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ABSTRACT 

A subsurface trickle irrigation system was protected from damage 

for 21 months through use of a controlled traffic pattern and no-till 

agriculture. During this period, seven successive vegetable crops were 

grown without disturbing the irrigation system. Subsequent inspection 

of the system indicated that this combination of techniques would enable 

it to operate for periods greater than two years at acceptable levels 

without replacement. The experiment was conducted on two soils, a 

light volcanic ash soil and a heavy alluvial soil with less favorable 

physical properties,to assess the general applicability of the results. 

Natural soil compaction over a 16-month period showed no significant 

effect on yields. Severe compaction imposed by tractor traffic resulted 

in a decrease in lettuce root weight of one-half, yet it had no signif

icant effect on crop yield. Emitter plugging increased from an average 

of 23% in the non-compacted plots to 36% in the compacted plots with 

similar results in both shallow and deep (13 and 28 cm) lateral line 

placement. Plugging did not significantly reduce crop yields. Water 

movement along the trickle line and the intermittent nature of plugging 

may have reduced the influence of plugging on lettuce yields. The 

results from these experiments indicate that for shallow-rooted, short

duration, transplanted vegetable crops, such as lettuce and cabbage, 

acceptable yields can be obtained without extensive tillage if water 

and nutrients are adequately supplied. 

Phosphorus fertilizer distributed through the trickle system was 

immobilized within 10 cm or less of the emitters. Because transplanted 

seedlings were placed directly over the emitters,this "banding" effect 



was more efficient than broadcast applications at similar rates in 

supplying nutrients to the first crop of lettuce. 

The results of this research suggest that economy in time and 

expense may be achieved with a no-till, controlled traffic, subsurface 

trickle irrigation system. This method permits vegetable growers and 

others to exploit the benefits of reduced tillage, optimum soil-water 

conditions, and distribution of fertilizers through the irrigation 

system. In addition, phosphorus use efficiency may be increased by 

transplanting over the emitters. With this approach, growers can 

minimize the cost of lateral line repair and eliminate the cost of 

removing or replacing trickle laterals for each harvest cycle. 
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INTRODUCTION 

Irrigation has been used for centuries to maintain soil moisture 

for crop growth during dry seasons or in areas where crops would other

wise be lost due to moisture stress. Until recently, flood and furrow 

irrigation have been the techniques available to farmers. These 

methods are inefficient, however, and often permit crops to experience 

water stress between irrigation cycles. The resulting yield decline was 

recognized only after modern irrigation technology developed high 

frequency systems such as trickle irrigation. Following the introduction 

of trickle irrigation techniques and materials in the U.S. in the 1960's, 

land area under trickle irrigation has increased exponentially (Shoji, 

1977). Studies worldwide have described numerous advantages to this 

type of system for general agriculture as well as for many specific 

circumstances,as detailed in a later section. Due to the relatively 

high cost of the materials needed, trickle irrigation was initially 

used for high value horticultural crops. As the materials became les-s 

expensive, application of this form of irrigation was found to be 

highly profitable for some field crops including sugarcane and pine

apple in Hawaii. 

In the mid 1970's, competition for water by industry, homes and 

agriculture left agriculture with a lower quantity and/or quality of 

water . Land prices also increased rapidly during this period requiring 

increased yields from a given area of agricultural land. These factors 

have resulted in an increased interest in trickle irrigation because of 

the high water use efficiency and ability to increase quality and 

quantity of crop yields. 



During the 1970's, however, the cost of oil-based plastic products 

which make up virtually all components of the trickle irrigation 

system increased drastically. Increases in the cost of labor during 

this period also contributed to an increased cost of both manufacture 

and installation of trickle systems. 

As a consequence of these increased costs.it has become essential 

to minimize costs of maintenance and replacement of the system to keep 

the system economically attractive. Damage to lateral lines is largely 
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a result of field operations, temperature and ultraviolet light. The 

need to remove or destroy the laterals during harvest and bed preparation 

is inherent in most cropping methods presently used. Placing the system 

underground may protect it during crop growth. Experience in the 

Hawaiian sugar industry showed that laterals buried as deep as 45 cm 

are still subject to damage during normal field operations (Martin, 

1973). Their experiments, however, lacked any method of keeping heavy 

machinery from crossing the subsurface lateral lines. 

Both controlled traffic and no-till cultivation are accepted soil 

management practices. These practices may provide a way to keep 

machinery traffic off irrigation laterals and to prevent tillage

related damage. If these practices permit extended use of subsurface 

lateral lines, other cost-reducing innovations may be possible. 

A common method of increasing the cost effectiveness of trickle 

irrigation systems is to distribute fertilizers with the irrigation 

water. Of the fertilizers commonly injected into trickle irrigation 

lines, phosphorus has been studied most intensively because of its 

tendency to precipitate, plug emitters, and to be immobilized in the 

soil near the emitters. 



In highly leached, high phosphate~fixing soils common to the 

tropics, high application rates of phosphate fertilizers are often 

required. Although "banding" of those fertilizers is a common method 

of increasing phosphorus uptake in crops, most research done with 

trickle-applied-phosphorus has been focused on moving this nutrient 

the greatest possible distance through the soil. The potential 

advantages of immobilization of phosphorus near the emitter, a self

banding effect, has yet to be studied. 

The objectives of the present study were: 

1. To determine if subsurface trickle irrigation lateral lines 

can be protected from damage through the use of no-till, 

controlled traffic soil management. 

2. To determine if long-term continuous cropping in no-till, 

subsurface trickle irrigated, controlled traffic agriculture 

will significantly affect yields of selected leafy vegetables. 

3. To assess the effect of mechanical soil compaction on the 

subsurface trickle system and determine whether deeper burial 

provides protection from the effects of compaction. 

4. To assess the effect of mechanical soil compaction, depth of 

lateral line placement and irrigation frequency on crop yield. 

5. To assess the merits of inorganic phosphate fertilizer appli

cation through the trickle irrigation system relative to 

standard broadcast application. 

3 



LITERATURE REVIEW 

A. Trickle Irrigation 

1. Advantages 

Research and experience over the last 40 years have produced a 

long list of specific advantages derived from the use of this form of 

irrigation in all types of agriculture, including: 

1. Reduced water stress in plants, resulting in increased yield 

and quality (Shoji, 1977). 

2. Increased water savings (Gustafson et al., 1974; Hiler & 

Howell, 1972). 

3. Increased soil erosion control. 

4. Better ripening and fruit size uniformity (Hall, 1974). 

5. Increased ease of automation (New and Roberts, 1974). 

6. Greater field moisture control for better: 

- weed control (Shani, 1974) 

- disease control (Shani, 1974) 

- field trafficability (Hall, 1974) 

- harvesting conditions (Hall, 1974). 

7. Increased plant growth and earlier maturity (Dan, 1974). 

8. Increased crop density (Bach, 1972). 

9. Increased control of fertilization (Shani, 1974). 

10. Reduced labor, fuel and power requirements (Harrison and 

Myers, 1974). 

11. Availability of irrigation for land that can not be irri

gated by other methods (Grove, 1974). 



12. Increased control of the root-zone environment permitting 

the use of higher salinity soil and water (Goldberg and 

Shmueli, 1970 and 1971). 

