFTS runs either on a floppy or a hard disk with a little
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working memory. The manual clearly documents the equations and parameters in the 

model.

3-2.5. Conclusion

In estimating yields, QUEFTS assumes that no serious growth limitations exist 

other than soil fertility. If the coefficients are calibrated to local conditions, QUEFTS is 

a useful tool to optimize the combinations of NPK fertilizers and net return on static 

basis without evaluating impacts on the environment.

3-3. NITROP: Nitrogen Fertilizer Recommendation for Maize
Produced in the Tropics

3-3,1, System Purposes

NITROP (Osmond, 1991) is an expert system designed to determine nitrogen 

fertilizer requirements for maize in tropics. It consists o f three N models: Stanford 

Equation, Transfer Coefficient Method, and N Mass Balance Equation. Users can 

choose one or more o f the models to predict N fertilizer for the target yields. The 

Stanford equation (Stanford, 1973) was expressed in NITROP as

Nf.r. = (Krop-Ko„)/Ef.n  [3-3.1]

where is required N fertilizer. refers to N absorbed by the crop and refers 

to soil supplied N. Efert is the efficiency of fertilizer utilization. The second model, the 

DeWitAVolf transfer coefficient model (Wolf, 1989), expresses as a sum of N 

transferred to the crop from the soil. The recommended fertilizer is
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N  E -N^  _  crop i input

Efer, [3-3.2]

The third model, a nitrogen mass balance equation, calculates a nitrogen fertilizer 

requirement from the difference between N out of the soil system and N into the soil 

system:
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gains

Efert [3-3.3]

Three models have stated that the amount of N required is the difference between N 

removed by crops and N supplied from soils. Different equation coefficients sometimes 

resulted in different predictions (Osmond, 1991). This is not surprising because the 

coefficients are actually functions of many soil-plant processes, and this are not 

constants. In many cases in which no appropriate local coefficients are available, 

models have to use constants as defaults even though these constants may not represent 

state-of-the-art conditions for the sites.

3-3.2. System Inputs &  Outputs

NITROP has eight subroutines of inputs: 1) total aboveground N content in dry 

matter for the fertilized crop; 2) total aboveground N content in dry matter for the 

unfertilized crop; 3) the N fertilizer efficiency; 4) the N in rainfall; 5) mineralized N; 6 ) 

stover N; 7) preceding erops; and 8 ) leached N. All data are input from the keyboard 

without using databases. Default values are available in NITROP except soil organic 

matter and crop yield goal. Output was the N requirement by proposed maize.



calculated by the Stanford Equation, the Transfer coefficient Method, or N Mass 

Balance Equation.

3-3.3. System Suitability for Various Regions

NITROP was evaluated using seven datasets, three from South America and four 

from Africa. The Stanford Model gave good predictions at many locations (Osmond,

1991). The key coefficient in the three models was the N fertilizer efficiency. It was 

estimated from soil texture, rainfall, fertilizer types, pH, natural vegetation and cropping 

history in NITROP. This approach makes NITROP suitable for various areas. Like 

NDSS, calibrations o f the fertilizer efficiency from local data are necessary for an 

accurate prediction.

3-3.4. Software & Hardware Environment

NITROP was developed using VP-Expert (version 2.1). VP-Expert is a rule- 

based expert system shell. The reasoning strategy of NITROP is backward chaining, 

which means the system evaluates potential conclusions by determining the necessary 

supporting data for each rule and ealculation. Users can easily leam and use this system 

with the VP-Expert interface. Like most expert systems that take advantage o f the 

development shell, NITROP answers users’ questions of "How" for variable values and 

"Why" for its reasoning and computation. Online help and error controls in NITROP 

are provided by the VP-Expert shell. The system description was available in the 

author’s dissertation.
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3-3.5. Conclusion

NITROP was designed as the same tool as NDSS to estimate N fertilizer 

requirements. NITROP uses the expert system shell. The system limitations come from 

its assumptions: 1 ) the only limiting soil nutrient is nitrogen; 2 ) good agronomic 

practices will be followed; 3) normal climatic conditions will prevail, and 4) reliable 

estimates of fertilizer efficiency are available.

3-4. NLEAP: Nitrate Leaching and Economic Analysis Package

3-4.1. System Purposes

NLEAP was designed to rapidly estimate nitrate-N leaching potential by 

examining nitrate loss processes through the combination of chemical, physical and 

biological sub-processes (Shaffer, et al., 1991). Potential users may be extension 

personnel and action agencies such as Natural Resources Conservation Service (NRCS) 

and Environmental Protection Agency (EPA). The model evaluates nitrate impact on 

the environment and economic crop production. Nitrate leaching risk was evaluated by 

indices related to precipitation, soil texture and temperature. NLEAP provides three 

screening analyses: 1 ) an annual analysis for initial estimates of potential nitrate 

leaching, 2) a monthly analysis, and 3) an event-by-event analysis for more detailed N 

budget information.
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3-4.2. System Inputs &  Outputs

NLEAP stores site specific soil and climate data in its internal databases. Major 

data required include: 1) inputs of N into the root zone such as mineralized N, crop 

residue N, fertilizer N, and precipitation N, 2) removal of N from soils such as crop 

harvest, runoff, and gaseous loss, 3) soil properties such as bulk density, pH, CEC, soil 

texture, and soil water content, 4) crop management data, 5) irrigation data, 6) simple 

aquifer data, 7) climate data such as precipitation and temperature. Outputs consist o f 

indices and a text report. The indices provide a qualitative assessment of nitrate 

leaching in movement risk, annual leaching risk, and aquifer risk. The report provides a 

discussion of results and recommendations for management. These results are helpful 

in understanding and reducing nitrate leaching of the sites.

3-4.3. System Suitability for Various Regions

NLEAP was validated with lysimeter and groundwater data obtained from Ohio, 

Minnesota, Nebraska, Iowa, and Michigan. NLEAP predictions were compared with 5- 

yr observed values for nitrate leached from USDA-ARS lysimeter Y103 B located at 

Coshocton, OH. The results indicated that 91% of the variability in leaching volume 

and 86% of the mass o f nitrate leached were predicted by NLEAP. The authors 

restricted using NLEAP to assess potential nitrate leaching into sources of domestic 

water supply.

3-4.4. Software & Hardware Environment

NLEAP’s interface was written in Microsoft C (version 6.0) and the 

computations were written in Microsoft FORTRAN 77 (version 5.0). Information of
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installation, hardware and software requirements, and troubleshooting was documented 

in two readme files with the software package. The model description was published by 

Shaffer e ta /. (1991).

3-4.5. Conclusion

NLEAP is a useful tool to qualitatively assess annual and monthly nitrate 

leaching risks or the risk associated with water events. The limited dynamic module of 

event-by-event analysis (using daily rainfall and irrigation data) improved the 

assessment of nitrate leaching. NLEAP may be a useful model for the assessment of 

watershed level if  integrated with GIS, standard databases and graphic user interfaces.

3-5. AGNPS: Nonpoint-Source Pollution Model for Evaluating
Agricultural Watersheds

3-5.1. System Purposes

AGNPS was developed to estimate runoff water quality from agricultural 

watersheds (Yong, et al., 1989). The estimates can be used to compare the performance 

of selected watersheds experiencing similar runoff events. The potential users are 

professionals with knowledge of hydrology, soil science, agronomy, and climatology. 

Basic model components include hydrology, erosion, sediment and chemical transport. 

In addition, the model considers point sources of sediment from gullies and inputs of 

water, sediment, nutrients, chemical oxygen demand (COD) from animal feedlots, and 

springs, etc. AGNPS uses the measure of COD as an indicator of pollution.
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3-5.2. System Inputs «& Outputs

AGNPS operates on a cell basis. Cells of uniform square areas subdivide the 

watersheds, allowing analysis at any point within the watershed. Watershed 

characteristics and inputs are expressed at the cell level. Potential contaminants are 

routed through the watershed cell by cell. Therefore, flow at any point between cells 

can be examined. Each cell was described by 19 variables such as land slope, nutrient, 

chemical oxygen demand (COD), soil, fertilization, and gully and others. Consequently, 

a large amount of data was required to run AGNPS. For instance, in 12,920 acres of 

Eagle Lake watershed area, an example from the package, there were 6,137 data within 

40 cells. The database o f AGNPS was specified by the model. Users must enter all data 

in the internal spreadsheets by keyboard. Major outputs consist of runoff, sediments, 

and chemicals including nitrogen, phosphorus and COD at the watershed outlet or at a 

cell. Besides tabular output, simple maps based on cells of watersheds can be viewed 

on the screen.

3-5.3. System Suitability for Various Regions

AGNPS was validated for runoff with data from 20 different watersheds in the 

north central US. Parts o f the model have been tested for sediment yield estimates with 

data from two experimental watersheds in Iowa and Nebraska. The chemical 

components of AGNPS have undergone basic testing since 1989.

3-5.4. Software & Hardware Environment

AGNPS was originally developed with the FORTRAN 77 and the latest version 

(ver. 4.0) was written in C. It has a full-screen data entry editor and help screen. PC
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version can control a maximum of 1,900 cells. Online help gives users assistance to 

operate the system. Users can leam the model through several examples provided with 

the package or the User's Guide.

3-5.5. Conclusion

AGNPS is a useful event-based assessment tool with simple maps that estimates 

surface water pollution by runoff, sediment, and nutrient ( N and P ) transports from 

agricultural watersheds. A major task is obtaining and entering extensive data from the 

watershed to fill the thousands of AGNPS cells for diagnosis or prescription in 

watershed management.

3-6. CERES-Maize: Simulation Model of Maize Growth and 
Development

3-6.1. System Purposes

CERES (Crop Environment Resource Synthesis) Maize {Zea mays. L.) model 

was developed to simulate maize growth, development and yield (Ritchie et al., 1986).

It consists of two versions: standard and nitrogen versions. The standard version 

simulates the effects of cultivar, planting density, soil water, and daily weather on maize 

growth. The nitrogen version, called CERESN, includes components of standard 

version plus soil-plant nitrogen dynamics for the crop. CERES-Maize was designed for 

agronomists, teachers, extension service, cropping consultants, farmers, and others who 

work with the crop.
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3-6.2. System Inputs & Outputs 

•  Inputs

Two types of input data, the parameters and daily weather data, were used in 

CERES-Maize. Parameter inputs are used to assign values to the variables that control 

the execution and initialize pools. They include:

1) Switehes that control the model execution.

2) Soil layer data: the thickness of the layer, the lower limit o f plant-extractable

water, the drained upper limit, the water content at saturation, a weighting factor 

for rooting, initial soil moisture, pH, organie earbon, ammonium, and nitrate.

3) Management input of irrigation amount and frequency, fertilizer application 

rates.

4) Genetic coefficients for the cultivar.

5) Measured data such as silking dates and grain yield to be used as comparisons

with simulation results.

Daily weather data include day of the year, solar radiation, maximum and minimum air 

temperature, and precipitation for each day simulated.

•  Outputs

The simulation outputs three files including following data:

1) Crop growth, development, yield, and soil nitrogen and moisture.

2) Daily plant growth information including dates, number of leaves, leaf area, 

weight of root, straw, grain and leaf, root depth and root length density.
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3) Daily water balance results including dates, plant transpiration,

evapotranspiration, solar radiation, temperature, precipitation, and volumetric 

soil water content in the surface five soil layers.

The nitrogen version outputs additional information of N in grain, leaf, stem, shell, root, 

and soils. Soil N contains nitrate and ammonium in soil layers, organic N, and leachate 

N.

3-6.3. System Suitability to Various Regions

Since daily weather data and crop genetic coefficients are required for each 

cultivar/region plus a few soil properties, CERES-Maize is adaptable to most regions. 

CERES-Maize was modified and integrated into DSSAT (Decision Support System for 

Agrotechnology Transfer) by IBSNAT (International Benchmark Sites Network for 

Agrotechnology Transfer, Godwin et al., 1989) to join a team of models for 

agrotechnology transfer.

Initial development of CERES-Maize was based on datasets o f maize 

phenology, grain, leaf, dry matter, nitrogen concentration, and soil water data from 

many locations (Ritchie et al., 1986). The nitrogen version has produced accurate 

simulations of the effects o f N applications on biomass, total N uptake, grain N 

concentration and yield. CERES-Maize has been tested with many data sets from 

diverse location spanning the world’s cropping regions since it was developed (Godwin 

et al., 1984; Singh, 1985; Legowo, 1987; Carberry et al., 1989; Ogoshi, 1995). Bowen 

et al. (1993) evaluated the CERES-Maize N version with measured data from a series of 

field experiments on an Oxisol in central Brazil from 1984 through 1987. They found
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that CERES-Maize had underpredicted N uptake by maize because of underestimating 

inorganic N in soil profiles. Assuming nitrate adsorption causes the problem, Bowen et 

al. (1993) improved the model’s prediction in the case by including nitrate retention due 

to positive soil charge, a common phenomenon of acid tropical soils, which violated an 

initial assumption in the development of CERES-Maize.

3-6.4. Software & Hardware Environment

Written in Microsoft FORTRAN and distributed with sample input/output files, 

CERES-Maize source code can be modified by users. Jones and Kiniry (1986) provided 

extensive documentation of the model structure, input/output files, evaluation, and step- 

by-step operation instructions. CERES-Maize offers samples of input and .output files 

as scenarios for users. As many simulation models, CERES-Maize provided no online 

help and almost no interactions with users during execution. When used within the 

DSSAT format, the model was supported for file saving menu selection and output 

analysis etc.

3-6.5. Conclusion

CERES-Maize is a dynamic mathematical model that simulates the biological 

and physical processes o f maize growth and the nitrogen cycle in plant-soil systems. It 

is a very useful simulation model for professionals who need to predict the crop growth 

and N cycle in soil-plant systems for planning or agricultural technology transfer.
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3-7. LEACHN: Deterministic Model for Simulating Nitrogen 
Dynamics in Soils

3-7.1. System Purposes

LEACHM, Leaching Estimation And CHemistiy Models, is a set o f process- 

based models o f water and solute movement, transformation, plant uptake and chemical 

reactions in unsaturated soils (Wagenet and Hutson, 1989). LEACHN, the nitrogen 

version of LEACHM (other versions deal with water, pesticides, chemicals, and 

microbiology), is a deterministic model of simulating various chemical, physical and 

biological processes of nitrogen in soils (Hutson and Wagenet, 1991). The model uses a 

numerical solution o f the Richards equation for water flow and the convection- 

dispersion equation for chemical transport in soils. LEACHN consists o f independent 

subroutines for: 1) Water flow; 2) Chemical transport; 3) Evapotranspiration; 4) Heat 

flow; 5) Rate constant adjustment for temperature and water content; 6 ) Nitrogen 

transformation; 7) Plant growth; 8 ) Nitrogen uptake by plants. The main program of 

LEACHN initializes variables, performs mass balance calculations, and simulates 

different processes by calling the above subroutines.

3-7.2. System Inputs & Outputs 

•  Inputs

Required inputs include retentivity, hydraulic conductivity and dispersivity in 

the Richard equation and the convection-dispersion equation. Some suggestions 

(Hutson and Wagenet, 1991) can help users to estimate these data if they are not 

available. Main data inputs consist of:
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1) Soil physical properties for each layer: water potential, hydrologic constants for 

moisture retentivity, hydraulic conductivity, texture, and bulk density.

2) Crop data: time of planting, dates of rooting, crop maturity and harvest, pan 

factor for crop evapotranspiration, and plant water potentials.

3) Nitrogen and carbon data: (a) Nitrogen and carbon contents in the profile, 

such as urea, ammonium, nitrate, humus, and manure; (b) N transformation 

parameters such as a synthesis efficiency factor, humification fraction, 

mineralization and nitrification rates; (c) Nitrogen and carbon applications.

4) Weather and irrigation data: amount of rainfall and irrigation (frequency and 

rate of water application), weekly pan evaporation, and mean temperature and 

amplitude.

•  Outputs

Outputs consist o f several tables of predicted data at specified time intervals for

the soil profile:

1) Water retentivity (volumetric water content at several values of matric potential) 

and hydraulic conductivity.

2) A cumulative mass balance summary.

3) Chemical contents such as urea, N H /, NOj", litter-N/C, humus-N/C, and 

manure-N/C.

4) Plant growth, transpiration and nitrogen uptake.
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3-7.3. System Suitability to Various Regions

LEACHN has been widely used in simulating nitrate transport in soils in many 

countries (Hutson and Wagenet, 1992). In Hawaii, LEACHN was successfully 

calibrated and predicted nitrate leaching from agricultural lands in response to 

fertilization, N transformation, climate and plant growth (Ling, 1996).

3-7.4. Software «& Hardware Environment

LEACHN was written in FORTRAN. No installation is needed. Besides a 

diagram showing its structure, all mathematical equations were well documented in the 

manual. LEACHN provides example input files to assist users in entering data that 

conform to the FORTRAN format.

3-7.5. Conclusion

LEACHN was designed for soil scientists to predict nitrogen status in soil-water 

systems. The model is a good simulation tool for scientists but not for nonprofessionals. 

LEACHN worked well in simulating nitrate distribution in one dimensional flux pattern 

in unsaturated soils (Ling, 1996).

3-8. CENTURY: General Model of the Cycling of C, N, S, and P
Through Organic Matter

3-8.1. System Purposes

The production and decomposition of organic material play an important role in 

the cycling of plant nutrients, influencing water relations, erosion potential, and soil 

structure. The CENTURY model was designed to simulate large-scale and long-term
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consequences of climate and management changes on C, N, P, and S dynamics in 

agroecosystems (Parton, et a l,  1987, 1988). Potential users of CENTURY are 

definitely scientists. CENTURY has been used to simulate carbon and nutrient (N, P,

S) dynamics in different types of ecosystems (grasslands, forest, crop and savaima). The 

simulation can vary from a single year cycle to millennia.

3-8.2. System Inputs & Outputs

Major input variables include:

1 ) monthly average, minimum and maximum air temperature,

2 ) monthly precipitation,

3) lignin content o f plant material,

4) plant N, P, and S content,

5) soil pH and soil texture,

6 ) atmospheric and soil N inputs,

7) initial soil C, N, P, and S levels.

Outputs consist o f many dependent variables related to C, N, P, S and water, printed and 

plotted on the screen. CENTURY provides a program to help users initialize the model 

and adapt to site specific parameters. The site specific parameters include: model 

control parameters, ecosystems’ specific management, initial plant production 

parameters, initial soil conditions, and other soil and weather data. If no local data 

available, input variables can be estimated from the literature or fi'om expert 

consultations.

C h a p t e r  3  E v a l u a t i o n  o f  E x i s t i n g  N i t r o g e n  M o d e l s  4 6



3-8.3. System Suitability for Various Regions

The model was validated against steady-state soil C and N levels and 

aboveground plant production for 24 sites in the Great Plains. Results showed that 

simulated plant production was highly correlated with simulated N inputs, which were 

direct functions o f annual precipitation. The observed plant production was also highly 

correlated with annual precipitation. Results show that CENTURY can be adapted to 

various temperate regions.

3-8.4. Software & Hardware Environment

CENTURY consists o f two major modules: a simulation program developed 

using FORTRAN and a graphic display program VIEW (a commercial module of 

TIME-ZERO). CENTURYM saves simulation results for VIEW to output as plots or 

tables. Users can plot or print more than 170 CENTURY variables using VIEW. The 

manual provides charts and diagrams to show model structures and examples for input 

data. The space required for output files varies with simulation years. For example, a 

100-year simulation with monthly data requires about 2 MB of disk space.

3-8.5. Conclusion

CENTURY is a strong model for predicting a long term cycling of C, N, S, and 

P contained in organic materials, but is nearly inaccessible to nonprofessionals because 

of its extensive use of technical jargon. Scientists who work on large scale ecosystems 

such as agro-forestry systems in an agricultural region may find CENTURY useful.

C h a p t e r  3  E v a l u a t i o n  o f  E x i s t i n g  N i t r o g e n  M o d e l s  4 7



3-9. TO RBER T‘93: Simulation of Soil-PIant Nitrogen Interactions
for Educational Purposes

3-9.1. System Purposes

TORBERT ‘93 was designed as a teaching tool for the classroom rather than as 

a research or management tool. It can help students understand the complex dynamic 

processes associated with physical, biological, and chemical components of the N cycle 

in soil-plant systems (Torbert, et al., 1994). The model simulates water, C, and N 

changes in the various N pools over a time span of one year under certain climatic factor 

interactions. Mass flows between pools are controlled by reaction components using 

chemical reaction equations. TORBERT ‘93 was designed for three levels o f users: 

beginning, medium, and advanced. The beginner can use the system by inputting data 

and comparing output for general concepts of the N cycle in soil-plant systems. 

Advanced users can examine each component of the system at the programming level 

and modify the system with their ideas.

3-9.2. System Inputs & Outputs

Inputs are set in the “scenario” section, where TORBERT ‘93 provides users 

with 15 choices that establish conditions for the simulation. These choices are related to 

rainfall, temperature, fertilization, planting date, expected com yield, and soil type.

There are 133 dependent variables as model outputs in three categories: 1)18 "stock" 

variables that accumulate flows of material and energy (e.g., soil adsorbed ammonium, 

soil solution ammonium, soil nitrate, and N in growing plants); 2) 26 ''flow'' variables 

that fill and drain "stock" variables (e.g., the plant uptake N per unit period, the
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nitrification rate o f ammonium, the mineralization rate of organic N, and the adsorption 

rate o f ammonium); and 3) 99 "converter” variables that serve utilitarian roles as 

constants (e.g., conversion rates and fractions), external inputs (e.g., fertilizers), or as 

algebraic relationships (e.g., equations). Outputs are simulated N in various pools 

changing with time. Users can monitor the consequences of the cycle o f selected 

variables in graphical or tabular outputs during the simulation.

3-9.3. System Suitability for Various Regions

As a teaching tool, TORBERT ‘93 was apparently not designed for research or 

extension in the current version. No validation was documented. Most model 

parameters and default data were from the literature.

3-9.4. Software & Hardware Environment

TORBERT ‘93 was developed with STELLA II, a model developmental shell 

(Peterson and Richmond, 1994). STELLA II provides TORBERT ‘93 with an 

impressive and easy-to-use graphical interface for constructing the model. STELLA II 

simulation environment allows users to easily examine model structure from three 

scales: 1) an overall model map, 2) an overall model construction, and 3) sub-models. 

Like most systems developed using shells, TORBERT ‘93 can be modified at runtime in 

structures, equations and parameters by users. Users can learn STELLA II using the 

accompanying tutorial and easily modify the model in many ways. In other words, 

TORBERT ‘93 is easily upgraded or revised as long as users have access to the 

STELLA II development shell.
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3-9.5. Conclusion

TORBERT ‘93 is a good example of an N cycle description that was constructed 

using a modeling shell with visual programming. The model is an attractive teaching 

tool to learn the N cycle in classrooms with scenarios.

3-10. Summary

Nine N models were summarized in Table 3-10.1. Among the models, NDSS, 

QUEFTS, and NITROP were used for calculating the requirement o f N fertilizer and 

economic evaluation. NLEAP and AGNPS were designed as environmental assessment 

tools: NLEAP predicts nitrate leaching to groundwater while AGNPS deals with surface 

water quality. These systems describe the N budget among soils, crops, atmosphere, 

and water. The remaining systems are dynamic simulation models that describe and 

predict the N cycle between soils and plants in agroecosystems. CERES-Maize (N 

version) simulated com growth and the N cycle in the maize-soil system. LEACHN 

predicts N leaching in soil profiles at specific intervals. CENTURY was constructed for 

long-term predictions of agroecological regions. TORBERT ‘93 simulates the N cycle 

for education purposes.

These models described current knowledge and techniques of modeling the N 

cycle in soil-plant systems and were suitable for static estimation, dynamic simulation, 

assessment, and general planning. However, they were weak at dynamic optimization 

and modeling management actions (e.g., specific timing fertilization and irrigation).
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especially for in-season management. To optimize N management for maximizing 

productivity, economic values, while eliminating the environmental impact, the “gaps” 

in modeling N management activities must be filled by further development.
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T ab le  3-10.1. E v alua tion  S u m m ary  o f N itrogen M odels

NDSS QUEFTS NITROP

MODEL TYPE calculation model simulation, calculation model expert system, calculation
DEVELOPER Reid, Shaw, et al. Janssen, B.H., et al. Deanna Lynn Osmond

Cornell University University of Wageningen Cornell University
DEVELOPED DATE Nov. 1992 Mar. 1990 Jan. 1991

MODEL DESCRIPTION
Objectives determine N fertilizer requirement determine N, P, K fertilizer requirement determine N fertilizer requirement
Problems to be solved N fertilizer application N fertilizer application N fertilizer application
Potential users farmers farmers farmers
Required education levels high school high school high school
Benefits from the system economic economic economic
Major limitations assumption of N deficiency only assumption of N deficiency only assumption of N deficiency only

INPUTS & OUTPUTS
Major inputs crops, soils, manures crops, soils, climate crops, soils
Major outputs amount of N fertilizer to apply amount of N, P, K fertilizers to apply amount of N fertilizer to apply
Data management dBASE model files from keyboard
Minimum input variables 40 40 -5 0 12-15
Data collection from users from users from users
Data properties quantitative quantitative quantitative/qualitative
Default situations default databases default files in the program

SOFTWARE
Developing tools Foxpro 2.0 Turbo Pascal 5.0 VP-Expert
Interface Foxpro specific DOS program VP-Expert shell
Examples, Tutorials DEMO data sets examples no
Manual, Readme files no Readme files user guide (hard copy) manual (hard copy)
Software requirement DOS 3.x or greater DOS 3.x or greater DOS 3.x or greater
Hardware requirement * IBM: RAM 640K, disk 2.4 M IBM: RAM512K, disk 1.3M IBM: RAM 384K, disk 704K
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Table 3-10.1. (continued) Evaluation Summary of Nitrogen Models

NLEAP AGNPS CERES-Maize (N version)

MODEL TYPE computation model frame work with maps simulation model
DEVELOPER Shaffer, M.J., et al. Yong, R.A., et al. Ritchie et al.

USDA-ARS USDA-ARS USDA-ARS et al.
DEVELOPED DATE 1991 July 1991 June 1986

MODEL DESCRIPTION
Objectives predicting leaching risk assessment of pollution predict N dynamics
Problems to be solved nitrate leaching to groundwater pollution of surface water N dynamics in com -soils
Potential users action and extension agencies scientists, action agencies scientists, action agencies
Required education levels college college college
Benefits from the system environment environment production & environment
Major limitations qualitative estimates qualitative estimates assumption of regular agro. condition

INPUTS &  OUTPUTS
Major inputs soils, precipitation, hydrology, cropping runoff, sediment, N & P nutrients crops, soils, management, weather
Major outputs prediction of nitrate fate prediction of water quality simulation tables for N & com data
Data management model databases model databases simple ASCII files
Minimum input variables 80-95 depends on acre to assess 40-60 plus weather data
Data collection from users, testing, database from users, testing, database from users, literatures, database
Data properties quantitative/qualitative quantitative quantitative
Default situations parts of default inputs no default inputs parts of default inputs

SOFTWARE
Developing tools MS C, Fortran 77 Fortran 77 MS Fortran
Interface DOS program DOS, maps DOS program
Examples, Tutorials no examples example data sets example input/output files
Manual, Readme files Readme files, articles user guide, but no Readme files publication (hard copy)
Software requirement DOS 3.x or greater DOS 3.x or greater DOS 2.0 or greater
Hardware requirement * IBM: RAM 640K, disk 3M IBM: RAM 640K, disk 1.4M IBM: RAM 256K, disk 720K
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Table 3-10.1. (continued) Evaluation Summary of Nitrogen Models

LEACHN CENTURY TORBERT

MODEL TYPE simulation model simulation model simulation model
DEVELOPER Hutson and Wagenet Parton, W.J. et al. Torbert, H.A., et al.

