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ABSTRACT

Fruit yield and harvest date of pineapple {Amnas comosus (L.) Merr.] are 

difficult to predict. Site-specific studies improve the predictability at one location but 

usually cannot be generalized to other environments. This study examined the effects 

of plant population density (PPD) and planting date (PD) on pineapple growth and 

fruiting and the data were used to develop a pineapple growth simulation model. 

‘Smooth Cayenne’ pineapple was planted at Kunia, Hawaii; the crop was drip- 

irrigated. PPDs ranged from 2.61 to 12.81 plants m'  ̂and PDs were June and August 

15, and October 18, 1989. Flower development was forced with ethylene on 

September 18, 1990. Leaf emergence rate was constant until 200 days after planting 

(DAP) and then decreased 0.9 leaves 1000-°C-day'^ with each increase in PPD of one 

plant m’̂ . Dry weight per plant decreased as PPD increased and as PD was delayed. 

Light interception reached 95% at a leaf area index of 4 to 5, which was attained at 

350 DAP at 12.81 plants m'  ̂and later as PPD decreased. Dry matter partitioning 

(DMP) to leaves and stem during vegetative growth was not affected by PPD or PD. 

DMP to stem during fruiting decreased linearly and DMP to fruit increased 

curvilinearly as PPD increased and as PD was delayed. Fruit harvest date was 

delayed seven days for each PPD increase of 2.5 plants m'  ̂ from 2.61 to 12.81 plants 

m‘̂ . Fruit yield was asymptotically related to PPD; the economic yield-PPD 

relationship was parabolic. There was no effect of PD on rate of leaf emergence or 

fruit development. A pineapple simulation model (ALOHA-Pineapple) was developed
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using data from the experiment and the literature. ALOHA-Pineapple is process- 

oriented and incremented daily. It simulates the effects of PPD, PD, plant size at 

planting and forcing, and weather on crop growth and yield. When ALOHA- 

Pineapple was validated with data from eleven plantings in four locations in Hawaii, 

pineapple growth, fruit development and yield was simulated with reasonable accuracy 

although harvest date and yield were over- and under-predicted in some locations. 

ALOHA-Pineapple has potential to serve as a frame-work for pineapple research and 

as a decision aid for farmers.
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PARTL GENERAL INTRODUCTION



CHAPTER 1 

INTRODUCTION

Pineapple [Ananas comosus (L.) Merr.] is the only commercial food crop 

among the approximately 1400 known species in the family of Bromeliaceae. It is 

intensively and commercially cultivated over a wide range of latitudes from 

approximately 30° N to 34° S (Bartholomew and Kadzimin, 1977). The major 

production areas include Hawaii, the Philippines, Ivory Coast, Kenya, Costa Rica, 

Australia, Malaysia and Thailand. Pineapple is the second most important crop in 

Hawaii in dollar value and has contributed considerably to the state’s economy.

1.1 PROBLEMS OF PINEAPPLE FARMERS AND LIMITATION OF

TRADITIONAL EXPERIMENTS

A significant problem of pineapple farmers is the low predictability of fruit 

yield and harvest date. This makes it difficult to manage the crop and the use of 

resources. Fruit yield is the end product of complex processes of plant growth and 

development and harvest date is a timestep in these processes. Both yield and harvest 

date are influenced by a variety of variables including cultivar (or clone), soil, 

weather, pests and diseases, plant population density, fertilizer levels and other 

practices. The effects of many agronomic practices and environmental factors on 

pineapple growth, development and yield have been studied extensively (Bartholomew 

and. Kadzimin, 1977; Py, et al., 1987). In spite of the effort, the prediction of



harvest date and yield of pineapple is still done by experienced field personnel using 

historical information or by simple heat unit models (Medcalf, 1949; Fleisch and 

Bartholomew, 1987). This might be due to the limitation of traditional experiments 

that can only statistically test the effect of a few factors and the effect of all variables 

on fruit yield and harvest date cannot be easily expressed by simple mathematical 

equations. With the development of high speed computers and high performance 

instruments, simulating the complexities of plant growth and development in response 

to a changing environment becomes possible. The improvement in predictability of 

yield and harvest dates hypothetically could be achieved using plant growth and 

development simulation models.

1.2 SIMULATION MODELS IN AGRICULTURE

A plant growth and development simulation model explicitly accounts for the 

effects of genetic characteristics, soil properties, management strategies and 

meteorological conditions on crop performance. It simulates the effects of changing 

variables over time. Dynamic plant growth simulation models have been developed in 

recent years for such crops as cotton (COTCROP) (Jones, et al. 1980), soybean 

(SOYGRO) (Wilkerson et al. 1983), beans (BEANGRO) (Hoogenboom, et al. 1991) 

and maize (CERES-maize) (Jones and Kiniry, 1986). These models, except for 

COTCROP, have been integrated into Decision Support System for AgroTechnology 

Transfer (DSSAT) by International Benchmark Sites Network for Agrotechnology 

Transfer (IBSNAT, 1988 and 1989). Also, a comprehensive simulation model



(CROPSYS) for multiple cropping has been developed by Caldwell and Hansen 

(Caldwell, personal communication). The model simulates the performance of 

temporal and spatial combinations of crops in response to genotype, environment and 

management. Little work has been done to develop a pineapple model because of the 

high cost associated with the development of a comprehensive model and of lack of 

quantitative information on pineapple plant-environment relationships (Bartholomew, 

personal communication).

Fleisch (1988) developed regression models that predict pineapple vegetative 

growth, leaf area development, and development of the inflorescence after forcing. 

However, he did not integrate (or unify) the models into a comprehensive simulation 

model to predict plant growth and fruit yield, and his models did not account for 

genotype or management. The models were sufficiently empirical that further 

development, or calibration for other locations, was assumed to be extremely difficult.

A preliminary simulation model of pineapple growth was developed by 

revising some of the CERES-Maize subroutines using unpublished data from Hawaii 

and from the pineapple research literature. However, phenological development in 

the model did not account for plant population density effects on growth and yield 

because of a lack of quantitative information. Air temperature and photoperiod are 

the dominant factors affecting phenological development of maize (Jones and Kiniry,

1986). Pineapple leaf emergence rate and fruit development are assumed not to be 

sensitive to photoperiod but are influenced by air temperature and plant exposure to 

sunlight, which is influenced by plant population density.



1.3 IMPORTANCE AND NECESSITY OF DEVELOPING A FRAMEWORK

Rimmington and Charles-Edwards (1987) classified research activity in the 

agricultural sciences into three types: 1) the acquisition of knowledge, 2) the ordering 

of knowledge and the development of understanding based on that knowledge, and 3) 

the application of knowledge and/or understanding to the solution of practical 

problems. The priority assigned to the three types of activities is usually consistent 

with their numerical order.

Typically, breakthroughs in research come out of an accumulation of 

knowledge, which increases our understanding of processes. With regard to 

pineapple, little attention has been paid to the systematic acquisition of basic 

knowledge. Most research efforts have emphasized activities of the third type, in 

hopes of solving practical problems immediately. This inverted the priority of 

pineapple research activities because in the short run, these activities seem worthy in 

terms of return of profit. In the long run, they are of limited value because they are 

all problem oriented, and such research activities are not closely related and lack 

continuity. In other words, there is no theme in pineapple research so steady progress 

towards a comprehensive understanding of the crop is slow. Time and money might 

be wasted on some research activities, for example, repeated plant population density 

trials. There is, therefore, a need to integrate the pineapple research literature, 

establish a data bank, and develop a framework for pineapple within which is able to 

carry out development, testing, and validation with available experimental techniques 

and data. The framework should have system concepts so that its main components



are amenable either to direct measurement or to inference from plant growth data.

The framework must be detailed enough to interface observations of growth at the 

whole-plant level with more detailed knowledge of the underlying plant growth 

processes. The advantages of developing a framework are:

(1) Establishing a theme in pineapple research.

(2) Guiding experimental data collection, for example, what data are necessary

to collect in order not to conduct the experiment again.

The objectives of this study were to:

I. Quantify the responses of pineapple growth and development to plant

population density and plant size within a population at forcing.

II. Develop a pineapple simulation model (CERES-PINEAPPLE), based on

CERES-MAIZE model (Jones and Kiniry, 1986) subroutine structures 

and growth data for pineapple obtained from the literature and from 

recent field experiments.



PART II. EXPERIMENTAL BASE:

RESPONSE OF PINEAPPLE TO PLANT 

POPULATION DENSITY AND PLANTING DATE



INTRODUCTION

Manipulation of plant population density is one of the most important 

agronomic practices available to pineapple growers. Early in this century, plant 

population densities used in Hawaii were about 30,000 to 34,600 plants per hectare 

(PPH) (12,000 to 14,000 plants per acre (PPA)). As late as the 1970s, plant 

populations were as low as 10,000 to 15,000 PPH (4,000 to 6,000 PPA) in India 

(Ghosh and Medhi, 1981). With improvements in agronomic practices, such as drip 

irrigation, plant population densities currently range from 54,000 to 81,500 PPH 

(22,000 to 33,000 PPA) depending on the soil type, aerial environment, and desired 

fruit size (W.G. Sanford, personal communication; D.P. Bartholomew, personal 

communication).

Several studies have been conducted to determine the optimal plant population 

density for specific areas where pineapple is grown. No work has been done to study 

quantitatively the effect of plant population density and plant size on morphogenesis, 

fruit development, and canopy light interception of pineapple. In order to develop a 

growth simulation model of pineapple, information is needed on the effects of plant 

population density and planting date on leaf emergence rate, dry matter partitioning, 

and fruit development.

Therefore, the objectives of the study were to:

1) Quantify the relationships between leaf emergence rate and air temperature 

and plant population density.
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2) Examine the vegetative growth responses of pineapple to plant population

density and planting date,

3) Examine the effects of plant population density and planting date on canopy

development and light interception, and quantify the relationship 

between canopy light interception and leaf area index.

4) Examine the effects of plant population density and planting date on

reproductive development and fruit yield, and quantify the relationship 

between fruit development and plant population density and plant size 

within population.



CHAPTER 2

LEAF EMERGENCE AND ITS RELATION TO PLANT 

POPULATION DENSITY AND AIR TEMPERATURE

2.1 INTRODUCTION

Leaf initiation and expansion are the major morphogenetic processes of crops. 

Pineapple mass is mostly leaves (up to 90 percent of total plant weight (Py, et al.,

1987)). Growth depends on leaf development. Predicting plant growth requires an 

understanding of the effects of environment and management on leaf emergence. In 

some dynamic crop growth models, simulating the number of new leaves emerged is a 

key step in predicting vegetative growth.

Air temperature and daylength are the two primary environmental factors 

affecting leaf emergence rate of cereal crops (Cao and Moss, 1989a, 1989b; Baker et 

al., 1980). In the CERES-Maize model, air temperature and photoperiod were 

considered in simulating leaf emergence (Jones and Kiniry, 1986). Shiroma (1972) 

reported that leaf emergence rate of ’Smooth Cayenne’ pineapple was a function of air 

temperature in Okinawa, Japan. However, plots of leaf emergence vs. temperature 

(unpublished data collected from Maui and Oahu, Hawaii), indicated that factors other 

than temperature could affect leaf emergence rate of pineapple. Plant exposure to 

sunlight, plant temperature, daylength, and soil temperature also might be important. 

Those factors, except for soil temperature and daylength, are difficult to measure. 

Plant population density directly affects plant and soil exposure to sunlight, and at
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some age, likely affects soil and plant temperature as well. This study was conducted 

primarily to quantify the effect of plant population density on leaf emergence rate of 

field-grown pineapple. The effect of air temperature as it varied over season on leaf 

emergence rate was also evaluated.

2.2 LITERATURE REVIEW

Leaf emergence rates of crops are determined by genotype, environment and 

management. For a given cultivar and a set management practices, the leaf 

emergence rate is mainly influenced by environment.

A number of experiments have been conducted to determine the factors that 

influence leaf emergence of cereal crops. Gallagher (1979) reported that wheat leaf 

appearance rate slowed during mid-winter and increased during spring. Both wheat 

and barley leaf number increased linearly with thermal time (Gallagher, 1979). The 

reciprocal of the slope, called the phyllochron (degree-days required for the 

emergence of one leaf), was constant for both crops. The CERES-maize model uses 

a constant phyllochron to predict leaf emergence (Jones and Kiniry, 1986).

However, others have shown that the leaf emergence rate (leaves degree-day'^) 

of cereal crops also varied with genotype (Bauer et al., 1984, Delecolle et al., 1984; 

Baker et al., 1986) and sowing date (Kirby et al., 1982; Baker et al., 1980). The 

effect of sowing date on leaf emergence was due to a change in daylength (Baker et 

al. 1980; Kirby et al., 1982; Delecolle et al., 1984; Kirby and Perry, 1987). Cao 

and Moss (1989a) confirmed the effect of daylength on leaf emergence rate of wheat
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and barley under controlled environments. They found that leaf emergence rate 

increased curvilinearly with increasing daylength. Cao and Moss (1989b) also found 

that the phyllochron of wheat and barley was not constant in controlled environments, 

but increased exponentially as temperature increased. Furthermore, the relationship 

between temperature and leaf emergence rate (leaves day‘) was quadratic. The 

relationship between leaf emergence rate (leaves day^) in maize (Zea mays L.) and 

temperature in a controlled environment was best described by a cubic equation 

(Tollenaar et al., 1979) or a fourth-degree polynomial equation (Warrington and 

Kanemasu, 1983). This indicates that the thermal efficiency varies in different 

temperature regimes.

Hay and Wilson (1982) found that leaf emergence of winter wheat was better 

correlated with soil temperature than with air temperature. Bauer et al. (1984) 

reported that soil water content and fertilizer N had no effect on main-stem leaf 

emergence in spring wheat. On the contrary. Baker et al. (1986) found that drought 

reduced the phyllochron (or increased leaf emergence rate). This was thought to be 

the results of the drought-stressed plants accumulating thermal units faster because 

they were warmer than the well-watered plants.

Few data were reported on the effect of environment on pineapple leaf 

emergence. Shiroma (1972) found that for ’Smooth Cayenne’ pineapple, leaves per 

month increased exponentially as average monthly air temperature increased. Friend 

and Lydon (1979) reported that the total number of leaves and primordia of Smooth 

Cayenne pineapple at 692 days after planting increased with increasing daylength in
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controlled environments. The result, however, appears to be confounded because 

they also reported that plants in an 8-h daylength started flowering 600 days after 

planting while plants under 16-h remained vegetative. Thus, at 692 days after 

planting, plants in 16 hr days initiated leaves three months longer than those in 8 hr 

days. Whether the leaf emergence rate (leaves day‘) under different daylengths 

differed was not determined.

The factors influencing leaf emergence of pineapple might differ from those 

influencing cereal crops. Pineapples are propagated vegetatively, and they do not go 

through a true juvenile stage. Plant temperature might be the primary factor 

influencing leaf emergence of pineapple.

2.3 MATERIALS AND METHODS

2.3.1 General Experimental Description

The experiment was located at an elevation of about 216 meters above sea 

level in a Del Monte Company field at Kunia, Oahu, Hawaii. Pineapple (Amnas 

comosus (L.) Merr.) crowns were planted on June 15 (PI), August 15 (PII) and 

October 18 (PHI), 1989. All plants in the three plantings were forced to flower on 

September 18, 1990 by applying ethylene to the plants. Because of management and 

field-area constraints, planting date was not randomized or replicated. At each 

planting date (PD), plant population densities (PPD) of 2.61, 5.22, 7.83, 10.06, and 

12.81 plants m'  ̂were established. Plant population density treatments were replicated 

three times and the treatments were arranged in a randomized complete block design
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(Fig 2.1). Treatment plot size within each replicate was varied to assure that each 

plot contained a minimum of 325 plants/plot in at least three beds. In three-bed plots, 

data were collected only from the center bed.

Prior to planting, the field area was subsoiled, disk harrowed, the soil was 

fumigated with 1,3-dichloropropene for initial control of nematodes according to 

company practices, and plastic mulch was laid to retard fumigant loss. At each 

planting date, fresh tops from fruit (crown) of the Smooth Cayenne pineapple clone 

Champaka 153 from a plantation field were selected to achieve relative uniformity of 

crown size within a planting date. Average data on the crowns used in each planting 

are shown in Table 2.1.

Table 2.1 Average crown fresh and dry weights at planting for June (PI), August 
(PII), and October (PHI) plantings (n=50).

Planting Fresh Weight 
(g)

Standard
deviation

Dry weight 
(g)

Standard
deviation

PI 142.5 21.0 22.9 3.6
PII 130.7 17.0 20.0 3.2
PHI 307.2 61.0 35.6 7.6

The crowns were planted in two-row beds spaced 112 cm apart on centers with rows 

spaced 51 cm apart on the beds. Each plot was 9.75 m long. Plant spacings of 69, 

38, 23, 18, and 14 cm were used to achieve the desired plant population densities.

To accommodate at least 325 plants in each plot, including borders, the number of 

beds per plot was varied; there were 12, 6, 3, 3, and 3 beds per plot with the highest 

number of beds at the lowest plant population density.
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Fig. 2.1 Experimental layout of Kunia plant population density trials. A to E are 
plant population density 2.61, 5.22, 7.83, 10.06, and 12.81 plants m-^ respectively. 
PI, PII and pm  are planting date June 15, August 15, and October 18, 1989, 
respectively. R l, R2 and R3 are replications.
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Plants were maintained by Del Monte Plantation field personnel according to 

their field practices. Plants were drip irrigated, usually weekly, during periods when 

rainfall was low. Near-optimum levels of nutrients were maintained by injecting 

fertilizer through the drip irrigation system and by foliar spray.

A weather station (Campbell Scientific CR-21 weather data logger) was 

installed in the field adjacent to the experiment. Air temperature at a height of 2.0 m 

above bare soil was measured with a YSI 401 thermister temperature probe mounted 

under a radiation shield. A LI-COR LI 200S pyranometer was used to measure solar 

radiation. Sensors were sampled once each minute by the data logger and recorded 

values were a 30 minute total for solar radiation and a 30 minute average for air 

temperature. Daily values for maximum, minimum and average air and daily 

maximum, minimum and total solar radiation were also recorded and stored on a 

cassette tape. The tape was changed monthly. The data were transferred to a 

personal computer for analysis.

Missing values were estimated using data collected from a weather station at 

the Hawaiian Sugar Planters Association Kunia Substation located approximately 2.0 

km to the east of the experiment. Fig. 2.2 shows the correlation between the two 

stations for total solar radiation, and maximum and minimum air temperature.

2.3.2 Data Collection and Analysis

New leaf emergence was recorded in the five plant population densities for PI 

and PII by counting leaves emerged over a specific time period, usually one month. 

The youngest visible leaf was marked on ten pre-designated plants from each plot
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Fig. 2.2 Maximum air temperature (Tmax, °C, A), minimum air temperature (Tmin, 
°C, B), and daily total solar radiation (MJ m‘̂ , C) and their respective correlations 
between Del Monte research plots and the Hawaiian Sugar Planter’s Association 
(HSPA) research station at Kunia, Hawaii.
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every month using India ink. Plants in PI were first marked on August 4, 1989 (50 

days after planting) and those in PII were first marked on October 19, 1989 (65 days 

after planting). Recording of leaf emergence data ended at the time inflorescence 

development was forced.

Thermal time (growing degree-days, GDD) during the period of measurements 

was calculated from: Y. {[(Tmax-Tmin)/2] - Tb}, where Tmax and Tmin are daily 

maximum and minimum air temperature, respectively, and Tb is the base temperature 

at which leaf growth ceases.

The following models were used to fit the field data:

Y =)8o +  iSiXl; -h 182X2  ̂ -H ^3X liX 2i -h Ci (2 .1 )

Y=/3o +  iSiXli +  182X2; -h /33XI7 -h /34X27 -h ^ 5X 1;X2; -h e; (2 .2)

where Y is the predicted value, |80 to i8n are model parameters, i= l  to n are 

observations, e is the error.

Best-fit regression models were calculated using SAS REG and RSREG 

procedures (SAS Institute, 1985). The regression equations were generated and they 

were used to generate response surfaces for the number of emerged leaves and leaf 

emergence rate.
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2.4 RESULTS AND DISCUSSION

2.4.1 Leaf Number

The daily maximum, minimum, and average air temperature and daily total 

solar radiation collected during the period of study are shown in Fig. 2.3 A, B, and 

C. Leaf emergence rate for the two plantings, as indicated from the slopes of leaf 

accumulation over time, varied with time after planting and plant population density 

(Fig. 2.4 A and B). The variation with time is likely attributable to the variation in 

air temperature during development, and plant ontogeny. The divergence in leaves 

per plant among different plant population densities for PI and PII is likely due to 

mutual shading effects on the regions of the plant where leaf growth occurs.

2.4.2 Response to Air Temperature and Plant Population

Shiroma (1972) reported that leaf emergence of pineapple could be predicted 

from air temperature. In this study, the data (Fig. 2.4) showed that leaf emergence 

was influenced by both air temperature and plant population density. In order to 

incorporate both the effects of temperature and the changing effects of plant 

population density over time into an equation suitable for the prediction of leaf 

number, it was necessary to analyze leaf emergence in terms of cumulative leaf 

number as function of cumulative thermal time and plant population density.

Response of leaf emergence to air temperature and plant population density 

was investigated by regressing number of leaves on cumulative growing degree days 

(thermal time) and plant population density. Using cumulative growing degree days 

and cumulative leaves per plant removed month to month variation in leaf emergence
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due to air temperature fluctuations during the period, ontogenetic effects, and 

sampling errors. It also made it possible to evaluate the effects of plant population 

density over time on cumulative leaf number.

To evaluate the effects of thermal time on leaf number, a suitable base 

temperature had to be selected for the calculation of growing degree days. Leaf 

growth was reported to cease at 7 °C (Sanford, 1962) but Shiroma (1972) used a base 

temperature of 12 °C to fit leaf emergence data collected in growth chamber and field 

studies. A range of base temperatures from 12 to 20 °C, in 2 °C intervals, was used 

in this study to estimate thermal time. Model 2.1 and 2.2 were fitted to the data.

The base temperatures were determined by maximizing the variation in 

cumulative leaf number accounted for by the regressions. The amount of variation 

accounted for was affected by planting dates and types of regression (Table 2.2). The 

best fit for regression Model 2.2 was obtained at a Tb of 14 °C for PI and at 18 °C for 

PII. For regression Model 2.1, a best fit was obtained at a Tb of 16 °C for both 

plantings. The values obtained by fitting the data with regression Model 2.1 and

2.2 for were greater than 0.991. In Model 2.2 regressions, the variation accounted 

for by linear regression was at least 95 percent (Table 2.3).

Which model better describes leaf emergence of plants mathematically and 

physiologically? Physiologically, the base temperature is the temperature at which 

leaf emergence ceases. Unless leaf emergence is also influenced by photoperiod, the 

base temperature should be the same regardless of planting date. Since there was no 

evidence of any photoperiod effect, the linear with cross product models with a base
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temperature of 16 °C were chosen to describe the response of leaf emergence to 

thermal time and PPD. This contrasts with a Tb for pineapple leaf emergence of 12 

°C in Okinawa (Shiroma, 1972) and 7 °C reported by Sanford (1962).

Table 2.2 Coefficients of determination (R )̂ and associated root mean square errors 
(Root MSE) for the regression of pineapple leaves per plant on thermal time and plant 
population density over a range of base temperatures (Tb) (n=14 and 12).

Planting Regression Tb (°C)

Date 12 14 16 18 20

June 15 Model 2.1+ R2
Root MSE

0.990
1.750

0.990
1.650

0.991
1.575

0.990
1.660

0.980
2.280

Model 2.2+ R2
Root MSE

0.993
1.451

0.993
1.445

0.993
1.470

0.992
1.613

0.990
1.780

August
15

Model 2.1 R2
Root MSE

0.991
1.290

0.993
1.180

0.994
1.104

0.992
1.220

0.992
1.220

Model 2.2 R2
Root MSE

0.994
1.129

0.994
1.087

0.995
1.021

0.996
0.920

0.996
0.920

(ZA)
$ Y=^o +  ^iXli +  /32X2i +  /33X I7 +  ^,X27 +  ^,XI;K2; +  e, (2 .2 )

Table 2.3 Partitioning of coefficients of determination (R )̂ for Model 2.2 regression 
of pineapple leaves per plant on thermal time and plant population density (n=14 for 
planting 1 and n=12 for planting 2).

Regression Coefficients of Determination (R̂ )

Planting 1 Planting 2

Linear 0.9615 0.9480 ***

Quadratic 0.0024 *** 0.0069 ***

Crossproduct 0.0293 0.0413 ***
indicates significance at O.OOOl of probability.
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The discrepancy between the base temperature derived from field data for Hawaii and 

that for Okinawa could be due to the higher temperature and narrower temperature 

range prevailing in Hawaii.

Plots of number of leaves against thermal time with a Tb of 16 °C for each 

PPD (Fig. 2.5A and B) were essentially linear. Response surfaces showing leaves 

per plant against thermal time and PDD descended from higher thermal time and 

lower PPD to lower thermal time and higher PPD (Fig. 2.6A and B).

The quantitative relationship between leaves per plant (LN), thermal time and 

PPD for PI and PII, respectively, were described by the equations:

LN=-6.93 -1- 0.61PPD+0.022475GDD-0.00081PPD*GDD (2.3)
(±0.116) (±0.00045) (±0.000053)

and
LN=-2.57+ 0.435PPD+0.022272GDD-0.0009PPD*GDD (2.4)

(±0.079) (±0.0004) (±000047)

where PDD is plant population density, and GDD is the cumulative growing degree-

days. The values in parenthesis are the standard errors for the coefficients of

regression.

In most crop growth simulation models, simulation is done on a daily time- 

step. Instantaneous leaf emergence rate is more useful than cumulative number of 

leaves, because it permits the calculation of the daily fraction of leaf emerged. LN 

was a function of two independent variables, so leaf emergence rate was obtained by 

fixing PPD and taking the partial derivative of LN with respect to GDD. The leaf 

emergence rate 3LN/3GDD (leaves °C-day^) for a given plant population density for 

PI and PII is described by the equations:
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Fig. 2.5 Relationship between leaves per plant of pineapple and the thermal 
time (°C-day) for pineapple plants planted in June (A) and in August (B), 1989.
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Fig. 2,6 Response-surfaces of pineapple leaves per plant, plant population 
density (plants m‘̂ ) and thermal time (degree-day) for pineapple plants planted in 
June, 1989 (A) and August, 1989 (B).
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3LN/3GDD= 0.022475-0.00081PPD (2.5)

and

3LN/3GDD=0.022272-0.0009PPD (2.6)

The leaf emergence rate (leaves °C-day'^) of field-grown pineapple was a linear 

function of plant population density (Eqn. 2.5 and 2.6). Leaf emergence rate declined

8.1x10^ to 9.0x10"* leaves °C-day* with each increase of one plant m‘̂  in PPD.

From Equation 2.5 and 2.6, for field-grown pineapple at a given plant 

population density, the leaf emergence rate (leaves °C-day*) was a constant. The 

results agreed with the response of leaf emergence to GDD in cereal crops 

(Gallagher, 1979; Baker et al., 1980; Klepper et al., 1982; Kirby et al., 1982; and 

Kirby and Perry, 1987).

The phyllochron (PHL), the reciprocal of the leaf emergence rate, has an 

inverse linear relationship with plant population density. PHL is described for PI and 

PII, respectively, by the equations:

PHL=l/(0.022475-0.00081PPD) (2.7)

PHL=l/(0.022272-0.0009PPD) (2.8).

For a given PPD, phyllochron was constant.

Because the experiment was conducted in the field, all equations have the 

defined boundaries of PPD > 2.61 plants m'  ̂and < 12.81 plants m'  ̂and average air 

temperature > 16 °C and < 30 °C.

In summary, air temperature and plant population density significantly affect 

the leaf emergence of ’Smooth Cayenne’ pineapple. The multiple linear regression

27



model of number of leaves emerged versus cumulative growing degree-days and PPD 

best described leaf emergence. For a given plant population density, the leaf 

emergence rate (leaves degree-day^) and the phyllochron were constant. Both are 

linearly related to plant population density. It is clear that the plant population 

density effect must be taken into account when modeling pineapple leaf growth and 

development. At present, the regression equations are only suitable for use under 

Hawaii conditions. More experiments under more variable environments are needed 

in order to predict leaf emergence of pineapple in other environments.
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CHAPTER 3

RESPONSE OF CANOPY DEVELOPMENT AND LIGHT INTERCEPTION

3.1 INTRODUCTION

Dry matter production by crops (or plant communities) depends on canopy 

photosynthesis. Canopy photosynthesis rate is related to the amount of light 

intercepted by the crop canopy and light interception varies with canopy development. 

Canopy development is the result of leaf emergence and expansion. In Chapter 2, 

leaf emergence rate was shown to be a function of plant population density and 

thermal time. Understanding how plant population density influences canopy 

development and light interception will provide basic information that can be used to 

help optimize plant population density for maximum yield. This information is also 

necessary for modeling crop growth, for predicting the probability of soil erosion, and 

for intercropping. The objectives of this study were to:

1. Examine the effect of plant population density and planting date on canopy

development and light interception.

2. Quantify the relationship between plant population density and canopy

development.

3. Quantify the relationship between green leaf area index and light

interception.
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3.2 LITERATURE REVIEW

Dry matter production of crop plants is directly proportional to their 

interception of radiant energy (Duncan et al. 1973; Loomis and Geralds 1975; 

Monteith 1977). This is because dry matter accumulation is related to canopy 

photosynthetic rate and canopy photosynthesis rate is linearly related to the quantity of 

photosynthetically active radiation (PAR) intercepted by that canopy (Wells, 1991). 

PAR intercepted by a soybean canopy increased curvilinearly as leaf area index (LAI) 

increased until canopy closure (Wells, 1991). The maximum crop growth rate (CGR, 

g m'  ̂d'^) is attained at full canopy closure when 95 percent of incident light is 

intercepted (Brougham, 1956). LAI at that stage of canopy development was defined 

as the critical LAI. The LAI at canopy closure was considered to be one determinant 

of maximum seed yield of soybean (Shibles and Weber, 1966).

The important question is what plant size or stage of plant development and 

plant density provide the critical LAI required to maximize potential yield 

(Duncan, 1986). Egli (1988) discovered that a determinate cultivar of soybean 

produced maximum yield at the plant density that resulted in 95 % light interception at 

growth stage R5. However, he also found that the yield of an indeterminate cultivar 

increased as plant density increased above the density required for 95 % light 

interception at growth stage R5. Early reproductive growth was the period of 

ultimate importance for soybean seed yield determination (Ashley and Boerma, 1989; 

Wells et al., 1982).

Data on the critical LAI for pineapple are not available. Py (1959) gives data
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showing that pineapple attained a LAI of 9.3 with a plant population density of 

38,461 plants ha'  ̂ (about 15,600 plants acre ‘) 14 months after planting. Although no 

published data on the relationship between canopy development and light interception 

were found, Fleisch (1988) reported that 95 percent of light was intercepted by 

pineapple at a PPD of 7.0 plants m'  ̂when the LAI was greater than or equal to 4.2.

Efficient interception of the radiant energy incident on a crop surface requires 

adequate leaf area that is uniformly distributed to completely shade the ground. This 

is achievable by manipulating planting density and its distribution over the land 

surface. The potential yield of crops can generally be maximized by utilizing the 

plant population density that produces enough leaf area to provide maximum 

insolation interception during reproductive growth. Equidistant planting minimizes 

interplant competition (Egli, 1988). Com grown in an equidistant plant-spacing 

pattern yields more grain per unit area of land than that grown in conventional plant- 

spacing patterns (Bullock et al., 1988). Similarly, peanut grown in equidistant 

spacing produced higher pod and kernel yields than conventional rows (Jaaffar and 

Gardner, 1988). Equidistant spacing in pineapple is not practical because two-row 

beds provide the space needed by harvesters to walk through the field. In addition, 

the use of plastic mulch, drip irrigation, and soil fumigation make a two row per bed 

system more practical in Hawaii and in the other countries where such practices are 

used. Sanford (personal communication) pointed out that for a given planting density, 

the differences in total yields or average fruit weights are relatively minor among 

different planting systems.
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3.3 MATERIALS AND METHODS

3.3.1 General Experimental Description

The experimental design and management was described in Chapter 2.

3.3.2 Data Collection and Analysis

Beginning about three months after planting until fruit harvesting, plant

biomass and leaf area per plant was measured on plant samples collected

approximately once every three months (Table 3.1).

Table 3.1 Dates of plant biomass sampling for pineapple planted 
on June 15 (PI), August 15 (Pll), and October 18 (Pill), 1989.

Sampling number PI PII PHI

1 09-18-89 11-15-89 01-22-90
2 10-30-89 12-29-89 05-30-90
3 12-14-89 02-15-90 08-06-90
4 03-15-90 05-15-90 09-19-90
5 05-22-90 08-06-90 12-17-90
6 08-01-90 09-19-90 04-15-91
7 09-14-90 12-17-90
8 12-13-90 04-15-91
9 04-15-91

Because the number of plants available for sampling was limited, plants were 

harvested systematically from one end of the beds. At each sampling date, one 

border plant was discarded in each row from which plants were sampled. For most 

harvests, four plants were harvested on each sampling date. Two plants were 

sampled from the two rows in the center bed of three bed plots. In 6 and 12 bed 

plots, one plant was sampled from each of four rows at each sampling date. Fifteen 

plants were harvested from each plot at the time of forcing and ten plants at the time 

of fruit harvesting to reduce sampling error.
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The fresh weight of all plants was measured and recorded in the field. Two 

mid-sized plants from the plot were taken to the laboratory for detailed analysis. The 

plants were dissected and measurements were made of green leaf area (LA), total leaf 

fresh and dry weight, weight and area of the youngest fully expanded leaf (the D-leaf 

(Py et al., 1987)) and stem fresh and dry weight. Green leaf area was defined as the 

area of the dark green and presumably photosynthetically active part of a leaf. The 

green leaf tissue was separated from the basal pale green and white tissue. Leaf area 

was measured with a LI-COR LI 3100 area meter. Dry weights were obtained by 

drying to a constant weight at 70 °C in a forced-draft oven. Because of limited time, 

only one plant was taken for detailed analysis beginning in March, 1990.