13. Expanded use beyond irrigation including: 

- pesticide distribution (Chapman et al., 1978) 

- fertilizer distribution (Grobbelaar and Lourens, 1974) 

- soil fumigation (Uzrad and Goldberg, 1974). 

2. Disadvantages 

Disadvantages to the system include: 

1. Cost 

high initial cost of controls, pipes, lateral lines, 

installation labor, etc. (Hall, 1974) 

frequent lateral replacement, increasing cost of 

materials and labor (Harrison and Myers, 1974) 

- frequent accidents inherent to complex systems 

- common requirement for replacement of entire systems 

due to faulty designs 

- frequent damage from ants, rodents and plants (Hall, 

1972; Chang and Ota, 1976). 

2. Salt accumulation from fertilizers and irrigation water 

(Goldberg et al., 1971; Goldberg and Shmueli, 1971; 

Tscheschke et al., 1974). 

3. Emitter plugging caused by: 

- poor water quality (Pelleg et al., 1974) 

- poor filtration (Harrison and Myers, 1974) 

- poor system maintenance (Pelleg et al., 1974) 
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- biological growth (Ford and Tucker, 1974) 

- chemical precipitation (Pelleg et al., 1974). 

Through research, practical means have been developed to 

alleviate or eliminate many of these disadvantages. For example, 

management of the soils by regular leaching cycles can correct salt 

accumulations (Goldberg and Shmueli, 1970; Hoffman et al., 1974; 

Nelson and Davis, 1974). Filtration and water treatment can prevent, 

minimize or even correct emitter plugging (Pelleg et al., 1974; 

McElhoe and Hilton, 1974; Fraser, 1974). Ant damage can be reduced or 

prevented by installing ridges which deny ants access to the emitter 

(Chang et al., 1980). Incidence of faulty design should decrease with 

the availability of simplified design techniques (Wu and Gitlin, 

1978a and 1978b) and subsurface placement can protect water 

transport systems from accident as well as from sun- and heat-related 

damage. As planning, construction, operation and maintenance become 

more routine, the disadvantages of trickle irrigation should continue 

to decrease. However, the rapid rise in the cost of petroleum-based 

products and of labor for both the installation and replacement of worn 

or damaged submains and lateral lines are continuing problems. 

3. Subsurface Trickle Irrigation 

Burial of the trickle irrigation system may provide a means to 

decrease replacement frequency, thus significantly decreasing the 

overall cost of materials and labor. The subsurface placement of 

trickle irrigation systems has a long history. The earliest commercial 

systems were buried, but because of frequent clogging caused by poor 

filtration, surface systems are far more common today (Shoji, 1977). 

6 



Since those initial attempts, investigations into subsurface irrigation 

have been relatively few and generally have not addressed the aspect of 

material protection. Important exceptions to this, however, have been 

efforts on the part of the Hawaiian sugar industry to protect lateral 

lines by burying them (Gibson, 1973; La Rue, 1973). In this industry 

fields are usually burned before harvesting. The cane is then 

harvested with heavy field equipment. Both of these practices destroy 

7 

the surface placed tubing (Martin, 1973). Burying lateral lines protects 

them from field burning but burial as deep as 45 cm has not successfully 

protected them from damage by heavy machinery. Deeper placement has not been 

feasible because of poor water distribution and maintenance difficulties. 

The sugar industry's work suggests that subsurface placement does not 

protect lateral lines from farm machinery traffic unless traffic is also 

restricted. 

B. Tillage 

A subsurface trickle irrigation system is incompatible with 

conventional methods of tillage. If the trickle system is to be 

preserved, it must be protected from the damaging effects of compaction 

and tillage. Two common agricultural techniques used to minimize 

compaction and plowing are controlled traffic and no-till farming. 

1. History of Compaction Studies 

Both no-till and controlled traffic farming methods resulted 

from the reassessment of tillage practices in the United States in the 

19SO's and 1960's (Jones et al., 1968; Cooper et al., 1969). The 

adverse effects of field traffic on soil physical properties associated 

with tillage and crop protection operations were recognized in the 



early 1950's (Weaver and Jamison, 1951) and were the subjects of a book 

published by the American Society of Agricultural Engineers (Barnes 

et al., 1971). 
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Research into the effect of soil compaction on plant growth was 

also being conducted at this time (Shaw, 1952). Yield decline attributed 

directly or indirectly to soil compaction was reported for sunflower 

(Veihmeyer and Hendrickson, 1948), sugarcane (Trouse and Humbert, 1961), 

tomato and potato (Flocker et al., 1960; Timm and Flocker, 1966) and 

corn (Phillips and Kirkham, 1962; Raghavan et al., 1979). Nichols 

(1957) described the agronomic disadvantages of variable ripening times 

of crops caused by variability in field compaction. Poor soil aeration 

(Trouse, 1971; Taylor et al., 1972; Vorhees et al., 1975), mechanical 

impedance to roots (Gill, 1961; Trouse, 1978), increased drought 

susceptibility because of root restriction (Trouse et al., 1975; Cary 

and Rasmussen, 1979) and decreased soil moisture (Vomocil and Flocker, 

1961) were given as causes for retarded growth and maturity of crops in 

compacted soil. No-till agriculture was introduced in the early 1960's 

as one method to correct these problems. 

2. No-Till Agriculture 

a. History 

Excessive uncontrolled field traffic during seed bed 

preparation has been shown to nullify any advantages gained by the 

associated tillage operations (Kincade, 1972; Dumas et al., 1974). 

Tillage and plant protection operations require tractor and other 

machinery traffic which normally follow no set traffic pattern. No

till planting was introduced in the early 1960's to minimize field 

traffic and, therefore, soil compaction (Phillips and Young, 1973). 



In a no-till system, all field preparation (pesticide and 

fertilizer applications, plowing, seed placement and soil packing) are 

completed in a single pass without plowing. The result is a crop 

planted into the stubble of a previous crop or into dead sod. 

b. Advantages of no-till 

Phillips and Young (1973) compiled a list of advantages of 

no-till agriculture. Advantages include: 
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decreased wind and water erosion in stubble covered fields 

- decreased crop lodging due to firm soil 

- decreased labor, fuel and machinery costs by eliminating 

multiple passes over the field 

- decreased rate of soil compaction from less traffic 

- decreased time to planting by completing all operations 

in a single pass 

- decreased irrigation requirements due to decreased 

evaporation and increased infiltration in stubble

covered fields 

improved soil structure in the absence of plowing 

- increased soil organic matter from mulch decomposition 

- increased land availability when erosion can be con-

trolled • 

. c. Disadvantages of no-till 

The disadvantages associated with no-till can, under certain 

conditions, be serious enough to preclude its use. Disadvantages 

include: 

decreased yields in easily-compacted or waterlogged 

soils (Beverlein and Bone, 1970) 



- increased pest and disease problems due to harborage of 

organisms in the remaining crop litter (Triplett and 

Van Doren, 1969) 

increased difficulty in weed control (Phillips, 1972). 

While no-till agriculture reduces field traffic, it does 
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not eliminate machinery-related soil compaction. This may be one reason 

why controlled traffic agriculture was introduced shortly after no-till 

became widP.ly known. 