Cornell University Colorado State University USDA-ARS
DEVELOPED DATE 1987 -1992 1992 1993

MODEL DESCRIPTION
Objectives predicting N leaching long-term prediction teaching tool
Problems to be solved N leaching on soil profile cycle o f C, N, S, P simulation soil-plant N simulation
Potential users scientists, action agencies scientists students
Required education levels college college high school, college
Benefits from the system environment science education
Major limitations for water, chemicals leaching only Scientific data search the parameters from literature

INPUTS & OUTPUTS
Major inputs hydrology, soils, weather, crops climate, crops, soils plants, soils
Major outputs simulation tables for N & soil water simulation plots, tables for C, N, P, S simulation plots (or tables) for N
Data management simple ASCII files ASCII files parameters in the model
Minimum input variables 40 plus 30 * soil layers + 4 * weeks 195 15 choices in scenarios
Data collection from users, testing, database from users, literatures from users, literatures
Data properties quantitative quantitative/qualitative quantitative/qualitative
Default situations parts o f default inputs default files in the program

SOFTWARE
Developing tools Fortran Fortran, TIME-ZERO Stella II
Interface DOS program DOS, TIME-ZERO Windows, graphic
Examples, Tutorials example input/output files sample data sets no examples, tutorials from shell
Manual, Readme files manual (hard copy) & readme manual (hard copy) manual for shell
Software requirement DOS 3.x or greater DOS 3.x or greater MS Windows, Stella 11
Hardware requirement * IBM: RAM 640K, disk 1.4M IBM, RAM512K, disk614K IBM, MAC: model 357K , shell 2.7M

0
1
mX
u

m
r

0z
0T
m
X

z
0

X
0
0mz
Z
0om

Disk refers to floppy or fixed. Space only for the package, not for working space.



C h a p t e r  A  D y n a m ic  N i t r o g e n  M o d e l  5 5

Chapter 4

Dynamic Nitrogen Model

Some preliminary experiments to improve N models in management were 

documented in a static N model, N-Balance for Windows (Yost et al., 1997a).

Although the static N model can estimate overall nitrogen budgets o f soil-crop systems 

during a cropping season, it does not evaluate nitrate leaching precisely because 

leaching is a dynamic process partially determined by rain events. The static model is 

also weak in predicting the influences of human management related to the amoimts 

and timing of N application and irrigation on nitrate leaching. A dynamic model is 

needed for these estimates. In an overview of numerical models for nitrate leaching. 

Ling (1996) categorized the deterministic models’ approach into two groups. The first 

approach uses the numerical solution of the convection-dispersion equation (CDE) and 

the second approach applies the mass balance method. The mass balance approach has 

been widely applied in modeling N in soil-plant systems (CERES-Maize, Jones and



Kiniry, 1986; CENTURY, Parton et a l,  1988; SOYGRO, Jones et a l,  1991b; Torbert 

‘93, Torbert et a l, 1994). This method was used to construct the djmamic model in 

this study because it can provide information of N and water in diverse pools and 

forms, which is needed in Management-Oriented Modeling (See Chapter 5). In the 

whole system of Management-Oriented Modeling, the dynamic model is only a 

component that plays the role o f a simulator, even though it can be used as an 

independent N simulation model. Therefore, the dynamic N model to be developed in 

this chapter is called N-SIMULATOR.

4-1. System DeBnitions

Before describing the model, the goals and boundaries of the model was defined 

below with assumptions and declarations for whom and for what tasks the model is 

designed.

4-1.1. Goals of the Model

1. The model described here was designed as a tool that assists users to 

make decisions on N fertilizer management during a cropping season. Potential 

users o f the model include agronomists, teachers, researchers, agricultural 

extension agents, consultants, government action agents, farmers, land owners 

and managers, and others who are involved in crop and soil management.

2. The model should require the least amount of data, for example, 

standard soil and plant tissue test data, data from currently available soil and 

weather databases, or the data that users can easily obtain.
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3. The model should provide users with a dynamic picture of the N cycle 

that includes the N uptake by a plant, N remaining in the soil profile, and nitrate 

leaching out of the root zone during a cropping season. These dynamic data are 

important for users to minimize nitrate leaching and maximize crop production 

and profits.

4. Technologically, the model should contain the necessary N components 

while making the structure simple to run as ftist as possible. The model is 

implemented as a simulator in Management-Oriented Modeling (See Chapter

5), which requires that the model simulate the N cycle in soil-plant systems for 

an entire cropping season in a few seconds. For example, simulating nitrogen 

transformations, crop uptake, nitrate leaching, and water movement in a whole 

soil profile for 1 2 0  days of cropping should finish in 1 - 2  seconds on currently 

available personal computers (e.g., 66-100 MHZ PC).

4-1.2. Boundaries of the Model

To understand where the model may be applicable and what tasks the model is 

designed to perform, the boundaries o f the model must be clearly defined in spatial and 

time dimensions. These boundaries are defined below.

4-1.2.1. Spatial Dimension

Based on the goals of decision-aid for cropping and fertilization management, 

the model is designed as a field-scale system that describe a whole-crop system.

In the horizontal dimension, the system boundaries are set by the area of a field 

with the same soil type (or similar soil properties). The fields are basic management
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units for farmers and most fertilization practices. For a watershed, a field looks like a 

polypedon (Fig. 4-1.1.). Therefore, the model would partially work for a watershed 

when it is running simultaneously for all fields in the watershed.

In the vertical dimension, the system boundaries are from the top of a crop to 

the bottom of the root zone. Because most important nitrogen transformation activities 

take place in the root zone, we divide the soil profile of the root zone into three 

horizons: major root zone, minor root zone and transition zone (Fig. 4-1.2.). The

A watershed

V.MtV

/

(B

---------

•• I*
O’- * •

A field the models work on

Fig. 4-1.1. The system horizontal boundaries of the model is around an area of a 
field with the same soil type (or similar soil properties). The field that the model 
works on looks like a polypedon in a watershed. Fields are often basic units of 
agricultural activities and management.
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major root zone is the soil surface layer where crops usually develop the majority of 

their root systems. This layer is also the major zone for additions of fertilizers and 

water, plant uptake, N transformations, and surface evaporation. The minor root zone 

has less root density and less organic N mineralization associated with soil 

microorganisms. This zone plays a smaller role in N uptake by plants but an important

Transpiration

Precipitation, Irrigation 
Fertilization Surface evaporation

Runoff

Major root zone 

Minor root zone 

Transition zone 

Below-root zone

Percolation,
leaching

o
Groundwater

Fig. 4-1.2. In the vertical dimension, the system boundaries of the model is from top 
of a crop to bottom of the root zone. The soil profile of the root zone is divided into 
three horizons: a m ajor root zone, a m inor root zone and a transition zone. After 
N and water are applied to the soil, N transformations are simulated within the 
layers, and water and N movement is simulated across the layers. Nitrate moved to 
the below-root zone is considered leached out of the root zone.



role in nitrate leaching. The transition zone is defined as the zone in which the root 

fraction is less than 10%. Only a small fraction of inorganic nitrogen (nitrate in most 

uplands) in this zone can be utilized by plants. Potential nitrate leaching may occur in 

this zone unless subsequent crops can develop more roots into this zone. This division 

is helpful to estimate dynamic N transformations, crop uptake, and nitrate leaching 

without requiring extra data other than routine soil tests. With soil test data from the 

major root zone, the soil data o f the minor root zone and transition zone can be 

estimated using soil databases and/or local experimental data. These estimates should 

be acceptable in most situations for two reasons. First, the main soil N comes from the 

soil organic N source that is approximately 80% of total N (Yost, 1992). So the 

majority of soil N, the organic N, below the major root zone can be estimated from the 

distribution of organic N (associated with soil organic carbon) in soil profiles. The 

distribution patterns of soil organic C (or organic N) in the soil profile can be described 

by soil test results or be derived from soil databases or soil surveys (SCS-USDA et al.,

1976). Second, errors in estimating the N uptake from a minor root zone and transition 

zone have a small influence on whole N uptake because there are small portions o f root 

densities, organic N contents, and microorganism activities in the minor root zone and 

transition zone, compared to those in the major root zone. Assuming 20% of the roots 

are in the minor root zone, 5% are in the transition zone, and 20% of the soil N is 

derived from soil inorganic N, for example, the maximum estimating error in the N 

uptake is 5% (20% • 25%), without artificial fertilizers. This error will be further 

reduced when applying a certain amount of fertilizer. For instance, if  50% of the
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uptake N comes from the applied fertilizer, the error of estimating the N uptake from 

soil N in the minor root zone and transition zone will decrease from 5% to 2.5%, in the 

example above.

Each root zone, however, can be further divided into a number of sub-layers 

that will increase simulation precision, provided there is sufficient soil profile data.

This is very useful for the systems used in scientific research and in some specific 

applications that need to simulate more soil layers.

4-1.2.2. Time Dimension

A model time step refers to the period o f time to complete one cycle of the 

model session. This period o f time is also associated with the frequency of data input. 

Generally, model time steps associated with cropping are determined by crop types, 

cropping systems, and the management goals. Long time (several years or more) steps 

are often used for perennial crops or rotational cropping systems. Some management 

objectives require decades or centuries as time steps (Parton, et al., 1987,1988). A 

one-year time step or one crop growing season time step is often used for annual crops 

or model objectives related to a growing season basis (Seligman and Keulen, 1981; 

Jones et al., 1984; Ritchie et al., 1986). The time steps of the model in this study were 

limited to one cropping season for a running session which include weekly and daily 

simulation steps. These time steps reflect a basic time unit of management for most 

agricultural crops. If model initial states are based on the test or observed data, shorter 

time steps have lower risks of making errors in prediction than a longer one at the same 

modeling precision.
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4-1.3. Critical Assumptions 

Crops

The model is designed for annual or perennial upland crops. If there are other 

crops (including weeds) in the fields, their N uptake must be a very small fraction that 

can be ignored eompared to that of the major crop. The erop should have no severe 

problems of pests, diseases, maero- or micro-nutrient deficiencies except nitrogen. It is 

also supposed that crop roots develop normally. In other words, the model does not 

consider the effeets of soil chemical and physical barriers or enhancements on root 

development.

Soil

The model assumes that soil physical and chemical properties within a layer 

(e.g., one of the root zones) are homogeneous in horizontal and vertical dimensions. 

These properties include hydraulic conductivity, water content, bulk density, nutrient 

content, pH, and other properties such as nitrate adsorption. It is further assumed that 

there are no significant coarse fragments or lithic horizons, duripans, or fragipans in the 

root zone and immediately below the root zone, which may significantly slow vertical 

root penetration and water movement. The water table is assumed to be far below the 

root zone and to have no influenee on the soil water movement in the root zone. Any 

nutrients moving out of the root zone into the below-root zone (Fig. 4-1.2) are assumed 

not to be absorbed by crops. Nitrate in the below-root zone is all allocated to potential 

leaching if the next crops in the following cropping season cannot penetrate their roots 

into this horizon.
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Weather

Normal local weather conditions prevail for crop growing in a modeling 

session.

Management

The model is supposed to run under a good or a normal agronomic management 

practice in local conditions. Most model coefficients should be adapted to local 

conditions by users, perhaps with assistance from local experts (See Appendix C). 

However, some management strategies such as the amounts and frequencies of 

irrigation and N fertilization are designed as variables in Management-Oriented 

Modeling (See Chapter 5), which are solved by the model.

4-2. Nitrogen Cycle Modules

4-2.1. Nitrogen Cycle in Ecosystems

Nitrogen is involved in cyclical transformations of four major global 

compartments in the biosphere; atmosphere, water, living organisms, and soil (Sprent, 

1987).

1. Atmosphere

The major nitrogen component in the atmosphere is the dinitrogen molecule, 

Nj, which makes up about 79% of the atmosphere. The second form includes 

nitrogen oxides such as NjO (nitrous oxide), NO (nitric oxide), and NOj 

(nitrogen dioxide). The third form is reduced nitrogen that contained in 

ammonia (main form) and various organic compounds.
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2. W ater

The main components o f nitrogen in this compartment are dissolved nitrogen 

gases. There are also low concentrations of ammonia, urea, and some low 

molecular weight organic compounds.

3. Living Organisms

Nitrogen is one of the most important elements in living organisms. It is 

present in various forms in the cell: gas, solution in both oxidized and reduced 

forms.

4. Soil

All forms o f nitrogen listed above may exist in soil. In addition to organic N 

compounds, ammonium and nitrate are major inorganic forms in soil.

Many diagrams of the N processes have been used to show the nitrogen cycle 

from different standpoints and for different purposes. For example, if  we are interested 

in soil-plant systems, a conceptual view of the internal N cycle may be useful (Fig. 4- 

2.1.). The internal N cycle is operative in soil distinct from the overall cycle of N in 

nature but interfaces with it (Stevenson, 1985). To develop a dynamic model to assist 

N management, the modeling would mainly focus on the nitrogen cycle w ithin the 

soil root zone, not modeling the nitrogen transformations in plant cells. Although it is 

impossible to model all physical, chemical, and biological processes of the nitrogen 

cycle in soil, the most significant factors and processes will be considered in model.

Fig. 4-2.2 shows main processes o f the N cycle in N-SIMULATOR. The discussion of
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Fig. 4-2.1. A conceptual view of the internal N cycle in soil-plant systems. 
Source: Stevenson, F.J. (1985).

the following sections will focus on how the model simulates these processes, not the 

mechanisms o f these processes.

4-2.2. Soil M oisture and Tem perature Factors

The major nitrogen transformations in the soil root zone simulated in N- 

SIMULATOR are urea hydrolysis, ammonia volatilization, mineralization, 

immobilization, nitrification, and denitrification. These processes are significantly 

affected by soil moisture and temperature and some of those are also sensitive to soil
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pH and other factors. To represent the influences o f these environmental factors on the 

processes, indexing or rating fimction was commonly used in various models (Hackett, 

1991; Jones et al., 1991; Godwin and Jones, 1991; Shaffer et al., 1991; Torbert et al., 

1994). These functions are used when more detailed functions are not yet known in our 

current knowledge. Examples of such functions are 0-1 index functions used to adjust 

the influences o f soil moisture and temperature on main N processes in N- 

SIMULATOR (Fig. 4-2.3 and Fig. 4-2.4). These function values were mainly derived 

from the CERES-N model (Jones and Kiniry, 1986), Torbert ‘93 model (Torbert et al., 

1994), SOYGRO model (Jones et al., 1991b), and NLEAP model (Shaffer et al., 1991). 

Unless indicated otherwise, the functions and coefficients of soil nitrogen 

transformations in N-SIMULATOR were mainly drawn from these models. In 

moisture adjustments (Fig. 4-2.3), the term PlantLmt is defined as the lower limit of 

plant extractable soil water content (LL in CERES-N model); DrainLmt refers to soil 

water content at the drained upper limit (DUL in CERES-N model); and SaturatLmt 

refers to the content at saturation (SAT in CERES-N model, Jones and Kiniry, 1986). 

N-SIMULATOR implements these concepts from the water balance module of 

CERES-N, which have been successfully validated (Jones and Kiniry, 1986; Lego wo, 

1987; Ritchie et al., 1989; Tsuji et al., 1994). This borrowing saves the time and effort 

in finding soil water coefficients and corresponded validation because CERES-N has 

accumulated many methods to estimate soil water coefficients. Soil nitrogen 

transformation rates are strongly affected by environmental factors such as soil 

moisture, temperature, and pH. Referring to Liebig’s “law of the minimum” (Liebig,
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1855), the most limiting factor among the factors plays a key role in restricting N 

transformation rates. The factor that most limits nitrogen transformation rates is 

selected using the following function:

Rate = SelectMin F',ê pera,ure> FpH- ■■■)■ Rate^^ [4-2.1]

where SelectMin is a function that returns the minimum of a list of terms. CERES-N 

model implements this approach in many processes (Godwin and Jones, 1991). The 

adjustment of other environmental factors will be discussed individually.

4-2.3. Urea Hydrolysis and Ammonia Volatilization

The sources of urea and ammonia and/or ammonium may be commercial 

fertilizers and organic wastes such as animal manures. When fertilizers and solid 

organic wastes are applied, N-SIMULATOR assumes they are uniformly incorporated 

into the soil surface layer (the major root zone) and accumulated in the pools o f urea 

and ammonium (Fig. 4-2.2). The two processes in N-SIMULATOR, urea hydrolysis 

and ammonia volatilization, begin when fertilizers or organic wastes are applied.

Urea Hydrolysis

Khan et al. (1986) modeled the processes of urea =» ammonium =* nitrate using 

first-order kinetic equations. To determine transformation rates for the nitrogen model, 

they conducted experiments on an Oxisol {clayey, kaolinitic, isohyperthermic Tropeptic 

Eutrustox, Wahiawa series). The model successfully fit the experimental data. Khan et 

al. noted that urea hydrolysis and other N transformation rates varied with 

environmental factors such as pH, temperature, and moisture. To relate the
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environmental factors to the rates, CERES-N model (Godwin and Jones, 1991) uses an 

equation to determine the maximum urea hydrolysis rate for each soil layer;

Rate^^  = - 1.12 +1.31C^^, + 0.203pH -0.155C „^,pH  [4-2.2a]

where is a maximum urea hydrolysis rate (day'), is the humic soil organic

carbon {%), and p H  is soil pH (HjO). This maximum urea hydrolysis rate was 

estimated from several laboratory studies (McGarity and M.G.Myers, 1967; Myers and 

McGarity, 1968; Tabatabai and Bremner, 1972; Zantua et al., 1977). The actual urea 

hydrolysis rate was derived from adjusting the maximum rate by soil temperature and 

moisture (Vleck and Carter, 1983). The urea hydrolysis rate in N-SIMULATOR is 

calculated by equation [4-2.2a]. The soil moisture and temperature influences on the 

urea hydrolysis rate are adjusted by equation [4-2.1] and the unification factors shown 

in Fig. 4-2.3 and Fig. 4-2.4.

Ammonia Volatilization

Ammonia volatilization loss is estimated when N fertilizers or organic wastes 

that contain ammonia (or ammonium) are applied. N-SIMULATOR uses the equations 

and coefficients used in N-BALANCE model (Yost et a l,  1997a) except for the 

maximum volatilization rate. Daily fraction of fertilizer volatilization, is 

calculated by

FVf,,, = Fvp„ ■ ■ Fv„,^ [4-2.2b]

where, Fvpf  ̂ is a fertilizer volatilization loss fraction due to high soil pH (0-1). Fv,̂ „,p 

refers to a fertilizer volatilization loss fraction due to soil temperature (0 - 1 ). 

means a volatilization coefficient of the application method (0 - 1 ). Fv„,^ is a maximum
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volatilization fraction for the worst application method/timing (0 - 1 ), which values are 

less than those in N-BALANCE model, because they are accounted for on a daily basis 

here while there is only one estimate for a whole cropping season in N-BALANCE 

model (Yost et a l ,  1997a). Based on the estimated ammonium content in the major 

root zone, N-SIMULATOR simulates the volatilization loss in the first 10 days after 

fertilizers or organic wastes that contain ammonia (ammonium) or urea is applied.

This is because approximately 90% of volatilization losses of fertilizer ammonia occur 

in first 10 to 15 days after the fertilizers are applied (Fox et al., 1996).

4-2.4. Mineralization and Immobilization

It is well established that nitrogen mineralization in soils is a biological 

decomposition process in which organic nitrogen is converted into inorganic forms. 

Immobilization refers to the biological conversion of inorganic nitrogen (NH^ and NO 3 ) 

into soil microbial tissue, reducing the amount of N available for immediate plant 

utilization (Fig. 4-2.2). Soil temperature and moisture are major factors controlling 

these processes. Since soil organic matter provides energy for the processes, the ratio 

of carbon to nitrogen (C/N) in soil organic matter determines the net effects of the two 

processes. In N-SIMULATOR, the mineralization (decomposition) o f organic nitrogen 

is divided into two processes: mineralization o f soil organic matter and decomposition 

of organic N waste materials such as animal manure (Fig. 4-2.2).

Mineralization of Soil Organic Matter

In the early 1980s, PAPPAN model successfully simulated mineralization- 

immobilization processes in annual pasture production systems (Seligman and Keulen,

C h a p t e r  A  D y n a m ic  N i t r o g e n  M o d e l  7 1



1981). The soil organic matter source in PAPPAN was divided into two pools: 1) fresh 

organic matter such as crop residues and green manure, and 2 ) humic or stable organic 

matter. Based on PAPPAN model, CERES-N constructed its mineralization- 

immobilization modules with many modifications (Godwin and Jones, 1991). For 

example, CERES-N separated fresh organic pool into three sub-pools: carbohydrate 

(20%), cellulose (70%), and lignin (10%). This modification probably improves the 

estimation o f denitrification in which soluble carbon is used. The CERES-N 

approaches o f mineralization-immobilization matched our goals, therefore, N- 

SIMULATOR inherited CERES-N functions and coefficients of mineralization- 

immobilization to simulate the mineralization-immobilization of soil organic matter. 

Decomposition of Organic Wastes

In N-SIMULATOR, organic wastes are categorized to three independent pools: 

( 1 ) crop residues and green manure, (2 ) concentrated organic wastes such as animal 

manure, and (3) irrigation with diluted wastes. Crop residues and green manure are 

allocated to the fresh pools of soil organic matter. When crop residues or green manure 

is added, the soil C/N ratio o f the surface layer changes. This change immediately 

affects soil mineralization-immobilization in the soil. When large amounts of crop 

residues with high C/N ratios are incorporated into soil, they cause a temporary 

shortage of inorganic nitrogen available to plants.

The second pool is designed for concentrated organic wastes, such as animal 

manure, that may not follow the linear mineralization rates. For this kind of organic
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materials, a first-order mineralization equation is employed in N-SIMULATOR to 

estimate their decomposition (Stanford and Smith, 1972):

N , = N / l - e - '“) [4-2.3a]

where N, is the cumulative amount of nitrogen mineralized at time t, is the initial 

organic nitrogen that is potentially mineralizable, and k is mineralization rate constant. 

Using equation [4-2.3a] with various k, N-SIMULATOR simulates several organic 

wastes in parallel with different mineralization rate constants. This provides 

alternatives for simulating applications o f multiple types of organic wastes during a 

cropping season.

For the irrigation with diluted organic wastes, mineralization rates may vary 

with the source of the waste. N-SIMULATOR reserves an independent pool in the first 

soil layer to store the organic N from waste irrigation. The daily mineralized NH 4  from 

this pool is estimated by

[4-2.3b]

where NH^ (kg N  ha ')  is ammonium decayed from the pool of organic N fi:om waste 

irrigation, F  and F  are soil moisture and temperature factors (Fig. 4-2.3 and

Fig. 4-2.4), K  is the daily mineralization rate, and N  (kg N  h a ‘)  is the pool of

organic N from waste irrigation in the first soil layer.

4-2.5. Nitrification and Denitrification

Nitrification is the oxidation of ammonium to nitrate while denitrification is the 

reduction of nitrate or nitrite to gaseous nitrogen such as NjO, NO, and Nj. 

Microorganisms play important roles in the two processes. Nitrification usually occurs
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under aerobic condition while denitrification take places under anaerobic conditions.

In addition to soil aeration, soil temperature and pH are important factors that limit 

these processes (Focht and Verstraete, 1977). CERES-N modified the Michaelis- 

Menten function described by McLaren (1970) to estimate nitrification rate

R o t e  fjjirif,cation ■
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Nitrification M in L im it '~ ^ lf^  [4-2.4]

where. F a c t o r is the minimum factor among factors of soil moisture, temperature, 

pH, and nitrification potential, (ppm) is the ammonium concentration and N^f,^ 

(kgN ha'') is ammonium content. The function [4-2.4] is used in N-SIMULATOR to 

calculate nitrification rates, but constant 40 in equation [4-2.4] was changed to a 

variable that users can use to calibrate for local conditions.

The basic denitrification functions and coefficients in the CERES-N model 

were adapted from the studies o f denitrification affected by irrigation frequency of a 

field soil (Rolston et al., 1980). Rolston et al. (1984) also contributed the functions 

and coefficients to the Torbert ‘93 model. The function to estimate a daily 

denitrification rate in N-SIMULATOR is adopted from CERES-N model:

Rate Jenitrifwaiion ~~ ^  F-j-g„p C5 Qyy2>/eCarAon [4-2.5]

where. Rate ĵ mtnfication is the denitrification rate (kgN h a ' day''), is soil nitrate 

content (kgN ha'').



4-2.6. Plant Uptake

Model objectives determine the methods of simulating soil N uptake by crops. 

For example, genetic coefficients are important for SOYGRO, CERES-Maize, and 

CERES-Wheat models (Ogoshi, 1995). This is because CERES models were designed 

to simulate crop phonological development, growth, and yield (Jones et a l,  1984). For 

instance, SOYGRO was a phenology model used to predict soybean growth and yield 

(Jones et al., 1991b). In CERES models, the process of plant N uptake was in 

connection with genetic coefficients o f the plant species. The process was controlled 

by the differences between critical N concentration in plant tissue (related to plant 

phonological age) and current actual plant N concentration. In other words, CERES 

models use phonological rather than chronological age to determine crop uptake 

nitrogen (Godwin et al., 1984).

N-SIMULATOR is not a crop growth model with the same purposes as above 

models. N-SIMULATOR is only designed to describe how much N a local crop can 

actually accumulate under local conditions. This is estimated from crop maximum 

uptake rates under local conditions, adjusted by environmental factors rather than 

genetic coefficients. The maximum yield here refers to the maximum potential yield 

without management constraint. The crop maximum uptake rates are derived from 

local crop plateau yields under ideal conditions, or derived from successful crop growth 

models (e.g., CERES-Maize for com). Therefore, the actual crop yield associated with 

N uptake in N-SIMULATOR varies with changes of environmental factors and 

management practices. However, the actual yields will not exceed the maximum
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potential yields in the model but could exceed the maximum recorded yields in the 

region. In other words, N-SIMULATOR cannot be used to predict a crop yield without 

knowing the maximum regional yield. In the implementation of N-SIMULATOR, the 

amount o f N uptake is determined by the balance of plant demand N and soil N supply 

potential.

Plant Demand Nitrogen and Crop Development

The plant demand of nitrogen varies with the crop development stages.

Nitrogen is usually taken up at a greater rate during the vegetative period of growth for 

many agricultural crops (Jones et a l,  1984; Rendig and Taylor, 1989; Black, 1993). 

Growth indexes such as N uptake rates (related to total biomass), rooting depths, and 

leaf area indexes are used to characterize crop development with time. The growth 

curves (growth indexes versus cropping days) can be used to simulate dynamics o f crop 

N uptake and water movement (See section 4-3.3) in soil-plant systems. The uptake 

curves are also referred to as nutrient-absorption curves (Black, 1993). N- 

SIMULATOR applies the curves o f N-uptake rate and rooting depth during a cropping 

season to estimate N absorbed by crops (Fig. 4-2.5). The curves are useful for 

dynamically tracing crop N uptake in simulating crops that have stable biological 

characteristics in local conditions. There are three methods to obtain N-uptake and 

rooting curves for a crop: (1) Observation in local experiments or fields. This is the 

preferred method. (2) Extract from literature or modeling results (Jones et al., 1991a). 

