
THE SYMBIOTIC EFFICIENCY OF 

SOME PEANUT CULTIVARS AND 

THEIR INTERACTION WITH STRAINS'OF RHIZOBIUM SPP.

A THESIS SUBMITTED TO THE GRADUATE DIVISION OF THE 
UNIVERSITY OF HAWAII IN PARTIAL FULFILLMENT 

OF THE REQUIREMENTS FOR THE DEGREE OF

MASTER OF SCIENCE

IN AGRONOMY AND SOIL SCIENCE

MAY 1979

By

Paul Singleton

Thesis Committee:

Wallace G. Sanford, Chairman 
B. Ben Bohlool 

Karl R. Stockinger 
Arthur S. Whitney

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by ScholarSpace at University of Hawai'i at Manoa

https://core.ac.uk/display/211323646?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


ACKNOWLEDGEMENTS ..............................................  iii

ABSTRACT.......................................................  iv
r

LIST OF TABLES................................................. vi

INTRODUCTION ................................................... 1

REVIEW OF LITERATURE ..........................................  1

CHAPTER I. EXPERIMENT 1 ..................................... 7

Abstract
Introduction
Materials and Methods
Results
Discussion

CHAPTER II. EXPERIMENT 2 ..................................... 25

Abstract
Introduction
Materials and Methods
Results
Discussion

CHAPTER III. EXPERIMENT 3 ..................................... 34

Abstract
Introduction
Materials and Methods
Results
Discussion

CHAPTER IV. EXPERIMENT 4 .......................................  40

Abstract
Introduction
Materials and Methods
Results
Discussion

S U M M A R Y .......................................................  55

APPENDIX.......................................................  58

BIBLIOGRAPHY ................................................... 67

TABLE OP CONTENTS



The writer wishes to acknowledge the assistance and advice 

offered by the University of Hawaii NifTAL Project staff and the 

thesis committee.

ACKNOWLEDGEMENTS

iii



A series of greenhouse and growth room tests were conducted to 

investigate the interactions between strains of Rhizobium spp. and
r '

cultivars of peanut (Arachis hypogea (L.)).

Two preliminary greenhouse studies. Experiments 1 and 2, 

involved testing five and seven strains of rhizobia respectively on 

two cultivars of peanut. Experiment 1 identified a strain (TAL 236) 

which was significantly better than other effective strains on both 

cultivars (Florida Giant and Starr). Data from the effective 

strains (those which reduced acetylene) indicated that cultivar 

Florida Giant fixed more nitrogen in early growth than Starr. Both 

cultivars had similar growth potential when provided NH^N0 3 . 

Experiment 2 showed significant strain by cultivar interactions 

among effective strains. Burpee Spanish yielded significantly more 

than Florunner when inoculated with strain AH8 but significantly 

less than Florunner when both were inoculated with strain T-1. This 

interaction emphasized the danger in assuming that strains selected 

for high efficiency on one cultivar of peanut will perform in a 

similar fashion on another. Strain TAL 1000 proved to be better 

than the other effective strains when data from both cultivars were 

considered.

Observations of plants during Experiments 1 and 2 indicated 

that plants inoculated with strains TAL 236 and TAL 1000 underwent 

greening of foliage earlier than those plants inoculated with less 

effective strains. A growth room experiment (Experiment 3) was 

undertaken to determine whether the earlier greening of foliage by
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the more effective host-strain combinations were related to the time 

required for nodule formation. Experiment 3 revealed a significant 

relation between host seed size and the time to nodule formation. 

However, the time to nodule formation could not be related to the 

degree of symbiotic effectiveness of host-strain combinations as 

determined in Experiments 1 and 2.

Effective strains TAL 1000, TAL 236, and TAL 309 were selected 

to test the symbiotic effectiveness of 1 2  cultivars of peanut in 

Experiment 4. Differences between cultivars and significant strain 

by cultivar interactions were revealed. The yields of the cultivars 

were more uniform when provided NH^N0 3  than when relying on the 

symbiosis as a nitrogen source. Some cultivars' average symbiotic 

yields were over 80% of their respective yields when supplied with 

mineral N. Other less efficient cultivars yielded only 50% of their 

mineral N controls. Cultivars inoculated with TAL 1000 generally 

had greater yields than those inoculated with strains TAL 309 or 

TAL 236.

These tests demonstrated the specific host by strain interac­

tions involved in the peanut-Rhizobium symbiosis. An effective 

symbiosis is both host and strain determined. Strains which had 

been shown to be highly effective on more than one cultivar in 

preliminary tests did not always result in a highly effective 

symbiosis with other cultivars.
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INTRODUCTION

Nations with rising populations, especially those in the 

tropics where per capita protein consumption is currently in a 

marginal state (U.N.F.A.O., 1973), face a dilemma in their attempt 

to produce adequate amounts of protein for human consumption. To 

meet this growing protein demand, there will either have to be a 

shift of scarce resources into the production of energy-expensive 

nitrogenous fertilizer or a greater reliance on biologically-fixed 

nitrogen. The extent to which the latter method can substitute for 

industrially produced nitrogen is a function of the world's 

technological ability to manipulate and utilize nitrogen of 

biological origins. The legume-Rhizobium symbiosis will be an 

important part of the effort to harness biologically-fixed nitrogen.

Of all legumes grown in the tropics, the peanut (Arachis 

hypogea) is, without doubt, the most extensively grown, accounting 

for 52% of total grain legume production (Rachie, 1974). Consider­

ing the peanut's importance both as a pulse and as an oil seed for 

industry or export, there is a relative lack of research directed 

to improving the peanut-Rhizobium symbiosis.

REVIEW OF LITERATURE

One possible explanation for the paucity of material concerning 

the peanut-Rhizobium symbiosis is the peanut's promiscuous nodulating 

behavior with cowpea type Rhizobium organisms (Gaur, 1974; Vincent, 

1974; Dart, 1974) which makes it difficult to demonstrate a clear
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response to field inoculation. Some investigations have been 

directed toward screening numerous strains of the microsymbiont for 

invasiveness and effectiveness on peanut (Weaver, 1975; Diatloff and 

Langford, 1975; Van der Merwe, et al.,' 1974). Few of the trials 

involved in these studies demonstrated a response to field inocula­

tion even though host recovery of the inoculant strain was, at 

times, substantial. The presence of highly effective native 

rhizobia was postulated as an explanation for this phenomenon.

While the microsymbiont has received considerable attention in 

the past in attempts to classify Rhizobium species differences 

(Baldwin and Fred, 1929; Graham, 1976), or to determine those 

parameters correlated with Rhizobium effectiveness, persistence, and 

competitiveness (Bohlool and Schmidt, 1973; Weber and Miller, 1972; 

Thompson, et al., 1974; Roughley, et al., 1976; Pinto, et al., 1974), 

little emphasis has been placed on examining the host effects on 

these various aspects of the symbiosis. It seems probable that many 

factors of the symbiosis are host determined, and may therefore be 

suitable for manipulation.

The problem of being able to introduce an effective strain into 

a soil environment and subsequently obtain an inoculation response 

in soils with a large Rhizobium population suggests at least four 

plausible approaches to increasing nitrogen fixation;

1) Screening and genetic manipulation of the bacteria for 

superior competitiveness and effectiveness;

2) Finding host genotypes that are capable of fixing increased 

amounts of nitrogen with a broad spectrum of Rhizobium



strains;

3) Maximizing the effects of better mineral nutrition; and

4) Obtaining host selectivity for efficient strains and 

resistance to nodulation by ineffective Rhizobium strains 

present in the soil.

Examination of peanut genotypes for their symbiotic capacities 

with broad spectrum strains of Rhizobium has not been undertaken. 

Demonstration of variation in either effectiveness or invasiveness 

of peanut cultivars in combination with a number of Rhizobium 

warrants some effort. As new cultivars are developed for commercial 

use, the possibility always exists that without proper screening, 

cultivars with low nitrogen fixing abilities will be released. 

Awareness of cultivar-strain specificity may avoid the possibility 

that a commercial inoculant strain is used on a cultivar for which 

it is either non-invasive or ineffective. These two possibilities 

have occurred: strain CB1809 is ineffective on soybean cultivar

Hardee (Diatloff and Langford, 1975); and Rhizobium trifolii strains 

TA 1 and UNZ 29 were non-invasive on Trifolium subterraneum cv. 

Woogenellup (Gibson, et al., 1976).

Many researchers concerned with the legume-Rhizobium symbiosis 

consider that many important factors of the symbiosis are host 

determined. This review of literature will examine and discuss 

works that pertain to various aspects of host influences on the 

symbiosis.

Genotypic variation in nitrogen fixation has been demonstrated 

for: Pisum sativa (Lie, et al., 1976); Medicago sativa (Gibson,



1962); Glycine max (Boyer and Bond, 1942); Trifolium pratense 

(Nutman and Read, 1952). The most revealing work was that done by 

Gibson (1962) on Medicago sativa. Fifteen cultivars were examined 

with six known effective strains of Rhlzobium meliloti. Data showed 

that the mean yields for cultivars were more variable than the mean 

yields of rhizobial treatments. Yields of all cultivars were 

similar when supplied with NH^NO^ indicating that the host 

varieties all had a similar early yield potential. Strain by 

variety interaction were also shown to be significant. J. C. Burton 

has shown a two fold difference in symbiotic nitrogen accumulation 

with cowpea genotypes inoculated with a wide range of Rhizobium spp.

Symbiotic capacity of host genotypes can be inherited. Crosses 

between high fixing varieties of Medicago sativa by low fixing 

varieties yielded host types with an intermediate capacity. This 

intermediate symbiotic response was independent of general genetic 

yield potential when given mineral nitrogen (Gibson, 1962).

Workers in Minnesota (Seetin and Barnes, 1977) claim to have doubled 

nitrogen fixation in alfalfa through a program of selection and 

breeding. Nutman (1961) demonstrated an increase in fixation in F̂  

hybrids of Trifolium subterraneum but was unable to sustain the 

increase through the F4 . Duhigg, et al. (1978) have demonstrated 

wide variability in symbiotic capacity within the alfalfa cultivar 

•Mesilla.' Crosses between plants identified as high fixing types 

had dry weight increases of 57% above the cultivar mean. A multiple 

strain inoculum was used in the selection process.

Genotypes showing extreme invasive specificity within a cross



inoculation group would facilitate the introduction of a preferred 

strain of rhizobia into the soil. This type of host characteristic 

is not frequently observed; however, some discriminating lines such 

as Trifolium subterraneum cv. Woogenellup do exist (Gibson, et al., 

1976) .

A non-nodulating characteristic with many strains has been 

observed for some species: Trifolium pratense (Nutman, 1946);

Glycine max (Williams and Lynch, 1954); Pisum sativa (Lie, et al.,

1976) . Both dominant and recessive genes have been identified as 

being responsible for the non-nodulating character. Genes for non- 

nodulation in Pisum sativa were found to be temperature specific 

(Lie, et al., 1976). It has not been demonstrated whether these 

genes for invasive specificity can be exploited to increase nitrogen 

fixation.