Plant dry matter contents for each plant in the subsample were calculated from 

tissue fresh and dry weights. The data on dry matter content and leaf area for the 

two plants was averaged and the results were used to estimate leaf areas and dry 

tissue mass for the whole-plot sample. Where detailed measurements were taken on 

only one plant, the data for that plant were used to estimate leaf area and tissue mass 

for the whole-plot sample. Leaf area index was calculated as:

LAI = (3.1)
10000

Light Interception by the leaf canopy was measured approximately monthly 

(Table 3.2) in areas of the plots reserved for estimation of fruit yield in Replication 3 

for PI, and Replication 1 for PII and III.
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Table 3.2 Dates of canopy light measurements for pineapple planted 
on June 15 (PI), August 15 (PH), and October 18 (PHI), 1989.

Sampling number

1
2
3
4
5
6
7
8 
9

PI

11-21-89
12-19-89
02-19-90
03-15-90 
05-18-90
08-01-90
09-11-90
10-13-90
11-29-90

PII

02-15-90
04-05-90
05-15-90
08-03-90
09-12-90
10-15-90
11-30-90

PHI

02-20-90
05-19-90
08-06-90
09-13-90
10-16-90 
12-02-90

Measurements were begun about three months after planting and were 

continued until light was completely intercepted by the canopy. Instantaneous 

measurements of photosynthetic photon flux density (PPFD) were measured below the 

canopy with a one-meter line quantum sensor (LI-COR LI-191SB) and above the 

canopy with a quantum sensor (LI-COR LI-190sb). The measurements were made on 

a sunny day and as near solar noon as possible. The two PPFD measurements were 

saved to a LI-COR LI-1000 datalogger that automatically calculated the fractions of 

light transmitted and intercepted by the equations

FLT  = (3.2)

F U  = 1 -  FLT (3.3)

where FLT is the fraction of light transmitted; I, is the PPFD above the canopy, Ib is 

the average PPFD at ground level, and FLI is the fraction of light intercepted. The 

sensors were cross-calibrated in an open area before measurement.
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Ib was obtained by taking nine measurements at approximately equidistant 

spacing with the line quantum sensor (Fig. 3.1). Measurements were made below the 

plants and parallel to the rows from the center of one bed to the center of next one. 

Each result was the mean of the nine measurements.

Treatment effects were evaluated by analysis of variance using the SAS 

ANOVA procedure (SAS Institute, 1985). Leaf area per plant and LAI at the time of 

forcing were regressed against plant population density using the SAS GLM procedure 

(SAS Institute, 1985). The relationship between light interception and LAI calculated 

from plot mean LA of the closest sampling to light measurements was fitted using the 

SAS REG procedure (SAS Institute, 1985).

3.4 RESULTS AND DISCUSSION

3.4.1 Leaf Area Per Plant

Leaf area per plant increased over time and treatment effects were evident by 

the fourth sampling period for PI and PII, and by the third sampling for PHI (Fig. 

3.2A, B, and C). From 300 days after planting, leaf area per plant decreased as plant 

population density increased. Relative leaf growth rate as indicated by the slopes of 

the lines declined as plant population density increased up to the time of forcing when 

new leaf production ceased (Fig. 3.2A, B, and C). Because nutrient and water supply 

were assumed to be non-limiting, differences in relative leaf growth rate resulted from 

different degrees of inter-plant competition for sunlight. Accumulated leaf area
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per plant is the result of leaf emergence and leaf expansion. The decline in rate of 

leaf expansion at the higher plant population densities was due at least in part to a 

suppressed leaf emergence rate (leaves °C-day‘) (Chapter 2).

After forcing, leaf area per plant continued to increase in the lowest PPD, but 

increased only slightly or not at all in the other PPDs. Any increase in leaf area after 

forcing was due to the emergence and expansion of leaves initiated prior to forcing. 

The lack of any large increase in LA at the higher PPDs may be due to the mutual 

shading of leaves. The results for the three plantings were similar (Fig.3.2 B and C), 

but the divergence in leaf area among PPDs was greater in PI than in PII and PHI, 

and greater in PII than in PHI.

The effects of plant population density and planting date on leaf area per plant 

at forcing were tested using analysis of variance. The largest source of variation was 

the main effect of PPD, followed by the main effect of planting date (Appendix A.l). 

The interaction between planting date and plant population density was also 

significant, indicating that the response of leaf area per plant to PPD over planting 

date was different. Plant population density is a quantitative variable while planting 

date was treated as a qualitative environmental variable for purposes of this analysis. 

Therefore, the effect of PPD was analyzed using regression while the effect of 

planting date was analyzed by breaking it into single degree of freedom components. 

Each component of both PPD and planting date was incorporated into a general linear 

model and the model was fitted to the data. Error terms for testing for significance 

were calculated by hand. A polynomial term was gradually added into the model
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until the effect due to lack of fit by regression was not significant. A planting date 

component was eliminated when it is not significant. This analysis combined 

experimental design and treatment design analysis. The final model represents the 

effects of PPD and planting date on green leaf area per plant. The equation fitted to 

the data is:

LA=15482+ 1340*P1 VOTH-1289*P2 V3-1237*PPD+ 39*PPD^

-90*P1VOTH*PPD+118*P2V3*PPD (3.4)

where PIVOTH is the effect of planting 1 vs. other plantings and P2V3 is the effect 

of planting 2 vs. planting 3.

The orthogonal values used for PIVOTH and P2V3 were: 

planting PIVOTH P2V3 

1 +2  0

2 -1 -1

3 -1 +1

Substituting the values of PIVOTH and P2V3 into Eqn. 3.4, it became: 

for PI LA= 18162-1417*PPD+ 39*PPD" (3.5)

for PH LA=15431-1265*PPD+39*PPD^ (3.6)

for p m  LA=12853-1021*PPD+39*PPIF (3.7)

The mean leaf area per plant at forcing across PPDs for PI was significantly 

greater (P=0.001) than those in PII and PHI. The mean leaf area per plant across 

PPDs at forcing for PII was significantly greater (P=0.05) than that in PHI. Leaf
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area per plant at forcing decreased curvilinearly as plant population increased (Fig.

3.3). This indirectly confirmed that the decline in leaf area per plant resulted from 

increasing inter-plant competition as PPD increases. Since the amount of light 

intercepted by an individual plant during the early stage of the reproductive period is 

an important determinant of fruit weight (Sanford, 1962), the decrease in leaf area per 

plant as PPD increased would be expected to decrease fruit weight. This topic will be 

discussed in Chapter 5.

3.4.2 Leaf Area Index

The leaf area index accumulated over time for PI (Fig. 3.4 A) reached a 

maximum at the time of forcing and then remained about constant. The exceptionally 

low value at forcing for the highest PPD in this planting (Fig. 3.4A) likely was due to 

field variability and sampling error. Leaf area index continued to increase after 

forcing at the lowest PPD. For PII, LAI reached a maximum at the time of forcing 

at the three higher PPDs and continued to increase at the two lower ones (Fig. 3.4 B). 

The LAI also reached a maximum in PIII at the time of forcing at the highest PPD, 

but continued to increase at the other PPDs (Fig. 3.4 C). The increase in LAI after 

the time of forcing at the lower PPDs is due to the continued increase in leaf area per 

plant (previous section) at the lower PPDs. This also suggests that at higher PPDs, 

intense mutual shading may cause senescence and loss of leaves. Maximum LAIs 

(Table 3.3) ranged from 3.45 to 9.1 over the range of PPDs for the three plantings. 

The highest LAIs were well above those reported for field crops but not unusually 

high for pineapple (Py, 1959).
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Plant population density (plants m"2)

Fig. 3.3 Effect of plant population density on leaf area per plant at forcing for 
pineapple planted on June 15, August 15, and October 18, 1989. All plants were 
forced on September 18, 1990.
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Table 3.3 Maximum leaf area indices (m  ̂m' )̂ of pineapple planted at five population 
densities (PPD) in June (PI), August (PII) and October (PHI), 1989.

Up to about 200 days after planting, at a given time, LAI increased linearly as 

PPD increased. Thereafter, LAI increased curvilinearly (Fig. 3.5 A, B and C). This 

suggests that no plant competition was present during early growth but became more 

and more intense as the crop developed. As would be expected, this result is in 

agreement with the results for leaf area per plant.

3.4.3 Leaf Canopy Light Interception

Light interception measurements were begun in each planting about 150 days 

after planting (Table 3.2). By that time, leaf growth and expansion was sufficient to 

extend the plants’ leaf canopy slightly beyond that of the crown at planting. Initial 

differences in light interception among PPDs was due primarily to differences in  

PPD. The fraction of light intercepted (FLI) by the leaf canopy increased with time 

and plant population density (Fig. 3.6 A, B, and C). For PI, FLI reached 0.95 at the 

three higher PPDs by or one month before forcing. For the two lower PPDs, it 

reached 0.95 at about one month after forcing. The results were similar for PII and 

P in  , except that interception of 95 % of the incident light did not occur in most 

treatments until at or after forcing. For the lowest population in PHI, full canopy

43



X<u "Oc
o 0)
a
H—o

X<u
X Ic
oQ)

O(U

P lant p o p u la t io n  d e n s ity  ( p l a n t s / m “)

Fig. 3.5 Effect of plant population density and days after planting (DAP) on leaf area
index of pineapple planted June 15 (A), August 15 (B), and October 18 (C), 1989.
All plants were forced on September 18, 1990.

44



Fig. 3.6 Light interception by pineapple leaf canopies for five plant population 
densities planted on June 15 (A), August 15 (B), and October 18 (C), 1989. All 
plants were forced on September 18, 1990,
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closure was not reached until about three months after forcing. The time required to 

reach 0.95 FLI approximately corresponded to the time that maximum LAI was 

attained. This suggests that when the canopy intercepts most of the available light, 

any further increase in leaf area would shade lower leaves, causing senescence and 

resulting in a decrease in LAI.

The fraction of light intercepted was plotted against leaf area index for the 

three plantings (Fig. 3.7 A, B and C). The light interception and leaf area index data 

were fitted by an exponential equation. The coefficients of regression, equivalent to 

the light extinction coefficient of Beer’s law were not significantly different among the 

three plantings. They were 0.59 for PI and 0.58 for the other two plantings. Fleisch 

(1988) reported a light extinction coefficient of 0.56 for a pineapple canopy. The 

slopes of the response curves began to decrease at a LAI of between 2 and 2.5 (Fig.

3.7), which occurred at about 200 days after planting at the highest PPDs (Fig. 3.3). 

Ninety fove percent of light interception was achieved at a LAI of about 5.0, a value 

somewhat higher than values of 3.0 to 4.0 commonly observed for mesophytic crop 

plants (Shibles and Weber, 1966; Wells, 1991).

In summary, leaf area per plant and leaf area index increased with time and 

increasing plant population density. Before about 200 days after planting, leaf area 

per plant was constant over PPDs and leaf area index was a linear function of PPDs 

for a given time. Thereafter, leaf area per plant declined and LAI increased 

curvilinearly as plant population density increased. Maximum LAIs were attained at 

forcing at the higher PPDs for the June and August plantings. Light interception
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Fig. 3.7 Relationship between canopy light interception and leaf area index for 
pineapple planted on June 15 (A), August 15 (B), and October 18 (C), 1989. All 
plants were forced on September 18, 1990.
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increased with increasing time and plant population density, but it behaved differently 

from leaf area per plant and leaf area index in that the relationship between the 

fraction of light intercepted and LAI was exponential. This relationship and the 

decline in LAI after a maximum was attained demonstrated that inter-plant 

competition began to occur by or before 200 days after planting at the highest PPDs, 

and became more intense after that time.
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CHAPTER 4

VEGETATIVE GROWTH AND DRY MATTER PARTITIONING

4.1 INTRODUCTION

In a restricted sense, growth is the result of cell division, enlargement, and 

differentiation (Gardner et al. 1985), but agronomists generally define growth as an 

increase in dry matter. Vegetative growth describes all activities associated with leaf 

initiation and expansion, and the formation of lateral apical meristems that result in 

branches and a root system (Milthorpe and Moorby, 1986). Vegetative growth of 

determinate crops ceases when flowering occurs. Parameters commonly used to 

characterize growth are dry matter accumulation, leaf area, tiller number, plant height 

and volume. Pineapple growers commonly use plant fresh weight, D-leaf (the 

youngest fully expanded leaf) weight and length, leaf number and area, and slip and 

sucker number.

Maximum plant growth is a function of genotype and environment. For a 

given genotype, maximum growth rate and yield can be obtained by environmental 

manipulation. The crop environment (or microclimate) can be altered through site 

selection, tillage, irrigation, drainage, fertilization, pest and disease control, planting 

date, plant population density, and other cultural practices. Most pineapple 

production areas are planted with ’Smooth Cayenne’, so manipulation of cultural 

practices is of importance for pineapple growers. Several studies have been done on 

the effect of plant population density on pineapple growth and yield. None of them
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examined the effect of plant population density on dry matter partitioning. Also no 

results on the effect of plant population density on the vegetative growth and dry 

matter production of pineapple were found.

Understanding how dry matter is partitioned during the growth of pineapple 

and the relationship among plant growth parameters, environmental factors and 

cultural practices is necessary to simulate pineapple growth. For example, the crop 

growth subroutine in a pineapple growth simulation model likely would calculate dry 

matter partitioning by balancing photosynthetic supply and plant growth demand.

Plant growth demand requires information on the relationships among leaf number, 

leaf area, leaf weight, and stem weight. Whether those relationships are affected by 

plant population density is not known. The objectives of the study were to:

1. Examine the response of dry matter accumulation and partitioning to plant

population density.

2. Examine the effect of plant population density on D-leaf weight, weight of

plant components and total plant weight at the time of forcing.

3. Quantify the relationships among leaf number, leaf area and leaf weight.

4.2 LITERATURE REVIEW

4.2.1. Leaf Growth

The effect of plant population density on plant growth results from two types 

of competition: interplant (between plants) and intraplant (within a plant). The onset 

of both types of competition during plant growth varies with the plant population
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density. Interplant competition commonly occurs earlier at higher plant population 

densities than at lower ones, and intraplant competition is more intense at lower plant 

population densities (Gardner et al. 1985).

Within the range of plant population densities studied in pineapple, no 

consistent effect of increasing plant population density on vegetative growth has been 

reported. Data from nineteen unirrigated plant population density trials conducted in 

Hawaii with Smooth Cayenne pineapple show no consistent effect of plant population 

density over the range from 9,000 to 26,000 plants per acre on either estimated plant 

weight or D-leaf weight (Sanford, 1962). Additional data suggested no consistent 

effect of plant population density on leaf elongation (Sanford, 1962). Sanford (1962) 

noted that during most of the vegetative growth period, plants are spaced far enough 

apart even at the highest plant population densities, that they do not compete with 

each other for light, particularly with regard to the active and developing leaves.

Only the older, less active leaves are mutually shaded. However, Dass et al. (1978) 

reported that the dry mass of the D-leaf decreased significantly as the plant population 

density of Kew pineapple increased beyond the range of 53,333 to 59,259 plants per 

hectare. This suggests that at higher densities, interplant competition does occur 

during the vegetative growth stage.

Conflicting results of the effect of plant population density on growth as 

expressed in leaf number per plant have been reported. No significant difference in 

leaf number per plant between plant population densities ranging from 14,826 to 

108,722 plants per hectare was observed in Smooth Cayenne, Kew, Sugarloaf, or
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Sarawak pineapple over several production areas (Balakrishnan et al. 1978; Chadha et 

al., 1973; Dass et al., 1978; Ghosh and Medhi, 1981; Gunjate and Limaye, 1977; 

Norman, 1978; Wang and Chang, 1958, Yoshihara and Hwang, 1957). In other 

studies, leaf number per plant decreased as plant population density increased from 

12,355 to 103,781 plants per hectare (Hwang, 1970; Kwang and Chiu, 1966; Singh et 

al. 1974; Su, 1957; Wang et al. 1962; Wee, 1969).

The plant height of pineapple was reported to increase with increasing plant 

population density (Hwang, 1970; Kwang and Chiu, 1966, Wang et al. 1962; Wee, 

1969). However, leaf area per plant did not differ significantly across plant 

population densities ranging from 42,000 to 108,722 plants per hectare (Balakrishnan 

et al. 1978; Chadha et al. 1973). The inconsistent results may be due to the effect of 

factors that were not controlled or measured.

4.2.2. Slip and Sucker Production

Initiation and development of vegetative and reproductive organs are 

vulnerable to photoassimilate and N supply (Patrick, 1988). Assimilate supply to 

vegetative organs that develop simultaneously with reproductive organs depends on 

the extent of competition with the reproductive sink. The efficiency of assimilate 

partitioning to the organs is also determined by the environment the crop experiences 

during its development.

Light has both quantitative and inductive effects on plant growth and 

development. For example, total biomass production is strongly correlated with 

radiation interception by the canopy and the intercepted radiation may act as a
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significant determinant of final yield (Milford, et al. 1980). Inductive stimuli, sensed 

as photoperiod or as alterations in the spectral quality of light in the crop canopy, can 

cause significant changes in assimilate partitioning, which can lead to increases in 

crop productivity (Kasperbauer, et al. 1984; Keating, et al. 1985). This may not be 

true for pineapple, but no data on the subject were found.

As pineapple plant population density increases, interplant competition 

becomes more intense and net assimilation rate (NAR) would decrease. This would 

reduce the supply of photosynthate available for the initiation and development of 

suckers (shoots that develop from buds located on the stem above or below ground 

level) and slips, which develop on the peduncle or fruit stalk. At plant population 

densities greater than 42,000 to 62,000 plants per hectare, the average number of 

slips and suckers produced per plant decreased as plant population density increased 

while the total number of slips produced per hectare either increased or remained 

approximately the same (Gadelha, et al. 1980; Dodson, 1968; Cannon, 1957; 

Gonzalez-Tejera, 1969; Sanford, 1962; Norman, 1978; Wang et al. 1962; Kwang and 

Chiu, 1966; Wee, 1969; Balakrishnan et al., 1978; Glennie, 1972a, unpublished 

data).

Glennie (1972, unpublished data) in Australia conducted two trials with 

’Smooth Cayenne’ pineapple with plant population densities ranging from 12,800 to

214,000 plants per hectare. At plant population densities ranging from 12,800 to 

17,300 plants per hectare, the number of suckers per plant was lower but the number 

of slips (including hapas, which develop on base of the fruit stalk or peduncle) was
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higher than at higher plant population densities. The high number of slips and hapas 

caused plants to lodge. Glennie also found that above 44,5000 plants per hectare, 

increasing plant population density delayed sucker initiation and growth. Delayed 

sucker development delays ratoon crop (subsequent crop after harvesting the first or 

mother plant crop) development. Contrary to the results of Glennie (1972, 

unpublished data), others found that the number of suckers and slips per plant was not 

affected by plant population density (Ghosh and Medhi, 1981; Hwang, 1970; Lee, 

1977). Su (1957) and Chadha et al. (1973) reported that the number of suckers 

produced per plant decreased as plants per unit area increased, but the effect of plant 

population density on slip production was not significant. The inconsistent results 

may be due to factors other than plant population density such as cultivar, plant size, 

nutrition, and water. Sanford (1962) reported that the effect of forcing flowering with 

naphthaleneacetic acid (NAA) had a greater effect on slip production than any effect 

of plant population density. A decrease in sucker and slip production with increasing 

plant population density may indicate that the fruit sink demand is greater than that of 

other developing organs.

4.3 MATERIALS AND METHODS

4.3.1 General Experimental Description

The experimental design and management was described in Chapter 1.
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4.3.2 Data Collection and Analysis

4.3.2.1 Data Collection

Beginning about three months after planting until fruit harvesting, plant 

biomass was measured on plant samples collected approximately once every three 

months (Table 3.1). Because the number of plants available for sampling was 

limited, plants were harvested systematically from one end of the beds. At each 

sampling date, one border plant was discarded in each row from which plants were 

sampled. For most harvests, four plants were harvested on each sampling date. Two 

plants were sampled from the two rows in the center bed of three bed plots. In 6 and 

12 bed plots, one plant was sampled from each of four rows at each sampling date. 

Fifteen plants were harvested from each plot at the time of forcing and ten plants at 

the time of fruit harvesting to reduce sampling error.

The fresh weight of all plants was measured and recorded in the field. Two 

mid-sized plants from the plot were taken to the laboratory for detailed analysis. The 

plants were dissected and measurements were made of green leaf area (LA), total leaf 

fresh and dry weight, weight and area of the youngest fully expanded leaf (the D-leaf 

(Py et al., 1987)) and stem fresh and dry weight. Green leaf area was defined as the 

dark area of the dark green and presumably photosynthetically active part of a leaf. 

The green leaf tissue was separated from the basal pale green and white tissue. Leaf 

area was measured with a LI-COR LI 3100 area meter. Dry weights were obtained 

by drying to a constant weight at 70 °C in a forced-draft oven. Because of limited 

time, only one plant was taken for detailed analysis beginning in March, 1990.
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Plant dry matter contents for each plant in the subsample were calculated from 

tissue fresh and dry weights. The data on dry matter content and leaf area for the 

two plants was averaged and the results were used to estimate leaf areas and dry 

tissue mass for the whole-plot sample. Where detailed measurements were taken on 

only one plant, the data for that plant were used to estimate leaf area and tissue mass 

for the whole-plot sample.

Mean plant dry weights for each plot were calculated from plant dry matter 

content and average plant fresh weight of four, fifteen, or ten plants. Mean leaf area, 

leaf dry weight, and stem dry weight per plot were calculated from subsample data 

based on the proportion of total plant dry matter partitioned to each of these 

components. Mean leaves per plant for each plot were obtained from the leaf 

emergence data. The ratio of leaf area per plant to leaf number was calculated from 

the leaf area per plant and leaf number obtained on the same date.

4.3.2.2 Statistical Analysis

Statistical analysis was accomplished in two steps:

1. Analysis of Experimental Design

This step only analyzes the effect of the main factors on response variables.

In this experiment, the main factors are plant population density and planting date. 

The response variables to be analyzed were D-leaf area and dry weight, leaf dry 

weight, stem dry weight, and plant total dry weight at forcing. The analysis of 

variance procedure SAS ANOVA (SAS Institute, 1985) was used to accomplish this 

step. Table 4.1 presents the source of variation for the analysis of variance.
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Table 4.1 Analysis of variance for the effect of plant population density and 
planting date on pineapple D-leaf area and dry weight, leaf dry weight, stem dry 
weight, and plant total dry weight at forcing.

Source of variation Degree of freedom

Planting date 2
Replication within planting date 6
Plant population density (PPD) 4
Planting date x  PPD 8
Experimental error 24

Total 44

2. Analysis of treatment design

This step analyzes the effect of levels of the factors on response variables. 

Because plant population density is a quantitative factor and planting date was taken to 

be a qualitative factor for the purposes of this analysis, they were analyzed 

differently. The former was analyzed by regression while the latter was analyzed by 

breaking the factor into orthogonal single degree of freedom components. The 

analysis was accomplished by fitting a model that contained class and continuous 

variables to the data using the SAS GLM procedure (SAS Institute, 1985) and hand 

calculation. A polynomial term from first order to higher order was gradually added 

into the model until the LACKFIT, which is the effect due to lack of fit by the 

regression, was not significant. A component of planting date was eliminated when it 

was not significant. Table 4.2 presents the ANOVA table for the combined analysis.

4.3.2.3 Growth Analysis

In order to examine how plant population density and planting date affect 

pineapple dry matter accumulation and partitioning during vegetative growth,
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Table 4.2 Analysis of variance for the effect of treatments on pineapple D-leaf area 
and dry weight, leaf dry weight, stem dry weight, and plant total dry weight at 
forcing.

Source of variation degree of freedom

Planting date (PD) (2)
PI vs. Others 1
PII vs. Pin 1

Replication within PD (6)
Plant population density (PPD) (4)

Linear 1
Quadratic 1
LACKFIT 2

PD X PPD (8)
(PI vs. others) x  Linear 1
(PI vs. others) x  Quadratic 1
(PII vs. PHI) X Linear 1
(PII vs. PIH) X Quadratic 1
LACKFIT 4

Experimental Error (24)

Total (44)

instantaneous growth attributes were calculated. Data for leaf area per plant, green 

leaf dry weight, stem dry weight, and total plant weight up to the time of forcing for 

each treatment were fitted by equations that are the transformation of exponential 

equations proposed by Potter and Jones (1977) for calculation of dry matter 

partitioning and as used by Bartholomew (1982) for pineapple, and Tollenaar (1989) 

for maize.

Leaf area data were fitted by the equation

Log, A = Log, Ao + K ,t (4.1)

where Log, is natural logarithm, A is green leaf area (cm  ̂planf‘) at time t (day), Aq 

is the initial green leaf area (cm  ̂planf^), and K, is the relative growth rate of green
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leaf area (cm  ̂cm'^ day).

Green leaf dry weight data were fitted by the equation 

Log, L = Log, Lo + Kjt (4.2)

where L is green leaf dry weight (g plant )  at time t, Lq is the initial green leaf dry 

weight (g plant ) ,  and K, is the relative growth rate of green leaf ( g g'̂  day ) .

Leaf basal tissue dry weight data were fitted by the equation 

Log, BL = Log, BLo + t (4.3)

where BL is basal leaf dry weight (g plant )  at time t, BLq is the initial basal leaf dry 

weight (g plant ) ,  and Kb is the relative growth rate of basal leaf (g g'̂  day).

Stem dry weight data were fitted by the equation 

Log, S = Log, So + K, t (4.4)

where S is stem dry weight (g plant )  at time t. So is the initial stem dry weight (g 

plant ) ,  and K, is relative growth rate of stem (g g'  ̂ d ay ).

Total plant dry weight data were fitted by the equation 

Log,W  = Log,W„ + K,,t (4.5)

where W is the total dry weight (g plant )  at time t; Wq is the initial plant dry weight, 

and K" is the relative growth rate of plant (RGR) (g g'̂  day).

Instantaneous dry matter partitioning to plant components is expressed as the 

leaf area partitioning coefficient, leaf weight partitioning coefficient, stem weight 

partitioning coefficient, and specific leaf area extension. Leaf area partitioning 

coefficient (LAPC) was defined as the daily increase in leaf area resulting from the 

daily increase in total dry weight (m  ̂day* kg * day), i.e., the daily change in leaf
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area ratio (leaf area/total plant weight). Leaf weight partitioning coefficient (LWPC) 

was defined as the proportion of the daily increase in total dry weight that was 

allocated to the leaf. Leaf basal tissue weight partitioning coefficient (BLWPC) was 

defined as the proportion of daily increase in total dry weight that was allocated to 

leaf basal tissue. Stem weight partitioning coefficient (SWPC) was defined as the 

proportion of the daily increase in total dry weight that was allocated to stem. 

Specific leaf area expansion (SLAE) was the leaf area per unit weight of new leaf. 

LAPC, SWPC, and SLAE were derived from the fitted equations above.

By definition, LAPC = (dA/dt)/(dW/dt),

LWPC = (dL/dt)/(Dw/dt),

BLWPC = (dBL/dt)/(dW/dt),

SWPC=(dS/dt)/(dW/dt),

SLAE= (dA/dt)/(dL/dt)=LAPC/LWPC.

Because dLogeA/dt = dA/(Adt) and dLog,W/dt=dW/(Wdt), 

(dA/dt)/(dW/dt) = (AdLog^/dt)/(WdLogeW/dt),

LAPC =   (4.d)
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I W P C  = — — -------  (4.7)

B L W fC  = - S L A   (4,8)

^ w / " " '

SWPC  =    (4.9)
K ^ W .e '^ '- '

SLAE = —  (4.10)

To evaluate the effect of PPD and PD on dry matter partitioning to plant 

components, leaf area ratio (LAR), leaf weight ratio (LWR), leaf basal tissue weight 

(BLWR), stem weight ratio (SWR), and specific leaf area ratio (SLAR) were 

calculated from the fitted equations.

The net assimilation rate (NAR), which was defined as dry matter 

accumulation rate per unit of green leaf area per unit time (Kg mr̂  day *) was
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calculated by the equation

K W . e ^ ' '
NAR =   (4.11).

V

The effects of PPD and PD on the derived values RGR, NAR, LAPC, LWPC, 

BLWPC, SWPC, SLAB, GLAR, BLWR, SWR, and SLAR at 330 and 300 days after 

planting for PI and PII, respectively, were analyzed statistically using the procedure 

mentioned above. The time in days after planting selected for analysis represented 

the midpoint between 200 days after planting when population effects began to be 

observed and the time of forcing for PI and PII, respectively. Because of limited data 

from PHI, only PI and PII were analyzed here.

4.4 RESULTS AND DISCUSSION

4.4.1 D-leaf Weight vs. Plant Weight

The pineapple D-leaf has been used as an index leaf for nutrient analysis, leaf 

water deficiency reading, and plant growth (Py et al., 1987; W.G. Sanford, personal 

communication). In this study, the relationship between total plant dry weight and D- 

leaf dry weight was essentially linear for both plantings (Fig. 4.1 A and B) and the 

two were highly correlated. Total plant dry weight was also highly correlated to D- 

leaf area (Fig. 4.2 A and B). The results confirmed that D-leaf can be used as an 

index leaf for plant growth up to the time of forcing for qualitative studies.
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Fig. 4.1 Relationship between total dry weight per plant and D-leaf dry weight up to 
the time of forcing for pineapple planted June 15 (A) and August 15 (B), 1989.
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Fig. 4.2 Relationship between total dry weight per plant and D-leaf area up to the 
time of forcing for pineapple planted June 15 (A) and August 15 (B), 1989.
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The effects of PPD and PD on D-leaf area and dry weight at the time of 

forcing were highly significant (Appendix A.2 and A.3). The interaction of PPD by 

planting date were also highly significant, indicating that the responses of D-leaf area 

and dry weight at forcing to PPD are different over different plant ages. The effect 

of planting date was small relative to the PPD effect. Both D-leaf area and dry 

weight sampled September 18, the date of forcing, decreased curvilinearly as PPD 

increased, but the rates of change (or slopes) over plantings were highly significantly 

different (Fig. 4.3 A and B). The relationships were best fitted by quadratic 

equations (Table 4.3). This suggests that D-leaf growth was reduced by mutual 

shading of plants at higher PPDs. These results were similar to those reported by 

Dass et al. (1978) for ’Kew’ pineapple, where D-leaf weight decreased linearly with 

increasing plant population density.

4.4.2 Dry Matter Accumulation

The increase in mean dry weights of leaf (Fig. 4.4), stem (Fig. 4.5), and total 

dry weight (Fig. 4.6) per plant over time were constant across plant population 

densities up to about 200 days after planting. This likely was due to the fact that the 

leaf canopy had not yet closed so there was little or no inter-plant competition during 

this period.

Leaf dry weight before forcing increased more rapidly over time at the lower 

than the higher populations for all plantings (Fig. 4.4 A, B, and C). For PII and 

PHI, the increase in leaf dry weight ceased by about 100 days (the next sampling 

period) after forcing. Stem dry weight increased very little during the first 200 days
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Fig. 4.3 Effect of plant population density on D-leaf area and dry weight at the time 
of forcing for pineapple planted on June 15, August 15, and October 18, 1989. All 
Plants were forced on September 18, 1990.
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Table 4,3 Regression equations describing the effects of plant population density and planting date on pineapple D-leaf 
area, D-leaf dry weight, leaf dry weight, stem dry weight and tot^ plant dry weight at forcing within density range from 
2.61 to 12.81 plants m' .̂

Growth parameter June 15, 1989 August 15, 1989 October 18, 1989

D-leaf area Y = 1300-112X-I-3.3X2 ^ ¥=1123-100X4-3.3X2 ¥=829-92X4-3.3X2

D-leaf dry weight ¥=32.26-2.84X4-0.086X2 ¥=27.77-2.56X4-0.086X2 ¥=20.25-1.96X4-0.086X2

1 eaf dry weight ¥=419.8-37.47X4-1.15X2 Y=344.44-32.8X4-1.15X2 ¥=279.7-26.9X4-1.15X2

Stem dry weight ¥=103.25-10.08X4-0.29X2 ¥=65.18-7.18X4-0.29X2 Y=49.7-5.78X 4-0.29X2

Total dry weight ¥=682.8-60.5X4-1.8X2 ¥=528.5-50X4-1.8X2 Y=421-40.4X4-1.8X2
o

Y stands for dependent variables leaf area or weight and X stands for the independent variable plant population 
density.



of the planting (Fig.4.5 A, B, and C) and the dry matter content of stems remained 

about constant for PI and PII (Fig. 4.7 A and B). After that time, stem dry weights 

increased slowly up to the time of forcing and rapidly thereafter. Presumably, a 

carbohydrate surplus was present for accumulation during reproductive development 

(Fig. 4.7). No consistent effect of plant population density on stem dry matter 

content was observed.

Plant accumulation of dry matter over time in leaves, stems, and plant 

paralleled that of leaves and stem (Fig. 4.6 A, B, and C). Plant dry weight (Fig. 4.6 

A, B, and C) increased greatly up to forcing. After forcing, leaf initiation ceased, 

but total plant dry weight increased slightly because of the continued growth of 

initiated leaves and increases in stem dry weight. Presumably due to intense mutual 

shading at the higher plant population densities, the increase in plant dry weight was 

less than it was at the lower plant population densities.

The general shapes of the curves of dry matter accumulation among leaves 

(Fig. 4.4 A, B, and C), stem (Fig. 4.5 A, B, and C), and plant (Fig. 4.6 A, B, and 

C) were similar for all three plantings, but the divergence between plant population 

densities in PII was less than that in PI, and the divergence was least in PHI. The 

plants in PHI at the time of forcing were four months younger and those in PI, and 

two months younger than those in PII. The inter-plant competition in PHI would be 

expected to be less intense than that in PII and PHI.

The analysis of variance for the leaf dry weight, stem dry weight, and total 

dry weight per plant at forcing (Appendix A.4, A.5, and A.6) show that the main
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(B), 1989.
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effect of PPD was the most important source of variability. The main effect of PD 

and the PPD by PD interaction were small relative to the effect of PPD, but all were 

highly significant. The leaf dry weight, stem dry weight, total dry weight per plant at 

forcing, decreased curvilinearly as PPD increased (Fig. 4.8), but the rates of decrease 

over PPDs were significantly different over plantings (Appendix 1.5 to 1.9). The 

relationships were best fitted by quadratic equations (Table 4.3). The results indicate 

that inter-plant competition was present during vegetative growth stage at least at the 

higher PPDs. The significant PPD by PD interaction shows that the degree of 

competition at each PPD across plantings was different. The results combine data 

from plants of different ages and competition likely becomes more intense with 

increasing time after planting.