This method works well in many cases (Ling, 1996) if the simulated crops have local 

data to describe the curves. (3) Use a normalized (or hypothetical) curve as default
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(Fig. 4-2.5). NLEAP model used a normalized N-uptake curve to estimate crop 

nitrogen demand (Shaffer et al., 1991). The advantage of this approach is that the 

model can be used to simulate N absorption by most plants without their genetic 

coefficients. Using normalized curves can produce acceptable estimates in many crops 

if  there are no observed curves (Fig. 4-2.5).

Using the nitrogen-uptake curve, N-SIMULATOR estimates the daily plant 

demand for nitrogen ftom a daily ftaction of the potential maximum N uptake rate:

P̂lanlDemand ~ Daily ' ^MaxUplake [4-2.6]

where, is total maximum potential N uptake of a crop, is the daily

fraction of total uptake N and can be derived ftom the plant nitrogen-uptake curve 

shown in Fig. 4-2.5.

Soil Nitrogen Supply Potential

Soil N supply potential is a measurement of the soil’s capacity to provide N for 

a crop. In the implementation of N-SIMULATOR, soil N supply potential is used to 

estimate how much N a crop can absorb from soil at a certain concentration of soil 

inorganic N. Like the rate o f plant nutrient absorption, soil N supply potential is a 

function of concentration of soil inorganic nitrogen (NH4  and NO 3 ) and the capacity of 

plant uptake. The relationship between plant nutrient absorption rate and nutrient 

concentration supplied is often described by the curve of the Michaelis-Menten kinetic 

equation (Rendig and Taylor, 1989). The CERES-N model uses exponential equations 

to describe availabilities of inorganic N for crops (Godwin and Jones, 1991). In the 

common range of field concentration of inorganic nitrogen (Cahn et al., 1992), this
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.̂■mpply ~ ^^ASupply ^OlSupply

exponential curve may fit a portion of the curve of Michaelis-Menten kinetic equation 

(Fig. 4-2.6). This idea has been drawn from CERES-N to express soil N supply 

potential in N-SIMULATOR;

[4-2.7]

(1 '■ ■) [4-2.8a]

[4-2.8b]

where, (kgN h a ')  is soil N supply potential, a sum of ammonium supply potential 

NĤ Supply 3 nd nitrate supply potential blÔ suppiy ^nh4 is soil ammonium

content. (kgN ha ') is soil nitrate content. The coefficient k represents the crop 

capacity to absorb inorganic N. The variable C ’ (ppm) is the concentration of inorganic

‘ Ŝupply 

^SSupply

N H / or NO3 ■ Concentration (ppm)

Fig. 4-2.6. Comparison o f functions of inorganic nitrogen (NH^ and NO 3 )
supply potential for crop uptake. Exponential function can predict N supply 
potential that is close to the Michaelis-Menten function prediction.



N available to the crop, which is estimated from the difference between the 

concentration of soil inorganic N and the minimum concentration that the crop can 

absorb, C„,„. For ammonium, C ’ = For nitrate, C ’ = - C„,„

Equations [4-2.8 a] and [4-2.8 b] illustrate that soil N supply potential is a function of 

soil inorganic N concentration and crop species because the coefficient k  is associated 

with plant variety.

Nitrogen Uptake by Plants

After plant N demand and soil N supply potential are determined, N- 

SIMULATOR calculates the ratio of soil N supply potential to the plant demand N

~ [4-2.9]

where, is calculated by equation [4-2.7] and is estimated from equation

[4-2.6]. The Ratios,,ppiyDe„,and values range from 0 to 1. Finally the amount o f N uptake 

by a plant in a simulation day, Nyp, î ,̂ can be estimated by

^Uptake ~ 'Ratiof;„ppiyP),,„̂ „j ■ N , [4-2.10]

where,  ̂is soil water adjustment factor in layer i (Fig. 4-2.3). , is a root

density fraction in the layer i on a simulation day.  ̂is the inorganic N content in 

soil layer /, which represents ammonium (kgN ha ')) or nitrate

(̂ morg, , = fjo3 (^gN ha'')). Equation [4-2.10] shows that N-SIMULATOR

considers the amount of N absorbed by a crop from a soil layer as a function of the root 

density, soil moisture and inorganic N content in the layer, and the ratio of the N supply 

to the N demand.
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Foliar Nitrogen Uptake

In addition to plant roots, leaves can adsorb N that is sprayed on their surface. 

N-SIMULATOR reserves an independent pool outside a plant surface to store N from 

foliar fertilization. The daily N adsorbed by plant leaves from this pool, (kgN ha 

'), is estimated by

F!Foliar ~ FLI • K  po,iar% ' F  ^ DoyS FotiarAdsorb [4-2.11a]

where K  poPar% is maximum percentage o f N fertilizer that leaves can adsorb from a total 

N fertilizer sprayed in one application. O^sF h a ‘)  is the total N fertilizer sprayed 

in an application. Days poUarAdmrb is number of days that plant leaves can adsorb all N 

remaining on their surface. FLI is the fraction of light intercepted by a plant. N- 

SIMULATOR uses this fraction to estimate a fraction of sprayed fertilizer that plant 

leaves can capture, assuming that both fractions have a linear relationship. FLI is 

calculated by (Zhang, 1992)

F L I^  1 [4-2.1 lb] 

where LAI is a leaf area index, k is light extinction coefficient. Fleisch (1988) 

reported a of 0.56 for a pineapple canopy. With the regression of three pineapple 

plantings, Zhang (1992) reported a A: of 0.58-0.59. A A: of 0.59 will be used to simulate 

a pineapple dataset from Hawaii (See section 4-5.5).

4-3. Water Movement Modules

Nitrogen solutes (NĤ "", NOj', and urea in N-SIMULATOR) are highly water- 

soluble and mobile in soils. They move with water flux within soils. A dynamic N
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model must simulate soil water movement if nitrogen leaching behavior is considered. 

One dimension movement, in the vertical direction, is simulated in N-SIMULATOR.

4-3.1. W ater Balance

The daily water balance at the soil surface is calculated in N-SIMULATOR 

using the following general equation (Jury et a l ,  1991):

P + I - R  = E T  + D  + a W  [4-3.1]

where, the components are precipitation P, irrigation /, runoff R, evapotranspiration ET, 

drainage or deep percolation D , and water storage change a W  in the soil profile. Net 

water input to the system of N-SIMULATOR is the left-hand side o f equation [4-3.1] 

on a daily basis (Refer to Fig. 4-1.2). ET  is a sum of the water output from the soil 

surface (evaporation) and plant (transpiration). Drainage is accounted for as water 

output to the below-root zone. aW  is estimated from the difference of soil water 

content over a day. In the water process simulation, N-SIMULATOR first checks 

whether precipitation and irrigation cause runoff. Second it simulates the water 

movement between soil layers of the soil profile. And finally it calculates the water 

escaping from soil due to evapotranspiration. Nitrogen solutes (NH 4 ’̂ , NOj", and urea) 

movement will be simulated with water movement between soil layers.

4-3.2. Runoff

Precipitation and irrigation are daily inputs in N-SIMULATOR. Surface runoff 

in N-SIMULATOR is simply used to estimate net water input into a soil profile, not to 

estimate soil erosion as in the EPIC model (Williams, 1991). Therefore, daily runoff
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from rainfall and irrigation is calculated by SCS curve number equation (Soil 

Conservation Service, 1972):
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R+Q.^-s

where, Q is the daily runoff volume (mm), R is the daily rainfall (mm), and 5  is a 

retention parameter. In N-SIMULATOR R refers to the sum of daily rainfall and 

irrigation. The retention parameter s can be calculated from soil runoff Curve Number 

{CN) by SCS equation (Soil Conservation Service, 1972):

s = 254 '( 1 0 0 /C N - 1) [4-3.3]

Since s is also affected by soils, land use, management, and slope, the average curve 

number CN2 (moisture condition 2) was associated with these factors by SCS (Table 4- 

3.1 and Table 4-3.2). The actual curve number used in N-SIMULATOR is adjusted by 

soil moisture using the equations and coefficients used in the CERES model (Godwin 

e ta i ,  1984).

4-3.3. Infiltration and Redistribution

Infiltration refers to water entry and vertical downward movement from a soil 

surface (Jury et al., 1991). Redistribution means the continued movement of water 

through a soil profile after irrigation has ceased at the soil surface (Jury et al., 1991). 

Infiltration was one of the earliest processes that was modeled (Klute, 1952) and many 

investigations of soil-plant models have included this process since then (Hanks and 

Bowers, 1962; Hanks et al., 1969; Nimah and Hanks, 1973; Hutson and Wagenet,

1991; Jones and Kiniry, 1986). The CERES-N approach for the infiltration-
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Table 4-3.1. R unoff curve num bers (CN2) for hydrologic soil-cover 

complexes t

Land Use or Treatment or Hydrologic Hydraulic Soil Group

Cover Practice Condition A B C D

Row crops Straight row Poor 72 81 88 91

Straight row Good 67 78 85 89

Contoured Poor 70 79 84 88

Contoured Good 65 75 82 86

Terraced Poor 66 74 80 82

Terraced Good 62 71 78 81
t  For antecedent rainfall condition II, and la = 0.2s (Soil Conservation Service, 1972).

Table 4-3.2. Soil groups used to estimate the runoff curve num ber (CN2) f

Soil
Group

Description

A Lowest R unoff Potential. Includes sands with very little silt and clay,
also deep, rapidly permeable loess.

B M oderately Low Runoff Potential. Mostly sandy soils less deep than A,
and loess less deep or less aggregated than A, but the group as a whole 
has above-average infiltration after thorough wetting.

C M oderately high Runoff Potential. Comprises shallow soils ans soils
containing considerable clay and colloids, though less than those of group 
D. The group has below-average infiltration after presaturation.

D Highest Runoff Potential. Includes mostly clays of high swelling
percent, but the group also includes some shallow soils with nearly 
impermeable sub-horizons near the surface, 

t  (Soil Conservation Service, 1972)



redistribution requires fewer soil hydraulic parameters than others and predicts 

acceptable results (Legowo, 1987). N-SIMULATOR adapted the CERES-N’s methods 

(Jones and Kiniry, 1986) to model the infiltration-redistribution processes. The basic 

concepts of this approach are described here.

The amount o f water that each soil layer can hold, Waterca„Hoid̂  is calculated by 

W a t e r = W a t e r - W a t e r [4-3.4] 

where Water saturated is the soil water content at saturation {SaturatLmt, refer to Fig. 4- 

2.3). Water^ îoai is the current soil water content. If the amount of water coming into a 

layer is less than or equal to Waterca„Hoid’ W a t e r of this layer is updated by the 

amount of water entered. If the Water^ ,̂aai is less than the water content at the drained 

upper limit {DrainLmt, refer to Fig. 4-2.3), no drainage occurs. Otherwise, the daily 

unsaturated drainage from the layer is calculated:

Drairiy„^, F-Drain ( W a t e r ~  W a t e r [4-3.5] 

where, is a drainage coefficient (unitless) for the whole-profile. Ritchie et al. 

(1989) provided a simple method to estimate this coefficient. If the amount of water 

coming into a layer is greater than the Water,sannoid̂  the water in excess of Water,̂ anHoid is 

assumed to be saturated flow and would pass to the layer below and then unsaturated 

flow is followed. This “gravity-drainage” is probably the major soil water movement 

in N-SIMULATOR for upland cropping. When soil moisture is between PlantLmt (the 

low limit of plant extractable soil water content) and DrainLmt (the soil water content 

at drained upper limit), matric-flow may occur due to the difference total soil water 

potential between soil layers. Differing from drainage flow, matric-flow may flow
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upward if the total soil water potential of an upper-layer is lower than that of the 

immediate lower-layer. However, this flow might have a very small influence on total 

water movement in a cropping season. In our preliminary simulation experiments 

using a procedure ‘’̂ M atricPotentialF low"  drawn from CERES-N model (Jones and 

Kiniry, 1986), the matric-flow was usually less than 1% of gravity-drainage. To speed 

the model processes, the matric-flow was not simulated in the current version o f N- 

SIMULATOR.

4-3.4. Evapotranspiration

Since it is difficult to distinguish water vapor produced by evaporation (direct 

evaporation from the soil surface) and transpiration (evaporation through the plant) 

from vegetated lands, Evapotranspiration (ET), is used to describe the total process of 

water transfer into atmosphere from vegetated land surfaces (Rosenberg e t a l., 1983). 

N-SIMULATOR uses ET to estimate the total water loss from the soil surface and the 

plant during a cropping season. Many models have successfully simulated ET 

according to a review by Molz (1981). FAO (1986) suggested a simple method, using 

crop coefficient to estimate the evapotranspiration of a disease-free crop growth in 

large fields under optimum soil water and fertility conditions and achieving fiill 

production potential in the given growing environment. K„ is calculated from the ratio 

of maximum crop evapotranspiration ET^ to potential evapotranspiration ETp.

K,, = E T ,/E T ^  [4-3.6]

Potential evapotranspiration ETp is defined as the quantity of water evaporated and 

transpired by a short and uniform canopy of grass for which there is no water constraint
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(Penman, 1948). Although actual ET is determined by meteorological, plant, and soil 

factors, potential evapotranspiration is controlled by climate and varies as a function o f 

a season. In other words, potential evapotranspiration is independent from individual 

water events during a cropping season (Fig. 4-3.1). Therefore, weekly or monthly 

potential evapotranspiration is selected as input to calculate ET in N-SIMULATOR. 

The Penman formula (Penman, 1948) has been widely applied by FAO in estimating 

potential evapotranspiration. However, the data observed from the “Class A” 

evaporation pan has been suggested for modeling specific local conditions (I-Pai Wu, 

Department o f Biosystems Engineering, University of Hawaii at Manoa, personal

E T , -----------------

ET„------------ Rain

Fig. 4-3.1. The relations between potential ETp, maximal ET„,, and actual ET  ̂
evapotranspiration during a cropping season. Source; Rosenberg et a/., 1983.



communication, 1996). FAO (1986) provided a relation to estimate ETp from “Class 

A” pan data:

ETp = K ■Evaporation.-aa.sA-pan [4-3.7]

where K  varies from 0.8 in humid tropics to 0.7 in semiarid areas, 0.55-0.65 in desert 

regions, and 0.9 in temperate areas with cool winters (FAO, 1986).

After the potential evapotranspiration is determined, the second step is to 

estimate actual ET. Crop cover is one o f the most influential factors for ET. Ritchie 

and Burnett (1971) expressed transpiration T as a function of leaf area index LAI:

T  = ETp (-0.2J +0.70 ■ L A I 0.1 <LAI <2.7 [4-3.8]

Kristensen (1974) found that the ratio of ET to ETp was a function of leaf area index 

LAI and approached unity at LAI of about 3 for barley, sugar beets, and grass (Fig. 4- 

3.2). We employed a segment function to fit Kristensen’s data to calculate ET from 

ETp (Fig. 4-3.2):

E T ,,^ , = (K ^, + K ^ETp  [4-3.9]

where is the coefficient of ETp which also is a function o f LAI as follows:

Ki^, = 0 . 4 5 -LAI 0 < L A I < 1

=  0.325 + 0.125 -LAI 1 <LAI  < 4

Kp^, = 0.85 4 <LAI

Kg is the base coefficient of ETp when there is no vegetative cover or when LAI is equal 

to 0. Kg is mainly associated with soil evaporation and its values are about 0.30 - 0.35
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Leaf area index

Fig. 4-3.2. Ratio o f actual to potential evapotranspiration ET/ETp 
as a segment function of leaf area index (Redrawn from Kristensen, 
1974, Nordic Hydrology 5:173-182).
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Fig. 4-3.3. Leaf Area Index as a function of plant growth stages. 
Sources: Com (Bowen et al., 1993), CERES-Maize simulation; 
Soybean (Jones et a l ,  1984), SOYGRO simulation. Hypothetical.



in many situations (Kristensen, 1974; FAO, 1986). Fig. 4-3.3 shows examples o f com 

and soybean LAI-curves during a cropping season. Similar to N-uptake curves, 

measured LAI-curves, those cited in the literature, or normalized curves can be used in 

N-SIMULATOR.

Finally the soil water content decrease in a soil layer due to ET is calculated 

using root density distribution:

AWater, = - r  ET^cuai [4-3.10]

where hWater^ is the change of soil moisture during a simulation day in the layer /, 

ErootDensity. i IS thc fractiou of root density in the layer /.

4-3,5. Nitrogen Movement with Water

Nitrogen movement with soil water and across soil layers is an important 

process in N models associated with crop uptake and N leaching. Since N H / and NOj' 

are not electrically neutral in soil solution, their movement with soil solution may not 

be considered as a “free-move” as is urea. The retardation processes o f ammonium and 

nitrate should be included in the model.

A m m onium  and  N itra te  R etardation

A simple linear equation is usually used to describe the chemical adsorption 

isotherm in soil solution systems:

S  = K - C  [4-3.11]

where, C  is the chemical concentration in the liquid phase and S  is the chemical 

concentration in the adsorbed phase, adsorption coefficient K  is the slope of the S-C  

linear isotherm. This linear equation can be easily inserted into other functions to
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model the movement o f and NOj' with soil solution. The LEACHN model 

(Hutson and Wagenet, 1991) consists of numerical solutions o f Richards Equation for 

water flow in unsaturated soils and the convection-dispersion equation (CDE) for 

chemical transport. For an adsorbing and degrading chemical subject to plant uptake, 

the CDE is expressed as:

dt at dz dz

where s and c are related by the sorption isotherm [4-3.11]. Ammonium adsorption 

was considered in many N models in temperate and tropical zones (Khan et al., 1981; 

Hutson and Wagenet, 1991; Torbert et al., 1994). CERES-N model even assumed 

ammonium not to be transported across soil layers (Godwin and Jones, 1991).

Bowen et al. (1993) found nitrate adsorption would greatly affect nitrate 

movement in a soil profile when they evaluated CERES-Maize with measured data 

from a series o f field experiments on an Oxisol in central Brazil from 1984 through 

1987. Without considering nitrate retention, CERES-Maize failed to predict the 

amount of inorganic N present in the soil profile and N uptake by maize (Fig. 4-3.4).

To determine whether the retardation of nitrate leaching could be quantified by nitrate 

adsorption, they modified the model to account for a nitrate adsorption coefficient 

based on Wild's (1981) retardation factor:

Vp = l + K ( p / d )  [4-3.13]

where Vp is the number of pore volumes of water required to displace the nitrate 

through the soil profile, K  is the adsorption coefficient, p  = bulk density, and 6  =

C h a p t e r  A  D y n a m i c  N i t r o g e n  M o d e l  9 2



C h a p t e r  A D y n a m i c  N i t r o g e n  M o d e l 9 3

Fig, 4-3.4. Comparison of observed N uptake by maize with the CERES-Maize 
model prediction when accounting for nitrate retention (Modified) and not 
accounting for nitrate retention (Original). Source; Bowen et. a/., 1993.

DAYS AFTER INCORPORATION

Fig. 4-3.5. Nitrate adsorption coefficient K improved CERES-Maize model in 
predicting inorganic N in the subsoil. Source; Bowen et al., 1993.
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volumetric water content. Bowen et al. supposed that the nitrate that can be moved 

from one layer to the next layer is only the fraction of total nitrate that is in solution NS\ 

NS = 1 /Vp = 1 /  [1 + K (p/d)]  [4-3.14]

This modification o f the model with nitrate adsorption greatly improved CERES-Maize 

model in predicting inorganic N in the soil profile and N uptake by the plant (Fig. 4- 

3.4, Fig. 4-3.5). With a resin-sand mixture as the reference system, Wong et al. (1990) 

measured the retardation in nitrate leaching in laboratory columns of repacked tropical 

soils from South America, Africa and South-East Asia (Table 4-3.3). The experimental 

results showed the delay of nitrate leaching as function o f soil adsorption capability (an 

AEC measurement). A soil with delay value of 4 indicates that 4 pore volumes of

Table 4-3.3. Measured nitrate leaching retardation of tropical soils (Wong et 
al., 1990).

Soil Country Depth
cm

pH
1 : 1  H2 O

AEC
c m o l , . / k g  p o r e

Delay 
volume

Alfisol Brazil Subsoil 5.4 0.67 5.2
Oxisol Malaysia 35-50 5.1 1.09 4.9
Oxisol Malaysia 20-35 4.7 0.84 4.4
Inceptisol Colombia 40-60 5.5 1.74 4 .1
Oxisol Brazil 80-100 5.2 0.29 2.7
Oxisol Brazil 60-80 5.0 0.22 2.3
Oxisol Malaysia 0-20 4.3 0.20 1.8
Oxisol Kenya 45-68 4 . 9 0.29 2.1
Oxisol Brazil 80-100 4.2 0.10 1.5
Ultisol Cameroon 40-60 5.9 0.10 1.5
Oxisol Malaysia 35-50 4.9 0.23 1.6
Ultisol Ivory Coast Subsoil 4.8 0.06 1.5
Ultisol Nigeria 47-70 4.5 0.06 1.7
Inceptisol Colombia 60-100 6.1 0.18 1.7
Oxisol Brazil Subsoil 6.3 0.03 1.3
Ultisol Thailand 80 5.7 0.01 1.0
Ultisol Thailand 80 5.7 0.00 1.0
Ultisol Bolivia 0-5 5.6 0.00 1.0



water were required to displace the same amount of nitrate through the soil profile than 

those through a soil without nitrate delay (delay value = 1). Experiments on tropical 

soils in Hawaii and other investigations have confirmed the retardation of nitrate 

leaching in acid tropical soils due to nitrate adsorption (Wetselaar, 1962; 

Balasubramanian et a l,  1973; Wong et a l,  1987; Deenik, 1997). Therefore, the 

adsorption of ammonium and nitrate are coded in N-SIMULATOR and are described 

below.

Nitrogen Solutes Movement Across Soil Layers

Nitrogen solutes that can move across soil layers with water flow in N- 

SIMULATOR are NH 4 ,̂ NOj', and urea. When a volume of water flows from a layer 

to the next immediate layer, the amount of the N solutes moved with water is calculated 

in N-SIMULATOR:
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K -N -VJ,, _ total *^Jlux
^n .oyed  = - ^ --------7 iv ~ \  ^4-3.15]

^  layer

where, (kg N  ■ ha '') is the amount of N solute (usually NH 4 "̂, NOj', and urea) to

be moved from a layer to the next layer. (kgN  - ha '') is the total amount o f N 

solute in the layer. 6 (unitless) is volumetric water content of the layer after 

volume of water is removed. (cm) is the thickness of the layer and (cm) refers 

to the volume of water to flow to the next layer (one dimension unit because of =

A 6  p  (unitless) is soil bulk density of the layer and K j (unitless) is retardation

factor o f the N solute. is calculated from the N solute adsorption coefficient K\
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l+K- 2--------  [4-3 161

In equation [4-3.15] and [4-3.16], is a vector because soil flow can move vertically 

in either a downward or an upward direction. The urea adsorption coefficient is 

assigned to zero. The ammonium adsorption coefficient can be estimated from soil 

CEC (Uehara, 1978; Uehara and Gillman, 1980; Uehara and Gavin, 1981). The nitrate 

adsorption coefficient can be estimated from soil AEG or soil delta pH and other soil 

properties (Uehara, 1978; Uehara and Gillman, 1980; Uehara and Gavin, 1981; Wong 

et al., 1990; Deenik, 1997). The N solutes that migrate into the below-root zone 

represent the potential leaching portion because there are no crop roots there to absorb 

them, in assumptions of N-SIMULATOR. This portion o f N solute (mostly nitrate) 

may not leach to the groundwater if  the following crops have deeper root systems and 

no heavy water events occur during the cropping season. However, this topic is beyond 

the system boundaries of N-SIMULATOR.

4-4. Model Structure

N-SIMULATOR uses a mass balance approach to model the soil-plant systems, 

in which nitrogen and water are divided into various pools. Nitrogen pools include the 

pools o f N in fertilizer, plant, atmosphere, and soil. N pools in soil are further divided 

into the forms of urea, ammonium, nitrate, and organic matter (fresh and humic, refer 

to Fig. 4-2.2). These pools are placed in different soil layers. The mass (N and water



in the model) is transformed and transported between pools with time (a day is the 

minimum time interval) during a simulation cropping season. The total mass in the 

internal and external systems does not change in quantity at any time although the mass 

could be in various forms and in different pools. N-SIMULATOR was preliminarily 

designed to serve for Management-Oriented Modeling (MOM, see chapter 5) with 

database support. Therefore, N-SIMULATOR is called by MOM or a main program to 

run and ends with returning to MOM or the main program. We generally discuss the 

model structure here. Detailed information can be obtained in the source code in the 

Appendix, which were written in meaningful words. The flow chart of N- 

SIMULATOR major procedures is shown in Fig. 4-4.1. We briefly describe the main 

procedures below.

•  Initialization

When a running session is launched, N-SIMULATOR first reads the 

initial soil data o f the root zone from databases. The data pertaining to each 

root zone include layer thickness, BD, soil water content at PlantLmt,

DrainLmt, and SaturatLmt, actual soil water content, pH, root density, nutrient 

contents o f ammonium, nitrate, urea, and organic carbon. Then the model runs 

in a daily loop which is nested in a weekly loop for a cropping season. The 

nested weekly loop is needed because of three considerations. 1) A weekly 

mass balance check will guarantee the precision of the simulation while not 

significantly slowing the simulation speed. 2) A week is an appropriate time
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unit for the model’s work on nitrogen within-season management (See Chapter 

6 ). 3) Weekly inputs could balance the 1/0 time and memory requirements.

•  Convert weekly data

At the beginning of a week loop N-SIMULATOR first reads crop and 

weather data o f the week which are based on daily and weekly means. The 

daily data of rainfall, irrigation, and fertilizer are input at the beginning o f a 

week and are stored in temporary buffers to be used in the daily loop. This will 

avoid daily inputs that slow simulation while saving memory resources because 

o f not storing the whole season data in arrays. The reason to require very fast 

simulation will be discussed in Management-Oriented Modeling (See Chapter 

5). Weekly mean data, which include crop growth curve data (N-uptake rate, 

rooting depth, and leaf area index) and ET value of “Class A” pan, are 

converted into daily fractions to be used in daily simulation except for weekly 

mean air temperature. The conversion assumes that daily change rate (increase 

or decrease) between two weeks is linear.

•  W ate r processes

Within a daily loop, N-SIMULATOR first evaluates water processes. If 

a daily water event (rainfall and/or irrigation) occurs, the Runoff procedure is 

called to calculate the amounts of runoff and infiltration. Then the amount of 

infiltration is passed to the Infiltration-Redistribution procedure to examine the 

water movement between soil layers. If N-SIMULATOR finds any water flows 

across soil layers, subroutine N  MoveThroughLayers is called to transport N
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solutes (ammonium, nitrate and urea) between the layers with water flows and 

update the N pools of ammonium, nitrate and urea. Finally Evapotranspiration 

procedure determines the amount of water loss due to evapotranspiration 

associated with the current leaf area index.