Observations concerning the host effects upon the competitive 

abilities of a mixed Rhizobium population have been made for;

Glycine max (Caldwell and Vest, 1968); Trifolium spp. (Vincent and 

Waters, 1953); Trifolium subterraneum (Roughley, et al., 1976). 

Robinson (1969) claims, on the basis of his studies with subterraneum 

clover, that hosts distinguish between effective and ineffective 

strains and favor the former in nodule formation. Vincent and 

Waters' data (1953) contradict this finding. The mechanism involved 

in this phenomenon is not clear. Inheritance of host selectivity 

for particular strains has not been examined. Whether plants can be 

developed that select certain desirable soil or inoculum strains for 

nodulation is not known.



Resistance to infection by single strains has been shown on 

hosts that normally nodulate with other strains (Lie, et al., 1976). 

Incorporation of plant resistance to infection by known ineffective 

soil strains may result in increased nitrogen fixation.

Investigation into either host resistance to infection by 

ineffective strains or host selectivity of more desirable strains 

implies that the presence of both effective and ineffective nodules 

reduces nitrogen fixation below that produced with effective nodules 

alone. The quantification of this relationship has not been under­

taken.

It seems probable that the most productive avenue to increasing 

nitrogen fixation with promiscuous tropical legumes would appear to 

be selection of varieties that have a high symbiotic capacity when 

inoculated with a wide range of rhizobial strains. This study was 

undertaken to examine this concept for cultivated varieties of 

peanut. Rather than using large numbers of strains to test each 

cultivar, a pre-selection process was conducted on strains to ensure 

their effectiveness with a minimum number of host varieties.



CHAPTER I

EXPERIMENT 1; THE SYMBIOTIC EFFECTIVENESS OF FIVE STRAINS 
OF RHIZOBIUM SPP. WITH TWO CULTIVARS OF PEANUT (ARACHIS

HYPOGEA (L.)')

ABSTRACT

A greenhouse pot experiment was conducted to test the symbiotic 

effectiveness of two cultivars of peanut (Arachis hypogea (L.)) with 

five strains of Rhizobium spp. and to observe the suitability of a 

subirrigation growth system for use in Rhizobium strain testing.

The two cultivars, Florida Giant and Starr, were either inoculated 

with each of five strains of Rhizobium spp. or given 450 mg of 

mineral N.

Total nitrogen in shoots indicated that there were significant 

differences among rhizobial strains, cultivars, and significant 

strain by cultivar interactions.

Acetylene reduction data were not highly correlated with shoot 

weights or shoot N; however, results did indicate that only three 

strains (TAL 309 (CB756), TAL 236, TAL 170 176 A23) were capable of 

reducing acetylene with these two cultivars.

Significant cultivar differences were found in the partitioning 

of dry matter. The ratio of shoot weight to root weight was larger 

for the higher yielding cultivar, Florida Giant. Shoot to root 

ratios were positively correlated with shoot N.

It was observed that strain treatment which reduced acetylene 

tended to have larger nodules. Nodule number was not related to
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effectiveness.

The subirrigation growth system employed in this experiment 

provided satisfactory control of contamination by extraneous strains 

of Rhizobium. No uninoculated plants''reduced acetylene. No 

significant diffusion of N into the system occurred from pots given 

NH4 NO3 .

INTRODUCTION

The peanut is, without doubt, the most important legume in the 

tropics; accounting for 52% of total grain legume production (Rachie,

1974). Despite the peanut's importance both as a pulse and as an 

oil seed for industry and export, there is a relative lack of 

research directed to improving the peanut-Rhizobium symbiosis.

There have been numerous investigations undertaken to test 

various strains of Rhizobium for effectiveness on peanut. While 

greenhouse differences in strain performance are demonstrated 

(Weaver, 1974; Diatloff and Langford, 1975; Allen and Allen, 1940) 

few works reported in the literature have indicated that a field 

response to inoculation with selected strains is possible in the 

tropics (Diatloff and Langford, 1975; Van der Merwe, et al., 1974; 

Subba Rao, 1976). Weaver (1974) showed that many peanut Rhizobium 

from Texas were not as effective as selected strains in laboratory 

trials yet a yield response to inoculation with selected strains 

could not be demonstrated in the field (Weaver, personal communica­

tion, Texas A & M University). Hickey, et al. (1974) obtained a 

large response to inoculation of peanut grown in newly cultivated
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sands of Florida. Bajpai, et al. (1974) reported a 21% increase in 

peanut yield with inoculation in India. It appears that a response 

to inoculation is possible only in special situations. The lack of 

inoculation response may be due to either larger numbers of invasive 

Rhizobium in the soil (Caldwell and Vest, 1970), the level of 

effectiveness of the native strains (Diatloff and Langford, 1975), or 

adequate soil nitrogen.

The peanut's promiscuous nature (Gaur, et al., 1974; Dart, 1974) 

and the prevalence of peanut-invasive, cowpea-type Rhizobium in the 

tropics compound the difficulty in demonstrating a response to field 

inoculation.

One approach to increasing nitrogen fixation in the peanut may, 

therefore, involve the selection of host genotypes that fix large 

amounts of nitrogen with a number of strains of Rhizobium. Some 

workers have demonstrated this concept for other species of legumes: 

Medicago sativa (Gibson, 1962; Seetin and Barnes, 1977); Vigna 

unguiculata (Burton, unpublished); Vicia faba (El-Sherbeeny, et al.,

1977) .

Gibson (1962) has demonstrated the existence of rhizobial strain 

by host variety interactions for nitrogen fixation efficiency.

Testing cultivars for their nitrogen fixation capacities would be 

more revealing if the strains used in the test were broad spectrum. 

This would reduce the possibility that low cultivar performance was 

strain determined.

By testing strains of Rhizobium with two cultivars of peanut, 

this study was designed to identify effective strains that would



perform well on both cultivars with minimal strain by cultivar inter­

actions. These strains then provide a basis for testing the symbiotic 

effectiveness of many additional cultivars in Experiment IV.

Many growth systems have been developed for plant-Rhizobiurn 

effectiveness tests. Some of these were the result of pasture legume 

research. Systems such as tube culture and modified Leonard jars 

(Vincent, 1970) are either too limiting to growth or require excessive 

time for construction and maintenance for testing large seeded grain 

legumes. An alternative system has been proposed by Weaver (1975) 

that has larger growth capacities and reduced time requirements.

The growth system evaluated in this study is a modification of one 

described by Weaver. An additional objective of this study will 

therefore be to evaluate such a system for capacity and uniformity of 

peanut growth and for bacteriological control.

MATERIALS AND METHODS

Growth System and Plant Culture

A subirrigation system modified after Weaver's (1975) was 

employed. Six glass reservoirs each containing 26 liters of nitrogen- 

free nutrient solution (Broughton and Dilworth, 1971) and fitted 

with a constant head device (Marriott tube) were each connected to a

surgical tubing main line (1.3 cm I.D., .32 cm wall). Stock nutrient

solutions were diluted with tap water passed through an ultra violet 

sterilizer (Refco Products). The pH of the diluted nutrient

solutions was adjusted to pH 7.3. Pressure heads in all six main

lines were adjusted to 2.5 cm with the aid of calibrated sight

10



glasses.

Individual pots (1 liter plastic pots. Lab Tek Products) were 

connected to the main line via surgical tubing laterals (.95 cm 

I.D., .32 cm wall) and 14 ga. aluminunf hypodermic needles (Monoject). 

Lateral lines were fitted to a hole punched in the bottom of the 

plastic pots such that the surgical tubing-pot connection was water 

tight. The other end of lateral lines were fitted to a hole punched 

in the bottom of the plastic pots such that the surgical tubing-pot 

connection was water tight. The other end of lateral lines were 

fitted to hypodermics which were pushed into the main line.

Pots were sterilized in a .6 % sodium hypochlorite solution for 

48 hours, rinsed with hot tap water, then rinsed with a 70% solution 

of ethanol.

Bottoms of pots were filled with sterile, coarse gravel (24 

hours at 100°C) followed by sterile growth medium (autoclaved at 15 

lbs. for 0.5 hours). The medium was composed of 50% washed 

vermiculite and 50% horticultural perlite (V:V). The pH of the 

medium was 7.2.

Four surface sterilized seeds (7 minutes with 3% sodium 

hypochlorite, rinsed in sterile .01 N HCl, followed by 10 sterile 

water rinses) were placed on the medium, covered with 2 cm 

additional medium followed by 1 cm of sterile aquarium gravel. Seeds 

of varieties Starr (bunch type) and Florida Giant (runner type) were 

obtained from the NifTAL seed collection. Pots were connected to 

their assigned subirrigation system and free water levels adjusted 

to 2.5 cm.
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Pots were thinned to two plants per pot 10 days after planting. 

Internal pot temperatures reached a maximum of 32°C during germination.

Pots receiving mineral nitrogen were given NH4NO3 (3.56 M) 

according to the following schedule:

Days from Planting Mg N/pot
14 50
20 200
29 100
36 100

The NH^N0 3  was placed 4-5 cm below the surface of each pot with a 

sterile Pasteur pipette.

Plants were inoculated ten days after planting; each plant 

receiving 1 ml of a turbid suspension of yeast extract mannitol broth 

(YMB) (Vincent, 1970) containing approximately 10® viable cells/ml of 

the appropriate strain of Rhizobium. Cultures were placed near the 

root system of the seedlings with a pipette.

Plant observations were made five times during the course of the 

experiment. Size relative to plus nitrogen treatments and leaf color 

were noted. Plants were observed daily for flower initiation begin­

ning 28 days from planting.

Harvesting Procedure

Pots were harvested by block after 40 days of growth. Plants 

were cut just beneath the cotyledon. Roots were shaken free of medium 

and incubated for one hour in 4.7% acetylene in 2100 ml plastic bottles 

fitted with a serum stopper. A 10 ml gas sample was withdrawn with an 

evacuated tube (Vacuutainer). A .5 cc sample from the tube was later 

injected into a Varian Aereograph 940 gas chromotograph equipped with 

a column packed with Poropak R to detect the presence of ethylene
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(Hardy, et al., 1968). Acetylene concentrations in blocks I and II, 

as determined by gas chromatography, were low (approximately 1.4% 

acetylene). There apparently was a gas leak in the acetylene storage 

bladder.

Shoots of all pots were dried at 65°C for 48 hours and weighed. 

Dried shoots were ground, and N determined by a modified Kjeldalh 

method using the colormetric determination of ammonium (Mitchell, 1972),

Roots were washed clean of media and graded for nodule number, 

nodule diameter (average of 1 0  nodules per root system), the percent 

effective nodules (based on visual presence or absence of leghemo- 

globin) and the extent of tap root nodulation. These ratings were 

applied to a nodule grading system based on a maximum total value for 

efficient nodulation of 10 (Sandman, 1970). Roots with nodules were 

dried at 65°C for 48 hours and weighed.