The increase in green leaf area, green leaf weight, basal leaf weight, stem 

weight, and total plant weight over time before forcing for each PPD were well- 

described by exponential equations (Eqn. 4.1 to 4.5). The coefficients of 

determination for the relationships ranged from 0.96 to 0.999, and all were highly 

significant. The relative growth rate derived from the fitted equations during 

vegetative growth decreased linearly with increasing plant population density (Table

4.4). No significant difference in RGR was found between PI and PII (Appendix

1.7).

Total plant weight at any time is a function of initial plant size, relative growth 

rate, and the duration of growth. The significant difference in plant weight between 

PI and PII was due primarily to the difference in duration of growth since there was
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Table 4.4 Regression equations describing the effects of plant population density on relative 
growth rate (RGR), net assimilation rate (NAR), leaf area partitioning coefficient (LAPC), 
leaf weight partitioning coefficient (LWPC), basal leaf weight partitioning coefficient 
(BLWPC), stem weight partitioning coefficient (SWPC), and specific leaf expansion (SLAE) 
that were derived from die fitted growth curves of ’Smooth Cayenne’ pineapple planted on 
June 15 (Planting 1) and August 15 (Planting 2), 1989, respectively.

Parameter Planting 1 and 2

RGR(gg-M-0 Y=0.00888-0.000209X ^ **

NAR (g mM'O Y=3.1-0.159X+0.0049X^ **

LAPC (cmM-'g-l d) Y=25.99 NS

LWPC (Kg d ‘ Kg-‘ d) Y=0.62 NS

BLWPC (Kg d ' Kg i d) Y=0.23+0.00215X **

SWPC (Kg d-' Kg-i d) Y=0.152-0.0019X *

SLAE (cmM 'g-1 d) Y=41.3+0.286X *

t  Y stands for the dependent variables of RGR, NAR, LAPC, LWPC, BLWPC, SWPC, and SLAE. 
X stands for the independent variable of plant population density.
* and **, respectively, indicates significant at p=0.05 and 0.01; NS indicates not significant.
The results of analysis of variance were presented in Appendix A.7, 8, 9, 10, 11, 12,and 13.

little difference in initial size of planting material. No significant effects of plant 

population density or planting date were found on LAPC and LWPC while BLWPC 

and SLAE increased linearly with an increase of PPD but SWPC decreased linearly as 

PPD increased (Table 4.4). This suggests that during vegetative growth, dry matter 

partitions more to growing leaves than to stem with increasing plant population 

density. Net assimilation rate decreased curvilinearly as PPD increased and the 

relationship was best fitted by a quadratic equation (Table 4.4).

Relative growth rate of pineapple was better correlated with net assimilation 

rate than it was with the several partitioning coefficients (Table 4.5). This is similar
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to the results obtained by Bartholomew (1982) for pineapple grown in the controlled 

environments. In contrast, the leaf area partitioning (LAP) coefficient was better 

correlated with relative growth rate for several species having C3 and C4 

photosynthetic pathways that were grown in different temperature regimes (Potter and 

Jones, 1977; Tollenaar, 1989). Potter and Jones (1977) found that LAP coefficients 

of several plant species were sensitive to temperature while NARs were independent 

of temperature. Bartholomew (1982) found that leaf area expansion rates of pineapple 

plants did not vary with temperatures, and the contributing factor to the different 

NARs was thought to be the leaf display, with thin, drooping leaves of plants grown 

at warm temperatures having lower NAR.

Table 4.5 Coefficients of correlation (r) between pineapple relative growth rate 
(RGR, g g ‘ d' )̂ and leaf area partitioning coefficient (LAPC), green leaf dry weight 
partitioning coefficient (LWPC), basal leaf tissue dry weight partitioning coefficient 
(BLWPC), stem dry weight partitioning coefficient (SWPC), specific leaf area 
expansion (SLAE), and net assimilation rate (NAR) during vegetative growth.

Parameters RGR

LAPC 0.33 NS

LWPC 0.012 NS

BLWPC - 0.47

SWPC 0.33 NS

SLAE -0.42 *

NAR 0.95
■i-nrI-ir‘o f< a c  o i  a f  -n — H  o n /T  C\ H I

**
M Q  - n /^ f  o-i rw-Mi-K/>.
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In this study, RGR was negatively correlated with the specific leaf area 

expansion of pineapple (Table 4.5). This inverse relationship may be due to the 

decline in NAR as green leaves became thinner. Different rates of dry matter 

accumulation by pineapple over the different PPDs resulted from the effect of PPD on 

NAR rather than on leaf partitioning coefficients. The decline in NAR with 

increasing PPD likely was due to reduced light penetrating to shaded leaves at higher 

PPDs. Reduced light penetration would reduce NAR and total assimilation by 

individual plants, thus decreasing RGR. A reduction in RGR would then reduce the 

accumulation of dry matter per plant over time at higher PPDs.

4.4.3 Dry Matter Partitioning

Dry matter accumulation by pineapple plants varied substantially across plant 

population densities and planting dates, but dry matter partitioning to the components 

during vegetative growth was similar among the treatments (Fig. 4.9). The 

proportion of dry matter partitioned to green leaf tissue, basal leaf tissue, and stem 

was constant up to the time of forcing (Fig. 4.10). The fluctuation in the ratios of 

green leaf dry weight, basal leaf tissue dry weight to the total dry weight at about 340 

days after planting for PI and 280 days for PII was most likely due to the effect of 

herbicide application. Leaf yellowing was observed during the period. After forcing, 

most dry matter was partitioned to inflorescence and stem. Also, a comparison of 

Fig. 4.10 A and C for PI and D and F for PII shows that more dry matter was 

partitioned to the stem after forcing in lower than in higher PPDs.

Leaf area ratio (LAR) at midpoint of the vegetative growth period was affected
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by both planting date and PPD (Appendix A. 14). The mean LAR over PPDs for PI 

was higher than that for PII. LAR increased linearly as PPD increased in both 

plantings and both had the same slope (Table 4.6). Specific leaf area ratio (SLAR) 

was not influenced by planting date, but significantly influenced by PPD (Appendix 

A. 15). SLAR increased linearly as the PPD increased (Table 4.6). The ratios LWR, 

BLWR, and SWR at the mid-point of the vegetative growth period were not affected 

by PPD, but affected by PD (Appendix A. 16, A. 17, A. 18).

Table 4.6 Regression equations describing the effects of plant population density and 
planting date on leaf area ratio (LAR), green leaf weight ratio (LWR), basal leaf 
weight ratio (BLWR), stem weight ratio (SWR), and specific leaf area ratio (SLAR) 
of pineapple at 330 and 300 days after planting for Plants planted on June 15 (PI), 
and August 15 (PII), 1989, respectively.

Parameter June 15, 1989 (PI) August 15, 1989 (PII)

LAR Y=30.33+0.323X + Y=31.87+0.323X **

LWR Y=0.61 Y=0.63

BLWR Y=0.252 * Y=0.258 *

SWR Y=0.145 Y=0.111 **

SLAR Y=50.3-h0.51X 3|eaie Y=50.3-h0.51X sicsie

X stands for independent variable of plant population density.
* and **, respectively, indicates significant at p=0.05 and 0.01, NS indicates not significant.

The difference in LWR, BLWR, and SWR between the two plantings was 

most likely due to the different ages of the plants (plants in PII were two months 

younger than in PI). Because is the product of LWR and SLAR, the difference in 

LAR was due to the difference in SLAR.

78



700

6 0 0

C -  50 0  c  o
400

C3>

"̂ 300s:u>
« 200 ?
^,00

TOTAL planting 1
5 0 0 -

4 5 0 - TOTAL ploniing 2

STOVER

GLT
7 .8 3  P/M" C 4 0 0 - 

o
0 .3 5 0

STOVER

GLT
7.83 P/M '

BLT
^ 3 0 0  

" y  2 5 0 -
BLT

STEil 0) 2 0 0 -  
® 1 c n  .

STEU

/J  150 ■

>. 1 0 0 -

ICL

B .  ^ Q  5 0 -  

0 -
E 1 = : ^

100 2 0 0  30 0  400  5 0 0  600  700 0 100 20 0  300  4 00  5 0 0  60 0  70 0

2 0 0  30 0  4 0 0  50 0

D ays a f te r  planting
70 0 2 0 0  3 00  40 0  5 0 0

D ays a f te r  p lanting
6 0 0  700
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at three plant population densities June 15 and August 15, 1989. All plants were forced 
on September 15, 1990.
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Fig. 4.10 Ratios of plant component (stover=stem plus green and basal leaf) dry 
weights to total dry weight for pineapple planted at three plant populations on June 15 
and August 15, 1989. All plants were forced on September 18, 1990.
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The effects of PPD and PD on dry matter partitioning to reproductive organs 

and stem during reproductive development were examined using the dry weight ratios 

of inflorescence and stem to total dry weight at the time of fruit harvest. The stem 

weight ratio at harvest (HSWR) decreased linearly as PPD increased and the 

relationship was affected by planting date and their interaction (Table 4.7; Appendix 

A. 19).

Table 4.7 Regression equations describing the effects of planting date and plant 
population density on stem-whole plant dry weight ratio (HSWR) and fresh fruit- 
whole plant dry weight ratio (HFWR) at fruit harvest for pineapple planted on three 
dates and forced September 18, 1990.

Planting
Date

HFWR

June 15, 
1989 

August 15, 
1989 

October 18 
1989

Y = 0.263 - 0.0102X

Y = 0.188 - 0.0033X **

Y = 0.188 - 0.0033X **

Y=0.188-h0.024X-0.001X2

Y=0.236-f0.021X-0.001X2

Y=0.236-f0.021x-0.001X2

Y stands for the dependent vanables HSWR, HFWR.
X stands for the independent variable plant population density.
* and **, respectively, indicates significant at p=0.05 and 0.01, NS indicates not significant.

At the two lower PPDs, HSWR in PI was significantly higher than those for PII and 

PIII, but no significant difference was found among plantings at higher PPDs (Fig. 

4.11). The data show that dry matter partitioning to stem was influenced by plant 

size. When a plant reaches a certain size dry matter is partitioned to the stem.

The effects of PPD and PD on fresh fruit-whole plant dry weight ratio at 

harvest (HFWR) were significant (Table 4.7 and Appendix 1.20). The mean HFWR 

across PPDs in PI was less than that in PII or PIII; there was no significant difference
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Plan t p o p u la t io n  d e n s ity  ( p l a n t s / m ^ )

Fig. 4.11 Effect of plant population density on the ratio stem dry weight per plant to 
total plant dry weight at fruit harvest for pineapple planted on June 15 (planting 1), 
August 15 (planting 2, and October 18, 1989 planting 3).
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in HFWR across PPDs between PII and PHI. HFWR increased curvilinearly with 

increasing PPD and the relationships were best fitted by quadratic equations (Table

4.7). Dry matter partitioning to fruits was more efficient in small than in large 

plants, presumably because the mutual shading associated with the more intense 

competition at the higher PPDs reduced the substrate available for both storage and 

fruit development. The evidence suggests that the fruit has priority over the stem 

when resources are limited.

4.4.4 Relationship between Leaf Area and Leaf Number per Plant

The ratio leaf area-leaf number per plant (LANR), which reflects the increase 

in area per leaf as leaf number increases, increased with time up to about the time of 

forcing and then declined (Fig. 4.12). The LANR at the lowest PPD was consistently 

higher than those at other PPDs over time. There were no consistent differences in 

LANR among other PPDs. When the LANRs up to the time of forcing were plotted 

against the number of leaves per plant, a linear relationship was obtained (Fig. 4.13). 

The variability accounted for by the linear model was 92 percent. The relationship 

was highly significant and was not affected by PPD. This relationship allows the 

calculation of daily growth of green leaf area up to the time of forcing from leaf 

number and daily fraction of leaf in the pineapple growth model, but it needs to be 

tested for other environments.

In summary, dry matter accumulation of ’Smooth Cayenne’ pineapple varied 

substantially over plant population densities and planting dates. This was due to the 

difference in initial size of plant, the duration of growth, and the decline in net
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Fig. 4.12 Green leaf area (LA)-leaf number (LN) per plant for pineapple planted on 
June 15 (A), and August 15 (B), 1989.
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Fig. 4.13 Relationship between the ratio green leaf area per plant (LA)-leaf number 
per plant (LN) and leaf number up to the time of forcing for pineapple planted June 
15 and August 15, 1989 at five plant population densities.
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assimilation rate during vegetative growth as plant population increased. Dry matter 

was partitioned more to leaves during the vegetative stage and the more to 

inflorescence and stem during reproductive development. The proportion of dry 

matter partitioned to leaves and stem during vegetative growth was not significantly 

affected by plant population densities. The proportion of dry matter partitioned to 

stem at fruit harvest decreased linearly as plant population density increased and as 

planting was delayed. Dry matter partitioning to fruits increased curvilinearly as 

increased plant population density and as planting was delayed. The D-leaf area and 

dry weight, dry weights of green leaf, stem, and plant at forcing decreased 

curvilinearly as plant population density increased, and the relationships were 

influenced consistently by planting dates. The ratio green leaf area per plant to leaf 

number per plant up to the time of forcing was highly correlated with leaf number per 

plant, and the relationship was not influenced by PPDs and planting dates.
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CHAPTER 5 

REPRODUCTIVE DEVELOPMENT AND YIELD

5.1 INTRODUCTION

Plant population densities that result in inter-plant competition reduce 

vegetative growth per plant of ’Smooth Cayenne’ pineapple (Chapter 4). Plant 

competition would become more intense during reproductive development as a result 

of further increase in dry matter per plant in a fixed area. The amount of light 

intercepted by a plant during the early period of reproductive development influences 

the pineapple fruit weight (Sanford, unpublished data). Thus, plant competition for 

sunlight due to increasing plant population density would be expected to decrease 

average fruit weight. Sanford (unpublished data) found that harvest date of pineapple 

fruits was delayed and fruit harvest duration increased with increasing PPD. It is 

often observed that fruits mature earlier at the edge of a field and fruits in south- 

facing rows in the northern hemisphere mature earlier than those in north-facing 

rows. It is therefore hypothesized that for a given cultivar, variation in fruit 

development rate is due at least in part to the variation in fruit exposure to sunlight at 

a given location. Both plant population density and plant size within a PPD are likely 

to cause variation in fruit exposure to sunlight. Information on how PPD and plant 

size within a PPD affects pineapple fruit development rate is necessary to be able to 

accurately simulate pineapple fruit development and predict fruit harvest date.

Knowing how plant population density and plant size at forcing within a plant
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population density influence fruit weight and the distribution of fruit sizes will 

improve the ability to predict their effects on economic fruit yield of pineapple. No 

data were found in the literature on the effects of plant population density and plant 

size within a plant population density and their interaction on reproductive 

development, fruit yield, and fruit size distribution.

The objectives of the study were to:

1. Examine effects of plant population density and planting date on the rate of

fruit development, average fruit weight, fruit yield, and fruit size 

distribution.

2. Examine effects of PPD on fruit quality.

5.2 LITERATURE REVIEW

5.2.1 Plant Fruiting

The percentage of plants producing a fruit (fruiting percentage) directly 

influences the yield of pineapple. The fruiting percentage of ’Smooth Cayenne’ 

pineapple permitted to flower naturally decreased as plant population density increased 

in both plant and ratoon crops (Kwang and Chiu, 1966). Similar results were 

obtained when ’Sarawak’ (Lee, 1977), ’Kew’ (Gunjate and Limaye, 1977), ’Smooth 

Cayenne’ (Wang and Chang, 1959) and ’Singapore Spanish’ (Wee, 1969) clones of 

pineapple plant crops were forced into flower. Contrary to the above results, there 

was no significant effect of plant population density on the fruiting percentage of 

’Smooth Cayenne’ pineapple in Taiwan (Hwang, 1970; Su, 1957).
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Because the susceptibility of pineapple to natural flower induction is influenced 

by the size of the plant (Cooper, 1942; Das et al., 1965; Py, 1958), the cultivar, and 

environmental conditions (Bartholomew and Kadzimin, 1977), variation in the 

percentage of natural flowering across densities could be due to many factors. 

Variation in fruiting percentage of forced plants could be due to the difficulty in 

uniformly treating all plants with the growth regulator as plant population increases 

and to variation in susceptibility to the growth regulator due to differential growth 

rates caused by crowding. Plant competition for light may also reduce the fruiting 

percentage.

5.2.2 Time of Fruit Harvest

The time and duration of flowering and harvesting are affected by cultivar, 

environment, and plant population density. In four trials conducted in Hawaii where 

plant population density ranged from 43,000 to 64,245 plants per hectare, harvest was 

delayed as plant population density increased, with only minor exceptions regardless 

of whether flower initiation was forced or natural (Sanford, 1962b). He also reported 

that the total period required to complete the harvest usually increased with increasing 

plant population density. Similar results were obtained in Australia (Jordan, 1977; 

Glennie, 1972a) and in Ghana (Norman, 1978). The differences in time of fruit 

harvest and time span of harvest with different plant population densities may result 

from the effect of plant population density on the microclimate around the fruits.

Contrary to the above results, Singh et al. (1974), and Chadha et al. (1973) 

found that fruits matured earlier at higher than at lower plant population densities, and
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there was no significant effect of plant population density on harvest duration.

Chadha et al. (1973) also found that at higher plant population densities, plants 

flowered and completed flowering earlier than those at lower plant population 

densities. Balakrishanan et al. (1978) reported that there was no significant difference 

in duration of plant crops among plant densities from 44,477 to 111,200 plants per 

hectare. These contrary results from India may be due to uncontrolled or 

uncharacterized factors such as water stress or nutrient stress that masked the effect of 

plant population density.

5.2.3 Plant Crop Fruit Yield

1. Average fruit weight

For a given plant population density, the average yield per plant directly 

influences the total yield per unit area. Seeds per plant of subterranean clover 

decreased progressively with increasing PPD (Donald, 1954). Duncan (1958) found 

that grain yield per plant of maize from several experiments decreased exponentially 

with increasing PPD. Holliday (1960a and b) reported that grain yield of wheat per 

plant decreased curvilinearly with increasing PPD and the relationship between the 

reciprocal of the yield and PPD was described by a quadratic expression. The 

curvilinear relationship between yield per plant and PPD has been suggested to be 

due to intense intra-plant competition at lower PPDs and intense inter-plant 

competition at higher PPDs (Donald, 1963).

Above a certain plant population density, the average fruit weight of pineapple 

decreased as plant population density increased (Sanford, 1962b; Bartholomew and
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Pauli, 1986). Analysis of data from many plant population density trials reported in 

the literature (Table 5.1) shows fruit weight decreases linearly as plant population 

density increases and other similar results have also been reported (Sanford, 1965; 

Kwang and Chiu, 1966; Wang and Chang, 1958a and b; Mitchell and Nicholson,

1965; Ghosh and Medhi, 1981; Gunjate and Limaye, 1977). The decrease in fruit 

weight for every 1000 plants per hectare increase is function of the clone or cultivar 

and environmental factors (Table 5.1). In Hawaii, for ’Smooth Cayenne’, there was a 

loss of approximately 20 grams in average fruit weight for every increase of a 

thousand plants per hectare, in Australia, the loss was about 12 grams, and in 

Swaziland it was about 6 grams. For a given location and cultivar, the smaller the 

decrease in fruit weight per increase of 1,000 plants per hectare; the higher the plant 

population density required for maximum yield. The decrease in average fruit weight 

with increasing plant population density results from decreased light interception by 

individual plants during the reproductive period.

Defoliation experiments conducted by Sideris and Krauss (1936, unpublished 

data) and Sanford (personal communication) in Hawaii demonstrated that 

carbohydrates needed during the fruit development period did not come from stored 

carbohydrates but from carbohydrates currently produced in the leaves as the result of 

photosynthesis. Another experiment, also conducted in Hawaii (Sanford, unpublished 

data), confirmed this observation. In this experiment, which was planted at 54,114 

plants per hectare, plants were forced to flower 13 months after planting. Treatments 

consisted of removing every other plant at two week intervals from the time of

91



Table 5.1 Relationships between average fruit weight of pineapple and plant population densities. Linear 
regression equations were calculated from data in the literature.

Variety or 
cultivar

Location Plant density 
range((1000 
plants ha ')

Regression
(Kg)

Fruit
weight
drop*

Reference

Smooth
Cayenne

Sarawak

Kew

Giant
Kew

Sugarloaf

PR-167

Red
Spanish
Singapore
Spanish

Hawaii

Beerwah,
Australia

Taiwan

Taiwan *

Malkems
Swaziland
Kelang,
Malaysia
Bangalore,
India
Basti,
India 
Kumasi, 
Ghana 
Manati, 
Puerto Rico

Johore,
Malaysia

32.37 ■
43.00
43.00
43.00
43.00
43.00
43.00 
36.82

43.00
64.24
64.24
64.24
64.24
64.24
64.24 
51.64

11.86-215.2 
11.86  -  120.8
25.94 - 120.8 
26.93 - 98.84

40.03 - 57.08
34.30 - 50.01
34.30 - 50.01

43.00 - 100.4 

59.08 - 177.2 

50.83 - 105.6 

12.35 - 49.42

17.00 - 157.0 

77.43 - 147.3

14.95 - 54.14 

28.70 - 104.4

Y=3.14-2.02E-05X
Y=2.26-8.08E-06X
Y=3.06-1.84E-05X
Y=2.52-1.3E-05X
Y=3.09-2.2E-05X
Y=3.04-2.0E-05X
Y=2.84-1.5E-0.5X
Y=2.25-1.76E-05X

Y=2.28-8.45E-06X
Y=2.42-1.23E-05X
Y=2.35-1.1E-05X
Y=2.33-1.27E-05X

Y=1.38-5.51E-06X
Y=1.72-5.88E-06X
Y=1.61-6.43E-06X

Y=2.05-6.43E-06X

Y=2.5-2.02E-06X

Y=1.81-4.41E-06X

Y=0.69-2.57E-06X

Y = 1.59-8.82E-06X

Y=2.06-7.53E-06X

Y=1.92-7.9E-06X

Y=1.16-3.49E-06X

0.99
0.99
0.99
0.99
0.97
0.98
0.99
0.94

0.91
0.97
0.98
0.94

0.94
0.97
0.90

0.94

0.94

0.72

0.79

0.93

0.96

0.87

0.88

20.21
8.08

18.37
13.04
22.05 
20.21 
15.25 
17.64

4.45
12.31
11.02
12.68

5.51
5.88
6.43

6.43 

20.21 

4.41 

2.57 

8.82 

7.53 

7.90 

3.49

Sanford,
Sanford,
Sanford,
Sanford,
Sanford,
Sanford,
Sanford,
Sanford,

1962b
1962b
1962b
1962b
1962b
1962b
1962b
1962b

Gleimie, 1972a 
Glennie, 1972a 
Glennie, 1972b 
Glennie, 1972b

Hwang, 1970

Dodson, 1968

Lee, 1977

Dass et al. 
1978

Singh et al. 
1974

Norman, 1978

Ramires and 
Gandia, 1982 

Gonzalez- 
Tejera, 1969 

Wee, 1969

t  Collar of slip clone of Smooth Cayeime.
I Decrease in average fruit weight for each increase in plant population density of 1000 plants.
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forcing to 28 weeks after forcing plant removal reduced plant population density to 

27,057 plants per hectare. The increase in average fruit weight because of removal of 

every other plant at forcing was 540.26 gram (1.19 pounds), a value very close to the 

predicted gain of 499.4 gram (1.10 pounds) based on the linear relationship between 

PPD and average fruit weight (Table 5.1) established in earlier studies (Sanford,

1962). Sanford (unpublished data) also found that the number of eyes per long spiral 

was determined in the first two weeks after forcing. Since the final fruit weight is a 

product of the total number of eyes per fruit and average eye weight, the sunlight 

conditions during the early period of fruit development are important in influencing 

average fruit weight.

For a given plant population density, average fruit weight is a function of 

controllable factors such as agronomic practices and less controllable factors such as 

climate. Among those factors, irradiance and air temperature are the major factors 

affecting the average fruit weight (Sanford, unpublished data). Fields where plants 

produce high average plant crop fruit weights could sustain higher plant population 

densities.

Some evidence suggests that the decrease in fruit weight with increasing plant 

population density may also be due to a limiting supply of nutrients. Su (1957) 

examined the interaction between plant population density and fertilizer level on fruit 

yield of ’Smooth Cayenne’ pineapple at plant densities of 26,410 to 42,251 plants per 

hectare. He found that when fertilizer was applied on a unit area basis, average fruit 

weight decreased as plant population density increased. If fertilizer was applied on a
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per plant basis, there was no significant effect of plant population density on average 

fruit weight. He concluded that the decrease in fruit weight, seemingly due to the 

close spacing of plants, was due to the decrease in the amount of fertilizer available to 

each plant. However, Wee (1969) demonstrated that even when fertilizer was applied 

on per plant basis, mean fruit weight of ’Singapore Spanish’ pineapple still decreased 

as plant population density increased from 27,182 to 106,252 per hectare.

A number of studies did not show any effect of plant population density on 

average fruit weight (Cardinali and Andersen, 1971; Ramirez and Tejera, 1983; Wang 

and Chang, 1961; Samuels and Gonzalez-Tejera, 1976; Balakrishnan et al. 1978).

The plant densities in the foregoing studies ranged from about 9,884 to 51,890 plants 

per hectare and the lack of an effect may have been due to the lower plant population 

densities (Cardinali and Andersen, 1971), or to other factors such as water stress, or 

insect pests and diseases.

2. Fruit yield per unit area

Holliday (1960a and b) suggested that there were essentially two basic 

biological relationships between yield and plant population density: asymptotic and 

parabolic. In the former, yield rises to a maximum with increasing plant population 

density, and is then relatively constant at high plant population densities. In the latter 

relationship, yield rises to a maximum but then declines at high PPDs. Holliday 

(1960b) also suggested that yield that consisted of vegetative parts of the crop or total 

dry matter conformed to an asymptotic relationship while reproductive forms of yield 

conformed to the parabolic relationship. Polynomial, exponential, geometric and
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reciprocal equations have been used to describe the parabolic relationship of 

reproductive yield to plant population density (Willey and Heath, 1969). Among the 

equations, reciprocal equations were shown to "offer the best possibilities of being 

able to describe yield/density relationships accurately and meaningfully" (Willey and 

Heath).

The relationship between pineapple fruit yield and plant population density has 

been found to be parabolic and asymptotic (Dodson, 1968; Lee, 1977; Wee, 1969). 

The fruit yield of ‘Smooth Cayenne’ pineapple in Swaziland increased with an 

increase of plant population density, to a maximum at 56,832 plants ha"^ and then 

declined (Dodson, 1968). In Malaysia, fruit yield of ’Sarawak’ pineapple reached a 

maximum at a plant population density of 53,795 plants ha’̂  and then declined with 

increasing PPD (Lee, 1977) while the yield of ’Singapore Spanish’ pineapple leveled 

off at 71,757 plants ha'  ̂ (Wee, 1969). The asymptotic relationship was likely due to 

the fact that the yield was the weight of aU fruits, including unmarketable fruits. The 

results suggest that there would be a critical PPD beyond which PPD can become too 

high because there is insufficient photosynthate to sustain maintenance respiration and 

requirements for fruit growth. This has been demonstrated in other crops (Donald,

1963). The fruit yield data for pineapple also suggest that the critical PPD is 

influenced by genotype and environment.

In Australia, the yield of ’Smooth Cayenne’ pineapple fruit increased with 

increasing plant population density but did not reach a maximum even at a plant 

population density of 215,221 plants ha * (Glennie, 1972a and 1972b). Similar results
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were reported in other countries within the range of PPDs studied (Singh et al. 1974; 

Dass et al. 1978; Ghosh and Medhi, 1981; Chadha et al. 1973; Balakrishnan et al. 

1978; Wang and Chang, 1958a and b; Yoshihara and Hwang, 1957; Norman, 1978; 

Gonzalez-Tejera, 1969; Hwang, 1970; Kwang and Chiu, 1966; Gunjate and Limaye, 

1976; Mitchell and Nicholson, 1965; Wang and Chang, 1957; Wang et al. 1962; Su, 

1957; Ramirez and Gandia, 1976 and 1982; Ramirez and Tejera, 1983). This 

relationship could be explained by two reasons: first, fruit yield consists of all fruits, 

and Glennie (1972a) commented that most fruits at the highest PPD were not 

marketable. Second, the plant population density range in some of the studies was 

too narrow and low, for example, 12,350 to 49,420 (Singh et al., 1974), 14,950 to 

54,140 (Gonzalez-Tejera, 1969), 40,030 to 57,080 plants ha'  ̂ (Hwang, 1970).

Sanford (1961) demonstrated that actual gains in Mg ha'  ̂per 1000 plant 

increment were influenced by average fruit weight, and the lower the average fruit 

weight the lower the PPD at which a yield plateau occurs.

It is important to note that the critical plant population density, which is the 

minimum plant population density that produces highest yield, is not the optimal plant 

population density, at which highest profit is obtained. If one only looks at yield, 

increased plant population density might decrease net profit (Wassman, 1978).

Optimal plant population density is determined by fruit yield, fruit size, and fruit 

quality. Determination of the best fruit size is based on the requirements of the end 

users. For the fresh market, consumer preferences are most important whereas for 

the cannery, high recovery of fruit slices is important.
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5.2.4 Plant Crop Fruit Characteristics and Recovery

Average fruit weight, fruit shape, and fruit size are important in determining 

the optimal plant population density both for fresh market and for the cannery (W.G. 

Sanford, personal communication). The effect of plant population density on average 

fruit weight was reviewed in section 5.2.2. Fruit shape of pineapple is an important 

determinant of recovery of slices in the cannery. Tapered fruits produce more slices 

with shell adhering to them and thus reduce slice recovery per fruit. In some plant 

population density studies, fruit was less tapered as fruit size decreased with 

increasing PPD (Sanford, personal communication; Gunjade and Limaye, 1977) 

whereas no significant effect of plant population density on fruit shape was found in 

others (Chadha et al. 1973; Ghosh and Medhi, 1981).

Fruit size, expressed as maximum diameter, is an important index for fruits 

intended for processing in the cannery and it is closely related to average fruit weight 

(Sanford, personal communication). Fruit diameter became smaller when plant 

population density increased (Hwang, 1970; Kwang and Chiu, 1966; Su, 1957).

The effects of plant population density on internal fruit characteristics of 

’Smooth Cayenne’ pineapple have been intensively studied at the Pineapple Research 

Institute in Hawaii (Sanford, 1962a and b, 1963 and 1965). Fruit translucence and 

esters decreased, whereas titratable acids, total soluble solids, and flesh pigment 

increased as plant population density increased. Similar results for acid content 

(Dodson, 1968; Wee, 1969) and sugar content (Gonzelez-Tejera, 1969) were obtained 

while one study showed that acid content decreased with increasing plant population
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density (Gonzelez-Tejera, 1969). Other studies show no significant effect of plant 

population density on fruit acidity, sugar content or pH of juice (Dass et al. 1978; 

Ramirez and Gonzalez-Tejera, 1983; Ramirez and Gandia, 1982; Ghosh and Medhi, 

1981).

Slice recovery of fruit also is influenced by PPD. Number of cases of fancy 

slices per Mg of fruits decreased substantially as plant population density increased in 

several trials where PPD ranged from 43,000 to 64,240 plants ha'* (Sanford, 1963 and 

1965). The loss of fancy slices was about 11 percent at 54,300 plants ha* and 31 

percent at 64,200 plants ha * over that at 43,000 plants ha *. Cases of choice slices 

increased slightly, and standard slices showed a large increase. Total cases per Mg 

was not consistently affected by plant population density. In terms of cases of slices 

per hectare, fancy slice recovery remained approximately constant as plant population 

density increased while choice, standard, and total slices all increased up to a plant 

population density of 64,254 plants ha * (Sanford, 1962a and b, 1963, 1965).

5.2.5 Ratoon Crop

Few studies have examined the effect of plant population density on the growth 

and yield of the first ratoon crop. As mentioned in Chapter 3, average sucker 

number per plant decreased as plant population density increased whereas suckers per 

unit area either increased or did not change. Sanford (1963) found that in Hawaii 

first ratoon average fruit weights decreased only slightly with increasing plant 

population density, but numbers of fruit were substantially increased resulting in a 

large increase in tonnage. Results from Taiwan (Kwang and Chiu, 1966), Puerto
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Rico (Ramirez and Gandia, 1982) showed that average fruit weights of ratoon crops 

were not affected by plant densities while fruit yield per unit area increased as plant 

population density increased. Dodson (1967) reported that ratoon fruit set and 

average fruit length and fruit weight decreased significantly while ratoon fruit yield 

was not affected by increasing plant population. Wee (1969) in Malaysia found that 

ratoon fruit yield, average fruit weight, and number of fruits harvested were not 

influenced by increasing plant population density but percentage of plants fruiting 

decreased from 112 to 29 percent as plant population density increased from 28,703 

to 104,373 plants per ha. Kwang and Chiu (1966) also reported that the percentage 

of fruiting plants decreased with increasing PPD in the ratoon. The effect of PPD on 

ratoon fruit recovery are the same as those reported for plant crop fruit (Sanford, 

unpublished data).

5.2.6 Effect of Plant Size on Fruit Weight

The bulk of dry matter gain by the harvested portion is supplied as 

photoassimilate, principally as a single oligosaccharide (sucrose, sorbitol, stachyose, 

raffmose), the type depending on the plant species (Patrick, 1988). Though assimilate 

partitioning is influenced by partitioning of root-assimilated mineral ions and the 

environment around crops, within a given environment, for determinant crops, the 

size of the plant at the time of floral differentiation determines the yield of the 

harvested portion of the plant (Patrick, 1988).

Average fruit weight of pineapple is highly correlated with plant size at floral 

differentiation. Van Overbeek (1946) found that the average fruit weight of

99



’Cabezona’ pineapple was highly and significantly correlated with the number of 

leaves per plant from plants (either natural or forced) grown in both poor and 

excellent conditions. Fruit weight was also highly correlated with plant weight, 

estimated leaf mass, and D-leaf weight at the time of floral initiation (Gaillard, 1969; 

Py and Lossois, 1962; Py et al., 1987; Tan and Wee, 1973; Mitchell, 1962; 

Malezieux, 1986). Without showing any data, Glennie (1972b) commented that the 

low average fruit mass and sucker production at higher densities was directly related 

to the small size of the plant at flower induction.