•  Nitrogen processes

After soil water processes have been evaluated, N-SIMULATOR checks 

daily fertilization situations. The pools of ammonium, nitrate, urea, and organic 

N in top soil layer (the major root zone) are updated if  the corresponding 

fertilizer materials are applied. Then the procedures of Ammonia Volatilization 

and Animal Manure Decay are executed. The above processes are assumed to 

occur only in the major root zone. Next, N-SIMULATOR examines the 

processes that occur in each soil layer. The main processes o f this kind are 

nitrogen transformations which include UreaHydrolysis, Mineralization- 

Immobilization, Nitrification, and Denitrification. The N processes associated 

with plant growth are subsequently evaluated. Root Distribution procedure is 

called to update root densities in soil layers, and then root densities are passed 

to Plant Nitrogen Uptake procedure to estimate the amount of N-uptake in each 

soil layer.

•  O utpu t and Mass balance check

Although N-SIMULATOR has an output file called Trace.DB which is 

used to output any pool results for user’s specific purposes, the default routines 

are daily outputs including pools of nitrate, ammonium, and soil water content
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in each soil layer, nitrate leached, N uptake by the plant, and runoff. These 

pools can be set to output daily or on any weekday. The outputs are saved in a 

working file called Simu_Out.DB and are retrieved and to be graphically 

displayed by the Graph procedure. The file Simu_Out.DB can be directly 

retrieved by Paradox for Windows or Quattro Pro for Windows (version 5.0 or 

higher) for other specific uses.

Before the next week’s simulation begins, N-SIMULATOR checks mass 

(N and water) balances of this week. A week accumulated nitrogen balance 

error ERR^ is calculated by:

ERR^(kgNha-‘)  = + [4-4.1]

where a N  is total N changes in the root zone. is N input from fertilizers 

and organic wastes. is N uptake by plant. N2O, N/̂ ach’ ^vou N losses of

denitrification, leaching, and volatilization. A week accumulated water balance 

error ERR^,^^ is calculated by:

ERR,,^,^, (mm) = \ a W - 1 + ET + D\ [4-4.2]

where a  IV is total soil water content changes in the root zone. I  is infiltration, 

ET  is water loss of evapotranspiration, and D is total drainage from the root 

zone into the below-root zone. If the accumulated balance error, either o f N or 

of water, is greater than 10 N-SIMULATOR prints a warning message to the 

current log file.
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4-5. Model Tests

The dynamic model, N-SIMULATOR, has been tested with eleven datasets 

from Hawaii and Brazil, to evaluate the accuracy and limitations in predicting nitrogen 

uptake by crops, nitrogen remaining in soil profiles, and nitrate leaching out o f the root 

zone. The data were collected from experiments of N fertilizers and green manure in 

field, and an intensive and large scale field sampling in a watershed. The simulation 

cropping periods vary from 110 days to 400 days. The simulation soil profiles vary 

from 3 to 18 layers. All datasets and corresponding model parameters for the tests are 

available in the Appendix with electronic format on floppies and ready to run.

4-5.1. Maize, Legume Green Manure Experiment, Brazil

The dataset was described in section 2-4.1. Soil property coefficients o f the 

dataset used in CERES-Maize were adapted to N-SIMULATOR. The crop capacity to 

absorb soil inorganic N {k coefficient in equation [4-2.8 a] and equation [4-2.8 b]) was 

calibrated with trial-and-error method on the control dataset. The GM treatment 

dataset was used to validate the model with the same model parameters.

Based on available soil data of the experiments, the soil profile was divided into 

six layers in depths 0 -1 2 0  cm. The simulated total inorganic nitrogen in the root zone 

(0-90 cm) was compared with the observed in Fig. 4-5.1 and the simulated and the 

observed uptake N in maize top biomass were compared in Fig. 4-5.2. For the 

inorganic nitrogen contents in individual soil layers, the simulated and observed were 

compared in Fig. 4-5.3a and Fig. 4-5.3b. The results show that the simulated trend o f 

nitrate changes in upper soil layers agrees with the observed while the model predicted

C h a p t e r  A  D y n a m ic  N i t r o g e n  M o d e l  1 0 2



C h a p t e r  A D y n a m ic  N i t r o g e n  M o d e l 1 0 3

O)

o»o
'c
03
Po

Days after planting

Fig. 4-5.1. N-SIMULATOR simulated and the observed total inorganic 
N in the soil profile (0-90 cm) of the com fields, Brazil. Calibration for 
no green manure and validation for mucuna green manure.
Data Source: Bowen et a l,  1993.
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Fig. 4-5.2. N-SIMULATOR simulated and the observed com uptake 
N of top biomass in the experiments, Brazil. Calibration for no green 
manure and validation for mucuna green manure.
Data Source: Bowen .et a l,  1993.
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Fig. 4-5.3a. N-SIMULATOR simulated and the observed soil inorganic 
N in the soil profile o f a com field without green manure, Brazil. Calibration 
results. Data Source; Bowen et a l,  1993.
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Fig. 4-5.3b. N-SIMULATOR simulated and the observed soil inorganic 
N in the soil profile of a com field without green manure, Brazil. Calibration 
results. Data Source: Bowen ef a/., 1993.



more precise nitrate contents in low soil layers. Predicted total inorganic nitrogen in 

the soil profile (Fig. 4-5.1) illustrates a better fit to the observed data than those 

predicted in individual layers (Fig. 4-5.3a and Fig. 4-5.3b). The 1:1 line scatter graph 

of the simulated and measured soil inorganic N was shown in Fig. 4-5.4a and the 1:1 

line graph o f the maize top biomass was shown in Fig. 4-5.4b. The model predicted 

slightly higher soil inorganic N than that observed while it predicted slightly lower the 

crop N than that observed, implying that simulated total N in the soil-crop system is 

quite similar to measured total N in the soil-plant system. The accuracy o f the model in 

predicting soil inorganic nitrogen and maize uptake N of top biomass was acceptable 

for the purposes o f the model developed in this study.

4-5.2. Maize, N Fertilizer Experiment, Hawaii

The datasets were used for validating CERES-Maize model (See section 2-4.2). 

Soil coefficients used for CERES-Maize were adapted to N-SIMULATOR. A trial- 

and-error method was employed to calibrate the maize plateau yield and the crop 

capacity o f uptake soil inorganic N on 51 kg N ha"' treatment for N-SIMULATOR. 

Tlien the coefficients and parameters were used to validate the model on 201 kg N ha'* 

treatment.

The datasets were collected for modeling maize growth and yield and there was 

no soil N measured during cropping except for the initial soil condition. The nitrate 

content in the soil profile simulated by CERES-Maize was used to compare with that 

N-SIMULATOR predicted. Fig. 4-5.5a presents soil nitrate simulated by CERES- 

Maize during the cropping at 51 kg N ha'* applied and Fig. 4-5.5b shows those
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Fig. 4-5.4a. 1:1 line comparison of N-SIMULATOR simulated and the 
observed soil inorganic N (0-90 cm) of the com fields vrith mucuna green 
manure or no residue, Brazil. Calibration and validation results.
Data Source: Bowen et a/., 1993.
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Fig. 4-5.4b. 1:1 line comparison o f N-SIMULATOR simulated and the 
observed maize uptake N of top biomass in the experiments with mucuna 
green manure or no residue, Brazil. Calibration and validation results. 
Data Source: Bowen et a/., 1993.
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Fig. 4-5.5a. CERES-Maize simulated NO 3 -N in the soil profile of a com
(X304C) field, Wahiawa soil, Hawaii. 51 kg N ha'* in three applications. 
Data Source: Benchmark Soils Project, University of Hawaii.
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simulated by N-SIMULATOR. The N-SIMULATOR’s prediction showed good 

agreements with the CERES-Maize’s simulation in two subsoil layers (30-60, 60-90 

cm). In simulating top soil layer (0-30 cm), a major root zone, N-SIMULATOR 

predicted more nitrate remaining in the soil than CERES-Maize predicted after second 

N fertilization (45 days after planting). This difference agrees with the difference of 

maize uptake N predicted by both models, in which CERES-Maize predicted 87 kg N 

ha ‘ o f maize uptake and N-SIMULATOR predicted 71 kg N ha ' o f maize uptake, 

while measured maize uptake was 38 kg N ha''. It seems that more nitrate might be 

remaining in the soil because N-SIMULATOR overestimated 87% of the crop uptake 

and CERES-Maize overestimated 129%. The similar situation occurred in simulating 

the 201 kg N ha ' treatment (Fig. 4-5.6 a, Fig. 4-5.6 b). In this simulation, N- 

SIMULATOR overestimated 8 % (or 6  kg N h a '') of the crop uptake and CERES- 

Maize overestimated 174% (or 127 kg N h a ''). In other words, there were 127 kg ha'' 

of fertilizer N that would have remained in soil instead of removed by the crop. The 

results imply that the soil nitrate content predicted by N-SIMULATOR might be closer 

to the real situation.

4-5.3. Maize, Field Sampling, Hawaii

Two datasets were collected from the maize fields in Hawaii (See section 2-4.3) 

during a winter season and a summer season.

Winter cropping season

The soil property coefficients were estimated with the procedures suggested by 

Ritchie et al. (1989). Soil nitrate adsorption coefficients were measured in preliminary
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Fig. 4-5.6a. CERES-Maize simulated NO 3 -N in the soil profile o f a com
(X304C) field, Wahiawa soil, Hawaii. 201 kg N ha'^ in three applications. 
Data Source: Benchmark Soils Project, University o f Hawaii.
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Fig. 4-5.6b. N-SIMULATOR simulated NO 3 -N in the soil profile of a corn
(X304C) field, Wahiawa soil, Hawaii. 201 kg N ha'’ in three applications. 
Validation results. Data Source: Benchmark Soils Project, University of Hawaii.



experiments. There were no measured crop data available. Therefore, the com grain 

nitrogen content was estimated as 1.5% (Meisinger and Randall, 1991) with 

assumptions that straw and root contained 0.5% N, a grain to straw ratio of 1, and a 

straw to root ratio 6.5. The plateau yield that com can reach was estimated as ten 

thousand kg ha ‘‘ (personal communication with Dr. Brewbaker, Department of 

Agronomy and Soil Science, University of Hawaii at Manoa, 1996). The crop capacity 

of absorbing soil inorganic N was determined using a trial-and-error method.

Fig. 4-5.7 presents nitrate content in three soil layers (the root zone and below- 

root zone) during the cropping. The N-SIMULATOR predicted nitrate contents agree 

well with the observed contents ' except one point: observed nitrate content o f 0-30 cm 

depth at 16-day after planting was much less than the predicted. It was not elear why 

the observed nitrate content at this point was so low. One fertilizer application was 

made 12 days before the day in which discrepancy occurred. Considering the crop 

could not take much nitrogen at this period of beginning growth, one possibility was an 

incorrect estimate of water recharge. The predicted and observed results show that 

nitrate content in the 30-cm of soil varies with fertilization events and crop growth 

while the nitrate in subsoil layers was only slightly affected (Fig. 4-5.7).

Summer cropping season

The model parameters were set the same as the winter cropping season. The 

plateau yield that com can reach was estimated as 1 2 , 0 0 0  kg h a f o r  the summer com
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(personal communication with Dr. Brewbaker, 1996). The nitrate content N- 

SIMULATOR predicted agrees well with the observed in all layers (Fig. 4-5.8). The 

simulated soil ammonium content in the fields was present in a low concentration (0.5 - 

2 . 0  mg kg'‘) for most of the cropping days and the concentration rose only a few days 

after fertilizations (Fig. 4-5.9). This agrees with Khan et al. (1986) who measured N 

transformation in the Wahiawa soil (Oxisol). It also agrees relatively well with the 

observed data, considering that only soil samples in two sampling holes out o f 1 2  holes 

were selected for ammonium analysis and ammonium in most subsoil layers was 

undetectable. From the aspect o f modeling with time, ammonium is more difficult to 

simulate than nitrate in tropical uplands because it’s duration in soil is much less than 

that of nitrate. From practical aspect, soil ammonium content in the soil was about 1- 

5% of nitrate and had a small influence on soil inorganic nitrogen. The simulation 

results for ammonium were considered acceptable.

The simulation accuracy of the model predicting soil nitrate for two cropping 

seasons was examined in the 1:1 line graph scattered with 30 observations (Fig. 4- 

5.10). Comparing Fig. 4-5.10 with Fig. 4-5.4a, the simulation accuracy for ICI maize 

field data was less accurate than the experiments in Brazil. It is no doubt that the 

simulation quality depends on the model quality and dataset quality. The data quality 

of a careful designed and conducted experiment is usually higher than that collected 

from fields. For example, soil NO 3 -N (0-150 cm) in the summer maize dataset 

increased by about 176 kgN  ha'' (from 246 to 422 kgN  h a ')  in three weeks, based on 

soil analysis data during the period. This increased soil N was much higher than the
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Fig. 4-5.10. 1:1 line comparison of N-SIMULATOR simulated and the observed 
NO 3 -N in the soil profile in the com field, ICI Seeds Company, Hawaii, 1993-1994.
Calibration and validation results. Data Source: El-Kadi, 1996; Ling, 1996.

amount o f N input to the soil-plant system during the period. Assuming there was no 

crop uptake, no leaching, and 5 kg N ha ’ input from mineralization of soil organic 

matter, it was still unclear where about extra 72 kg N ha ' NO 3 -N came from.

4-5.4. Sugarcane, Field Sam pling, H aw aii

The dataset was described in section 2-4.4. Soil nitrate adsorption coefficients 

were measured in preliminary experiments. Other soil property coefficients were 

estimated from the dataset of Benchmark Soil Project in Waipio (See section 4-5.2), 

because of the same soil series {Wahiawa series) in the two datasets. Since there were 

no observed crop data, the sugarcane data were estimated from Meisinger and Randall



(1991) and Anders (1988) with assumptions of a straw to root ratio of 5. The crop 

capacity o f absorbing soil inorganic N was determined using a trial-and-error method.

Simulated and observed nitrate contents in the soil profile were compared in 

Fig. 4-5.11. The simulated nitrate changes in soil layers agree with the observed data 

and the effects o f fertilizer applications were reflected in the top soil layer (0-30 cm). 

Fig. 4-5.12 shows simulation accuracy of the model in predicting nitrate content in the 

soil profile with 1:1 line scatter graph. The simulated results were acceptable for the 

model objectives.

4-5.5. Pineapple, Field Sampling, Hawaii

Soil nitrate adsorption coefficients were measured using the procedure 

described in section 2-5. The dataset was described in section 2-4.5. Other soil 

property coefficients were adapted fi-om the Waipio dataset (See section 4-5.2), because 

the soils in both datasets are Wahiawa soil located in central Oahu. A trial-and-error 

method was used to estimate the crop capacity of uptake soil inorganic N. Pineapple 

growth and N uptake data were obtained from personal communication (Dr. Duane P. 

Bartholomew, Department of Agronomy and Soil Science, University o f Hawaii at 

Manoa, 1997) and literature (Stewart et al., 1931; Zhang, 1992). Differing from 

fertilization methods used in other datasets, foliar applications o f the N fertilizer were 

employed in this dataset. The model assumed that a maximum of 30% N fertilizer 

could be absorbed through pineapple leaves and the absorbing process took place in 

five days after fertilizer was sprayed.
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Fig. 4-5.11. Comparison o f N-SIMULATOR simulated NO 3 -N in the soil profile
with the observed in a sugarcane field, Waialua Sugar Company, Hawaii, June-Dee., 
1994. Calibration results. Data Source: El-Kadi, 1996; Ling, 1996.
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Fig. 4-5.12. 1:1 line comparison of N-SIMULATOR simulated and the observed 
NO 3 -N in the soil profile o f the sugarcane field, Waialua Sugar Company, Hawaii,
June-Dee., 1994. Calibration results. Data Source: El-Kadi, 1996; Ling, 1996.

N-SIMULATOR simulated and observed nitrate in the soil profile were 

compared in Fig. 4-5.13, Fig. 4-5.14, Fig. 4-5.15. Except for four observations in the 

minor root zone (30-60 cm), the simulated nitrate changes in each soil layer agree very 

well with the observed data over a year of crop growth. The model simulation accuracy 

of predicting soil nitrate was examined with 1:1 line graph (Fig. 4-5.16). For this 

dataset, N-SIMULATOR successfully predicted nitrate changes in the soil profile for a 

400-day pineapple cropping in an Oxisol, Hawaii.

4-5.6. N itrate Leaching, Column Experiment, Laboratory

Nitrate leaching out o f a root zone predicted by N-SIMULATOR was not 

directly tested in any of the above datasets, although it could be tested by the nitrogen
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Fig. 4-5.13. Comparison of N-SIMULATOR simulated NO 3 -N in the soil (0-30 cm)
with the observed in a pineapple field, Del Monte Fresh Produce Inc., Hawaii, 9/30/93 
-11/1/94. Calibration results. Data Source: El-Kadi, 1996; Ling, 1996.
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Fig. 4-5.16. 1:1 line comparison of N-SIMULATOR simulated and the 
observed NO 3 -N in the soil profile in the pineapple field, Del Monte Fresh
Produce Inc., Hawaii, 9/30/93-11/1/94. Calibration results.
Data Source: El-Kadi, 1996; Ling, 1996.

balance in soil-crop systems indirectly from the above datasets. The nitrate leaching 

dataset from a soil column experiment in the laboratory (See section 2-4.6) can directly 

test the model in predicting nitrate leaching. Liming effects on soil nitrate leaching are 

simulated by reducing nitrate adsorption coefficients (Deenik, 1997).

In contrast to above datasets of field experiments with cropping, this column 

experiment has intensive infiltration in a soil profile every day, pouring 700-900 mm 

‘rainfall’ without crop evapotranspiration during 42-56 days. This causes soil nitrate 

gradients in a soil profile changed much faster than those in the field datasets. To 

reflect this chromatographic effect on nitrate leaching, the simulation thickness o f soil 

layers should be as thin as possible to avoid ‘diluting’ (plateau) the leaching peaks.



The soil columns were divided into 18 layers (average 2.83 cm height of a layer) in the 

model simulations. Simulated nitrate contents in three selected layers from top, 

middle, and bottom of the soil profile were shown in Fig. 4-5.17a, Fig. 4-5.18a and Fig.

4-5.19a. The simulated results are expected theoretically and remaining soil nitrate 

contents agree with the measured data (Deenik, 1997). Simulated and observed 

leachate nitrate break-through curves were compared in Fig. 4-5.17b, Fig. 4-5.18b and 

Fig. 4-5.19b. The simulation break-through curve of the Wahiawa soil, with retention 

o f nitrate leaching, shows a good fit to the observed data (Fig. 4-5.18b). Two other 

break-through curves also agree with the observed data but show some ‘dilution’ 

(plateau) effects. The model simulation accuracy for predicting nitrate leaching was 

evaluated in Fig. 4-5.20, a 1:1 line graph scattered with 80 observations. The results 

support the conclusion that N-SIMULATOR simulations were acceptable in predicting 

nitrate leaching in this laboratory soil column study.

4-6. Summary

A dynamic simulation model for the N cycle in soil-plant systems, N- 

SIMULATOR, was developed for Management-Oriented Modeling (See chapter 5). 

Major components of the model were summarized in Table 4-6.1. With the mass 

balance approach, N-SIMULATOR simulates nitrogen and water in a soil-plant system 

in diverse pools and forms. Nitrogen pools include the pools o f N in fertilizer, plant, 

atmosphere, and soil. Soil N pools are further divided into the forms of urea, 

ammonium, nitrate, and fresh and humic organic matter. These pools are placed in
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different soil layers. Nitrogen and water are transformed and transported between 

pools with time during a simulation. Total mass in the internal and external systems 

does not change in quantity although the mass could be in various forms and in 

different pools. N-SIMULATOR predictions were evaluated with 11 datasets from 

Hawaii and Brazil. The datasets represent the situations of three crops, five locations 

and a laboratory experiment. Simulation cropping periods vary from 110 days to 400 

days. Soil profiles were simulated from 3 to 18 layers. Calibration and validation 

results showed that the model simulation accuracy was acceptable in predicting N 

uptake by erops, inorganic N remaining in soil profiles, and nitrate leaching out o f the 

root zone.
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Fig. 4-5.17a. N-SIMULATOR simulated NO 3 -N in the soil profile 
of an Ultisol {Leilehua series) in the leachate column experiment 
(flow rate 16.24 mm day"*). Data Source: Deenik, Jonathan L., 1997.
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Fig. 4-5.17b. N-SIMULATOR simulated and measured nitrate break-through 
curve for an Ultisol (Leilehua series) in the leachate column experiment. 
Calibration results. Data Source: Deenik, Jonathan L., 1997.
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Days of leaching

Fig. 4-5.18a. N-SIMULATOR simulated NO 3 -N in the soil profile of 
an Oxisol {Wahiawa series) in the leachate column experiment (flow 
rate o f 16.24 mm day''.) Data Source: Deenik, Jonathan L., 1997.

Cummulative Effluent Volume (ml)

Fig. 4-5.18b. N-SIMULATOR simulated and measured nitrate break
through curve for an Oxisol (Wahiawa series) in the leachate column 
experiment. Calibration results. Data Source: Deenik, Jonathan L., 1997.
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Days of leaching

Fig. 4-5.19a. N-SIMULATOR simulated NO3-N in the soil profile of an
Oxisol {Wahiawa series) applied lime (4 tons ha'*) in the leachate columns 
(flow rate 16.24 mm day'*). Data Source: Deenik, Jonathan L., 1997.

Cummulative Effluent Volume (ml)

Fig. 4-5.19b. N-SIMULATOR simulated and measured nitrate break
through curve for an Oxisol {Wahiawa series) applied lime (4 tons ha'*) 
in the leachate columns. Validation results.
Data Source: Deenik, Jonathan L., 1997.
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Fig. 4-5.20. 1:1 line comparison of N-SIMULATOR simulated and 
observed leachate nitrate in the leachate column experiment. Calibration 
and validation results. Data Source: Deenik, Jonathan L., 1997.
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Table 4-6.1. Knowledge sources of the dynamic model, N-SIMULATOR. t

Model Component Source Modification

Factors of soil moisture 
and temperature

CERES-Maize, NLEAP, 
SOYGRO, Torbert ‘93

None

Urea hydrolysis CERES-Maize None

Ammonia volatilization N-BALANCE change Max rate from season to daily

Soil OM mineralization 
and Immobilization

CERES-Maize None

Organic waste 
mineralization

Stanford and Smith, 1972; 
The authors %

Multiple pools and processes for 
various wastes

Nitrification,
denitrification

CERES-Maize Change a constant to variable

Plant demand N NLEAP Change rates from weekly to daily

Soil N supply potential CERES-Maize variable of crop uptake capacity

Soil N supply index The authors (See chapter 5)

Root N uptake The authors

Foliar N uptake The authors

Water balance Jury elal., 1991 None

Runoff CERES-Maize, SCS, 1972 None

Infiltration, redistribution CERES-Maize No up matric-flow

Evapotranspiration FAO, 1986; Kristensen, 
1974; the authors

change ET from weekly to daily basis

Soil water supply index T h e  a u th o rs (See chapter 5)

Ammonium retardation The authors

Nitrate retardation Bowen et al., 1993 None

N solutes movement The authors

Six simulation modes The authors (See chapter 5)
t  For major components of the model.
J Contributions from the authors of this study (LI and Yost), based on multiple sources.
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Chapter 5

Management-Oriented Modeling

There are numerous existing models that describe the nitrogen behavior under 

natural conditions and given management practices. Based on the inputs of soil, plant, 

weather and management data, these models provided predictions, evaluations, and 

assessments for nitrogen problems (See Chapter 3, Evaluation o f Existing N Models). 

However, their capabilities for optimizing N management are limited. As De Willigen 

et al. (1990) state, “Few of the models are at present suitable for solving problems 

related to management and regulation.. . . ,  ” in a review of potential uses of some 

leaching models for management and planning.

Optimizing N management has become important in recent years because 

dramatically increasing nitrate levels in groundwater have been attributed to crop N 

mismanagement. While this is not always the case, improvement in N management is 

needed to minimize nitrate leaching. Precision agriculture has developed rapidly over 

the past few years. Precision nitrogen management needs to consider optimization



technologies, which challenge traditional N models. Nitrogen models are now required 

not only to describe the situations, but also to find optimal management strategies that 

reduce nitrate pollution while maintaining profits. In this chapter, the impact of 

management on the N cycle in soil-plant systems is first examined. Then, some 

existing optimization procedures related to management are discussed. Finally, 

Management-Oriented Modeling (MOM), a dynamic simulation modeling with 

artificial intelligence (AI) optimization techniques, is developed that searches for 

optimal N management to minimize nitrate leaching and maximize production and 

profits.

5-1. Optimization of Management

5-1.1. Management Changes the Fate of N

Nitrogen fertilizer application methods and timing have significant impacts on 

the fate o f nitrogen in soil-plant systems. An appropriate N fertilization practice 

usually synchronizes the crop’s requirement of N during crop growth, which supplies N 

when needed by the crop. This management practice uses N fertilizers effectively and 

reduces the risk of nitrate leaching. Mismanagement practices, such as applying N 

fertilizer in excessive amounts or mistiming, will increase the risk of nitrate leaching.

Although nutrient accumulation patterns vary among crops, major N uptake 

occurs during the rapid growth period for many crops. For example, a winter wheat 

crop takes up about 75% of its total N during its rapid growth phase (April to May) and 

a com crop takes up 67% of its total N during its rapid growth period (July) in
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Nebraska (Olson, 1978). A generalized pattern o f N demand and uptake by a plant 

over time is derived from Fig. 4-2.5 and shown in Fig. 5-1.1. Generally a crop requires 

much more N during its flowering and fruiting stages than at the seedling and 

senescence stages. It is apparent that applying N fertilizer just before the time of most 

rapid N uptake will assure most effective utilization of N (Welch, 1971). Malzer and 

Graff (1984, 1985) compared grain yields of an irrigated com with three fertilizer 

application methods (Fig. 5-1.2). The sidedress method had a high efficiency of N 

fertilizer utilization, the efficiency of preplant plus nitrification inhibitors was 

moderate, and the preplant method had the lowest efficiency. Low N fertilizer 

efficiency implies a higher risk o f nitrate losses from the root zone because the nitrate 

remaining in a soil profile is exposed to the leaching potential of rainfall and irrigation. 

These examples of fertilizer timing show that nitrogen management plays a key role 

determining the fate o f N in a cropping system.

Theoretically, if  the N fertilizer supply can be synchronized with the plant needs 

as shown in Fig. 5-1.1, the maximum N fertilizer utilization will be reached and nitrate 

leaching will be minimized. Multiple applications with small amounts o f fertilizer 

(e.g., split application) usually promote better plant uptake and reduce the potential of 

nitrate leaching as compared to a single application with a large amount of fertilizer 

(e.g., preplant application). The application rates, timing, and methods of N fertilizer 

and irrigation are important management tools that determine and control the fate and 

behavior of N in soil-plant systems. These tools can be used to adjust the rates o f N 

release from the nutrient sources to match N availability with crop need. To perform
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Time of growth

Fig. 5-1.1. Hypothetical crop N uptake-curve and N demand-curve. The rapid 
N uptake occurs at the period of the N demand peak. A hypothetical fertilizer 
supply synchronizes the crop N demand.

N Fertilizer Rate (lb acre *)

Fig. 5-1.2. An irrigated corn yields response to N fertilizer application timing 
and nitrification inhibitor (Nl). Drawn from Malzer and Graff (1984, 1985).



precision nitrogen management, quantitative optimization techniques are usually 

involved in estimating application rates and timing of fertilizer and irrigation.