Statistical Design

Treatments were laid out in a randomized complete block design 

with each nitrogen source treatment assigned to its own subirrigation 

system. The four blocks were arranged along the length of a green­

house bench. Uninoculated controls of both cultivars were connected 

to the subirrigation systems of the rhizobial treatments. In addition, 

four uninoculated pots of cultivar Florida Giant were connected to the 

sub-irrigation system provided for plus nitrogen treatments. One pot, 

removed from the experiment due to disease, was accounted for with a 

missing pot formula from Snedecor and Cochran (1974).

13



RESULTS

There were significant differences among the shoot N of the 

various strain treatments as well as differences between the two 

cultivars (TABLE 1). Shoot dry weights for this experiment are in 

Appendix B. Strain TAL 236 was superior to TAL 309 on both cultivars. 

While TAL 309 gave higher shoot N yields than TAL 170 differences 

within each cultivar were not significant. The mean N yield of 

TAL 309 across both cultivars was, however, significantly greater 

than TAL 170. Dry weight differences between the effective strains 

TAL 309 and TAL 170 and ineffective strains were not significant 

even though total shoot N differences were significant. This was 

due to the late inoculation and early harvest of this experiment. 

Differences in total N were due to differences in shoot N concentra­

tions.

A significant interaction between nitrogen source and cultivar 

treatment combinations can be readily seen. The yield of Florida 

Giant when inoculated with TAL 236 was not different than its mineral 

nitrogen treatment, but cultivar Starr, when inoculated with TAL 236, 

yielded only 61% of its respective mineral nitrogen treatment.

The large seeded cultivar, Florida Giant (1.2 g/seed) consis­

tently yielded more N than Starr ( . 6  g/seed). The response of Starr 

to mineral nitrogen was 1.7 times that of its best rhizobial 

treatment. The yields of Florida Giant and Starr when given NH^N0 3  

were similar; suggesting that both cultivars had equal genetic 

potential in early seedling growth. Cultivar Starr does not appear 

to have as high a symbiotic potential as Florida Giant with these

14



TABLE 1. —  SHOOT N OF TWO CULTIVARS OF PEANUT INOCULATED WITH FIVE
STRAINS OF RHIZOBIUM SPP.

Strain Florida Giant Starr Mean

NH4NO3 386 a
- mg N/pot -----

323 a 355 a

TAL 236 410 a 197 b 303 b

TAL 309 286 b 153 c 2 2 0  c

TAL 170 248 b 149 c 190 d

TAL 423 80 c 53 d 67 e

Uninoculated 8 6  c 39 d 62 c

TAL 174 77 c 40 d 58 e

Mean 225 a 136 b

Means within group not followed by the same letter differ at P ^  .05 
as given by Duncan's New Multiple Range Test.
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strains. The mean N yield (314 mg N/pot) of effective strains TAL 

236, TAL 309, TAL 170 on Florida Giant was equal to 82% of the 

mineral N treatment. The mean of the same effective strain treatments 

on Starr was 197 mg N, which is only 5'2% of Starr’s mineral nitrogen 

yield.

Large within treatment variation for the acetylene reducing 

strains eliminated the possibility of distinguishing differences 

between the active strains (TABLE 2). However, the assay distinguishes 

between those strains which were capable of reducing acetylene (TAL 

236, TAL 170, TAL 309) and the inactive strains (TAL 423, TAL 174).

Partitioning of the dry matter production revealed significant 

differences between rhizobial treatments and between the cultivars 

(TABLE 3). There was no interaction between N source and cultivars 

for the ratio of shoot weight to root weight (including nodules). 

Florida Giant had a significantly higher (P ^  .01) ratio of shoot 

weight (4.8) than Starr (3.7). The mineral N and TAL 236 treatments 

tended to have higher shoot to root ratios than the less effective 

rhizobial treatments. The ratio of shoot weight to root weight when 

regressed on total dry matter production yielded a highly significant 

positive linear correlation (r = .91**). The same ratio regressed on 

shoot N was correlated at 4 = .74**.

The nitrogen source had no effect on the number of days needed 

for 50% of the pots of a treatment to show flower initiation 

(Appendix C). Cultivar Starr did, however, flower significantly 

earlier than Florida Giant (33.7 days versus 35.6, P £  .01).

Estimates of nodule number could not be related to effectiveness

16



(Appendix D). The one nodule parameter that was related to effec­

tiveness was the average diameter of nodules. Ineffective treatments 

(TAL 423, TAL 174) had nodules that averaged 1 mm or less in diameter 

as contrasted to effective treatments which had nodules with average 

diameters ranging from 1.3 mm to 2.1 mm. Florida Giant had larger 

nodules than Starr. Nodule numbers for the two cultivars were similar 

except in one treatment. TAL 174 consistently produced less than 100 

nodules on Florida Giant whereas the same culture produced over 200 

nodules on Starr. The average diameter of nodules formed by TAL 174 

on Florida Giant was also consistently smaller than those on Starr. 

Growth could not be related to the nodule efficiency index of 

Sandman (1970).

Plant observations made throughout the experiment for leaf color 

and size indicated distinctly earlier greening of foliage for plants 

inoculated with TAL 236. This occurred at 32 days. Plants inoculated 

with TAL 309 and TAL 170 showed color changes five days later. 

Treatments TAL 174 and TAL 423 were yellow to yellow green in 

appearance. The uninoculated controls had foliage color similar to 

those of the ineffective rhizobial treatments.

The N yield of uninoculated pots of Florida Giant which were 

connected to the same subirrigation system as pots receiving mineral 

N was not different than other uninoculated Florida Giant pots which 

were connected to the system of rhizobial treatments. Control pots 

of Florida Giant connected to the plus N systems provided a mean yield 

of 71 mg N per pot. Controls connected to rhizobial treatment 

systems yielded 8 6  mg N per pot as seen in Table 1. The two means
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TABLE 2. —  ACETYLENE REDUCTION FOR TWO CULTIVARS OF PEANUT INOCULATED 
WITH FIVE STRAINS OF RHIZOBIUM SPP.

Strain Florida Giant Starr Mean

TAL 170 21.5 a 14.5 a 17.7 a

TAL 309 14.5 a 17.1 a 15.8 a

TAL 236 16.5 a 14.9 a 15.7 a

TAL 174 0 . 0 b 0 . 0 b 0 . 0  b

TAL 423 0 . 0 b 0 . 0 b 0 . 0  b

NH4NO3 0 . 0 b 0 . 0 b 0 . 0  b

Uninoculated 0 . 0 b 0 . 0 b 0 . 0  b

Mean 17.2 a 15.5 a

Means within a group not followed by the same letter differ at P ^  .05 
as given by Duncan's New Multiple Range Test.
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TABLE 3. —  THE RATIO OF SHOOT WEIGHT FOR TWO CULTIVARS OF PEANUT 
INOCULATED WITH FIVE STRAINS OF RHIZOBIUM SPP.

Strain Florida Giant Starr Mean

-------- shoot wt/root wt -
NH4NO3 7.6 a 7.7 a 7.7 a

TAL 236 4.9 b 3.6 b 4.3 b

TAL 309 4.6 b 3.0 b 3.8 b

TAL 174 4.2 b 3.0 b 3.6 b

Uninoculated 4.3 b 2.7 b 3.8 b

TAL 170 3.8 b 3.1 b 3.5 b

TAL 423 4.0 b 2 . 8  b 3.4 b

Mean 4.8 a 3.7 b

Means not followed by the same letter are significant at P .01 as 
given by Duncan's New Multiple Range Test.
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are not different (P <, .6 8 ) . Apparently, no significant amount of 

mineral N diffused into the sub-irrigation system.

None of the uninoculated pots for either Florida Giant or Starr 

reduced acetylene. Nodule observation^ of these pots, however, 

indicated that some contamination took place. No more than ten 

nodules were found on contaminated controls. The few nodules found 

on contaminated pots tended to be larger than those on inoculated 

pots.

DISCUSSION

The promiscuous nodulating behavior of the peanut with cowpea 

type Rhizobium and the wide distribution of these Rhizobium have made 

it difficult to demonstrate a clear response to field inoculation. 

Failure to obtain a response with selected strains has occurred even 

when up to 60% of the nodules were formed by the inoculum strain 

(Diatloff and Langford, 1975; Van der Merwe, et al., 1974). Finding 

host genotypes that can fix large amounts of nitrogen relative to 

their potential with mineral nitrogen may be one approach to 

increasing nitrogen fixation with peanut. To test the hypothesis 

that genotypes of peanut vary in their symbiotic capacities it is 

necessary to use strains of Rhizobium that are highly effective on 

more than one variety.

Strains TAL 236, TAL 170, and TAL 309 (CB756) have been previously 

shown to be highly effective on peanut cultivar Burpee Spanish at 

NifTAL. TAL 309 (CB756) is a widely used, effective, broad spectrum 

cowpea type Rhizobium.
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Experiment 1 showed that the two cultivars' potentials for 

growth with mineral nitrogen were more similar than their growth when 

the source of N is the symbiosis. The fact, that cultivar Starr's seed 

size was only half that of Florida Giaht's did not appear to seriously 

reduce its early growth potential with mineral nitrogen.

Early vigor of the two cultivars when given mineral nitrogen did 

not appear to be related to their symbiotic capabilities. Gibson 

(1962) showed that the early N yield of 15 alfalfa (Medicago sativa) 

varieties given NH4 NO3 were more uniform than the varieties' mean N 

yields when in symbiosis with six effective strains of Rhizobium 

meliloti. Mean symbiotic cultivar yields across the six strains 

varied more than the mean rhizobial treatments across the 15 

cultivars. Although this experiment with peanut involved only two 

cultivars and three previously tested, effective strains of Rhizobium, 

the difference between cultivar yields with the symbiosis varied more 

than the inoculant treatments.

No serious strain by host interactions were revealed. All three 

effective strains reduced acetylene on both cultivars. The ranking 

of the strains on the two cultivars was the same; TAL 236 was 

superior on both cultivars. The ineffective strains behaved similarly 

on both cultivars; they did not reduce acetylene on either cultivar 

nor did the cultivar means differ from the uninoculated pots.

Since the two peanut cultivars have a similar early yield poten­

tial with mineral N and yet differ so greatly with respect to their 

symbiotic yields with three previously selected effective strains, it 

seems reasonable to conclude that the symbiotic capacities of the two
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cultivars differ considerably. The symbiotic potential of these two 

cultivars is independent of potential with mineral N. The fact that 

the rank of the three strains is the same on both cultivars lends 

support to this hypothesis. Starr consistently yielded less with 

each effective strain than Florida Giant.

The partitioning of dry matter in plants has been shown to be a 

function of mineral nutrition. Brower (1962) demonstrated that the 

ratio of shoot weight to root weight of corn had a positive relation­

ship with the amount of NO3 supplied. In this experiment, peanut 

showed similar trends. The shoot to root ratio was highest and 

nearly identical for both cultivars when given mineral N. Florida 

Giant consistently had a higher shoot to root ratio than Starr for 

both effective and ineffective strain treatments. This morphological 

characteristic of Florida Giant appears to be related to its higher 

symbiotic shoot N yield. Thus, improved N nutrition either from 

symbiotic or mineral sources reduces the partitioning of dry matter 

to the roots of peanut and thereby provides for greater shoot growth.