Pineapple plant crop fruit weight is also positively correlated with the size of 

planting material used to establish the crop (slips or crowns) (Bartholomew and 

Kadzimin, 1977; Sanford, unpublished data). This might be because at any given 

planting time and plant population density, plant weight at the time of floral 

differentiation is positively correlated with the size of planting material. It would be 

expected that this relationship would hold during the entire period of plant crop 

development (Sanford, personal communication). It is important to note that the 

relationships between average fruit weight and plant size or size of planting materials 

are influenced by the times of planting and of forcing (Gaillard, 1969; Sanford, 

personal communication).

5.3 MATERIALS AND METHODS

5.3.1 General Experimental Description

The general experimental design and field management practices were 

described in Chapter one.
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5.3.2 Data Collection and Analysis

Data on fruit weight and fruit size distribution based on maximum fruit 

diameter were collected on a minimum of 55 fruit from each plot. Every fruit in the 

designated harvest area in each plot was harvested, beginning when the fruit shell was 

30 to 50 percent of yellow. Fruit harvesting was started March 25 and ended May 

17, 1991 and the harvesting interval was one week. Dates of harvest for each 

treatment in each planting are shown in the results section. Every fruit was picked 

whether it was ripe or not when 95% of fruits in a plot had been harvested. The 

fruits were sorted into size-categories based on standard industry diameters. These 

categories and their respective diameters were 2.5T (>13.65 cm), 2T (<13.65 and 

> 10.8 cm), IT (<10.8 and >9.5 cm), and SIT (<9.5  cm). Fruits and crowns in 

each category were bulked and weighed separately. In addition, 10 plants with fruits 

were harvested at random from each plot to determine total plant dry weight, fruit dry 

weight, total soluble solids and acid content. Total soluble solids was determined 

with a hand refractometer while acid content was determined by titrating an aliquot of 

juice extracted from a longitudinal section cut from the center of each fruit.

The harvest date was defined as the date when 10% of the fruits were 

harvested (Fleisch and Bartholomew, 1987). The date of physiological maturity for 

each treatment was defined as the date when 90% of fruits were harvested.

Fruit development rate (D, day *) was defined as the reciprocal of the time (r, 

day) from forcing to physiological maturity.

Average fruit weight was defined as the mean weight of all sizes of fruits
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without crowns. Average fresh fruit weight was defined as the mean weight of all 

sizes of fruits with crowns to conform to industry practice of marketing fresh fruit 

with their tops.

Fruit yield was the total weight of fruits without crowns per unit area, and 

fresh fruit yield was the total weight of fruits with crowns per unit area. The fruit 

yield (Mg ha'*) and fresh fruit yield were calculated as follows, assuming that every 

plant produced a fruit.

Fruit Yield(Mg ha'*)= Average fruit weight (kg)*PPD*10

Fresh fruit yield=Average fresh fruit weight (kg)*PPD*10.

5.3.3 Statistical Analysis

1. Analysis of experimental design

Initially, the effect of the main factors on response variables was analyzed. In 

this experiment, the main factors were plant population density and planting date.

The response variables analyzed were fruit development rate, and the reciprocal of 

average fruit and fresh fruit weights. Analysis of variance was computed by SAS 

ANOVA procedure (SAS Institute, 1985). Table 5.2 presents source of variation for 

the analysis of variance.

2. Analysis among treatments

To further explore the effect of treatments on response variables, differences 

between levels of treatments were evaluated. Because plant population density is a 

quantitative factor and planting date was taken to be a qualitative factor for the 

purposes of this study, they were analyzed differently. The former was analyzed
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Table 5.2 Analysis of variance table for the main effects of planting date and plant
population density on pineapple fruit data.

Source of variation

Planting date
Replication within planting date 
Plant population density (PPD) 
Planting date x  PPD 
Experimental error

Total

Degree of freedom

2
6
4
8

24

44

using regression while the latter was analyzed by breaking the factor into orthogonal 

single degree of freedom components. For the fruit development rate, the analysis 

was accomplished by fitting a model that contained class and continuous variables to 

the data using SAS GLM procedure (SAS Institute, 1985) and hand calculation. 

Polynomial terms from first order to higher order were added into the model stepwise 

until the LACKFIT, which is the effect due to lack of fit by the regression, was not 

significant (p>0.05). A component of planting date was eliminated when it was not 

significant. For the average fruit weight, the analysis was accomplished by fitting an 

asymptotic model (the reciprocal of the mean fruit yield as a linear function of plant 

population density) (Holliday, 1960b) to the data. Table 5.3 presents the analysis of 

variance table.

In addition, the cumulative percentage of fruits in the size categories 2.5T, 

2.5T+2T, and 2.5T+2T+1T were regressed against PPD for each planting using the 

SAS GLM procedure (SAS Institute, 1985).

Analysis of variance for soluble solids, acid content, and pH of fruits of 

planting one was performed using the SAS ANOVA procedure (SAS Institute, 1985).
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Table 5.3 Analysis of variance table for the evaluation of treatment effects on
pineapple fruit data.

Source of variation degree of freedom

Planting date (PD)
PI vs. Others 
PII vs. PIII 

Replication within PD 
Plant population density (PPD) 

Linear 
Quadratic 
LACKFIT 

PD X PPD 
(PI vs. others) X Linear 
(PI vs. others) x  Quadratic 
(PII vs. PIII) X Linear 
(PII vs. PIII) X Quadratic 
LACKFIT 

Experimental Error

Total

(2)
1
1

(6)
(4)

1
1
2

(8)
1
1
1
1
4

(24)

(44)

5.4 RESULTS AND DISCUSSION

5.4.1 Time of Fruit Harvest

The dates of the fruit harvest rounds and the number of fruits harvested for 

each plant population density in each round are presented in Table 5.4. Fruit harvest 

in this experiment started on March 25, 1992 and it lasted about two months. The 

fruit harvest peak (the highest number of fruits in each round or 50 percent of 

cumulative fruits harvested in each progressive harvest round) was delayed by 

increasing plant population density, but was not affected by planting dates (Table 5.4, 

Fig. 5.1). The duration of harvest was not affected by plant population density except 

for the June 15 planting where the duration of fruit harvest increased with increasing 

plant population density. The extended harvest duration for the June 15 planting
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Table 5.4 Dates of the fruit harvest rounds and number of fruits harvested on each 
round for densities of 2.61 (A), 5.22 (B), 7.83 (C), 10.06 (D), and 12.81 (E) plants 
m'  ̂of pineapple planted on June 15 (PI), August 15 (PII), and October 18 (PHI), 
1989. All plants were forced on September 18, 1990.

Date of 

harvest

PI

B D

PII

B D

PHI

B D

03-25-91
04-02-91 
04-08-91 
04-15-91 
04-23-91
04-30-91
05-07-91 
05-14-91 
05-17-91

13+
15
68
61
58
.*

10
8

18
37
63

10
5
2
11
31

18
3 
5
4 

16

3
3
2
1
7

55 58 27 55

45
109
73
34
23

9
1

41
13
4

36 63
38 51
18 48

6
35
42
84
45
16
8

18
33
71
65
38
9

3
39
59
55
33
12

20
52
84
67
36

86
93
47
30
3

8
21
31
94
40
18

3
33
85
52
28
6
7

52 40
55 75
36 79
31 50
23 27

t  Fruit numbers are the total of three replications. 
t  - indicates no fruit was harvested.
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Fig. 5.1 Cumulative percentage of fruits harvested for pineapple planted on June 15 
(A), August 15 (B), and October 18 (C), 1989. All plants were forced on September 
18, 1990. The first round of fruit harvest was on March 25, 1991.
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was due to natural flower differentiation before forcing. At forcing, plants in the 

June 15 planting were 14 months old, and because of their large size were more 

susceptible to natural flowering than plants in other plantings.

To further examine the relationship between fruit development and plant 

population density, analysis of variance for fruit development rate was performed.

The fruit development rate, the reciprocal of days from forcing to fruit harvest date or 

physiological maturity, was not significantly influenced by planting dates, but was 

significantly influenced by plant population density (Appendix A.21 and A.22). A 

lower fruit development rate increases the time from forcing to fruit harvest date.

Fruit development rate from forcing to harvest date declined linearly as plant 

population density increased (Fig. 5.2) while fruit development rate between forcing 

and fruit physiological maturity date declined curvilinearly (Fig. 5.3) as PPD 

increased from 2.61 to 12.81 plants m' .̂ The latter relationship was well fitted by a 

quadratic equation (Fig. 5.3). These results were similar to those obtained by 

Sanford (1962), Jordan (1977), Glennie (1972a), and Norman (1978). The decrease 

in fruit development rate was assumed to be due to a decrease in average fruit 

temperature caused by the increased mutual shading at the higher populations. Fruits 

were well exposed at the two lowest populations, but at high populations, leaves were 

forced upright and fruits were less well exposed. Fruit exposure to sunlight is 

assumed to be important because as was noted earlier, fruits matured earliest at the 

edge of the field, and in south-facing rows presumably due to better exposure. There 

was no significant effect of planting date on fruit development rate. Fruit exposure
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might be expected to be greater on smaller plants, but the effect, if any, was too 

small to detect in this study.

Crop development rate was reported to be a function of air temperature and 

photoperiod for rice {Oryza sativa L.), where ontogenetic development rate from 

sowing to flowering was a function of daily photoperiod and daily temperature (Horie 

et al., 1986). Similar results were obtained in studies of plant development rate of 

soybean [Glycine max (L.) Merr.] (Sinclair, et al., 1991). Fleisch and Bartholomew 

(1986) developed a heat unit model to predict inflorescence development rate of 

pineapple using modified growing degree days. In this study, where plants were 

grown in the same conditions, photoperiod and air temperature were the same. The 

difference in fruit development rate due to plant population presumably was due to 

changes in the microclimate around the plant caused by the plant population density.

5.4.2 Average Fruit Weight

Average fruit weight (without crown) and fresh fruit weight (with crown) were 

significantly affected by both plant population density and planting date (Appendix 

A.23 and A.24). Plant population density was the largest source of variation. The 

interaction between PPD and planting date was significant. Average fruit weight and 

fresh fruit weight declined curvilinearly as PPD increased (Fig. 5.4), and the 

relationship was well described by reciprocal equations (Table 5.5).

The reciprocal equations can be written in a general form:

1 , = a + bp
w
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or on a yield per area basis as

a + bp

where w is yield per plant, y is yield per area, p is plant population density, and a 

and b are constants.

Table 5.5 Regression equations describing the effects of plant population density on 
average fruit (without crown) and fresh fruit (with crown) weight for of pineapple 
planted in June(l), August (2), and October (3), 1989. All plants were forced in 
September, 1990.

Planting Average Fruit Weight (kg) R2 Average Fresh Fruit Weight (kg) R̂

1 Y* = 0.354 + 0.0486X 0.89 Y-* = 0.326 + 0.041X 0.87

2 Y* = 0.345 + 0.0705X 0.91 Y-* = 0.314 + 0.061X 0.91

3 Y* = 0.397 + 0.0775X 0.91 Y-* = 0.388 + 0.063X 0.90

Willey and Heath (1969) argued that a and b were meaningful factors. The 

parameter b was indicative of environmental potential and a was indicative of genetic 

potential, because as p increases, y approaches the value of b'̂ ; as p tends to zero, w 

tends to a *. The values of a in this study for both average fruit and fresh fruit 

weight were different among plantings (Table 5.5) but they can not be interpreted as 

indicators of genetic potential, because plants were forced by application of ethylene 

at different ages. However, the differences in a among plantings were small, 

indicating that even plants in a competition free situation tend to produce a constant 

fruit size when plants reach a certain size. The values of b in this study (Table 5.5)
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were very interesting. The later the planting, the lower the value of b, although the 

difference between b values for the August and October plantings was small. This 

indicated that June planting potentially produced greater yield than other plantings 

because the plants were forced at larger size. Holliday (1960b) rewrote the reciprocal 

equation into:

7
w  = A

1+ Abp

where A is a * the "apparent maximum" yield per plant and all other parameters were 

as defined previously. He termed the expression V{l+Abp) the "competition 

function". The yield per plant is, therefore, the product of the potential of the plant 

(A) and the forces of competition that are acting upon it [l/(H-^Zip)]. Plotting the 

"competition function" against p (Fig. 5.5), illustrates the differences in slope change 

in slope with density among the plantings. Dry matter partitioning to fruits was less 

efficient in larger plants than it was in smaller ones. If all plants had the same 

efficiency in partitioning dry matter to fruits, the "competition function" curves 

theoretically would be the same. The decrease in efficiency of dry matter partitioning 

as plant size increased is also illustrated in Fig. 5.6.

The decrease in average fruit weight with increasing plant population density 

was due to the increase in competition for sunlight. Defoliation experiments 

conducted by Sideris and Krauss (1936) and Sanford (personal communication) in 

Hawaii demonstrated that carbohydrates required for fruit development did not
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come from stored reserves but from current photosynthesis. The relationship between 

PPD and yield per plant was similar to those results obtained for clover (Donald, 

1954), maize (Duncan, 1958), and wheat (Holliday, 1960a and b).

Other studies of the effects of PPD on fruit yield resulted in negative linear 

relationships between average fruit weight and plant population density (Sanford, 1962 

and 1965; Glennie, 1972a and 1972b; Hwang, 1970; Kwang and Chiu, 1966;

Dodson, 1968; Lee, 1977; Dass et al., 1978; Norman, 1978; Ramirez and Gandia, 

1982; Gonzalez-Tejera, 1969; Wee, 1969; Wang and Chang, 1958; Mitchell and 

Nicholson, 1965; Ghosh and Medhi, 1981; and Gunjate and Limaye, 1977). The 

linearity of the relationship might be due to the lower populations and narrower range 

of densities used in some of the studies; exceptions were those of Glennie (1972a and 

b), Dodson (1968), Lee (1977), and Wee (1969).

5.4.3 Fruit Size Distribution

Fruit size was measured to evaluate the effects of size and plant population 

density on this measure of fruit quality. Large (2.5T) and medium (2T) sized fruits 

have higher value than smaller ones because they are suitable for use as fresh fruit or 

for canning as slices. Smaller fruit have a lesser value because they are suitable only 

for processing into lower value products such as chunks, crushed pineapple, or juice. 

The percentage of 2.5T fruits decreased curvilinearly while the percentage of 2T 

fruits increased and then decreased as PPD increased (Fig. 5.7). The percentage of 

IT and SIT fruits increased as PPD increased. The slope of the curve in each size 

category was different. In order to quantitatively calculate the fruit yield distribution
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for each size category across PPD, the relationships between the cumulative 

percentage of fruits in the categories 2.5T, 2T, IT, and SIT and PPD were obtained 

using regression techniques. The quadratic equations were well fitted to the data 

(Table 5.6). The variation accounted for by the equations ranged from 0.956 to

0.999. The relationship between percentage 2T or IT fruits was obtained by 

subtracting two successive equations.

Plants within a PPD decreased in size at the later planting dates and plants 

within a planting date decreased in size with increasing PPD. Plant size at flower 

induction or at harvest is highly correlated with fruit weight (Gaillard, 1969; Py and 

Lossois, 1962; Py et al. 1987; Tan and Wee, 1973; Mitchell, 1962; Malezieux, 1986) 

and that was also the case in this experiment (Fig. 5.8).

Table 5.6 Regression equations describing fruit size distribution as a function of plant 
population density for three plantings of pineapple. All plants were forced in 
September, 1990.

Planting Date Fruit Size t Cumulative % of Fruits R2

June 15 2.5T
2.5T+2T
2.5T+2T+1T

Y=131.9-3.93X+0.34X^ 
Y= 90.8+4.49X-0.52X^ 
Y= 93.6+3.03X-0.31X2

0.996 ** 
0.964 ** 
0.972 **

August 15 2.5T
2.5T+2T
2.5T+2T+1T

Y = 153.2-24.37X+0.97X^ 
Y= 96.2+ 3.01X-0.49X2 
Y=94.87+ 2.74X-0.33X^

0.997 
0.956 ** 
0.980 **

October 18 2.5T
2.5T+2T
2.5T+2T+1T

Y= 152.1-25.99X+1.11X2 
Y= 103.1- 0.13X-0.30X2 
Y = 100.8+ 0.57X-0.22X2

0.999 ** 
0.991 ** 
0.983 **

2.5T (> 13.65  cm), 2T (^ 13.65  and >10.8  cm), IT (^ 10 .8  and > 9 .5  cm), and SIT (< 9 .5  cm). 
Y stands for the cumulative percentage of fruits in the different size categories.
X Stands for plant population density (plants m^.
** indicates highly significant at 0.001 probability level.
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Fruit fresh weight (including crowns) was highly and positively correlated with 

total plant fresh weight at the time of forcing (Fig. 5.8) and their relationship was 

well described by a quadratic equation. The results were similar to those obtained by 

Gaillard (1969), Py and Lossois (1962), Py and Tisseau (1965), Tan and Wee (1973), 

Mitchell (1962), Malezieux (1986), where fruit weight was highly correlated with 

plant weight, estimated leaf mass, and D-leaf weight at the time of floral initiation.

The fact that variation in fruit weight occurred in a predictable manner, 

indicates that it should be possible to develop a model that can predict economic fruit 

yield if the plant population density at planting and plant size at forcing are known.

5.4.4 Fruit Yield per Unit Area

Total fruit yield of pineapple per unit area in this study was asymptotically 

related to plant population (Fig. 5.9) and the asymptotic relationship was well 

described by reciprocal equations (Table 5.7 ), which were derived from the 

reciprocal equations for average fruit weight and density relationship.

Table 5.7 Reciprocal equations describing the effect of plant population density on 
fruit (without crowns) and fresh fruit (with crowns) yield for three plantings of 
pineapple.

Planting Date Fruit Yield (Mg ha *) Fresh Fruit Yield (Mg ha *)

June 15 Y=10X*(0.354-H0.0486X)-* Y=10X*(0.326-h0.041X)-*

August 15 Y=10X*(0.345 +0.0705X)-* Y=10X*(0.0314-h0.061X*

October 18 Y=10X*(0.397-h0.0775X)-* Y=10X*(0.388-h0.067X)-*
Y stands for yield and X for plant population density.

Fruit yield (Fig. 5.9) as described above is the total yield of all fruits. At the 

higher PPDs, many fruits would have a lower value because of their small size. It is
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Fig. 5.9 Relationship between fruit yield with (A) and without (B) crowns and plant 
population density (plants m'^ for ’Smooth Cayenne’ pineapple planted on June 15 
(Planting 1), August 15 (Planting 2) and October 18 (Planting 3), 1989 and forced on 
September 18, 1990.
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interesting to look at fruit yield distribution by size as a function of PPD. Fruit yield 

by size category is a function of average fruit weight, PPD, and the fraction of a 

particular size of fruits and is described by the equation

FY ^ = FY t̂ • f (FOF) (5.3)

where FY,;^ is fruit yield (Mg ha *) of a designated size, FY,o, is total fruit yield (tons 

ha'*), FOF is the fraction of the total fruits for that designated size, and / i s  the sign 

of the function.

As was noted in Section 5.4.3, fruit size distribution is a function of PPD as is 

FOF (Table 5.3), thus

FOF = f (PPD) and (5.4)

FY^, = f (PPD) (5.5).

Fruit yields and fresh fruit yields (tons ha *) were then calculated for the size 

categories 2.5T, 2.5T+2T, and 2.5T+2T+1T for all plantings using equations 5.3, 

5.4, and 5.5. Fruit and fresh fruit yields for each designated size for all plantings 

were then plotted against PPD (Fig. 5.10 and 5.11). In PI, the yield of 2.5T was 

highest at a PPD of 4 plants m*‘, and then declined (Fig. 5.10 A). The yield of 2.5T 

plus 2T fruits increased curvilinearly with increasing PPD until reaching a PPD of 9 

plants m )  then leveled off, and declined at a PPD of 10. The yield of 2.5T plus 2T 

plus IT fruits increased curvilinearly with increasing PPD and leveled off at a PPD of 

10 plants m' .̂ Maximum fruit yield for each designated size of fruits occurred at a 

lower PPD in PII than in PI, and at a lower PPD in PHI than in PII (Fig. 5.10 A, B,
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Fig. 5.10 Predicted fruit yield (fruit without crowns) from the relationship between 
plant population density and fruit size distribution for ’Smooth Cayenne’ pineapple 
planted on June 15 (A), August 15 (B), and October 18 (C), 1989, and forced on 
September 18, 1990. Fruit size categories were designated from largest to smallest 
diameter as 2.5T (>13.65 cm), 2T (^13.65 and >10.8 cm), IT (<10.8  and >9.5 
cm), and SIT (< 9 .5  cm).
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Fig. 5.11 Predicted fresh fruit yield (fruit with crowns) from the relationship 
between plant population density and fruit size distribution for ’Smooth Cayenne’ 
pineapple planted on June 15 (A), August 15 (B), and October 18 (C), 1989, and 
forced on September 18, 1990. Fruit size categories were designated from largest to 
smallest diameter as 2.5T (>  13.65 cm), 2T (<13.65 and > 10.8 cm), IT (<  10.8 
and >9.5 cm), and SIT (< 9 .5  cm).
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and C). Similar results were obtained for fresh fruit yield distribution (Fig. 5.11). 

This analysis provides information making it possible to determine the optimal plant 

population density, and plant size at the time of forcing.

5.4.5 Fruit Quality

Total soluble solids, titratable acidity, and pH of fruit juice in PI were 

measured. The effects of PPD on total soluble solids, titratable acidity, and pH of the 

fruit juice in PI were not significant (Table 5.8).

Table 5.8 Effects of plant population density (PPD) on total soluble solids, titratable 
acidity, and pH of pineapple fruit juice. Data were from planting 1 which was 
planted in June, 1989, forced in September, 1990, and harvested during April and 
May, 1991.

PPD
(pm-2)

Soluble solids 
(°Brix)

Titratable acidity
{mmol H^/lOOmZ juice)

pH

2.61 15.29 2.66 3.41
5.22 15.85 2.56 3.37
7.83 15.64 2.43 3.40

10.06 15.07 2.58 3.36
12.81 15.61 2.74 3.35

The results were similar to those obtained by Dass et al. (1978), Ramirez and 

Gonzalez-Tejera(1983), Ramirez and Gandia (1982), and Ghosh and Medhi (1981) but 

contrary to those of Sanford (1962, 1963, and 1965), Dodson (1968), Wee (1969), 

and Gonzelez-Tejera (1969), where total soluble solids and acidity increased with 

increasing PPD. The effect of PPD on fruit quality might be masked by the climate 

effect. That might result in inconsistent results from many population density trials. 

No data on fruit quality were collected for PII and PHI because of lack of a evidence 

of an effect of PPD on fruit quality in PI.
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In summary, fruit development rate was not significantly affected by plant size 

within a plant population density (planting date) but declined as plant population 

density increased. Average fruit weight decreased significantly with increasing PPD 

and decreasing plant size within a PPD (planting date). The interaction effect was 

significant. The larger the plants at the time of forcing, the larger the average fruit 

weight, because fruit weight was highly correlated with plant weight. Plants at lower 

PPD and earlier plantings produced more 2.5T fruits and fewer IT and SIT fruits. 

The fruit yield per unit area increased curvilinearly with increasing PPD and the 

relationship was asymptotic. The relationship between economic yield, which 

depends on fruit size and PPD, was parabolic. The yield of large fruits within a PD 

increased with increasing PPD, reached a maximum and then declined. The later the 

planting date, the smaller the average plant size at forcing, and the lower the yield. 

Fruit quality in terms of soluble solids, and titratable acidity of juice was not 

significantly influenced by plant population density. It was concluded that fruit 

development rate was influenced not only by air temperature and time but also by 

plant population density. Plant population density should be considered in any 

simulation model of pineapple fruit growth and development.
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PART III. SIMULATION OF PINEAPPLE GROWTH, 

DEVELOPMENT AND YIELD



INTRODUCTION

In part I, the response of leaf emergence, canopy development, growth, fruit 

development and yield of pineapple to plant population density and plant size at 

forcing were characterized. Typically, such research would end with the hope that 

the results would be useful to other researchers. Here, the plan was to integrate the 

results into a model that could simulate the processes of plant growth, development 

and yield. Such a model could simulate the effect of plant population density and 

plant size at forcing on pineapple growth, development and yield in some Hawaii 

environments and should minimize the need to conduct similar field experiments.

Modeling pineapple development has been attempted (Medcalf, 1949; Fleisch 

and Bartholomew, 1987). As early as 1949, Medcalf developed an air temperature 

growth unit (ATGU) model to predict the harvest peak of pineapple fruits in advance 

of harvest using historical climatological data. By his method, air temperature was 

divided into five degree increments and the total amount of time that the plant would 

spend in each range was summed up. Each total then was multiplied by its respective 

weighting factor (corresponding to the effectiveness of this temperature range in 

promoting leaf elongation) to obtain the ATGU over a certain period of time. 

However, industry researchers indicate that the model was not able to accurately 

predict the harvest date ( ± 2  weeks from actual date).

Recently, Bartholomew and his colleagues (personal communication) initiated a 

series of experiments on Oahu, Hawaii in 1983, and on Maui, Hawaii in 1984 and
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1985 for the purpose of pineapple modeling. Fleisch and Bartholomew (1987) 

developed a heat unit model to predict pineapple inflorescence development using 

actual meteorological data. The model used different basal temperatures to calculate 

growing degree hours (GDH) accumulated for each phase of development. The GDH 

accumulated during the day and night were calculated separately using different sets 

of weighting factors. The GDH model was more accurate than the ATGU model 

(Fleisch and Bartholomew, 1987), but it was not applicable to the variety of 

environments in Hawaii in which pineapple is grown. Fleisch (1988) later modified 

the heat unit model developed in 1987 to use growing degree days (GDD) computed 

from daily minimum and maximum air temperature. The model predicted 

inflorescence development with a precision similar to the GDH model. However, its 

primary advantages are ease of data collection and calculation and compatibility with 

the IBSNAT (1988) minimum data set.

The stages of inflorescence development of pineapple in the models (both 

GDH and GDD) were defined based on inflorescence morphology rather than 

physiology. The models are, therefore, not easily incorporated into a mechanistic 

model where dry matter accumulation and partitioning to the developing inflorescence 

is based on physiology.

Using the field data collected previously, Fleisch (1988) developed a 

regression model to predict leaf area from total plant dry weight and average air 

temperature between successive harvests. One problem with the model is the use of 

average air temperature because the effect of air temperature on leaf elongation is
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nonlinear (Sanford, 1962). Another problem is that the model could not directly 

predict leaf area development.

Fleisch (1988) also developed three simulation models for predicting biomass 

accumulation of pineapple during vegetative growth. One model was strictly 

statistical. It predicted biomass accumulation from a relationship between plant 

weight, daily mean air temperature, and plant relative growth rate. The other two 

models were semi-empirical. First, the models estimated green leaf area from a given 

plant weight and air temperature at time to. Second, the models estimated the amount 

of light intercepted by the leaf area for a given plant density at time to. Third, the 

models estimated plant growth rate between time to and tj and biomass at time ti. The 

models accurately predicted biomass accumulation during the vegetative growth 

period. Limitations of the models are that they are not mechanistic, and they do not 

simulate many important processes such as photosynthesis and dry matter partitioning 

among plant parts. The empirical nature of the models makes further development, 

testing, and validation difficult.

Comprehensive simulation models of plant growth have been developed in 

recent years for cotton (Jones, et al., 1980), soybean (Wilkerson et al., 1983), beans 

(Hoogenboom, et al.,1991), maize (Jones and Kiniry, 1986) and wheat (Godwin et 

al., 1984). The Crop-Environment Resource Synthesis Maize model (CERES- 

MAIZE) is a model that simulates maize growth, development and yield. The model 

takes into account the following processes:

1) phenological development, especially as affected by genetics and weather;
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2) extension growth of leaves, stems, and roots;

3) biomass accumulation and partitioning, especially among vegetative and

reproductive organs;

4) soil water balance and water use by the crop;

5) soil nitrogen transformations, uptake by the crop, and partitioning among

plant parts.

CERES-Maize is a process-oriented model that calculates daily growth 

increment. It has been well tested in many countries and its model structure has been 

adopted for other crops such as wheat, rice, barley, sorghum, millet (IBSNAT, 1990) 

and potato (Hodges, 1991). However, the CERES models simulate only at a 

population level. They do not deal with interaction between factors and competition 

with other crops or other organisms such as diseases and pests on the community 

level (Jones and Kiniry, 1986).

A community level cropping system simulation model (CROPSYS) for 

intercropping of maize and soybean has been developed by Caldwell and his 

colleagues (Caldwell, personal communication). The model has the hierarchical 

structure of an agricultural system, and is amenable to further development, testing 

and validation.

The objective of this study was to adopt the CERES-Maize model structure, to 

integrate data from the pineapple literature and from field experiments to develop a 

more comprehensive and process-based simulation model of pineapple growth, 

development and fruit yield. The model would be developed so it could be
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incorporated into CROPSYS to provide a framework for further development, testing 

and validation. The model was named ALOHA-Pineapple by Goro Uehara where 

ALOHA is an acronym that stands for Assessments of Local Options for Hawaii 

Agriculture.
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CHAPTER 6 

MODEL DESCRH*TIONS

6.1 CROP PHENOLOGY AND MODEL GROWTH PHASES

Characterizing the phenology of crop growth and development is a key step in 

accurately simulating crop phenological events and dry matter partitioning. No scale 

of pineapple growth and development was found in the published literature. The 

phenological scale adopted here was constructed based on latent events identified from 

the growth data and flower phenology defined by Bartholomew (1977) and Fleisch 

and Bartholomew (1987) and further refined here. The schematic phenology of 

pineapple growth is presented in Fig. 6.1. Pineapple phenological development is 

characterized by single vegetative and reproductive phases and ten growing stages 

represented by VI, V2, V3, V4, R l, R2, R3, R4, R5, and R6, where V designates a 

vegetative phase and R designates a reproductive phase. The stages are defined as:

VI: root initiation.

V2: leaf initiation and emergence of the first new leaf.

V3: end of zero net stem growth; dry matter partitioning is mostly to new 

growing leaves and roots between V2 and V3.

V4: a prolonged period of vegetative growth.

Rl: termination of leaf initiation by exogenous application of a growth 

regulator, decreasing leaf and root growth, beginning transition to 

reproductive growth.

133



i GROWTH

VI V2 V3 V4 R1 R2 R3, R4 R5, R6

PLANTING FORCING HARVEST TIME

Fig. 6.1 Schematic phenology of pineapple vegetative (VI - V4) and reproductive 
(R1 - R6) growth and canopy development.
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R2: the end of floret initiation; sepal primordia fully enclose the petals of the 

youngest flower primordia; leaves already initiated continue to enlarge.

R3: beginning of flowering; leaf growth ceases.

R4: end of flowering; suckers on larger plants initiated.

R5: end of fruitlet growth.

R6: fruit maturation, and sucker growth, if initiated.

Only some of above phenological phases were used to develop the model 

(ALOHA-Pineapple) because not all stages have been adequately characterized. The 

phases modeled represent plant growth intervals defined by distinct morphological or 

physiological events based on the growth stages (Table 6.1). For programming 

purposes, all phases used in the model were given an identifying integer (1STAGE), 

including the phase before planting, and the numbering of phases is circular.

No attempt was made to simulate development of the ratoon crop. Its 

phenology would be simular to that of the mother plant crop except that most ratoon 

shoots do not develop an independent root system.

6.2 MODEL SUBROUTINE STRUCTURE

ALOHA-Pineapple was derived from CERES-Maize Version 2.1. The model 

subroutine structure is similar to that of CERES-Maize (Fig. 6.2) (Jones and Kiniry, 

1986; Kiniry, 1991). The major changes in the model are subroutines for 

phenological development (PHENOL), phase initiation (PHASEI) and growth 

(GROSUB). One subroutine PINEAPPLEPARAMETER was added to input
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LEGEND

Inputs

Terminals

Fig. 6.2 Simplified flow chart of the ALOFIA-Pineapple model. CALDAT is a 
subroutine for converting the day of year to calendar date. WATBAL is a subroutine 
for calculating the soil water balance. OUTWA and OUTGRO are the subroutines to 
output water balance and growth data, respectively.
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parameters that are different from those used by CERES-Maize. The input and output 

formats were also modified. Only the three subroutines PHENOL, PHASEI and 

GROSUB are described here in detail.

Table 6.1 The phenological phases (ISTAGE) used in the ALOHA-Pineapple.

ISTAGE Phase description

7 Prior to planting

8 Planting to root initiation

9 Root initiation to emergence of first new leaf

1 First new leaf emergence to end of zero net stem growth

2 End of zero net stem growth to time of forcing

3 Forcing to end of floret initiation

4 End of floret initiation to first open flower

5 First open flower to beginning fruit harvest (10% fruits with shell 
one-third yellow, shell color 1 of Py et al. 1987)

6 Fruit harvesting to physiological maturity (90% fruits harvested)

The model operates on a daily incrementing loop, which is executed until the 

end of the weather data (Fig.6.2). The model was written in Microsoft FORTRAN 

and run through the DSSAT (IBSNAT, 1989) shell but it can be run alone.

6.2.1 Model Input

The model requires the following minimum input data for soil and crop 

parameters and weather. The rationale for the selection and use of the plant-related
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parameters will be discussed later.

1. Soil layer and irrigation information (Jones and Kiniry, 1986).

2. Initial weight of plant material (crowns) and plant population density.

3. Cultivar parameters;

a. P2: cumulative growing degree days from forcing to end of floret

initiation;

b. P3: cumulative growing degree days from end of floret initiation to

opening of first flower;

c. P4: cumulative growing degree days from opening of first flower to fruit

harvest;

d. P5: cumulative growing degree days from fruit harvest to physiological

maturity;

e. G2: potential fruitlet (eye) number, genetic coefficient;

f. G3: maximum rate of dry matter partitioning to fruitlets (g d * eye *).

4. Condition parameters:

a. PI: cumulative growing degree days from emergence of the first new

the leaf to end of zero net stem growth;

b. P6: cumulative growing degree days from root initiation to emergence of

first new leaf;

c. P7: cumulative growing degree days from emergence of first new leaf

to the beginning of interplant competition (plant population density 

restricts vegetative growth). This is an emperical parameter that only
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serves the purpose of calculating leaf emergence, no biological meaning 

was applied here.