1.) Controlled traffic agriculture 

a.) History 

Cooper et al. (1969) reported that the first pass 

of a tractor in newly tilled soils caused ten times the compaction of 

subsequent passes. To overcome this problem they suggested a controlled 

traffic system where all traffic is restricted to previously compacted 

lanes, usually the wheel marks of a wide wheel span tractor. Tractors 

and machinery used in controlled traffic agriculture are designed with 

a given wide wheel span so that all field operations can be performed 

from platforms suspended above the bed while all the weight is carried 

by the wheels, which follow compacted traffic lanes. 

b.) Advantages 

Controlled traffic farming has several advantages 

in addition to those of no-till. These include: 

(1) Traffic on well-packed lanes which permit 

better traction, reduced wheel resistance and easier access to the 

field under a wider variety of weather and soil conditions. 



(2) With well defined traffic lanes, crops can 

be planted to avoid lateral compaction (Dumas and Trouse, 1974) and 

root restriction (Dumes et al., 1975). 

(3) Mechanical soil compaction in the growing 

beds is avoided. If needed, this loose soil can be tilled with a 

minimum of energy input. 

(4) The beneficial effects of deep tillage will 

be preserved for long periods (Trouse et al., 1975). 

2.) No-till, controlled traffic and subsurface trickle 

irrigation 
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By keeping traffic in defined lanes, lateral lines can 

be protected by placing them between the compacted lanes. The soil 

between the lanes is protected from compaction, so that no plowing is 

necessary, although shallow cultivation for weed control is possible if 

laterals are buried. This combination of techniques should provide 

optimal conditions for crop control with minimum maintenance. 

C. Phosphorus Placement through the Subsurface Trickle Irrigation 

System 

The high distribution efficiencies of trickle irrigation can be 

exploited to achieve similar efficiencies in fertilizer application. 

By injection of fertilizer into a subsurface trickle irrigation 

system, fertilizers can be delivered directly to the crop's root zone, 

implying a potential for increased fertilizer use efficiency. This 

would be especially true of nutrients such as phosphorus which are 

rapidly immobilized by the soil. When used in conjunction with certain 

soils with high phosphate fixing ability, the maintenance of high 
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P availability adjacent to each emitter may be an effective solution to 

the problem of phosphate fixation. 

1. Phosphate Fixation 

Phosphate fixation in tropical soils has been recognized for 

nearly a century. Davis (1935) cited work done in 1902 which established 

that many tropical soils fix large amounts of applied phosphorus, 

removing it from the pool of plant-available nutrients. More than 

one-third of all soils in the lowland tropics are thought to be partic

ularly high in their phosphate fixing ability (Kurtz and Quirk, 1965; 

Sanchez, 1976). Davis and other more recent researchers (Kurtz and 

Quirk, 1965; Shelton and Coleman, 1968; Rajan and Fox, 1972; Munns and 

Fox, 1976) characterized the reaction rates and possible chemistry of 

the soil-phosphate bond describing a fast, somewhat reversible reaction 

between this nutrient and soil aluminum and a slower, less reversible 

reaction with soil iron. Phosphate fixation was shown to have an 

inverse relationship with both a soil's native phosphate fertility 

(Fox et al., 1968) and amounts of phosphate fertilizer previously 

applied (Kamprath, 1967). 

The ability of applied phosphorus to block the "fixation sites" 

in the soils (Fox et al., 1971) explained the observation by Young and 

Plucknett (1966) that increasing phosphate applications could, at some 

point, "quench" the absorptive capacity of the soil. Although 

"quenching" is an inaccurate representation of the true nature of the 

soil's reaction with phosphorus it is an attempt to describe the fact 

that, at some application rate, the plant-available phosphorus in 

equilibrium with sorbed phosphorus will be sufficient to produce 



optimal yields. The phosphorus application rate required for optimal 

crop yield is a function of the sorptive capacity of the soil and the 

level of available phosphorus required by the crop. 

To achieve sufficient plant available phosphorus in the soil 
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by broadcast application of phosphate fertilizers, several tons of 

phosphate fertilizers per hectare may be required on high phosphate 

fixing soils. In an attempt to find a more efficient method of 

fertilizer application, considerable research has been conducted using 

localized fertilizer application (Kratky and Tamimi, 1974; Fox and Kang, 

1976; Memon, 1980). This method requires that fertilizer be applied to 

small volumes of soil at sufficiently high levels for plant availability, 

without requiring saturation of the entire volume with nutrients. This 

provides an advantage only when economics or availability of materials 

preclude fertilization of the entire cultivated soil volume to the 

critical level of plant requirements for optimal growth (De Wit, 1953; 

Nishimoto et al., 1977). 

2. Phosphorus Application through Trickle Systems 

Phosphorus application through trickle irrigation systems has 

been studied with conflicting results. Based on field results, the 

distribution of phosphorus through the trickle systems has been dis

couraged because precipitation of phosphorus causes emitter plugging 

(Sharratt, 1976). This disadvantage is particularly likely to occur in 

areas where irrigation water has high pH and high calcium concentrations. 

However, with caution and use of proper materials, plugging can be 

avoided and considerable economic advantage can be gained by using the 

trickle system to apply phosphorus (Rauschkolbet al., 1976; Kresge, 1978). 



Keng et al. (1979) discouraged the use of phosphorus in trickle 

systems in Oxisols where its rapid fixation adjacent to emitters 

resulted in poor diffusion of phosphorus through the soil. Rolston 

et al. (1975b) showed that greater phosphate penetration through soil 

columns could be gained by use of organic phosphate. Rauschkolb et al. 

(1976) demonstrated in field experiments on loamy soil that at similar 

application rates, organophosphates diffused through 2.4 times larger 

volume than did orthophosphates. However, extractable phosphorus 

within this larger volume was only 18% of that found using orthophos

phate sources. Rolston et al. (1975a) suggested there were advantages 

to applying phosphorus into limited soil volumes through the trickle 

system. They calculated that the application of 15 kg of P205 through 

7200 emitters, each into a soil volume 8 cm in diameter, would result 

in localized applications of 1000 kg/ha--a number close to the phos

phorus requirement for optimal crop yields in some important tropical 

soils. This suggests that localization of inorganic phosphorus 

fertilizers might be beneficial to crop growth by concentrating phos

phorus in small volumes in a manner similar to conventional fertilizer 

banding. 

14 

Unfortunately, most phosphorus applications through trickle 

system have been to crops that cannot take full advantage of these 

systems because of economic or agronomic reasons. For example, in the 

Hawaiian sugar industry, "pineapple spacing" is connnonly used to reduce 

lateral line cost by placing one line between every other row of 

sugarcane plants (Santo, 1976). In addition, the irrigation lines must 

be placed away from the sugarcane stools to prevent pinching during the 



growing cycle (Hilton, 1978). Rapid initial growth of sugarcane 

requires phosphorus placement immediately adjacent to the seed piece. 

Therefore, if phosphorus is to be applied to this crop through the 

trickle system, the sugar industry is forced to maximize phosphate 

diffusion through the soil toward the crop roots. 

15 

Other crops or cropping systems, however, may find considerable 

advantage in the fact that roots tend to concentrate around emitters 

(Goldberg et al., 1971) and that phosphorus can readily be banded in 

this same volume of soil. 