Neither mode of N supply nor degree of rhizobial effectiveness 

affected the number of days to floral initiation. Hardy and Havelka 

(1976) have shown that peak nitrogenase activities take place in the 

early stages of flowering. If the degree of effectiveness altered 

the time to flower initiation this could in turn have a feedback 

effect on nitrogen fixation. Starr flowered significantly earlier 

than Florida Giant. The earlier physiological change did not result 

in greater nitrogen accumulation for cultivar Starr.

Nodule gradings according to the system of Sandman (1970) could
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not be correlated with N accumulation. One nodule parameter that did 

correlate with nitrogen fixation was nodule diameter (r = .78**).

Both cultivars had approximately the same number of nodules with the 

effective Rhizobium. The average nodule diameter for the effective 

Rhizobium on Florida Giant was significantly greater than Starr 

(t = 4.4***, 22 d.f.). Since average nodule numbers were the same 

and the average nodule diameter was greater for Florida Giant it 

implies that there was more active nodule tissue on the effective 

Florida Giant treatments than that found on Starr. Average nodule 

diameter appears to be a good indicator of nitrogen fixation when 

number of nodules are constant.

The observation that ineffective strain TAL 174 consistently 

produced fewer and smaller nodules on Florida Giant than on Starr 

implies that Florida Giant may possess partial resistance to infection 

by this strain.

The most efficient strain, TAL 236, caused dark green foliage to 

appear 3-5 days prior to plants inoculated with the other effective 

strains, TAL 309 and TAL 170. Cultivar Florida Giant did not show 

dark green foliage earlier than Starr. Whether actual reduction of 

di-nitrogen occurred earlier in the higher yielding cultivar cannot 

be determined.

Shoot N of the plus N treatments (450 mg N added) indicated that 

over 75% of the applied N was recovered in the shoots of Florida 

Giant and 65% in Starr. These figures account for seed N assuming 

4.8% N in the seeds (Smartt, 1976).

Uninoculated pots connected to the plus N irrigation system did
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not differ from uninoculated pots connected to random irrigation 

systems having no plus nitrogen pots attached. Apparently, no signif­

icant amount of mineral N diffused into the system from pots receiving 

NH4NO3.
In conclusion, the growth system tested in this experiment 

appears to have a large growth capacity and is capable of providing 

adequate if incomplete control of contamination by extraneous 

Rhizobium. Having up to eight pots receiving 450 mg of mineral N each 

does not result in significant diffusion of N into the irrigation 

systems.

Despite large differences in seed size, early yield potentials 

of Florida Giant and Starr appear to be more similar when given NH4 NO3  

than when relying on symbiosis with three strains of Rhizobium shown 

previously to be effective with peanut. Florida Giant is capable of 

fixing considerably more N in early growth than Starr with the three 

effective strains. This greater symbiotic capacity was related to 

larger shoot to root ratios. One strain, TAL 236, is superior to the 

other strains with both cultivars. Having shown no serious interac­

tions between the cultivars and other effective strains, TAL 236 is 

the logical choice for testing additional cultivars of peanut.

Since the mean N yield of the cultivars across the effective 

strains varied more than the mean strain yields, selection of hosts 

for high symbiotic potential may be the most feasible way to increase 

N yields of peanuts.

24



CHAPTER II

EXPERIMENT 2; THE SYMBIOTIC EFFECTIVENESS OF SEVEN STRAINS 
OF RHIZOBIUM SPP. WITH TWO CULTIVARS OF PEANUT (ARACHIS

HYPOGEA (L.))

ABSTRACT

Two cultivars of peanut (Arachis hypogea (L.)) were tested in 

the greenhouse for symbiotic effectiveness with seven strains of 

Rhizobium spp. Significant differences in rhizobial strains and 

significant strain by cultivar interactions were observed at the 45 

day harvest. Strain TAL 1000 did not differ from the mineral nitrogen 

control on either cultivar and there was no strain by cultivar inter­

action. A Hawaiian isolate, TAL 1000, produced a mean shoot yield 

across both cultivars that was significantly greater than T-1, a 

standard Texas peanut strain.

The significant strain by cultivar interactions with two other 

effective strains demonstrated the danger in selecting superior 

strains of rhizobia on a single genotype. In one case the symbiosis 

of AH8 with cultivar Burpee Spanish would be classified as being 

superior. Yet the mean shoot yield of AH8 across both cultivars 

show AH8 to be significantly less efficient than TAL 1000.

An ineffective mutant of a normally effective strain (SU) was 

ineffective on both cultivars and therefore, not cultivar specific.

An isolate of Acacia koa nodulated both cultivars but the symbiosis 

with this isolate (TAL 301) was ineffective.

The two cultivars had the same early yield potential with the
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four effective strains as when given mineral nitrogen.

INTRODUCTION
r

Screening for rhizobial effectiveness on peanut has indicated 

that the peanut, which is promiscuous in nodulating behavior also has 

a somewhat specific requirement for effectiveness (Dadarwal, 1974; 

Gaur, et al., 1974).

This experiment was conducted to identify additional superior 

strains of Rhizobium that are highly effective on two cultivars of 

peanut. Also, isolates made from peanut in Hawaii were compared with 

a highly effective strain from Texas.

An ineffective mutant of a Texas strain was also included to 

determine whether or not the ineffective trait is cultivar specific. 

The ineffective strain had been previously tested on another cultivar 

(Weaver, personal communication, Texas A & M University). Nodulation 

characteristics of the ineffective mutant were observed in order to 

compare these characteristics with other ineffective strains.

Habish and Khairi (1968) reported that isolates from Acacia spp. 

did not nodulate Arachls hypogea. This contradicts the findings of 

Gaur, et al. (1974) who showed Arachis hypogea to be extremely 

promiscuous in its nodulating behavior. An isolate from Acacia koa 

was therefore included in this test to help clarify the contradiction 

between the results of Gaur, et al. (1974) and Habish and Khairi 

(1968).

Results from Experiment 1 indicated that a strain superior on 

two cultivars could be identified. The objective of this experiment
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was to identify another strain which is both highly effective and yet 

exhibits no interactions with two different cultivars. These broad 

spectrum strains will then be used to test additional cultivars of 

peanut for their symbiotic capacity in'order to minimize the proba­

bility that poor cultivar performance in symbiotic capacity is due to 

low Rhizobium strain effectiveness.

MATERIALS AND METHODS

Growth System and Plant Culture

A subirrigation system modified after Weaver's (1975) and 

described in detail in Experiment 1 was employed. Pot media consis­

ted of 60% perlite and 40% vermiculite (V;V) as opposed to the 50:50 

ratio used in Experiment 1. Pots were planted with four surface 

sterilized seeds of one of two cultivars, Florunner (runner type) and 

Burpee Spanish (bunch type) as per Experiment 1. Each seed was 

inoculated at planting with .5 ml of one of seven rhizobial strain 

YMB cultures (Vincent, 1970).

An NH4 NO2 standard was employed for each cultivar. Applications 

of 450 mg N as NH4 NO2 was performed as in Experiment 1 according to 

the following schedule:

Days After Planting Mg N Applied
13 50
24 100
26 1 0 0

35 100
40 100

Pots were thinned to two plants per pot 16 days after planting.
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Rhizobium Culture

Cultures of seven strains of Rhizobium spp. were grown in 25 ml

of YMB (Vincent, 1970) for 8 days. The strains, described in

Appendix F contained in excess of 3 x 10® cells/ml as determined by 

plate count (Vincent, 1970).

Harvest Procedure

Pots were harvested by block 45 days after planting. Shoots 

were cut beneath the cotyledon taking care to include all pegs of the

plants. Shoots were dried at 65°C.

Statistical Design

The design employed was a completely randomized block design. 

Blocks (4) consisted of a subirrigation system with each of the 18 

treatment combinations (2 cultivars x 7 strains and plus and minus N) 

represented once in a block. Pots were randomized spatially on the 

greenhouse bench.

RESULTS

There were no differences in shoot dry weight between the two 

cultivars but there were significant differences between rhizobial 

strains and significant strain by cultivar interactions (TABLE 4).

Strain TAL 1000 performed better on both cultivars than the 

standard Texas strain T-1. Strain AH8 was not different from TAL 

1000 on cultivar Burpee Spanish but yielded significantly less than 

TAL 1000 on Florunner. Strain T-1 yielded significantly more than 

AH8 on Florunner but significantly less than AH8 on Burpee Spanish.
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TABLE 4. —  SHCX)T WEIGHTS OF TWO PEANUT CULTIVARS INOCULATED WITH 
SEVEN STRAINS OF RHIZOBIUM SPP.

Treatment Burpee Spanish Florunner Mean

450 mg N 

TAL 1000 

T-1 

AH8 

AH10 

SU-in 

TAL301 

CONTROL 

UMKL 44

14.1 a

13.5 a

1 1 . 2  b

13.6 a

7.7 c 

6 . 0  cd 

5.4 d 

5.3 d

5.8 cd

g/pot ---
14.7 a

14.0 a

1 2 . 8  a 

1 0 . 2  b

8 . 6  be 

6 . 8  cd

6.7 cd 

6 . 6  cd 

5.3 d

14.4 a 

13.7 a 

1 2 . 0  b 

11.9 b 

8 . 2  c

6.4 d

6 . 0  d

6 . 0  d

5.4 d

Mean 9.2 a 9.5 a

Means in the same group not followed by the same letter are signifi­
cant at P ^  .05 as given by Duncan's New Multiple Range Test.
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In neither cultivar was the NH4NO3 treatment better than TAL 1000. 

Strain means show that TAL 1000 was superior, being significantly 

better than any of the other effective strains when data from both 

cultivars were considered.

Strain AH10 was only partially effective, yielding more than the 

uninoculated control on both cultivars but only 59% of the yield 

obtained with TAL 1000.

Strain SU-ineff, a mutant of a normally effective strain (Weaver,

1975) was ineffective on both cultivars.

Plants inoculated with TAL 301, an isolate from Acacia koa, 

formed nodules but was ineffective on both cultivars.

The mean yields of Florunner and Burpee Spanish across all 

treatments were the same. The average yields for the two cultivars 

were nearly identical when given NH4NO3 or when inoculated with the 

effective strains TAL 1000, T-1, or AH8 (12.8 g for Burpee Spanish, 

12.5 g for Florunner).

Nodule observations after harvest showed that strain TAL 301 

produced many small nodules compared to effective strains such as 

TAL 1000. The ineffective mutant, Su-ineff, produced nodules of a 

more normal size on Florunner but very small nodules on Burpee 

Spanish.