5-1.2. L inear Program m ing Models

Linear programming models are commonly used in the field of management 

science as a quantitative method for decision making. Among mathematical 

programming models. Linear programming is a special type in which objective 

function and all constraints are linear (Anderson, et al., 1994). To optimize a static 

problem in N management, the linear programming would be a useful tool.

Suppose a static N model, QUEFTS, suggests a fertilizer requirement o f 200 kg 

ha ' N, 200 kg ha ' P2 O5 , and 100 kg ha ' KjO for a crop. The available fertilizers are 

11-52-0 ($0.23 ha"') and 21-0-32 ($0.17 ha''). The problem is to find the minimum 

amounts o f the fertilizers that meet the nutrient requirements at minimum cost. In 

linear programming language, this is a minimization objective. Let 

X ,  = amount o f fertilizer 11-52-0 needed (kg ha ')

X2 = amount o f fertilizer 21-0-32 needed (kg ha'')

Then, the total fertilizer cost = z = $0.23 x, + $0.17 X2 

The objective is to minimize the cost, so

min z = min 0.23 x, + 0.17X2 [5-L l]

where x, and are the decision variables. 0.23 x, + 0.17 X2 refers to the objective 

fimction. Because the combination of the fertilizers must satisfy the nutrient 

requirements, the amounts of the fertilizer supply follow the nutrient constraints: 

for N 0.11x, + 0.21 X2 ^ 200 (kg ha ') [5-1.2]
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forPjO j 0.52 Xi i  200(kgha‘‘) [5-1.3]

forKjO  +0.32x2 ^ 100 (kg ha ') [5-1.4]

x , ^ 0 .  X 2 ^ 0  [5-1.5]

The above functions consist o f a complete linear programming model for the fertilizer 

problem. Using a graphical solution procedure, the minimum cost o f the fertilizers was 

found to be $216 at the rates of385 (kg h a ')  for the 11-52-0 fertilizer and 751 (kg ha"') 

for the 21-0-32 fertilizer (Fig. 5-1.3). This example shows that linear programming 

solves optimization problems well for the static N management. Li et al. (1996) 

applied linear programming in selecting liming materials for acid tropical soils.

5-1.3. Dynamic Programming Approach

Although the linear programming models are useful optimization methods to 

solve many problems such as the example above, they become limited when the 

problems to be optimized are large and complex. For example, to determine an optimal 

management solution to minimize N leaching from a simple soil-plant system, an 

objective function may be given as a set o f factors as follows:

N  leaching = f  (soil, weather, crop, management, time) [5-1.6]

where, arguments are also functions of other variables:

Soil = f  (N02-N(time), NH^-N(time), OM(time), moisture(time), texture, pH,

N  transformations (time, soil properties)}

Weather = f  {rainfall(time), temperature(time), ET(time)}

Crop - f  {root uptake (time, rates), rooting(depth)}

Management = f  {fertilization(time, rates, methods), irrigation(time, rates, methods), .
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X , ; Fertilizer 21-0-32 (kg ha ’)

Fig. 5-1.3. Linear Programming Model for the fertilizer selection problem. 
The cost reaches the minimum of $216 ha'' at the optimal solution point.

For this type o f complex problem, dynamic programming may be helpful. Dynamic 

programming is an approach to problem solving that permits decomposing a large 

problem that may be very difficult to solve into a number o f interrelated smaller 

problems that are usually easier to solve (Anderson, et al., 1994). Unlike linear 

programming as a specific algorithm, dynamic programming is a general approach to 

problem solving. Considering a large problem that can be divided into N subproblems 

(N stages), using dynamic programming notation, let 

= input to stage n, state variable 

d„ = decision variable at stage n

x„_i = output fo r  stage n (input to stage n-1), state variable



The linkage o f stage x„_i to stage x„ is established by stage transformation function t„: 

x„., = t j x ^ d , )  [5-1.7]

So, the objective function can be given as

E t J x „ .d J  [5-1.8]

This is an example o f deterministic dynamic programming. Plant and Stone (1991) 

discussed the use of stochastic dynamic programming (called stochastic optimal control 

methods) to generate optimal irrigation schedules for a growing season. The schedules 

consist of daily stages. Using their notation, the decision variable is called control, 

which represents the amount of water applied on day k. The state variable is a vector 

whose components represent the results o f a simulation model for the crop-soil-water 

system. A dynamic programming model was abstractly given as

= f k ( x „ u j  [5-1.9]

Xo = a

where 0 * is called system dynamics that evaluates the state of the system from time k to 

k+1. The optimal control problem is to choose a sequence {u,, U2, . . . , Wo./} to find 

optimal solutions to the problem by an objective function:

Z<Pk(Xk.u^ [5-1.10]

If considering uncertainty, a stochastic dynamic programming model can be expressed
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as

Xk t̂ = (pk(Xi,Ui, rj^ [5-1.11]

Xg = a + CO



where rĥ  is a vector-valued random process representing the system “noise” on day k. a> 

refers to a vector representing the uncertainty in the initial conditions. No 

implementation for the model was discussed. The application of optimization 

techniques to irrigation scheduling has been researched by many investigators (Dudley 

et al., 1971; Hall and Butcher, 1968; Rhenals and Bras, 1981; Yakowitz, 1982). 

However, only few successful implementations in agriculture have been reported.

Plant and Stone (1991) concluded some problems associated with the implementation 

in agriculture; ( 1 ) the accuracy of the system model may be insufficient; (2 ) the model 

parameters are difficult to estimate for specific cases; and (3) the model computations 

become intensive with stochastic situations.

5-1.4. Knowledge-Based Systems Embedded in Simulation

A primary advantage of computer simulation is its applicability in complex 

situations where analytical procedures are difficult. Computer simulation can be used 

to obtain dynamic information such as N leaching expressed by equation [5-1.6]. 

Actually, computer simulation models and their programs provide convenient 

laboratories for experiments in many fields. With these laboratories, preliminary 

experiments become easy to conduct. However, simulation models cannot guarantee 

an optimal solution to a problem. Although decision makers can run the computer 

simulation long enough to try all possibilities of their decision variables, it may be too 

costly or require too many resources to solve the problem. In many cases, this method 

is impossible to perform because the running time may be too long to be acceptable, or 

the values o f decision variables become nearly infinite.
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Schaub and Stone (1989) developed an example of integrating simulation 

models with expert systems to form hybrid systems. The system was used to find 

nearly optimal strategies represented by a set o f rules for the pest control in cotton 

fields. This hybrid system consisted of three independently developed biological 

simulation models (Gutierrez et al., 1984; Richardson and Wright, 1984; Sequeira et 

a l,  1989) linked to a rule-based system (Fig. 5-1.4). For each simulation day, the 

random weather generator, WGFN, produces daily temperature, rainfall, and solar 

radiation. The cotton model simulates the cotton growth and development as 

influenced by weather. The bollworm model simulates immigration and development 

of boll worms in cotton fields which are subject to weather, natural enemies, and 

management actions. The rule-based system. Management Model written in the LISP 

language, uses the output of the simulation models to determine future courses o f the 

simulation. With AI search methods, a heuristic optimization procedure, called 

heuristic programming, was developed to find nearly optimal rules for the pest control 

(Stone and Schaub, 1990).

This hybrid system was not developed to directly give advice to a farmer for a 

specific cotton field. The knowledge-based system was embedded in the simulation 

model as an analysis tool to determine which pest control strategies were better overall. 

The possible pest control strategies were tested using the hybrid system. Ultimately, 

nearly optimal pest control strategies were elicited from the analysis and added into a 

rule-based system as a set o f decision rules, which were used by farmers to make their
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S ta r t

Dsily:
T em porature , Rain, 
S o la r radiation

F ig . 5-1.4. Liakia.ge among the components o f the hybrid  knowledge- 
based system and sim ulation models o f Helicoverpa spp. and Cotton. 
Source: Stone and Schaub, 1990.



decisions in particular situations (Plant and Stone, 1991). This is a good example of 

using knowledge-based systems to control simulation models.

5-2. MOM Structure and Characteristics

Linear programming is a useful method to optimize static N management 

problems. The dynamic optimization approach and simulation models with Al 

techniques provide precision technologies with the dynamic N management. However, 

simulation models with Al optimization for dynamic precision N management have not 

been reported. This study was conducted to explore a modeling approach that 

constructs simulation models using Al optimization methods for precision N 

management. The specific objectives were;

(1) Develop a management-oriented algorithm that directs the simulation

model toward user-weighted goals. There are many users’ goals for cropping, 

such as maximizing product quality, appearance, nutrient content and others.

The model takes three goals (objective functions) as examples in this study: 

minimizing nitrate leaching while maximizing crop yields and profits.

(2) Develop an optimization algorithm that can specify a range in

management variables in which optimal solutions are guaranteed. The model 

searches for solutions only around this range instead of all possible solutions. 

This algorithm is critical to ensure that the model solves problems in a small 

amount of time which is acceptable for users to implement the model on current 

personal computers.
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(3) Design this dynamic optimization model for multiple purposes and

users. The model can be used as a tactical N management tool for specific 

conditions and be used as a strategic N management tool for general decision 

rules. The model will be constructed as a useful tool for diverse users from 

farmers to scientists.

5-2.1. M OM  Structure

As discussed in section 5-1.4, computer simulation models are convenient 

laboratories to conduct experiments. To conduct a field experiment of fertilizer rates 

with irrigation, for example, it will take a cropping season, usually a couple of months. 

The experiment can also be conducted using computer simulation models in a few 

minutes at much less cost if  the models are validated for the conditions o f the field 

experiment. The process o f computer models that mimic the field experiments to find 

optimal management strategies can be illustrated by a simple example called “burgling 

a safe” using generate-and-test method in artificial intelligence (AI) (Winston, 1992). 

To try a three-number and two-digit safe, one can start with the combination 00-00-00, 

move to 0 0 -0 0 -0 1 , then 0 0 - 0 0 -0 2 , and continue on through all possible combinations 

until the door opens. In terms of AI, the counting is called the generation procedure 

and the twisting the safe handle is called the testing procedure. One of the great classic 

application programs using this AI technique is DENDRAL (Winston, 1992). It was 

used to identify the structure o f an organic chemical by comparing the real mass 

spectrogram with those produced by the computer generator.
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To construct a computer model to conduct the experiment of fertilizer and 

irrigation rates, for example, the procedure of designing treatments in the experiment 

seems as the “generator” and analyzing results of experiment as the “tester” in the 

generate-and-test method. Then the treatments are put in a laboratory to conduct the 

experiment, which examines the responses of soil-plant systems. The laboratory is a 

computer simulation model called a simulator. So there are three components, a 

generator, a simulator, and an evaluator, involved in the experiment conducted by the 

computer simulation. In general, the generator produces the combinations of 

management strategies (e.g., the treatments of fertilizer rates plus irrigation rates in the 

example above). The simulator executes the management strategies and simulates their 

effects on a soil-plant system such as nitrate leaching, crop yields and profits. The 

evaluator examines the simulation results to find which management strategy produces 

a better result (e.g., less nitrate leaching, higher yields and profits). If one wants to find 

optimal combinations of fertilizer rates plus irrigation rates, the evaluator information 

can be fed back to the generator to adjust the rates of the fertilizer and irrigation. Then 

repeat the experimental procedures described above. The experiment is conducted by 

the computer models using a generator-simulator-evaluator procedure. Since this 

modeling approach concentrates on optimizing management strategies, we call it as 

M anagem ent-Oriented Modeling (MOM). The MOM structure is shown in Fig. 5- 

2.1. We first describe MOM structure and its characteristics of mimicking human 

actions in N management, then discuss MOM implementation in detail in section 5-3.
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5-2.2. Two-W ay Modeling

There are two ways for decision-makers to interact with the real world. First, 

the world is mapped to decision-maker’s brain where decision-makers describe and 

understand the real world by the “maps” of the real world. Second, after the 

understanding, decision-makers make some “modifications” to control and change the 

real world (Fig. 5-2.2). As the discussion in the Chapter 3, many existing N simulation 

models simulate the N cycle in soil-plant systems based on inputs o f soil, plant, 

weather and management data. This is an iniportant type of modeling, description. In 

addition to description, MOM is designed to model decision-maker’s modification of 

the real world. In other words, MOM not only simulates natural processes o f the real 

world, but also simulates human actions on the real world to find possible optimal 

“modifications.” We call this modeling approach two-way modeling. After analyzing 

“native” situations (without the fertilization and irrigation) of a soil-plant system,

MOM selects a management action of fertilization and irrigation to “modify” the 

“native” situations. Then the management effects on the soil-plant system are 

evaluated to determine if they are improvements toward optimal management 

strategies. If no optimal management strategies are reached, MOM improves the 

management strategies and repeats the simulations to assess the management effects. 

MOM continues to repeat alternately between the two ways of modeling as the 

processes above until optimal management strategies are found (Fig. 5-2.2).
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5-2.3. Goal-Driven Modeling

Traditionally simulation models were driven by data. In other words, users 

input data and models output answers. Taking an example o f reducing nitrate leaching 

during cropping, the modeling starts from the management practices under given local 

natural conditions and outputs predictions of crop yield and N leaching. The solutions 

are crop yields and leachate nitrate. The modeling processes are driven by data 

including management practices. We call this Data-driven modeling. The number of 

input datasets determines how many answers the models output (Fig. 5-2.3). In many 

circumstances o f N management practices, however, people want N models to assist in 

finding optimal management strategies that are better than current ones, instead o f only 

an assessment of the current practices. For these situations the model solutions 

become m anagem ent strategies. To solve this kind of problem, the modeling can start 

from goals, high crop yields and low nitrate leaching, for example. Then it simulates 

the possible management practices under given local physical conditions and outputs 

optimal management strategies that can reach the goals (Fig. 5-2.3). The modeling 

direction is reversed from the traditional simulation modeling. In the MOM modeling, 

the amount of management data needed depends upon the goals. MOM only chooses 

management strategies that produce the results toward the goals to simulate. We call 

this modeling as Goal-driven modeling. This Goal-driven simulation is one way 

Management-Oriented Modeling differs from the traditional simulation models.
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5-2.4. Multiple Solutions

In reality, there may be multiple solutions for a goal. For example, among all 

possible combinations of the N management strategies, some combinations with 

different fertilizer and irrigation rates may result in approximately the same yield 

and/or nitrate leaching (refer to Fig. 5-2.3). In other words, MOM may find multiple 

answers for a goal without changing the data inputs and given physical conditions.

This characteristic provides users with opportunities to choose the most suitable 

solution among a group o f answers to match their particular situations. It also offers 

users alternative solutions if their situations change.

5-3. MOM Implementation

The MOM implementation will be discussed following its generator-simulator- 

evaluator structure (Refer to Fig. 5-1.5).

5-3.1. Knowledge Representation in MOM

Good implementation starts from a good knowledge representation. The 

representation principle says “once a problem is described using an appropriate 

representation, the problem is almost solved” (Winston, 1992). To solve the problems 

of N management using AI techniques, the major task is to appropriately represent the 

knowledge of the N management with AI languages. Assume that a set of management 

strategies are consisted of N fertilizer applications and irrigations o f various rates and 

timing. Each management strategy produces a profit, a crop yield, and an N leaching 

rate (Table 5-3.1). MOM’s task, for example, is to find which management strategy
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produces a maximum crop yield and profit with a minimum N leaching, among the 

seven strategies in this hypothetical example.

Table 5-3.1. Hypothetical m anagem ent strategies and their simulated results.
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M anagement 
Strategy #

N Fertilizer 
Rate Timing 

kgN  h a ' Apps. f

Irrigation 
Rate Timing 
mm A p p s .f

Profit

$ h a ‘

Yield 

kg h a '

Leachate N 

kgN  h a '

#1 80 14 407 2 461 7480 40
#2 80 14 136 2 475 7486 0
#3 80 2 271 2 685 7797 15
#4 160 14 407 7 742 10399 37
#5 240 2 136 2 759 8611 0
#6 240 14 271 7 802 11003 8
#7 240 2 271 2 976 10881 8

t  Number of N fertilizer applications during the cropping season, 
t  Number of irrigation days a week.

To illustrate a visual concept o f the Al representation for this example, the 

profits against leachate N were plotted in Fig. 5-3.1. The points (circles) in Fig. 5-3.1 

represent the N management strategies (rates of fertilizer and irrigation) in Table 5-3.1, 

which are called nodes ' in terms of AI language. The result (the crop yield, profit and 

leachate N) of each corresponding management strategy is called the state of the node. 

To perform MOM’s task, finding a better management strategy, one just goes over the 

results of the management strategies one by one until the answer is found. The process 

o f examining the results to find solutions is called search. During the search, a move 

from one node to another is called a link or path between the nodes. A path or link 

denotes a transition between states, actually a change of the management strategy from 

one to another in MOM. The nodes linked by paths form a semantic net. It is also

See Glossary for more information of AI terminology.
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Fig. 5-3.1. Knowledge representation in MOM with Al language. The 
state space consists o f nodes linked by paths. The states o f the nodes are 
denoted by their positions in the space with dimensions of profits versus 
leachate nitrate.

called a state space in which the states of nodes were represented by their positions in 

the two-dimension space (profits versus leachate N in MOM). The search objective, an 

optimal management strategy in this example, is called a goal. The node that satisfies 

the goal is called a goal node. The state of the goal node, characterized by a minimum 

of N leaching and maximum of the yields and profits in this example, is also called as 

goal in following discussion. So the goal in MOM consists of three sub-goals; 

minimizing N leaching, maximizing yields and profits. MOM’s task, in Al language, is 

finding goal nodes. Comparing the profits, yields, and leachate N of all management 

strategies, the states of the nodes of strategy # 6  and #7 (Table 5-3.1), for example, are 

closer to the goal state than others. If three sub-goals are of the same importance, an



overall nearly optimal solution among the strategies is management strategy #7 for this 

example.

5-3.2. MOM Generator

The MOM generator is designed to produce the N management strategies 

consisting of the rates and timing for N fertilizers and irrigation. Winston (1992) 

suggested that a good generator usually has three properties: complete (eventually 

producing all possible solutions), nonredundant (never compromise efficiency by 

proposing the same solution twice), and informed (use possibility-limiting information, 

restricting the solutions that they propose accordingly). In this section, we discuss how 

the MOM generator uses the knowledge of the N cycle in soil-plant systems to prune 

redundant nodes, while ensuring that the goal nodes are within a limited range to be 

searched.

5-3,2.1. Combinations of Management Strategies

Recalling the example of “burgling a safe” in section 5-2.1, the total 

combinations for the safe o f three-number with two-digit are 100^ = one million. The 

situation of N management is much more complicated than this example. Among the 

N management factors, the rates and timing of N fertilizer and irrigation are chosen to 

test the MOM concept in this study — which are important the factors in controlling the 

fate o f N in soil-plant systems. Changing these factors will change crop yields, profits, 

and nitrate leaching rates, which are the goal states of three sub-goals in MOM. 

Consider N management practices that specify fertilizer rates and irrigation rates which 

are split during the cropping season. An N management strategy in MOM consists of
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three factors: fertilizer rate, irrigation rate, time (when fertilizer or irrigation applied).

It can be expressed as

Ml = f  (fertilizer Rate I, irrigationRate i , TimeJ [5-3.1]

where Mi is a management strategy in MOM (/ = I, 2, 3, . . . °°). Theoretically there are 

an infinite number o f combinations of management strategies. To simplify the 

situation by considering only three rates for N fertilizer and three rates for irrigation 

during a 140-day cropping season, the problem becomes one of finding an optimal 

management combination among three N fertilizer rates combined with three irrigation 

rates scheduled during 140 days. The number o f combinations from the fertilizer rates 

and the irrigation rates with a time factor can be calculated by

Combinations = (fertilizerRates ■ irrigationRates) [5-3.2]

It implies that the number of management combinations in dynamic systems will 

increase exponentially because o f involving the time factor (when applying fertilizer 

and water in MOM). For this instance, the management strategies for scheduling one 

day are nine combinations (3-3 = 9). However, the number o f combinations for two 

days is 9 • 9 = 81, and 9  ̂= 729 for three days. The total number of the combinations 

for a 140-day cropping is 9'"° = 4 • 10'^\ Reducing the time steps to weekly, the total 

number o f the combinations is 9̂ ° = 10 still an astronomical figure. An N 

management problem is thus far more complex than the “burgling a safe” case. 

Assuming the simulation of the N cycle in a soil-plant system for a growth season can 

be finished in 0 . 0 0 1  second, it will theoretically take about 3-10* years to examine all 

combinations without accounting for the time of search in the computation.
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S-3.2.2. P rune Unnecessary Combinations

Facing the challenge of the huge combinations, the first task for the MOM 

generator is to reduce the large number of the combinations to a reasonable range in 

which the most promising combinations are included. The most unnecessary 

combinations can be pruned by analyzing the real situation of the soil-plant system 

relevant to MOM. In an example of tomato N fertilization experiments (Fig. 5-3.2a), 

the crop yield increased with increasing N fertilizer rate until a yield plateau (point B in 

Fig. 5-3.2a) was reached. The risk of potential nitrate leaching (represented by Excess 

N  in soil profiles. Fig. 5-3.2a) was very low when N fertilizer rate was less than the 

maximum (plateau) crop requirement (point B in Fig. 5-3.2a). After N supply exceed 

the crop maximum requirements, the risk o f potential nitrate leaching increased 

proportionally. Same analysis can be applied to irrigation rates. For an upland crop, the 

yield response to increasing water supply may increase at first to a peak, then drop 

down gradually because of oxygen stress. A general situation of N fertilization with 

irrigation for a up-land crop was summarized in Fig. 5-3.2b. The figure implies that 

there exists a range (between point “A” to point “B” in Fig. 5-3.2b) in which the N 

fertilizer and irrigation rates are close to the crop requirements. Within the range, the 

optimal solutions for the MOM goals, maximizing crop yields and minimizing nitrate 

leaching, should be included. The range is the area labeled from the point “A” to point 

“B” in Fig. 5-3.2b, called the promising solution zone in MOM. In other words, the 

management nodes outside of the promising solution zone can be considered as 

unnecessary combinations and should be pruned. To eliminate unnecessary
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management combinations, the MOM generator needs a procedure to identify the 

promising solution zone for each specific situation.

S-3.2.3. Analyzer of Soil N and Water Supply Potentials

The daily crop requirements of N and water change during growth. MOM 

needs a dynamic simulation analysis to trace this situation. A situation analyzer, the 

algorithm estimating soil N and water supply, is developed for the MOM generator to 

analyze the crop dynamic differences between the requirements and soil supplies. In 

the analysis procedure, MOM generator first detects the “native” supply potentials of 

soil N and water by calling N-SIMULATOR (See chapter 4) in the background mode 

(the simulation without N fertilizer and irrigation, see section 5-3.3). This simulation 

records soil moisture and soil mineral N content for each growing day. Then daily soil 

water supply potential can be estimated by soil water supply index, Suplx,,, ,̂ ,̂.
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PlantGoal PlaniLmt [5 3 3]

where 0,.fciuai L the actual soil water content without irrigation at a simulation day. 

dpiamiMu is the soil water content at the low plant extractable limit. 6pia„,c,oai is the soil 

moisture goal that a crop requires. is the soil water

content at the drained upper limit (Refer to section 4-2.2). (0-1) is a coefficient

of expected soil moisture for a specific crop. Kg^^^i is used to adjust the soil moisture 

goal. If a crop requires soil moisture at , Kg^^i = 1.0. If a crop requires soil

moisture as a half o f , Kg^^i = 0.5. The soil water supply index, Suplx^̂ ,̂ ,., can

be used to flag the soil water supply to a crop:



If Suplx,,^,,,^ = 0, the soil moisture satisfies the crop requirement.

If Suplx„^,^^ < 0, the soil moisture does not satisfy the crop requirement.

If Suplx,,, !̂,,,. > 0, the soil moisture exceeds the crop requirement.

The daily soil N supply potential is estimated by soil mineral N supply index, Suplx^j 

Suplx^ = log (  ■ K^^ppiy/Npi^„,o,„and) [5-3.4]

where is the amount of N a plant demands (refer to equation [4-2.6]). N ^ y

is soil N supply potential (Refer to [4-2.7]). is a root density fraction (Refer to [4- 

2.9]). The interpretation of Suplx^j is similar as Suplx,^ ,̂^;.

If SupIXfj = 0, soil N supply is sufficient for the crop.

If SuplXfj < 0, soil N supply is not sufficient for the crop.

If SuplXfj > 0, soil N supply exceeds the crop requirement.

Examples of the analyses of soil mineral N and water supply potentials during a 

cropping season are shown in Fig. 5-3.3.

S-3.2.4. Generate Prim ary M anagem ent Schedule

The above analyses provide the generator with the dynamic estimation of the 

shortages o f soil N and water supplies. To estimate the amounts o f N and water needed 

on a growing day, the MOM generator compares the amounts o f N and water that a 

crop demands with the soil N and water supply in the “native” situation. The daily 

water needs, (mm), is calculated by

Wneed =10(Kg^^, ’ do.a.nLmi-Gacuu)  ' Lpr + ET - Roin [5-3.5]

where , doramLmi d̂ cô ai ^^e the same as in equation [5-3.3]. Lyr (cm) is the 

thickness of a root zone. The daily N needs, (kg N  ha '), is calculated by
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^ n e e d  plantDemand ~ ^uplakJ ^ Efg,., [5-3.6]

where (^S ̂  ha ')  is maximum N the crop requires and (kg N  h a ')  is

the N that the crop absorbs, without applied N fertilizer, on the current simulation day 

or week. Efer, is the efficiency of N fertilizer utilized by the crop (Yost et a l, 1997a).

With equation [5-3.5] and equation [5-3.6], the generator determines 

approximate amounts of N and water needed (the implementation is calling 

DetectWater and DetectNitrogen simulation modes, will be discussed in section 5-3.3). 

Then MOM generator produces a primary management combination, a schedule o f N 

fertilization and irrigation during the cropping. This management combination should 

fall within the promising solution zone, the range from the point “A” to point “B” in 

Fig. 5-3.2b. An example o f a primary management combination in week steps is 

shown in Fig. 5-3.4. Around this primary management schedule, the generator 

produces the first group o f the management combinations by extending the primary 

rates o f N fertilizer and irrigation. How the generator improves its following 

generations of the management combinations will be discussed in section 5-3.4, MOM 

Evaluator. Now the management strategies can be used by other two MOM 

components, the simulator and the evaluator.

5-3.3. M OM  Sim ulator

To implement Management-Oriented Modeling, the MOM simulator is 

designed by extending the running modes o f the dynamic simulation model, N- 

SIMULATOR that was constructed in chapter 4. As the MOM simulator, N- 

SIMULATOR operates in a MOM session in six simulation modes: Validation,
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Background, DetectWater, DetectNitrogen, Optimization, and PredictGrowth. The 

characteristics of the modes are discussed below.

5-3.3.1. Validation Mode

Validation mode is the N-SIMULATOR itself without any change. The 

primary purpose of this mode is designed for users to calibrate the MOM simulator 

parameters to their specific site situations using their datasets. This mode also provides 

users with opportunities to use the MOM as a traditional simulation model for any 

other purposes. The default outputs o f the Validation mode are database files and 

screen graphics. The graphic outputs are used to analyze the simulation results 

immediately during the simulation. They include daily outputs of soil water and N 

supply potentials, infiltration, fertilization, crop N uptake, leachate nitrate, soil nitrate 

content and soil ammonium content in three soil layers during the cropping season.

