ALFALFA VARIETAL SELECTION

FOR HAWAII

. **r**.

A THESIS SUBMITTED TO THE GRADUATE DIVISION OF THE UNIVERSITY OF HAWAII IN PARTIAL FULFILIMENT OF THE REQUIREMENTS FOR THE DEGREE OF

MASTER OF SCIENCE

IN AGRONOMY AND SOIL SCIENCE

MAY 1983

By

Arthur Yoshinori Osaki

Thesis Committee:

John R. Thompson, Chairman Peter P. Rotar Duane P. Bartholomew We certify that we have read this thesis and that in our opinion it is satisfactory in scope and quality as a thesis for the degree of Master of Science in Agronomy and Soil Science.

THESIS COMMITTEE W Chairman / da P. Bartholomew) (LAMO

TABLE OF CONTENTS

LIST OF TABLES iv
LIST OF FIGURESvii
INTRODUCTION1
LITERATURE REVIEW
Cultivars, Germplasms, and Experimental Lines
MATERIALS AND METHODS16
RESULTS AND DISCUSSION
Plant height 2 weeks after harvesting
Harvest height
Stem angle
Total Forage
Potential yield
Percent Crude Protein45
Total Crude Protein
SUMMARY AND CONCLUSION
APPENDIX
LITERATURE CITED

にいた

List of Tables

Table		Page
1	Annual heights at 2 weeks after harvesting for 20 alfalfa lines at Waimanalo, Oahu, during the period April 1981 to January 1982	21
2	Analysis of variance for plant height 2 weeks after harvesting for 20 alfalfa lines at Waimanalo, Oahu, during the period April 1981 to January 1982	22
3	Percent flowering at harvest of 20 alfalfa lines at Waimanalo, Oahu, during the period March 1981 to December 1981	24
4	Percent pods at harvest for 20 alfalfa lines at Waimanalo, Oahu, during the period March 1981 to December 1981	25
5	Mean heights at 2 weeks after harvesting with respect to measurement dates for 20 alfalfa lines at Waimanalo, Oahu, during the period April 1981 to January 1982	27
6	Mean heights at 2 weeks after harvesting for 20 alfalfa lines at Waimanalo, Oahu, during the period April 1981 to January 1982	28
7	Annual plant height at harvest for 20 alfalfa lines at Waimanalo, Oahu, during the period March 1981 to December 1981	30
8	Analysis of variance for plant height at harvest of 20 alfalfa lines at Waimanalo, Oahu, during the period March 1981 to December 1981	32
9	Mean plant heights at harvest with respect to harvest dates for 20 alfalfa lines at Waimanalo, Oahu, during the period March 1981 to December 1981	33
10	Mean plant heights at harvest for 20 alfalfa lines at Waimanalo, Oahu, during the period March 1981 to December 1981	34
11	Annual stem angle for 20 alfalfa lines at Waimanalo, Oahu, during the period March 1981 to December 1981	37
12	Analysis of variance for stem angle of 20 alfalfa lines at Waimanalo, Oahu, during the period March 1981 to December 1981	38

Т	a	h	1	e
+	а	v	-	~

13	Annual yield (actual) for 20 alfalfa lines at Waimanalo, Oahu, during the period March 1981 to December 1981
14	Analysis of variance for yield (actual) of 20 alfalfa lines at Waimanalo, Oahu, during the period March 1981 to December 198142
15	Mean yields (actual) with respect to harvest dates for 20 alfalfa lines at Waimanalo, Oahu, during the period March 1981 to December 198143
16	Mean yields (actual) for 20 alfalfa lines at Waimanalo, Oahu, during the period March 1981 to December 198144
17	Annual yield (potential) for 20 alfalfa lines at Waimanalo, Oahu, during the period March 1981 to December 1981
18	Analysis of variance for yield (potential) of 20 alfalfa lines at Waimanalo, Oahu, during the period March 1981 to December 198147
19	Annual crude protein percent for 20 alfalfa lines at Waimanalo, Oahu, during the period March 1981 to September 1981
20	Analysis of variance for crude protein percent of 20 alfalfa lines at Waimanalo, Oahu, during the period March 1981 to September 198152
21	Mean crude protein percent for 20 alfalfa lines at Waimanalo, Oahu, during the period March 1981 to September 198153
22	Mean crude protein percent with respect to harvest dates for 20 alfalfa lines at Waimanalo, Oahu, during the period March 1981 to September 198154
23	Annual crude protein yield for 20 alfalfa lines at Waimanalo, Oahu, during the period March 1981 to September 1981
24	Analysis of variance for crude protein yield of 20 alfalfa lines at Waimanalo, Oahu, during the period March 1981 to September 198158
25	Mean crude protein yield for 20 alfalfa lines at Waimanalo, Oahu, during the period March 1981 to September 1981

Page

Table

あたかないというないのないないない

26	Mean crude protein yield with respect to harvest dates for 20 alfalfa lines at Waimanalo, Oahu, during the period March 1981 to September 198160
27	Daily minimum temperature (°F) at the Waimanalo Experiment Station from January 1981 to January 198262
28	Daily maximum temperature (°F) at the Waimanalo Experiment Station from January 1981 to January 198263
29	Daily solar radiation(kW hr $m^{-2} \text{ deg}^{-1}$) at the Waimanalo Experiment Station from January 1981 to January 198264
30	Planting order of 20 alfalfa lines by row and replica- tion (rep.)

List of Figures

Figures		Page
1	Plant height 2 weeks after harvest versus time for 20 alfalfa lines at Waimanalo, Oahu, during the period April 1981 to January 1982	26
2	Harvest height versus time for 20 alfalfa lines at Waimanalo, Oahu, during the period March 1981 to December 1981	31
3	Actual yield versus time for 20 alfalfa lines at Waimanalo, Oahu, during the period March 1981 to December 1981	41
4	Estimated dry matter losses on a per plot basis for 20 alfalfa lines at Waimanalo, Oahu, during the period March 1981 to December 1981	48
5	Percent crude protein versus time for 20 alfalfa lines at Waimanalo, Oahu, during the period March 1981 to September 1981	51
6	Crude protein versus time for 20 alfalfa lines at Waimanalo, Oahu, during the period March 1981 to September 1981	56

vii

Introduction

Alfalfa was introduced to Hawaii in 1895 (Krauss, 1911) and has been grown in the islands as a minor crop since that time (Goodell and Plucknett, 1972). Increasing costs of imported alfalfa and the availability of former pineapple and sugarcane lands has sparked an interest in increasing its production in Hawaii (Goodell and Plucknett, 1972; Garrod, 1973; Schermerhorn, 1978; Thompson, 1978).

Although there has been much research with alfalfa done in the temperate regions little has been done in the tropics. Due to differences in environmental factors such as temperature and daylength, results obtained in the temperate regions are not always applicable when the same practices are applied in the tropics.

The major difference between temperate and tropical growing conditions is the growing season. In Hawaii, continuous cropping is possible with present practices calling for 12 to 13 harvests which annually yield 10 T A^{-1} Yr⁻¹ (Goodell and Plucknett, 1972; Thompson, 1978). The crop has been grown from sea level to 4,000 plus feet in altitude with the best production occurring in areas suited for sugarcane production, i.e., areas with plenty of sunshine, a relatively dry climate, and availability of irrigation water (Britten and Koshi, 1959). In temperate regions, 2 to 3 harvests annually yielding 2 to $3.5 T A^{-1} Yr^{-1}$ are not uncommon (Burkhead, et al., 1972). The temperate area grower is concerned with obtaining a profit during the growing season and then maintaining the stand over the winter months for regrowth in the next season (Ditterline, et al., 1976; Goetz, et al., 1978).

ŀ

Although alfalfa grows well in Hawaii's subtropical-tropical climate, it has not been a success commercially due to thinning stands from frequent harvests and the subsequent problem with weed control (Britten, 1956). Today, good weed control can be obtained with herbicides. Areas which need improvement for satisfactory commercial production are stand persistence and sustained yields.

The objectives of this study were to evaluate twenty different alfalfa varieties, germplasms and experimental lines to determine which were best adapted to conditions in Hawaii.

Literature Review

The early history of alfalfa as a cultivated crop is cloudy for "the common alfalfa <u>Medicago sativa</u> (L) appears to be the only forage crop which was cultivated before recorded history" (Bolton, 1962:1). Iran is considered one center of origin, another is Central Asia (Bolton, et al., 1972). Alfalfa was mentioned in writings by the Greeks as well as by the Romans. It was probably a fodder utilized by the Persians, Greeks and Romans and in this way spread over part of the European continent.

The dissemination of alfalfa into the United States has been described by Bolton, et al. (1972). The colonists introduced alfalfa to eastern North America; the North Atlantic States tried to cultivate alfalfa but failed in most cases due to unfamiliarity of the growers with the peculiarities of the plant, namely the requirement for neutral to alkaline pH. Alfalfa was introduced to Mexico and Peru by the Spaniards in the early 16th century and was well adapted to parts of Central and South America. Later, presumably around the 1850's,

'common' alfalfa was one of the principle introductions from Mexico into the United States via California. From California alfalfa spread eastward to Utah and into the Central United States.

The 'common' alfalfa was not a winter hardy plant. Some winter hardiness was attained through regional adaptations but this was not enough and seed was imported, mainly from Germany, Russia, Turkestan, and India, to obtain winter hardy plants. The most notable introduction of a winter hardy type, due to its subsequent widespread distribution, was from Germany in 1857; this was 'Grimm' alfalfa and was introduced to Minnesota.

Alfalfa was first brought to Hawaii from California in 1895 and planted with success on 5 acres at Waialae, Oahu (Meinecke, 1913).

Today alfalfa has a worldwide distribution but major production is confined to temperate regions (Bolton, et al., 1972). Its worldwide distribution "implies an adaptability to a diverse range of environmental conditions" (Bula and Massengale, 1972). Many varieties have been developed worldwide for specific conditions and localities.

Alfalfa performs like a short-lived perennial legume with a commercial life of from 2 to 4 years under Hawaii harvesting conditions of 12 or more harvests per year (Thompson, 1978; Schermerhorn, 1978). In the midwest region of the United States the life of a commercial field is about 5 to 7 years or about 15 crops in general (Younge, 1952). In the southwestern United States, i.e., Southern California and Arizona, the number of cuttings per year may get as high as 7 to 9 per year with stands lasting 2 to 3 years (Lowe, et al., 1972).

Various researchers cited by Bishop and Gramshaw (1977) have found that persistence and production vagaries of a commercial stand of

alfalfa may be influenced by factors such as (1) cutting frequency, (2) severity of grazing, (3) competition from other species, (4) initial density, (5) disease and insect pests, (6) cultivars and (7) climatic factors. Jones (1973) includes soil moisture and soil characteristics.

Factors for varietal development for Hawaii as outlined by Britten (1956) include disease resistance, insect resistance, nematode resistance, creeping habit and persistance. The long term objective of a breeding program is to incorporate desirable characteristics of nonadapted varieties into one or a few adapted varieties while excluding undesirable characteristics.

From the standpoint of forage production one would want a variety that exhibits rapid regrowth after harvest, has high dry matter production, has high crude protein, has high resistance to insects and diseases, has a high leaf to stem ratio and has a low concentration of antimetabolites.

Lowe, et al. (1972) have reviewed alfalfa varieties and their role in adaptation and usage in the U.S. Varieties have traditionally been classified based on their winter hardiness. Hardy, medium hardy, and non-hardy being terms used to describe the plants survival potential in areas with severe, medium, or mild winter climates, respectively.

In non-humid irrigated areas, such as the intermountain areas and the great plains of the U.S., long lived stands along with high yields are desirable in order for alfalfa to be competitive with other crops. Winter hardy varieties are used in the intermountain and great plains areas for long stand life although average yields are lower than in the southwest where non-hardy types are used at the sacrifice of long stand life.

Varieties have also been characterized based on their adaptation to humid and non-humid climatic regions, where humid would refer to evapotranspiration being less than precipitation.

In breeding or selection of a variety the plant reacts to the environment, a plant growing in one region (adapted to the particular region) may show slightly different biochemical and physiological characteristics (maybe even morphological and anatomical) when transposed to another geographic - climatic region. Thus, factors which control resistance may be masked when the plant is grown in an area to which it had not been adapted. Also, if biochemical and/or physiological factors control pest resistance then we must be careful that toxic constituents do not manifest themselves at the expense of forage quality.

Each geographic area has its own special problems in terms of insects, diseases and environment (e.g. daylength, temp. etc.). Varieties have been developed for specific areas based on some of these problems, but it seems that no two regions are alike. Prior to 1925, the main thrust was for hardy varieties that were developed for winter resistance, between 1925 and the mid 1950's the emphasis was on bacterial wilt resistance and winter hardiness, then from the mid 1950's the emphasis shifted to development of multiple disease and insect resistance (Barnes, et al., 1977a).

The crop was not grown so much in humid regions for lack of adequate pest control or plant resistance. Now, the humid and irrigated areas are being cultivated but the many varieties developed with cold hardiness in mind do not produce as well as their nondormant counterparts.

Medium hardy types along with hardy types have a prolonged winter dormant period and slow summer recovery which results in an annual yield reduction of 10 to 30 percent over non-hardy varieties (Lowe, et al., 1972).

Ultimately, the environment affects the plant and also the pest whether it be insect, nematode or pathogen. Areas with sharp demarcations in climatic conditions between seasons have an advantage over tropical conditions; pests are kept in check by the limited growing season and don't have the time to build up continually (Lowe, et al., 1972). The continuous cropping season of Hawaii provides an ideal environment for pests. In warm humid areas multiple pest resistance would be required as part of the plants adaptation. Lamb (1974:128) states "it is not possible to transplant the concepts and methods of temperate country pest control into the tropics" this being due to the greater numbers in species and in population growth of the insects. Pest resistance has slowly been incorporated into some of the non-hardy varieties but this has not been enough.

Painter (1968:15) defines insect resistance as "the amount of heritable qualities possessed by the plant which influence the ultimate degree of damage done by the insect. In practical agriculture it represents the ability of a certain variety to produce a larger crop of good quality than do ordinary varieties at the same level of insect population". This definition would also be applicable to nematodes and plant diseases.

Painter (1968:24-28) describes plant resistance to insects as being a function of non-preference, antibiosis and tolerance. Non-

preference would denote an insects null response for a plant in terms of one or a combination of food, shelter and oviposition. Antibiosis denotes a detrimental effect on the insect when it uses the plant for food. Tolerance is the ability of the plant to maintain a high production level in the presence of an insect population damaging to a susceptible host plant.