Contamination of uninoculated controls was observed. This 

contaminant nodulation was located on lateral roots rather than the 

tap root and did not appear to affect yields.
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This test showed that a strain could be selected which was 

superior on two cultivars. TAL 1000 proved to be superior on two
r

distinctly different cultivars with very little interaction between 

the two cultivars and other strains. Therefore, TAL 1000 is a 

suitable strain for use in future examination of additional peanut 

cultivars. TAL 1000, AH8 , and AH10 were isolated from Virginia 

runner peanut at the NifTAL site. At the time of isolation visual 

examination of nodules indicated that TAL 1000 appeared to be a 

highly effective strain. The amount of leghemoglobin was so great 

the nodule appeared to be red from the outside.

Plant observations during the experiment indicated that dark 

green foliage was present on plants inoculated with TAL 1000 four 

days earlier than those inoculated with strain T-1 and AH8 . TAL 1000 

caused foliage color changes a full eleven days before those inocu­

lated with AH10. Greenhouse strain selection for symbiotic effective­

ness may be selecting for early nodule formation or early activation 

of the nitrogenase enzymes system. Whether early performance of host 

strain combinations is indicative of their final field performance is 

not clear. Early initiation of nitrogen fixation would be a clear 

advantage in those field situations where soil nitrogen was at 

extremely low levels.

The highly significant cultivar by strain interactions between 

effective strains T-1 and AH8 indicate the danger of selecting for 

superior strains on only one genotype. Mean yields of AH8 and T-1 

treatments gave the same yield and should be considered of equal

DISCUSSION
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effectiveness. However, if strain selection with these two strains 

were to be undertaken with one cultivar or the other, one of the 

strains would be classified as a lesser effective strain. Further­

more, if single cultivar strain selection with these strains would 

have been undertaken on Burpee Spanish, AH8 would have been classified 

as a highly effective strain. However, it is effective only for that 

cultivar; AH8 is significantly less effective than TAL 1000 when data 

from both cultivars are considered.

Strain SU-ineff, an ineffective mutant of a normally effective 

strain, was ineffective on both cultivars. This shows that the 

trait was not cultivar specific. Nodules produced by SU-ineff were 

smaller than nodules produced by the effective strains but larger 

than those incited by other ineffective strains.

TAL 301, an isolate from Acacia koa did form numerous but very 

small nodules on both cultivars. This confirms the observations made 

by Gaur (1974) as opposed to statements made by Habish and Khairi 

(1968). Isolates from at least some Acacia spp. are therefore, 

capable of nodule formation with peanut.

In conclusion, data from Experiments 1 and 2 indicate that 

testing of rhizobia with a single cultivar may lead to inappropriate 

selection of strains for superior effectiveness. Some strains, while 

superior with an individual genotype, are inferior when considered 

with two genotypes. Single cultivar tests for general strain effec­

tiveness do appear to be valid for identifying those strains which 

are effective on peanut as opposed to being completely ineffective.

No strain in either Experiments 1 and 2 was found to be effective on
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one genotype and completely ineffective on another. The significant 

strain by cultivar interactions indicate that strains used for 

commercial inocula should be tested on the specific cultivars which 

are to be planted. ^

It does appear that strains which are superior on at least two 

different cultivars can be identified. TAL 236 has been shown to be 

superior relative to some other known effective strains. TAL 236 was 

tested on a total of three cultivars. TAL 1000 was shown to be 

significantly better than some other peanut strains on two cultivars.

Some cultivars such as Burpee Spanish and Florunner have similar 

early yield potentials with a variety of effective strains and 

mineral nitrogen. Other cultivars, as shown in Experiment 1, seem to 

differ in their symbiotic potential with strains selected previously 

for effectiveness on peanut.
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CHAPTER III

EXPERIMENT 3: TIME TO NODULE FORMATION OF THREE CULTIVARS
OF PEANUT (ARACHIS HYPOGEA (L.)) INOCULATED WITH TEN STRAINS

OF RHIZOBIUl^ SPP.

ABSTRACT

A growth room study was undertaken to determine if three culti­

vars of peanut (Arachis hypogea (L.)) and ten strains of invasive 

Rhizobium spp. varied in the time to nodule formation (TNF).

Significant differences were found for TNF among the three 

cultivars. TNF of the cultivars was positively correlated with seed 

size.

Strain differences in TNF and strain by cultivar interactions 

were observed. TNF could not, however, always be related to symbiotic 

efficiency as determined by Experiments 1 and 2. The implication of 

this study is that although the time to activation of the nitrogenase 

system may be an important determinant of symbiotic performance, this 

is not necessarily well correlated with time to nodule formation.

INTRODUCTION

Results of plant observations in Experiments 1 and 2 indicated 

that some rhizobial strain-cultivar combinations seemed to initiate 

nitrogen fixation earlier than other combinations. In Experiment 1, 

plants inoculated with strain TAL 236 exhibited dark green foliage 

five days before plants inoculated with less effective strains such
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as TAL 309 and TAL 170. Similarly, periodic plant observations in 

Experiment 2 indicated that plants receiving strain TAL 1000 had 

distinct changes in foliage color four days prior to the next best 

strain, T-1. Strain AH8 also showed cblor differences three days 

prior to changes in plants treated with partially effective strain 

AH10. Strain AH8 was significantly better than AH10 for dry matter 

yield. These data suggested that symbiotic efficiency as revealed in 

short greenhouse pot tests was a function of the speed at which 

nitrogen fixation is initiated. Whether the time to the onset of 

nitrogen fixation was related to the time to nodule formation (TNF) 

is not clear.

Nutman (1967) showed that TNF was both host and strain dependent 

for Trifolium subterraneum. Early nodulation was found to be poly- 

genetically inherited in a complex fashion. Nutman did not demon­

strate a significant interaction between the host and strain for TNF. 

Variability in TNF for Trifolium ambiguum (Hely, 1957), Trifolium 

pratense (Nutman, 1946) and Trifolium repens (Jones, 1963) was larger 

than the variability found in Trifolium subterraneum (Nutman, 1967). 

Robinson (1969) found that differences in TNF between species of 

Trifolium and Rhizobium trifolii isolates were related to symbiotic 

efficiency. The least efficient host-strain combinations were the 

slowest to nodulate.

This experiment was conducted to determine whether variability 

in TNF exists for rhizobial strains infecting different genotypes of 

peanut and to determine whether TNF is related to the symbiotic 

effectiveness of the host-strain combinations as determined in Experi-
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MATERIALS AND METHODS

r

Surface sterilized seed ( 8 minutes in 3% sodium hypochlorite, 

sterile .01 N HCl rinse, 4 sterile water rinses) of cultivars Florida 

Giant, Florunner, and Burpee Spanish were planted in sterile plastic 

seedling growth pouches (Scientific Products) according to Weaver 

(1972). The radicle ends of 3 seeds were placed in separate holes 

punched in the bottom of the paper planting trough. Pouches were 

filled with 30 ml of sterile nitrogen-free nutrient solution 

(Broughton and Dilworth, 1971). Pouches were alternately replenished 

with nutrient solution and de-ionized water.

Pouches were thinned to two plants per pouch six days after 

planting. Emerging radicles of remaining seedlings were inoculated 

with .5 ml of the appropriate YMB culture. All cultures had at least 

1 X 10® cells per ml. Pouches were suspended on racks in a growth 

room.

One week after inoculation, daily observations of root systems 

were made to detect the presence of nodules. Plants in some pouches 

did not grow well and were removed from the experiment before 

observations began, creating treatments of unequal sample size. 

Analysis of data was, therefore, carried out according to methods 

outlined by Snedecor and Cochran (1974). Sixteen sterile uninoculated 

controls were included in the experiment.

ments 1 and 2.
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RESULTS

Significant differences between the cultivars, rhizobial treat­

ments, and strain by cultivar interactions for TNF were apparent
r

(TABLE 5). The large seeded runner variety, Florida Giant (1.2 

g/seed) , was significantly slower to nodulate than either Florunner 

(.77 g/seed) and Burpee Spanish (.52 g/seed). Florunner was slower 

to form nodules than Burpee Spanish. Florida Giant required, on 

average, 20.1 days to nodulate versus 16.3 for Florunner and 14.5 for 

Burpee Spanish.

Significant differences in TNF for rhizobial treatments were 

also found. Effective strains TAL 1000 and AH8 had lower TNF than 

the ineffective mutant, SU-ineff. The relationship between TNF and 

efficient symbiotic capability is, however, not consistent. Strain 

su-ineff has a significantly lower TNF than effective strains TAL 

309, TAL 170, AH10, and TAL 236. Ineffective strains TAL 423 and 

UMKL 44 were the slowest strains to form nodules.

DISCUSSION

Differences between effective strains in their nitrogen fixing 

efficiency were shown in Experiments 1 and 2. Figures for TNF in 

this experiment indicated that TAL 236 had a longer TNF than less 

efficient strains TAL 309 and 170. Similarly, AH8 had a significantly 

shorter TNF than T-1 yet the two strains are comparable in nitrogen 

fixation efficiency.

It appears then, that TNF is both host and rhizobial strain
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TABLE 5. —  TIME TO NODULE FORMATION (TNF) FOR THREE CULTIVARS OF 
PEANUT INOCULATED WITH 10 STRAINS OF RHIZOBIUM SPP.

Strain Burpee Spanish Florunner Florida Giant Mean

AH8 11 .5 12.4 16.8 13.3 a

TAL 1000 13.2 13.0 15.0 13.5 ab

SU-ineff 13.0 19.5 18.0 15.0 be

T-1 15.0 14.3 17.7 16.5 cd

TAL 309 14.0 14.5 21.4 17.2 d

TAL 170 15.2 15.2 2 2 . 2 17.5 d

AH10 13.7 12.5 20.9 17.7 d

TAL 236 17.3 17.3 19.8 18.4 de

UMKL 44 17.4 19.6 24.5 2 0 . 1 ef

TAL 423 19.0 2 0 . 6 23.8 21.7 f

Mean 14.5 a 16.3 b 2 0 . 1  c

Means not followed by same letter differ at P ^  .05.
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related. Larger seeded hosts tend to nodulate slower than smaller 

seeded types. The TNF figures for the cultivars vary directly with 

seed size. Greater seed nitrogen reserves probably inhibit nodule 

initiation until nitrogen is depleted to some critical level in the 

plant.

TNF was not related to rhizobial strain growth rate on agar or 

broth media. Colony size on YMA (Vincent, 1970) impregnated with 

bromthymol blue and turbidity in YMB show UMKL 44 to be faster 

growing than AH8 and AH3. UMKL 44 had a larger TNF than the other 

two strains. Observations of broth cultures showed that T-1 grew 

faster than AH8 and AH3 yet took longer to form nodules.