• 

MATERIALS AND METHODS 

A. Main Experiments 

Four separate components were combined to form an integrated cropping 

system. These components were: (1) subsurface trickle irrigation, 

(2) controlled traffic, (3) no-till and (4) continuous cropping. All 

have been studied separately elsewhere but the latter three, especially 

in combination, have received little attention in Hawaii. To test the 

combined benefit of these practices, experiments were initially estab

lished on a Typic Eutrandept, a light, fertile, relatively noncompacting 

soil. To assess the general applicability of this approach,similar 

experiments were installed on a Vertie Haplustoll, a clayey soil with 

less favorable physical properties. 

To assess the integrated system's ability to sustain crop growth for 

extended periods without lateral line maintenance, the individual 

factors which may limit crop growth were also assessed. These factors 

include lateral line performance during extended burial and the effect 

of natural soil compaction on crop growth in the absence of tillage and 

traffic. Experiments were designed to permit the study of these indi

vidual factors while the overall ability of the integrated system was 

assessed by growing a large number of crops in succession using fast

growing leafy vegetables (Table 1). These crops were harvested six to 

eight weeks after transplanting and provided rapid generation of data 

with which to evaluate both the performance of the combined system and 

the soil's ability to sustain production. 

1. Site Characteristics 

Five experiments were conducted at the Lalamilo Experimental 

Farm in Kamuela on the island of Hawaii. The Waimea soil series on this 



Table 1. Plot parameters for each experiment 

p 1 0 t L a t e r a 1 L i n e 

Expt. Distance 
Total Site Description Plots Emitter Laterals between No. Length Width in Expt. Spacing per plot Depth Laterals per Plot 

(m) (m) (cm) (cm) (cm) 

Lalamilo 11 Longevity 6.0 1.2 18 45.4 2 13 61 26 

12 Compaction 2.4 0.3 48 30.2 4 Surface 30, 60 4 

13 Depth/frequency 6.0 1.2 18 45.4 2 13, 28 61 26 

14 Phosphorus 3.7 1.2 30 45.4 3 9 30 24 

15 Tube farm 3.3 1.2 10 30.2 2 13 61 100 

Waimanalo W1 Longevity 6.0 0.9 18 30.2 2 13 31 40 

w2 Compaction 2.5 0.3 48 30.2 4 Surface 30, 60 4 



farm is a member of the medial, isothermic far.iily of Typic Eutrandepts. 

This soil has a low bulk density (0.5 when newly plowed to 1.0 g cm-3 

when compacted), good drainage, high water-holding capacity, high 

fertility and is relatively free of rocks. The site is located 850 

meters above sea level and has an annual average rainfall of approxi

mately 760 nun. Loose, fertile soil, high solar radiation and cool 

nights make Kamuela an important vegetable farming area (Appendix A). 

Two additional experiments were installed on the heavy Waialua 

soil located at the Waimanalo Experimental Farm on the island of Oahu. 

This soil is a member of the very fine, kaolinitic, isohyperthermic 

family of Vertie Hapustolls. The soil is stony and very slowly perme

able. The site is 24 meters above sea level and has an annual average 

rainfall of approximately 1400 mm. Typical weather includes long, 

hot, dry periods during the summer and fall interrupted by irregular 

rainfall. Heavy rain and flooding are common during the winter and 

spring. Corn, tomatoes and other heat tolerant field crops grow well 

at the Waimanalo farm (Appendix B). 

2. Plot Preparation and Irrigation 

18 

The experimental plots were designed to create a controlled 

traffic pattern. Fields were prepared by disking and rototilling to a 

depth of approximately 20 cm. Tractors with the widest available front 

and rear wheel span were used with the wheel span defining the width of 

each plot in most experiments (Table 1). Furrows were cut to a 28 cm 

depth and backfilled, if necessary, to place the lateral lines at the 

desired depth. Kirkhill 16 mm diameter monowall tubing was placed with 

emitters (punched orifices of 0.03 mm diameter) facing upward. Adjacent 



lines were offset by one-half the distance of the orifice spacing as 

shown in Figure 1. 

19 

In addition to lateral lines, all submains and connections were 

placed at least 5 cm underground. The tractor wheels marked the 

traffic lanes,and throughout the experiment vehicular and foot traffic 

were confined to these lanes. Except for experiments 12, W2 and 14 

(the phosphorus and compaction experiments) where plots were level with 

the traffic lanes, each plot consisted of a bed raised approximately 

30 cm above the traffic lane. This was found necessary to discourage 

foot traffic in the beds. 

Municipal water of high quality was used for irrigation 

at both sites. Two pressure regulators were used in series to keep the 

pressure in the laterals at approximately 0.50 kg/cm2, Thirty minutes 

per day provided the optimal irrigation level of 0.36 cm per day (Wu and 

Gitlin, 1977). 

3. Soil Compaction 

Soil compaction and its effect on the integrated system were 

studied in four ways. 

a. Relationship between penetrometer resistance, soil water 

content and bulk density 

This relationship was established to help study the effects 

of soil bulk density on the integrated system. To determine this re

lationship in the two soils studied, data were collected by taking 

three penetrometer readings within a small area using a Proctor 

penetrometer (Soil Test, Inc.) and standard procedures, and when 

three or more readings were somewhat similar, a core was taken from 
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the undisturbed soil between the holes left by the penetrometer. Data 

were taken from the uncompacted plots, compacted plots and elsewhere to 

obtain as wide a range in bulk density and soil moisture as possible. 

Penetrometer readings for each sample were averaged and compared with 

the associated soil bulk density by regression analysis and plotted 

using a program being developed by Dr. R. Jones, University of Hawaii. 

b. Natural compaction 

Natural compaction was monitored throughout experiments L1 
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and w1 in both subject soils (Table 1). To do this, soil cores were 

collected from the protected plots for moisture and bulk density deter

mination in order to monitor the rate of compaction of surface (0-3 cm) 

and subsurface (6-9 cm) soils in the absence of traffic. While sampling 

was easily accomplished in the Waimea soil, the plastic, rocky nature of 

the Waialua soil required that one plot at the Waimanalo site be excavated 

to the plow pan, the soil sifted through a 60-mm screen and returned to 

the plot. Samples from this plot provided far more consistent data with 

which to work. 

During the sampling in loose soils it became evident 

that the samples were being compacted by the soil corer. To avoid this, 

samples were collected by pressing 3-cm brass rings (volume 68.7 cc) into 

the soil. 

c. Compaction by varying passes of a tractor 

The second method used to study compaction was to assess 

the effect of increasing tractor traffic on bulk density and crop yield 

in both soils (experiments L2 and W2). Thirty-two-cm wide strips of a 

prepared plot, 2.4 m long, were compacted using 2, 4 and 8 passes of 

a farm tractor. These treatments, each alternating with an uncornpacted 
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strip, were established in a randomized complete block design with six 

replications. Four lateral lines with 32-cm emitter spacing were placed 

on the soil surface, emitter downward, across all strips. Soil bulk 

densities and penetrometer readings were recorded to evaluate the effect 

of tractor traffic on soil compaction. 

d. Severe mechanical compaction 

A final study on the effects of compaction was prepared by 

mechanically compacting one-half of each plot in ongoing experiments 

aft~r 16 months of continuous cropping. Thirty-six plots at the 

Lalamilo farm (experiments 11 and 13) and 18 at the Waimanalo farm 

(experiment w1) were compacted lengthwise with 10-12 passes of a farm 

tractor directly over one of the two buried lateral lines in each plot. 