Plant resistance is an interaction of the plant with the pest, in this instance, the insect. The plant may undergo changes in response to its environment and the pest may do the same. The plant is part of the insects environment and the insect responds through visual, tactile, chemical and other stimuli.

Losses due to insects include reduction in stand, reduction in forage quality and quantity through consumption and toxins, seed reduction and vectors of plant pathogens (App and Manglitz, 1972).

Once a resistant variety is released its value may not be realized until tests against nonresistant counterparts are conducted. Elgin, et al. (1981) showed that an average 10 percent higher yield was obtained using anthracnose resistant varieties over nonresistant varieties.

The role of diseases of alfalfa production has been reviewed by Graham et al. (1972). Losses attributed to disease are in the form of reduced yield, forage quality, persistence, defoliation, decreased water and nutrient use efficiency, and increased damage from environmental stresses. There are at least 70 different pathogens to which alfalfa is susceptible, approximately 30 of which are considered limiting to crop production. Kehr et al. (1972) state that "plant resistance is the most practical means of controlling most alfalfa diseases".

Fertilizer and irrigation practices affect disease development also. Lush foliar growth from heavy fertilizer application as well as sprinkler irrigation provide an ideal environment for some pathogens. Crown and root rotting pathogens are usually more damaging to nutritionally weak plants; "A vigorously growing plant is usually less susceptible to many pathogens" (Graham, et al., 1972). Obligate type pathogens are usually less damaging to nutritionally weak plants.

Frequent harvests may have some benefit. From a disease standpoint early harvesting has a twofold effect; it reduces the leaf loss from foliar pathogens and reduces the buildup of inoculum in the field (Graham et al., 1972).

A review of the cultivars and germplasms under consideration for introduction in Hawaii follow.

Cultivars, Germplasms, and Experimental Lines

MSF₆ SN₃ W₃

Developed cooperatively by AR-SEA-USDA and the Nevada and Minnesota Agriculture Experiment Stations (Thyr, et al., 1979).

 ${
m MSF}_6~{
m SN}_3~{
m W}_3$ has resistance to the spotted alfalfa aphid (<u>Therio-aphis maculata</u> [Buckton]) and the pea aphid (<u>Acyrthosiphon pisum</u> [Harris]). In tests for resistance toward Phytophthora root rot (<u>Phytophthora megasperma</u>) the percentage of resistant plants was 13 for MSF₆ SN₃ W₃ and 18 for the moderately resistant check 'Lahontan'. In tests for resistance toward stem nematode (<u>Ditylenchus dipşaci</u> [Kuhn] Filipjev), the percentage of MSF₆ SN₃ W₃ was 73, whereas the resistant check 'Washoe' had 68 percent resistant plants. Against bacterial wilt <u>Corynebacterium insidiosum</u> [McCull] H.L. Jens) MSF₆ SN₃ W₃ had 57

percent resistant plants, whereas the resistant check 'Vernal' had 27 percent.

Nevada SYN YY

Developed by AR-SEA-USDA, the Nevada, Oregon, Washington and Utah Agriculture Experiment Stations (Hartman, et al., 1979b).

Resistant to root knot nematodes <u>Meloidogyne hapla</u> and <u>M. incognita</u>, Nevada SYN YY is an experimental cultivar for use in (1) developing multiple pest resistant cultivars, (2) establishment of root knot nematode effects on growth of alfalfa, and (3) studying the feasibility of its use in the reduction of nematode populations in crop rotations.

Yield and dormancy characteristics are reported to be similar to the non-winter hardy cultivar 'Moapa 69'.

MSE₆ SN₃ W₃

Developed cooperatively by AR-SEA-USDA and the Nevada and Minnesota Agriculture Experiment Stations (Thyr, et al., 1979).

 ${\rm MSE}_6~{\rm SN}_3~{\rm W}_3$ has resistance to the spotted alfalfa aphid and the pea aphid. In tests for resistance, ${\rm MSE}_6~{\rm SN}_3~{\rm W}_3$ was less resistant than the moderately resistant check 'Lahontan' and also less resistant then ${\rm MSF}_6~{\rm SN}_3~{\rm W}_3$. The percentage of ${\rm MSE}_6~{\rm SN}_3~{\rm W}_3$ plants resistant to <u>P. megasperma</u> was 7, while that for 'Lahontan' was 13. In tests for resistance toward stem nematode, the percentage of ${\rm MSE}_6~{\rm SN}_3~{\rm W}_3$ plants resistant was 65, whereas the resistant check 'Washoe' had 68 percent resistance. Against bacterial wilt ${\rm MSE}_6~{\rm SN}_3~{\rm W}_3$ had 36 percent resistant plants, whereas the resistant check 'Vernal' had 27 percent.

Lahontan

Developed cooperatively by ARS-USDA and the Nevada Agriculture Experiment Station (Hanson, 1958).

Lahontan is resistant to bacterial wilt with immunity to the stem nematode.

Growth characteristics include quick recovery after cutting, upright growth and winter hardiness similar to the winter hardy variety 'Buffalo'.

African

African was introduced to the United States in 1924 from Egypt or Arabia, one of the nine distinct sources of germplasm introduced to the United States between 1850 and 1947 (Barnes, et al., 1977a).

African has a nondormant growth characteristic and is considered susceptible to the spotted alfalfa aphid. Other characteristics (Hanson, 1960) include quick recovery after cutting, non-winter hardiness and short lived stands.

Peruvian

Peruvian was introduced to the United States in 1899, one of the nine distinct sources of germplasm introduced to the United States between 1850 and 1947 (Barnes, et al., 1977a).

Characteristics include nondormancy and susceptibility to the spotted alfalfa aphid. Bolton (1962) includes quick recovery after cutting and susceptibility to bacterial wilt. From Hanson (1960), Peruvian is a non-winter hardy variety, generally yields less than 'African' and is adapted to short days and long growing seasons.

Chilean

Chilean was introduced to the United States during the 1850's, one of the nine distinct sources of germplasm introduced to the United States between 1850 and 1947 (Barnes, et al., 1977a).

Characteristics of Chilean include susceptibility to the spotted alfalfa aphid and no winter hardiness.

Hayden

Developed by the Arizona Agriculture Experiment Station (Dennis, et al., 1977).

Tests at Arizona show Hayden to be similar to 'Mesa Sirsa' in resistance to the spotted alfalfa aphid. Hayden was found to be superior in stand persistance and resistance to the stem nematode than the cultivars 'Sonora 70', 'El-Unico', 'Sonora' and 'Moapa'.

Growth characteristics include non-winter hardiness and fine stems which facilitate drying after cutting.

Flemish

Flemish was introduced to the United States in 1947, one of the nine distinct sources of germplasm introduced to the United States (Barnes, et al., 1977a).

Characteristics of Flemish include quick recovery after cutting, early maturity, vigorous, stemmy, generally resistant to foliar diseases but susceptible to root and crown diseases. Winter hardiness is considered moderate.

Saranac AR

Developed through incorporation of anthracnose (<u>Colletotrichum</u> <u>trifolii</u>) resistance into Saranac. The two cultivars were developed by Cornell University (Barnes, et al., 1977a).

'Saranac' is wilt resistant. Growth characteristics of 'Saranac' are similar to the Flamande type varieties with regrowth rate similar to 'Du Puits' and 'Alfa' (Murphy and Lowe, 1966).

Florida 77

Developed cooperatively by the Florida Agriculture Experiment Station and AR-SEA-USDA (Horner and Ruelke, 1981).

In Minnesota tests, Florida 77 was shown to be resistant to Fusarium wilt caused by <u>Fusarium oxysporum</u> Schlect <u>f. medicaginis</u> (Weimer) though it is susceptible to bacterial wilt and Phytophthora root rot. Florida 77 is resistant to the spotted alfalfa aphid, biotype H.

Growth characteristics include dormancy similar to the nondormant variety 'African' and high forage yields due to a longer stand persistence.

Nevada SYN XX

Developed cooperatively by ARS-USDA and the Nevada, California, Oregon, Utah and Washington Agriculture Experiment Stations (Peaden, et al., 1976).

Resistant to three regional collections of Northern root knot nematode, Nevada SYN XX is an experimental cultivar for use in (1) developing multiple pest resistant cultivars, (2) establishment of root knot nematode effects on growth of alfalfa, and (3) studying the feasibility of its use in the reduction of nematode populations in crop rotations.

In tests against the spotted alfalfa aphid Nevada SYN XX showed 76 and 86 percent survival against the Ent-A and Ent-F biotypes, respectively, while the resistant check 'Washoe' showed 85 and 84 percent resistance. Against pea aphid infestation, Nevada SYN XX had 87 percent resistance compared to 65 percent in the resistant check 'Washoe'. In tests against the stem nematode Nevada SYN XX had 71 percent resistant plants, whereas the resistant check 'Lahontan' showed 84 percent resistance. In tests for bacterial wilt resistance Nevada SYN XX had an average severity index of 3.57 as compared to 4.3 for 'Narragansett' and 2.71 for 'Vernal' (0 = no symptoms, 5 = dead plants). Against Phytophthora root rot Nevada SYN XX had an average severity index of 2.7 as compared to 2.61 for 'Agate' and 3.83 for 'Vernal' (1 = no symptoms, 5 = dead plants).

UC 163

UC 163 was developed by the University of California, Davis.¹

UC 163 was developed from the parent lines 1) Venezuela (Maracay Complex), 2) Mexon, 3) Florida 66, and 4) Lot 1. Lot 1 was composed of UC Cargo, Florida, Mexon, Peruvian, WL 600, UC Salton, Hayden, Moapa and Lew.

¹Dr. William F. Lehman, Personal Communication.

NMP-33

NMP-33 was an experimental entry developed by ARS-USDA (Thyr, 1981).¹

NMP-33 was developed by bulking unequal proportions of seed from Southwest Comp. $An_2P_2 \ge 69-220$ and clones 69-220, 69-58, 69-96, 69-11, 69-161, 69-86 and 69-24.

NMP-35

NMP-35 was an experimental entry developed by ARS-USDA (Thyr, 1981).²

Parental lines of NMP-35 were Dophari, Batinah, Quaryati, Omani, and Arizona Mexican Sonora.

UC-PX 1971 (Isom PX)

Developed by the Dept. of Agronomy and Range Science, University of California, Davis (Isom, et al., 1980).

In tests for resistance toward bacterial wilt, Isom PX had 16.2 percent resistant plants compared to 12.9 percent for the moderately resistant check 'Ranger'. Against Phytophthora root rot, Isom PX was less resistant than the resistant check 'Agate' with 2.4 percent resistant plants compared to 20 percent for 'Agate'. Against the nematode species <u>M. hapla, M. javanica</u>, and <u>M. incognita</u>, Isom PX had 27, 52 and 78 percent resistant plants, respectively, whereas the resistant germplasm SYN XX had 85, 91 and 74 percent resistant plants, respectively.

¹Dr. Bill D. Thyr, Personal Communication. ²Dr. Bill D. Thyr, Personal Communication.

In yield trials Isom PX outyielded 'Lahontan', 'Moapa 69', and 'El Unico'.

Growth characteristics of Isom PX include dormancy similar to that of 'Moapa' and a later spring recovery than the non-winter hardy 'Moapa'.

NMP-8

Developed cooperatively by AR-SEA-USDA, and the Nevada and Minnesota Agriculture Experiment Stations (Hartman, et al., 1979a).

In tests for resistance towards anthracnose, NMP-8 was less resistant than NMP-10 and the resistant check 'Arc' with 47, 51 and 83 percent resistant plants, respectively. When tested for resistance to Phytophthora root rot, NMP-8 was less resistant than NMP-10 and the resistant check 'Agate' with 33, 74 and 42 percent resistant plants, respectively. Against bacterial wilt NMP-8 was less resistant than the resistant check 'Vernal' with 2 and 46 percent resistant plants, respectively.

NMP-10

Developed cooperatively by AR-SEA-USDA, and the Nevada and Minnesota Agriculture Experiment Stations (Hartman, et al., 1979a).

In tests for resistance towards anthracnose NMP-10 had 51 percent resistant plants compared to 83 percent for the resistant check 'Arc'. Against Phytophthora root rot NMP-10 had 74 percent resistant plants, whereas the resistant check 'Agate' had 42 percent. When tested for resistance toward bacterial wilt NMP-10 had 4 percent resistant plants compared to 46 percent in the resistant check 'Vernal'. BIC 6

Developed cooperatively by ARS-USDA, and the Kansas, Minnesota, Nebraska, Nevada and Washington Agriculture Experiment Stations (Barnes, et al., 1977b).

In tests against spotted alfalfa aphid and pea aphid infestation, BIC 6 had 16 and 28 percent resistant plants, respectively, compared to 80 and 76 percent for the resistant check 'Kanza'. In tests for resistance to bacterial wilt and Phytophthora root rot, BIC 6 had 10 and 15 percent resistant plants, respectively, compared to 36 and 47 percent for the resistant check 'Vernal'. Against anthracnose BIC 6 had 12 percent resistant plants, whereas the resistant check 'Arc' had 82 percent.

Mesa Sirsa

Developed by the Arizona Agriculture Experiment Station and ARS-USDA (Schonhorst, et al., 1968).

Seedlings of Mesa Sirsa have the ability to survive infestations of Ent-A and Ent-B biotypes of the spotted alfalfa aphid. Mesa Sirsa has an intermediate level of resistance to <u>Peronospora trifoliorum</u> (de Barry). Preliminary investigations showed high tolerance to the root knot nematodes <u>M. incognita acrita</u> (Chitwood) and <u>M. javanica</u> (Traub).

Materials and Methods

Ten harvests of 20 alfalfa germplasms, varieties, and experimental lines were made between March 1981 and January 1982 at the Waimanalo Research Station of the University of Hawaii. The experimental site was at 18 m elevation, 21°N latitude and 1.2 km from Waimanalo Beach on the windward side of the island of Oahu, Hawaii. The soil was of the Typic Haplustoll subgroup, Waialua series with pH 6.0-6.3 at the O-15 cm depth.

Temperature and solar radiation values for the experimental period are presented in appendix A.

Field preparation

The field was previously used for citrus variety trials but had been cleared and left fallow for a number of years. An area of approximately 0.21 ha (90 ft x 250 ft) was cleared, leveled, plowed and disked to create a fine textured seedbed. Boundaries for 4 reps were estimated and within each rep soil samples were taken at 15 cm (6 in), 30 cm (1 ft), and 91 cm (3 ft) depths. Each sampling depth was a composite of 5 subsamples and represented an area of 0.05 ha. Each subsample was taken using a 10 cm diameter by 10 cm deep soil auger. The samples were analyzed for pH, P, K, Ca, and Mg. Based on recommendations of Goodell and Plucknett (1972) and Thompson¹, 280 kg/ha 8-12-6 was applied.