The database files are Paradox format that can be retrieved by spreadsheets such as 

Quattro Pro, and used for users’ specific analysis or assessment. The default outputs in 

the database files include runoff, infiltration, waste irrigation N, fertilizer N, top 

biomass N, root N, leachate nitrate, denitrification N, and soil layer data of nitrate, 

ammonium, soil moisture contents, and organic N released from several pools such as 

soil organic matter, organic wastes, and waste irrigation.

S-3.3.2. Background Mode

A “native” situation in MOM means that there have been no applications o f N 

fertilizer and irrigation during a simulation. All other management activities are 

included in the “native” situation such as pest control and preplant organic residues.
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which are treated as natural conditions such as rainfall in MOM sessions. The 

Background mode ignores the fertilizer and irrigation applications in the data inputs 

and has the same outputs as the Validation mode. This mode is primarily designed as a 

tool to analyze a “native” situation for a MOM session. This background information 

is used to determine what amount of N and water are needed and when they are applied 

as users adjust the management strategies manually. This mode is also useful for a 

strategic management planning before cropping even if users do not use MOM 

sessions.

S-3.3.3. Detect Water, Detect Nitrogen Modes

The specifications of the DetectWater, DetectNitrogen modes are described in 

section 5-3.2.4 and their implementations are discussed in this section. Since the 

“native” situation would change with any application of fertilizer or irrigation, equation 

[5-3.5] and equation [5-3.6] cannot be statically used to calculate the N and water 

requirements based on the initial situation. For example, if the fertilizer or irrigation is 

applied in a day, the situations o f following days are no longer “native.” Assuming 

there exist N and water shortages on 7th and 8 th weeks in a “native” situation and then 

N fertilizer and water are applied on 7th week, for example, the original shortages on 

8 th week may decrease or disappear. Therefore, the effects of the N and water 

applications in a previous week must be accounted for in estimating the requirements 

o f N and water for following weeks, when determining the primary management 

strategies based on the “native” situation.
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In DetectWater mode, MOM assumes that the crop grows normally without N 

deficiency, and that normal evapotranspiration of the soil-plant system will prevail 

during the cropping season. At the beginning of a simulation week, the MOM 

simulator first estimates the amoimt of water needed this week by accumulating the 

amount o f water shortage in soil layers using equation [5-3.5]. Then the simulator 

applies this amount o f water to the soil during the daily simulation for this week, on the 

week days that users scheduled. The applied water will change soil moisture of this 

week. This changed soil moisture will be used to estimate the amount o f irrigation for 

the following week by equation [5-3.5]. At the beginning of the following week, the 

simulator estimates the irrigation amount again, and then repeats the above processes 

week by week. Finally the simulator determines weekly water requirements, or a 

primary irrigation schedule, for the cropping season (Fig. 5-3.4). Based on this 

irrigation schedule, the simulator switches to estimate the N requirement in the 

DetectNitrogen mode.

In the DetectNitrogen mode, the implementation procedure is different from 

that in the DetectWater mode. In the DetectWater mode, the water requirement o f a 

week can be determined before the beginning of the week simulation because all items 

in the equation [5-3.5] have been known in advance. But the N requirement of a week, 

in the DetectNitrogen mode, cannot be determined by the equation [5-3.6] in advance 

unless the simulation for this week has been finished. This is because the amovmt o f N 

uptake during a week without N fertilizer, in the equation [5-3.6], is unknown 

before the simulation of this week is finished. So MOM first estimates by
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simulating this week without N fertilizer applied. Then the amount o f N needed during 

this week, is calculated by equation [5-3.6] and is immediately applied at the end 

of simulation for the week. Since the applied fertilizer may not be depleted or lost 

immediately and the crop can usually continue to utilize the fertilizer in following 

weeks, slightly late (a couple of days) application of can be considered as nearly 

on time when it should be applied at the beginning of the week. The major effects of 

the applied fertilizer on the soil-plant system will be reflected in the simulation o f the 

following weeks. The simulator repeats the above procedures week by week. At the 

end of the simulation of DetectNitrogen mode, approximate weekly requirements of 

soil N supply are detected. The results of the DetectNitrogen and the DetectWater 

mode are used to generate the primary management combinations (Fig. 5-3.4).

5-3.3.4. Optimization, Predict Growth Modes

After the management combinations are generated, a laboratory is needed to 

conduct experiments to test these management strategies. The Optimization mode is 

designed as this laboratory. It inputs the dataset as the Validation mode does except for 

the schedule of N fertilizer and irrigation. The Optimization mode inputs the data o f N 

fertilizer and irrigation only from the management schedules (combinations) produced 

by the generator, ignoring the management schedules contained in the dataset if any. 

Although the Optimization mode runs all processes of N-SIMULATOR as the 

Validation mode does, it only outputs three results: crop yields, profits, and leachate 

nitrate, which are associated with the MOM objectives. The results are saved with the 

codes o f management combinations in a working file called solution.db, which is
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retrieved by the MOM evaluator later to search for optimal solutions. The few outputs 

will ensure MOM execution efficiency because the Optimization mode will be called 

repeatedly until optimal solutions are found.

The PredictGrowth mode is designed to predict the response of the soil-plant 

system to the management strategies. Its outputs and inputs are the same as the 

Validation mode’s, except for the inputs of N fertilizer and irrigation data that are one 

of the management strategies that users selected. When an optimal solution is found, 

users can immediately examine the effects of the solution on the soil-plant system 

graphically by running the PredictGrowth mode. The PredictGrowth mode also 

outputs the simulation results to database files that can be used for further analysis. In 

addition, the PredictGrowth mode is often used to observe the effects of the solutions 

users selected during the MOM searching sessions. This is an important tool for users 

to evaluate MOM searches when they try to guide the search process. Users are 

encouraged to join and guide the MOM searching when they work on specific cases, 

although the MOM can automatically find optimal solutions. We discuss the reason for 

this issue in following section.

5-3.4. M OM  Evaluator

The evaluator is the “brain” of MOM that uses the built-in knowledge and 

communication with users to analyze the outputs of the simulator and guide the 

generator’s work. As the specification in section 5-2.1, the evaluator employs artificial 

intelligence techniques to examine the effects of management strategies to find optimal 

solutions that produce less nitrate leaching, higher yields and profits.
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5-3.4.1. Strategic and Tactical Search

Recalling the terminologies described in section 5-3.1 and Fig. 5-3.1, the 

evaluator task is to search for the nodes (management combinations) that satisfy MOM 

goals, among the enormous number of potential nodes. To illustrate the MOM search 

methods, the management nodes were deployed in two dimensions of MOM sub-goals, 

potential nitrate leaching versus profits, to form a net for the search (Fig. 5-3.5). The 

evaluator is assigned to find the nodes that nearly match the two sub-goals: high profits 

and low nitrate leaching. Note this is an example for discussion. The possible nodes 

are many more than that the figure displays. The nodes in Fig. 5-3.5 are assumed to be 

the primary management combinations that are close to the solutions.

Although the search starts near the goals, a limited search time still challenges 

MOM to exhaust all nodes by simulating a whole cropping season for each node. An 

effective search algorithm must be developed to find the shortest path from the start 

node to the goal node without examining all nodes. The hill-climbing and best-first are 

two heuristically informed search methods to improve search efficiency (Winston, 

1992). The hill-climbing search moves through a tree of paths as the depth-first search 

does, except that the choices are ordered according to some heuristic measure of 

remaining distance to the goal. In the best-first search, forward motion is from the best 

open node so far, no matter where that node is in the partially developed search tree, 

even though it does not lead to the goal with certainty (Winston, 1992). To ensure 

MOM reaches the goals effectively, a mixed search method, hill-climbing as a
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Strategic search method that embraces best-first as a tactical search method was 

developed for MOM to find the shortest path from start nodes to goals.

The absence of a specific goal state is the second challenge for the MOM search 

algorithm. MOM cannot specify a certain amount of profit or a specific nitrate 

leaching rate as a goal before the simulation. In other words, the actual highest profit 

and the lowest leaching rate are unknovra. This problem occurs in other biological 

systems that employ Al search techniques (Plant and Stone, 1991). However, the 

heuristically informed search methods require goal information in order to evaluate 

search paths. So the relative goal state is applied in MOM to measure the relative 

distances between current nodes and goal nodes. For example, the relative goal state is 

set as the higher the better for profits while nitrate leaching is always set as low as 

possible.

Strategic search using the hill-climbing method

The strategic search in MOM is a search among groups o f tactical nodes. In the 

example o f Fig. 5-3.5, a strategic search step refers to a strategic node (a big circle 

marked with “A” or “B” or . . . )  that contains nine tactical nodes. So the strategic 

search is designed to find global optimal solutions among the five big nodes in this 

example. The search starts from the strategic node “A” that is a group o f primary 

combinations produced by the generator, where profits are not high nor are nitrate
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leaching estimates low. The tactical search procedure is called to sort this group of 

nine nodes to determine local optimal nodes, three solid nodes on the upper-left comer. 

These local optimal nodes indicate that next strategic move should be toward the 

direction of less nitrate leaching and higher profits. This information  ̂ is passed to the 

generator to create new paths by extending the path of the upper-left comer to its 

neighbors, regardless of the neighbors o f the terminal nodes in other directions. These 

new paths of the second strategic search move, nine nodes within the circle “B,” have a 

shorter distance to the goals than other neighbors of the terminal nodes of the strategic 

node “A.” This hill-climbing search calls tactical search procedure again and repeats 

above processes until the global optimal solutions are found. In this example, the 

strategic search ends at the strategic node “E,” where there is no clear path information 

that leads to a better solution than current state. The solid nodes within the circle “E” 

are global optimal solutions that have relative high profits and lower nitrate leaching 

potentials than others for this example. Users can choose one of these solutions that is 

suitable to their particular situation to schedule the N management. Hill-climbing 

considerably improved the search efficiency in this excimple by examining only 45 

nodes among a total o f 300 nodes. A scenario of the hill-climbing strategic search is 

shown in Fig. 5-3.6, in which the dataset o f the summer com (See section 4-5.3) is used 

with hypothetical economic data. In the scenario, there are five strategic nodes and 

each strategic node contains 36 tactical nodes that will be discussed in the following
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paragraph. The strategic search paths in Fig. 5-3.6 iiiustrate that MOM wouid have 

improved management strategies, which wouid have increased profits and reduced 

nitrate teaching.

Tactical search using the best-first method

A  tactical search in MOM is a search to find local optimal choices among the 

nodes within a strategic search move. In the example of Fig. 5-3.5, tactical search 

means to find the nodes whose states are closer to the goal states than others among 

nine nodes within a strategic node (e.g., in a circle “A” or “B,” or others). The best- 

first search is applied as the tactical search method because the paths found by this 

method are likely to be shorter than those found with other methods (Winston, 1992).

In the best-first search, MOM orders the tactical nodes by their states. The node which 

state is the closest to the goal state goes first, the closer second, and the node whose 

state is far away from the goal is the last to be selected (how to measure a node’s state 

will be discussed in the section 5-3.4.2). Then MOM examines the first 3 - 5  nodes to 

determine the path information for the next strategic move by comparing the states of 

nodes. The path information in MOM consists of five management factors: fertilizer 

rate, frequency, irrigation rate, frequency, and fertilizer in irrigation. MOM analyzes 

the first 3 - 5  nodes in the search queue by below rules:

1. IF a level of a factor (e.g., a fertilizer rate) is shared by these nodes, THEN the 

next strategic search for this factor should move toward the direction that this 

level indicates.

1.1. IF the shared level is at the end of the highest level, THEN the level of 

the factor should increase in the next strategic search.
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1.2. IF the shared level is at the end of the lowest level, THEN the level of 

the factor should decrease in the next strategic search.

1.3. IF the shared level is in between both ends, THEN the level of the factor 

should not change in the next strategic search.

2. IF no levels o f any factors are shared by these nodes, THEN a plateau state is 

reached. The automatic strategic search pauses and waits for instructions from 

the user.

If the first three nodes (solid nodes) in the strategic node “B” share the highest level of 

the fertilizer rate, for example, the fertilizer rate will be increased in generating the next 

group of management combinations (the strategic node “C”). The plateau state found 

by the automatic strategic searching is often near the goal state even though it may be a 

local optimal state in some cases. If the nearly-optimal solutions satisfy the user’s 

requirements, the solutions can be considered as global optimal solutions. However, 

the user can continue to search until a better state is found. An example of the best- 

first tactical search is illustrated in Fig. 5-3.7, in which 36 tactical nodes are contained 

in a strategic node that is shown in the scenario of Fig. 5-3.6. The arrows across the 

diagrams indicate the direction of the next strategic move: increase profits and yields 

while decreasing nitrate leaching. The arrows also indicate the ordering o f the nodes 

that are sorted by best-first search. The first couple of paths in the search queue (whose 

distances to the goals are shorter than all others) appear in the upper-left comer in the 

diagrams. The last paths that are far away from the goals sit near the low-right comer 

in the diagrams.

C h a p t e r  5  Ma n a g e m e n t - O r i e n t e d  M o d e l i n g  1 7 2



C h a p t e r  5 M a n a g e m e n t - O r i e n t e d  M o d e l i n g 1 7 3

11

10

2

0)
O-o
O

7(^

Toward new paths to be generated 
for next strategic search

10

A
A

A

A
A

A

A

A

A
A

A

A

20 30 40 50

Leachate nitrate (kg N ha"'

A

A

A

60 70

(0
SI

(/)
2

CL

1200

1000

800

600

400

200

0

-200

Toward new paths to be generated 
for next strategic search

\

I X
10 20 30 40 50

Leachate Nitrate (kg N ha *)

60 70

Fig. 5-3.7. A scenario of the best-first tactical searching within 
a strategic search. The dataset of the summer com (section 4-3.4.3) 
is used in the scenario with hypothetical economic data.



S-3.4.2. Goal W eighting and Search Direction

To sort current tactical nodes in the best-first ordering, a measurement is needed 

to determine the distance from the current node’s state to the goal node’s state. The 

state o f each node is represented by its three characteristics in MOM: profit, yield and 

leachate nitrate. The measurement of each single state characteristic can be usually 

estimated by the difference between a current state and the goal state. But this distance 

cannot be measured in MOM because the goal state of MOM is not a specific state as 

the discussion in section 5-3.4.1. Therefore, a relative distance, D ,̂ was developed as 

a measurement to order the tactical nodes in MOM, though the absolute distance is 

unknown.

A  = (Xooa, - X ^ J  - 1.0 [5-3.7]

where X q̂ , tX ^  t  A^,„. X q̂ , refers to the goal state variable that can be a local goal or 

a global goal. X^^„ represents the state variable with minimum value among a group of 

tactical nodes in one strategic node, or the minimum in global. A, is the state variable 

representing the current value o f a state characteristic of the node /. The D, value 

represents a relative distance from the node / to the goal. The equation [5-3.7] is 

applied in MOM for sub-goals o f profits and crop yield. It is interpreted as the higher 

the state variable value, the shorter the distance to the goal. When X^ = X^,„, Z), -  

When Xj = X^^,, Z), = 0, the goal is reached. For the sub-goal of minimizing nitrate 

leaching (the less the leaching, the shorter the distance to the goal). Its Aeac/.,ng., is 

calculated by

D,eacH.n̂  , = (X^^ - X ^^ ,)  /  (X^^ - X J -  1.0 [5-3.8]
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where <Xj :< X ^ ^  X ^ ^  is the state variable with maximum value among a group

of tactical nodes in one strategic node, or the maximum in global. It represents the 

maximum nitrate leaching rate at local conditions. is the goal state variable that 

can be a local goal or a global goal. The minimum goal is no nitrate leaching, X q̂ i =

0. X, and refer to the same meanings as those in the equation [5-3.7]. The equation 

[5-3.8] is interpreted as the smaller the state variable value, the shorter the distance to 

the goal. WhenX, = X^^^ D, -  «>. WhenX^ = X q̂ „ = 0, the goal is reached.

Another challenge of the MOM search is that three state characteristics (sub

goals) must be considered simultaneously even though sometimes three sub-goals may 

conflict with each other. For this challenge, a linear weighting method is developed to 

integrate three characteristics into one measurement, a relative weighted distance, to 

estimate the space difference from a current node to the goal state. The relative 

weighted distance o f node i, D,,,;, is expressed as

[5-3.9]
P y  - Y  y y  - Y  t y  _ Y  '

^G o a l ^ M in  ^ G o a l ^  Min ^ M a x  ^G o a l

where X ^ ^  and refer to the same meanings as those in the equation [5-3.7] 

and equation [5-3.8] respectively. X^, X^ and Jf, represent current state variables of the 

profit, crop yield, and leachate nitrate respectively, as X  ̂in the equation [5-3.7] and 

equation [5-3.8]. Wp, Wy and W, refer to the weights of the profit, yield, and nitrate 

leaching in estimating the distances to the goal. The values of weights depend on 

users’ objectives and are unified by
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W  ̂= W / ( W ^ + W y ^ W i )  

W y = W y / ( W p ^ W y + W , )

W,= W,/ (Wp+ Wy+ fV,J

[5-3. lOa] 

[5-3.10b] 

[5-3.10c]

Finally the relative weighted distance, D^„ can be used to estimate the shortest path 

directing to the next strategic search. Using the best-first search procedure, MOM sorts 

out tactical nodes within a strategic search step into a queue in ascending order by their 

D„, values. The usage o f this queue for the tactical search was discussed in the last 

section 5-3.4.1.

The goal weights are used to direct the searching. If the weights o f three goals 

are changed, the relative distances, are changed (equation 5-3.8). And the order o f 

tactical nodes in a search queue is changed. Finally the direction of the next strategic 

move is changed. So the goal weighting is an important tool for users to guide MOM’s 

search. An example of differing goal weights in the scenario (used in section 5-3.4.1) 

illustrates that the goal weighting changes the first five tactical nodes in a search queue 

and also changes the final choice of optimal solutions (Table 5-3.2).

T able 5-3.2. The first five tactical nodes in the queue of the final strateg ic search  are  
changed by differing goal weights.

Goal wt-1 50% 50% 50% Goal wt -2 ^5% 50% 35%
Node# Profit Yield Leaching Node# Profit Yie ld Leaching

$ ha ' kg h a ' k g N h d ' $ h d ' kg ha-' k g N h d '

#35 880 9138 0 #34 935 9621 6 .8
#29 855 9138 0 #35 880 9138 0
#23 831 9138 0 #31 904 9520 5 . 5
#34 935 9621 6 . 8 #28 911 9621 6 . 9
#31 904 9520 5 . 5 #29 855 9138 0



With Goal wt-1 in Tahle 5-3.2, the first solution choice is Node# 35 with profit 

$880 and no nitrate leaching, which management combination consists of 154 kg N ha ' 

N fertilizer applied in two weeks and 229 mm irrigation in 14 weeks during the 15- 

week cropping season. However, if  the search is controlled hy Goal wt-2 which 

weights profit higher than nitrate leaching, the first five nodes in the queue and their 

orders are changed. The first solution choice is changed to Node# 34 with profit $935 

and 6 . 8  kg N ha'' nitrate leaching, which management comhination consists of 154 kg 

N ha ' N fertilizer applied in two weeks, and 274 mm irrigation in 14 weeks during the 

cropping season.

S-3.4.3. Interaction to Guide Search

MOM is designed as a decision-aid to assist users in finding a solution that 

meets their goals, not a tool that makes decision for users. As discussed ahove,

MOM’s “intelligence” consists of very limited equations and rules. It will lose its way 

if problems are not covered by the equations and rules. For example, hill-climbing 

method has some problems in searching such as “foothills, plateaus, and ridges” that 

are hard to “climb” (Winston, 1992). To avoid making mistakes, the MOM search 

style is designed to accept user interaction. It implements the strategic search under the 

user’s guidance plus an automatic search procedure that works well in most situations. 

However, if  the search reaches a plateau, users must determine how to change the 

management combinations (five factors discussed in section 5-3.4.1) for the next 

strategic search move, or declare that the goals are reached. The goal weights that 

represent the users’ objectives can be used to control either the global search or the
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tactical search. To assist user analysis of the search processes, MOM provides users 

with on-line state space diagrams (Fig. 5-3.8) as graphic tools that examine the search. 

Users can determine the current relative weighted distances of any nodes to the goal 

immediately, just using the mouse to circle the nodes on the state space diagrams (Fig. 

5-3.8). A user with N management knowledge can adjust the management factors 

manually between strategic search moves.

In addition to guiding the search, users must make the final decision in choosing 

optimal solutions from the final solution list. This is because an optimal solution may 

not necessarily fit a user’s particular situation. Therefore, the MOM interface is 

designed to facilitate the search sequence as well as to list alternative solutions for 

users’ choices.

5-3.5. M OM  Execution

As a summary o f the MOM implementation, a MOM session is briefly 

described in this section and in Fig. 5-3.9. A MOM session proceeds as follows:!.

Detect the shortages of soil N and water for a cropping season. This results in a 

primary management combination (an N fertilizer and irrigation schedule) that 

is close to matching crop requirements.

2. Start a strategic search.

2.1. Assemble a group of new tactical search nodes using the generator. The 

tactical nodes consist of the combinations of management factors: N 

fertilizer rate and timing, irrigation rate and timing, and fertilization 

with irrigation systems. The adjustment of the factors would bracket the
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primary management combinations at the first strategic search and

bracket the last combinations at following strategic searches.

2.2. Predict the states of current tactical nodes using the simulator. The

node’s state in MOM consists of three characteristics; the profit, yield, 

and nitrate leaching. The characteristics of the goal state are also called 

sub-goals.

2.3. Assess the states of current tactical nodes using the evaluator. (1)

Adjust the weights of three sub-goals. (2) Estimate the relative 

weighted distances between current nodes and the goal. (3) Search 

tactical nodes to find the shortest path toward the goal.

3. Determine if  a plateau has been reached.

3.1. If a plateau is not reached, the path information resulting from the

tactical search is transferred to the generator to create a new group of 

tactical nodes by extending the desired neighbors o f the terminal nodes. 

Then repeat step 2.

3.2. If a plateau is attained, users must judge whether the plateau is a local or 

global optimal situation

3.2.1. If the plateau is a local optimal, change the management 

combinations manually and repeat step 2 .
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3.2.2. If the plateau is the global optimal, the goals are reached and the 

search succeeds. Select suitable solutions from the solution list 

for displaying results.

4. Graphically demonstrate the predicted effects of selected management

combination on the soil-plant system, during the search or at the end of the 

search.

5-4. Summary

Dramatically increasing nitrate pollution in groundwater in recent years requires 

that we learn to control N pollution by finding optimal management strategies to reduce 

the contamination. Among optimization techniques in agriculture, a hybrid simulation 

model and knowledge-based system developed in recent years, is a useful approach to 

solve the nitrate leaching problems in dynamic soil-plant systems. However, existing 

N models were not designed with AI optimization for dynamic precision N 

management. Management-Oriented Modeling (MOM), a dynamic simulation 

modeling with artificial intelligence (AI) optimization techniques, has been developed 

in this study to provide a precision tool in finding optimal solutions for N management 

to minimize nitrate leaching and maximize production and profits.

MOM consists of a generator, a simulator, and an evaluator. In searching 

optimal management strategies, the generator produces a group of nodes (management 

choices). The simulator predicts the results of the nodes such as nitrate leaching, 

production and profits. The evaluator is the core of MOM that uses the built-in

C h a p t e r  5  M a n a g e m e n t - O r i e n t e d  M o d e l i n g  1 8 2



knowledge and communication with users to analyze the outputs of the simulator and 

guide the generator’s work. To ensure MOM reaches the goals effectively, a mixed 

search method, hill-climbing as a strategic search method that embraces best-first as a 

tactical search method, was developed to find the shortest path from start nodes to 

goals. Examining the tactical nodes in a strategic search, the evaluator finds short paths 

toward nearly optimal solutions and passes the path information to the generator. The 

generator uses the information to produce the next group of tactical search nodes that 

are closer to the global optimal solutions.

MOM is a goal-driven modeling system in which the simulation is directed 

toward user-weighted goals. The model can be used as a tactical N management tool 

for in-season management of specific conditions and used as a strategic N management 

tool for general decision rules. MOM was also constructed as a tool for diverse users 

from farmers to scientists. MOM can usually find the nearly optimal solutions in 5 - 20 

minutes on current personal computers. In a maize production scenario, MOM found a 

nearly optimal management solution that would have increased the profit from $570 to 

$935 ha ■' and reduced the nitrate leaching from 36 to 7 kg N ha '. The results show 

MOM is a useful modeling method for dynamic N management.
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Chapter 6

MOM-guided Within-season Management

In-season management decision aids are very important to nitrogen 

management because the final fate of the N in soil-plant systems largely depends on the 

in-season management. Nitrogen is the plant nutrient that is applied in the largest 

quantity in fields for production. Inorganic N (mostly in nitrate or ammonium form) is 

highly water-soluble in soil-plant systems. The status of inorganic N in soils rapidly 

changes with crop growth and management practices during a cropping season. In 

upland field conditions, almost all ammonium was converted to nitrate in one month 

(Khan, et a l ,  1986). Nitrate is highly mobile in most soils and can easily move below 

the root zone, where nitrate becomes inaccessible to crops and is subject to leaching 

into groundwater. In high leaching risk areas with sandy soils or heavy rainfall, N fate 

is very sensitive to rainfall events, the rates and timing of N fertilization and irrigation. 

Theoretically, N management strategies can be well scheduled and planned off-season 

based on historical weather data, in which the N fertilizer supply can be synchronized



with the plant needs. However, the uncertainty of rainfall results in sub-optimal 

management if based on a fixed schedule. For example, if unexpected heavy rain falls 

during or just after a large application of N fertilization, a significant amount o f N 

fertilizer intended for crop uptake may be leached beyond the root zone. The N 

fertilizer intended for crop growth then becomes a potential N pollutant, which imposes 

two impacts on the soil-plant system. One is a shortage in N supply for crop growth 

and another is the risk o f damaging the environment. Facing this kind of in-season 

change, the management schedule should be flexible for within-season adjustment to 

avoid serious leaching events while supplying sufficient N for crop growth.

When a nitrogen model is used to guide within-season N management, it must 

deal with the uncertainty o f coming weather. Stochastic models are usually designed to 

estimate spatial and temporal uncertainties in prediction. However, so far stochastic 

models o f soil-plant systems are difficult to apply to field management (Ling, 1996). 

Another method for in-season management is real time control. Sensor technologies 

and soil tests are being developed to provide feedback of soil-plant systems for 

adjusting management practices.

MOM is not a stochastic model, but a two-way modeling model that simulates 

natural processes and human management practices (See section 5-2.2). So MOM is 

designed as a within-season tool for nitrogen management as well as a tool for research, 

teaching, planning, assessment, and general management. Within a cropping season, 

MOM recommends adjustments in the management to fit current weather conditions 

and the changes o f soil-plant systems. This two-way modeling style works as a
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modeled real time control system for within-season management. Because MOM 

focuses on assisting N management within a real cropping season, this MOM 

working mode is called MOM -guided within-season management, differing from the 

models for general management. This chapter first examines weather generator models 

and monitoring with soil tests or sensors for N in-season management. Then the 

concept and implementation of MOM for within-season management are discussed to 

illustrate how MOM attempts to dynamically optimize N management within a 

cropping season.