Whether TNF in this growth room study correlates exactly with 

TNF in the greenhouse pots used for effectiveness tests cannot be 

determined. If the correlation is close this study would indicate 

that the time to the activation of the nitrogenase enzyme system 

would be the critical determinant in early rhizobial strain effective­

ness rather than the initiation of nodules, and that these two factors 

are necessarily well correlated.
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CHAPTER IV

EXPERIMENT 4: GREENHOUSE STUDIES ON THE SYMBIOTIC EFFECTIVE­
NESS OF TWELVE TROPICAL PEANUT CULTIVARS

ABSTRACT

A greenhouse experiment was conducted to compare the early 

nitrogen fixing capacities of 12 cultivars of peanut (Arachis hypogea 

(L.)). One liter plastic pots containing vermiculite and perlite and 

connected to a subirrigation system were used to test the effect of 

inoculation with three strains of Rhizobium spp. in comparison with 

an NH4NO3 control on each cultivar. All three strains of Rhizobium 

had previously been shown to be highly effective with at least two 

cultivars of peanut. Dry weight data from five week old plants 

indicated that cultivar yields were relatively more variable when 

relying on the symbiosis than when given NH^N0 3 . Cultivar means 

composed of the three Rhizobium treatments (symbiotic mean) ranged 

from 6.3 g/pot to 12.5 g/pot. Means of the same cultivars given 

mineral N ranged from 10.6 g/pot to 15.8 g/pot. The symbiotic means 

of cultivars relative to their respective yield with NH4 NO3 ranged 

from .47 to .87. Data for total shoot N showed a similar trend. 

Significant cultivar by Rhizobium strain interactions were also found. 

The existence of strain by cultivar interactions indicates the need 

to reconsider the selection of strains of Rhizobium on a single 

cultivar.
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As Stated previously in Experiment 1, the peanut is the most 

important legume in the tropics. It is of significant importance to
r

small farmers in the tropics as both a pulse and a cash crop. Despite 

the importance of this crop little research has been conducted 

concerning the peanut-Rhizobium symbiosis.

One factor that may have limited research on this symbiosis is 

the fact that the peanut is one of the most promiscuously nodulating 

legumes (Gaur, et al., 1974; Dart, 1974). A wide range of slow 

growing, cowpea type Rhizobium nodulate peanut. Experiment 2 showed 

that isolates from such diverse origins as Acacia koa and Calipogonium 

muconoides nodulated peanut. The pervasive nature of these types of 

organisms has made it difficult to demonstrate a clear response to 

inoculation (Van der Merwe, et al., 1974; Diatloff and Langford, 1975; 

Subba Rao, 1976). Whether the failure to demonstrate an inoculation 

response is the result of poor inoculum competitiveness, high effec­

tiveness of native strains, or the presence of some other yield 

limiting factor is not always clear. However, Diatloff and Langford 

(1975) did have 50% of the nodules of field grown peanut formed by the 

inoculum strain (TAL 309/CB756) and showed no response. They found 

that some soil strains were equally as effective as their inoculum in 

pure culture tests.

One approach to increasing the symbiotic N yield of peanut may 

be to develop plant genotypes that have a high symbiotic capacity with 

a number of rhizobial strains. Gibson (1962) showed that when fifteen 

cultivars of Medicago sativa were grown in combination with six effec­
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tive strains of Rhizobium meliloti average cultivar yields varied 

more than average strain yields even though the response of the 

cultivars to NH4 NO3 was almost identical. High fixing varieties 

yielded 82% of their NH4 NO3 controls. 'Low fixing types yielded only 

33% of their mineral N treatment. The lowest mean strain yield, on 

the other hand, was 71% of the highest strain mean. Gibson's data 

showed a highly significant variety by strain interaction. Crosses 

of low fixing varieties by high fixing varieties indicated that 

symbiotic capacity could be inherited. Large within variety variation 

for symbiotic capacity was also found. This variation was greater 

for genotypes in the intermediate range of symbiotic capacity.

Other workers have noted host varietal differences in nitrogen 

fixation or nodulation characteristics on Glycine max (Johnson and 

Means, 1960) and Trifolium spp. (Nutman, 1961; Gibson, 1964). Workers 

in Minnesota reported to have doubled the nitrogen fixation capacities 

of some Medicago sativa lines through selection (Seetin and Barnes, 

1977). Duhigg, et al. (1978) found significant variation for nitrogen 

fixation within the cultivated alfalfa variety 'Mesilla.'

A number of cultivated genotypes of peanut, having commercial 

potential in the tropics were examined in this experiment in order to 

identify varieties which have a high capacity for nitrogen fixation 

in early growth. A large application of NH4 NO3 was administered to 

each cultivar as a standard of genetic potential. Comparison of 

symbiotic yields to a nitrogen standard should reduce the apparent 

effects that general vigor and seed size play in early nitrgoen 

fixation. Each cultivar was tested with three highly effective
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strains of Rhizobium. The strains, TAL 1000, TAL 236, and TAL 309 

(CB756) were all chosen on the basis of prior effectiveness tests. 

Each strain had been proven to be highly effective on at least two 

cultivars and did not show significant'strain by cultivar interac­

tions on the cultivars tested. TAL 236 has been tested with three 

cultivars at NifTAL, TAL 309 was tested with three cultivars at 

NifTAL and others at different research centers. TAL 1000 was tested 

on two cultivars. By prior selection of strains on multiple host 

varieties it is probable that more broad spectrum strains have been 

selected. This should reduce the likelihood that low cultivar yields 

will be strictly strain induced.

This experiment was, therefore, undertaken to determine whether 

variation in symbiotic capacity relative to genetic potential exists 

among cultivars of peanut. Another objective of this experiment was 

to repeat the earlier procedure of selecting broad spectrum highly 

effective strains using only two or three cultivars.

MATERIALS AND METHODS

Germplasm

Seeds of 12 peanut cultivars identified as having significant 

potential in the tropics were provided by D. E. McCloud of the Inter­

national Peanut Program, Gainesville, Florida. Oven dry weights were 

taken to determine what, if any, effect seed weight had on final 

shoot yield.
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Growth System and Plant Culture

A modified subirrigation system after Weaver (1975) was used.

The physical arrangement of this system has been described in detail 

in Experiment 1.

The bottom 1 cm of one liter plastic pots, sterilized in 1% NaOCl 

for 24 hours, were filled with coarse, sterilized gravel, then filled 

to the top with a sterile mixture of perlite (grade II) and expanded 

vermiculite 1:1 (V:V). Seeds were surface sterilized in 1% NaOCl for 

3 minutes, followed by eight sterile water rinses, and planted four to 

a pot (radicle end down) at a depth of 2 cm after inoculation of the 

pot. Sterile aquarium gravel was placed over the surface of the media. 

Pots were moved to the greenhouse at day 4 and connected to the sub­

irrigation system.

Free water levels in the system were maintained at approximately 

2 . 1  cm with the aid of previously calibrated sight glasses.

Stock solutions of a nitrogen-free nutrient solution (Broughton 

and Dilworth, 1971) were pipetted into calibrated glass reservoirs 

filled with tap water passed through an ultraviolet sterilizer (Refco 

Products). Nitrogen was delivered to plus N treatments in the form 

of NH4 NO3 added to the appropriate reservoir. The concentration of 

N in the reservoir was adjusted according to the following schedule:

Days from Planting ppm N in solution
4 - 1 8  50
19 - 25 100
26 - 32 150
33 - 43 200

The pH of both N-free and plus N nutrient solutions was adjusted 

to 7.6. The pH of the rooting media at harvest was 5.6.
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Pot experiments reached 38°C in late afternoon during germina­

tion. To avoid adverse effects of this extreme temperature, a shade 

cloth (50% transmission) was placed over the greenhouse benches at 

day 5 and removed at day 10. Pot temperatures reached a maximum of 

33°C after a plant canopy was established.

Inoculum cultures were YMB. Determination of viable counts 

prior to inoculation was by a standard spread-plate method (Vincent, 

1970). Culture broth was pipetted into a 2 cm hole in the media where 

the seed was to be placed.

Harvest Procedure

Forty three day old plants were harvested, one block per day, at 

11:00 a.m. The acetylene reduction assay was performed in 10% acety­

lene as described in Experiment 1. Shoots were cut below the cotyle­

don, and dried at 60°C. Shoots were then ground, digested, and 

ammonium determined after Mitchell (1972).

Nodulation was observed and rated for the following characteris­

tics: percent effective; nodule number; nodule diameter; and

intensity of tap root nodulation. The methodology of these observa­

tions followed that of Sandman (1970).

Statistical Design

A modified split plot design was employed (Snedecor and Cochran, 

1974) with the main plots consisting of individual reservoir main-line 

systems. Three bacterial and a plus nitrogen treatment were each 

assigned to individual reservoir systems. Cultivars comprised the 

subplots and all treatment combinations were replicated 3 times in a
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randomized block design. This design provided for greater precision 

in measuring cultivar differences and cultivar by Rhizobium treatment 

interactions. Since block effects are confounded with main plot 

effects so differences between strains could not be statistically 

measured. The inability to statistically distinguish between N-source 

treatments was not considered critical since all three strains of 

Rhizobium had previously been shown to be effective on peanut and the 

identification of superior strains was therefore not an objective of 

this experiment. However, an approximation of symbiotic performance 

with each strain was evaluated by comparing the dry weight of 

cultivar-Rhizobium treatments to the cultivar*s corresponding dry 

weight in the presence of mineral nitrogen.

RESULTS

There were significant shoot dry weight differences between 

cultivars (TABLE 6 ). Significant strain by cultivar interactions 

were also present. Cultivar means (the mean of all treatments

including NH4 NO3 ) could be separated into three groups. Early Bunch

and Giza-4 are significantly higher yielding than the other cultivars. 

Most cultivars fell within a large intermediate group that had shoot

yields in the range of 9.0 g/pot to 10.4 g/pot. Two cultivars

performed poorly; Makula Red and P3-261. Cultivar F3-261 did not 

appear to be adapted to the growth system used in this experiment, 

since it yielded poorly even when provided with mineral N. The 

cultivars also separated into similar groups when the cultivar means 

of symbiotic treatments (mean excluding N treatment) only are consid-
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TABLE 6 . —  SHOOT DRY WEIGHT OF TWELVE CULTIVARS OF PEANUT INOCULATED WITH THREE STRAINS OF
RHIZOBIUM SPP.