Preemergence weed control was with Eptam 6E at 3.5 lbs active ingredient per acre. The herbicide was incorporated to a depth of 15 cm using a rotorvator.

Planting material

Planting material consisted of 20 germplasms, cultivars, and experimental lines with known genetic backgrounds. The seed was inoculated

¹Dr. John R. Thompson, Personal Communication.

with <u>Rhizobium meliloti</u> provided by the 'NiFTAL' project. The inoculum was a composite of strains TAL 380, TAL 1372, and TAL 1373.

The 20 germplasms, cultivars, and experimental lines are collectively referred to as 'lines' in further discussion.

Field layout

Each line was planted in single 7.6 m (25 ft) rows spaced on 76.2 cm (30 in) centers. Rows adjacent to field borders and irrigation laterals were planted with WL 600, a cultivar adapted to conditions in Hawaii. The order of planting is shown in appendix B.

Planting

The field was planted on January 15, 1981. Each row was seeded at 2 gm per 7.6 m. Depth of sowing was approximately 0.6 cm. <u>Plant height</u>

2 weeks after each harvest and also at harvest plant height was calculated from an average of 3 random measurements per row. The height 2 weeks after a harvest was assigned a class based on the system of class 1=0-5 cm, class 2 being greater than 5 up to 10 cm, etc. Percent bloom, percent pods at harvest

Prior to harvest an assessment of the percentage of stems in bloom and the percentage of stems with pods was made through visual estimation over the entire row.

Forage yield

Each row was cut to a height of 5.1 cm (2 in) by hand and the wet weight of forage from each row was measured. A subsample was dried at 60 G to constant weight and the percent moisture determined. Forage yield was reported on a dry weight basis in two forms, 1) total forage taken from each 7.6 m plot and 2) forage from each 7.6 m plot treated as if the row were a solid stand. (2) was obtained from (1) by dividing (1) by the amount of row in production then multiplying by 7.6 m, this was labeled potential yield. Harvests were at 28 - 35 day intervals.

Elemental analysis

Elemental analysis of the forage consisted of P, K, Ca, Mg, and S measured using an X-ray fluorescence quantometer. Total N was measured using the standard micro kjeldahl method.

Stem angle

Stem angle was calculated from 3 random measurements per row 4 weeks after harvest or prior to harvest if less than 4 weeks. The angle that the outermost stem made with the ground was measured.

<u>Plot upkeep</u>

Irrigation was approximately 1.5 acre-inch per week provided by rainfall or overhead impact sprinkler.

Fertilizer was applied based on the average uptake of the stand as determined by elemental analysis. K which is required in relatively high amounts (Thompson, 1978), was applied quarterly. Other nutrients were applied annually.

Pests

Insect and disease infestations were evaluated as they occurred. Statistical analysis

Data were analyzed by analysis of variance following the methods described by Little and Hills (1978:125-138). The experiment was analyzed as a completely randomized block with 20 treatments in 4 replications.

Results and Discussion

Plant height 2 weeks after harvesting

The lines that were the shortest at 2 weeks after harvesting were those classified as dormant. There was a continuum with moderately slow growers to moderately fast growers instead of just 2 groups, i.e., dormant versus nondormant. NMP-35 regrew the fastest while Saranac AR had the slowest growth (table 1).

Statistical differences among lines as well as differences among measurement dates were significant at the 99% probability level (table 2).

The significance of plant height at 2 weeks after harvesting can be seen from Leach (as reported by Smith, 1972) where the quickness of regrowth of shoots after cutting was found to affect variation in yield of 3 cultivars at 28 days.

Frakes, et al., (as reported by Bula and Massengale, 1972) also found that plant height as well as width and number of stems affected forage yield.

Varieties that do regrow quickly after cutting may be due to high root reserves. This is a good quality, but we must be careful to not eliminate all others just because they were a little slower to recover after cutting. Their slowness may be due to decreased root reserves due to seed filling, for carbohydrates accumulate in the roots during the bud and flowering stages and then level off or decrease just before or at seed development (Brown, et al., 1972). Seed filling would indicate an advanced stage of maturity; this may be a desirable characteristic for it indicates that we could have harvested those treatments

Table 1. Annual heights at 2 weeks after harvesting for 20 alfalfa lines at Waimanalo, Oahu, during the period April 1981 to January 1982.@

NMP-25	11.500	Δ	
AFRICAN	8.375	В	
UC 163	8.700	BC	
MESA SIRSA	8.575	8 C D	
NMP-3	8.475		
HAYDEN	3.525	3 C a 5	
FLURIDA 77	8.500	BCÜE	
NMP-33	8.350		
NMP-10	<u>ن</u> 250		
ISOM PX	8.150		
PERUVIAN	7.700		
SYN YY	7.450	F C	
SYN XX	7.225	r G	
BIC 6	7.075	5 H	
MSE6 SN3 W3	0.875	GH	
CHILEAN	6.375	H I	
MSEG SN3 W3	6.850	ні	
LAHONTAN	6.600	HI	
FLEMISH	6.525	1	
SARANAC AR	5.575	1	
			.1

@ means in 5 cm classes, those followed by the same letter were not significantly different (p = 0.05). Means on a per cutting basis.

Table 2. Analysis of variance for plant height 2 weeks after harvesting for 20 alfalfa lines at Waimanalo, Oahu, during the period April 1981 to January 1982. @

SOURCE	DF	\$ \$	иѕ	F	REQUIRED F
	ll				56 18
REP	3	50.4922	16.8307	21.73	2.78 4.15
LINE (L)	19	1216.1523	64.0030	82.63	1.78 2.24
ERROR-A	57 '	44.1563	0.7747		
SUBTOTAL	79	1310.8008			(
HARVEST (H)	911)	316.8242	35.2027	68.05	4.00 2 7.08 2
LXH	171 (19)	128.4258	0.7510	1.45	1.76 2 2.22 2
ERROR-B	540 (60)	279.3516	0.5173		
TOTAL	799	2035.4023			

a TABULAR F VALUES FOR DEGREES OF FREEDOM IN PARENTHESES

sooner. Under the harvesting management imposed at Waimanalo those lines that did not reach the bud stage when other lines had flowered were probably at a disadvantage from the viewpoint of carbohydrate root reserves.

During the winter months no flowering was observed. Smith (1972:492) says that "it is not entirely correct to assume that flowering is needed to obtain high carbohydrate storage in roots ... plants in the northern states need only 8 to 10 inches of green growth during the autumn period to attain adequate storage of root carbohydrates ... likewise, alfalfa may not flower in high altitude areas near the tropics or during the winter in mild areas, but root reserves are stored as top growth accumulates".

The dormant lines in general showed little flowering throughout the year (table 3). Flowering occurred in greater frequency and magnitude in the nondormant lines. Under the harvesting frequency imposed at Waimanalo, lines such as UC 163, NMP-8, NMP-10, African, Mesa Sirsa, and NMP-35 produced some pods before harvest (table 4).

The performance of the lines over time is presented in figure 1. Mean comparisons by Duncan's multiple range test with respect to measurement dates and with respect to lines are presented in tables 5 and 6, respectively.

The height measured at 6/10 was low due to a high concentration of cupric hydroxide (Kocide 101) applied on 6/2 to control appreciable stand decline caused by fungi identified by Dr. M. Aragaki and associates as <u>Rhizoctonia spp</u>. and <u>Cylindrocladium spp</u>.. The recommended rate of cupric hydroxide was applied on 7/28 with no decline in height

Table 3. Percent flowering at harvest of 20 alfalfa lines at Waimanalo, Oahu, during the period March 1981 to December 1981.

	1.			har	vest					
	1	2	3	4	3	6	?	8	9	10
UC 163	0	43	70	99	99	99	83	95	13	0
NMP-8	0	48	93	100	100	98	98	100	2 0	0
NMP-10	0	10	38	99	95	71	72	94	12	0
Flemish	0	0	2	5	7	5	5	9	3	0
BIC 6	0	0	3	10	5	5	6	16	1	0
MSE6 SN3 W3	0	0	13	3	3	5	3	13	1	0
SYN XX	0	0	5	8	6	3	5	6	0	0
SYN YY	0	0	3	15	7	6	6	6	2	0
Saranac AR	0	0	0	2	3	4	1	4	0	0
Isom PX	0	20	24	96	71	75	60	95	6	0
NMP-33	0	12	20	70	84	59	34	52	5	0
NMP-35	0	22	80	100	100	97	97	85	5	0
Chilean	0	0	13	4	5	4	3	5	1	0
African	0	50	87	100	99	97	65	95	26	0
Peruvian	0	2	20	12	7	- 16	12	22	2	0
Lahontan	0	0	1	4	3	2	5	5	1	0
Mesa Sirsa	0	19	40	74	72	60	41	8 0	6	0
Hayden	0	2 7	36	79	94	57	60	96	6	0
MSF6 SN3 W3	0	0	2	7	6	6	6	8	1	0
Plorida 77	0	9	7	76	77	64	56	80	5	0

....

Table 4. Percent pods at harvest for 20 alfalfa lines at Waimanalo, Oahu, during the period March 1981 to December 1981.

۴,

	harvest										
variety	1	2	3	4	5	6	7	8	9	10	
UC 163	0	0	0	2	1	2	0	6	5	0	
NMP-8	0	0	0	2	2	2	0	8	0	0	
NMP-10	0	0	0	1	0	0	1	2	0	0	
Plemsih	0	0	0	0	0	0	0	0	0	0	
BIC 6	0	0	0	0	0	0	0	0	0	0	
MSE6 SN3 W3	0	0	0	0	0	0	0	0	0	0	
SYN XX	0	0	0	0	0	0	0	0	0	0	
SYN YY	0	0	0	0	0	0	0	0	0	0	
Saranac AR	0	0	0	0	0	0	0	0	0	0	
Isom PX	0	0	0	0	0	0	0	0	0	0	
NMP-33	0	0	0	0	0	0	0	0	0	0	
NMP-35	0	0	0	13	19	7	0	5	0	0	
Chilean	0	0	0	0	0	0	0	0	0	0	
African	0	0	0	1	2	2	0	5	1	0	
Peruvian	0	0	0	0	Ο.	0	0	0	0	0	
Lahontan	0	0	0	0	0	0	0	0	0	0	
Mesa Sirsa	0	0	0	0	1	0	0	1	0	0	
Hayden	0	0	0	0	0	0	0	1	0	0	
MSP6 SN3 W3	0	0	0	0	0.	0	0	0	0	0	
Florida 77	0	0	0	0	0	0	0	2	0	0	

Figure 1. Plant height 2 weeks after harvest versus time for 20 alfalfa lines at Waimanalo, Oahu, during the period April 1981 to January 1982.

Table 5. Mean heights at 2 weeks after harvesting with respect to measurement dates for 20 alfalfa lines at Waimanalo, Oahu, during the period April 1981 to January 1982. @

CATE	MESA SERSA	HAYDEN	UC 163	NMP-8	NMP-10	FLENISH	BIC 6	NSE6 SN3 N3	MSE6 SN3 W3	FLORIDA 77
4/1	9.00 ABC	9.00 48	8.75 BC	8.50 BCD	7.75 CDE	6.50 C	1.75 8	7.25 8	7.25 BC	7.75 BC
5/12	9.75 A	9.25 A	10.00 A	9.50 AB	9.50 A	8.25 A	8.75 A	8.25 A	8.50 A	9.25 A
6/10	7.50 0	7.50 C	7.25 D	7.50 D	7.25 E	5.25 D	6.50 C	7.00 8	6.25 CO	7.50 C
7/9	8.25 CD	8.50 A8	8.25 C	8.50 BCD	7.50 DE	6.25 CD	6.75 BC	6.50 BC	6.25 CD	0.75 AB
8/5	8.50 BC	9.00 A8	8.75 BC	9.00 ABC	8.50 ABCD	6.25 CO	7.00 BC	6.75 BC	7.00 BC	8.50 AAC
9/2	9.25 ABC	9.25 A	9.50 AB	9.75 A	9.00 AB	7.50 AB	7.25 BC	7.25 B	7.50 B	9.50 A
9/30	8.75 ABC	8.75 AB	9.00 BC	9.00 ABC	9.00 AB	6.75 BC	6.75 BC	7.00 B	7.00 BC	8.50 ABC
10/31	9.50 AB	8.75 AB	8.75 BC	9.25 ABC	8.75 ABC	6.00 CD	6.50 C	6.50 BC	7.00 8C	8.75 AB
12/2	8.75 ABC	8.00 80	8.50 BC	8.25 CD	8.00 8CDE	6.50 C	7.00 BC	6.50 BC	6.25 CO	8.50 A8C
175	7.50 0	7.25 C	8.25 C	7.50 D	7.25 E	6.00 CD	6.50 C	5.75 C	5.50 D	8.00 BC
DATE	SYN XX	SYN YY	SARANAC AR	ISON PX	NHP-33	N4P-35	CHILEAN	AFRICAN	PERUVIAN	LAHONTAN
4/1	7.50 BC	7.50 CD	5.50 BC	8.50 BC	8.25 BC	10.50 8	6.25 B	8.50 BC	8.00 8	6.50 BC
5/12	8.75 A	8.75 A	7.25 A	9.50 A	9.25 AB	12.50 A	9.50 A	10.00 A	9.25 A	7.75 A
6/10	6.50 CO	6.50 DE	5.50 BC	7.25 D	7.00 0	11.75 A	6.75 CD	8.00 C	7.25 BC	5.00 80
7/9	6.50 CD	7.75 BC	5.00 C	7.75 CO	8.50 ABC	11.75 A	6.50 CD	8.75 BC	6.75 C	6.00 80
8/5	7.00 ACD	7.50 CD	5.25 BC	8.25 BCU	8.75 ABC	11.75 A	6.00 D	9.50 AB	7.50 BC	7.00 AB
912	7.75 B	8.50 AB	6.25 8	9.00 AB	9.50 A	12.50 A	7.25 C	9.25 AB	8.00 8	6.75 ABC
9/30	7.50 BC	7.25 CD	5.25 80	8.00 BCD	9.00 ABC	12.00 A	5.75 D	9.50 AB	7.25 BC	7.00 AB
10/31	7.00 BCD	7.25 CD	5.75 BC	8.50 BC	8.50 ABC	12.00 A	6.50 CD	9-50 AB	8.00 8	6.75 ABC
12/2	7.50 HC	7.50 CD	5.25 BC	7.50 CD	8.00 C	10.50 B	6.00 D	8.00 C	7.50 BC	6.50 BC
1/5	6.25 D	6.00 E	4.75 C	7.25 D	6.75 D	9.75 B	6.25 CD	7.75 C	7.50 BC	5.75 C

@ Means in 5 cm classes, those followed by the same letter for a given alfalfa line were

not significantly different (p = 0.05).