6-1. Weather Generator Models

For many agricultural models, one of the greatest uncertainties is future 

weather. To deal with this unknown, a stochastic module called a weather generator is 

usually added to system. An example of this type of weather generator, WGEN, was 

developed by Richardson and Wright (1984). WGEN works as a random weather 

generator that produces daily maximum and minimum temperature, rainfall, and solar 

radiation based on longitude and latitude for the cotton-heliothis hybrid systems 

discussed in section 5-1. Another weather simulation model is "NATCOVER,” which 

was developed to improve the accuracy of crop simulation models (Wang and Whisler, 

1996). Constructed from historical daily weather data for the GOSSYM/COMAX 

cotton simulation model, "NATCOVER" generates several weather patterns based on 

long-term climatic data under normal conditions, and with six other hypothetical
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weather scenarios.

Weather generators are useful for agricultural models in general applications in 

research, teaching, planning, and assessment. If models are used for in-season 

applications, weather generators still face challenges. Stone and Schaub (1990) 

compared the weather data generated by WGEN with measured field data and historical 

averages. Patterns of the generated data looked much like actual field data. However, 

the generated data were less likely to match field conditions than the average data on 

any particular day. Although the averages provide better estimates on given days. Plant 

and Stone (1991) concluded that the average season is not a realistic approximation of a 

particular season’s weather. There is no such as a thing as a “typical year.”

6-2. Soil Test and Sensor Monitoring

Binford et al. (1996) proposed in-season soil testing for monitoring nitrogen 

management based on sugar beets experiments. In the experiments during 1993, 1994, 

and 1995 seasons in western Nebraska and Wyoming, ten rates of N (0 to 304 kg N ha'' 

in 34 kg N ha'' increments) were applied in four replications before planting. Soil 

samples, 0-30 cm, were collected at two-week intervals and analyzed for nitrate 

concentration. They found that net returns to N fertilization decreased significantly as 

the soil nitrate concentration increased to 40 mg N kg '. On-site soil nitrate testing as a 

method of monitoring N fertilizer management was also suggested by Marx et al. 

(1996). The on-site monitoring practice was called the Pre-sidedress Soil Nitrate Test

C h a p t e r  6  M O M -g u i d e d  W i t h in - s e a s o n  M a n a g e m e n t  1 8 7



(PSNT). Nitrate was extracted from 10 ml of field-moisture soil, measured by 

displacement, and analyzed using a quick-test field kit (Nitrachek ™). The field test 

results were adjusted for difference caused by soil texture and moisture, based on 

correction factors calibrated from standard laboratory methods.

Another technology used in nitrogen in-season management is real-time control 

using sensors. To monitor crop N status, Schepers et al. (1996) mounted nitrogen 

sensors on a high-clearance sprayer and interfaced with the spray control system of the 

equipment. The sensor readings from the adequately fertilized strip were compared 

with those from adjacent strips that were likely to develop N stress. If needed, N 

fertilizer was applied to field strips in the spring. Blackmer and White (1996) reported 

using remote sensing to identify spatial patterns of nitrogen fertilization. Sensor 

technologies have been successfully applied in many agricultural fields, including 

monitoring N fertilization for some crops based on tissue N deficiency. N sensors 

monitor crop N status by detecting its color. Sensors can only determine crop N 

requirements when it can detect the symptom of a crop N stress. For many crops, 

however, N fertilizer should be applied a couple days or weeks in advance of when a 

crop needs N or the crop shows N stress. In other words, the sensor’s recommendation 

for N fertilizer is usually too late to be effective in meeting the N demand of these 

crops. This situation occurred in most experiments reported by Schepers et al. (1996).
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6-3. Using MOM to Guide Within-season Management

Considering the capability of MOM in predicting N status in soil-plant systems 

at acceptable accuracy (See section 4-5), MOM was also developed for within-season 

simulations to optimize nitrogen management, called MOM-guided within-season 

management.

To make decisions for within-season N management without a decision-aid, a 

decision-maker usually first collects the necessary data that include current crop N 

status, soil N and moisture status, and precipitation (Fig. 6-3.1). The data can be 

collected from soil tests, sensors, and weather forecasts. Then the decision-maker 

analyzes the data and estimates the amounts and timing of N fertilizer and irrigation in 

the following weeks.

If MOM is calibrated and validated to local conditions, it can simulate the 

above decision-making process without within-season data from soil tests or sensors, 

except for initial site conditions. Fig. 6-3.2. illustrates the concept that MOM navigates 

within-season N management by mimicking the process above. Primary purposes of 

MOM-guided within-season N management are: (1) Use simulated data to substitute 

for within-season soil and tissue test data. (2) Use the model to dynamically monitor 

and navigate within-season N fertilization and irrigation. Assume MOM was calibrated 

and validated to a specific site and a decision-maker had made initial soil tests for soil 

N and moisture just before planting. A MOM-guided within-season N management is 

described below (Fig. 6-3.2).

1. Run MOM before planting to schedule seasonal management strategies, based
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on initial conditions of the soil-plant system and weather data from historic 

averages (or from weather generators if  users have). MOM simulates the N 

cycle of the entire cropping season and predicts possible optimal crop yields, 

profits, leached nitrate, and other outputs, as well as corresponding management 

strategies of N fertilizer and irrigation.

2. Run MOM weekly (or shorter intervals if necessary) to update and monitor the 

current status o f the soil-plant system.

2.1 Input actual precipitation, irrigation, and N fertilization of the past 

weeks to update current status of N and water in the soil-plant system of 

the model. MOM displays the simulated status o f the soil-plant system 

before TODAY in solid lines (Fig. 6-3.3).

2.2 Input the forecast amounts o f precipitation in following weeks if they 

are significantly different from those in MOM databases. Then MOM 

re-simulates and updates the status o f the soil-plant system after 

TODAY, shown in dotted lines (Fig. 6-3.3). MOM also reevaluates the 

management strategies after TODAY and updates the management 

schedule for the following weeks.

3. Rainfall is uncertain for within-season management but is important to simulate 

N movement in soils. Weekly observed precipitation inputs are necessary for 

MOM-guided within-season management. Updating weekly air temperature 

and ET is not required by MOM unless the season climate changes 

fundamentally. Some simple functions of crop uptake N related to the crop
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growth observations, such as =f(LAl ,  Height^,J, can be established by 

users. These functions can be used to update growth curve o f the crop demand 

N by easily observed data. The update is helpful when the crop grows 

abnormally due to unpredicted events such as serious pests. In season soil test 

data are also helpful in tracing soil N status, but not required because MOM 

uses its simulated data to monitor the N status of the soil-plant system (Fig. 6 - 

3.2). If MOM was calibrated and validated to a specific site, the accuracy o f the 

simulated soil data may not be less than those of limited field sample tests 

(Refer to section 4-5, N-SIMULATOR verification/validation).

4. MOM-guided within-season management can run in many ways:

4.1. On-site or on-field. Users run MOM for a specific crop in a field. A 

single MOM database is needed for a cropping season.

4.2. On-farm or on-watershed. Multiple MOM databases are needed for 

diverse crops and soils in an area. Farmers, watershed managers, 

extension agents, and consultants may wish to use MOM this way.

4.3. Soil test reports with MOM. If a sample analysis requires 

recommendations for N fertilization, MOM may be useful for 

consultants in (1) demonstrating the N situations of clients’ soil-plant 

systems, (2 ) optimizing the recommendations for within-season 

management and (3) illustrating the effects of recommendations on the 

soil-plant systems in advance.

Within-season management using MOM is a dynamic optimization process. MOM
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always optimizes the management schedules at weekly or shorter intervals, hased on 

within-season monitoring and updating of the status of the soil-plant system. A perfect 

optimal management schedule for the whole cropping season may not he guaranteed hy 

MOM-guided within-season management, because of many uncertainties beyond the 

control o f either decision-makers or models. PAST events cannot be revised before 

TODAY. However, MOM-guided within-season management can improve 

management in the near future (e.g., the following week) after TODAY. For example, 

nitrate leaching events occurred in 5-7 days and 22-26 days after planting in Fig. 6-3.3, 

no matter whether these were failures of the rain forecasts or other reasons. MOM just 

simulates the past situation and focuses on changing the management schedule after 

TODAY to avoid the coming leaching peak in the near future (30-35 days after 

planting). In other words, MOM can help the decision-maker reduce the possible 

coming leaching peak by trying alterative schedules o f fertilization and irrigation.

MOM uses a weather forecast to predict effects of coming water events on the N cycle 

in soil-plant systems. This in turn allows MOM to search new management schedules 

to update recommendations that adjust for the coming effects. MOM may not perfectly 

control all events during the whole cropping season but it dynamically traces crop 

requirements and updates fertilization and irrigation schedules to fit changing weather 

in the near future. In comparison of Fig. 6-3.3 (status of 28 days after planting) with 

Fig. 6-3.4 (status of 91 days after planting), MOM did not exactly predict the patterns 

of water events and nitrate leaching between 28 and 91 days after planting. However, 

MOM reduced nitrate leaching by updating management of irrigation and fertilization
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during the period. This situation illustrates the key purpose of M OM -guided within- 

season management: not intending to match future events exactly, but updating the 

model systems within-season and dynamically adjusting management strategies to f i t  

changing conditions. In addition to its management-oriented optimization, using 

MOM-guided within-season management has the advantages of:

(1) High efficiency. Users can know the probable status of soil-plant systems in a 

few seconds, without waiting for the results of sample tests. MOM-guided 

within-season management advises when and how much N that crop demands 

in advance of sensors and soil tests.

(2) Low cost. There is no cost o f the N sensors’ hardware, and no within-season 

soil or tissue sampling and testing other than an initial soil test.

(3) “Transparency.” Daily pictures o f the simulated N cycle in soil-plant systems 

graphically show users predictions of where their N fertilizers would have been, 

where will be, and how to control them. MOM also presents estimates o f N fate 

in soil-plant systems such as leachate nitrate and mineralized N, which are not 

provided by standard soil tests.

A major limitation of MOM-guided within-season management is that all simulation 

results are based on the assumption that MOM is correctly calibrated and validated to 

specific sites and crops. However, the discussion above illustrates that MOM-guided 

within-season management is promising for precision N management.
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6-4. Scenarios of MOM Optimized Management

MOM validation should include two parts: simulation of natural processes and 

simulation of management activities, because MOM was designed as a two-way 

modeling tool (See section 5-2.2). Validation of MOM with respect to the natural 

processes is to compare the agreement (or closeness) of the model predictions with the 

observations. This is a validation of the MOM simulator, N-SIMULATOR, which was 

initially evaluated in section 4-5. The validation of management activities is to 

compare the differences between the results o f existing management practices produced 

with those that MOM suggests. It is to test whether MOM improved the existing 

management strategies or not, and the degree of the improvement. This validation 

requires datasets that consist of, at least, two types of observed data: results produced 

under existing management practices and results produced under MOM-guided 

management. In addition to analytical data of soil-plant systems, the dataset should 

include profits, yields and leachate nitrate, which are three sub-goals o f MOM. 

Unfortunately no such dataset was available when MOM was initially developed. 

However, an approximate test o f MOM predictions for N management can be obtained 

by testing its simulator as in section 4-5. Several examples of MOM applications to 

optimize nitrogen management are discussed through scenarios in this chapter. The 

discussion focuses on how MOM adjusts N management to fit changing conditions 

during a cropping season. The detail processes are available in the Appendix B.

Five scenarios o f MOM-guided N management for upland crops in the tropics 

are discussed below. The information associated with data sources was not released

C h a p t e r  6  M O M - g u id e d  W it h in - s e a s o n  M a n a g e m e n t  1 9 8



here because the discussion of MOM scenarios may imply that some existing practices 

might have negative effects on the environment, which might never exist. To evaluate 

how much difference that MOM made from the original management practices at the 

same ground, all compared data are simulation results based on the original 

management practices or MOM suggested management. Profit ($ ha ') in MOM is 

simply calculated by

P r o f i t  =  M a r k e tV a lu e  • C r o p Y i e ld /  (1 +  L o a n ln te r e s t)

- P r ic e  - A m o u n t

-  P r ic e  - A m o u n t - 1 0  t  h a ' /m m

- C o s t  pertiiiierToFarm

- C o s t  (FerliliierToField + LaborToAppty) - A ppU cO tiO nS pemlizer

- C o s t   ̂ - A p p l ic a t io n s

C o s t  Periilterlnlrrigalion A ppH cO tiO nS Periilterln/rrigation

- O th e r C o s t

The economic factors and units in scenarios were assumed as follows:

M a r k e tV a lu e  =  0 .5 0  $  k g '

L o a n ln te r e s t  =  12  % y e a r '

P r ic e  =  0 .8 0  $  k g N '

P r ic e  =  0 .0 5  $  to n n e '

C o s t  PertiiiierToFarm ~  5 .0 0  $  h u '
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Cost (FenilizerToFieU  + LaborToApplyJ 00 + 100. 00 $ ho '

Cost (WmerToField  + iMborToImgaleJ ~ 0.00 + 0.20 $ hO '

Cost = 0.00$ ha ‘

OtherCost = 350.00 5 (includes planting and harvest costs)

Note that the profit and economic factors here are simply set to estimate relative 

costs associated with management activities. They may not be complete nor involve all 

current marketing factors. MOM may consider these factors in further development 

with the assistance of agricultural economists. During the MOM optimization search, 

the three MOM sub-goals, high profits, high yields and less nitrate leaching, were 

assigned the same weights.

Scenario-1

This is an example of the cropping in a tropical wet season (udic soil moisture 

regime). MOM first examined the “native” water supply potential during the cropping 

season and determined the amounts and timing of supplemental irrigation to meet 

possible shortage of the crop requirements (Fig. 6-4.1.1). Recalling section 5-3.2.3, for 

the soil N or soil water supply potential, when the supply index is equal to 0, the soil 

supply is equal to the crop requirement. A line at the index of zero, called sufficient 

line, was drawn in diagrams of soil N or soil water supply analysis to indicate where 

the soil supply satisfies the crop requirement. The soil water supply indexes of three 

soil layers under “native” conditions were close to sufficient line, only slightly lower
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than it (Fig. 6-4.1.1). In other words, rainfall would provide most of the water the crop 

needs, so not much irrigation was needed. The “native” soil N supply potential was 

evaluated in Fig. 6-4.1.2. MOM predicted that N supply shortage in the major root 

zone would occur during the crop’s rapid growth stage (about 50 - 100 days after 

planting), in which “native” soil N supply index of the surface layer (0-30 cm) was less 

than the sufficient line. So a small amount o f N fertilizer was suggested shortly before 

and during this stage (Fig. 6-4.1.2). Measured soil nitrate contents at the beginning of 

cropping were 28 mg N kg ' (about 92 kg N ha'', assuming soil BD = 1.1) in the major 

root zone (0-30 cm), 26 mg N kg ' (about 85 kg N ha'') in the minor root zone (30-60 

cm, assuming soil BD = 1.1), and 34 mg N kg'' (about 123 kg N ha ', assuming soil BD 

= 1.2) in the transition zone (60-90 cm) in the scenario. Given the same goal weights 

to the three sub-goals of high profits, high yields and less nitrate leaching, MOM 

suggested 106 mm irrigation and 42 kgN ha ' for the scenario (Table 6-4.1, Fig. 6-4.1.1 

and Fig. 6-4.1.2). Based on the MOM suggested management, soil N supply potential 

during the cropping was simulated in Fig. 6-4.1.3. Comparing Fig. 6-4.1.3 with Fig. 6 - 

4.1.2, the soil N supply index of the major root zone (0-30 cm) rose slightly over 

sufficient line after MOM suggested N fertilizer had been applied. It implies that 

MOM suggested management nearly matched the crop requirements during the growth. 

Inorganic N in the soil profile was simulated in Fig. 6-4.1.4. Inorganic N (mostly in 

nitrate form) concentration in the root zone became low at the end of the cropping. 

However, inorganic N remained high in the transition zone, where only a small fraction 

of the N was utilized by the crop. Inorganic N in the transition zone was a potential
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Table 6-4.1. MOM suggested N fertilization and irrigation schedule in scenario-1.

Week Fertilizer 
kgN h a '

Irrigation
mm

1 0.0 0.0
2 0.0 5.4
3 0.0 0.3
4 0.0 0.0
5 0.0 4.2
6 10.0 12.8
7 0.0 8.7
8 0.0 14.7
9 0.0 18.0

10 0.0 10.8
11 32.0 8.7
12 0.0 1.0
13 0.0 12.5
14 0.0 0.0
15 0.0 0.0
16 0.0 9.2

Sum 42.0 106.3

leaching source unless the following crops could develop deep roots in this layer. The 

large rain near the end of the cropping season might leach this inorganic N out of the 

root zone as occurred in scenario-1 (Fig. 6-4.1.5). Comparing simulation results (crop 

uptake N, percolation, and leachate nitrate) of the original management practice (Fig. 6 - 

4.1.5) with those the MOM-suggested management (Fig. 6-4.1.6), it suggests that 

MOM recommendations had controlled much of the excessive percolation, which in 

turn reduced nitrate leaching. Although MOM could not control the severe leaching 

peak at 100 days after planting, which was caused by a large rain event, MOM had 

reduced the total of nitrate leaching from 175 kg N h a ’ to 67 kg N ha' .  Compared to 

the original management, MOM also reduced costs by reducing the amounts and
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applications of the fertilizer, while maintaining the yield. Finally, the MOM suggested 

management returned $600 ha ' more profit and 108 kg N ha ' less nitrate leaching than 

the original management in scenario-1 (Table 6-4.2).

Table 6-4.2. Summary of five scenarios of MOM optimizing N managementf

Scenario Management Profit
$ h a ‘

Yield 
kg h a '

Leachate N 
kgN h a '

Fertilizer 
kgN h a '

Irrigation
mm

(1) Original 3314 9092 175 200 323
MOM 3986 9589 67 42 106

(2) Original 3697 9728 40 197 387
MOM 4439 11001 8 224 271

(3) Original 1063 4212 5 200 239
MOM 3414 9007 2 150 298

(4) Original 1785 4709 96 10 0
MOM 3852 10101 103 224 234

(5) Original 2711 6645 102 104 0
MOM 4152 10318 115 1114 234

t  All data of profit, yield, and leachate N are results simulated by N-SIMULATOR. Fertilizer
and Irrigation data come from original datasets or MOM suggestions.

J Approximate 180 kgN ha ‘ of legume manure was applied preplant. The cost of the manure
was not included in the analysis.

Scenario-2

Scenario-2 represents cropping during a tropical dry season. The “native” water 

supply potential of the scenario was simulated in Fig. 6-4.2.1, with a primary irrigation 

schedule that MOM suggested to match the crop requirements. Fig. 6-4.2.1 shows that 

the water supply in the major root zone was insufficient and MOM recommended more 

irrigation for the crop during this dry season than that in scenario-1 (wet season). Fig. 

6-4.2.2 illustrates the “native” soil N supply potential of the site during cropping and 

MOM suggested N fertilization during the crop rapid growth period. The soil nitrate
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contents at the beginning o f cropping were 10 mg N kg ‘ (about 34 kg N ha'*, assuming 

soil BD = 1.1) in the major root zone (0-30 cm), 11 mg N kg'* (about 37 kg N ha'') in 

the minor root zone (30-60 cm, assuming soil BD = 1.1), and 15 mg N kg'* (about 52 

kg N ha'', assuming soil BD = 1.2) in the transition zone (60-90 cm). Initial soil 

inorganic N of the scenario was less than that of scenario-1. More fertilizer and 

irrigation, 224 kg N ha'' with 271 mm irrigation in total, were suggested for the 

scenario-2 (timing shown in Fig. 6-4.2.1 and Fig. 6-4.2.2). Soil N supply potential 

under MOM management was simulated in Fig. 6-4.2.3 and soil inorganic N was 

simulated in Fig. 6-4.2.4. Inorganic N in the soil profile increased during crop growth 

but after harvest returned to approximate the same levels as before planting. No extra 

inorganic N was accumulated in the root zone under MOM suggested management.

Fig. 6-4.2.5 shows crop uptake N, percolation, and leachate nitrate of original 

management practice and Fig. 6-4.2 . 6  shows the same measurements under MOM 

suggested management. Simulated profit, yield and leachate nitrate of the scenario 

were listed in Table 6-4.2. Except for some savings in irrigation, the original 

management practice was close to MOM suggestion. MOM would not have greatly 

improved profit and yield in this scenario. However, some reduction in nitrate 

leaching, from 40 kg N ha'' to 8  kg N ha'*, was predicted. Scenario-1 and scenario-2 

demonstrate that careful N management is necessary to minimize nitrate leaching for 

cropping in a tropical wet season. With uncertain rainfall, that is a difficult 

management objective even with a decision-aid.
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Fig. 6-4.2.3. Scenario-2. Soil N supply index analysis o f the simulated 
situation under MOM-guided management schedule, during a dry 
cropping season.
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Scenario-3

In contrast with first two scenarios, initial concentration of inorganic N in the 

soil profile in scenario-3 was very low (Fig. 6-4.3.4). The “native” water supply 

potential analysis (Fig. 6-4.3.1) shows that the crop needs to be well irrigated in the 

scenario. This is also an only scenario in which “native” soil N supply potential o f the 

subsoil layers (30-90 cm) fell below the crop requirements during the rapid growth 

period (Fig. 6-4.3.2). Fig. 6-4.3.3 shows soil N supply potential during the cropping. 

The concentration of inorganic N in the soil profile rose during the crop growth and 

finally returned to the low levels that were close to initial levels (Fig. 6-4.3.4). Fig. 6 - 

4.3.5 shows crop uptake N, percolation, and leachate nitrate of the original 

management practice and Fig. 6-4.3.6 shows those of MOM suggested management. 

MOM suggested less N fertilizer but more irrigation than the original management. 

Simulated results show that MOM obtained higher profit and yield than the original 

management (Table 6-4.2). This may be explained by Fig. 6-4.3.5 and Fig. 6-4.3.6, 

which illustrate that MOM provided a more stable water supply than the original 

management. It implies that water was a major restrictive factor in scenario-3. Low 

rates o f leachate nitrate in both management practices in the scenario might be due to 

low nitrate in the transition zone.

Scenario-4 and Scenario-5

C h a p t e r s  M O M -g u i d e d  W it h in -s e a s o n  M a n a g e m e n t  2 1 1

Original cropping practices in scenario-4 and scenario-5 were rainfed with 10

kg N ha ' inorganic fertilizer preplant. Approximately 180 kg N ha ' of legume manure

was applied preplant in scenario-5. Scenario-4 was nearly a “native” case and scenario-
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Fig. 6-4.3.1. Scenario-3. Soil water supply index analysis of the simulated 
"native" situation and MOM-guided irrigation schedule, during the cropping 
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5 is an example of organic farming. They are good cases to evaluate MOM in 

optimizing management for profit by fertilization and irrigation, and to test MOM’s 

capability of incorporating inorganic and organic farming practices. For scenario-4, 

“native” water supply potential, soil N supply potential, and soil inorganic N were 

simulated in Fig. 6-4.4.1, Fig. 6-4.4.2, Fig. 6-4.4.3, and Fig. 6-4.4.4. Crop N uptake, 

percolation, and leachate nitrate for both the original management practice and MOM 

suggested management are shown in Fig. 6-4.4.5 and Fig. 6-4.4.6. The same diagrams 

for scenario-5 are given in Fig. 6-4.5.1, Fig. 6-4.5.2, Fig. 6-4.5.3, Fig. 6-4.5.4, and Fig. 

6-4.5.5. Simulated profits, yields and nitrate leaching rates o f both scenarios are listed 

in Table 6-4.2. Comparing scenario-4 with scenario-5, one can conclude that (1) Both 

inorganic farming and inorganic combined with organic farming would profit from the 

management MOM suggested. The simulation suggests that the crop yield under 

combined farming was slightly higher than that under inorganic farming. (2) MOM 

would detect when and how much inorganic N can be released from preplant legume 

manure and match appropriate inorganic fertilizer for crop growth requirements. (3 ) 

Both scenarios show high rates of nitrate leaching at almost “native” conditions, but 

MOM could not help much in reducing them. Initial soil nitrate contents in the major 

root zone (0-30 cm), the minor root zone (30-60 cm), and the transition zone (60-90 

cm) were 5.0,4.5, 27 mg N k g ' for scenario-4, and 9.4, 4.5, 30 mg N kg"' for scenario- 

5. The distributions show approximate 75% of the initial soil nitrate was stored so 

deep that most crop roots could not reach it. Assuming that soil BD = 1.2 in the 

transition zone (60-90 cm), the amount of nitrate accumulated in the layer contained
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Fig. 6-4.4.1. Scenario-4. Soil water supply index analysis o f the simulated 
"native" situation and MOM-guided irrigation schedule, during a wet 
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Fig. 6-4.5.1. Scenario-5. Soil water supply index analysis o f the simulated 
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approximately 97 kg N ha"' for scenario-4 and 108 kg N ha ' for scenario-5. These 

numbers are very close to the numbers of simulated “native” nitrate leaching in Table 

6-4.2. It implies that this kind of “native” leaching may be due to accumulated nitrate 

in deep soil layers drained by tropical rainfall in the wet season. The accumulated 

nitrate in deep soil layers may have resulted from previous mismanagement of 

fertilizer.

6-5. Summary

Within-season management decision aids are important for precision nitrogen 

management because the final fate of the N in soil-plant systems largely depends on 

within-season events and management. Uncertainty in future weather challenges N 

models for within-season management. While weather generators can simulate weather 

they do not predict weather for a given season. Nitrogen sensors monitor crop N by 

color, not soil N content. Although N sensors have been useful for some crops to 

monitor N fertilization based on tissue N deficiency, their recommendation of 

fertilization occurs too late to optimize within-season management for many crops, 

because normal growth of the crops require sufficient N supply before the N deficiency 

occurs.

After correctly calibrated and validated to specific sites and crops, MOM should 

be a useful tool to guide within-season nitrogen management. MOM uses weather 

forecasts to estimate rainfall in the near future and simulates other components in the 

soil-plant systems. In addition to its management-oriented optimization, MOM-guided
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within-season management has the advantages of (1) High efficiency in predicting 

timely information. Users are advised of the probable status of soil-plant systems in 

advance of sensors and soil tests. (2) Low cost to implement. No within-season soil or 

tissue sampling and testing are required except an initial soil test. (3) “Transparency” 

o f the systems’ status. Daily descriptions of the N cycle in soil-plant systems during 

the cropping season graphically advise users how to control the fate of nitrogen. MOM 

also presents within-season estimates of leachate nitrate and mineralized N, which are 

not provided hy standard soil tests. Within-season observed data o f precipitation and 

crop growth update MOM-guided management with current events, which improve 

precision that MOM traces the N cycle in soil-plant systems.

MOM-guided within-season management was not designed to match future 

events exactly, but to dynamically adjust probable consequences of management 

strategies to fit changing conditions within a cropping season. Although MOM has 

been only partially validated, e.g., its simulator, the scenarios suggest that MOM can 

help in precision nitrogen management for maximizing profits and yields while 

minimizing nitrate leaching by updating management of irrigation and fertilization 

within-season.
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Chapter 7 

Summary

Precision nitrogen management has developed rapidly in recent years due to 

impact o f nitrogen on the environment. Nitrogen models are important tools for 

precision management. Nine existing N models were evaluated in assessing the state- 

of-the-art o f N modeling. These models were designed to describe the N status in soil- 

plant systems, but not to change the situation by modeling the management 

alternatives and choices. To model nitrogen management, Management-Oriented 

Modeling (MOM), a dynamic simulation modeling using artificial intelligence (AI) 

optimization techniques, has been developed in this study. MOM provides a precision 

tool in finding optimal solutions for N management to minimize nitrate leaching and 

maximize production and profits. The model was calibrated and validated with 11 

datasets from Hawaii and Brazil. Results show that the model accuracy of simulating 

the N cycle in soil-plant systems was acceptable for field N management.