5. Decision variable: total plant weight at the time of forcing (PlantSize).

6. Weather: daily maximum air temperature (TEMPMX), daily minimum air 

temperature (TEMPMN), daily total solar radiation (SOLRAD), and daily 

precipitation (RAIN).

6.2.2 Subroutine PHENOL

The subroutine PHENOL simulates pineapple phenological development. The 

information flow chart for PHENOL is presented in Fig. 6.3. Pineapple phenological 

development is determined mainly by thermal time because there is no evidence 

pineapple is sensitive to photoperiod (Chapter 1; Shiroma, 1972; Fleisch and 

Bartholomew, 1988). Because a plant population density greater than 25,000 plants 

ha'  ̂ can increase the thermal time required to reach a particular phenological stage the 

model calculates thermal time from air temperature, and thermal time is then modified 

by a factor that accounts for the effect of plant population density (Chapter 1 and 

Chapter 4). The model was developed assuming that flowering will be forced, with 

forcing date determined by the decision variable PlantSize.

Depending on the phases, subroutine PHENOL uses calendar day, daily 

thermal time (DTT) (or growing degree-day) or total biomass per plant to determine 

the end of each phenological phase (Fig. 6.3). PHENOL begins by calculating daily 

thermal time. Daily thermal time is calculated differently depending on the 

phenological phase. Leaf emergence rate is linearly related to accumulated DTT
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while the relationship between accumulated DTT and inflorescence development rate 

is nonlinear (Chapter 1; Fleisch, 1988).

Different base temperatures (Tbase) were used to calculate DTT in different 

model growth stages. A Tbase of 16.0 °C was used during the vegetative phase. The 

value was derived from leaf emergence data under Hawaii field conditions (Chapter 

1). Tbases of 6.25, 12.5, and 4.0 °C were used for ISTAGE 3, 4, and 5 and 6, 

respectively. The values were derived from inflorescence development data obtained 

in the field at different locations in Hawaii (Fleisch, 1988).

Daily thermal time was calculated from the mean daily temperature (TEMPM), 

which was calculated from the daily maximum (TEMPMX) and minimum temperature 

(TEMPMN) by the equation

DTT = TEMPM - Tbase, if TEMPM > Tbase.

During the vegetative phase, DTT is set to zero if daily maximum temperature 

(TEMPMX) is less than Tbase. If TEMPMX is greater than and TEMPMN is less 

than Tbase or if TEMPMX exceeds 34 °C, DTP is modified by TTMP, which is the 

mean of eight interpolations of air temperature calculated using the three-hour 

temperature correction factor (TMFAC(I)) (Jones and Kiniry, 1986). TTMP is 

calculated by the equation

TTMP=TEMPMN+TMFAC(D*(TEMPMX-TEMPMN).

During the reproductive phase (ISTAGE >3), DTT is modified by a multiplier 

(Table 6.2), to correct for the apparent nonlinearity between air temperature and 

inflorescence development rate (Fleisch, 1988).
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Table 6.2 Multipliers and their corresponding temperature ranges used to account 
for the nonlinearity between air temperature and inflorescence development 
rate (Fleisch, 1988).

Temperature ranges Multiplier

11 - 13 2.03
13 - 15 1.21
15 - 17 1.09
17 - 19 1.03
19 - 21 1.00
21 -23 0.99
23 - 25 1.00
25 - 27 1.01
27 - 29 1.03
29 - 31 1.06
31 - 33 1.08

> 33 1.11

ISTAGE 7: Preplanting

The model is initialized with ISTAGE 7. When the subroutine PHENOL is 

called planting date is written. Then PHENOL calls subroutine PHASEI to update 

development-related variables and set a day counter, number of days after planting 

(NDAP), to zero.

ISTAGE 8: Planting to Root Initiation

Root initiation defined, as day of emergence of the first root, is determined by 

soil water content. It is assumed that if soil water content is near field capacity, roots 

are initiated. When root initiation occurs, the date and related information are 

recorded and PHASEI is called to update development-related variables.

ISTAGE 9; Root Initiation to Emergence of First New Leaf

The first new leaf is the first leaf that emerges after planting. It is the starting 

point for the calculation of number of leaves emerged and leaf production after
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planting. Soil water status, planting material, and air temperature are the factors 

thought to influence this event. Because there are no data available to make it 

possible to predict when this event occurs, a parameter (P6), the cumulative growing 

degree days after planting (SUMDTT), is used to predict the date of emergence of the 

first new leaf. Using days after planting is easier for model calibration. When 

SUMDTT is greater than or equal to P6, the first new leaf emerges. Then the date of 

the event and related information are written and PHASEI is called to update 

development-related variables.

ISTAGE 1: Emergence of First New Leaf to End of Zero Net Stem Growth

This stage is defined so stem growth can be calculated. Approximately 25 

percent of the dry biomass of the crown is stem (unpublished data). Measurements of 

pineapple growth indicate that for some unknown period after planting, there is no 

gain in stem dry weight, and in fact a loss is more likely. The loss in stem dry 

matter would be due to the energy and substrates required for root growth and 

respiration for mintenance. A parameter PI, which is the cumulative growing degree 

days since emergence of the first new leaf, is used to determine the end of zero net 

stem growth. The value of parameter PI was derived by calibrating the model to the 

growth data. When SUMDTT is greater than or equal to (PH-P6), the end of the 

stage occurs. The date of the event and related information are written and PHASEI 

is called to update development-related variables.

During ISTAGE 1, number of leaves emerged is predicted by DTT, modified 

as appropriate by plant population density (Chapter 1). The procedure used will be
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described in subroutine GROSUB.

ISTAGE 2: End of Zero Net Stem Growth to Forcing

Natural flowering of pineapple occurs sporadically during the winter months.

In Hawaii, and in most environments where pineapple is grown (Py et al., 1987), the 

crop can be forced to flower by growth regulating chemicals every month of the year. 

The model simulates only the forced flowering pineapple because it is assumed this 

represents the most common practice. Data in the literature indicate that fruit yield is 

related to total plant weight at the time of forcing (Chapter 4). A parameter 

(PLANTSIZE), which is determined by the user, is used to predict the time of 

forcing. When the total above-ground plant weight (TOTALPLANTWT), is greater 

than or equal to PLANTSIZE, forcing occurs, the forcing date is recorded and 

PHASEI is called to update development-related variables.

ISTAGE 3; Forcing to End of Floret Initiation

The definitions of the phenological stages of fruit development from forcing to 

maturity and the determination of stages come partially from the heat unit model of 

Fleisch and Bartholomew (1987). During ISTAGE 3, leaf initiation ends but leaf 

emergence and leaf expansion continue. The end of leaf growth has not yet been 

determined but it occurs by the end of ISTAGE 4. The duration of ISTAGE 3 is 

strongly influenced by air temperature and Fleisch and Bartholomew (1987) reported 

that day and night air temperature and the difference between them were important. 

At this stage of development, the model only utilizes cumulative growing degree days 

modified as indicated in Table 6.2. Plant size, or more specifically the amount of
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light intercepted per plant during this stage, is assumed to be important in determining 

fruitlet number and potential fruit size of pineapple (Py et al., 1987; W.G. Sanford, 

personal communication; Chapter 5). Because quantitative information on the 

relationship between plant physiology and morphology and eye number is lacking for 

pineapple, the CERES-Maize procedure was followed here. The duration of the stage 

(IDURP) and biomass (SUMP) accumulated during the stage determine the number of 

fruitlets per fruit. Then the average photosynthesis rate per plant (PhotosynEye) and 

number of eyes (GPP) are calculated. The equations

PhotosynEye = SUMP*1000/roURP*3.5/5.0 and 

GPP = G2*PhotosynEye*/7200-l-50, 

were adopted from CERES-Maize and calibrated to the fruit data collected from 

Maui, Hawaii (D. Bartholomew, unpublished data).

The term G2 is a cultivar related parameter (or genetic coefficient) for 

maximum number of eyes per fruit, which is assumed to be constant for a specific 

cultivar. For ’Smooth Cayenne’ pineapple, it was set to 200 eyes per fruit by a prior 

calibration.

A cultivar-related parameter (or genetic coefficient), P2, which is the 

cumulative growing degree days since forcing, is used to determine the end of the 

stage. When SUMDTT, which is set to 0 at forcing and calculated with a base 

temperature of 6.25 °C (Fleisch, 1988), is greater than or equal to P2, the end of the 

stage occurs. Then the date of the event and related information is written and 

PHASEI is called to update development-related variables.
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ISTAGE 4; End of Floret Initiation to Opening of First Flower

The end of this stage occurs at anthesis of the first flower at the base of the 

fruit, thus the stage is defined only by morphology. Leaf growth is assumed to cease 

at the end of this stage. A cultivar-related parameter (or genetic coefficient), P3, 

which is cumulative growing degree days since sepals closed on youngest flowers, is 

used to determine the end of the stage. When SUMDTT, which is calculated with a 

base temperature of 12.5 °C (Fleisch, 1988), is greater than or equal to P3, the end of 

the stage occurs. Maximum LAI is set to the actual LAI at this time. Finally, the 

date of the event is written and PHASEI is called to update development-related 

variables.

ISTAGE 5: Opening of First Flower to Fruit Harvest

Fruit harvest is defined as the time when the shell of ten percent of the fruits 

is one-third yellow (shell color 1, Py, et al. 1987). It is the beginning of fruit 

harvesting. The date of fruit harvest is determined by a cultivar-related parameter (or 

genetic coefficient), P4, which is cumulative growing degree days since opening of 

the first flower. Because fruit development rate during this stage was affected by 

plant population density (Chapter 4), P4 was modified to CP4 to correct for the 

effects of plant population density. When SUMDTT, which is calculated with a base 

temperature of 4.0 °C (Fleisch, 1988), is greater than or equal to CP4, fruit harvest 

occurs.

The equation used is

CP4 = P4-l-(PLANTS-8.0)*2.4*20.95)
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where PLANTS is plant population density. The equation was derived from the fruit 

data collected from Kunia, Hawaii (Chapter 4).

The fruit is assumed to reach a maximum weight at the end of the stage.

When the date of fruit harvest occurs, fruit yield (Kg ha‘‘ fresh weight), which is 

assumed to have a moisture content of 85%, is calculated. Fruit eye weight (g eye'*), 

and number of eyes per square meter are also calculated. It is assumed that these 

terms would have some value in model calibration and validation. Finally, PHASEI 

is called to update development-related variables.

ISTAGE 6: Fruit Harvest to Hiysiological Maturity

Physiological maturity is defined as the time when 90 percent of fruits have 

been harvested. The date of physiological maturity is determined by a cultivar-related 

parameter (CP5), which is cumulative growing degree days calculated with a base 

temperature of 4.0 (Fleisch, 1988) and for the effect of plant population density. The 

equation used to calculate DTT for this stage is

CP5=P4+P5+(3.15*(PLANTS-8.0)-0.254*(PLANTS-8.0)2*20.95), 

where P5 is cumulative growing degree days since Fruit Harvest. The coefficients 

of the equation were derived from the fruit data collected at Kunia, Hawaii (Chapter 

4). When SUMDTT, which is set to 0 at the end of ISTAGE 4, is greater than or 

equal to CP5, physiological maturity occurs. PHASEI is called and a simulation 

cycle counter (IRET) is updated to 1.

6.2.3 Subroutine PHASEI

This subroutine updates growing stages when a stage is completed and
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initializes or resets some important variables at the beginning of a stage. For 

example, initial crown weight, leaf weight, stem weight, and leaf area, which are 

assumed to be important factors affecting plant growth, are initialized at the time of 

planting. Base temperature and SUMDTT are reset in the specified phases (Fig. 6.3). 

The subroutine PHASEI is called by subroutine PHENOL when each stage is 

completed (Fig. 6.2).

6.2.4 Subroutine GROSUB

The description of the subroutine GROSUB is summarized in Fig. 6.4. This 

subroutine calculates leaf area development, light interception, photosynthesis, and 

partitioning of biomass to various parts of the plant. Calculation of plant growth is 

balanced by the carbohydrate supply and demand for new growth. The amount of 

carbohydrate synthesized is assumed to be proportional to light interception per unit 

land area, which is determined by leaf area index. The partitioning of biomass into 

various growing organs in the plant is done using a priority system.

It is assumed that before emergence of the first new leaf, leaf growth of the 

crown is equal to biomass lost due to senescence, respiration and root growth. So 

biomass is calculated beginning at the time of first new leaf emergence.

A. Carbohydrate Supply

GROSUB simulates carbohydrate for a day as follows:

1. Calculate photosynthetically active radiation (PAR) (MJ m'^) from daily 

total solar radiation (SOLRAD). It is assumed that 50% of solar radiation is PAR. 

An energy unit conversion factor is used to convert different units of solar radiation
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into MJ m'  ̂by the equation

PAR = 0.5*SOLRAD*EnergyUnitConversioiiFactor.

2. Calculate the fraction of light penetrating to ground from calculated leaf 

area index (LAI) and an extinction coefficient (K). Homogeneous leaf distribution 

both horizontally and vertically is assumed. Light attenuation (I) is assumed to follow 

Beer’s law and the coefficient of 0.52 is used here (Fleisch, 1988). Light attenuation 

is calculated by quation

I  = e -klAI

3. Calculate potential carbohydrate production (PCARB) at optimal conditions 

and actual carbohydrate (CARBO) for a day. A conversion coefficient 

(ConvertCoefficient) is used to convert light energy to biomass. The conversion 

coefficient 5.0 g MJ * was used in CERES-Maize. Since no data on the radiation use 

efficiency of pineapple are available, the ConvertCoefficient was estimated during 

model calibration. The law of minimum, which states "The growth of a plant is 

dependent upon the amount of ’foodstuff presented to it in minimum quantities.", 

was applied to calculate actual carbohydrate production using the Fortran minimum 

function AMINl. The equations used were:

PCARB = ConvertCoefricient*PAR/PLANTS*(l-D and 

CARBO = PCARB* AMINl (PRFT,SWDF1,NDEF1),

where PLANTS is plant population density (plants m'^), AMINl is an intrinsic
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function of Fortran and PRFT, SWDFl and NDEFl are temperature, drought stress 

and nitrogen deficiency factors, respectively.

B. Leaf Initiation and Emergence

The subroutine GROSUB calculates carbohydrate demand starting with the 

simulation of leaf emergence. Leaf emergence is affected by air temperature and, 

when interplant competition begins, by plant population density (Chapter 1). The 

fraction of a leaf (TI) emerged each day is determined by daily thermal time (DTT) 

and plant population density and modified for any ontogenetic effects by an 

intermediate variable PC.

The beginning of interplant competition is determined emperically by a 

parameter (P7), which is cumulative growing degree days since the first leaf emerged 

after planting.

When SUMDTT, which is set to zero at the time of emergence of the first 

new leaf, is greater than or equal to P7, then the fraction of new leaf (TI) for that day 

is calculated by the equation:

TI= (0.0225-0.001*Plants)*DTT,

otherwise,

TI=0.0224*DTT.

Calculation of biomass partitioning to growing organs, growth demand, 

inflorescence and sucker initiation, and balance of carbohydrate supply and demand 

are described by stage in the following sections.

151



C. Growth During ISTAGE 1

1. Leaf Area Growth

Daily total green leaf area per plant (FLAG) is calculated from the total leaf 

area per plant (XPLA) and the total leaf area per plant for the previous day 

(TempPLA). Thus,

PLAG=XPLA-TempPLA.

If XPLA is less than TempPLA, XPLA is set equal to TempPLA.

Both XPLA and TempPLA are intermediate variables and are set to zero at the 

beginning of ISTAGE 1 in subroutine PHASEI. XPLA is calculated from the number 

of leaves emerged (XN) by the equation

XPLA=(17.0*XN+3.11*XN*XN)*swdf2.

PLA is the total leaf area per plant including the initial leaf area. Both TemPLA and 

PLA are updated after FLAG is calculated by the equations

TempPLA= TempPLA+PLAG, and

PLA=PLA+PLAG.

2. Leaf and Root Weight Growth

Since it is assumed that there is no net growth of stem during this stage, 

biomass partitions only to roots and leaves. The amount of biomass partitioned to 

roots and leaves is obtained by calculating daily root and leaf growth demand and 

balancing carbohydrate demand and supply.

This daily demand for carbohydrate for green leaf weight growth (GROLF) is 

calculated from the current total green leaf weight per plant (XLFWT) and previous

152



day’s green leaf weight per plant (LFWT). XLFWT is calculated from green leaf 

area. If XLFWT is less than LFWT, XLFWT is set equal to LFWT. XLFWT and 

GROLD are calculated by the equations 

XLFWT=(PLA/96.)**1.15 and 

GROLF=XLFWT-LFWT.

Current basal leaf tissue weight (XBasalLeafWT) is calculated as a fraction of 

green leaf weight (XLFWT). XBasalLeafWT and daily gain in basal leaf weight 

(GROBSL) are calculated by the equations 

XBasalLeafWT=0.42*XLFWT, and 

GROBSL= Xbasalleafwt-BasalLeafWT.

Daily root weight growth (GRORT) is calculated from daily carbohydrate 

supply (CARBO) and daily leaf weight (GROLF) by the equation 

GRORT= CARBO-GROLF-GROBSL.

If GRORT is less than 25 % of CARBO, then it is set to 25 % of CARBO. A growth 

reducing factor (GRF) is calculated by the equation 

GRF=CARBO*0.75/(GROLF+ GROBSL)

GROLF, GROBSL are multiplied by GRF, and PLA is recalculated by the equations 

GROLF=GROLF*GRF,

GROBSL=GROBSL*GRF,

PLA=(LFWT+GROLF)**0.87*96.0.

This is to check the balance of supply and demand of carbohydrate.

LFWT and BasalLeafWT are updated, and leaf area assumed to be lost due to
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senescence is calculated, and the leaf weight is reduced by the equations 

LFW T=LFWT+GROLF,

BasalLeafWt= BasalLeafWT+ GROBSL,

IF(GROLF.GT.O.) SLAN=PLA/1000,

LFWT=LFWT-SLAN/600.

D. Growth in ISTAGE 2

In ISTAGE 2, leaf area production, green and basal leaf tissue mass, and root 

mass are calculated as was done in ISTAGE 1. Stem growth begins in this stage and 

daily growth (GROSTM) is calculated from the current basal leaf tissue weight 

(XBasalLeafWT) because stem dry weight is correlated with basal leaf dry weight up 

to the time of forcing. XStemWT and GROSTM are calculated by the equations 

XStemWT=0.52*XbasalLeafWT,

GROSTM=XStemWT-STMWT.

The balancing of carbohydrate supply and demand was done as was described 

for ISTAGE 1 (Section 6.24,C). If GRORT is less than 15% of CARBO, then it is 

set to 15 % of CARBO. The following equations are the calculations of the 

carbohydrate supply and demand balance (detailed comments see the previous 

section).

GRF=CARBO*0.85/(GROLF+ GROBSL+ GROSTM)

GROLF=GROLF*GRF 

GROBSL=GROBSL*GRF



PLA=(LFW T+ GROLF)**0.87*96.0 

LFW T=LFW T+GROLF 

BasalLeafWT=BasalLeafWT+ GROBSL 

STMWT=STMWT+GROSTM 

IF(GROLF.GT.O.) SLAN=PLA/1000.

LFWT=LFWT-SLAN/600.

E. GROWTH IN ISTAGE 3

At the time of forcing, leaf initiation ends although leaves are still emerging 

and expanding. Leaf growth ceases at the end of the stage. The LAI and leaf weight 

all reach their maximum values at this time. The green leaf area, and green and basal 

leaf tissue mass are calculated as they were for ISTAGE 2.

The inflorescence initiates at the beginning of the stage and measurable 

amounts of biomass begin to be partitioned to it. Daily inflorescence growth 

(GROFLR) is calculated from daily thermal time (unpublished data) by the equation 

GROFLR=0.45*DTT/20.5*AMIN1(NDEF2,SWDF2).

After forcing, stem dry weight increases rapidly, so daily stem growth is 

calculated differently from the last stage by the equation 

GROSTM=0.38*GROFLR**1.12.

The amount of light intercepted per plant determines the potential fruit size 

and the number of eyes per fruit (Sanford, personal communication). Total 

carbohydrate accumulated during ISTAGE 3 (SUMP) and the duration of the stage 

(IDURP) are calculated by the equations
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SUMP=SUMP+CARBO, and 

roURP=IDURP+l.

Both will used to calculate number of eyes per fruit in subroutine PHENOL.

F. Growth in ISTAGE 4

The priority in biomass partitioning to growing organs in ISTAGE 4 depends 

to an unknown degree on plant size, but is in the order inflorescence, stem, root and 

sucker. If the total plant weight is greater than or equal to 600 g dry weight, suckers 

are assumed to initiate and daily gain in suckers (GROSK) and sucker weight (SKWT) 

are calculated by the equations

GROSK=(CARBO-GROSTM-GRORT-GROFLR)*0.5, and 

SKWT=SKWT+ GROSK.

G. Fruit Weight Growth in ISTAGE 5

Most biomass partitioning to fruitlets occurs during this stage and stem growth 

continues. If the total plant weight reaches 600 g dry weight in ISTAGE 5, suckers 

are assumed to initiate, otherwise, sucker growth initiated in ISTAGE 4 continues.

A zero-to-unity relative rate of biomass partitioning to fruitlets (RGFILL) is 

calculated from the daily mean air temperature. Then the daily fruit growth is 

calculated from RGFILL, total number of eyes per fruit (GPP) and maximal daily rate 

of biomass partitioning to each eye (G3, mg eye'), and a water stress factor 

(SWDFl). The equations

RGFDLL=RGFILL+ (1.0-0.0017*(TTMP-28.)**2)/8.0 and 

GROFRT=RGFILL*GPP*G3*0.001*(0.45+ 0.55*swdfl)
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were adopted from CERES-Maize (Jones and Kiniry, 1986).

Daily crown weight growth (GROCRWN) is assumed to be 12.5 percent of 

daily fruit weight growth (GROFRT) and GROFRT is calculated by the equation 

GROCRWN=0.125*GROFRT.

Fruit weight and inflorescence weight are then updated by the equations 

FRTWT=FRTWT-l-GROFRT and 

FLRWT=FLRWT+GROFRT-I- GROCRWN.

H. Growth in ISTAGE 6

All biomass in this stage is partitioned to suckers and stem.

I. Leaf Senescence, Leaf Area Index and Total Weight

Leaf area senesced due to drought stress (SLFW), nitrogen stress (SLFN), and 

competition for light (SLFC) is determined by zero-to-unity factors by the equations 

SLFW=0.95-I-0.05*SWDF1 and 

SLFN=0.95-H0.05*NDEF2.

If LAI is greater than 6,

SLFC=l.-0.002*(LAI-6.), 

otherwise, SLFC = 1.

At any time, the total amount of green leaf area is the difference between the 

total amount of leaf area that has been produced (PLA) and the total amount of leaf 

area that has senesced (SENLA). Plant leaf area senescence per day (PLAS) due to 

water, nitrogen, or competition stresses is calculated as follows:

PLAS = (PLA-SENLA)*(1.0-AMIN1 (SLFW,SLFC,SLFN)).
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SENLA is then updated by the equation 

SENLA=SENLA+PLAS.

Leaf area index (LAI), above-ground biomass per unit area (BIOMAS, g m'^), 

total plant weight, total plant dry weight per hectare (DM, Kg ha *) and plant top 

fraction (PTF) are calculated by the equations 

LAI= (PLA-SENLA)*PLANTS*0.0001,

BIOMAS= (LFWT-I- STMWT-I- FLRWT-I- BasalLeafWT+ SKWT)*PLANTS, 

TotalPlantWT=LFWT-l- STMWT-I-BasalLeafWT-I-FLRWT+SKWT, 

DM=BIOMAS*10.0, and

PTF= (LFWT-I- BasalLeafWT-I- STMWT-hFLRWT-l- SKWT)/

(RTWT-I-LFWT-I-BasalLeafWT-I-SKWT-I-STMWT-b FLRWT).

Other subroutines are esstially identical to those in CERES-Maize (Jones and 

Kiniry, 1986), so they are not described here.
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CHAPTER 7 

MODEL EVALUATION

7.1 METHODS OF MODEL EVALUATION

Model evaluation is an essential and important aspect of the process of crop 

model development, and validation. Once a crop model is developed, it is necessary 

to know how well the model works in a biological and physiological sense and how 

accurately the model predicts crop growth, development and yield. In other words, it 

is necessary to know how much confidence one can have in the model results. Even 

though it is of importance, published methods of evaluating crop models are not well 

developed.

Methods used to evaluate models can be classified into two types: descriptive 

(or qualitative) and statistical (or quantitative). Descriptive methods evaluate model 

performance on the basis of the similarity of the predicted and the measured results.

No statistic is calculated and no hypothesis is tested using this method. So descriptive 

methods do not give confident answers about the model results. Examples of the 

descriptive method include using the difference or relative difference between 

simulated and observed results, expressed as a percentage of the observed (Wilkerson 

et al., 1983; Ingram and McCloud, 1984; Grant, 1989; Jones et al., 1980; Jones et 

al., 1991; Jones and Kiniry, 1986; Kiniry, 1991), using 1:1 line graphs without y

testing any hypothesis (Jones and Kiniry, 1986; Jones et al., 1980; Albers and Ward,

1991; White, 1991), comparing simulated and observed results graphically (Grant, j
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1989; Ingram and McCloud, 1984; Wilkerson et al., 1983, Jones et al., 1980; Jones 

et al., 1991), and using an agreement index (Al), which is defined as:

A I= 1 ~ - S i m u l a t e d v a l u e - a c t u a l v a l u e
a c t u a l v a l u e

\ y
av,

(Albers and Ward, 1991; Jackson and Albers, 1991).

Statistical methods provide quantitative measures of the similarity between 

observed and predicted values. These methods involves statistical calculation and 

hypothesis testing. Several approaches have been proposed to evaluate system models 

statistically. The most common method is to test the hypothesis that the regression 

line of observed versus simulated values passes through the origin and has a slope of l/^

unity (Dent and Blackie, 1979; Carter, 1986). Dent and Blackie (1979) also tested 

the hypothesis that the overall distribution of results of the model was the same as the 

overall distribution of true values. Feldman et al. (1984) evaluated a population 

model in entomology by testing the hypothesis that the model was unbiased, a method 

that is applicable where the individual measurements are not independent.

Wallach and Goffmet (1989) proposed to use the mean squared error of ^ y

prediction as a criterion for measuring the predictive accuracy of models and 

comparing system models whose outputs are yields. According to Wallach and 

Goffmet (1989), the mean squared error of prediction of a model was defined as:

M S E P (p )= ^ { iy - f  {xj>)f \p\

where Vindicates an expectation (over the population of interest), y is the observed
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quantity, e.g. yield, and f(x,p) is the quantity predicted by the model/ ,  and x  stands 

for model variables, and p  for model parameters. The mean squared error of 

prediction is simply the mean squared difference between the observed and predicted 

values. This method provides a statistical measure of model predictive accuracy that 

is useful for comparing alternative models. A major deficiency of the method is that 

it does not involve hypothesis testing so it can not be used for model validation.

Statistical methods are also easily misused. For example, the coefficient of 

determination (R )̂ obtained by linear regression of simulated and observed values has 

been commonly but incorrectly used in model validation to indicate model prediction 

accuracy (Albers and Ward, 1991; Jones and Kiniry, 1986). The R  ̂value is the 

variation accounted by the regression and its value indicates the agreement between 

simulated and observed values. It does not give any information about relative 

difference between simulated and observed values. For example, regression of 

simulated to actual values for the model Y=2X will predict values that exceed actual 

values by 1(X) percent; the regression of simulated to actual values for the model 

Y=0.5X will predict values that are only 50 percent of the actual values (Fig. 7.1). 

In both cases, the R̂  for the regression is 1.0. The third example in Fig. 7.1 shows 

the regression of simulated to actual values for the model Y=X. Even though the R̂  

value is smaller (0.999) than that obtained by the above two regressions, the model 

will provide more accurate predictions than the other two models.

The standard deviation of the differences between simulated and observed 

values has also been used to evaluate models (Boote et al., 1991; Jones et al., 1991).
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Observed value

Fig. 7.1 Regressions for three hypothetical models that overestimate, accurately 
estimate, and underestimate observed values. In each case, essentially 100 percent of 
the variation in the hypothetical observed values was accounted for.
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The standard deviation is a measure of dispersion of a population or a sample. 

Presumably, a lower standard deviation for the differences between simulated and 

observed values indicates the model was more accurate in prediction. A lower 

standard deviation indicates that the model has less variability in prediction but it may 

over or under predict relative to the observed data. Table 7.1 illustrates the problem 

of using the standard deviation. By the criteria used by Boote et al. (1991) and Jones 

et al. (1991), Model 1, which has a lower standard deviation than Model 2, is the 

more accurate model. However, Model 1 has a much higher mean difference and so 

is not necessarily superior to Model 2, despite its lower standard deviation.

Table 7.1 Artificial data showing the mean and standard deviation (SD) for the 
differences between model simulated data and experimental data.

Exp. No Observed Model 1 Model 2 d 1 + d 2 *

1 100 200 101 100 1
2 200 300 220 100 20
3 300 400 330 100 30
4 400 500 380 100 -20
5 500 600 469 100 -31

Mean* 300 400 300 100 20.2

SD 129 129 117 0 21

t  Differences between the simulated and observed values of Model 2.
* Mean of the absolute differences between simulated and observed values.

In this Study, both mean of absolute differences between simulated and 

observed values and their associated standard errors were used to evaluate the model 

prediction for fruit yield, forcing date, fruit harvest date and date of physiological 

maturity. The model simulation of several plant components (leaf area index, green
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leaf dry weight, and total plant dry weight) was evaluated by testing the hypothesis 

that the regression line of observed versus simulated values passes through the origin 

and has a slope of unity.

7.2 MODEL CALIBRATION

The model was calibrated to the data of the first planting of the plant 

population density trials described in Chapter 1, PART I. A trial and error procedure 

was used to calibrate the parameters of PI, P4, P5, P6 and P7 (Table 7.2) based on 

the goodness of fit of predicted dates of forcing, fruit harvest and physiological 

maturity to the observed data. The coefficient (ConvertCoefficient) for converting 

photosynthetically active radiation to carbohydrate was calibrated using total dry 

matter, and fruit yield.

Table 7.2 ALOHA-Pineapple model parameter values derived from model 
calibration.

PI t 
(°C-day)

P4
(°C-day)

P5
(°C-day)

P6
(°C-day)

P7
(°C-day)

ConvertCoefficient 
(g MJ-)

1230 2904 670 1845 500 2.7

P4, cumulative growing degree days from opening of first flower to fruit harvest.
P5, cumulative growing degree days from fruit harvest to physiological maturity.
P6, number of days from root initiation to emergence of first new leaf.
P7, cumulative growing degree days from emergence of first new leaf to beginning of interplant 

competition.
ConvertCoefficient, a coefficient for converting intercepted photosynthetically active radiation to 

carbohydrate.

The predicted values for date of forcing, fruit harvest and physiological 

maturity, and fruit yield were compared to observed ones. The simulated leaf area
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’weight’ in all cases refers to ’dry weight’. The model results were evaluated 

statistically using the methods described in Section 7.1.

Date of Forcing, Fruit Harvest and Physiological Maturity

The mean difference between simulated and observed dates of forcing was 1 

day with a standard error of 0.49 days (Table 7.3). The largest difference for any one 

plant population density was only 3 days. The mean difference between simulated and 

observed dates of fruit harvest was 3.8 days with a standard error of 0.97 days (Table 

7.4). The largest difference for any one density was 6 days. The mean difference 

between simulated and observed dates of fruit physiological maturity was 3 days with 

a standard error of 1.41 days (Table 7.5). The largest difference for any one 

population was 8 days. Fig. 7.2 shows that the simulated and observed values fell on 

or close to the one to one line.

Table 7.3 Simulated days after planting (DAP) to forcing, for five plant population 
densities of Smooth Cayenne pineapple planted in June, 1989.

index (LAI), leaf dry weight and total plant dry weight were also compared to the

observed values. Because the model simulates biomass on a dry weight basis,

Plant population Simulated Observed Difference
density (plants m' )̂ DAP to forcing DAP to forcing (days)

2.61 460 460 0
5.22 460 460 0
7.83 460 460 0

10.06 458 460 -3
12.81 461 460 2

Mean + 459.8 460 1
C t 
‘̂ dm 0.49

t  standard error of the mean of the differences.
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Observed days after planting

Fig, 7.2 Relationship between predicted and observed dates of forcing, fruit harvest 
(10% fruits ripe) and fruit physiological maturity (90% fruits ripe) for five plant 
population densities of Smooth Cayenne pineapple planted at Kunia, Hawaii in June, 
1989 and forced in September, 1990.

166



Table 7.4 Simulated days after planting (DAP) to fruit harvest for five plant
population densities of Smooth Cayenne pineapple planted in June, 1989.

Plant population density Simulated DAP to Observed DAP to Difference
(p m-2) ^ fruit harvest fruit harvest (days)

2.61 656 654 2
5.22 662 656 6
7.83 669 664 5
10.06 671 670 1
12.81 682 677 5

Mean 668 664.2 3.8
Sao,* 0.97

t  Mean, mean of the abso ute differences between simulated and observed values.
$ Sd„„ standard error of the mean of the differences.

Table 7.5 Simulated days after planting (DAP) to fruit physiological maturity for five 
plant population densities of Smooth Cayenne pineapple planted in June, 1989.

Plant population Simulated DAP to Observed DAP to Difference
density fruit physiological fruit physiological (days)

(plants m'2) maturity maturity

2.71 677 685 -8
5.22 691 691 0
7.83 699 701 -2

10.06 703 707 -4
12.81 710 711 -1

Mean 696 699 3
c +d̂m 1.41

t Sdn,, Standard error of the mean of the differences.
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Fruit Yield

The mean difference between the simulated and observed fruit yield (kg ha *) 

of five plant population densities of pineapple was 6985 kg ha*, which was only 6.9 

% of the mean observed fruit yield (Table 7.6). However the standard error of the 

differences was higher (4573 kg ha *) because the model under simulated fruit yield by 

88% at a density of 12.81 plants m' .̂

Table 7.6 Simulated fruit yield of five plant population densities of Smooth Cayenne 
pineapple planted in June, 1989.