				DATE	OF MEASURE	1ENT				
LINE	4/7	5/12	6/10	1/9	8/5	9/2	9/30	10/31	12/2	175
N#P-35	10.50 A	12.50 A	11.75 A	11.75 A	11.75 A	12.50 A	12.00 A	12.0C A	10.50 A	9.75 A
AFPICAN	8.50 BCD	10.00 8	8.00 8	8.75 B	9.50 8	9.25 BC	9.50 8	9.50 B	8.00 80	7.75 BC
UC 163	8.75 BC	10.CO B	7.25 BCD	8.75 BCD	8.75 BC	9.50 B	9.00 80	8.15 BC	8.50 B	8.25 8
MESA SIRSA	9.00 8	9.75 BC	7.50 BC	8.25 BCD	8.50 C	9.25 80	8.75 BC	9.50 B	8.75 8	7.50 ect
NMP-8	8.50 BCD	9.50 BCD	7.50 BC	8.50 BC	9.00 BC	9.75 B	9.00 BC	9.25 BC	8.25 BC	7.50 PC
HAYDEN	9.00 B	9.25 ACDE	7.50 BC	8.50 BC	9.00 BC	9.25 BC	8.75 BC	8.75 AC	8.00 BC	7.25 601
FLORICA 77	7.75 CDE	9.25 BCDE	7.50 BC	8.75 8	8.50 C	9.50 8	8.50 BCD	8.75 BC	8.50 8	8.00 BC
MP-33	8.25 BCDE	9.25 BCDE	7.00 CDE	8.50 BC	8.75 RC	9.50 8	9.00 80	8.50 BCD	8.00 80	6.75 DEF
MP-10	7.75 CDE	9.50 BCD	7.25 BCD	7.50 DE	8.50 C	9.00 800	9.00 BC	8.75 BC	8.00 BC	7.25 CDE
SOM PX	9.50 BCD	9,50 BCO	7.25 BCD	7.75 CD	8.25 CO	9.00 BCD	8.00 CDE	8.50 BCD	7.50 CD	7.25 CD4
PERUVIAN	8.00 BCDE	9.25 BCDE	7.25 BCD	6.75 EF	7.50 DE	8.00 CDEF	7.25 EF	8.00 CDE	7.50 CD	7.50 BCC
SAN AA	7.50 DE	8.75 COEF	6.50 DEF	1.75 CO	7.50 DE	8.50 BCDE	1.25 EF	7.25 DEF	7.50 CD	6.00 FGF
SAN XX	7.50 DE	8.75 CDEF	6.50 DEF	6.50 F	7.00 EF	7.75 DEF	7.50 DEF	7.0C EFG	7.50 CD	6.25 FGI
BIC 6	7.75 COE	8.75 CDEF	6.50 DEF	6.75 EF	7.00 EF	7.25 EFG	6.75 FG	6.50 FG	1.00 DE	6.50 FFC
SFA SN3 W3	7.25 EF	8.25 EF	7.00 CDE	6.50 F	6.75 EF	7.25 EFG	7.00 EF	6.50 FG	6.50 EF	5.75 GH
HILFAN	8.25 BCOE	9.50 BCO	6.75 CDEF	6.50 F	6.00 FG	7.25 EFG	5.75 GH	6.50 FG	6.00 FG	6.25 FGI
SF6 5N3 W3	7.25 EF	8.50 DEF	6.25 EFG	6.25 F	7.00 EF	7.50 EFG	7.00 EF	7.00 EFG	6.25 EF	5.50 HI
AHONTAN	6.50 F	7.75 FG	6.00 FGH	6.00 F	7.00 EF	6.75 FG	7.00 EF	6.75 EFG	4.50 EF	5.75 GH
ELEMISH	6.50 F	8.25 EF	5.25 H	6.25 F	6.25 F	7.50 EFG	6.75 FG	6.00 FG	6.50 EF	6.00 FGF
ARANAC AR	5.50 G	7.25 G	5.50 GH	5.00 G	5.25 G	6.25 G	5.25 H	5.75 G	5.25 G	4.75 1

Table 6. Mean heights at 2 weeks after harvesting for 20 alfalfa lines at Waimanalo, Oahu, during the period April 1981 to January 1982. @

@ Means in 5 cm classes, those followed by the same letter for a given date were not

significantly different (p = 0.05).

measurement at the next measurement date. There seemed to be no effect of cupric hydroxide on disease spread mainly because cupric hydroxide served as a barrier to pathogens but the pathogen was mainly soilborne and spread through adjoining crowns. Spraying was discontinued after 7/28.

It is assumed that had the recommended amount of cupric hydroxide been sprayed on 6/2 the curve for each line would have been pretty much level with ups and downs in response to changes in climatic conditions mainly sunlight and temperature. There was a trend of decreasing height from September into January when daylength was short. Harvest height

Dormant lines were shorter than the nondormant lines mostly due to the slow growth after cuttings (table 7). The trend was toward lower height in winter months due to short days and low solar radiation due to an increasing amount of cloud cover (figure 2). Statistical differences among lines as well as among harvest dates were significant at the 99% probability level (table 8).

There was a good correlation between the height at 2 weeks after harvesting and harvest height ($r^2 = 0.89$), the overall shape of figure 2 is similar to that of figure 1. Again, the low point at 6/24 was due to spraying of cupric hydroxide at high concentration. There was a slight decline at 10/14 due to short days and untimely irrigation.

Mean comparisons by Duncan's multiple range test with respect to harvest dates and with respect to lines are presented in tables 9 and 10, respectively.

Insects were not a problem within the first 2 weeks after harvesting most probably due to lack of time and substrate for the population
Table 7. Annual plant height at harvest for 20 alfalfa lines at Waimanalo, Oahu, during the period March 1981 to December 1981. @

NMP-35	73.136	А			
AFRICAN	64.115	В			
FLÜRIDA 77	62.244	зc			
UC 163	62.002	3 C D			
PERUVIAN	61.717	B C D			
MESA SIRSA	61.475	вср			
HAYDEN	60.482	C D I	F		
NMP-33	60.007	Cυ	= F		
NMP-8	59.377	Сре	- ·		
NMP-10	53.923	 D (- 		
ISOM PX	57.912		 - F		
CHILEAN	57.391		F	G	
SYN XX	54.882			G F	ł
SYN YY	54.501			• ·	•
MSFO SN3 W3	54.096			F	•
8IC 6	53.767			۲	4
MSE6 SN3 W3	53.680			ب	•
FLEMISH	52.469			н	•
LAHGNTAN	47.733			•	
SARANAC AR	45.136				1

@ Those followed by the same letter were not significantly different (p=0.05), means in cm on a per cutting per plot basis.

Figure 2. Harvest height versus time for 20 alfalfa lines at Waimanalo, Oahu, during the period March 1981 to December 1981.

Tal	ble	8.	Anal	lysis	of	varia	ince	for	pla	nt h	eight	at	harvest	ot	20	alfalfa	lines
at	Wai	mana	alo,	Oahu,	du	iring	the	peri	od	Marc	n 198	l to	Decembe	er 1	1981	.@	

SUURCE	DF	\$ \$	MS	F	REQUII 5%	RED F 12
REP	3	4290.0000	1430.0000	38.72	2.78	4.15
LINE (L)	19	28550.0000	1502.0313	40.69	1.78	2.24
ERROR-A	57 .	2105.0000	36.9298			
SUBTUTAL	79	34945.0000			1	
HARVEST (H)	9 (1)	59690.0000	6632.2187	245.35	4.00 a	7.08 a
тсхн	171 (19)	5474.0000	32.0117	1.18	1.76 @	2.22 a
ERRUR-B	540 (60)	14597.0000	27.0315		1	
TOTAL	799	114706.000				

a TABULAR F VALUES FOR DEGREES OF FREEDOM IN PARENTHESES

•

32

Table 9.	Mean plan	nt heights at	harvest wit	h respect	to harves	t dates	for 20 a	alfalfa	lines
					۰.				
at Waimana	alo. Oahu	during the	period March	1981 to I	December l	981.@			

DATE	MESA SIRSA	HAYDEN	UC 163	KMP-8	NMP-10	FLENISH	BIC 6	HSE6 SN3 N3	MSF6 SN3 W3	FLORIDA 77
3/24	44.75 D	42.65 E	45.93 E	41.68 D	40.53 D	39.36 D	43.92 D	41.80 D	41.75 D	45.61 D
4/28	72.00 AB	71.17 A	72.42 AB	66.50 AB	61.75 8	61.92 A	63.08 AB	62.75 AB	65.83 A	67.67 A
5/28	73.42 A	69.08 AB	77.00 A	70.75 A	70.00 A	62.33 A	67.08 A	68.50 A	64.25 A	70.67 A
6/25	47.58 0	48.92 0	50.75 E	46.08 D	50.00 C	41.08 D	44.92 D	46.17 D	47.50 CD	52.25 C
7/23	66.08 8	64.33 BC	66.00 C	67.50 A	67.25 B	60.00 AB	54.67 C	57.33 BC	57.33 B	69.50 A
8/20	68.59 AB	67.08 ABC	67.58 BC	67.75 A	67.08 AB	60.25 AB	60.83 B	62.67 AB	60.83 AB	70.25 A
9/16	66.92 B	66.67 ABC	64.67 CD	69.08 A	65.92 AB	57.17 AB	54.33 C	57.00 BC	56.75 8	67.00 A
10/16	58.42 C	61.83 C	59.00 0	57.33 C	55.17 C	47.75 C	47.50 D	43.92 0	48.92 C	59.50 B
11/18	66.92 B	64.67 ABC	65.83 C	60.67 BC	64.25 AB	54.33 B	54.58 C	52.33 C	55.83 B	67.17 A
12/23	50.08 D	48.42 DE	50.83 E	46.42 D	52.33 C	40.50 D	46.75 0	44.33 D	41.92 D	53.83 80
041£	SYN XX	SYN YY	SARANAC AR	150⊭ PX	NMP-33	NMP - 35	CHILEAN	AFRICAN	PERUVIAN	LAHONTAN
3/74	43.82 0	39.26 D	33.44 C	41.70 E	42.65 E	51.86 F	51.32 CDE	45.82 F	47.08 E	32.71 D
4/28	64.42 AB	60.58 A	56.75 A	68.08 AB	66.58 AB	75.67 BCD	72.00 A	74.92 AB	76.00 A	54.83 AB
5/28	67.58 A	66.67 A	56.75 A	70.17 A	70.33 A	83.75 A	73.08 A	78.17 A	74.00 A	56.83 A
6/25	46.33 0	45.33 C	37.33 C	46.92 E	52.08 CD	73.25 CD	52.17 CD	54.83 E	52.42 DE	42.00 C
7/23	59.08 BC	61.92 A	47.50 B	62.83 BC	68.67 A	80.17 AB	59.42 8	68.67 BC	62.67 BC	52.42 AB
8/20	59.42 OC	62.50 A	49.33 B	66.58 AB	66.83 AB	78.50 ABCD	60.50 B	70.42 BC	65.50 B	54.75 AB
9/16	58.75 BC	62.58 A	49.08 8	64.17 ABC	66.83 AB	79.58 ABC	59.25 B	72.25 ABC	64.08 B	52.00 AB
10/16	49.83 D	46.42 C	36.75 C	53.75 D	55.50 C	72.17 0	45.33 E	61.83 D	57.92 CD	43.58 C
11/18	55.92 C	52.67 B	48.42 8	58.25 CD	61.50 B	73.92 8CD	54.42 BC	66.75 CD	67.42 B	49.50 B
12/23	43.67 D	47.08 BC	36.00 C	46.67 E	49.08 D	62.50 E	46.42 DE	47.50 F	50.08 E	38.75 C

 ${\mathfrak e}$ Means in cm per plot, those followed by the same letter for a given alfalfa line were

•

not significantly different (p = 0.05).

ယ ယ Table 10. Mean plant heights at harvest for 20 alfalfa lines at Waimanalo, Oahu, during the period March 1981 to December 1981. @

				DATE	OF MEASUREM	NI				
LINE	3/24	4/28	5/28	6/25	1/23	8/20	9/16	10/16	11/10	12/23
NHP-35	51.86 A	75.67 A	83.75 A	73.25 A	80.17 A	78.50 A	79.58 A	72.17 A	73.92 A	62.50 A
AFRICAN	45.82 BCD	74.92 🔺	78.17 AD	54.83 8	68.47 B	70.42 B	72.25 B	61.83 8	66.75 8	47.50 CDE
FLORIGA 77	45.61 BCDE	67.67 eco	70.67 COEF	52.25 PCD	68.50 B	70.25 B	67.00 BCD	59.50 B	67.17 8	53.83 B
UC 163	45.93 BCD	72.42 AB	77.00 BC	50.75 BCDE	66.00 BC	67.58 BC	64.67 ROUEF	59.0C B	65.83 8	50.83 BCD
PERUVIAN	47.08 ABC	76.00 A	74.00 BCD	52.42 BC	62.67 BCD	65.50 BCDEF	64.08 CDEF	57.92 BC	67.42 B	50.08 BCD
MESA SIRSA	44.75 CDEF	72.00 ABC	73.42 BCDE	47.58 DEFG	66.C8 BC	68.58 AC	46.92 BCD	58.42 8	66.92 B	50.08 BCD
HAYDEN	42.65 CDEF	71.17 ABC	69.08 DEFG	48.92 CDEFG	64.33 BC	67.08 BCD	66.67 BCD	61.83 8	64.67 BC	48.42 CDE
NHP-33	42.65 CDEF	66.58 BCDE	70.33 COEF	52.08 BCD	68.67 B	66.83 BCDE	66.83 8CD	55.50 BCD	61.50 BCD	49.08 BCDE
N.1P-8	41.68 CDEF	66.50 BCDE	70.75 COEF	46.08 EFGH	67.50 A	67.75 BC	69.08 BC	57.33 BC	60.67 BCD	46.42 DEF
NMP-10	40.53 DEF	61.75 DEF	70.00 CDEF	50.00 CDEF	62.25 BCD	67.08 BCD	65.92 HCDE	55.17 BCD	64.25 BC	52.33 BC
ISCH FX	41.70 CDEF	68.08 BCD	70.17 COEF	46.92 EFG	62.83 BCD	66.58 BCDE	64.17 COEF	53.75 BCDE	58.25 CDE	46.67 DEF
CHILEAN	51.32 AB	72.00 ABC	73.08 BCDE	52.17 BCD	59.42 CDE	60.50 DEFG	59.25 DEFG	45.33 EF	54.42 DEF	46.42 DEF
SAM XX	43.82 CDEF	64.42 DE	67.58 DEFG	46.33 EFGH	59.08 COE	59.42 FG	58.75 FFG	49.83 CDEF	55.92 DEF	43.67 EFGH
SYN YY	39.26 F	60.58 EFG	66.67 EFG	45.33 FGHI	61.92 868	62.50 CDEF	62.58 CDEF	46.42 FF	52.67 EF	47.08 CDEF
PSE6 SH3 W3	41.79 CDEF	65.83 CDE	64.25 FG	47.50 DEFG	57.33 DEF	60.83 DEFG	56.75 FG	48.92 DEF	55.83 DEF	41.92 FGH
BIC 6	43.92 CDEF	63.C8 DE	67.08 DEFG	44.92 GHI	54.67 EF	60.83 DEFG	54.33 GH	47.50 DEF	54.58 DEF	46.75 DEF
MSE6 SN3 W3	41.80 CDEF	62.75 DEF	68.50 DEFG	46.17 EFGH	57.33 DEF	62.67 CDEF	57.00 FG	43.92 FG	52.33 EF	44.33 EFG
FLENISH	39.36 EF	61.92 DEF	62.33 GH	41.08 IJ	60.00 CDE	60.25 EFG	57.17 FG	47.75 DEF	54.33 DEF	40.50 GH1
LAHONTAN	32.71 G	54.83 G	56.83 H	42.00 HL	52.42 FG	54.75 GH	52.00 GH	43.58 FG	49.50 F	38.75 HI
SARANAC AR	33.44 G	56.75 FG	56.75 H	37.33 J	47.50 G	49.33 H	49.08 H	36.75 G	48.42 F	36.00 1