This study provided an alternate modeling framework in quantitatively



optimizing nitrogen management activities with AI technologies. MOM consists o f a 

generator, a simulator, and an evaluator. The generator produces a group of best guess 

nodes of management strategies. The simulator predicts the results of the nodes. The 

evaluator uses the built-in knowledge and interaction with the user to analyze the 

outputs o f the simulator and to guide the generator in producing nodes. A mixed 

search method, hill-climbing as a strategic search method that embraces best-first as a 

tactical search method, was developed to find the shortest path from the start nodes to 

goals. MOM (Management-Oriented Modeling) is an example o f goal-driven 

modeling in which the simulation is directed toward user-weighted goals. The model 

can be used as a tactical N management tool for within-season management of specific 

conditions and used as a strategic N management tool for general decision rules. As a 

tool guiding nitrogen within-season management, MOM simulates the activities of 

fertilization and irrigation and the consequences in soil-plant systems, based on 

weather forecasting of rainfall in the near future. In addition to management-oriented 

optimization, MOM within-season management provides users with daily “pictures” 

of the N status in soil-plant systems in-season without sampling and testing. Scenarios 

suggest that MOM can help in precision nitrogen management for maximizing profits 

and yields while minimizing nitrate leaching by updating management of irrigation 

and fertilization within-season. In addition, MOM has been developed as stand alone 

Windows software in this study.
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Appendix A  

Major Source Code^

Integer; .

1 to TimeStep do DailylrrgFraction[I1 := 1.0/TimeStep; {assume irrigate every

1. Generator
procedure DetermineWeeklrrigation;

Input Soil, Plant, Rainfall data. Assume N uptake = plant demanded.
Output Weekly irrigation rates WaterNeeded[weeks]
)
var I 
begin 
for I 
day)
for I ;= 1 to TotalGrowWeek do WaterNeeded(I] := 0.0;
SoilWaterN_Simulation(DetectWater, 0, 0, 0) ;
end;
procedure DetermineWeekFertilizer;( --------------------------------------------------------
Input Soil, Plant, Rainfall, WaterNeeded, let soil water close to 90% of DrainLmt. 
Output Weekly N fertilizer Needed: N_Needed[weeks]
)
var I : Integer; 
begin
for I := 1 to TimeStep do DailyIrrgFraction(I] := 1.0/TimeStep; [assume irrigate every 
day)
for I := 1 to TotalGrowWeek do N_Needed(I] := 0.0;
SoilWaterN_Simulation(DetectN, 0, 0, 0); 
end; [DetermineWeekFertilizer)

Procedure EstimateWaterNeededThisWeek[EP_panWk, LAI_Actualo, CropSoilWaterGoal: real); 
var

PETo, ET_Actualo, K_PlantEto, WaterShortage, WeekRain : real;
Day : Integer;

begin
PETo[poential ET, mm) := K_PanEt * EP_panWk;

MOM source code of the knowledge part. Others see Appendix B.
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K_PlantEto := 0.45 * LAI_Actualo; {LAI_Actualo <= 1.0) 
if (LAI_Actualo > 1.0) and (LAI_Actualo <= 4.0) then 

K_PlantEto := 0.325 + 0.125 * LAI_Actualo; 
if (LAI_Actualo >4.0) then K_PlantEto := 0.85;
ET_Actualo{mm) := (K_PlantEto + K_SoilEt) * PETo; 
if ET_Actualo < 0.0 then

Forml .Memol .Lines .Add (Format ('ET Error %8.3f in Weel< %3d ', [ET_Actualo, 
PresentWee)c] ) ) ;
WaterShortage := 0.0;
WeelcRain := 0.0;
for L := 1 to TotalLayerNum - 1 do (only count root zone)

(The goal of soil moisture is 90-100% of Drain Limit)
WaterShortage(mm) := 10.0 * (CropSoilWaterGoal * Water_DrainLmt[L] - 

Water_Actual [L] ) * LayerThic)c [L] ; 
for Day := 1 to TimeStep do WeelcRain := Wee)cRain + DailyRainfall [Day] ; 
WaterNeeded [ PresentWeelc] := WaterShortage + ET_Actualo - WeelcRain; 
if WaterNeeded[PresentWee)c] < 0.0 then WaterNeeded(PresentWeelc) := 0.0; 
end;

2. Simulator
{ ******************* SoilWaterN_Simulation ******************* (
Procedure SoilWaterN_Simulation(SimulationMode: TSimulateModes;

Lp_IrrgRate, Lp_FertRate, Lp_ChemIrrg : Integer), 
(Before call this procedure. Must assign

FertAmt (1. .GrowWeelc] by calling ReadFertScheduleCombinations (Lp_FertDate) ; 
DailyIrrgFraction[l..7] by calling ReadlrrgFreqCombinations(Lp_IrrgDate);)

var
Day : Integer;

(------  WaterProcesses  )
ET_panDaily, LAI_Today, LAI_b, LAI_LastPeriod, Todaylrrg,
Infiltration_Today : real;

(------  NitrogenProcesses  )
N_UptakeCurveInLastDay, N_PlantDemand(lcg/ha), X, RootDepth_Last, (Normal) 
N_WeelcPlantDemand, Demand_K, Fert_Ef f (DetectN), TodayFert : real;

label NoFertDaily, RainFeedCropping;
begin {************** SoilWaterN_Simulation *********************)

Initial!zationOfPlantGrowth;
Forml.Table3.First; (First day: Rainfall and FertApp code data)
Demand_K := StrToFloat(Forml.EditDemandK.Text); (for detect N)
Fert_Eff ;= StrToFloat(Forml.EditFertEff.Text) ; ( " )
if (SimulationMode = PredictGrowth) or (SimulationMode = Validation) then 

Forml.DBGridl.Visible := true;
THISWEEK := Forml.TodayDays div TimeStep + 1;
PresentWeelc := 1; (default TimeStep is a weelc)
repeat ( «  = «  ======== a  growth season loop ========= << = << )

Application.ProcessMessages;
N_InSoil_LastDay := N_TotalInSoil; (Sum of N in soil layers)
SoilTemperature; (Air temp -> soil temp)
(if AirTempMax < 1.0 or SnowOccur then SnowFall procedure;)
( ====== Initialization for daily loop ======= )
ReadRainfalllrrigationFertCodeForAWeelc; (read from DB)

(—  Water portion — )
DrainOutRootZone(cm) := 0.0;
ActualET_mm := 0.0;
Water_LastTotal :=0.0;
Infiltration := 0.0;
for L := 1 to TotalLayerNum do

Water_LastTotal := Water_LastTotal + Water_Actual [L] * LayerThiclc [L] ;
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{Set LAI and ET to daily}
if PresentWeek > 1 then LAI_LastPeriod := LAI_Curve[PresentWeek - 1] 

else LAI_LastPeriod := 0.0;
LAI_b := (LAI_Curve[PresentWeek] - LAI_LastPeriod)/TimeStep;
ET_panDaily := ETpan[PresentWeek] / TimeStep;

if (SimulationMode = DetectWater) and (PresentWeek >= THISWEEK) then begin 
{To determine Water Needed for this week]
LAI_Today := (LAI_LastPeriod + LAI_b * 3.5) * LAI_Max; {day = 3.5 : medium of week]
EstimateWaterNeededThisWeek(ETpan[PresentWeek], LAI_Today, SoilWaterGoal);
end;

{—  Nitrogen portion — ]
{Initialize SUM variables for N balance check later]
N_UptakePresentSum 
N_N20PresentSum 
N_LeachedPresentSum 
N_FertilizerPresentSum 
N_VoltPresentSum 
N FoliarPresentSum

0 . 0 ;
0 .0 ;
0 . 0 ;
0 .0 ;
0 .0 ;
0 .0 ;

N_0ptakeCurve[PresentWeek - 1]
{Plant uptake initialization]
if PresentWeek > 1 then N_OptakeCurveInLastDay 

else N_UptakeCurveInLastDay := 0.0;
N_WeekPlantDemand := (N_UptakeCurve[PresentWeek] - N_UptakeCurveInLastDay) *
N_UptakeMax{kg/ha];
if N_WeekPlantDemand < 0.0 then N_WeekPlantDemand ;= 0.0;
N_PlantDemand := N_WeekPlantDemand / TimeStep;
if PresentWeek > 1 then RootDepth_Last := Root_Curve(PresentWeek - 1] 

else RootDepth_Last := 0.0;
Rootlncrease := RootDepth_Max * (Root_Curve[PresentWeek) - RootDepth_Last)/TimeStep;
if Rootlncrease < 0.0 then Rootlncrease := 0.0;
for L := 1 to TotalLayerNum do N_Uptake[L] := 0.0; (debug trace only]
if (SimulationMode = DetectN) and (PresentWeek >= THISWEEK) and 

(PresentWeek > 1) then begin (DetectN)
(Add defficiency N detected last week to soil]
Day := PresentWeek - 1; 
if N_Needed[Day] > 0.0 then begin

N_FertilizerPresentSum(kgN/ha] := N_Needed[Day)(kg/ha) ;
N_NH4_kgha[1] := N_NH4_kgha(1) + 0 . 5  
N_N03_kgha[1] := N_N03_kgha(1] + 0 . 5
end; 

end; (DetectN)

N_Needed(Day] ; 
N_Needed(Day] ;

Day := 1; ( Day = 1..7 in a week ]
repeat { << —  ̂ — Daily simulation loop ---- —  << }
GrowthDay := GrowthDay + 1; (GrowthDay = 1... in a grow season]

{ ==== Water movement and N leaching/upflow
if Forml.ChkBoxRainFeed.Checked or (SimulationMode = Background) then begin 

Infiltration_Today := DailyRainfall[Day]; 
goto RainFeedCropping; 
end;

if GrowthDay < Forml.TodayDays then Todaylrrg := Dailylrrigated[Day] (water applied 
past]

else { Water combinations in future] 
case SimulationMode of

DetectWater,
DetectN : Todaylrrg := DailylrrgFraction[Day] ♦ WaterNeeded[PresentWeek);
Optimization,
PredictGrowth : Todaylrrg := DailylrrgFraction[Day] * PercentIrrg(Lp_IrrgRate] 

IrrgAmt[PresentWeek - 1 ] ;
end; (case of]

Infiltration_Today := DailyRainfall[Day] + Todaylrrg; 
if Todaylrrg > 0.0 then begin

IrrgTimes := IrrgTimes + 1; (accoount for labor cost]
TotlrrgAmt := TotlrrgAmt + Todaylrrg; (accoount for water cost]
end;
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if <WstApplied[Day] > 0) and Forml.ChkBoxWstlrrg.Checked then 
UpdateWasteFertilizerIrrigation(WstApplied[Day], Todaylrrg);

RainFeedCropping: X := 0; {noting}

if Infiltration_Today > 0.0 then begin 
X := RunOff_Today(Infiltration_Today) ;
RunOff_Total := RunOff_Total + X; {mm}
RunOff_Out := RunOff_Out + X;
Infiltration_Today := Infiltration_Today - X;
Waterin := Waterin + Infiltration_Today; 
end;

Infiltration_Redistribution(Infiltration_Today);
LAI_Today := (LAI_LastPeriod + LAI_b * Day) * LAI_Max;
if SimulationMode = DetectWater then N_ActualUptakeRate := 1.0; {assume no N uptake 
problems}
Evapotranspiration(ET_panDaily, LAI_Today);

{MatricPotentialFlow; Not significant: total amount < 1 cm usually}
{ =========== N fertilization and transformation =============== )
if (SimulationMode = DetectWater) or (SimulationMode = Background) then goto 
NoFertDaily;

if GrowthDay >= Forml.TodayDays then begin {Schdule in future)
if {SimulationMode = DetectN) or (SimulationMode = Validation) then goto NoFertDaily; 
(Modes of Optimization, PredictGrowth here) 
if FertAmt[PresentWeek - 1) <= 0.0 then goto NoFertDaily; 
if (Lp_ChemIrrg > 0) and (IrrgAmt(PresentWeek - 1] > 0.0) then begin 

(Add fertilizers with Irrg if irrigation schduled this week)
X := DailylrrgFraction[Day);
if X > 0.0 then FertlrrgTimes := FertlrrgTimes + 1; 
end (Irrg Fert)
else begin (Dry fertilization)

X := DailyFertFraction(Day);
if X > 0.0 then FertAppTimes := FertAppTimes + 1; 
end; (Dry fert)

TodayFert := X * PercentFert[Lp_FertRate]*FertAmt[PresentWeek - 1); 
N_FertilizerPresentSum{kgN/ha) := N_FertilizerPresentSum + TodayFert;
FertilizerIn := FertilizerIn + TodayFert;

:= N_NH4_kgha(l] + Fert_NH4 * TodayFert;
= N_N03_kgha[l) + Fert_N03 * TodayFert;
:= N_Urea_kgha(1) + Fert_Urea * TodayFert;

if (Fert_NH4 > 0.0) or (Fert_Urea > 0.0) then VolatizeDay := 0; 
if Fert_Urea > 0.0 then begin 

UreaHydrolDay := 0;
UreaExist := True; 
end;

end (Schdule in future) 
else (applied past)

if Fertilized(Day) > 0 then UpdateFertilizerApplication(Fertilized[Day] ,
LAI_Today);
NoFertDaily:
UpdateUreaHydrolyzeAndAnimalManureDecay(Day);
if VolatizeDay < 10 then AmmoniaVolatiliztion; (NH3 start to volatilize)
(Nitrogen transformation in soil) 
for L := 1 to TotalLayerNum do begin 

UreaHydrolysis;
Mineralization_Immobilization;
Nitrification;
Denitrafication;
end;

(Nitrogen uptake by plant)
if SimulationMode = DetectWater then RootDistribution(Rootlncrease) (Assume N uptake 
ok)

else PlantNitrogenUptake(N_P1antDemand);

N_NH4_kgha[l] 
N_N03_kgha[1] 
N_Urea_kgha(1)
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( ======= Simulation output ======== )
case SimulationMode of

PredictGrowth, Background,
Validation : if SimulationOutput[Day] > 0 then GrowthSeasonOutput;
end;

Day := Day + 1;
until (Day > TimeStep); { »  ====== Daily simulation loop ====
if (SimulationMode = DetectN) and (PresentWeek >= THISWEEK) then begin 

(Determine N_Needed for this week, but add it in beginning of next week) 
N_Needed[PresentWeek] := (Demand_K * N_WeekPlantDemand - 

N_UptakePresentSum)/Fert_Eff;
if N_Needed[PresentWeek] < 0.0 then N_Needed[PresentWeek] ;= 0.0; 
(l/Fert_Eff = 0.26 - 2.46 * Log(Uptake Capacity) 
see TForml.EditCropUptakeCapacityKeyDown(Sender:..)) 

end;
if WaterBalanceError > 0.00001 then Forml.Memol.Lines.Add

('Water disbalanced = ' + format('%9.4g', [WaterBalanceError])) ; 
if N_BalanceError > 0.00001(kg/ha] then Forml.Memol.Lines.Add

('N disbalanced = ' + format('%9.4g',[N_BalanceError])) ; 
N_TotalFertilizer := N_TotalFertilizer + N_FertilizerPresentSum;
Forml.GaugeCropGrow.Progress := round (100 * PresentWeek / TotalGrowWeek); 
PresentWeek := PresentWeek + 1;
until (PresentWeek > TotalGrowWeek); [ » = > > = =  A growth season loop 
Forml.GaugeCropGrow.Progress := 0;
Forml.DBGridl.Visible := False;
end; ( ******************* SoilWaterN Simulation

3. Evaluator
Procedure SearchOptimalSolutions(AutoOpt; Boolean); 
var

I, J, SameLvlNodes, Fertlncre, Waterlncre : Integer;
Profitwt, Yieldwt, LeachWt, GoalLimit, X : real;
Sect : string;
DistanceToGoal : array[1..MaxNodes] of real;

(Sort nodes)
GoalOrder : array[1..MaxNodes] of Integer;
Xuni ; array[1..3] of real;
SchdFactor ; array[0..4] of Integer;
IrrgDate, FertDate, NextFert, Nextlrrg, NextX ; array(0..MaxCombinations] of real;
label NoSearch;

begin (Tactiacl search]
if not Forml.StringGridSolution.Enabled then goto NoSearch; (no nodes loaded)
if TotalSolution <= SharedNodes then goto NoSearch; [too few nodes)
(Goal weights)
Profitwt ;= 0.01 * FormMultDlg.ScrBarWeightProfit.Position;
Yieldwt := 0.01 * FormMultDlg.ScrBarWeightYield.Position;
LeachWt := 0.01 * FormMultDlg.ScrBarWeightLeach.Position;
X := Profitwt + YieldWt + LeachWt;
Profitwt := Profitwt / X;
Yieldwt := Yieldwt / X;
LeachWt := LeachWt / X;

(Dwt: relative weighted distance from current nodes to the goal.) 
for I := 1 to TotalSolution do begin 

for J := 1 to 3 do begin 
(unify the varibles)
if (GoalNodeMax[J, 0] - GoalNodeMin[J, 0]) < 1.0 then Xuni[J] := 1.0 

else begin
X := TextToReaKForml.StringGridSolution.Rows[I][10+J]);
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Xuni[J] ;= (X - GoalNodeMin[J, 0))/(GoalNodeMax[J, 0] - GoalNodeMintJ, 0]); 
end; (EQ 5-3.7, 5-3.8, 5-3.9)

end;
X := Profitwt » Xuni[l] + YieldWt * Xuni[2) + LeachWt * (1.0 - Xuni[3]); 
if X > 0.0 then DistanceToGoal(IJ := 1.0 / FactorZeroToUnity(X) - 1 

else DistanceToGoal[1] := lElO;
GoalOrder[I] := I; 
end;

{Tactical search: Sort nodes by their DistanceToGoal, Dwt: Min -> Max ) 
for J := 1 to TotalSolution - 1 do begin 

for I := 1 to TotalSolution - J do
if DistanceToGoal [I] > DistanceToGoal[I + l] then begin 

X := DistanceToGoal[I];
DistanceToGoal[I] := DistanceToGoal[I+l];
DistanceToGoal[I+l] := X;
L := GoalOrder[I];
GoalOrder[I] := GoalOrder[I + l] ;
GoalOrder[I+l] := L;
end;

end;
[Display the solution list, search nodes] 
with Forml.StringGridSolution do begin 

for I := 1 to TotalSolution do begin
for J := 1 to 8 do Rows[I][J] := Rows[GoalOrder[I]][J+10];
Rows[I][J+l] := Format('%10.4g', [DistanceToGoal[I]]]; 
end;

ColCount := J + 2; 
end;

Order_OptimalSolution := 1;
if not AutoOpt then OutputSelectedNodeSchedule(Order_OptimalSolution);

(Show first optimal Fert Water schedules]

{ ----------------  SuggestionForNextSimulations Start ----------------------------- ]
GoalLimit := DistanceToGoal[1]/(1.001 - FactorZeroToUnity(SharedERR)];

[Find the number of the promising nodes that may share the same paths] 
for I := 1 to TotalSolution do if DistanceToGoal[I] > GoalLimit then Break; 
SameLvlNodes := I;
if SameLvlNodes > TotalSolution then SameLvlNodes := TotalSolution; 
if SameLvlNodes < SharedNodes then SameLvlNodes := SharedNodes;
(Determine if having nodes that share the same rate level] 
with Forml. StringGridSolution do begin 

for J ;= 0 to 4 do begin
SchdFactor[J] := StrToInt(Rows[1][J+4]);
for I ;= 2 to SameLvlNodes do

(if the follows has different number, it is not shared, assign -1] 
it ABS(StrToInt(Rows[I][J+4]) - SchdFactor[J]) > 0.1 then SchdFactor[J] := -1;

end; 
end;

(Read # of Dates series]
for I := 0 to mxLp_FertDate do
FertDate[I] := SumOfNonZeroMemberOfCol(TotalGrowWeek, 1+2,

Forml.StringGridWeeklyRate, X); (FertDate] 
for I := 0 to mxLp_Ii:>::gD3te do
IrrgDate[I] ;= SumOfNonZeroMemberOfCol(TimeStep, 1+2,
Forml.StringGridDailyFertlrrgFraction, X); (IrrgDate]
(Judg directions for the next simulation]
MOM_Ini ;= TIniFile.Create('MOM.ini'); 
try
with MOM_Ini do begin 

Sect := 'MOM Search';
Forml.MemoSuggest.Clear;
Forml.MemoSuggest.Lines.Add(Format('Upon first %3d nodes, suggests:', 

[SameLvlNodes]]);
Forml.MemoSuggest.Lines.Add{'');
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Fertlncre := -9;
Waterlncre := -9; 
if SchdFactor[0] >= 0 then X :=

NextSimulationDirection(ReadString(Sect,'FertTime', 'FertTime'),
FertDate, NextX, SchdFactor(0], mxLp_FertDate); 

if SchdFactor(1J >= 0 then Fertlncre : =
NextSimulationDirection(ReadString(Sect,'FertRate', 'ThisFertRate') ,

ThisFertRate, NextFert, SchdFactor[1] , mxLp_FertRate), 
if SchdFactor[2] >= 0 then X :=

NextSimulationDirection(ReadString(Sect,'IrrgTime', 'IrrgTime') ,
IrrgDate, NextX, SchdFactor[2], mxLp_IrrgDate); 

if SchdFactor[3] >= 0 then Waterlncre :=
NextSimulationDirection(ReadString(Sect,'IrrgRate', 'IrrgRate') ,

ThisIrrgRate, Nextlrrg, SchdFactor[31, mxLp_IrrgRate), 
if Forml.ChkBoxChemFert_Irrg.Checked then with Forml.MemoSuggest.Lines do 
if SchdFactor[4] > 0 then Add(ReadString(Sect, 'F e r t l r r g O K F e r t l r r g O K ')) 

else Add(ReadString(Sect,'FertlrrgNo', 'FertlrrgNo')) ; 
end; 

finally
MOM_Ini.Free; 

end; (try)
if AutoOpt then with Forml.StringGridRateChanges do begin 

(Change the rates for next MOM simulation) 
if Fertlncre > -2 then
for I := 0 to mxLp_FertRate do Rows[I+l][l] := Format('%8.4f ', [NextFert[I]]); 

(FertRate)
if Waterlncre > -2 then
for I := 0 to mxLp_IrrgRate do Rows[I+l][2] := Format('%8.4f', [Nextlrrg[I])); 

(IrrgRate) 
end;

{ ----------------  SuggestionForNextSimulations E n d ----------------------------- )
NoSearch : (nothing);
end; (SearchOptimalSolutions)

function NextSimulationDirection(S: String; var CurrentRate, NextRateTime : 
array of real; I_next, mxLoop : Integer): Integer;

var
array[0..MaxCombinations] of real; 
real;
Integer;

NextLvl 
Min, Max
I, I_min, I_max, Xsign 
label NoRange;

begin
Min := CurrentRate[0];
Max := Min;
Xsign := -9;
for I 0 to mxLoop do begin 

NextRateTime[I] := 0.0;
if CurrentRate[I] > Max then Max := CurrentRate[I]; 
if CurrentRate[IJ < Min then Min ;= CurrentRate[I]; 
end;

if Max <= Min then Forml.MemoSuggest.Lines.Add('Range of rate or timing not found.'), 
if Max <= Min then goto NoRange;

( -----------------  Suggest Start  )
with Forml. MemoSuggest. Lines do begin

if CurrentRate[I_next] >= Max then begin 
Add(S + ' -> Increase.');
Xsign := 1; 
end;

if CurrentRate[I_next] <= Min then begin 
Add(S + ' -> Decrease.');
Xsign := -1; 
end;

if (CurrentRate[I_next] > Min) and (CurrentRate[I_next) < Max) then 
Add(S + ' may be OK.');
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end;
if Xsign > -2 then begin {assign changes)

NextLvl[0] ;= CurrentRate[I_next);
NextRateTime[0] := CurrentRate[I_next];
for I := 1 to mxLoop do begin

NextLvl[I] := NextLvl[I - 1] + Xsign * ChangeFraction; 
if NextLvllD < 0.0 then NextLvl[I] := 0.0;
NextRateTime[I] := NextLvl[I];
end;

if NextLvl[0] > NextLvl[mxLoop] then
for I := 0 to mxLoop do NextRateTime[I] := NextLvl[mxLoop - I); 

end; (assign changes)
{ ------------------ Suggest E n d ------------------------------- )
NoRange : {nothing)
Result := Xsign;
end; (NextSimulationDirection)
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A ppendix B 

Software and Datasets

MOM software prototype with the source code are available from

MengBo LI, mli@Hawaii.edu
http://www2.hawaii.edu/~mli/

R.S. Yost, rsyost@Hawaii.edu
http://agrss.sherman.hawaii.edu/staff/yost.htm

or from the MOM Web:

http ://agrss. sherman. hawai i .edu/stafftMOM. html

The model scenarios are available from above sources. The validation datasets, 
however, are available based on permits from original dataset providers.

mailto:mli@Hawaii.edu
http://www2.hawaii.edu/~mli/
mailto:rsyost@Hawaii.edu
http://agrss.sherman.hawaii.edu/staff/yost.htm
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Appendix C 

Localization of MOM

One of the greatest challenges to the N models designed in this study and other 

agricultural software is their adaptation to local conditions and to solving local 

problems. Unlike a commercial word processor software that can be simply installed 

and run anywhere, agricultural software must reflect local conditions. MOM must be 

adapted to reflect local conditions during installation processes by local extension 

agents or agricultural experts. The installation of agricultural software to local areas 

can be called Localization:

Model Design ■
by Developers |  U /

Localization
by Local experts

1 o
Applications
by End users
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The localization process adapts or “trains” the models for specific agricultural 

areas or sites. Model performance depends on, in part, how well they are adjusted to 

local experience by local experts. The MOM parameters can be estimated from the 

calibration of local experiments but expensive. So local experts may estimate the 

parameters for MOM from literature or local knowledge.
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Glossary

Some AI terms used in MOM are briefly described below to help readers 

understand the MOM processes. For more information, refers to Winston (1992).

Best-first search A heuristically informed search method. In best-first search,

forward motion is from the best open node so far, no matter where that node is 

in the partially developed tree which may not direct to the global goal. 

However, the paths found by best-first search are likely to be shorter than those 

found by other methods, because best-first search always moves forweird from 

the node that seems closest to the goal node.

Hill-climbing search A heuristically informed search method. Hill-climbing search 

uses a natural measurement of distance from each place to the goal to 

determine the move without examining all possible paths. In hill-climbing 

search, new paths are added into the search tree for further searches, based on 

estimated distances between their nodes and the goal.

Node A management strategy (or choice) combined with rates and timing of

fertilization and irrigation.



Node state The results o f profit, crop yield and leached nitrate that a node

(management strategy) would produce in the model simulation. A node state is 

visually denoted by its positions in a space with dimensions of Y-axis against 

X-axis. Y-axis or X-axis can be either profit, yield, or leached nitrate. It is also 

called a state space.

Path A relation, or connection (visual link) between nodes, which represent

the search (evaluation) moves from one node to another following some roles.

Search A process that evaluates nodes (management strategies). The search

will lead to finding better nodes that would have higher profits and/or higher 

yields with lower nitrate leaching than other nodes.

Semantic net A node-and-link description that represents management strategies and 

their relations. The node-and-link net is also a search tree where the search 

moves ftom one node to another.

G l o s s a r y  238
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