Soil bulk density, crop yields, emitter plugging rates and distribution 

as well as the weights of total roots and secondary roots (roots 

without the underground stump) from selected plots were recorded to 

evaluate the interrelationships of these components. 

4. Lateral Line Performance under Subsurface Conditions 

a. Assessment of lateral lines used in experimental plots 

Kirkhill monowall lateral line performance was assessed 

by monitoring the percentage and distribution of emitter plugging at 

intervals during the study of the integrated system as well as the 

appearance of the lateral lines at the termination of each experiment. 

The condition of the emitters was determined by the wet spot which 

appeared on the soil surface shortly after the irrigation was started. 

In one experiment, plugged emitters were exposed and cleared by hand. 

Twenty plugged emitters, were examined in the laboratory with an 

optical microscope to determine the causes of plugging. 



b. Tube farm 

A tube farm (experiment Ls) was established at the 

Lalamilo farm to compare the performance of other lateral lines. 

Thirty-two-meter sections of 11 types of trickle irrigated laterals 

were buried at a depth of 13 cm (Table 2). Unreplicated 16-m long 

plots had two lateral lines each. Two crops of maize and assorted 

vegetables were initially grown on these plots after which the area 

was left fallow for the duration of the test. After 18 months the 

ground cover was killed with glyphosate, emitter plugging estimated 

and each line uncovered and examined. 

5. Crop Performance 

Six experiments were established to evaluate the long-term 

performance of the integrated system under different experimental 

conditions (Table 1). 

a. The experiments 
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To compare the results between the two soils, two experi

ments were established at each site. The first (11 and w1 ) was designed 

and managed to provide optimum conditions for the integrated system 

based on previous experience. Both experiments had 18 plots, 6 m long, 

but of different widths (1.2 m and 0.9 mat Lalamilo and Waimanalo, 

respectively) to properly accommodate the crops best suited for each 

location. 

The second experiment established at both sites (L2 and W2) 

was a study of the effect of increasing tractor traffic on crop growth. 

Narrow plots, 0.32 m wide and 2.4 m long, were established with 2, 4 

and 8 passes of a tractor in a randomized complete block design with six 



Table 2. Lateral line materials tested under subsurface conditions 

Source Common Type Material Wall 
Name Thickness* 

T Systems corp trickle tape bi wall polyvinyl 5 mil 

T Systems crop trickle tape bi wall polyvinyl 8 mil 

Kirk.hill monotube mono wall polybutylene 15 mil 

Chapin twin wall dbl wall polyethylene 8 mil 

Chapin twin wall dbl wall polyethylene 4 mil 

Chapin twin wall dbl wall polyethylene 3 mil 

Reed biwall 19 biwall polyethylene 19 mil 

Reed biwall 15 biwall polyethylene 15 mil 

Reed biwall II biwall polyethylene 15 mil 

Chapin drip hose biwall polyethylene 12 mil 

Anjac (none) biwall polyethylene 19 mil 

*l mil = 1/100 inch= .025 mm 

General comments: All plots had 32 m of lateral line with 100 emitters each 
(32 cm spacing). Plots were unreplicated. 

N 
~ 



replicates. A zero (uncompacted) treatment alternated with each 

compaction treatment resulting in a total of 48 plots. 

Two other experiments (13 and 14) were established at the 

Lalamilo farm to study crop performance in the integrated system. 

25 

These were the depth/frequency and phosphorus experiments, respectively. 

These will be discussed in detail under the Supplemental Experiment 

subsection below. 

b. Crop cultivars 

At the Lalamilo site, head lettuce (Lactuca sativa var. 

Great Lakes R200 and Mesa) were transplanted during the winter and 

sunnner months, respectively. One rotation of head cabbage (Brassica 

oleracea var. Capitata) was also grown. 

At Waimanalo, the more heat tolerant Anuenue lettuce 

cultivar was transplanted. Mustard cabbage (Brassica chinensis var. 

Hawaiian Waianae strain) was transplanted on three occasions when 

conditions for lettuce growth were particularly unfavorable. 

c. Planting cycle 

Seeds were sown in trays and kept in a fiberglass roofed 

seedling house or a glass house for one month prior to transplanting. 

The experiment was designed and timed so that the previous crop could 

be harvested, the beds prepared and the next crop transplanted within 

a two-day period. 

d. Fertilizer application 

Initial preplant fertilizers were applied to all but the 

phosphorus plots at the rates of 25 and zero kg/ha of P and K, res

pectively at Lalamilo and 120 and 100 kg/ha of P and K, respectively, 
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at Waimanalo. Triple superphosphate was broadcast for the phosphorus 

applications while dissolved potash was applied through the trickle 

system. Additional nutrients were applied at rates determined to be 

necessary by the response of the previous crop (Table 3). 

e. Crop harvest and sampling 

26 

To simplify sampling and permit more direct comparisons 

between treatments, the entire crop was harvested when approximately 

80% of the crop was judged to be mature. Whole plant weights and plot

composite samples of the first wrapper leaf on each lettuce head were 

taken. Leaf samples were dried at 60°C, ground and analyzed for P, K, 

Ca, Mg, S, Si, Na, Cl, Mn, Fe, Cu and Zn by X-ray fluorescence spec

trometry and for N using the micro Kjeldahl technique. 

f. Plant protection 

Glyphosate was applied as the general herbicide. Paraquat 

and hand weeding were used for purslane (Portulaca oleracea), burr 

clover (Medicago polymorpha), cheese weed (Malva parviflora) and other 

glyphosate-resistant weeds. Pronamide and CDEC were applied as pre

emergence herbicides. Methyl bromide was applied to control nutsedge 

(Cyperus rotundus) in two Lalamilo experiments. Diazinon was used to 

control insects (primarily cutworms, ants, and webworms) and DCNA was 

used to control bacterial rot. All pesticides were applied at recom

mended rates. 

B. Supplemental Experiments 

While monitoring the long-term performance of the integrated 

system, other experiments were conducted which focused on ways of 

maximizing the uses and efficiencies of this combined farming system. 



A. 

B. 

C. 