@ Means in cm per plot, those followed by the same letter for a given date were not significantly

different (p = 0.05).

to build upon. It was in the interval between 2 weeks after a harvest and the next harvest that insects were ever noticed in high populations. In the months of June through October the alfalfa leaf tier, <u>Dichomeris</u> <u>acuminatus</u> (identified by Mr. Dick Tsuda) was present and in the months of November through January the green pea aphid, <u>Acyrthosiphon pisum</u> was present. Visual ratings of degree of damage or distribution of pests showed distribution to be spread over the plots uniformly. Although the pests were uniformly distributed some lines were not tolerant to infestation. There were no control plots for insect evaluation, thus, it is difficult to assess the effect of the presence of insects on plant height. A lines tolerance would be subtly shown as part of the dry matter production evaluation.

Yield has several components some of which are number of plants, number of stems, plant height, and width. How the plant height varies among lines has been described. Planting density was initially based on seed weight, i.e., 2 gm per 7.6 m. This was probably a factor initially when plants were small and had not developed a substantial crown. Bula and Massengale (1972:172) state that "decrease in stand because of management treatments invariably is followed by an increase in number of stems per plant, thus compensating in part for the reduction in numbers of plants". Thus, it is assumed that once a substantial crown was developed the number of plants initially seeded, within limits, became inconsequential. Cultivar differences play a factor in crown type and number of stems for the cultivar.

Stem angle

NMP-35 which was the tallest at harvest had the most upright stems (table 11) but the crown was nonspreading so the plant produced only

a few stems. Saranac AR, which had the shortest stems at harvest, had the most prostrate growth. Statistical differences among lines as well as differences among measurement dates were significant at the 99% probability level (table 12).

Plants with prostrate stems rapidly produce ground cover helping in weed control. Prostrate stems may not be desirable from a commercial management view for stems lying on or close to the ground present a problem to harvesting operations. At the other extreme, vertical stems tend to not utilize all available space for solar radiation, however with plants of this type a higher density of plants per unit area are a positive trait.

Although NMP-35 was tall and upright its nonspreading habit made it only a moderate dry matter producer. One would think that a tall plant would produce more dry matter than a shorter plant but this is not necessarily the case for the components of yield include height and stem angle and also number of stems, leaf to stem ratio, and number of plants per unit area among others. Thus we see NMP-35 to be at the top of the list in stem angle while Saranac AR was at the bottom, the same with harvest height. When we look at dry matter production NMP-35 was not the highest producer.

In April it was evident that the number of plants per row or the density per row would not remain constant for the duration of the experiment due to senescence of plants. Periodic measurements, commencing from the third harvest, were made of the row length and the amount of spaces left by senescent plants. This was used to calculate the two forms of yield.

Table 11. Annual stem angle for 20 alfalfa lines at Waimanalo, Oahu, during the period March 1981 to December 1981. @

NHP-35	62.315	Α										
CHILFAN	49.074	в										
PERUVIAN	47.454	8	С									
NMP-a	46.944	В	С	D								
AFRICAN	46.574	В	с	D	E							
UC 163	45.417	З	С	D	Ε	F						
SYN XX	45.046		C	D	Ε	F						
MESA SIRSA	44.722		С	D	E	F	G					
HAYDEN	44.028		С	D	ε	F	G					
ISOM PX	43.333			D	Ε	F	G	н				
SYN YY	43.102			D	Ε	F	G	н				
NMP-33	42.824				Ε	F	G	н				
FLORIDA 77	42.083					F	G	н				
NMP-10	41.111						G	н	I			
MSF6 SN3 W3	39.768							н	I	J		
BIC 6	38.148								I	J	к	
LAHONTAN	36.944	-								J	к	
FLEMISH	36.667									J	к	
MSE6 SN3 W3	35.880	,									к	
SARANAC AR	32.222										-	1

@ Those followed by the same letter were not significantly different (p = 0.05), means in degrees on a per cutting per plot basis.

Table 12. Analysis of variance for stem angle of 20 alfalfa lines at Waimanalo, Oahu, during the period March 1981 to December 1981. @

SOURCE	DF	55	мs	F	REQUIE	ED F
					58	12
REP	3	2085.0000	695.0000	14.10	2.78	4.15
LINE (L)	19	27131.0000	1427.9473	28.97	1.78	2.24
ERRCR-A	57 '	2810.0000	49.2982			
SUBTOTAL	79	32026.0000				
HARVEST (H)	8 (1)	16592.0000	2074.0000	71.52	4.00 a	7.08 a
: схн	152 (19)	5099.0000	33.5461	1.16	1.76 @	2.22 a
ERRCR-B	480 (60)	13920.0000	29.0000			
TOTAL	719	67637.0000				

a TABULAR F VALUES FOR DEGREES CF FREECOM IN PARENTHESES

.

<u>Total forage</u>

Overall Florida 77 was the highest dry matter producer (table 13) due to its high production at most harvests. Chilean showed overall poor production for the recorded period due to its low production after the fourth harvest (figure 3). NMP-35 which was the tallest 2 weeks after harvests and also at harvest was a poor dry matter producer at harvests 1, 2, and 3 (3/24, 4/28, and 5/28) but did not decline in yield as rapidly as some other lines at succeeding harvests.

Differences among lines as well as differences among harvest dates were significant at the 99% probability level (table 14). Mean comparisons by Duncan's multiple range test with respect to harvest dates and with respect to lines are presented in tables 15 and 16, respectively.

There were no differences among lines for harvests 1 and 3 (3/24) and 5/28, table 15). The other harvests showed differences among lines that were significant at the 99% probability level.

The trend in dry matter production seemed to be one of decline after harvest 2. Similar yield response with time were reported by Wilsie and Takahashi (1937) and Younge and Takahashi (1953) with decline in yield being seasonal. It is felt that dry matter production would pick up in response to increased daylength and increased sunshine. Potential yield

The estimated potential yield of the top 5 lines (table 17) was the same as the actual yield (table 13). Statistical differences among lines as well as among harvest dates were significant at the 99% probability level (table 18). Table 13. Annual yield (actual) for 20 alfalfa lines at Waimanalo, Oahu, during the period March 1981 to December 1981. @

FLURIDA 77	0.745	٨					
MESA SIRSA	0.700	А	в				
HAYDEN	0.570	А	в				
UC 163	0.552	А	ы	С			
NMP-10	0.635	A	в	С	D		
ISUM PX	0.501		в	С	υ	Ε	
BIC o	0.594		8	С	G	E	
NMP-3	0.593		ម	С	Ð	Ε	
NMP-33	U.549			С	D	Е	F
SYN YY	0.527				G	E	۴
AFRICAN	0.524				υ	Ε	F
NMP-35	0.521				D	E	F
MSF6 SN3 W3	0.517					Е	F
PERUVIAN	0.508					E	F
FLEMISH	0.493					E	F
LAHUNTAN	0.483					Ξ	F
SARANAC AR	0.473						F
SYN XX	0.469						ç
MSES SN3 x3	0.468						F
CHILEAN	0.434						F

@ Those followed by the same letter were not significantly different (p = 0.05), means in kg on a per cutting per plot basis.

Figure 3. Actual yield versus time for 20 alfalfa lines at Waimanalo,

Oahu, during the period March 1981 to December 1981.

Table 14.	Analysis of	variance	for yield	(actual) of 20 a	altalta	lines	at
Waimanalo,	Oahu, durin	g the peri	od March	1981 to	December	1981. @	j	

SOURCE	DF	SS	MS	F	REQUI	ED F
					54	1%
REP	3	6.5585	2.1862	43.78	2.78	4.15
LINE (L)	19	5.6822	0.2991	5.99	1.78	2.24
ERRCR-A	57 ·	2.8462	0.0499			
SUBTUTAL	79	15.0869				
HARVEST (H)	9(1)	45.2813	5.0313	411.17	4.00 a	7.08 @
IL X H	171 (19)	2.9733	0.0174	1.42	1.76 @	2.22 2
ERROR-B	540 (60)	6.6077	0.0122			
TUTAL	799	69.9492	1			

a TABULAR F VALUES FOR DEGREES OF FREEDOM IN PARENTHESES

DATE	MESA SIRSA	HAYDEN	UC 163	MP-8	NMP-10	FLEMISH	BIC 6	NSE6 SN3 W3	MSF6 SN3 W3	FLORIDA 7
3/24	0.40 D	0.38 E	0.34 E	0.32 E	0.32 0	0.32 DE	0.37 D	0.26 D	0.37 C	0.39 E
4/28	1.22 A	L.19 A	1.19 A	1.02 A	0.99 A	1.04 A	1.14 A	0.88 A	1.10 A	1.14 A
5/28	1.14 A	1.03 B	1.05 A	C.98 A	0.97 A	0.91 A	1.01 A	0.90 A	0.96 #	1.12 A
6/25	0.71 8	0.74 C	0.67 8	0.72 8	0.70 A	0.57 B	0.64 B	0.53 8	0.65 8	0.15 80
7/23	0.66 80	0.65 CD	0.65 8	0.69 80	0.70 8	0.51 80	0.59 80	0.49 BC	0.57 B	0.80 8
A/20	0.65 80	0.65 60	0.61 BC	0.55 CD	0.67 B	0.43 BCD	0.59 BC	0.48 80	0.39 C	0.70 RC
9/16	0.64 BC	0.67 C	0.60 BCD	0.53 CO	0.58 80	0.37 CDE	0.45 CD	0.33 CD	0.36 C	0.81 8
10/16	0.52 CD	0.50 DE	0.46 CDE	0.44 DE	0.48 60	0.27 DE	0.35 0	0.23 0	0.29 C	0.61 CD
11/18	0.51 CD	0.50 DE	0.51 BCO	0.36 E	0.46 CD	0.29 DE	0.41 D	0.29 D	0.24 C	0.61 CD
12/23	0.54 CD	0.40 E	0.44 DE	0.31 E	0.49 C	0.23 E	0.38 0	0.29 D	0.25 C	0.53 DE
DATE	SYN XX	SAN AA	SARANAC AR	150# P.X	NMP-33	NMP-35	CHILEAN	AFRICAN	PERUVIAN	LAHONTAN
3/24	0.30 CDE	0.25 0	0.34 DE	0.36 C	0.32 D	0.27 0	0.41 0	0.29 D	0.31 DE	G.30 E
4/28	0.96 A	0.93 A	1.06 A	1.10 A	1.01 A	0.66 AB	1.10 A	0.96 A	6.97 A	1.03 A
5/28	0.82 A1	0.83 A	0.81 8	0.99 A	0.68 A	0.74 A	0.93 B	0.88 A	0.87 A	0.86 8
6/25	0.52 B	0.56 8	0.53 C	0.68 8	0.70 B	0-69 A	0.57 C	0.70 B	0.65 8	0.55 C
7/23	0.45 80	0.59 8	0.47 CD	0.62 8	0.66 8	0.71 A	0.43 CD	0.57 BC	0.54 BC	0.52 C
8/20	0.43 800	0.56 B	0.36 DE	0.58 8	0.56 BC	0.52 BC	0.30 DE	0.45 CD	0.46 00	0.46 CD
9/16	0.36 BCDE	0.46 BC	0.35 DE	0.52 BC	0.46 CD	0.46 C	0.23 EF	0.42 00	0.41 CDE	0.35 DE
10/1e	0.31 COE	0.36 CD	0.26 E	0.39 C	0.29 D	0.39 60	0.13 F	0.35 D	0.29 E	0.25 E
11/18	0.27 DE	0.37 CD	0.32 DE	0.37 C	0.30 D	0.41 CD	0.12 F	0.32 D	0.30 DE	0.29 E
2/23	0.26 F	0 34 60	0 14 C							

Table 15. Mean yields (actual) with respect to harvest dates for 20 alfalfa lines at

Waimanalo, Oahu, during the period March 1981 to December 1981. @

@ Means in kg per plot, those followed by the same letter for a given alfalfa

line were not significantly different (p = 0.05).