CULTIVAR

INOCULATION TREATMENT (Rhizobium strains)
TAL 1000 TAL 236 TAL 309

AMMONIUM
NITRATE

Dry
Weight

% of N 
Control

Dry
Weight

% of N 
Control

Dry
Weight

% of N 
Control

Cultivar Mean
Dry

Weight
g/pot g/pot % g/pot % g/pot %

Early Bunch 14.4 16.9 117 14.3 99 6.3 44
Giza-4 15.1 17.8 118 8.0 53 11.0 73
Tato-34 14.8 13.5 91 8.9 60 4.5 30
Bachimba 14.6 9.5 65 8.3 57 8.4 58
Valencia R-2 11.2 16.2 145 8.0 71 4.7 42
Col. Correntino 12.0 8.3 69 9.0 75 8.9 74
156 of Cuba 15.8 8.9 56 3.6 23 9.9 63
Sulasmith 12.9 13.8 107 6.2 48 4.7 46
Blanco Rio Seg. 10.6 9.6 91 6.5 61 9.8 92
Egret 10.8 9.8 91 8.4 78 7.0 65
Makula Red 12. 1 9.3 77 5.3 44 4.4 36
F3-261 6 . 6  7.0 106 4.6 6 8 5.8 8 8

g/pot

13.0 a
13.0 a 
10.4 b 
1 0 . 2  b
1 0 . 0  b
9.6 be
9.6 be 
9.4 be 
9.1 be
9.0 be 
7.8 cd
6 . 0  d

Source d.f. F
Cultivar 11 9.2**
Cultivar x strain 35 4.0**

LSD.05 for individual treatment combinations 
LSD.05 for cultivar grand mean =1.8

3.6



ered. Again, Early Bunch and Giza-4 are significantly better than 

the other cultivars. Makula Red and F3-261 gave significantly lower 

yields. One cultivar, 156 of Cuba, had a very low symbiotic yield 

which was not significantly different'than Makula Red or F3-261.

The yields of all cultivars, except F3-261, were fairly uniform 

when given NH4NO3 . If F3-261 is ignored, the lowest yield with 

mineral N (10.6 g/pot for Blanco Rio Seg) was 70% of the highest 

yielding cultivar given NH4NO3 (15.8 g/pot for 156 of Cuba). The 

yield range of symbiotic treatments was much greater. 156 of Cuba 

yielded only 3.6 g with TAL 236 while Giza-4 yielded 17.8 g with 

TAL 1000.

TABLE 7 shows similar cultivar results for total shoot N. While 

a dry weight response to mineral N on almost all cultivars was 

obtained, the figures for total shoot N showed that TAL 1000 generally 

produced more total N than the application of NH4 NO3 . The concentra­

tion of N in the shoots of plants given mineral N was lower than most 

symbiotic treatments. The pattern of total shoot N was similar to 

that for shoot dry weight. Giza-4 and Early Bunch were significantly 

greater than the others. Makula Red and F3-261 accumulated signifi­

cantly less N than most cultivars. The large intermediate group did 

not always fall into the same ranking pattern as they did for shoot 

dry weight.

Data for acetylene reduction is included in Appendix E. There 

was no correlation between dry weight and acetylene reduction. The 

highest yielding cultivars. Early Bunch for example, had the lowest 

acetylene reduction values. This indicates that some factor other
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than nitrogen was limiting growth and photosynthate supply at the 

time of harvest.

DISCUSSION -

Peanut genotypes may vary in their early symbiotic capacity with 

a variety of known effective strains of Rhizobium. Results from 

Experiment 1 demonstrated this possibility and the present experiment 

offers additional evidence.

Symbiotic efficiency is a function of the host genotype, rhizo­

bial strain, and the environment. Under the environmental conditions 

defined for this experiment and with this group of Rhizobium, the 

cultivars varied considerably in their early symbiotic capacity. This 

variation was significant in terms of absolute differences and in 

terms of the cultivars' symbiotic yields relative to their respective 

yields with mineral N. The range of cultivar yields with mineral N 

was considerably more narrow than the range of cultivar yields when 

N supply was from symbiosis. This indicates that differences in 

general genetic plant vigor were not the sole determinants of symbiotic 

capacity with this group of Rhizobium strains. This observation is in 

agreement with that made by Gibson (1962) on Medicago sativa.

Although the three strains of Rhizobium utilized in Experiment 

4 had been previously selected for high efficiency and lack of inter­

action with two or more cultivars (runner and bunch type), significant 

strain by cultivar interactions were revealed in this study. For 

example, yields for TAL 236 were greater than TAL 309 on Early Bunch. 

Yields with these strains were reversed on the other high yielding
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TABLE 7. —  SHOOT N OF TWELVE CULTIVARS OF PEANUT INOCULATED WITH 
THREE STRAINS OF RHIZOBIUM SPP.

CULTIVAR
AMMONIUM
NITRATE

INOCULATION TREATMENT 
(Rhizobium strains)

TAL 1000 TAL 236 TAL 309

Early Bunch 

Giza-4 

Tato-34 

Bachimba 

Valencia R-2 

Col. Correntino 

156 of Cuba 

Sulasmith 

Blanco Rio Seg. 

Egret

Makula Red 

F3-261

405

461

462 

394 

315 

379 

503 

400 

330 

343 

348 

184

mg N/pot
582

625

452

312

496

309

331

444

367

354

329

239

175

381

130

265

133

288

345

80

385

236

115

191

467

249

276

229

248

288

106

258

205

293

143

134

Source d.f.
Cultivar 11 7.0**
Cultivar x strain 35 3.4**

LSD.05 for means = 137
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cultivar, Giza-4. Despite the presence of cultivar by strain inter­

actions with these two cultivars, the percent that symbiotic yield is 

to mineral nitrogen yields were high for both Early Bunch and Giza-4.

Cultivars with low percentages of symbiotic to mineral N yields 

were those which consistently failed to exhibit a highly efficient 

symbiosis with any of the three strains. For example, 156 of Cuba 

had substantial early yield potential with NH4NO3 yet its highest 

symbiotic yield (TAL 309) was only 62% of its mineral N yield.

Makula Red is another example. Every strain treatment combination 

with this cultivar was lower than the average mean strain yield. 

Makula Red's potential with mineral N was high. Cultivar Sulasmith 

with a symbiotic percentage of 63%, had one very high strain treat­

ment combination (TAL 1000) and two very low treatments.

It appears then, that a low symbiotic capacity, as defined in 

this experiment, can be the result of two phenomena. First, the 

cultivar can give low responses with all three effective strains. 

Second, the cultivar can have a more narrow rhizobial strain require­

ment for effectiveness than others in that it is effective with only 

one strain. Another example of this second case is that of Trifolium 

subterraneum cv. Woogenellup which has been shown to have more 

specific requirements for effectiveness than other cultivars of the 

same species (Gibson, 1964).

Results of Experiments 1, 2 and 4 also indicate the need to 

reconsider the process of screening strains of Rhizobium for 

effectiveness and to examine plant material released for commercial 

use for its symbiotic capabilities. Because of the specific and
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complex interaction between strain and host it is dangerous to assume 

that a strain proven to be highly effective on one genotype will 

perform in a similar fashion with another genotype. This appears to 

hold true even when the strains were shown to be effective on more 

than one genotype. However strains which were effective on one geno­

type of peanut were always at least partially effective on the other 

cultivars. All three strains used in this experiment reduced acety­

lene with all cultivars tested.

Plant material to be released for commercial use should be 

examined for its symbiotic capacity relative to its genetic potential 

with mineral N, and the plant selection process should be done under 

conditions where the plant has to rely almost solely upon the symbio­

sis for its nitrogen requirements. In addition, it should be useful 

to grow genotypes with apparent low and high symbiotic capacity in 

the field (in the presence of a heterogeneous population of native 

rhizobia) to determine whether the genotypes will perform similarly 

to their performance in the greenhouse.

Data for the acetylene reduction assay (Appendix E) show almost 

no correlation between shoot yields and ethylene evolved. Early 

Bunch, a high fixing cultivar in this experiment, had significantly 

less activity than other cultivars. It is interesting to note that 

the two cultivars with the lowest apparent symbiotic capcacity, 156 

of Cuba and Makula Red, also had low nitrogenase activity levels. The 

fact that cultivars Early Bunch and Giza-4 showed significantly less 

activity than other cultivars indicates that some factor other than 

symbiotic efficiency was limiting nitrogen fixation at harvest. This
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emphasizes the sensitivity of the acetylene reduction assay to other 

factors which limit growth.

The fact that the percentages that symbiotic yield are to yield 

of dry matter with NH4 NO3 were almost hlways less than 100, even when 

strains had passed through much previous selection for effectiveness, 

demonstrates the early advantage that a plant given mineral N has 

compared to a purely symbiotic plant. Similar percentages for N 

yield were closer to 100 than were the dry weight ratios. This was 

due to lower concentrations of N in plants given mineral N. Plants 

provided N probably experience factors other than N which were 

limiting to growth earlier than symbiotic plants and may have reached 

a physiological state where they could no longer take up NH4 ''' ions 

efficiently (McElhannon and Mills, 1978).

In conclusion, this experiment emphasized the importance of the 

genotype-strain interaction on peanut. Some strains of Rhizobium 

such as TAL 1000 fix more nitrogen than other strains with a variety 

of peanut cultivars while some cultivars fix more nitrogen than others 

with a number of strains. The degree to which host by strain inter­

actions are present points to the need to either: (1 ) solve the

mysteries of invasive specificity such that there can be developed a 

single, maximally efficient Rhizobium for each plant type; (2) prove 

that selecting host genotypes for higher symbiotic capacity with a 

broad spectrum of strains can increase nitrogen fixation in peanut. 

Until the problems of invasive specificity are solved it seems 

probable, given the large numbers of peanut invasive Rhizobium in the 

tropics, that the most feasible method to ensure efficient symbiosis
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with peanut would be to examine host genotypes for their symbiotic 

capacity. Selection for high symbiotic capacity could proceed during 

the selection process for other desirable agronomic characteristics.
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The importance of peanut cultivation in the developing tropics 

is considerable. The peanut's prominence in international agricul-
r

tural commerce means that it can be an important source of foreign 

exchange for developing countries. The attractiveness of peanut 

cultivation to small farmers is also enhanced because one expensive 

production input, nitrogen, is not required for this leguminous crop.

Peanuts planted in most tropical soils will encounter a 

considerable number of invasive native strains of Rhizobium. The 

presence of invasive soil strains is due to the fact that the peanut 

cross-inoculates with Rhizobium isolated from an extremely wide 

range of tropical legumes. Given the difficulties in overcoming 

native soil strains which compete with inoculum strains it seems 

plausible that selection of host types that are capable of fixing 

large amounts of nitrogen with many strains of Rhizobium may be a 

fruitful approach to increasing nitrogen fixation in the peanut- 

Rhizobium symbiosis. Most studies in the past have only examined the 

bacterium for effectiveness on one cultivar. This study was under­

taken to examine the effect that the interaction between genotypes of 

peanut and strains of Rhizobium have on the symbiosis.

Two related greenhouse experiments examined a number of strains 

of Rhizobium for their effectiveness on two cultivars of peanut. 

Significant host by strain interactions were revealed in these 

experiments. Some strains produced high yields with one cultivar but 

failed to promote a highly efficient symbiosis with the other. This 

fact emphasized the danger in attempting to select superior strains

SUMMARY
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on only one cultivar. In addition, these results demonstrated the 

host's genetic role in efficient symbiosis. In each experiment a 

strain which was superior on both cultivars was identified. Because 

of their superior performance on two dultivars these strains were 

selected to test the symbiotic performance of twelve peanut cultivars 

in a third greenhouse experiment.