Table 3. Crops, planting dates and nitrogen application rates 
for all major experiments 

Crop 
Planting Total Nitrogen 

Date Application 
(kg N/ha) 

Method 

Longevity and depth/frequency experiments at Lalamilo (L1 and 13) 

lettuce 5/08/79 80 (urea) 3 equal applications, 2 week 
intervals (I)* 

cabbage 8/02/79 40 (urea) 2 equal applications, 3 week 
intervals (I) 

lettuce 10/18/79 none 
lettuce 1/16/80 150 (urea) 100 at planting, SO at 4 weeks (I) 
lettuce 3/26/80 none 
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lettuce 7/10/80 SO (urea) 25 at 4 weeks (S)**, at 6 weeks (I) 
lettuce 10/20/80 SO (urea) at planting (I) 

Phosphorus experiment at Lalamilo (L4) 

lettuce 7/28/78 300 (urea) at planting (I) 
lettuce 10/13/78 none 
lettuce 1/23/79 170 (urea) 140 at 3 weeks, 30 at 7 weeks (S) 
lettuce 6/06/79 100 (urea) so at planting, SO at 6 weeks (S) 
lettuce 1/10/79 100 (urea) so at l week, SO at 6 weeks (S) 

Longevity experiment at Waimanalo (W1) 

Kai choi 5/05/79 80 (urea) at planting (I) 
lettuce 7 /15/79 80 (urea) at planting (I) 
Kai choi 10/30/79 80 (urea) at planting (I) 
lettuce 12/27/79 75 (urea) 25 at planting, 2 and 4 weeks (I) 
lettuce 2/27/80 75 (urea) 25 at planting, 2 and 4 weeks (I) 
lettuce 5/02/80 120 (16-4-4) at planting (S) 
Kai choi 8/20/80 150 (16-4-4) 25 at planting, 125 at 2 weeks (S) 
Kai choi 12/01/80 100 (16-4-4) at planting (S) 

*(I) = through the irrigation. 
**(S) = sidedress. 



Each series of plots was designed for a specific purpose although some 

were subsequently altered to provide certain additional information. 

The supplemental experiments are described below. 

1. Depth/Frequency Experiment (L3) 

28 

Experiment L3 was established at the Lalamilo farm to determine 

the effects on yield of lateral line placement depths (13 and 28 cm) 

and irrigation frequency (four times per day, daily or every other day), 

using the optimum irrigation rates established by Wu and Gitlin (1977). 

Plots were arranged following a randomized complete block design (three 

replications). The 18 plots involved were constructed inunediately 

adjacent to the L1 experiment. Plot preparation, crops planted, 

planting and harvesting dates, total irrigation application and fertil

izer applications were identical in these plots (Table 3). Standard 

analysis of variance and least significant difference tests were per

formed on the resulting yield data to determine statistical significance 

of the response to the treatments. 

2. Phosphorus Application through the Subsurface Trickle Irrigation 

System 

This experiment (L4), located at the Lalamilo farm, was designed 

to assess the effectiveness of trickle applied inorganic phosphorus and 

broadcast applied fertilizer P. 

In order to determine Prates, phosphorus isotherms (Fox and 

Kamprath, 1970) were prepared with samples taken from an area known to 

be P deficient. Phosphorus applications required for different levels 

of yield response were calculated from the isotherm (Fig. 2) and 

information on crop P requirements (Nishimoto et al., 1977). 
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To achieve low, medium and high yields of head lettuce, 

phosphorus levels equivalent to O, 150, 600 and 1200 kg P/ha were applied 

to the 3.7-rn by 1.2-m plots in a partial factorial (Table 4), randomized 

complete block design with three replications. Broadcast and trickle 

treatments were applied singly or in combination as shown in Table 4. 

Triple superphosphate (0-42-0) was applied for the broadcast treatments 

and a liquid urea phosphate fertilizer (15-27.2-0), from the Tennessee 

Valley Authority, was applied through the irrigation system. 

To achieve the desired levels of N (300 kg/ha) and P (zero to 

1200 kg/ha), urea phosphate was used in combination with dissolved urea 

and phosphoric acid (Table 4). These amendments were applied one day 

prior to planting the first crop. Nitrogen was applied to subsequent 

crops (Table 3) but no phosphorus was applied, permitting a study of the 

residual effects of the initial application. 

Lettuce was transplanted directly over each emitter. Emitters 

were located by the wetted areas that developed on the surface soil 

shortly after an irrigation cycle began. 

a. Sampling and analysis of soil phosphorus 

Soil samples were taken in plots with trickle-placed 

phosphorus fertilizer in a 13 cm wide, 19 to 25 cm deep grid with the 

lateral line positioned on the left edge of the grid. Samples 2x2 cm 

square and approximately 6 cm long were taken horizontally from pre

determined positions within the grid (Fig. 3) to determine the movement 

of phosphate into the soil. Phosphate levels were analyzed by the 

modified Truog method (0.02 NH2so4 + 3 g/1 (NH4) 2so4 in a 1 hr, 

1:100 extraction)using ascorbic acid color development (Watanabe and 



Table 4. Phosphorus and nitrogen sources used to achieve desired treatment levels 

Application Rate (kg P/ha) Triple Super- Urea Phosphoric 
Urea*** phosphate Phosphate** Acid (85%) 

Treatment 

Trickle Broadcast kg/plot* kg/ha kg/plot kg/ha kg/plot kg/ha kg/plot kg/ha 

1 0 0 0 0 0 0 0 0 0.29 625 

2 150 0 0 0 0.56 1253 0 0 0.11 233 

3 0 150 0 . 33 741 0 0 0 0 0.29 625 

4 600 0 0 0 0.89 2000 0.60 1344 0 0 

5 150 450 0.99 2222 0.56 1253 0 0 0.11 233 

6 0 600 1.32 2963 0 0 0 0 0.29 625 

7 1200 0 0 0 0.89 2000 1.59 3578 0 0 

8 600 600 1.32 2963 o.89 2000 0.60 1344 0 0 

9 150 1050 2.30 5185 0.56 1253 0 0 0.11 233 

10 0 1200 2.63 5926 0 0 0 0 0.29 625 

*Plot size = 4 . 44 X 10-4 ha 
**Urea phosphate analysis= 15-27.2-0 

***Required to maintain all plots at 300 kg N/ha 
l,.) ..... 
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Olsen, 1965), These data were used in a contouring program (Bridges 

and Becker, 1976) to draw isarithrnic maps of P concentrations (Burgess 

and Webster, 1980) using cubic spline interpolation. 

b. Yields and phosphorus in plant tissue 

33 

Yield and tissue-P response data were collected and analyzed 

as described in the Crop Performance section. 

3. Water Movement from an Emitter 

To monitor water movement from an emitter, two sets of modified 

gypsum resistance blocks (Larson Company's sensors) were placed 1 cm and 

9 cm directly below the lateral line. The sensors in each set were 

placed 10 cm apart, over a distance of 50 cm from an operating emitter. 

Two additional sets of sensors located at the same depths but 

spaced 7.6 cm apart for 38 cm from the operating emitter, were installed 

perpendicular to the lateral lines in the plane of the bed. Adjacent 

emitters were taped closed and irrigation withheld for two days before 

data were collected. Two sets of data were taken from this unreplicated 

study, one irmnediately after installation and one a month later. 



RESULTS AND DISCUSSION 

The purpose of this research was to combine a controlled traffic 

farm operation with a subsurface trickle irrigation system to minimize 

soil compaction, reduce the need for plowing and to eliminate the need 

to remove and re-install laterals with each crop cycle. The goal of 

this research is to develop a cropping alternative which would help 

gr owers increase profits and take some of the drugery out of farm work. 

The research was based on two assumptions. The first was that a 

soil will remain loose and uncompacted and the second was that the 

laterals will remain functional. In Hawaii and other parts of the 

tropics where crops may be grown continuously, six or more transplanted, 

fast growing crops can be harvested from a parcel of land each year. 

The feasibility of adopting the combined system depends to a large 

degree on the duration over which these assumptions hold. To test 

these assumptions, compaction of tilled soil in the absence of traffic 

was measured over time and lateral line performance was monitored in 

four continuous cropping experiments. A subsurface "tube farm" was 

installed to permit the performance of several lateral line materials 

to be compared. 