Table 16.	Mean yields	(actual) f	for 20	alfalfa	lines	at	Waimanalo,	Uanu,	during	Lue

period March 1981 to December 1981. @

1 INE	3/24	4/28	5/28	6/25	1/23	8720	9/16	10/16	11/10	12723		
FLORICA 77	0.39	1.14 ABC	1.12	0.75 A	0.80 A	0.70 A	0.81 A	0.61 #	0.61 #	0.53 4		
MESA SIRSA	0.40	1.22 4	1.14	0.71 A	0.66 BCD	0.65 AB	0.64 BC	0.52 48	0.51 48	0.54 A		
HAYDEN	0.38	1.19 AB	1.03	0.74 A	0.65 000	0.65 ABC	0.67 AB	0.50 ABC	0.50 AB	0.40 BCD		
UC 163	0.34	1.19 AB	1.05	0.67 ABC	0.65 BCDE	0.41 A8CD	0.60 800	0.46 A8CD	0.51 A8	0.44 ABC		
NMP-10	0.32	0.59 A8CD	0.97	0.70 A	0.70 ABC	0.67 AB	0.58 800	0.48 ADC	0.46 80	0.49 AB		
1504 PX	0.36	1.10 A6CD	0.99	0.68 ABC	0.62 BCDEF	0.58 ABCDE	0.52 BCDEF	0.39 BCDEF	0.37 BCDE	0.39 800		
BIC 6	0.37	1.14 ABC	1.01	0.64 ABCDE	0.59 BCDEFG	0.59 ABCDE	0.45 CDEF	0.35 CDEF	0.41 BCD	0.38 BCDE		
NMP-8	0.32	1.02 ABCD	0.98	0.72 A	0.69 ABC	0.55 ABCDEF	0.53 BCDE	0.44 BCDE	0.36 CDE	0.31 CDEF		
N#P-33	0.32 5	1.01 ABCD	0.68	0.70 A	0.66 860	0.56 ABCDEF	0.46 CDEF	0.29 EF	0.30 DE	0.30 COEF		
SYN YY	0.25	0.93 60	0.83	0.56 CDE	0.59 BCDEFG	0.56 ARCDE	0.46 CDEF	0.36 CDEF	0.37 BCDE	0.36 PCDE		
AFRICAN	0.29	0.96 800	0.88	0.70 A	0.57 BCDEFG	0.45 DEEGH	0.42 DEFG	0.35 CDEF	0.32 DE	0.30 COEF		
NMP-35	0.27	0.66 E	0.74	0.69 AB	0.71 AB	0.52 BCDEFG	0.46 CDEF	0.39 BCDEF	0.41 BCD	0.36 BCDE		
NSF6 SN3 W3	0.37	1.10 ABCO	0-96	0.65 ABCD	0.57 COEFGH	0.39 FGH	0.36 EFG	0.29 EF	0.24 EF	0.25 EFG		
PFRUVIAN	,0 - 31	0.97 ABCD	0.87	0.65 A8C0	0.54 DEFGH	0.46 DEFGH	0.41 DEFG	0.29 EF	0.30 DE	0.27 DEF		
FLEMISH	0.32	1.04 ABCD	0.91	0.57 8CDE	0.51 EFGH	0.43 EFGH	0.37 EFG	0.27 FG	0.29 DE	0.23 FG		
LAHGNTAN	0.30	1.C3 ABCD	0.86	0.55 DE	0.52 DEFGH	0.46 DEFGH	0.35 EFG	0.25 FG	0.29 DE	0.28 DEF		
SARANAC AR	0.34	1.06 #800	0.81	0.53 DE	0.47 GH	0.36 GH	0.35 EFG	0.26 FG	0.32 DE	0.24 FG		
SYN XX	0.30	0.96 800	0.82	0.52 E	0.45 GH	0.43 EFGH	0.36 EFG	0.31 DEF	0.27 DE	0.26 DEF		
ISF6 SN3 W3	0.26	0.88 D	0.90	0.53 DE	0.49 FGH	0.48 CDEFG	0.33 FG	0.23 FG	0.29 DE	0.29 DEF		
CHELEAN	0.41	1.10 ABCD	0.93	0.57 BCDE	0.43 H	0.30 H	0.23 G	0.13 G	0.12 F	0.12 G		

0.1

@ Means in kg per plot, those followed by the same letter for a given date were

not significantly different (p = 0.05).

Subtracting the actual yield from the potential yield gives the estimated losses (figure 4). The estimated losses indicate a lines ability to withstand pests, mainly root and crown diseases which resulted in plant senescence.

Considering actual yield, potential yield, and estimated losses together, Florida 77 was a high producer and had the least stand losses. Lines such as SYN YY, Lahontan, Saranac AR, and SYN XX were poor dry matter producers but had little stand losses. Flemish, $MSE_6 SN_3 W_3$, and Chilean produced relatively low quantities of dry matter and had high stand losses. NMP-33 and African were only moderate dry matter producers due to heavy stand losses. Peruvian, NMP-35, and $MSF_6 SN_3 W_3$ held approximately the same position in actual yield as with potential yield but had high stand losses. The remaining lines, Mesa Sirsa, Hayden, UC 163, NMP-10, NMP-8, Isom PX, and BIC 6 were high to moderate dry matter producers with moderate stand losses.

The dormant lines were low dry matter producers to start, those not disease resistant resulted in high stand losses and even lower production of dry matter. The nondormant lines in general were high dry matter producers; those not resistant to disease showed high stand losses but their initial high dry matter production in part compensated for some losses.

Percent crude protein

The dormant lines were higher in percent crude protein (table 19). All lines had highest percent crude protein in the first harvest (fig 5).

African, Flemish, Florida 77, Saranac AR, Mesa Sirsa, and $MSF_6 SN_3 W_3$ increased in percent crude protein after the fourth harvest following a

Table 17. Annual yield (potential) for 20 alfalfa lines at Waimanalo, Oahu, during the period March 1981 to December 1981. @

FLORIDA 77	0.758	Δ							
MESA SIRSA	0.742	A	ß						
HAYDEN	0.726	A	8	С					
UC 163	0.715	Α	8	С	D				
NMP-10	0.689	A	8	С	D	Ε			
NHP-33	0.678	Δ	в	С	D	Е			
AFRICAN	0.665	Α	в	с	D	E	F		
NMP-8	0.663	Α	8	С	D	ε	F		
ISDM PX	0.660	A	8	С	D	Е	F		
BIC 6	0.644		8	С	D	Ε	F	G	
NMP-35	0.620		•	С	D	Ε	F	G	н
MSF6 SN3 W3	0.608				D	Е	F	G	Н
FLEMISH	0.602					E	F	G	Н
PERUVIAN	0.602					Е	F	G	Н
MSE6 SN3 W3	0.597					Е	۶	G	н
SYN YY	0.567						F	G	Н
SYN XX	0.540							G	н
CHILEAN	0.540							G	н
LAHONTAN	0.536							G	н
SARANAC AR	0.526								អ

١

@ Those followed by the same letter were not significantly different (p = 0.05), means in kg on a per cutting per plot basis.

SOURCE	DF	ss	MS	F	RECUIRED F
					5% 1%
REP	3	4.6221	1.5407	36.55	2.78 4.15
LINE (L)	19	3.8972	C.2051	4.87	1.78 2.24
ERROR-A	57 ·	2.4026	0.0422		
SUBTOTAL	79	10.9219			
HARVEST (H)	911)	37.4995	4.1666	314.35	4.00 a 7.08 a
LXH	171 (19)	3.1008	0.0181	1.37	1.76 2 2.22 2
ERRUR-B	540 (60)	7.1575	0.0133		
TOTAL	799	58.6797			

Table 18. Analysis of variance for yield (potential) of 20 alfalfa lines at Waimanalo, Oahu, during the period March 1981 to December 1981. @

a TABULAR F VALUES FOR DEGREES OF FREECOM IN PARENTHESES

•

Figure 4. Estimated dry matter losses on a per plot basis for 20 alfalfa lines at Waimanalo, Oahu, during the period March 1981 to December 1981.

pattern similar to that reported by Younge and Takahashi (1953). Younge and Takahashi, working with 13 different alfalfa varieties, reported an inverse relationship between percent crude protein and daylength and yield at Poamoho, Oahu.

There are genetic differences between cultivars in their rate of maturity in response to the environment. All lines were harvested synchronously and were at different stages of maturity as shown by the percent flowering (table 3). The decline in crude protein percent was attributable in part to overmaturity and in part to genetic differences.

Crude protein has been reported to be at a maximum at about the 10 percent bloom (Smith, 1972). Leaf losses occur from pests with increasing plant maturity.

Data for harvests 4/28, 10/16, 11/18, and 12/23 were not obtained due to samples being of poor quality. Statistical differences among lines were significant at the 99% probability level for the remaining harvests (table 20). Mean comparisons with respect to lines and with respect to harvest dates are presented in tables 21 and 22, respectively. <u>Total crude protein</u>

Total crude protein was highest at the second harvest (figure 6) with the exception of NMP-35 which plateaued at the second harvest.

Overall Florida 77 had the highest total crude protein mainly due to its high dry matter production and low stand losses (table 23). The dormant lines, which had the highest percent crude protein, were moderate producers of total crude protein due to their relatively low dry matter production.

Table 19. Annual crude protein percent for 20 alfalfa lines at Waimanalo, Oahu, during the period March 1981 to September 1981. @

۰,

SARANAC AR	20.721	Α							
FLEHISH	20.089	Ą	в						
LAHUNTAN	19.841	Д	3	С					
MSE6 SN3 N3	19.654	A	3	С					
MSF6 SN3 W3	19.247		В	С	Ð				
DIC 5	18.974		в	с	υ	Ε			
FLORIDA 77	18.911			С	ð	ε	F		
MESA SIRSA	13.372				υ	E	F		
NMP-10	18.359				υ	Ε	F		
NMP-33	18+263				Э	Ε	F		
ISOM PX	18.260				D	E	۴		
UC 163	13.081				D	ε	F	C	
PERUVIAN	17.971				2	ε	F	G	
NMP-S	17.906					5	F	G	
SYN YY	17.362					ε	F	G	
AFRICAN	17.318					E	F	G	
HAYDEN	17.721						F	G	
CHILEAN	17.716						F	G	
SYN XX	17.029							ü	н
NMP-35	13.323								н

@ Those followed by the same letter were not significantly different (p = 0.05), means in percent on a per cutting basis.

Figure 5. Percent crude protein versus time for 20 alfalfa lines at Waimanalo, Oahu, during the period March 1981 to September 1981.

Table 20.	Analysis	of vari	ance	for c	rude p	rotein	n pe	ercent c	of 2	20 alfa	lfa	lines
at Waimanal	o, Oahu,	during	the	period	l March	1981	to	Septemb	ber	1981.	@	

SOURCE	DF	\$ \$	MS	F	REQUIRED F 5% 1%
REP	3	375.4375	125.1458	40.53	2.78 4.15
LINE (L)	19	514.8125	27.0954	8•78	1.78 2.24
EKROR-A	57 · 70	176.0000	3.00//		
HARVEST (H)	5(1)	1636.6875	327.3374	198.81	4.00 a 7.08 a
ных н	95 (19)	153.5625	1.0164	0.98	1.76 2.22 2
ERROR-8	300 (60)	493.9375	1.6465		
TUTAL	479	3350.4375			

a TABULAR F VALUES FOR DEGREES OF FREEDOM IN PARENTHESES

•

Table 21. Mean crude protein percent for 20 alfalfa lines at Waimanalo, Oahu, during the period March 1981 to September 1981. @

			******	warna DAIC C	n newsokene	
	3/24	4/28	6/25	7/23	8/20	9716
SARANAC AR	24.3 A	19.5 AB	10.3 AB	20.9 A	20.5 A	20.8 A
FEFMISH	23.8 AB	19.8 A	17.4 ABCD	19.8 A8C	20.2 A	19.5 AB
LAHONTAN	23.6 ABC	19.6 A	18.5 A	20.0 AU	18.3 BCDE	19.1 ABCDE
MSE6 SN3 W3	23.7 AB	18.8 ABC	18.0 ABC	19.5 ABCD	18.5 BC	19.4 ABC
MSF6 SN3 W3	22.9 ABCDE	18-6 ABC	17.4 ABCD	18.9 AHCDE	19.0 AB	18.7 BCOEF
BIC 6	23.5 ABCD	18.4 ABCD	17.2 ABCD	18.1 8CDEFG	10.2 BCDE	18.6 BCDEF
FLGPIDA 77	22.1 BCDEF	19.0 ABC	16.6 CD	18.3 BCDEFG	18.3 BCDE	19.3 ABCD
MFSA SIRSA	22.8 ABCDE	18.0 ABCDE	16.2 DE	17.3 DEFGH	18.4 BCDE	17.6 BCDEFG
NMP-10	21.9 BCDEF	18.2 ABLDF	17.2 ABCD	18.3 BCDEF	16.6 CDEFG	18.0 BCDEF
N4P-33 .	23.5 ABCD	18.2 ABCD	17.3 ABCD	16.6 EFGH1	16.5 EFG	17.5 RCDEFG
ISOM PX	22'.9 ABCDE	18.1 AUCDE	16.8 BCD	17.6 CDEFGH	17.1 CDEFG	17.1 DEFG
163	21.5 EF	17.3 BCDE	17.1 ABCD	17.2 DEFGH	17.8 BCDEF	17.7 BCDEF
PERUVIAN	22.7 ABCDE	17.4 BCDE	16.8 ABCD	16.5 EFGHL	16.8 CDEFG	17.6 RCDEFG
NMP-6	22.4 ABCDEF	17.9 ABCDE	16.6 BCD	16.1 FGH1	17.4 BCDEF	16.9 EFG
SAN AA	21.6 DEF	17.1 CDE	17.2 ABCD	17.5 CDEFGH	16.0 FG	17.8 ACDEF
AFRICAN	21.8 CDEF	17.8 ABCDE	16.2 DE	15.5 H1	18.5 BCD	17.2 DEFG
HAYCEN	22.3 UCDEF	17.7 ABCDE	16.8 ABCD	16.0 FGH1	17.0 CDEFG	16.5 FG
HILEAN	20.6 F	18.2 ABCDE	16.8 BCD	17.0 EFGH1	16.5 DEFG	17.2 CDEFG
YN XX	21.3 EF	16.0 E	16.0 DE	15.9 GHI	16.1 FG	16.9 EFG
IMP-35	21.0 EF	16.3 DE	14.9 E	14.8 1	15.4 G	15.5 G

@ Means as percent, those followed by the same letter for a given date were not

significantly different (p = 0.05).

!