Plant population Simulated fruit Observed fruit Difference
density (plant m' )̂ yield (kg ha *) yield (kg ha *) (kg ha-*)

2.61 55357 55332 25
5.22 88752 79878 8874
7.83 111214 104093 7121
10.06 122241 124215 - 1974
12.81 123238 140167 -16929

Mean ^ 100160.4 100737.2 6985
q ♦ 4573

t  Mean, mean of the a Dsolute differences between simulated and observed values.
$ Sdm, standard error of the mean of the differences.

Leaf Area Index

The model underestimated leaf area index (LAI) at the highest population 

density (Fig. 7.3A) particularly during the reproductive phase from 500 to 700 days 

after planting. LAI was overestimated at the lowest population density during this 

same time period. When the simulated data for the five plant population densities 

were regressed against the observed data, an intercept of 0.15 and a slope of 0.95 

were obtained (Fig. 7.4A). Statistical analysis showed that the intercept was not
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Fig. 7.3 Simulated and observed leaf area index, green leaf dry weight and total 
plant dry weight for plant population densities of 2.61, 7.83, and 12.81 plants m'  ̂
(pm'2) of Smooth Cayenne pineapple planted at Kunia, Hawaii in June, 1989 and 
forced in September, 1990.
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Fig. 7.4 One to one relationship between predicted and observed leaf area index, 
green leaf dry weight and total plant dry weight for three plant population densities of 
Smooth Cayenne pineapple planted at Kunia, Hawaii in June, 1989 and forced in 
September, 1990.
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significantly different from zero and the slope was not significantly different from 

unity (Fig. 7.4A).

Green Leaf Weight

The model generally predicted green leaf dry weight per plant accurately, 

although green leaf dry weight per plant was overestimated during the reproductive 

phase (Fig. 7.3B). The discrepancy may be due to collection of small samples that 

were not representative of the population. Regressing simulated results against the 

observed data resulted in an intercept of -1.6 and a slope of 1.04; the values were not 

significantly different, respectively, from zero and unity (Fig. 7.4B).

Total Plant Weight

Simulated total dry weight per plant corresponded well with the observed data 

(Fig. 7.3C). The regression of simulated vs. observed total plant weight resulted in 

an intercept not significantly different from zero and a slope not different from unity 

(Fig. 7.4C).

In summary, the model was well calibrated to the field data. The simulated 

results for phenological development and growth agreed well with the observed data. 

The model simulated the mean fruit harvest date about 4 days later than the observed 

data. The four day error in prediction is fairly minor compared to an average interval 

of 200 days from forcing to fruit harvest.

7.3 MODEL VALIDATION

The model was validated using the data collected from five planting dates in
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Table 7.7 Planting dates and locations of pineapple data used to validate ALOHA- 
Pineapple.

Location Elevation
(meters)

Planting date Plant population 
(plants m )

Kunia, Oahu

Hamakuapoka, Maui 
Haliimmaile, Maui 
Kala, Maui

200

90
310
690

8/15 and 10/18, 89

1/10, 5/1 and 7/24, 85 
1/10, 5/1 and 7/24, 85 
1/10, 5/1 and 7/24, 85

2.61, 5.22, 7.83, 
10.06 and 12.81
5.9
5.9
5.9

four locations (Table 7.7). The data collected at Kunia, Hawaii were described in 

Chapter 2, PART I. The data from the studies on Maui were described in part by 

Fleisch (1988). All studies were planted with crowns from the ’Smooth Cayenne’ 

clone Champaka F153, were drip-irrigated and fertilizers were applied as foliar sprays 

following standard plantation practices. The simulations were done using weather 

data files collected for each study and actual crown weight when available, otherwise 

crown weight at planting was estimated.

The predicted values for date of forcing, fruit harvest and physiological 

maturity, and fruit yield were compared to observed ones. The simulated leaf area 

index (LAI), green leaf dry weight and total plant dry weight were also compared to 

observed values. The model results were evaluated statistically using the methods 

described in Section 7.1.

7.3.1 Results

Forcing Date

Fruit yield within an environment is highly correlated with total plant weight at 

the time of forcing (Chapter 4). Plant size is, therefore, assumed to be the primary 

parameter used to determine the time of forcing. In practice, scheduling of fruit
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production may be an overriding factor. The data used to validate the model were 

from experiments not specifically designed for this purpose. All studies (Table 7.7) 

were forced on a calendar date to achieve a particular objective. For the Kunia 

studies, it was to examine the effects of PPD and PD and their interaction. For the 

Maui studies, the primary objective was to examine the effects of environment on 

reproductive development. Because pineapple was planted on one date and forced 

about 12 months later in the Maui studies, plant size at forcing decreased with 

increasing elevation. This response was assumed to be due to the decrease in average 

temperature with increasing elevation (Fleisch, 1988).

For the simulation, actual average plant weight at forcing for each planting 

was entered in the model as a decision variable. The model then predicted date of 

forcing when the plant "grown" by the model reached the actual plant weight at 

forcing. The mean difference between the simulated and observed forcing date for 

the two plantings grown at Kunia was 10 days with a standard error of 3.6 days 

(Table 7.8). The model predicted the forcing dates at the middle plant population 

densities (5.22 to 10.06 plants m' )̂ more accurately than at the lower or higher ones 

(Table 7,8). For the Maui data, the mean difference between simulated and observed 

forcing date was 27.3 days with a standard error of 11.89 days (Table 7.9). This 

indicates that the model predicted forcing date well for some plantings but gave poor 

prediction for others. For example, the model accurately predicted forcing date at 

90 m, but under-estimated it by about two months at 310 m, and over-estimated by 

about one and half months at 690 m (Table 7.9).
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Table 7.8 Simulated days after planting (DAP) to forcing for five plant population
densities of Smooth Cayenne pineapple planted at Kunia, Hawaii in August and
October, 1989.

Planting
Date

Population
density
(plants m'2)

Simulated DAP 
to forcing

Observed DAP 
to forcing

Difference
(days)

August 15

October 18

2.61
5.22
7.83 
10.06 
12.81 
2.61
5.22
7.83 
10.06 
12.81

415
403
396
401
419
346
335
337
346
369

400
400
400
400
400
335
335
335
335
335

15 
3 

- 4 
1

19
11
0
2
11
34

Mean  ̂
c *Oâdm

376.7 367.5 10
3.6

t  Mean, mean of the absolute differences between simulated and obseiwed values. 
$ Sdm, standard error of the mean of the differences.

Table 7.9 Simulated days after planting (DAP) to forcing for Smooth Cayenne 
pineapple grown on Maui, Hawaii.

Elevation Planting date Simulated DAP Observed DAP Difference
(meter) (calendar) to forcing to forcing (days)

90 Jan., 1985 360 365 - 5
90 May, 1985 369 370 - 1
90 Jul., 1985 369 365 4

310 Jan., 1985 315 365 -50
310 May, 1985 312 370 -58
310 Jul., 1985 341 365 -21
690 Jan., 1985 408 365 43
690 May, 1985 411 370 41
690 Jul., 1985 382 365 23

Mean ^ 363 366.67 27.3
Sdm ♦ 11.89

t  Mean, mean of the absolute di fferences between simulated and observed values.
t Sdn,, Standard error of the mean of the differences.
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Fruit Harvest Date

The mean simulated fruit harvest date was significantly delayed by 14.1 days 

compared to the observed mean for the two plantings at Kunia (Table 7.10). The 

delays were greatest at the highest and lowest plant population densities. For the 

Maui data, the mean difference between the simulated and observed fruit harvest date 

was 25 days with a standard error of 10.2 days (Table 7.11). The model predictions 

were poor at 310 and 690 m elevations.

Fruit Physiological Maturity

The mean simulated interval from planting to fruit physiological maturity was 

8.8 days greater than the mean observed one for the Kunia data (Table 7.12). The 

over estimation of fruit physiological maturity at the lower and higher plant 

population densities were due to the over estimation of forcing dates. No data on 

fruit physiological maturity were collected from the Maui experiments.

Fruit Yield

The mean difference between the simulated and observed fruit yield (kg ha *) 

for the five plant population densities of pineapple was 2044 kg ha'*, which was 2.6% 

over the observed mean (Table 7.13). The largest deviation between observed and 

predicted yields was about 11% and occurred at the highest plant population density 

for the August planting. On Maui, fruit yields were greatly under-predicted by the 

model (Table 7.14). On average, yields were underestimated by about 20% but the 

difference was as great as 37% for the July planting at 690 m. The yields at Kunia 

were lower than those on Maui in almost all cases.
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Table 7.10 Simulated days after planting (DAP) to fruit harvest for five plant
population densities of Smooth Cayenne pineapple planted at Kunia, Hawaii in August
and October, 1989.

Planting
Date

Population
density
(plants m'̂ )

Simulated DAP 
to fruit harvest

Observed DAP 
to fruit harvest)

Difference
(days)

August 15

October 18

2.61
5.22
7.83 

10.06 
12.81 
2.61
5.22
7.83 
10.06 
12.81

615 
607 
605
616 
643
545 
538
546 
563 
596

594
601
604
613
619
526
537
541
547
551

21
6
1
3

24 
19 

-  1 
5 
16 
45

Mean 587.4 573.3 14.1
4.4

t  Mean, mean of the absolute differences between simulated and observed values, 
t  Sdm, standard error of the mean of the differences.

Table 7.11 Simulated days after planting (DAP) to fruit harvest for Smooth Cayenne 
pineapple grown at three elevations on Maui, Hawaii.

Elevation
(meter)

Planting date 
(calendar)

Simulated DAP 
to fruit harvest

Observed DAP 
to fruit harvest

Difference
(days)

90 Jan., 1985 578 564 14
90 May, 1985 555 552 3
90 Jul., 1985 564 552 12

310 Jan., 1985 556 571 -15
310 May, 1985 543 569 -26
310 Jul., 1985 568 569 - 1
690 Jan., 1985 671 620 51
690 May, 1985 668 600 68
690 Jul., 1985 647 612 35

Mean 
c +‘̂dm

594.2 578.55 25
10.20

t Sd„„ standard error of the mean of the differences.
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Table 7.12 Simulated days after planting (DAP) to fruit physiological maturity for
five plant population densities of Smooth Cayenne pineapple planted at Kunia, Hawaii
in August and October, 1989.

Planting
Date

Population
density

(plants m'̂ )

Simulated DAP to 
fruit physiological 
maturity

Observed DAP to 
fruit physiological 
maturity

Difference
(days)

August 15

October 18

2.61
5.22
7.83 

10.06 
12.81 
2.61
5.22
7.83 

10.06 
12.81

635 
634
636 
647 
671
565
566 
577 
593 
626

626
634
639
648
649 
555 
568 
574
583
584

Mean + 615 606

9 
0 
3

-  1 
22
10 

-  2
3

10
28

8.8
4.4

t  Mean, mean of the absolute differences between simulated and observed values. 
$ standard error of the mean of the differences.
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Table 7.13 Simulated fruit yields for five plant population densities of Smooth 
Cayenne pineapple planted at Kunia, Hawaii in August and October, 1989.

Planting
Date

Population
density
(plants m'̂ )

Simulated fruit 
yield (kg ha *)

Observed fruit 
yield (kg ha *)

Difference 
(kg ha *)

August

October

2.61
5.22
7.83 
10.06 
12.81 
2.61
5.22
7.83 
10.06 
12.81

51303
77218
88243
98740
101101
45435
66249
81742
89653
91109

52683
77203
91495
98526
90321
43658
67324
81615
88647
90291

- 1380
15

- 3252 
214

10780
1777

- 1075 
127 

1006 
818

Mean 79079.3 79982.3 2044
1186

t  Mean, mean of the absolute differences between simulated and observed values, 
t  Sd,„, standard error of the mean of the differences.

Table 7.14 Simulated fruit yield for the Smooth Cayenne pineapple grown at three 
elevations on Maui, Hawaii.

Elevation
(meter)

Planting date 
(calendar)

Simulated 
fruit yield 
(kg ha-*)

Observed 
fruit yield 
(kg ha-*)

Difference 
(kg ha-*)

Maui, 90 Jan., 1985 82947 118474 -35527
90 May, 1985 98356 129538 -31182
90 Jul., 1985 107676 110713 - 3037

310 Jan., 1985 84248 99695 -15447
310 May, 1985 97080 108105 -11025
310 Jul., 1985 95358 97324 - 1966
690 Jan., 1985 65731 95465 -29734
690 May, 1985 77397 111082 -33685
690 Jul., 1985 66756 106085 -39329

Mean *■ 
q **̂dm

86172 108498 -22326
4841

t  Mean, mean of the absolute cifferences between simulated and observed values.
t Sdm, Standard error of the mean of the differences.
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The model generally predicted leaf area index well for the plantings at Kunia 

except at the highest plant population density (Fig. 7.5A and 7.6A). Regressing the 

simulated against the observed leaf area index resulted in intercepts and slopes that 

were not significantly different, respectively, from zero and unity (Fig. 7.7A and 

7.8A).

The model over-predicted leaf area index for the January and May plantings at 

all elevations and the July planting at 310 and 690 m except for January at 690 m on 

Maui (Fig. 7.9A, 7.10 A and 7.11A). The model accurately predicted leaf area index 

for the January planting at 690 m and the July planting at 90 m on Maui (Fig. 11 A). 

Regressing the simulated data against the observed data for the January planting at 

690 m (Fig. 15 A) and July planting at 90 m (Fig. 7.12A) shows that there is good 

agreement between them. The intercepts of 0.17 and 0.28 were not significantly 

different from 0.0, and the slopes of 1.27 and 0.94 were not significantly different 

from unity (Fig. 7.12A, and 7.15A).

Green Leaf Weight

The model accurately predicted green leaf dry weight accumulation for the two 

plantings at Kunia (Fig. 7.5B and 7.6B). Regressing the simulated against the 

observed green leaf weight resulted in intercepts and slopes that were not significantly 

different, respectively, from zero and unity (Fig. 7.7B and 7.8B).

The model predicted green leaf dry weight accurately only for the January and 

May planting at 690 m and the July plantings at 90 and 690 m on Maui (Fig. 7.9B,

Leaf Area Index
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Fig. 7.5 Simulated and observed leaf area index, green leaf dry weight and total 
plant dry weight for plant population densities of 2.61, 7.83 and 12.81 plants m'  ̂ (p 
m’̂ ) of smooth Cayenne pineapple planted in August, 1989 and forced in September, 
1990 at Kunia, Hawaii.
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green leaf dry weight and total plant dry weight of Smooth Cayenne pineapple planted 
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forced in May, 1986.
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Fig, 7.14 One to one relationship between simulated and observed leaf area index, 
green leaf dry weight and total plant dry weight of Smooth Cayenne pineapple planted 
in July, 1985 at an elevation of 690 meters above sea level on Maui. Plants were 
forced in July, 1986.
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7.1 OB and 7.1 IB). There was good agreement between the simulated and the 

observed data for the January and May planting at 690 m, and the July plantings at 90 

and 690 m (Fig. 7.12B, 7.13B, 7.14B, and 7.15B). Regressing simulated against 

observed data resulted in intercepts of 2.44, 4.2, -2.3, and 7.2, which were not 

significantly different from zero, and slopes of 1.01, 0.96, 1.05, and 1.07, which 

were not significantly different from unity (Fig. 7.12B, 7.13B, 7.14B, and 7.15B).

The model over-predicted green leaf dry weight for the rest of the plantings on Maui 

(Fig. 7.9B, 7.10B and 7.1 IB).

Total Plant Weight

The model generally predicted total plant weight accumulation well for the two 

plantings at Kunia (Fig. 7.5C and 7.6C) although weight was somewhat overestimated 

at 550 days after planting. The regressions of simulated vs. observed total plant 

weight resulted in intercepts that were significantly different from zero, and slopes 

that were significantly different from unity (Fig. 7.7C and 7.8C). The relatively 

small deviation of the slopes from unity is most likely due to the overestimation of 

total plant weight of the lowest plant population density at the fruit harvest stage.

For the Maui data, the model over-predicted total plant weight for all plantings 

grown at 310 m and for the January and May plantings grown at 90 m (Fig. 7.9C,

7. IOC and 7.11C). The slopes of regressions of the simulated against observed data 

for those plantings were significantly greater than unity (Fig. 7.13C). The model 

under-predicted total plant weight for the May planting grown at 690 m. (Fig.

7 .IOC). The slopes of regressions of the simulated against observed data for those
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plantings were significantly less than unity (results not shown). The model accurately 

predicted total plant weight for the January planting at 690 m and for the July 

plantings at 90 and 690 m (Fig. 7.9C and 7.11C). Regressing the simulated against 

the observed data for the January planting at 690 m and the July planting at 90 and 

690 m resulted in intercepts that were not significantly different from zero and slopes 

that were not significantly different from the unity (Fig. 7.12C, 7.14C and 7.15C).

7.3.2 Discussion

Dates of Forcing

Accurate prediction of forcing date requires accurate weather data, an accurate 

estimation of total plant dry weight at the time of forcing, and correct adjustment of 

the parameter P6, which is the number of days from root initiation to emergence of 

the first new leaf. In ALOHA-Pineapple, forcing date is determined by total plant 

dry weight (see Chapter 6, Model Description). When total plant dry weight is 

greater than or equal to PlantSize, which during validation was set equal to the actual 

total plant dry weight at forcing for an experiment, forcing occurs. If the observed 

total plant dry weight is overestimated, it will take more days to reach the specific 

plant size. The forcing date will be delayed by the model. A smaller or larger P6 

will over or under estimate total plant weight accumulation, resulting in an advance or 

delay in the predicted forcing date. The parameter P6 is assumed to be influenced by 

type of planting materials, the water status of the plant material, and the soil water 

content after planting. The model at this stage does not consider those factors, but P6 

can be calibrated with data from field experiments.
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The mean difference between the simulated and the observed forcing date of 

Maui plantings was lower, but the standard error of the difference was higher than 

that for the Kunia plantings (Table 7.7 and 7.8). The higher mean difference for the 

Kunia plantings was due to the overprediction of the interval between planting and 

forcing at the lowest and highest plant population densities. This overprediction of 

the interval from planting to forcing was probably due to the overestimation of the 

actual total plant dry weight at forcing. The over or under estimation of actual total 

plant weight at forcing will delay or advance the forcing date predicted by ALOHA- 

Pineapple because the forcing date is determined by the model when a previously 

specified plant weight is reached. The overprediction of forcing date possibly was 

also due to fact that the quantitative relationships between plant population and plant 

growth and phenological development used by the model do not work well at the 

lower and upper limits of the plant population ranges used in the study.

The high standard error of the mean of the difference for forcing date for the 

Maui plantings was due to the underprediction of the interval from planting to forcing 

at the of 310 m elevation and overprediction at the 690 m. The reasons why the 

model predicts date of forcing well for some tests but not for others is not known.

Fruit Harvest Date

Accurate prediction of fruit harvest date, the date when 10 percent of the fruit 

ripen, requires accurate prediction of forcing date, accurate air temperatures and 

correct adjustment of a cultivar-specific parameter P4. Overprediction of the interval 

from planting to fruit harvest for the Kunia plantings were mostly due to
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overprediction of forcing dates (Table 7.7 and 7.9). Underpredictions of the interval 

from planting to fruit harvest date for the Maui test at 310 m and the overpredictions 

at 690 m were most likely due to the underpredictions of interval from planting to 

forcing at 310 m and overpredictions of the interval at 690 m, and also due to 

incorrect adjustment of P4 (Table 7.8 and 7.10). The value for P4 of 2904 °C-days 

was obtained by calibration using the Kunia data. Maximum yields at Kunia 

generally were less than those obtained on Maui. If growth at Kunia was subnormal, 

it may be that the value used in the model was larger than it should have been for the 

Maui data.

Fruit Physiological Maturity

Accurate prediction of date of fruit physiological maturity, the date when 95 

percent of the fruits are harvested, requires accurate prediction of forcing and fruit 

harvest date, accurate air temperatures and correct adjustment of a cultivar-specific 

parameter P5. Overpredictions of the interval from planting to fruit physiological 

maturity for the Kunia plantings likely were due to the delay in forcing dates 

predicted by the model (Table 7.7 and 7.11).

Fruit Yield

Accurate prediction of fruit yield requires accurate prediction of leaf area 

Index, accurate solar radiation data during the period from forcing to the end of 

fruitlet initiation, accurate air temperatures during reproductive development, correct 

adjustment of the ConvertCoefficient, and the cultivar-specific parameters G2 and 

G3. The parameter G2 is potential maximum number of eyes per fruit and G3 is
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maximum rate of dry matter partitioning to the eyes (Chapter 6, Model Description).

The model accurately predicted the fruit yield for the Kunia plantings (Table 

7.12) but greatly underpredicted the fruit yield by 20 percent of the observed value 

for the Maui plantings (Table 7.13). The underpredictions of the fruit yield were 

possibly due to the lower ConvertCoefficient and the lower G3 used in model. The 

ConvertCoefficient and G3 may have been too low because they were calibrated to the 

data collected from Kunia, where the yield at 5.22 and 7.83 plants ha* (Table 7.6) 

was somewhat to much lower than the yield on Maui at a plant population density of

5.4 plants m'  ̂ (Table 7.14). Maui data represents both warmer and cooler sites than 

Kunia. The reasons for the discrepancies need to be studied.

Leaf Area Index

Accurate prediction of leaf area index (LAI) is very important because 

accurate prediction of potential carbohydrate production and fruit yield depends on 

LAI. Accurate prediction of LAI requires accurate weather data, and correct 

adjustment of P6. LAI was underestimated consistently at the highest plant population 

for the Kunia plantings over the course of plant cycle (Fig. 7.5A and 7.6A). This 

may be because the quantitative relationships between plant population and the ratio of 

leaf area to leaf number used by the model does not work well at high plant 

populations when plants are small at forcing. The overpredictions of LAI during the 

reproductive phase for the Maui plantings at 690 m were due to the overprediction of 

forcing dates, which shifted the LAI peaks to the right (Fig. 7.9A, 7.10A and 

7.11 A). The overpredictions of LAI for the Maui plantings at 310 m were probably
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because the value of P6 was smaller than it should have been. The LAI for the 

January and May plantings at 90 m on Maui were consistently over predicted over the 

course of the plant cycle, suggesting that the simulated LAI could be adjusted to 

match the observed data by using a larger value for P6 (Fig. 7.9A, 7.10A and 

7.11A).

Green Leaf Weight

Accurate simulation of green leaf weight will lead to the accurate simulation of 

total plant weight, leading to the accurate prediction of dates of forcing, fruit harvest 

and physiological maturity, and fruit yield. Accurate prediction of green leaf weight 

requires accurate weather data, correct adjustment of the parameter P6 and the base 

temperature (Tbase). The model accurately predicted green leaf weight accumulation 

for Kunia plantings (Fig.7,5B and 7.6B). The probable causes for the overpredictions 

of green leaf weight for the Maui plantings are similar to those LAI because green 

leaf weight and LAI are closely related.

Total Plant Weight

Evaluating the model’s ability to predict total plant weight is an overall 

evaluation of the model quality. Generally, the model predicted total plant weight 

more accurately than it did each component. The overestimation of total plant weight 

at the lowest plant population for the Kunia plantings suggests that the quantitative 

relationships between plant population and growth used in the model does not work 

well at very low plant populations. Consistent overpredictions of LAI, green leaf 

weight and total plant weight for Maui plantings suggests that not only was the value
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of P6 too small but factors other than water and nitrogen need to be considered when 

modeling pineapple growth. Plant growth at 310 m on Maui was much less than that 

at 90 m even though the air temperature and solar radiation means were similar (Fig. 

7.9C, 7 .IOC and 7.11C). The underpredictions of total plant weight at the higher 

elevations were due to the underestimations of stem weight (data not shown).

In summary, generally, the model accurately predicted dates of forcing, fruit 

harvest and physiological maturity, fruit yield, leaf area index and dry matter 

production for Kunia and for some Maui conditions. The model did not simulate 

plant growth and development well at low or high plant populations. The 

underpredictions or overpredictions of plant growth and development for the Maui 

plantings were mostly due to the lack of knowledge about the proper value for the 

parameter P6 in different experiments, possible other inadequacies of the model, and 

perhaps errors in data collection.
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CHAPTER 8 

SUMMARY AND CONCLUSION

A summary and conclusions for both data collection and modeling sections of 

the dissertation are presented here.

8.1 RESPONSE OF PINEAPPLE TO PLANT POPULATION DENSITY AND

PLANTING DATE

8.1.1 Leaf Emergence

Increasing plant population density significantly reduced the rate of leaf 

emergence of ’Smooth Cayenne’ pineapple. Leaf emergence decreased about 0.9 

leaves per 1000 degree-days with each increase in population of one plant m' ,̂ 

beginning about 200 days after planting in this study. It was suspected that the 

decline in leaf emergence rate was due to the decrease in the growing point 

temperature caused by intense mutual shading at the higher plant population densities. 

Therefore, it would be better if thermal time, which is calculated from air 

temperature, is modified by a coefficient to correct for plant population effects in 

order to accurately predict pineapple leaf emergence.

8.1.2 Canopy Development and Light Interception

Leaf area (LA) per plant and leaf area index (LAI) increased with time and 

with increasing plant population density. Before about 200 days after planting, for a 

given time, leaf area per plant was constant over PPDs and leaf area index was a 

linear function of PPDs. Thereafter, leaf area declined and leaf area index increased
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curvilinearly as plant population density increased. Maximum LAIs were obtained at 

the time of forcing at the higher PPDs and earlier planting dates. Light interception 

increased with increasing time and plant population density, but the relationship 

between the fraction of light intercepted and leaf area index was exponential. This 

relationship and the decline in LAI after a maximum was attained demonstrated that 

inter-plant competition began to occur by or before 200  days after planting, but 

become more intense after that time.

8.1.3 Vegetative Growth and Dry Matter Partitioning

Dry matter accumulation of ’Smooth Cayenne’ pineapple varied substantially 

over plant population densities and planting dates. This was due to the decline in net 

assimilation rate during vegetative growth as PPD increased and to the differences in 

the initial size of the planting material and growth duration. Dry matter was 

partitioned more to leaves during vegetative growth and then more to inflorescence 

and stem during reproductive development. The proportion of dry matter partitioned 

to leaves during vegetative growth was not significantly affected by PPDs. The 

proportion of dry matter partitioned to stem during reproductive growth decreased 

linearly and dry matter partitioning to fruit increased curvilinearly as PPD increased 

and as planting date was delayed. The ratio leaf area per plant:number of leaves per 

plant was highly correlated with leaf number up to forcing, and the relationship was 

not significantly influenced by PPDs or planting dates.

8.1.4 Reproductive Development and Yield

Fruit development rate declined curvilinearly as plant population density
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increased but was not significantly affected by plant size (planting date ) within a 

plant population density. Fruit harvest date was delayed about seven days for each 

increase in population of 2.5 plants m'  ̂over the population range of the study. 

Average fruit weight decreased significantly with increasing plant population density 

and decreasing plant size within a population. The larger the plants at forcing, the 

higher the average fruit weight. Plants in lower plant populations and earlier 

plantings produced more larger (2.5T) fruits and fewer smaller sized fruits (IT and 

SIT). Fruit yield (all fruits) per unit area increased curvilinearly with increasing 

plant population, showing an asymptotic relationship, but the yield response curve for 

each fruit size and plant population density relationship was parabolic. It is concluded 

that fruit development rate was influenced not only by air temperature and time but 

also by plant population density.

8.2 SIMULATION OF PINFAPPLF GROWTH AND DFVFLOPMFNT

A simulation model of pineapple growth and development (ALOHA-Pineapple) 

was developed, based on the CERES-Maize model structure, a heat unit model for 

pineapple inflorescence development, and data collected from the population trial 

described above. ALOHA-Pineapple is process-oriented and incremented daily. It 

has the potential to simulate the effects of cultivars, though data for cultivars other 

than Smooth Cayenne are likely unavailable, planting date, plant population density, 

plant size at planting and at forcing, and weather on pineapple crop growth, 

development and fruit yield. The soil water and nitrogen subroutines of CERES-
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Maize remain in the model but have not been adapted for pineapple. The model uses 

the IBSNAT minimum data set and runs alone or under the DSSAT shell (IBSNAT, 

1989).

ALOHA-Pineapple accurately predicted dates of forcing, fruit harvest and 

physiological maturity, leaf area index, dry matter production and fruit yield for the 

Kunia experiments and some Maui experiments. The model underpredicted dry 

weight accumulation, causing a delay in predicted forcing date of three to four weeks 

for the lower and upper limits of plant population at Kunia. The model under or over 

predicted growth and development for some Maui experiments. These were assumed 

to be mostly due to the variability in the parameter P6 and improper base temperature 

for cool areas, and possible errors in estimating growth.

In conclusion, ALOHA-Pineapple is able to simulate pineapple growth and 

development with reasonable accuracy. Prediction errors in time have been reduced 

to less than two weeks for Kunia conditions and some Maui conditions. ALOHA- 

Pineapple is semi-emperical, especially in handling plant population density effect.

The variability in prediction can be reduced and prediction accuracy can be improved 

by refin ing the model using data from wide range of environments or by handling 

plant population effect mechanistically. In addition, ALOHA-Pineapple provides a 

frame-work for further pineapple research and a decision aid for pineapple farmers. 

Other models describing interactions between insect pests, nematodes, and diseases 

and pineapple crop growth can be linked to ALOHA-Pineapple.
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8.3 PROBLEMS IDENTIFIED AND WORK NEEDED

Model development and validation is an iterative process. Every simulation of 

an experiment will contribute something to ALOHA-Pineapple by adding factors or 

correcting coefficients or identifying problems in the model. Following are the lists 

of the problems identified during model development and validation and the suggested 

work needed for future development.

1. Determination of first leaf emergence. Identify the factors determining the

time to root initiation and to emergence of the first new leaf and 

quantify their effects.

2. Differences among Smooth Cayenne clones, and among cultivars, need to

be characterized to account for differences in productivity and ratooning 

ability known to exist in different regions. If the model is to be 

extended to other groups (Spanish, Perola, etc.), additional growth data 

for the important clones will need to be collected.

3. Modeling plant population density effect more mechanistically by using

a geometrical light interception model.

4. Development of a submodel describing the interaction between nematodes

and crop growth.

5. Formulation of experimental procedures for model validation.

6 . Establishment of a collaboration network.
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APPENDIX A 

RESULTS OF STATISTICAL ANALYSIS

The following are the tables of results of analyses of variance for the 
dependent variables used in the study. The experiment consists of five plant 
population densities. The plant population density treatments were replicated three 
times and arranged in a randomized complete block design. The experiment was 
planted on three different dates June 15, August 15 and October 18, 1989. All plants 
were forced on September 18, 1990. Nine, eight, and six biomass harvests were 
done for Planting 1, 2, and 3, respectively. Depending on the purposes, only subsets 
of the data were analyzed. Because planting was not replicated and randomized, the 
results of analysis for the effect of planting date may be bias. The acronyms are 
PIVOTH, the effect of Planting 1 vs. other plantings, P2V3, Planting 2 vs. Planting 
3, TRT, the treatment effect, REP, the replication effect, LACKOFIT, the effect due 
to lack of fit by the model, and PPD, plant population density.

Table A .l Analysis of variance for green leaf area per plant (cm  ̂plant*) at forcing.

Source DF SS MS F F-tesfi Estimate

Intercept 15482

Planting 2 41.56 20.78 45.41 **
PIVOTH 1 37.25 37.25 81.39 ** 1340
P2V3 1 4.32 4.32 9.43 ** -1289

REP(Planting) 6 2.75 0.46

TRT 4 243.15 60.79 79.26 **
PPD 1 233.01 233.01 303.81 ** -1237
PPD*PPD 1 8.32 8.32 10.81 ** 39
LACKOFIT 2 1.82 0.91 1.19 NS

TRT*Planting 8 18.42 2.30 3.00 *
P1V0TH*PPD 1 9.37 9.37 12.22 - 90
P2V3*PPD 1 5.33 5.33 6.95 ** 118
LACKOFIT 6 9.05 1.51 1.97 NS

ERROR 24 18.41 0.77

Corrected total 44 324.29

t  * and ** denote significance at the 0.05 and 0.01 level of probability, respectively, 
and NS indicates the effect was not significant at the 0.05 level of probability.
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Table A.2 Analysis of variance for D-leaf dry weight (g leaf*) at forcing.

Source DF SS MS F F-tesf Estimate

Intercept 26.76

Planting 2 188.21 94.10 128.32
PIVOTH 1 126.50 126.51 172.50 *♦ 3.75
P2V3 1 61.71 61.69 84.14 3)C3(e -3.76

REP(Planting) 6 4.40 0.70

TRT 4 785.41 196.40 122.40
PPD 1 744.81 744.81 464.29 -2.46
PPD*PPD 1 40.40 40.40 25.18 0.086
LACKOFIT 2 0 .2 0 0 .10 0.06 NS

TRT^Planting 8 97.51 12.20 7.60
P1V0TH*PPD 1 47.51 47.50 29.61 - 0 .2
P2V3*PPD 1 34.90 34.90 21.76 0.3
LACKOFIT 6 15.10 2.51 1.57 NS

ERROR 24 38.51 1.60

Corrected total 44 1114.0

t  * and ** denote significance at the 0.05 and 0.01 level of probability, respectively, 
and NS indicates the effect was not significant at the 0.05 level of probability.
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Table A.3 Analysis of variance for D-leaf leaf area (cm  ̂ leaf*) at forcing.

Source DF SS MS F F-tesf Estimate

Intercept 1084

Planting 2 29.42 14.71 137.22 ** 108
PIVOTH 1 19.72 19.72 183.99 - 147
P2V3 1 9.70 9.70 90.46 **

REP(Planting) 6 0.64 0 .10

TRT 4 122.14 30.53 123.02 ** - 96
PPD 1 115.97 115.97 467.23 ** 3.3
PPD*PPD 1 6.15 6.15 24.78 **
LACKOFIT 2 0.01 0.01 0.03 NS

TRT*Planting 8 14.88 1.86 7.49 - 8
P1V0TH*PPD 1 7.26 7.26 29.26 ** 12
P2V3*PPD 1 5.26 5.26 21 .2 0 ♦ ♦
LACKOFIT 6 2.35 0.39 1.58 NS

ERROR 24 5.96 0.25

Corrected total 44 173.03

t  * and ** denote significance at the 0.05 and 0.01 level of probability, respectively, 
and NS indicates the effect was not significant at the 0.05 level of probability.
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Table A.4 Analysis of variance for green leaf dry weight (g plant*) at forcing.