A. Soil Compaction 

1. Penetrometer Resistance and Bulk Density 

The advantages of using penetrometer resistance rather than 

bulk density measurements in assessing soil compaction are twofold. 

First, the resistance measurements are more sensitive to compaction, 

and second, each measurement is easier to obtain. However, because 



penetrometer readings usually vary with soil moisture content, soil 

samples for moisture determinations must be made for each set of 

penetrometer readings. 

In the Waimea soil, stepwise multiple regression analysis 

showed that the natural log of penetrometer resistance values is 

significantly related to soil bulk density (R2 = 0.66). Adding soil

water content to the regression equation increased the coefficient of 

determination very little. This suggests that, for this soil, pene

trometer readings can be compared directly to bulk density within the 

gravimetric water content range of 35 to 60% (Fig. 4). 

In the Waialua soil, difficulty in sampling due to the plastic 

nature of the soil resulted in a non-significant relationship between 

soil-water content, bulk density and penetrometer resistance. 

2. Natural Compaction in Two Soils 
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Natural soil compaction was monitored by taking surface (0-3 cm) 

and subsurface (6-9 cm) bulk density samples at both sites over a 

period of several months. In the Waimea soil, where samples were taken 

over a 17-month period,natural compaction was found to be significantly 

related to time (Fig. 5). Here, soil compaction rate and bulk density 

at the 0-3 cm depth did not differ significantly from the 6-9 cm depth. 

Mean surface penetrometer resistance in the protected Lalamilo 

plots increased very little over 59 weeks of sampling from an initial 

value of 0.55 to 3.6 kg cm-2. This shows that these soils remain 

friable and easy to work. Soils do not become hard to the touch until 

they reach a bulk density above 0.80 g cm-3 or a penetrometer resistance 

above 5.0 kg cm-2. 
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No significant relationship between soil bulk density and time 

from plowing was found from samples taken in most of the experimental 

plots at the Waimanalo site due to the sticky, plastic nature of the 
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soil. Sampling was partially successful in the sifted plots, however, 

where natural compaction over a 48-week period appeared to be relatively 

rapid compared with the Waimea· soil (Fig. 6). Observations in the field 

showed that in less than one year, natural compaction of the Waialua 

soil resulted in a loose surface soil underlaid by a relatively dense, 

slowly permeable layer. The dense subsurface layer causes irrigation 

water that intercepts it to move laterally into the traffic lanes. More 

frequent, lower volume irrigation is required for this soil to accommodate 

the low permeability of the subsoil. 

3. Effect of Mechanical Compaction 

To study the effect of compaction on the integrated system, 

soils at both locations were compacted with multiple passes of a tractor 

wheel. 

a. Traffic and its effect on bulk density and penetrometer 

resistance 

To assess the importance of tractor wheel traffic on the 

two soils, soil samples and penetrometer resistance measurements were 

taken in newly plowed soil and in the wheel path after a prescribed 

number of passes by a farm tractor. The results of these samples are 

shown in Table 5. 

Surface bulk density and penetrometer resistance increased 

in both newly plowed soils as a result of tractor traffic. The first 

two passes of a tractor on each of these soils produced significant 
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Table 5. Surface bulk density and penetrometer resistance 
as a function of the number of tractor passes 

Number Waimea Soil cegt = o.5o) Waialua Soil cegt =- · o.35) 
of Surface Penetrometer Surface Penetrometer 

Passes Bulk Density Resistance Bulk Density Resistance 
(g cm-3) (kg cm-2) (g cm-3) (kg cm-2) 

0 0.65 a* 1.39 a* 0.94 a* 1. 70 a* 

2 0.85 b 22.3 b 1.33 b 23 . 2 b 

4 0.85 b 24.2 b 1.34 b 24.3 b 

8 0.87 b 27.0 C 1.40 b 25.6 b 

LSD= 0.04 LSD = 2.32 LSD= 0.08 LSD= 4.20 

*Means with the same letter are not significantly different at the 
5% level using the least significant difference test. 

teg = gravimetric water content of soils during compaction and 
sampling. 
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increases in both bulk density and penetrometer resistance, but no 

further significant increases in bulk density or penetrometer resistance 

~ere obtained even with eight passes of the tractor wheel. The relative 

effect of the first two passes in the Waimea soil is shown graphically 

in Fig. 7. 

In different experiments (L1 and w1) samples were taken to 

compare profiles of bulk density in compacted and non-compacted soils 

at both locations (Table 6). These plots had been under continuous 

cultivation for 81 weeks. The compaction treatment was imposed on 

one-half of each plot at both locations eight weeks prior to sampling. 

B. Subsurface Trickle Irrigation in Uncompacted Soils 

1. Condition of Trickle Irrigation System Materials after Extended 

Burial 

a. 

, 
Continuous cropping experiments 

Kirkhill monowall lateral line was used in all continuous 

cropping experiments at both sites. As each experiment was terminated, 

the irrigation system was uncovered and examined. Although lateral line 

strength was not measured quantitatively, an inspection of laterals 

after periods of up to 22 months showed that they were very similar in 

appearance to tubing which had been stored indoors. The only exception 

to this was fire ant (Solenopsis geminata) damage at the Waimanalo farm, 

discussed below. Buried polyvinal chloride (PVC) submains, although 

somewhat more brittle than new samples, retained their flexibility and 

strength far better than sections of similar pipe exposed to sunlight. 

These observations suggest that burial can substantially increase the 

working life of these plastic materials. 
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Table 6. Bulk density profiles of non-compacted and compacted 
Waimea and Waialua soils 

Depth Waimea Soil (g cm-3) Waialua Soil (g cm-3) 
(cm) Uncompacted Compacted Uncompacted Compacted 

x (n = 7) x (n'"' 4) x (n = 3) x (n = 3) 

0-3 0.65 0.92 1.01 1.07 

3-6 0.69 0.90 1.12 1.26 

6-9 0.73 0.87 1.23 1.31 

9-12 0.74 0.84 1.24 

12-15 o. 77 
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b. Tube farm 

Manufacturers produce irrigation lateral lines from at 

least three different materials and in varying thicknesses. To eval

uate the effects of material composition and thickness on long-term 

performance of buried trickle lines, observations were made on 11 dif

ferent commercially available lateral lines. After growing two crops 

of maize and assorted vegetables over the buried laterals, the area 

was fallowed. Purple nutsedge (Cyperus rotundus), burr clover 

' (Medicago polymorpha), purslane (Portulaca oleraceae), sow thistle 

(Sonchus oleraceus), Fuji "grass" (Galinsoga parviflora), Spanish 
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needle (Bidens pilosa), and various true grasses (mostly Setaria sp.) 

comprised the majority of the weeds covering the area during this period. 

Although foot traffic was discouraged around the tube farm, some com

paction from this source occurred during the 18-month test period. 

After 18 months of use, these materials appeared new except 

for damage by ants, nutsedge and farm operation. The condition of each 

lateral line is summarized in Table 7. 