ъЗ

DATE	HESA SIRSA	HAYDEN	UC 163	NMP-8	NMP-10	FLENISH	BIC 6	MSE6 SN3 W3	PSF6 SN3 W3	FLORIDA 77
3/24	22.01 A	22.25 #	21.45 A	22.44 A	21.91 A	23.80 A	23.47 A	23.72 A	22.88 A	22.13 A
4/28	17.99 BC	17.72 8	17.31 B	17.94 B	18.17 8	19.83 B	18.38 8	16.18 8	18.56 8	18.95 B
6/25	16.17 C	16.81 8	17.06 8	16.63 B	17.17 8	17.42 C	17.17 B	17.98 B	17.44 B	16.59 C
7/23	17.31 80	16.03 8	17.19 8	16.06 8	18.30 B	19.78 B	16.08 B	19.52 B	16.88 8	18.25 BC
8/20	18.39 8	17.01 8	17.78 B	17.44 8	16.64 B	20.23 8	18.17 8	18.52 B	19.05 8	18.30 BC
9/16	17.58 BC	16.48 B	17.69 8	16.94 B	17.97 B	19.47 8	18.58 8	19.41 B	18.69 B	19.25 B
DATE	SYN XX	SYN YY	SARANAC AR	ISON PX	NMP-33	NMP-35	CHILEAN	AFRICAN	PERUVIAN	LAHCHTAN
3/24	21.33 4	21.61 A	24.34 A	22.92 A	23.48 A	21.01 A	20.56 4	21.75 A	22.66 A	23.63 A
4/28	16.02 B	17.06 8	19.45 BC	18.09 B	18.20 8	16.31 8	18.19 8	17.83 BC	17.42 B	19.03 8
6/25	15.95 B	17.20 8	18.26 C	16.76 B	17.31 8	14.94 B	16.78 8	16.23 CD	16.84 8	18.45 8
7/23	15.91 B	17.55 8	20.91 8	17.61 B	16.56 B	14.78 B	17-01 8	15.45 D	16.53 B	19.98 B
8/20	16.08 B	15.98 8	20.51 8	17.08 8	16.50 8	15.39 8	16.52 B	18.45 8	16.81 8	18.25 8
9/16	16.89 8	17.76 8	20.64 8	17.09 8	17.51 8	15.50 B	17.23 8	17.19 BCD	17.56 8	19.11 8

which is the second state of the second

Table	22.	Mean cru	ie pro	t <mark>ein</mark> pe	rcent	t with	respect	to.	harvest	dates	for	20	alfalfa
lines	at	Waimanalo,	Oahu,	during	the	period	l March	1981	to Sept	cember	1981	. (d

@ Means as percent, those followed by the same letter for a given alfalfa line were not significantly different (p = 0.05).

Percent crude protein is a measure of the amount of crude protein which a treatment can produce per unit weight of dry matter but it is not necessarily the amount 'delivered'. Reduction in stand and other plant losses from pests need to be accounted for. The amount of crude protein produced is obtained from the amount of dry matter produced and the respective crude protein it contains.

Statistical differences among lines were significant at the 95% probability level (table 24). Mean comparisons with respect to lines and with respect to harvest dates are presented in tables 25 and 26, respectively.

Summary and Conclusions

Twenty alfalfa lines representing a varied germplasm pool were compared over a one year period for characters such as regrowth height at two weeks after harvest, harvest height, stem angle, dry matter production, and crude protein. The variation among lines and among harvests were significant for each variable tested.

Lines classified as dormant regrew slower than the nondormant lines and with harvesting intervals at 28 to 35 days did not reach the same maturity stage as the nondormant lines. Dry matter production of the dormant lines was low but their crude protein content was high. The variation in percent crude protein was probably due to different maturity stages of the lines at harvest.

Florida 77 had the highest total protein which was due to its moderate crude protein content and high dry matter production. Florida 77 also showed the least stand decline.

SYN YY, Lahontan, Saranac AR, and SYN XX had small stand losses but due to their dormant nature (i.e., slow regrowth after harvests)

Figure 6. Crude protein versus time for 20 alfalfa lines at Waimanalo, Oahu, during the period March 1981 to September 1981.

Table 23. Annual crude protein yield for 20 alfalfa lines at Waimanalo, Oahu, during the period March 1981 to September 1981. @

FLORIDA 77	142.275	А						
MESA SIRSA	130.775	A	в					
HAYDEN	123.607	A	8	c				
UC 163	121.472	A	В	c	ס			
NMP-10	119.104	Δ	в	с	D			
BIC 6	118.893	Δ	8	С	D			
ISOM PX	115.032		в	с	D	E		
NMP-8	112.064		B	с	D	F	F	
NMP-33	110.310		в	С	D	E	F	G
MSF6 SN3 W3	108.167		в	С	D	E	F	G
FLEMISH	106+918		8	с	D	E	F	G
LAHENTAN	105.627		в	с	D	Ε	F	G
SARANAC AR	105.012		B	С	D	E	F	G
AFRICAN	99.103			с	D	E	F	G
SYN YY	98.577			с	D	E	۶	G
PERUVIAN	98.427			С	D	ε	۶	G
MSE6 SN3 W3	96.476				D	E	F	G
CHILEAN	90.709					F	F	G
NMP-35	87.967					-	, F	G
SYN XX	84.925						•	о а

@ Those followed by the same letter were not significantly different (p = 0.05), means in grams on a per cutting per plot basis.

Table 24.	Analysis	of var:	iance for	crude	protein	yield of 2	0 alfalfa	lines
at Waimana	lo. Oahu.	during	the per	iod Marc	h 1981	to Septembe	er 1981. @	

SOURCE	DF	SS	MS	F	REQUIRED F
í !					5% 1%
REP	3	194130.000	64710.0000	46.16	2.78 4.15
LINE (L)	19	97478.0000	5130.4180	3.66	1.78 2.24
ERROR-A	57 .	79904.0000	1401.8245		
SUBTUTAL	79	371512.000	i l		
HARVEST (H)	5 (1)	655982.000	131996.375	289.87	4.00 2 7.08 2
EX H	<u>95 (19)</u>	72786.0000	766-1682	1.68	1.76 2.22 2
ERRCR-B	300 (60)	136607.000	455.3633		
TOTAL	479	1240889.00			

a TABULAR F VALUES FOR DEGREES OF FREECOM IN PARENTHESES

Table 25. Mean crude protein yield for 20 alfalfa lines at

Waimanalo, Oahu, during the period March 1981 to September 1981. @

				DALE	OF MEASUREN	ENT
LINF	3/24	4/28	6/25	1/23	8/20	9/16
FLORIDA 77	85.3 A8	213.4 AB	12,3.0 A	148.6 A	128.9 A	154.4 A
NESA SIRSA	91.7 A	221.2 A	114.2 ADC	117.6 BC	122.6 AB	117.4 8
HAYDEN	63.7 ABC	208.8 ABC	122.9 A	104.6 BCDE	110.7 ABC	111.0 80
JC 163	72.5 ABCD	206.4 ABC	114.2 ABC	115.4 80	111.5 ABC	108.A 8C
NMP-10	69.2 ABCD	180.6 ABCD	119.4 AB	128.6 AB	111.5 AUC	105.3 RCD
6 316	86.8 A8	211.7 AB	110.3 ABC	108.6 BC -	110.2 ABC	85.7 BCDE
LSOM PX	82.7 ABC	195.3 A0CD	113.5 ABC	110.1 BC	99.9 ABCD	88.7 BCDE
NF6-8	71.4 ARCD	181.9 ABCD	119.2 AB	109.8 BC	98.7 ABCD	91.5 BCOE
MP-33	74.1 A8CD	183.6 ABCD	121-4 A	109.6 BC	92.7 BCD	80.4 BCDE
ISE6 SN3 W3	82.9 ABC	203.2 ABCD	111.8 ABC	106.5 BCD	76.1 DE	68.4 DFF
LEMI SH	76.8 ABCD	205.0 ABC	98.7 BCD	102.2 BCDE	86.6 CD	72.3 COEF
AHGNYAN	68.5 ABCD	202.4 ABCD	101.1 ABCD	108.0 BC	85.3 CD	68.4 DEF
ARANAC AR	80.1 ABC	205.7 ABC	96.0 CD	97.9 BCDE	75.8 DE	74.7 CDEF
FRICAN	62.5 BCD	171.2 ABCD	114.2 ABC	91.8 CDE	81.2 CDE	73.8 COEF
IYN YY	52.7 0	160.1 CD	96.0 CD	107.1 ACD	92.2 BCD	83.4 BCDE
ERUVIAN	68.8 ABCU	169.0 BCD	110.1 ABC	90.5 CDE	79.2 CDE	72.9 CDEF
SE6 5H3 W3	60.7 BCD	166.8 BCD	94.6 CD	96.8 BCDE	92.5 BCD	67.4 DEF
HELEAN	83.7 ABC	201.4 A8CD	94.4 CD	74.3 DE	50.5 E	40.1 F
IHP - 35	56.1 CD	107.6 E	103.5 ABCD	106.5 BCD	81.5 CDE	72.6 CDEF
XN XX	64.1 ABCD	154.3 D	83.6 D	73.2 E	70.6 DE	63.9 EF

@ Means in gm per plot, those followed by the same letter for a given date were not significantly different (p = 0.05).

1

Table 26.	Mean crude protein yield with respect to harvest dates for 20 alfalfa lines a	t
Waimanalo,	Oahu, during the period March 1981 to September 1981. @	

÷,

DATE	MESA SIR	SA HAYEEN	UC 163	NMP-8	NMP-10	FLEMISH	816 6	MSF6 SN3	W3 #SF6 SN3 I	NE FLURIDA 77
3/74	91.73 1	83.65 C	72.45 C	71.35 C	69.21 C	76.77 B	86.79 B	60.74 C	82.93 BCD	85.32 C
4/28	221.18 A	208.78 A	206.39 A	181.87 A	180.57 A	204.98 A	211.70 A	166.79 A	203.23 A	213.45 A
6/25	114.21 B	122.95 B	114-24 B	119.21 8	119.45 B	98.72 8	110.34 B	94.57 8	111-84 B	122.99 0
7/23	117.60 8	104.55 BC	115.43 B	109.80 B	128.60 B	102.10 B	108.64 8	96.84 B	106.50 AC	149.57 B
8720	122.57 0	110.68 BC	111.52 8	98.70 BC	111.51 B	86.58 8	110-21 8	92.53 8	76.08 CD	128.90 8
9/16	117.37 8	111'.04 BC	108.80 8	91.46 BC	105.20 8	72.29 B	85.69 B	67.39 BC	68.43 D	154.42 B
DATE	SYN XX	SAN AA	SARANAC A	R ISOM PX	NMP-33	NHP-35	CHILEAN	AFRICAN	PERUVIAN	LAHENTAN
3/24	64.07 8	52.70 C	80.13 8	82.71 8	74.08 0	56.13 C	83.68 B	62.48 C	68.76 C	68.51 C
4/28	154.26 A	160.08 A	205.66 #	195.35 A	183.63 A	107.59 A	201.38 A	171.19 A	168.98 A	202.45 A
6/25	83.55 8	96.02 8	95.96 8	113.49 8	121.39 8	103.51 AB	94.36 8	114.17 B	110.15 8	101.12 8
7/23	73.20 B	107.07 B	97.90 B	110.05 B	109.61 BC	106.54 A	74.29 BC	91.80 BC	90.49 BC	108.00 B
8/20	70.58 B	92.15 8	75.78 8	99.94 B	92.73 BCD	81.47 ABC	50.48 CD	81.22 C	79.24 BC	85.29 AC
9/16	63.90 B	83.44 B	74.65 8	88.65 B	80.42 CD	72.55 BC	40.05 D	73.76 C	72.95 C	68.39 C

@ Means in gm per plot, those followed by the same letter for a given alfalfa line were not significantly different (p = 0.05).

.

60

مراجع المحمد الذي يعمل المحمد الذي المريك المريك الذي المريك المريك المريك المريك المريك الم

had poor dry matter production. NMP-35 and African had heavy stand losses yet had moderate dry matter production. The dormant types such as Saranac AR, Lahontan, and Flemish were higher than the nondormant types in percent crude protein. Mesa Sirsa, Hayden, UC 163, NMP-10, and BIC 6 followed Florida 77 in total protein due to the combination of high dry matter production and high percent crude protein.

The results of this study were from one location and how the lines perform at other locations is unknown. The lines were not exposed to all possible pests and conditions. The lines tested represented a range of pest resistance, dry matter and crude protein yielding potential. Those lines that did not do well by the criteria established may be important in providing pest resistance at later times.

APPENDIX A

Table 27. Daily minimum temperature (°F) at the Waimanalo Experiment Station from

-

January 1981 to January 1982.

	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	DAY 16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31
JAN	62	71	75	65	69	62	62	64	68	63	63	61	59	62	61	62	73	59	66	60	64	68	65	66	72	71	68	72	64	66	63
FEB	65	62	62	63	69	66	54	56	52	52	75	68	74	75	65	67	63	64	71	72	67	68	72	70	70	**	71	69			
MAR	67	67	68	71	66	65	62	67	71	68	70	71	69	63	62	65	65	63	68	59	60	63	63	63	70	71	72	70	68	68	68
APR	71	69	72	70	69	72	\boldsymbol{n}	64	62	64	68	64	67	68	65	67	70	72	70	71	72	72	70	74	69	67	66	67	70	69	
HAY	66	63	63	62	62	64	67	6Ţ	69	69	73	73	73	73	72	72	72	65	71	72	72	71	72	71	71	68	68	72	71	74	73
JUN	71	73	72	72	70	72	72	72	73	74	72	71	72	74	75	73	73	73	74	69	73	74	70	72	70	74	73	74	72	73	
JUL	73	70	70	68	69	75	70	73	73	72	73	72	74	71	70	71	70	70	70	71	72	74	71	73	73	73	75	75	74	75	75
AUG	75	73	74	74	73	73	72	75	75	75	74	72	74	74	70	71	76	73	73	72	72	76	72	73	72	74	74	74	72	69	70
SEP	71	75	72	69	72	72	73	70	68	68	67	69	73	74	72	71	72	77	76	74	72	69	73	72	69	70	76	75	76	68	
0C T	72	72	76	76	76	75	70	71	75	75	70	70	72	73	69	74	69	72	71	64	69	72	71	72	72	70	70	**	67	73	70
NOV	68	68	68	71	68	71	72	71	70	71	70	74	73	70	61	62	69	68	71	74	73	73	70	68	69	66	72	67	72	74	
DEC	73	76	76	73	69	69	68	66	66	65	69	70	65	68	66	63	63	71	65	69	66	67	68	71	70	64	65	67	66	65	65
JAN	63	63	66	61	62	67	66	66	68	67	69	70	65	65	65	67	68	65	67	66	66	67	59	59	65	65	68	69	67	66	55
**	NO	DAT	TA					-				-	*								-				-	-					

APPENDIX A (cont.)

Table 28. Daily maximum temperature (°F) at the Waimanalo Experiment Station from January 1981 to January 1982.