Source DF SS MS F F-tesf Estimate

Intercept 348

Planting 2 26.93 13.47 110.99
PIVOTH 1 24.16 24.16 199.10 35.9
P2V3 1 2.78 2.78 22 .88 -32.34

REP(Planting) 6 0.73 0 .12

TRT 4 131.50 32.88 131.13
PPD 1 124.13 124.13 495.13 -32.39
PPD*PPD 1 7.24 7.24 28.89 Jk* 1.15
LACKOFIT 2 0 .12 0.06 0.25 NS

TRT*Planting 8 12.72 1.59 6.34
P1V0TH*PPD 1 7.39 7.39 29.46 - 2.54
P2V3*PPD 1 3.33 3.33 13.27 2.95
LACKOFIT 6 2 .00 0.33 1.33 NS

ERROR 24 6 .02 0.25

Corrected total 44 177.89

t  * and ** denote significance at the 0.05 and 0.01 level of probability, respectively, 
and NS indicates the effect was not significant at the 0.05 level of probability.
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Table A.5 Analysis of variance for stem dry weight per plant (g plant‘d) at forcing.

Source DF SS MS F F-tesf Estimate

Intercept 72.71

Planting 2 33.48 16.74 31.68
PIVOTH 1 31.83 31.83 60.25 15.21
P2V3 1 1.65 1.65 3.12 - 7.74

REP(Planting) 6 3.17 0.53

TRT 4 63.53 15.88 25.01
PPD 1 57.75 57.75 90.94 ** - 7.68
PPD*PPD 1 4.70 4.70 7.40 ** 0.29
LACKOFIT 2 1.08 0.54 0.85 NS

TRT*Planting 8 23.15 2.89 4.56 ♦
PlVOTH*PPD 1 16.59 16.59 26.13 ♦ >K - 1.2
P2V3*PPD 1 1.87 1.87 2.94 * 0.7
LACKOFIT 6 4.69 0.78 1.23 NS

ERROR 24 15.24 0.63

Corrected total 44 138.58

t  * and ** denote significance at the 0 ,.05 and 0.01 level of probability , respectively,
and NS indicates the effect was not significant at the 0.05 level of probability.
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Table A.6 Analysis of variance for total plant dry weight (g plant *) at forcing.

Source DF SS MS F F-test+ Estimate

Intercept 544.08

Planting 2 91.02 45.51 126.83
PIVOTH 1 83.78 83.78 233.49 69.35
P2V3 1 7.24 7.24 20.17 ** -53.77

REP(Planting) 6 2.15 0.36

TRT 4 314.19 78.55 115.48
PPD 1 296.43 296.43 435.80 -50.37
PPD*PPD 1 17.69 17.69 26.01 1.8
LACKOFIT 2 0.07 0.03 0.05 NS

TRT*Planting 8 45.25 5.66 8.32 **
P1V0TH*PPD 1 29.16 29.16 42.87 ** - 5.04
P2V3*PPD 1 9.42 9.42 13.85 4.96
LACKOFIT 6 6.67 1.11 1.63 NS

ERROR 24 16.33 0 .68

Corrected total 44 468.94

t  * and ** denote significance at the 0.05 and 0.01 level of probability, respectively, 
and NS indicates the effect was not significant at the 0.05 level of probability.
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Table A.7 Analysis of variance for relative growth rate (RGR, g g-1 day-1) during
vegetative growth for Planting 1 and 2.

Source DF SS MS F F-tesri Fstimate

Intercept 0.0089

Planting 1 0 .0 0 0 .00 0 .0 0 NS

REP(Planting) 4 0 .12 0.03

TRT 4 17.04 4.26 56.67
PPD 1 16.66 16.66 226.67 Xc>K 0.00021
LACKOFIT 3 0.38 0.13 1.73 NS

TRT*Planting 4 0.19 0.048 0.63 NS

FRROR 16 1.20 0.075

Corrected total
+  ♦  r k r \A  ♦ ♦  H o r t r k f o

29 18.55
o f  f V k o  n Al l o x r A l r \ - r r v V \ o  V \ i  1 i  f r  7 i  1  7 ^ 1  X 7

and NS indicates the effect was not significant at the 0.05 level of probability.
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Table A. 8 Analysis of variance for net assimilation rate (NAR, g m'̂  day *) during
vegetative growth for Planting 1 and 2.

Source DF SS MS F F-tesfi Estimate

Intercept 0.00031

Planting 1 0.84 0.84 14.11 5.3E-06

REP(Planting) 4 0.24 0.06

TRT 4 28.00 7.00 35.00 * *

PPD 1 26.90 26.90 134.50 * * -1.6E-05
PPD*PPD 1 0.87 0.87 4.36 * 4.88E-07
LACKOFIT 2 1.10 0.55 2.75 NS

TRT*Planting 4 0.13 0.03 0.16 NS

ERROR 16 3.20 0 .20

Corrected total
♦  rxr\A

29
c i  r r n i

32.40
o f  f V i o  r\ A  A l l o v r o l  rfc-f* voT/^Vvo 11 f  V r •ro C-TfcO/  ̂f  IV 701 V 7

and NS indicates the effect was not significant at the 0.05 level of probability.
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Table A.9 Analysis of variance for leaf area partition coefficient (LAPC) during
vegetative growth for Planting 1 and 2.

Source DF SS MS F F-tesf Estimate

Intercept

Planting 1 5.72 5.72 1.57
25.99

NS

REP(Planting) 4 14.56 3.64

TRT 4 37.01 9.25 2.24 NS 0.16

TRT*Planting 4 12.06 3.02 0.73 NS

ERROR 16 66.19 4.14

Corrected total 29 135.55
t  * and ** denote significance at the 0.05 and 0.01 level of probability, respectively, 

and NS indicates the effect was not significant at the 0.05 level of probability.

Table A. 10 Analysis of variance for specific leaf area extension (SLAE) during 
vegetative growth for Planting 1 and 2.

Source DF SS MS F F-tesf Estimate

Intercept 41.31

Planting 1 0.43 0.43 0.06 NS

REP(Planting) 4 31.22 7.81

TRT
PPD
LACKOFIT

4
1
3

72.90
31.25
41.65

18.23
31.25
13.88

3.53
6.06
2.69

♦
* 0.29 
NS

TRT*Planting 4 24.17 6.04 1.17 NS

ERROR 16 82.49 5.16
Corrected total 29 211.20

t  * and ** denote significance at the 0.05 and 0.01 level of probability, respectively, 
and NS indicates the effect was not significant at the 0.05 level of probability.
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Table A. 11 Analysis of variance for green leaf weight partition coefficient (LWPC)
during vegetative growth for Planting 1 and 2.

Source DF SS MS F F-tesf Estimate

Intercept 0.63

Planting 1 0.43 0.43 26.06 -0 .012

REP(Planting) 4 0.07 0 .02

TRT 4 0.07 0.02 0.56 NS 0.0...37

TRT*Planting 4 0 .12 0.03 0.92 NS

ERROR 16 0.52 0.03

Corrected total 29 1.20

and NS indicates the effect was not significant at the 0.05 level of probability.

Table A. 12 Analysis of variance for leaf basal tissue weight partition coefficient 
(BLWPC) during vegetative growth for Planting 1 and 2.

Source DF SS MS F F-test*' Estimate

Intercept 50.3

Planting 1 0.03 0.03 1.79 NS

REP(Planting) 4 0.06 0.01

TRT 4 0.23 0.06 4.09 *
PPD 1 0.18 0.18 12.80 ** 0.51
LACKOFIT 3 0.05 0 .02 1.19 NS

TRT*Planting 4 0.03 0.01 0.49 NS

ERROR 16 0 .22 0.01

Corrected total 29 0.55

and NS indicates the effect was not significant at the 0.05 level of probability.
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Table A. 13 Analysis of variance for stem weight partition coefficient (SWPC) during
vegetative growth for Planting 1 and 2.

Source DF SS MS F F-tesf Estimate

Intercept 0.136

Planting 1 0.71 0.71 25.82 0.016

REP(Planting) 4 0.11 0.03

TRT
PPD
LACKOFIT

4
1
3

0.27
0.15
0.13

0.07
0.15
0.04

3.09
6.63
1.90

♦
*
NS

0.0019

TRT*Planting 4 0 .11 0.03 1.26 NS

ERROR 16 0.35 0 .02

Corrected total 29 1.56
t  * and ** denote significance at the 0.05 and 0.01 level of probability, respectively, 

and NS indicates the effect was not significant at the 0.05 level of probability.

Table A. 14 Analysis of variance for leaf area-plant dry weight ratio (LAR) during 
vegetative growth for Planting 1 and 2.

Source DF SS MS F F-test*” Estimate

Intercept 31.1

Planting 1 17.70 17.70 18.34 -0.769

REP(Planting) 4 3.90 1.00

TRT
PPD
LACKOFIT

4
1
3

48.10
39.90
8.20

12.00
39.90
2.7

6 .02
19.96
1.37 NS

0.323

IR T ’̂ Planting 4 4.10 1.00 0.51 NS

ERROR 16 32.00 2.00

Corrected total 29 105.80
t  * and ** denote significance at the 0.05 and 0.01 level of probability, respectively, 

and NS indicates the effect was not significant at the 0.05 level of probability.
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Table A. 15 Analysis of variance for specific leaf area ratio (SLAR) during vegetative
growth for Planting 1 and 2.

Source DF SS MS F F-tesf Estimate

Intercept 50.3

Planting 1 6.7 6.7 2 .11 NS

REP(Planting) 4 12.7 3.2

TRT 4 114.9 28.7 11.07 *
PPD 1 99.8 99.8 38.48 * 0.51
LACKOFIT 3 15.1 5.0 1.94 NS

TRT*Planting 4 5.7 1.4 0.55 NS

ERROR 16 41.5 2 .6

Corrected total 29 181.6
t  * and ** denote significance at the 0.05 and 0.01 level of probability, respectively,

and NS indicates the effect was not significant at the 0.05 level of probability.

Table A. 16 Analysis of variance for green leaf weight ratio (LWR) during vegetative
growth for Planting 1 and 2.

Source DF SS MS F F-tesf Estimate

Intercept

Planting 1 0.23 0.23 46.00

REP(Planting) 4 0 .02 0.01

TRT 4 0.01 0 .00 0.25 NS

TRT*Planting 4 0.03 0.01 0.83 NS

ERROR 16 0.16 0.01

Corrected total 29 0.46
t  * and ** denote significance at the 0.05 and 0.01 level of probability, respectively, 

and NS indicates the effect was not significant at the 0.05 level of probability.
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Table A. 17 Analysis of variance for basal leaf weight ratio (BLWR) during
vegetative growth for Planting 1 and 2.

Source DF SS MS F F-tesri Estimate

Intercept

Planting 1 0.03 0.03 2.27 ♦

REP(Planting) 4 0.04 0.01

TRT 4 0.01 0 .00 0.59 NS

TRT*Planting 4 0 .0 0 0 .00 0.13 NS

ERROR 16 0.09 0.01

Corrected total 29 0.17
t  * and ** denote significance at the 0.05 and 0.01 level of probability, respectively, 

and NS indicates the effect was not significant at the 0.05 level of probability.

Table A. 18 Analysis of variance for stem weight ratio (SWR) during vegetative 
growth for Planting 1 and 2.

Source DF SS MS F F-tesri Estimate

Intercept

Planting 1 0.42 0.42 40.98 **

REP(Planting) 4 0.04 0.01

TRT 4 0.06 0.02 3.00 NS

TRT*Planting 4 0.04 0.01 1.75 NS

ERROR 16 0.08 0.01

Corrected total 29 0.64

and NS indicates the effect was not significant at the 0.05 level of probability.
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Table A. 19 Analysis of variance for stem-plant dry weight ratio at fruit harvest
(HSWR) (g/g).

Source DF SS MS F F-test+ Estimate

Intercept 0.213

Planting 2 0.48 0.24 4.65 ♦
PIVOTH 1 0.43 0.43 8.32 0.025
P2V3 1 0.05 0.05 0.97 NS

REP(Planting) 6 0.31 0.05

TRT 4 2 .02 0.51 8.36 *
PPD 1 1.83 1.83 30.29 -0.0056
LACKOFIT 3 0.19 0.06 1.57 NS

TRT*Planting 8 1.23 0.15 2.54 3(e
PlVOTH*PPD 1 0.61 0.61 10.10 -0.0023
LACKOFIT 7 0.62 0.09 1.71 NS

ERROR 24 1.45 0.06

Corrected total 44 5.49

and NS indicates the effect was not significant at the 0.05 level of probability.
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Table A.20 Analysis of variance for fresh fruit-plant dry weight ratio at fruit harvest
(HFWR) (g/g).

Source DF SS MS F F-tesf Estimate

Intercept 0 .22

Planting 2 0.39 0 .20 4.50 NS
PIVOTH 1 0.38 0.38 8.77 -0.016
P2V3 1 0.01 0.01 0.23 NS

REP(Planting) 6 0.26 0.04

TRT 4 3.45 0 .86 46.00
PPD 1 2.93 2.93 156.27 a|e>K 0.022
PPD*PPD 1 0.50 0.50 26.67 -0.001
LACKOFIT 2 0 .02 0.01 0.53 NS

TRT*Planting 8 0.40 0.05 2.67 *
P1V0TH*PPD 1 0.16 0.16 8.53 * 0.001
LACKOFIT 7 0.24 0.03 1.83 NS

ERROR 24 5.53 0.23

Corrected total 44 10.20

and NS indicates the effect was not significant at the 0.05 level of probability.
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Table A.21 Analysis of variance for fruit development rate (day*) between forcing
and harvest for three plantings of pineapple.

Source DF SS MS F F-tesf* Estimate

Intercept 0.0053

Planting 2 0.094 0.047 4.2 NS

REP(Planting) 6 0.067 0.011

TRT 4 1.65 0.41 80.5 * > K

PPD 1 1.60 1.60 311.9 ♦  ♦ 0.000058
LACKOFIT 3 0.05 0.017 3.3 NS

TRT*Planting 8 0.24 0.007 1.4 NS

ERROR 24 0.58 0.005

Corrected total
+  O r » / 1  ♦ ♦

44 2.63
» o f  f V i o  n Al l o v r o l  r\Y T \ ' r r v K o  W i  1 i  f v  7 ■ t » o c T \ / a / '» f - 1 1  V 7

and NS indicates the effect was not significant at the 0.05 level of probability.

218



Table A.22 Analysis of variance for fruit development rate (day *) between forcing 
and fruit physiological maturity for three plantings of pineapple.

Source DF SS MS F F-test+ Estimate

Intercept 0.0047

Planting 2 0.049 0.024 0.71 NS

REP(Planting) 6 0.21 0.034

TRT 4 13.1 3.28 63.90
PPD 1 12.6 12.6 245.85 0.000092
PPD*PPD 1 0.46 0.46 9.05 0.00000291
LACKOFIT 2 0.036 0.018 0.35 NS

TRT*Planting 8 0.28 0.07 1.37 NS

ERROR 24 1.23 0.051

Corrected total 44
c  i i - f i  o  n

14.9
k o f  fV»4» A A Al 1a T7C»1 r>'riol̂ oK-i 11 f x r

and NS indicates the effect was not significant at the 0.05 level of probability.
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Table A.23 Analysis of variance for the reciprocal of average fruit weight (Kg '*)

Source DF SS MS F F-tesf Estimate

Planting 2 0.508 1.96 93.33
REP(Planting) 6 0.128 0.021

TRT 4 2.629 0 .66 140.42

TRT*Planting 8 0.278 0.035 7.45

ERROR 24 0.113 0.0047

Corrected total 44 3.655

and NS indicates the effect was not significant at the 0.05 level of probability.

Table A.24 Analysis of variance for the reciprocal of average fresh fruit 
weight (Kg-*).

Source DF SS MS F F-tesf Estimate

Planting 2 0.312 0.156 13.22
REP(Planting) 6 0.071 0.0118

TRT 4 1.875 0.469 146.56

TRT*Planting 8 0.177 0.0221 6.9

ERROR 24 0.0768 0.0032

Corrected total
♦ on/4 ♦♦ /4on/̂ fo

44
Cl r»ni-fi/-»on/>̂

2.511
of fU/x n on/1 n m 1 attaI /n-F

and NS indicates the effect was not significant at the 0.05 level of probability.
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APPENDIX B

SOURCE CODE OF SUBROUTINE PHENOL, PHASEI AND GROSUB

********** SUBROUTINE TO CALCULATE PHENOLOGICAL STAGE *************

The phenological stages are not defined as clearly as maize. They 
are defined to facilitate calculation of leaf production, biomass 
partitioning, and fruit development. Assumptions are therefore 
made for each stage accordingly.

SUBROUTINE PHENOL(iret) 
SInclude: ’pinel.blk’
$Include: ’pine2.Blk’
SInclude: ’pineS.Blk’
$Include: ’pine4.Blk’
SInclude: ’Ntrcl.Blk’
SInclude: ’NtrcZ.Blk’
SInclude: ’Predob.Blk’
SInclude: ’Comibs.Blk’
SNOTRUNCATE

Character*29 String(5)
DATA STRING/

1 ’EMERG-END 0 STEM GROWTH’,
2 ’END ZSG to FORCING’,
3 ’FORCING to SCY’,
4 ’SCY to EARLY FLOWERING’,
5 ’FRUIT ENLARGEMENT ’/ 
xanc=tanc*100.0 
aptnup=stovn*10*plants 
iret=0
DTT=TEMPM-TBASE

Growing degree day is computed in the next section for different 
temperature regimes during vegetative stages. TTMP is interpolation 
of air temperature using 3-hour temperature correction factor 
(TMFAC{I).

IF (ISTAGE.GE.3.AND.ISTAGE.l t .7) GO TO 150
IF (TEMPMN.GT.TBASE.AND.TEMPMX.l t .33.) GO TO 200
IF (TEMPMX.LT.TBASE) DTT=0.0
IF (DTT.EQ.0.0) GO TO 200
DTT=0.0
DO 100 1=1,8
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TTMP=TEMPMN+TMFAC(I)*(TEMPMX-TEMPMN)
IF (TTMP.GT.TBASE.AND.TTMP.LE.33.) DTT=DTT+(TTMP-TBASE)/8.0 
IF (TTMP.GT.33.AND.TTMP.l t .44.) DTT=DTT+(34.-TBASE)

1 *(l.-(TTMP-33.)/10.)/8.
100 CONTINUE 

GO TO 200

DTT is computed for different temperature regimes during the 
reproductive stages (Fleisch, 1988). DTT is modeified by a 
multiplier within each temperature range.

150 IF (TEMPM.LT.TBASE) DTT=0.0 
IF (DTT.EQ.0.0) GO TO 200 
IF (TEMPM.LE.13.) THEN 

DTT=DTT*2.03
ELSEIF (TEMPM.LE.15.) THEN 

DTT=DTT*1.21 
ELSEIF (TEMPM.LE.17.) THEN 

DTT=DTT*1.09 
ELSEIF (TEMPM.LE.19.) THEN 

DTT=DTT*1.03 
ELSEIF (TEMPM.LE.21.) THEN 

DTT=DTT*1.0 
ELSEIF (TEMPM.LE.23.) THEN 

DTT=DTT*0.99 
ELSEIF (TEMPM.LE.25.) THEN 

DTT=DTT*1.0 
ELSEIF (TEMPM.LE.27.) THEN 

DTT=DTT*1.01 
ELSEIF (TEMPM.LE.29.) THEN 

DTT=DTT*1.03 
ELSEIF (TEMPM.LE.31.) THEN 

DTT=DTT*1.08 
ELSE
DTT=DTT*1.11

ENDIF 
200 Continue

SUMDTT=SUMDTT+DTT

GO TO (1350,1400,1600,1800,2000,2400,300,800,1200), ISTAGE
Q********** d e t e r m i n e  p l a n t i n g  d a t e  **********************************

300 CALL CALDAT ! convert day of the year to calendar date 
400 F0RMAT(lX,I2,lx,a3,F7.0,’ PLANTINGM5X,F6.0,1X,F5.2,1X,F5.1,2X 

1,F4.2,3(1X,F5.0))
500 FORMAT(/,’ DATE CDTT PHENOLOGICAL STAGE BIOM LAI’

1,’ NUPTK N% CET RAIN PESW’)
550 FORMAT(/,’ c-day G/M^2

1,’ kg/ha ---mm----  cm ’)
IF(IPHOUT)WRITE (*,500)
IF(IPHOUT)WRITE (*,550)
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IF(IPHOUT)Write (Noutl,500)
IF(IPHOUT)WRITE (NOUT1,550)
IF(IPHOUT)WRITE (*,400) nd,month,cumdtt,Biomas,Lai,Aptnup,

1 Xanc,Get,CRAIN,PESW 
IF(IPHOUT)Write(Noutl,400)nd,month,cumdtt,Biomas,Lai,Aptnup,

1 Xanc,Get,CRAIN,PESW 
NDAP=0.
CALL PHASEI
IF (ISWSWB.EQ.O) RETURN ! No change around here 
CUMDEP=0.
DO 600 L=1,NLAYR

CUMDEP=CUMDEP+DLAYR(L)
IF (SDEPTH.LT.CUMDEP) GO TO 700 

600 CONTINUE 
700 LO=L 

RETURN

C********** DETERMINE ROOT INITIATION DATE **************

C This stage is defined solely to follow the CERES-MAIZE structure. It 
C does nothing when water balance is off. NDAP is number of days after 
C planting 

800 IF (ISWSWB.EQ.O) GO TO 1000
IF (SW{LO).GT.LL(LO)) GO TO 1000
SWSD=(SW(L0)-LL{L0))*0.65+(SW(L0+1)-LL(L0+1))*0.35
NDAP=NDAP+1
IF (NDAP.LT.40) GO TO 900
ISTAGE=6
PLANTS=0.0
GPP=1.
FRTWT=0.
IF(IPH0UT)WRITE(*,3500)
IF(IPH0UT)Write(Noutl,3500)
RETURN

900 IF (SWSD.LT.0.02) RETURN 
1000 CALL CALDAT

IF (IPHOUT) WRITE (*,1100)nd,month,Cumdtt,Biomas,Lai,Aptnup,
1 Xsinc C6^ Cr*3iin P©sw 
IF (IPHOUT) WRITE (Noutl,1100)nd,month,Cumdtt,Biomas,Lai,Aptnup,

1 Xanc,Cet,Crain,Pesw 
1100 Format(lx,i2,lx,a3,f7.0,’ ROOT INITIATION’,8x,F6.0,IX,F5.2,IX 

1,F5.1,2X,F4.2,3(1X,F5.0))
CALL PHASEI 
RETURN

C********** DETERMINE FIRST NEW LEAF EMERGENCE DATE ***************
1200 RTDEP=RTDEP+0.15*DTT ! depth of root is a function of DTT. 

NDAP=NDAP+1
IF (SUMDTT.LT.P6) RETURN
CALL CALDAT ! Call CALDAT to record date of the event
IF(IPHOUT)WRITE (*,1300)nd,month,Cumdtt,Biomas,Lai,Aptnup,

1 Xanc,Cet,Crain,Pesw 
IF(IPHOUT)WRITE(noutl,1300)nd,month,Cumdtt,Biomas,Lai,Aptnup,
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The first new leaf is the first leaf emerged after planting. The 
date of emergence of the first new leaf is influenced by type of 
planting material, water status of the planting material and soil 
water content after planting. No data are available to simulate 
this process. A parameter P6, which is the cumulative growing 
degree days after planting, was used to determine the emergence of 
the first new leaf. The value of P6 was estimated from model 
calibration.

1 Xanc,Get,Crain,Pesw 
1300 Format(lx,i2,lx,a3,f7.0,’ LEAF EMERGENCE’,9x,F6.0,IX,F5.2,IX 

1,F5.1,2X,F4.2,3(1X,F5.0))
CALL PHASEI 
RETURN

;********** DETERMINE END OF ZERO NET STEM GROWTH *********

This stage is defined so stem growth can be calculated. 
Measurements of pineapple growth indicate that for some unknown 
period after planting, there is no gain in stem dry weight. A 
parameter PI, which is the cumulative growing degree days since 
emergence of the first new leaf, is used to determine the end of 
zero net stem growth.

1350 XSTAGE=SUMDTT/P1 
NDAP=NDAP+1
IF (SUMDTT.LT.(P1+P6)) RETURN 
CALL CALDAT

IF(IPH0UT)WRITE(*,1360)nd,month,Cumdtt,Biomas,Lai,Aptnup,
1 Xanc,Cet,CRAIN,PESW

IF(IPH0UT)WRITE(Noutl,1360)nd,month,Cumdtt,Biomas,Lai,Aptnup,
1 Xanc,Cet,CRAIN,PESW 

1360 FORMAT(lx,i2,lx,a3,f7.0,’ ZERO STEM GROWTH’,7X,f6.0,lx,f5.2,Ix 
1 ,f5.1,2x,f4.2,3(lx,f5.0))
CALL PHASEI 
RETURN

********** DETERMINE PLANT FORCING DATE ************************

The model simulates only the forced flowering pineapple because 
it is assumed this represents the most common practice. Data in 
the literature indicate that fruit yield is related to total plant 
weight at the time of forcing. A parameter PlantSize, which is 
determined by the user, is used to predict the time when plants are 
ready to force.

1400 IF (TotalPlantWT.LT.PlantSize) RETURN
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CALL CALDAT
ISDATE=DOY ! Record forcing date, CERES-Maize variable used 
IF(IPHOUT)WRITE (*,1500)nd,month,Cumdtt,Biomas,Lai,Aptnup,

1 Xanc,Cet,CRAIN,PESW 
IF(IPHOUT)WRITE (Noutl,1500)nd,month,Cumdtt,Biomas,Lai,Aptnup, 

1 Xanc,Cet,CRAIN,PESW 
1500 Format(lx,i2,lx,a3,f7.0,’ FORCING’,16X,f6.0,lx,f5.2,lx,f5.1,

1 2x,f4.2,3(lx,f5.0))
GO TO 2600

C**** DETERMINE DATE OF SEPALS CLOSED ON YOUNGEST FLOWERS **********

The duration of this stage is strongly influenced by air 
temperature and the difference between day and night temperature 
(Fleisch and Bartholomew, 1987). A cultivar-related coefficient 
P2, which is the modified growing degree days from forcing to the 
end of ISTAGE 3, is used to determine the end of the stage. Plant 
size or more specifically the amount of light interceped per plant 
during this stage, is assumed to be important in determining 
fruitlet number and potential fruit size of pineapple. Total 
fruitlets per fruit is calculated in this stage.

1600 IF (SUMDTT.LT.P2) RETURN ! P2: GDD needed to complete this stage 
CALL CALDAT
MAXLAI=LAI ! MaxLAI = LAI at the end of the stage
ABIOMS=BIOMAS ! Above biomass per square meter
PHOTOSYNEYE=SUMP*1000./IDURP*3.5/5.0
GPP=G2*PHOT0SYNEYE/7200+50. ! Total fruitlets per fruit 
IF (GPP.GT.G2) GPP=G2 ! G2 is genetic coefficient for potential

! fruitlet number
IF (GPP.LT.0.0) GPP=0.0 
FRUITS=PLANTS*(1.-0.10*PLANTS/14.0) 
number of fruits=plants/m2*FRUITING%

IF(IPHOUT)WRITE (*,1700) nd,month,Cumdtt,Biomas,Lai,Aptnup,
1 Xanc,Cet,CRAIN,PESW
IF(IPHOUT)WRITE (noutl,1700)nd,month,Cumdtt,Biomas,Lai,Aptnup,

1 Xanc, Cet,CRAIN,PESW 
1700 Format(lx,i2,lx,a3,f7.0,’ SCY’,20X,f6.0,lx,f5.2,Ix,

1 f5.1,2x,f4.2,3(lx,f5.0))
GO TO 2600

;********** DETERMINE DATE OF OPENING OF FIRST FLOWER ***************

The end of this stage occurs at anthesis of the first flower 
at the base of the fruit. A cultivar-related parameter P3, which 
is the cumulative growing degree days since sepals closed on 
youngest flowers, is used to determine to end of the stage.

1800 XSTAGE=1.5+3.0*SUMDTT/P3 
IF (SUMDTT.LT.P3) RETURN
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CALL CALDAT 
IEFDATE=DOY
IF(IPHOUT)WRITE (*,1900)nd,month,Cumdtt,Biomas,Lai,Aptnup,

1 Xanc,Cet,CRAIN,PESW 
IF(IPHOUT)WRITE (noutl,1900) nd,month,Cumdtt,Biomas,Lai,

1 Aptnup,Xanc, Cet,CRAIN,PESW 
1900 Format(lx,i2,lx,a3,f7.0,’ EARLY FLOWERING’,8X,F6.0,IX,F5.2,IX,

1 F5.1,2X,F4.2,3(1X,F5.0))
GO TO 2600

Q * * * * * * * * * *  determine fruit harvest date ********************___________

I Fruit harvest date is defined as the time when ten percent of
fruits have exceeded shell color 1 (Py, 1987). A cultivar-related 
parameter P4, which is the modified cumulative growing degree days 
since opening of the first flower, is used to determine the end of 
the stage.

2000 XSTAGE=4.5+5.5*SUMDTT/(P4*.95) ! used by CERES-MAIZE 
IF (SUMDTT.LT.(P4+{PLANTS-8.0)*2.4*20.95)) RETURN 

) P4 is the GDD needed to complete this stage
CALL CALDAT
MDATE=DOY ! Maturity date
YIELD=FRTWT*10.*FRUITS ! fruit dry weight yield (kg/ha) 
If(Plants.eq.O.) goto 2600 
IF (GPP.GT.O.) EYEWT=FRTWT/GPP 
PEYEWT=EYEWT*1000. ! Eye weight (mg/eye)
GPSM=GPP*FRUITS ! Number of eyes per square meter
ST0VER=BI0MAS*10.-YIELD ! Total plant weight except fruit
YIELD=YIELD/0.12 ! Fresh fruit yield (kg/ha)
YIELDB=YIELD/0.8914 ! Fresh fruit yield (lb/acre)
IF(IPHOUT)WRITE (*,2200) nd,month,Cumdtt,Biomas,Lai,Aptnup,

1 Xanc,Cet,CRAIN,PESW
IF(IPHOUT)WRITE (noutl,2200)nd,month,Cumdtt,Biomas,Lai,Aptnup,

1 Yanr Cot CRATN

2200 F o r m a t ( l x J 2 , l x U 3 , f 7 . 0 ,’ FRUIT HARVEST ’ ,9X,F6.0,1X,
1 F5.2,1X,F5.1,2X,F4.2,3(1X,F5.0))

GO TO 2600

-*************** d e t e r m i n e  f r u i t  p h y s i o l o g i c a l  m a t u r i t y  ************

Fruit physiological maturity is defined as 90% of fruits have been 
harvested. It is determined by P5, which is the modified 
cumulative growing degree days from fruit harvest to physiological 
maturity.

2400 XSTAGE=4.5+5.5*SUMDTT/P5
IF(SUMDTT.LT.(P5+P4+(3.15*(PLANTS-8.0)-0.254*(PLANTS-8)**2)
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1 *20.95)) RETURN !
CALL CALDAT

PMDATE=DOY ! physiological maturity date
IF(IPHOUT)WRITE (*,2500) nd,month,Cumdtt,Biomas,Lai,Aptnup,

1 Xanc,Cet,CRAIN,PESW 
IF(IPHOUT)WRITE (noutl,2500)nd,month,Cumdtt,Biomas,Lai,Aptnup,

1 y a n r  T o t  TRflTN

2500 Format(lx!i2,lxU3,f7.0,’ PH. MATURITY ’,10X,F6.0,1X,
1 F5.2,1X,F5.1,2X,F4.2,3(1X,F5.0))
IF(iswnit.ne.O)then

IF(frtWT.GT.O.O)THEN
XGNP=(GRAINN/frtWT)*100.0
XPTN=XGNP*6.25
GNUP=GRAINN*FRUITS*10.