Results of this experiment showed that despite prior selection 

of strains for superior effectiveness on at least two cultivars, 

significant strain by cultivar interactions were present. Therefore, 

selection of strains on a number of cultivars does not result in 

identifying strains which will be highly effective on all other 

cultivars. There is specific genetic compatibility required between 

host and strain for efficient symbiosis. Strains to be used for

inoculum production should therefore, be tested on each genotype for

which the inoculum is intended.

Some cultivars in this experiment, on the average, fixed more 

nitrogen with these strains than others. The different average

symbiotic yields of these cultivars were independent of the cultivars'

yields when given NH^N0 3 . Therefore low yields of strain cultivar 

combinations were due to specific host strain incompatibility rather 

than lack of genetic vigor of the host. Just as no strain could be 

identified that was highly effective on every cultivar, there were 

no cultivars which consistantly produced high yields with every 

strain.

Generally, a plant given mineral N yielded more dry matter than 

those relying on the symbiosis for nitrogen. Plants given mineral N
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have an early advantage over symbiotic plants and are probably less 

sensitive to environmental stress.

A growth room study showed that the time required for nodule 

formation was both host and strain dependent. Cultivars with greater 

seed weights nodulated more slowly than those with smaller seeds.

The time required for nodule formation was not related to the degree 

of symbiotic effectiveness of the host-strain combinations.

Effective symbiosis and time to nodule formation are both strain 

and host dependent. Whether cultivars which exhibited higher average 

symbiotic yields with the selected strains will perform in a similar 

manner in a field with a heterogeneous soil population remains to be 

determined. Cultivar performance in such fields would be a function 

of the interaction between the cultivar and the strains which formed 

the majority of nodules on the plant.
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APPENDIX A

TABLE 8. —  ANALYSIS OF VARIANCE FOR TABLES 1-7.

ANALYSIS OF VARIANCE FOR SHOOT N''OF TWO CULTIVARS OF 
PEANUT INOCULATED WITH FIVE STRAINS OF 

RHIZOBIUM SPP.

Source d.f. ss ms F

Total 56
Block 3 556 185 .25
Treatment 13 874134 67241 90.4**
Strain 6 711722 118620 159.4**
Cultivar 1 109475 199475 147.1**
Strain x cul. 6 52937 8823 1 1 .8 **
Error 38* 28266 744

♦adjusted for 1 missing pot

ANALYSIS OF VARIANCE 
TWO CULTIVARS OF 

FIVE STRAINS

FOR ACETYLENE REDUCTION 
PEANUT INOCULATED WITH 
OF RHIZOBIUM SPP.

OF

Source d.f. ss ms F

Total 55 4687
Blocks 3 310 103 10.5**
Treatments 13 3993 307 31.2**
Cultivar 1 23 23 2.3
Strain 6 3863 644 65.4**
Cul. X strain 6 107 18 1 . 8

Error 38* 384 1 0

♦adjusted for 1 missing pot
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TABLE 8. —  ANALYSIS OF VARIANCE FOR TABLES 1-7.
(continued)

ANALYSIS OF VARIANCE FOR SHOOT DRY WEIGHT OF 
TWELVE CULTIVARS OF PEANUT INOCULATED WITH 

THREE STRAINS OF RHIZOBIUM SPP.

Source d.f. ss ms F

Whole plot 143 2381
Main plot 1 1 880 800
Strain 3 834 278
Strain x block 8 46 5.8
Error (a) 0

Cultivar 1 1 485 44.1 9.2^^
Cultivar x strain 33 640 19.4 4.0^^
Error (b) 78^ 377 4.8

♦adjusted for 1 0  missing pots

ANALYSIS OF VARIANCE FOR TOTAL SHOOT N OF TWELVE CULTIVARS OF
ARACHIS HYPOGEA INOCULATED WITH THREE STRAINS OF 

RHIZOBIUM SPP.

Source d.f. ss ms F

Whole plot 143 2902059
Main plot 1 1 987966
Strain 3 990274
Strain x block 8 97692
Error (a) 0

Cultivar 1 1 547343 49758 6.96^^
Cultivar x strain 35 809389 24527 3.43^^
Error (b) 78^ 557361 7146

♦adjusted for 10 missing pots
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TABLE 8. —  ANALYSIS OF VARIANCE FOR TABLES 1-7,
(continued)

ANALYSIS OF VARIANCE FOR THE RATIO OF SHOOT WEIGHT TO 
ROOT WEIGHT FOR TWO CULTIVARS OF PEANUT INOCULATED WITH 

FIVE STRAINS OF RHIZOBIUM SPP.

Source d.f. SS ms F

Total 55 145.8
Blocks 3 .05 . 0 2 .03
Treatments 13 127.7 9.8 2 0 .1 **
Cultivar 1 15.0 15.0 30.6**
Strain 6 107.8 18.0 36.7**
Cultivar x strain 6 4.9 . 8 1 .7
Error 38* 18.0 .5

♦adjusted for 1 missing pot

ANALYSIS 
TWO CULTIVARS

OF VARIANCES FOR THE SHOOT 
OF PEANUT INOCULATED WITH 
RHIZOBIUM SPP. OR GIVEN NH^

' WEIGHTS OF 
SEVEN STRAINS OF 
NO3

Source d.f. SS ms F

Total 71 1016
Blocks 3 35.4 1 1 . 8 6 .0 **
Treatments 17 890.0 52.4 26.5**
Cultivar 1 2.5 2.5 1.3
Strain 8 849.3 106.2 53.6**
Cultivar x strain 8 38.2 4.8 2.4*
Error 49* 91.2 1.98

*adjusted for 2 missing pots
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TABLE 8. —  ANALYSIS OF VARIANCE FOR TABLES 1-7.
(continued)

ANALYSIS OF VARIANCE FOR THE TIME TO NODULE FORMATION (TNF) FOR 
3 CULTIVARS OF PEANUTS INOCULATED WITH 10 STRAINS OF

RHIZOBIUM SPP,

Source d.f. ss ms F

Total 127 1900
Treatments 29 1612 55.6 19.0**
Strain 9 1 2 0 13.4 4.6**
Cultivar 2 728 364.2 124.3**
Strain x cultivar 18 764 42.4 14.5**
Error 98 288 2.9
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APPENDIX B

TABLE 9. —  SHCX)T DRY 
WITH

WEIGHT OF TWO CULTIVARS OF PEANUT 
FIVE STRAINS OF RHIZOBIUM SPP.

r

INOCULATED

Treatment Florida Giant Starr Mean

g/pot - ---

450 mg N 18.8 a 1 2 . 8  a 15.8 a

TAL 236 9.5 b 5.0 b 7.3 b

TAL 423 8 . 0  c 4.1 c 6 . 1  c

TAL 309 7.4 cd 4.0 c 5.7 c

TAL 170 6.9 d 4.4 be 5.6 c

Uninoculated 7.7 cd 3.5 c 5.6 c

TAL 174 7.3 cd 3.8 c 5.6 c

Mean 9.4 a 5.4 b

Means within a group not followed by the same letter are significant 
at P :< .01 as given by Duncan's New Multiple Range Test.



APPENDIX C

TABLE 10. —  DAYS TO FIRST FLOWER OF TWO CULTIVARS OF PEANUT INOCULATED 
WITH FIVE STRAINS OF RHIZOBIUM SPP.

Treatment Florida Giant Starr Mean

---------------  days-----------------

450 mg N 34.8 32.0 33.4 a

Uninoculated 35.0 33.5 34.3 a

TAL 170 35.3 33.5 34.4 a

TAL 309 34.8 34.3 34.5 a

TAL 423 36.5 34.3 35.4 a

TAL 236 37.0 34.0 35.5 a

TAL 174 37.0 35.0 36.0 a

Mean 35.8 33.8 b

Means within a group not followed by the same letter are different at
P < .01.
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APPENDIX D

TABLE 11. —  SUMMARY OF NODULE OBSERVATIONS, EXPERIMENT I

TAL 170 TAL 423 TAL 236 TAL 174 TAL 309 +N -N

% Florida Giant 1 0 0 0 95 0 95 0 0

Effective
Nodules Starr 8 8 0 98 0 98 0 0

Nodule
Number

Florida Giant 250 125 250 1 0 0 250 0 

 ̂,
1

(Estimate) Starr 250 250 250 250 250 0 4

Average Florida Giant 2 . 1 1 . 0 1 . 6 . 8 2 . 0
_ 1 . 0

Nodule
Diameter Starr 1.4 1 . 0 1.5 1 . 0 1.4 - 1.5

(mm)



APPENDIX E

TABLE 12. —  ACETYLENE REDUCTION BY TWELVE CULTIVARS OF PEANUT INOCU- 
CULATED WITH THREE STRAINS OF RHIZOBIUM SPP.

r

Cultivar TAL
1 0 0 0

TAL
236

TAL
309 Mean

COL. CORRENTINO 80.5 114.3 91 .7 95.5 a

TATO-34 76.9 56.8 79.9 71.2 b

BLANCO RIO SEG. 80.8 71.4 47.1 66.4 be

VALENCIA R-2 85.8 57.1 44.2 62.4 be

BACHIMBA 51.1 57.1 79.9 61.5 bed

GIZA-4 43.9 76.2 50.5 56.9 bed

F3-261 44.9 55.9 53.6 51.5 bed

EGRET 50.0 51.3 47.9 49.8 bed

SULASMITH 70.5 2 2 . 2 56.5 49.7 bed

MAKULA RED 51.3 41.0 43.5 45.3 cd

156 OF CUBA 2 0 . 1 63.6 49.6 44.4 cd

EARLY BUNCH 36.3 40.7 41.7 39.6 d

MEAN 57.7 59.0 56.8

Means not followed by the same letter differ at P ^  .05 as given by 
Duncan's New Multiple Range Test.

LSD for Cultivar Means = 19.6 
LSD for Treatment Means= 33.8
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TABLE 13. —  SOURCE AND CHARACTERISTICS OF STRAINS USED IN EXPERIMENTS 1, 2, 3, AND 4

APPENDIX F

<T\

strain
Number Source Other

Designations
Original

Host
Reaction 
on BTB

Absorbtion 
of Congo Red Comments

TAL 1000 NifTAL Project A. hypogea Alkaline Medium Recommended for peanut 
by NifTAL

TAL 236 II II II II Recommended for peanut 
by NifTAL. Widely used 
cowpea type Rhizobium.

TAL 309 II CB756 Macotoloma
africanum

II Slight

SU-ineff R. Weaver, 
Texas A & M

A. hypogea II None Ineffective mutant of a 
highly effective strain

T-1 II II II Slight Standard Texas peanut 
strain

TAL 170 NifTAL Project 176 A23 Vigna
unguiculata

II Heavy

TAL 423 II THA 304 Vigna
radiata

II II

TAL 301 II Acacia koa It None
TAL 174 II 176 A32 Vigna

unguiculata II Medium
AH8 P. Singleton, 

U. of Hawaii
A. hypogea II Slight

AH10 II II II None
UMKL 44 P. Somasagaran, 

NifTAL Project
TAL 651 Calopogonium

muconoides
II Slight
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