	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	14Y	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31
JAN	81	81	81	81	82	79	79	81	81	81	82	77	77	80	82	82	82	81	78	78	78	78	79	82	80	81	81	81	81	83	83
FFO	81	81	81	81	81	81	81	77	73	73	83	79	82	83	82	81	80	83	83	83	83	78	78	79	78	78	77	76			
MAR	75	78	78	78	78	80	80	76	78	78	79	79	78	79	79	78	76	76	76	78	80	79	81	81	81	81	81	81	78	77	79
APR	79	79	78	79	79	80	81	81	81	81	80	79	80	80	80	80	80	81	80	81	81	81	81	80	81	81	78	84	79	79	
MAY	79	78	78	79	80	80	80	80	81	83	83	83	83	82	82	82	82	81	80	82	82	82	82	82	82	82	84	84	84	83	83
JUN	83	83	84	82	83	8 B	83	83	84	83	83	81	82	82	87	84	83	83	84	84	84	84	84	83	84	84	84	84	84	83	
JUL	83	84	84	83	83	84	83	84	84	84	84	84	84	84	83	82	82	82	83	86	85	85	84	84	84	84	84	84	83	84	85
AUG	85	8.5	86	83	79	83	83	83	85	85	84	83	83	84	85	84	85	85	84	84	85	85	84	85	84	85	85	85	85	83	83
SEP	85	85	85	84	84	85	84	83	84	84	84	85	86	85	85	85	85	85	83	84	87	85	84	84	85	85	85	85	84	85	
0C T	85	85	84	83	83	84	84	83	83	84	84	84	.84	83	82	83	84	83	81	82	82	83	81	82	84	82	81	81	80	82	83
NOV	83	82	79	81	84	84	82	80	81	80	81	80	81	82	79	79	80	79	81	83	82	81	80	77	77	78	80	80	79	78	
DEC	78	78	78	80	79	79	78	76	76	74	75	78	78	79	79	79	81	81	84	84	80	75	81	79	79	78	81	78	80	80	80
JAN	78	80	78	77	77	79	79	77	74	78	81	81	81	79	81	80	79	79	75	76	77	77	75	77	76	79	76	77	78	77	75

63

APPENDIX A (cont.) Table 29. Daily solar radiation (kW hr $m^{-2} \text{ deg}^{-1}$) at the Waimanalo Experiment Station from January 1981 to January 1982.

7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 1 2 3 4 JAN 3. C 1.9 4.2 2.7 4.2 2.1 2.8 3.7 2.2 3.2 3.4 1.6 2.1 3.1 4.1 4.1 3.1 4.6 3.3 1.7 3.4 3.0 2.0 4.6 4.2 3.6 3.7 2.3 2.6 4.5 3.0 FER 2.6 3.1 5.2 4.8 3.7 8.1 4.9 3.2 1.7 1.8 4.2 1.1 2.5 4.5 4.5 4.4 2.1 4.5 4.3 3.0 4.2 4.2 3.2 4.5 3.8 4.6 3.1 *** HAR *** 4.8 3.6 4.0 3.7 5.5 4.4 3.7 3.9 0.9 *** *** *** *** *** *** 4.1 4.0 5.2 5.5 4.8 4.9 6.5 3.9 3.9 4.6 3.9 4.6 3.4 4.2 APR 4.5 4.5 3.4 4.9 5.4 4.5 6.3 5.7 2.6 5.8 7.2 5.8 4.5 3.2 4.2 2.0 6.3 5.2 6.6 6.2 4.5 6.3 6.3 5.4 6.9 7.C 5.1 3.9 5.9 3.0 MAY 1.7 5.7 5.3 6.1 3.5 4.1 2.6 1.2 7.3 5.1 6.3 5.2 5.0 5.6 7.0 4.0 8.5 5.4 4.2 6.2 4.7 5.5 6.6 6.5 6.5 5.9 6.8 7.1 6.0 6.7 5.0 AUG 6.0 5.7 6.7 3.2 2.0 4.4 3.9 7.3 7.2 5.9 6.4 4.1 3.4 6.1 5.9 6.4 6.6 6.9 6.0 3.5 6.4 6.3 5.3 5.7 6.1 5.5 6.9 6.8 7.0 4.9 5.8 SEP 6.3 6.2 5.8 6.0 6.4 6.0 7.8 5.4 6.2 3.3 0.9 *** *** *** 6.5 6.3 5.2 4.7 5.2 5.0 5.8 4.6 4.1 5.0 5.4 4.5 4.2 4.3 8.9 NCT 1.5 3.2 2.4 2.0 1.8 1.9 2.0 3.9 1.0 0.9 1.5 1.9 1.7 1.8 1.7 1.8 1.6 2.0 1.4 1.7 1.6 *** *** 1.7 1.7 1.6 1.6 1.6 1.6 1.4 1.6 1.5 NOV 1.6 1.5 1.6 1.6 1.6 1.6 1.6 1.6 1.6 1.6 1.6 1.5 1.4 1.5 1.5 1.4 1.6 1.4 1.5 0.9 0.1 0.1 *** 1.1 1.8 2.4 2.6 2.6 3.2 2.9 DEC 2.6 2.9 *** *** 3.2 3.2 2.7 1.7 1.8 2.9 2.3 2.5 2.5 2.9 2.5 2.1 2.9 1.7 3.6 1.6 0.8 0.7 2.0 2.1 2.2 0.6 2.1 1.8 2.4 1.9 2.7 JAN 2.4 3.5 1.4 2.3 3.0 2.9 0.9 2.4 1.2 2.9 2.4 2.4 3.2 3.3 3.1 2.6 1.7 0.8 1.3 1.6 1.6 0.6 1.6 3.5 2.5 2.1 3.6 2.2 2.9 3.6 3.8 +++ NO CATA

APPENDIX B

Sec.3

.____

Table 30. Planting order of 20 alfalfa lines by row and replication (rep.)

treatment	rep I	rep II	rep III	rep IV
SYN XX	20	39	58	69
SYN YY	8	40	54	80
Saranac AR	13	27	52	68
Isom PX	15	37	46	64
NMP-33	18	21	55	72
NMP-35	6	29	57	66
Chilean	11	36	47	71
African	10	34	60	61
Peruvian	14	33	56	62
Lahontan	2	26	44	73
Mesa Sirsa	7	30	59	65
Hayden	19	38	42	75
UC 163	3	28	43	63
NMP-8	12	22	53	67
NMP-10	5	35	41	79
Flemish	17	24	45	78
BIC 6	4	31	50	77
MSE6 SN3 W3	1	32	49	76
MSF6 SN3 W3	9	25	51	70
Florida 77	16	23	48	74
Literature Cited

- App, B.A. and G.R. Manglitz. 1972. Insects and related pests. Chap. 24. <u>In</u>: Alfalfa Science and Technology. American Society of Agronomy. Madison, Wisconsin. pp. 527-554.
- Barnes, D.K., E.T. Bingham, R.P. Murphy, O.J. Hunt, D.F. Beard, W.H. Skrdla, and L.R. Teuber. 1977a. Alfalfa germplasm in the United States: genetic vulnerability, use, improvement, & maintenance. U.S. Dep. Agric. Tech. Bull. 1571.
- Barnes, D.K., E.L. Sorensen, R.N. Peaden, W.R. Kehr, J.H. Elgin, Jr., O.J. Hunt, T.E. Devine, I.I. Kawaguchi, F.I. Frosheiser and C.H. Hanson. 1977b. Registration of seventeen populations from the BIC alfalfa germplasm pool (GP No. 55 to GP No. 71). Crop Sci. 17:675-676.
- Bishop, H.G. and D. Gramshaw. 1977. Effect of sowing rate, grass competition and cutting frequency on persistence and productivity of two lucerne (<u>Medicago sativa</u>)cultivars at Biloela, Queensland. Australian J. Exp. Agric. Anim. Husb. 17:105-111.
- Bolton, J.L. 1962. Alfalfa; botany, cultivation and Utilization. World Crops Books. Leonard Hill, London.
- Bolton, J.L., B.P. Goplen and H. Baenziger. 1972. World distribution and historical developments. Chap. 1. <u>In</u>: Alfalfa Science and Technology. American Society of Agronomy. Madison, Wisconsin. pp. 1-34.
- Britten, E.J. 1956. Alfalfa production and breeding. Hawaii Farm Sci. 5(1):1.

- Britten, E.J. and J.H. Koshi. 1959. Production potential for alfalfa in Hawaii. Hawaii Farm Sci. 8(2):7.
- Bula, R.J. and M.A. Massengale. 1972. Environmental physiology. Chap. 8. <u>In</u>: Alfalfa Science and Technology. American Society of Agronomy. Madison, Wisconsin. pp. 167-184.
- Burkhead, C.E., R.C. Max, R.B. Karnes and E. Reid. 1972. Usual planting and harvesting dates. U.S. Dep. Agric. Agric. Handb. 283 (revised).
- ^b Dennis, R.E. 1977. Growing alfalfa in Arizona. Univ. of Arizona Coop. Ext. Serv. Bull A-16 (revised).
 - Ditterline, R.L., C.S. Cooper, L.E. Wiesner, J.R. Simis and V.R. Stewart. 1976. Growing alfalfa in Montana. Mon. Agric. Exp. Stn. Bull. 684.
 - Elgin, J.H., Jr., et al. 1981. Anthracnose resistance increases alfalfa yields. Crop Sci. 21:457-460.
 - Garrod, P. 1973. The feasibility of alfalfa on Molokai. Hawaii Agric. Exp. Stn. Departmental Paper 6.
 - Goetz, H., T. Conlon, P. Nyren and D. Williams. 1978. Alfalfa management in Western North Dakota. N.D. Farm Res. 35(5):21-24.
 - Goodell, D.N. and D.L. and Plucknett. 1972. Producing alfalfa in Hawaii. Univ. of Hawaii Coop. Ext. Serv. Circ. 456.
 - Graham, J.H., K.W. Kreitlow and L.R. Faulkner. 1972. Diseases. Chap. 23. <u>In</u>: Alfalfa Science and Technology. American Society of Agronomy. Madison, Wisconsin. pp. 497-526.
 - Hanson, C.H. 1958. Registration of varieties and strains of alfalfa, IV. Agron, J. 50:684-685.
 - Hanson, C.H., C.S. Garrison and H.O. Graumann. 1960. U.S. Dep. Agric. Handb. 177.

- Hartman, B.J., O.J. Hunt, F.I. Frosheiser, S.A. Ostazeski, D.K. Barnes, R.N. Peaden and B.D. Thyr. 1979a. Registration of NMP-8 and NMP-10 nondormant alfalfa germplasms (Reg. No. GP 97 and 98). Crop Sci. 19:416.
- Hartman, B.J., O.J. Hunt, R.N. Peaden, H.J. Jensen, B.D. Thyr, L.R. Faulkner and G.D. Griffin. 1979b. Registration of Nevada Synthetic YY nondormant alfalfa germplasm (Reg. No. GP 99). Crop Sci. 19: 416-417.
- Horner, E.S. and O.C. Ruelke. 1981. Registration of Florida 77 alfalfa (Reg. No. 99). Crop Sci. 21:797.
- Isom, W.H., W.L. Green, E.H. Stanford, W.F. Lehman, V.L. Marble and L.R. Teuber. 1980. Registration of UC-PX 1971, alfalfa germplasm (Reg. No. GP 104). Crop Sci. 20:288-289.
- Jones, R.M. 1973. The effect of fertilizers on the productivity and persistence of lucerne (<u>Medicago sativa</u>) at Nanango, South-East Queensland. Trop. Grassl. 7(3):297-304.
- Kehr, W.R., F.I. Frosheiser, R.D. Wilcoxson, and D.K. Barnes. 1972. Breeding for disease resistance. Chap. 15. <u>In</u>: Alfalfa Science and Technology. American Society of Agronomy. Madison, Wisconsin. pp. 335-354.
- Krauss, F.G. 1911. Leguminous crops for Hawaii. Hawaii Agric. Exp. Stn. Bull. 23.
- Lamb, K.P. 1974. Economic Entomology in the Tropics. Academic Press, London.
- Lowe, C.C., V.L. Marble and M.D. Rumbaugh. 1972. Adaptation, varieties, and usage. Chap. 18. <u>In</u>: Alfalfa Science and Technology. American Society of Agronomy. Madison, Wisconsin. pp. 391-414.

68

Meinecke, W.H. 1913. Alfalfa (<u>Medicago sativa</u>), a promising forage crop for Hawaii. Theses, College of Hawaii.

- Murphy, R.P. and C.C. Lowe. 1966. Registration of Saranac alfalfa (Reg. No. 27). Crop Sci. 6:611.
- Little, T.M. and F.J. Hills. 1978. Agricultural Experimentation, Design and Analysis. John Wiley and Sons, New York.
- Painter, R.H. 1968. Insect Resistance in Crop Plants. The University Press of Kansas, Lawrence and London.
- Peaden, R.N., O.J. Hunt, L.R. Faulkner, G.D. Griffin, H.J. Jensen and E.H. Stanford. 1976. Registration of a multiple-pest resistant alfalfa germplasm (Reg. No. GP 51). Crop Sci. 16:125-126.
- Schermerhorn, R.W. 1978. A study of the economic feasibility of producing, harvesting, & marketing alfalfa on Molokai, Hawaii. Univ. of Hawaii Coop. Ext. Serv. Misc. Publ. 160.
- Schonhorst, M.H., M.W. Nielson, R.K. Thompson, F.V. Lieberman, P.D. Keener and E.L. Nigh, Jr. 1968. Registration of 'Mesa-Sirsa' alfalfa (Reg. No. 33). Crop Sci. 8:396.
- Smith, D. 1972. Cutting schedules and maintaining pure stands. Chap. 22. <u>In</u>: Alfalfa Science and Technology. American Society of Agronomy. Madison, Wisconsin. pp. 481-496.
- Sorensen, E.L., M.C. Wilson and G.R. Manglitz. 1972. Breeding for insect resistance. Chap. 17. <u>In</u>: Alfalfa Science and Technology. American Society of Agronomy. Madison, Wisconsin. pp.- 371-390.
- Thompson, J.R. 1978. The production of alfalfa in the North Kohala area. Unpublished report.

- Thyr, B.D., D.K. Barnes, F.I. Frosheiser, O.J. Hunt, R.N. Peaden and B.J. Hartman. 1979. Registration of $MSE_6 SN_3 W_3$ and $MSF_6 SN_3 W_3$ alfalfa germplasms (Reg. Nos. GP 100 and GP 101). Crop Sci. 19: 417.
- Wilsie, C.P. and M. Takahashi. 1937. The effect of frequency of cutting on the yield of alfalfa under Hawaiian conditions. Agron. J. 29:236-241.
- Younge, O.R. 1952. Alfalfa in Hawaii. Hawaii Farm Sci. 1(1):3.
- Younge, O.R. and M. Takahashi. 1953. Response of alfalfa to molybdenum in Hawaii. Agron. J. 45:420-428.