ENDIF
TOTNUP=GNUP+APTNUP

Endif
IF (ISLKJD.EQ.O) PLSEMS=0.0 
IF (ISLKJD.NE.O) PLSEMS=ISLKJD-ISOW 
IF (PLSEMS.LT.O) PLSEMS=365.-ISOW+ISDATE 
PLSEPR=ISDATE-ISOW
IF (PLSEPR.LT.O) PLSEPR=365.-ISOW+ISLKJD 
IF (MATJD.EQ.O.OR.ISLKJD.EQ.O) SEMTMS=0.0 
IF (MATJD.NE.O.AND.ISLKJD.NE.O) SEMTMS=MATJD-ISLKJD 
IF (SEMTMS.LT.O) SEMTMS=365.-ISDATE+MDATE 
SEMTPR=MDATE-ISDATE
IF (SEMTPR.LT.O) SEMTPR=365.-ISLKJD+MATJD 

2600 If(iswswb.eq.O) then 
SI1(ISTAGE)=0.0 
SI2(ISTAGE)=0.0

Else
SI1{ISTAGE)=CSD1/ICSDUR
SI2(ISTAGE)=CSD2/ICSDUR

Endif
If(iswnit.eq.O)Then 

Si3{istage)=0.0 
Si4{istage)=0.0

El se
SI3(ISTAGE)=CNSD1/ICSDUR
SI4(ISTAGE)=CNSD2/ICSDUR

Endif
IF (ISTAGE.Eq.6) GO TO 2700
CALL PHASEI
RETURN

2700 IF(IPHOUT)Write(*,3700)yield,yieldb,GPSM,PEYEWT
IF(IPH0UT)Write(noutl,3700)yield,yieldb,GPSM,PEYEWT 
IF(IPHOUT)WRITE (*,3800)
IF(IPH0UT)Write(noutl,3800)
DO 2800 1=1,5

IF(IPHOUT)WRITE (*,3900) I,SI1(I),SI2(I),SI3(I),SI4(I)
1 ,STRING(I)
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IF(IPHOUT)WRITE (noutl,3900) I,SI1(I),SI2(I),SI3(I),SI4(I)
1 ,STRING(I)

2800 CONTINUE
IF(IPHOUT)Write(*,4000)
IF(IPH0UT)Write(noutl,4000)
IF(.NOT.RUNALL.and.IPHOUT) THEN

Write(*,*) ’ Press "ENTER" to continue.’
Read{5,’(Al)’) a

ENDIF
IF(IPHOUT)Call Clear 
if(iirr.eq.2.or.iirr.eq.3)then

IF(IPH0UT)write(*,2900)nirr,effirr 
2900 format(/,i6,’ IRRIGATION APPLICATIONS AT ’,F5.2,’ EFFICIENCY’ 

1,/)
LINES=NIRR/14
IF(LINES*14.LT.NIRR)LINES=LINES+1 
00 3000 1=1,LINES 

I1=14*(I-1)+1 
12=11+13
IF(I2.GT.NIRR)I2=Nirr
IF(IPH0UT)WRITE(N0UT1,3100)(Iday(MPX),MPX=I1,12) 
IF(IPH0UT)WRITE(N0UT1,3200)(AIRR(MPX),MPX=I1,12) 
IF(IPH0UT)WRITE(*,3100)(Iday(MPX),MPX=Il,I2) 
IF(IPHOUT)WRITE(*,3200)(AIRR(MPX),MPX=I1,12)

3000 CONTINUE
3100 FORMAT(IX,’DAY OF YR ’,14(13,2X))
3200 F0RMAT(1X,’AMOUNT mm ’,14(F4.0,IX))

totir=0.0 
do 3300 i=l,nirr 

3300 totir=totir+airr(i)
IF(IPHOUT)WRITE(NOUT1,3400)TOTIR 
IF(IPH0UT)WRITE(*,3400)T0TIR 

3400 F0RMAT(/1X,’IRRIGATION THIS SEASON : ’,F5.0,’ m m’)
endif
IF(.not.IMULTI) then 

CALL OPHARV
ELSE

CALL F0UT5
ENDIF
CALL PHASEI
iret=l
RETURN

3500 F0RMAT(1X,’CR0P FAILURE BECAUSE OF LACK OF ROOT INITIATION’, 
r  WITHIN 100 DAYS OF PLANTING’)

3700 Format(/,lx,’YIELD (KG/HA)=’,F8.0,IX,’(LB/A)=’,F9.1,IX,
1 ’EYEPSM=’,F6.0,1X,’EYE WT.(mg)=’,f8.1)

3800 FORMAT (/,IX,’ISTAGE’,6X,’CSDl’,5X,’CSD2’,5X,’CNSDl’,5X,
1 ’CNSD2’,2X,’ S T A G E  OF G R O W T H ’)

3900 FORMAT (IX,I6,4F10.2,3X,A35)
4000 Format(’ * NOTE: In the above table, 0.0 represents minimum’

1,/,’ stress and 1.0 represents maximum stress for water (CSD)’
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2,/,’ and nitrogen (CNSD), respectively.’) 
END

C********** PHASE INITIALIZATION SUBROUTINE ************************

This subroutine updates growing stages when a stage is completed 
and initializes or resets some important variables at the beginning 
of a stage.

SUBROUTINE PHASEI 
$Include: ’pinel.blk’
SInclude: ’pine2.Blk’
$Include: ’pineS.Blk’
$Include: ’pine4.Blk’
$Include: ’Ntrcl.Blk’
SNOTRUNCATE

CNSD1=0.0
CNSD2=0.0
CSD1=0.
CSD2=0.
ICSDUR=0

100 GO TO (200,300,400,500,550,600,700,800,900),ISTAGE 
c********ISTAGE 2: NET ZERO STEM GROWTH TO FORCING *************

200 ISTAGE=2
TEMPSTMWT=0.0
XSTMWT=0.0
GR0STM=0.0
RETURN

300 ISTAGE=3 
TBASE=6.25

c

SUMDTT=0.0
SUMP=0.

IDURP=0 
PLAMX=PLA 
GROFLR=0. 
GR0CRWN=0. 
GR0FRT=0. 
FLRWT=0.0 
FRTWT=0.0 
CRWNWT=0.0 
RETURN

400 ISTAGE=4 
TBASE=12.50 
SUMDTT=0.0 
FLRWT=0.1*STMWT

! When Istage 1 is ended, set it to 2 
! TempSTMWT is an intermediate variable.

FORCING TO SEPALS CLOSED ON YOUNGEST FLOWERS ****
! When Istage 2 is ended, set it to 3 
! Base temperature of 6.25 is used during forcing to 

sepals closed on youngest flowers 
! Cumulative growing degree days 
! SUMP is the total carbohydrate accumulated during 

Istage 4.
! Duration of Istage 3

SCY TO EARLY FLOWERING ******************** 

! When Istage 3 is ended, set it to 4 
! TBASE of 12.50 is used in this stage 
! Cumulative growing degree days
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! SWMIN is minimal stem weight 
! PTF is plant top fraction 
! EYEWT is fruitlet weight

I SWMAX is maximal stem weight

PREPLANTING *************************

! When Istage 6 is ended, set it to 7 
! Variables used in water balance

SKWT=0.0 
GR0SK=0.0 
SWMIN=STMWT*.65 
PTF=1.0 
EYEWT=0.0 
VANC=TANC 
VMNC=TMNC 
RETURN

(.***********J 5 . pruIT GORWTH *********************

500 ISTAGE=5 ' ! When Istage 4 is ended, set it to 5
FRTWT=FLRWT*0.5 ! FRTWT (g/plant) is fruit weight. It is

c assumed to be 50% of inflorescence at begining of the stage
CRWNWT=FLRWT*0.2 ! CRWNWT (g/plant) is crown weight which is 

c assumed to be 20% of inflorescence at the begining of the stage 
TBASE=4.0 ! Tbase of 4.0 is used in the stage
SUMDTT=0.0 ! Cumulative growing degree days
RETURN

6: PHYSIOLOGICAL MATURITY**********************
550 ISTAGE=6 ! When Istage 5 is ended, set it to 6

TBASE=4.0 
SWMAX=STMWT 
RETURN 

Q************ J STAG E 7:

600 ISTAGE=7 
CRAIN=0.
CES=0.
CEP=0.
CET=0.
PLA=CROWNWTINITIAL*0.6*63.0 
LAI=PLA*PLANTS*0.0001 
BIOMAS=CROWNWTINITIAL*PLANTS 
RETURN

c **************i s t a GE 8: PLANTING TO ROOT INITIATION **************
700 ISTAGE=8 ! When Istage 7 is ended, set it to 8

RTDEP=SDEPTH 
SUMDTT = 0.
PLA=CROWNWTINITIAL*0.6*63.0 
LAI=PLA*PLANTS*0.0001 
BIOMAS=CROWNWTINITIAL*PLANTS 
RETURN

c***ISTAGE 9: ROOT INITIATION TO EMERGENCE OF FIRST NEW LEAF *******
800 ISTAGE=9 ! When Istage 8 is ended, set it to 9

CET=0. ! Cumulative evapotranspiration after root intiation
CES=0. ! Cumulative evaporation after root initiation (mm)
CEP=0. ! Cumulative transpiration after root initiation (mm)
NDEF1=1.0
NDEF2=1.0
NDEF3=1.0
CRAIN=0.
SUMDTT=0.
TBASE=12.0 ! Tbase of 12.0 is used
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yl=0. ! fraction of light penetrating to the ground
PLA=CROWNWTINITIAL*0.6*63.0
LAI=PLA*PLANTS*0.0001
BIOMAS=CROWNWTINITIAL*PLANTS
RTWT=0.
RETURN

c****ISTAGE 1: EMERGENCE OF FIRST NEW LEAF TO NET ZERO ROOT GROWTH****
900 ISTAGE=1 ! When Istage 9 is ended, set it to 1

Tbase=Tbasel ! Tbasel used for calibration
SUMDTT=0.0 ! Cumulative growing degree days set to 0.0
CUMDTT=0.0 ! CUMDTT is also cumulative growing degree days

c but it is set to 0.0 olny at root initiation
PLA=CROWNWTINITIAL*0.6*63.0 

c CrownWTInitial is average crown weight
PLAY=PLA
TempPLA=0.0 ! TempPLA is an intermediate variable
XPLA=0.
PLAG=0.0 ! PLAG is daily green leaf area growth
LAI=PLANTS*PLA*0.0001 ! leaf area index 
LFWT=CR0WNWTINITIAL*0.53

! RTWT is root weight 
! STMWT is 25% of initial crown weight 
! Basal white leaf weight is 35% of 

initial crown weight

RTWT=0.20
STMWT=CR0WNWTINITIAL*0.115 
BasalLeafWT=LFWT*0.66

FLRWT=0.
STOVWT=CROWNWTINITIAL
BI0MAS=0.
XLFWT=0.
XBASALLEAFWT=0.
XSTMWT=0.
TEMPSTMWT=0.
FLRWT=0.
DO 1100 1=1,35 

SLA(I)=0.0 
GBLA(I)=0.0 

1100 CONTINUE 
GROSTM=0.
SENLA=0.

PLAS=0.0
SLAN=0.

Inflorescence weight 
STOVWT is stover weight

GROSTM is daily stem growth 
SENLA is area of leaf senesces 
due to stress on a given day

GR0RT=0.
GR0BSL=0.0 
GROLF=0.0 
IDUR=0 
CUMPH=0.514 
LN=1
IF (ISWSWB.EQ.O) RETURN 
DO 1200 L=1,NLAYR

CUMDEP=CUMDEP+DLAYR(L)

SLAN is total normal leaf 
senescence since emergence 
GRORT is daily root growth 
GROBSL is daily basal leaf growth 
GROLF is daily green leaf growth 
IDUR is duration of the stage 

! CUMPH is number of leaves emerged 
! LN is leaf number 

! Next section is used for water balance
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RLV(L)=0.20*PLANTS/DLAYR(L)
IF (CUMDEP.GT.RTDEP) GO TO 1300 

1200 CONTINUE
1300 RLV(L)=RLV(L)*(1.-(CUMDEP-RTDEP)/DLAYR(L))

L1=L+1
DO 1400 L=Ll,Nlayr 

RLV(L)=0.
1400 CONTINUE

DO 1500 L=l,Nlayr 
RWU(L)=0.

1500 CONTINUE
IF (ISWNIT.EQ.O) GO TO 1600 ! Next section for nitrogen balance 
RANC=0.022 
TANC=0.044 
ROOTN=RANC*RTWT 
STOVN=STOVWT*TANC 

1600 RETURN 
END

C
Q************** g r o w t h  s u b r o u t i n e  ***************

This subroutine calculates leaf area development, light 
interception, photosynthesis, and partitioning of biomass to 
various plant parts. Calculation of plant growth is balanced by 
the carbohydrate supply and demand for new growth.

SUBROUTINE GROSUB
REAL NSINK,NPOOLl,NP00L2,NPOOL,NSDR 

$Include: ’pinel.blk’
$Include: ’pine2.Blk’
$Include: ’pine3.Blk’
$Include: ’pine4.blk’
SInclude: ’Ntrcl.Blk’
$Include: ’Comibs.Blk’
SNOTRUNCATE

c******* CALCULATION OF BIOMASS PRODUCTION FOR A DAY *********
IF (ISWNIT.NE.O.and.Istage.lt.7) CALL NFACTO 
PAR=0.5*S0LRAD*EnergyUn i tConvers i onFactor 
yl=exp{-0.52*lai)
PCARB=ConvertCoeffi ci ent*PAR/plants*{1.-yl)

C*** A temperature factor is calculated for biomass production ******** 
PRFT=1.-0.0025*((0.25*TEMPMN+0.75*TEMPMX)-28.)**2 
IF (PRFT.LT.O.) PRFT=0.
CARB0=PCARB*AMIN1(PRFT,SWDF1,NDEF1) ! The law of minimum 
IF(DTT.LT.O.) DTT=0.
IF (ISTAGE.GT.3) GO TO 100
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1). Calculate photosynthetically active radiation (PAR, MJ m ’̂) 
from daily solar radiation. It is assumed that 50% of solar 
radiation are PAR. An energy unit conversion factor is used here 
to convert different unit of solar radiation into MJ/m2.

2). Calculate fraction of light penetrating to ground. Homogeneous 
leaf distribution both horizontally and vertically is assumed.
Light attenuation follows Beer’s law. The extinction coefficient of
0.52 is used here.

3). Calculate Potential biomass production at optimal conditions 
and actual biomass production for a day. A convert coefficient is 
used here to convert light energy to biomass. The law of minimum 
is applied here to calculate actual biomass production.

c********** CALCULATE LEAF EMERGENCE ************** 
c If SUMDTT>P7, plant population density begins to affect leaf 
c emergence, P7 is cummulative growing degree days since first leaf 
c emergence.

IF (TempM .gt. Tbase) then 
IF (SUMDTT.GT.P7) then

TI=(0.0225-0.00I08*Plants)*DTT ! J. Zhang (1991) (Chapter 1)
ELSE

TI=0.0224*DTT
ENDIF

else

TI = 0.0 ! If mean air temperature is less than Tbase,
endif ! no leaf emerges
CUMPH=CUMPH+TI ! CUMPH is number of expanded leaves.
XN=CUMPH+1. ! XN is leaf number of the oldest expanding leaf
LN=XN ! LN is leaf number

100 GO TO (200,300,400,600,1300,3000 ),ISTAGE 
C*** ISTAGE 1: EMERGENCE OF FIRST NEW LEAF TO END 0 NET STEM GROWTH *** 

200 XPLA=(I7.0*XN+3.II*XN*XN)*swdf2 ! J. Zhang (I99I) (Chapter 3)
IF (XPLA.LT.TempPLA) XPLA=TempPLA 

PLAG=XPLA-TempPLA 
TempPLA=TempPLA+PLAG 

PLA=PLA+PLAG ! Update total leaf area
c******* GREEN LEAF WEIGHT IS CALCULATED FROM LEAF AREA ********** 

XLFWT=(PLA/96.)**!.!5 
IF (XLFWT.LT.LFWT) XLFWT=LFWT 
GROLF=XLFWT-LFWT 
XBasalLeafWT=0.42*XLFWT
IF(BasalLeafWt.GE.LFWT) BasalLeafWt=LFWT*0.66 
IF(XBasalLeafWT.LT.BasalLeafWT) XBasalLeafWT=BasalLeafWT 
GROBSL=XBasalLeafWT-Basal LeafWT 

c** DAILY ROOT GROWTH IS CALCULATED FROM CARBO AND DAILY LEAF WEIGHT**
C If GRORT is less than 25% of CARBO then set to 25% of CARBO. A growth
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C reducing factor (GRF) is calculated and GROLF, GROBSL are reduced by 
C GRF. PLA is recalculated.

GRORT=CARBO-GROLF-GROBSL 
IF (GRORT.GF.0.25*CARBO) GO TO 280 
IF (GROLF.GT.0.0.OR.GROBSL.GT.0.0) THFN 

GRF=CARB0*0.75/(GROLF+GROBSL)
GRORT=CARBO*0.25

FLSF
GRF=1.0

FNOIF
GROLF=GROLF*GRF 
GROBSL=GROBSL*GRF 

PLA=(LFWT+GROLF)**0.87*96.0 
280 LFWT=LFWT+GROLF ! Update green leaf weight

BasalLeafWt=BasalLeafWT+GROBSL ! Update basal leaf weight
IF(GROLF.GT.O.) SLAN=PLA/1000.
LFWT=LFWT-SLAN/600. ! recalculate green leaf weight
GO TO 2200

C**** ISTAGF 2: FNO OF 0 NFT STFM GROWTH TO FORCING ****
300 XPLA=(17.0*XN+3.11*XN*XN)*AMINl(N0FF2,swdf2) ! J. Zhang (1991)

IF (XPLA.LT.TempPLA) XPLA=TempPLA 
PLAG=XPLA-TempPLA 
TempPLA=TempPLA+PLAG 

PLA=PLA+PLAG 
XLFWT=(PLA/96.)**1.15 
IF (XLFWT.LT.LFWT) XLFWT=LFWT 
GROLF=XLFWT-LFWT 
XBasalLeafWT=0.42*XLFWT
IF (XBasalLeafWT.LT.BasalLeafWT) XBasalLeafWT=BasalLeafWT 
GROBSL=XBasalLeafWT-BasalLeafWT

C

c******CALCULATION OF OAILY STFM GROWTH*****************
C Because stem dry weight is correlated with basal leaf dry weight up to 
C the time of forcing, XSTFMWT is calculated from XbasalLeafWT. XSTFMWT 
C and TFMPSTMWT are set to 0. at the end of zero net stem growth, 
c

XStemWT=0.52*XbasalLeafWT 
IF (XSTFMWT.LT.STMWT) XSTFMWT=STMWT 

GROSTM=XSTFMWT-STMWT 
IF(GROSTM.G T .GROBSL) GR0WSTM=GR0BSL 

GRORT=CARBO-GROLF-GROBSL-GROSTM 
IF (GR0RT.GF.0.15*CARB0) GO TO 380 

IF (GROLF.GT.0.0.OR.GROBSL.GT.0.0.OR.GROSTM.GT.0.0) THFN 
GRF=CARB0*0.85/(GROLF+GROBSL+GROSTM)
GRORT=CARBO*0.15

FLSF
GRF=1.0

FNOIF
GROLF=GROLF*GRF
GROBSL=GROBSL*GRF
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GROSTM=GROSTM*GRF 
PLA=(LFWT+GROLF)**0.87*96.0 

380 LFWT=LFWT+GROLF
BasalLeafWt=BasalLeafWT+GROBSL 
STMWT=STMWT+GROSTM 
IF(GROLF.GT.O.) SLAN=PLA/1000.
LFWT=LFWT-SLAN/600.
GO TO 2200

:***** ISTAGE 3: FORCING TO SEPALS CLOSED ON YOUNGEST FLOWERS *********

After forcing, stem dry weight increases rapidly. Number of eyes 
are determined in this stage. Inflorescence growth is assumed to 
be the funtion of growing degree days. Total biomass accumulated 
during the stage and duration of the stage are calculated. Both 
will used to calculate fruitlet number per fruit.

400 XPLA=(17.0*XN+3.11*XN*XN)*AMINl(NDEF2,swdf2) ! J. Zhang (1991) 
IF (XPLA.LT.TempPLA) XPLA=TempPLA 

PLAG=XPLA-TempPLA 
TempPLA=TempPLA+PLAG 

PLA=PLA+PLAG 
XLFWT=(PLA/96.)**1.15 
GROLF=XLFWT-LFWT 
XBasalLeafWT=0.425*XLFWT
IF (XBasalLeafWT.LT.BasalLeafWT) XBasalLeafWT=BasalLeafWT 
GROBSL=XBasalLeafWT-BasalLeafWT 
GROFLR=0.45*DTT/20.5*AMIN1(NDEF2,SWDF2).
GR0STM=GR0FLR**1.02.
IF (GROSTM.LT.0.0) GR0STM=0.0 
XSTEMWT=XSTEMWT+GROSTM 
IF (GROFLR.LT.0.0) GR0FLR=0.0 

GRORT=CARBO-GROLF-GROBSL-GROSTM-GROFLR 
IF (GRORT.GE.0.10*CARBO) GO TO 500 
IF (GROLF.GT.0.0.OR.GROBSL.GT.0.0.OR.GROSTM.GT. 

IO.O.OR.GROFLR.GT.0.0) THEN
GRF=CARBO*0.90/(GROLF+GROBSL+GROSTM+GROFLR)
GRORT=CARBO*0.10

ELSE
GRF=1.0

ENDIF
GROLF=GROLF*GRF
GROBSL=GROBSL*GRF
GROSTM=GROSTM*GRF
GROFLR=GROFLR*GRF
PLA=(LFWT+GROLF)**0.87*96.

500 LFWT=LFWT+GROLF
BasalLeafWt=BasalLeafWT+GROBSL 
TempSTMWT=TempSTMWT+GROSTM ITemperory stem weight 
STMWT=STMWT+GROSTM
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FLRWT=FLRWT+GROFLR 
IF(GROLF.GT.O.) SLAN=PLA/1000.
LFWT=LFWT-SLAN/600.
SUMP=SUMP+CARBO ! Total biomass cumulated during the stage
IDURP=IDURP+1 ! Duration of the stage
GO TO 2200

Q************** i s t a g e  4: SCY TO OPENING OF FIRST FLOWER ************ 

C Biomass begins to be partitioned to the inflorescence. Stem grows 
C continuously.

600 GR0FLR=0.45*DTT/20.5*AMIN1(NDEF2,SWDF2).
GR0STM=GR0FLR**1.02.
IF (GROSTM.LT.0.0) GR0STM=0.0 
XSTEMWT=XSTEMWT+GROSTM 
IF (GROFLR.LT.0.0) GR0FLR=0.0 

IF (TotalPIantWT.GT.600.) goto 700 
GRORT=CARBO-GROSTM-GROFLR 

IF (GRORT.GE.0.05*CARBO) GO TO 800 
IF (GROSTM.GT.O.O.OR.GROFLR.GT.0.0) THEN 

GRF=CARBO*0.95/(GROSTM+GROFLR)
GRORT=CARBO*0.05

ELSE
GRF=1.0 

ENDIF 
GOTO 750 

700 GRORT=CARBO*0.05
GR0SK=(CARB0-GR0STM-GR0RT-GR0FLR)*0.5 
IF (GROSK.GE.O.) GO TO 800 
GR0SK=0.
IF (GROSTM.GT.O.O.OR.GROFLR.GT.0.0) THEN 

GRF=CARB0*0.95/(GROSTM+GROFLR)
ELSE

GRF=1.0
ENDIF

750 GROSTM=GROSTM*GRF 
GROFLR=GROFLR*GRF 

800 STMWT=STMWT+GROSTM 
FLRWT=FLRWT+GROFLR 
SKWT=SKWT+GROSK 
GO TO 2200

C******ISTAGE 5: FRUIT ENLARGEMENT AND MATURITY****************

Most biomass partitioning to fruitlets occurs during this stage and 
stem growth contiues. If the total plant weight reaches 600 g in 
ISTAGE 5, suckers are assumed to initiate, otherwise, sucker growth 
initiated in ISTAGE 4 continues.

C 1300 IF (PLANTS.EQ.0.01) RETURN 
C IF(Carbo.eq.O.) Goto 1450 
1300 SLAN=PLA/1000. 

LFWT=LFWT*0.998
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BasalLeafWT=BasalLeafWT*!.001
RGFILL=0.0
DO 1400 1=1,8

TTMP=TEMPMN+TMFAC(I)*(TEMPMX-TEMPMN)
IF(TTMP.GT.4.0) RGFILL=RGFILL+(1.0-0.0017*(TTMP-28.)**2)/8. 

1400 CONTINUE
GR0FRT=RGFILL*GPP*G3*0.001*(0.45+0.55*swdf1) 
GR0CRWN=0.125*GR0FRT 
CRWNWT=CRWNWT+GROCRWN 
GR0STM=0.135*GR0FRT 
IF (GROSTM.LT.0.0) GROSTM=0.0 

IF (TotalPIantWT.GT.600.) then
GR0SK=CARB0-GR0STM-GR0FRT-GR0CRWN 
IF (GROSK.LT.0.0) GR0SK=0.0 
SKWT=SKWT+GROSK 
STMWT=STMWT+GROSTM 

ELSE
IF (GROSTM.LT.O.) GO TO 1700 
STMWT=STMWT+GROSTM 
GR0RT=GR0STM*0.10 

ENDIF
GO TO 1900 

1700 STMWT=STMWT+CARB0-GR0FRT
IF (STMWT.GT.SWMIN*!.07) GO TO 1900 
STMWT=STMWT+LFWT*0.0050+BasalLeafWT*0.0050 

1800 IF (STMWT.GE.SWMIN) GO TO 1900 
STMWT=SWMIN 
GR0FRT=CARB0 

1900 IF (ISWNIT.EQ.O) GO TO 2100 
C********** GRAIN N ALLOWED TO VARY BETWEEN .01 AND .018. 
C********** HIGH TEMP., LOW SOIL WATER, AND HIGH N INCREASE GRAIN N 

SFAC=1.125-.125*swdf2 
TFAC=0.69+0.0125*TEMPM 
GNP=(0.004+0.013*NFAC)*AMAX1(SFAC,TFAC)
NSINK=GROGRN*GNP
IF (NSINK.EQ.0.0) GO TO 2000
RMNC=0.75*RCNP
IF(RANG.L T .RMNC)RANC=RMNC
VANC=STOVN/STOVWT
IF(VANC.L T .VMNC)VANC=VMNC
NPOOL1=STOVWT*(VANC-VMNC)
NP00L2=RTWT*(RANC-RMNC)
xnf=0.15+0.25*nfac
tnlab=xnf*npooll
rnlab=xnf*npool2
npool=tnlab+rnlab

IF(ICSDUR .EQ. 1) GPP=AMINl(GPP*NDEF3,(NP00L/(.062*.0095))) 
NSDR=NPOOL/NSINK 

if(nsdr.lt.1.0)nsink=nsink*nsdr 
If(nsink.gt.tnlab)then 

STOVN=STOVN-tnlab
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rnout=nsink-tnlab
rootn=rootn-rnout
RANC=ROOTN/RTWT

else
STOVN=STOVN-NSINK
VANC=STOVN/STOVWT

endif
2000 GRAINN=GRAINN+NSINK

c
c************ UPDATE FRUIT WEIGHT ************** 

c
2100 FRTWT=FRTWT+GROFRT

FLRWT=FLRWT+GROFRT+GROCRWN 
c IF (STMWT.GT.SWMAX) STMWT=SWMAX 
C
2200 IF (CARBO.EQ.0.0) CARBO=0.001 

PDWI=PCARB*(1.O-GRORT/CARBO)
PGRORT=PCARB*GRORT/CARBO 
GO TO 2400 

2300 NFAC=1.0
c

c **** Calculation of zero-to-unity factors for leaf senescence due to 
drought
c stress (SLEW), competition for light (SLFC), and low temperature
(SLFT).
c
2400 SLFW=0.95+0.05*SWDF1 

SLFN=0.95+0.05*NDEF2 
SLFC=1.0
IF (LAI.GT.6.) SLFC=l.-0.002*(LAI-6.)
SLFT=1.
IF (TEMPM.GT.4.0) GO TO 2500 
SLFT=l.-(4.0-TEMPM)/4.0 

2500 IF (TEMPMN.GT.0.0) THEN 
ICOLD=0

ELSE
SLFT=0.0
IC0LD=IC0LD+1

ENDIF

c*** Leaf area senescence on a day (PLAS) and LAI is calculated for 
ISTAGE 1 to 5. 
c

IF (SLFT.LT.O.) SLFT=0.

PLAS=(PLA-SENLA)*(1.0-AMIN1(SLEW,SLFC,SLFT))
SENLA=SENLA+PLAS 
IF (SENLA.LT.SLAN) SENLA=SLAN 
IF (SENLA.GE.PLA) SENLA=PLA 
LAI=(PLA-SENLA)*PLANTS*0.0001 
IF(LN.GT.3.AND.LAI.LE.0..AND.ISTAGE.LE.3) THEN 

WRITE(*,2800)
WRITE(NOUT1,2800)
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ISTAGE=4
ELSE

IF(IC0LD.GE.7) THEN 
WRITE(*,2800)
WRITE(N0UT1,2800)
ISTAGE=5

ENDIF
ENDIF
RTWT=RTWT+0.5*GR0RT-0.01*RTWT 

c Half GRORT is used for respiration and 50% of root is lost due to 
c senescence. Finally, total biomass per unit area (BIOMAS, g m ‘̂), 
total

c plant weight, total plant dry weight per hactare (DM, kg ha‘̂) and 
c plant top fraction (PTF) are calculated, 
c

BIOMAS=(LFWT+STMWT+FLRWT+BasalLeafWT+SKWT)*PLANTS 
Total PI antWT=LFWT+STMWT+BasalLeafWT+FLRWT+SKWT 
DM=BIOMAS*10.0
PTF=(LFWT+BasalLeafWT+STMWT+FLRWT+SKWT)/(RTWT+LFWT+

1 Basal LeafWT+SKWT+STMWT+FLRWT)
IF (ISWNIT.NE.O) CALL NUPTAK 
RETURN

2800 FORMAT(2X,’CROP FAILURE GROWTH PROGRAM TERMINATED ’)
3000 RETURN 

END
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GLOSSARY

The following is a glossary of some important variables used in the 

Subroutines PHENOL, PHASEI and GROSUB of ALOHA-Pineapple. Variables used 

in other subroutines and the intermediate variables are not included.

ABIOMS Above-ground biomass per square meter (g m'^), data type: real.

BASALLEAF Basal leaf weight of the previous day, data type: real.
-WT

BIOMAS Total biomass per square meter (g m’̂ , data type: real.

CARBO Daily biomass production (g planf^), data type: real.

CONVERTC- coefficient to converte from per MJ of PAR to gram dry matter, data 
OEFFICIENT type: real.

CROWNWT- Initial crown weight (g plant'*), data type: real.
INITIAL

CRWNWT Current day’s crown weight, data type: real.

CUMDTT Cumulative daily thermal time after root initiation, data type: real.

DTT Daily accumulation of growing degree days, data type: real.

EYEWT The weight of the fruitlet (eye) (g eye'*), data type: real.

FLRWT Current day’s inflorescence dry weight, data type: real.

FRTWT Current day’s fruit weight (g plant'*), data type: real.

FRUITS Number of fruits per m ’̂ data type: real.

G2 Potential fruitlet (eye) number (eyes fruit'*), data type: integer.

G3 the maximum daily rate of fruitlet growth (mg eye * day'*), data type:
real.

240



GPP

GPSM

GRNWT

GROBSL

GROCRWN

GROFLR

GROFRT

GROLF

GRORT

GROSK

GROSTM

IDURP

lEFDATE

IRET

ISDATE

ISTAGE

ISWSWB

JDATE

LAI

MAXLAI

MDATE

Total number of fruitlets (eyes) per fruit, data type: real.

Number of fruitlets per square meter, data type: real.

Grain weight (g plant'*), only used for CERES-Maize, data type: 
real.

Daily basal leaf growth, data type: real.

Daily growth of crown, data type: real.

Daily growth of inflorescence (including peduncle), data type:real. 

Daily growth of fruit (g plant* day*), data type: real.

Daily green leaf growth (g plant'* day'*), data type: real.

Daily root growth (g plant* day'*), data type: real.

Daily sucker growth (g plant* day'*), data type: real.

Daily stem growth (g plant* day'*), data type: real.

Duration of stage 3 (days), data type: integer.

Date of anthesis of first flower, data type: integer.

Simulation cycle counter, data type: integer.

Forcing date, data type: integer.

Phenological stage, data type: integer.

Switch that determines whether the model calculates the soil water 
components of the model, data type: logical.

Day of the year, data type: integer.

Leaf area index (m  ̂leaf m'  ̂ground), data type: real.

LAI at the end of the stage 4, data type: real

Maturity date, data type: real.
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NDAP Number of days after planting, data type: integer.

PI Cumulative growing degree days from first leaf emergence to the end
of zero net stem growth, data type: real.

P2 Cumulative growing degree days from forcing to end of floret
initiation, data type: real.

P3 Cumulative growing degree days from end of floret initiation to
opening of first flower, data type: real.

P4 Cumulative growing degree days from opening of first flower to fruit
harvest, data type: real.

CP4 P4 corrected for the effect of plant population density.

P5 Cumulative growing degree days from fruit harvest to physiological
maturity, data type: real.

CPS P5 corrected for the effect of plant population density.

P6 Cumulative growing degree days since root initiation to first leaf
emergence under no water stress condition, data type: real.

P7 Cumlulative growing degree days from emergence of first new leaf to
the beginning of interplant competition (restricts vegetative growth) 
data type: real.

PAR Photosynthetically active radiation (MJ m'  ̂d'*), data type: real.

PCARB Daily potential dry matter production with optimum water, nitrogen,
and temperature conditions (g plant * day *), data type: real.

PEYEWT Fruitlet weight in mg plant*, data type: real.

PHOTOSYN-
EYE

PLAG

PLANTSIZE

Average rate of photosysthesis during stage 3 (g plant* day *), data 
type: real.

Daily green leaf area growth (cm  ̂plant* day *), data type: real.

Total above-ground plant dry weight at the time of forcing. It is a 
decision variable decided by users, data type: real.
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PRFT Photosynthetic reduction factor for low and high temperatures (0-1),
data type: real.

PTF PTF is plant top fraction (g planf^), data type: real.

RAIN Precipitation (mm d'^), data type: real.

RGFILL Relative rate of dry matter partitioning to fruit eyes (0-1), data type:
real.

SENLA Area of leaf senescenced (cm  ̂planf^) from a plant on a given day,
data type: real.

SLAN Total normal leaf senescence since emergence(cm^ planf‘), data type:
real.

SLET Leaf senescence factor due to low temperature (0-1), data type: real.

SLFT Leaf senescence factor due to competition for light (0-1), data type:
real.

SLFW Leaf senescence factor due to water stress (0-1), data type: real.

SOLRAD Solar radiation, data type: real.

STOVER Total plant weight except fruit (g planf^), data type: real.

SKWT Sucker weight (g planf^), data type: real.

SUMDTT The sum of growing degree days for a phenological stage, data type:
real.

SUMP The total weight of biomass accumulated in stage 3 (g planf^), data
type: real.

SWAFl Soil water deficit factor used to calculate the reduction in plant cell
expansion (0-1), data type: real.

SWDFl Soil water deficit factor used to calculate the reduction in
photosynthesis (1-0), data type: real.

SWMAX Maximal stem weight (g planr )̂, data type: real.
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SWMIN Minimal stem weight (g planf^), data type: real. It is 65% of
STMWT

TBASE Base temperature during daylight hours (°C), data type: real.

TEMPM Mean air temperature (°C), data type: real.

TEMPMN Minimum temperature (°C), data type: real.

TEMPMX Maximum air temperature (°C), data type: real.

TEMPPLA An intermediate variable used calculating daily green leaf area
growth, data type: real.

TEMPSTM- An intermediate variable for stem weight (g planf^). It is set to 0.0
WT at the beginning of Istage 2, data type: real.

TOTAL- Total above-ground plant dry weight per plant (g planr^), data type:
PLANTWT real.

TTMP 3-hour mean temperature (°C), data type: real.

XBASAL- New basal leaf weight for the day, data type: real.
LEAFWT

XFRTWT Measured fruit dry weight (g fruif^), data type: real.

XSTEMWT New stem weight for the day, data type: real.

YIELD Fresh fruit yield (kg ha'^), data type: real.

YIELDB Fresh fruit yield (lb acre"‘), data type: real.
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