2. Sources of Damage to Subsurface Lateral Lines 

a. Damage from farm laborers 

Field experience showed that education of farm laborers and 

proper bed preparation are as important to lateral line preservation as 

is proper use of farm machinery. In the first experimental plots 

lateral lines were placed at a depth of 10 cm or less in beds which 

were level with the traffic lanes. These factors and the inexperience 

of the farm labor force with subsurface systems resulted in occasional 

foot traffic within the beds and damage to the lateral lines during 



Table 7. Condition of 11 types of lateral lines after 18 months of burial 

Lateral Line Characteristics 

Common name Type Material 

trickle tape bi wall polyvinyl 

trickle tape bi wall polyvinyl 
monotube mono wall polybutylene 
twin wall dbl wall polyethylene 

twin wall dbl wall polyethylene 

twin wall dbl wall polyethylene 

biwall 19 biwall polyethylene 

biwall 15 biwall polyethylene 
biwall II biwall polyethylene 
drip hose biwall polyethylene 

(none) biwall polyethylene 

*1 mil = 1/100 inch= 0.025 mm 

Wall 
Thickness* 

5 mil 

8 mil 

15 mil 
8 mil 

4 mil 

3 mil 

19 mil 

15 mil 
15 mil 
12 mil 

19 mil 

Condition on Recovery 

3 small holes (ants), 1 
large hole (rodents?), 9.6% 
plugged 

no holes, 11.7% plugged 

no holes, 5.7% plugged 
2 holes (ants), 29.5% 
plugged 
11 pierced by nutsedge, 
7 nutsedge tubers inside, 
24% plugged 

21 pierced by nutsedge, 
19 nutsedge tubers inside, 
plugging undetermined · 

no holes, 9.5% plugged 

no holes, 40.5% plugged 
no holes, 26% plugged 
1 hole in high pressure wall 
(ants), 20% plugged 
no holes, 26% plugged 

General comments: All plots had 32 m of lateral line with 100 emitters each (32 cm 
spacing). Plots were unreplicated. 
Lateral line material was found to be visually quite similar to un
used sections of line. No quantitative tests were run. 
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hand weeding and transplanting. These problems were overcome in later 

experiments by raising the beds, by placing the lateral lines slightly 

deeper (~13 cm), and by the workers becoming more familiar with the 

subsurface trickle system. 

b. Ant damage 

Ant damage occurs whether lateral lines are placed on the 

surface or are buried. Damage is generally in the form of enlargement 

of the emitter orifices although in some cases new holes are made. The 

damage also tends to be concentrated in areas close to ant colonies. 

In the Waimanalo experiment (W1) fire ants (Solenopsis geminata) were 

the main cause of emitter damage beginning six months after tube 

installation. This species has previously been identified as the most 

damaging to irrigation tubing (Chang and Ota, 1976). 
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The most frequently damaged plots were those bordering the 

experiment, apparently from ants migrating from adjacent grassy areas, 

although interior plots were also occasionally damaged. 

Ant damage was not as important a problem in the Lalamilo 

plots, presumably because the less damaging bighead ant (Pheidole 

megacephala) is the only ant species found in the Kamuela area which is 

known to damage lateral lines (Vincent Chang, personal communication). 

Control of this pest with the insecticide Diazinon was 

poor. The chlorinated hydrocarbons, the only effective systemic insec

ticides, have been restricted from use in all but two agricultural crops 

in Hawaii and will soon be removed from the market altogether. No 

new products approaching their effectiveness seem to be forthcoming 

but a promising mechanical method of protecting in-line emitters has 
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recently been developed by entomologists at the Hawaiian Sugar Planters' 

Association (Chang et al., 1980). 

c. Purple nutsedge damage 

Purple nutsedge (Cyprus rotundus) damage to trickle irri

gation laterals has long been a concern of Kamuela farmers (Kuni Fujii, 

personal communication). The sharp point of the rhizomes and aerial 

stems can penetrate a range of materials,including asphalt. 

Of the materials tested in the tube farm, only the two 

thinnest were punctured by nutsedge. The Chapin 3-mil polyethlene 

double wall material was punctured 21 times along a 32-meter section. 

In 14 of these cases, single or multiple tubers were growing inside the 

line. The Chapin 4-mil double wall lateralline was punctured 11 times, a1 

in 7 locations tubers were growing inside. The punctures ranged from 

0.5-1.5 mm in diameter. The Chapin 8-mil double wall polyethylene line 

was not punctured by nutsedge, indicating that this is an adequate 

thickness for this material. 

The polyvinyl lateral was undamaged even at 5-mil thickness 

suggesting that this material is more resistant to nutsedge damage. All 

other materials remained undamaged by nutsedge. 

To further test the ability of horizontally growing nutsedge 

rhizomes to penetrate lateral line materials, 80 nutsedge tubers were 

planted within a wire mesh cylinder, buried vertically, which held a 

single layer of lateral line material (900 cm2 surface area) within 

6 cm or less of each tuber. One cylinder was used for each of the 

11 materials previously tested and was buried for 90 days as the nut

sedge plants grew. As in the previous experiment only the Chapin 3-



and 4-mil materials were punctured after six months of dense nutsedge 

growth (11 and 8 punctures, respectively), confirming the results from 

the tube farm. 

3. Plugging under Subsurface Conditions 

a. Distribution of plugging over time 
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Plugging of lateral line emitters at the Lalamilo farm was 

surveyed by noting the number and position of moist spots within each 

plot. Following the initial lettuce crop in the phosphorus plots, a 

survey showed that 26% of the emitters were plugged and 7% possibly 

plugged. The pattern indicated that plugging was random within the 

plots as well as among the plots (Fig. 8). Here, 47% of the plugged 

emitters occurred between operating emitters. Twenty days after the 

first plugging survey, each plugged emitter was uncovered for verifi

cation and unplugging. The results of this second survey are shown in 

Fig. 9 and compared with results of the earlier survey in Table 8. 

These results suggest that a substantial amount of plugging (at least 

27% of plugged emitters) is intermittent over time. If intermittent 

plugging is a common occurrence, calculations of uniformity and emitter 

flow variation based on plugging percentage or water flow rates 

(Braltz et al., 1978) may need to take this fact into account. 

After a second crop of lettuce was grown and harvested from 

these plots, another visual plugging survey was conducted. At this 

time, approximately three months after each emitter was cleared by hand, 

the plugging rate was 18%. Allowing for a few exceptions, plugging 

within and among the plots again appeared to be random (Fig. 10) with 

approximately one-half (54%) of all plugged emitters occurring between 
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Figure 9. Changes in emitter plugging 20 days after initial inspection 
of the subsurface trickle irrigation system at the Lalamilo 
farm (Experiment 14, 720 total emitters). 



Table 8. A comparison of the condition of individual lateral 
line emitters on two examinations 20 days apart in 
experimental plots at the T.alamilo farm 

Initial Data Taken Data Taken 20 Days Later 

Condition Number and% Condition of Number and% 
of total emitters the same of total emitters 

emitters 

Plugged 138 (19) 
Plugged 189 (26) Partial 0 

Open 51 ( 7) 

Plugged 12 ( 2) 

Uncertain 53 ( 7) Partial 9 ( 1) 

Open 32 ( 4 

Plugged 25 ( 4) 
Open 478 (66) Partial 0 

Open 453 (63) 
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operating emitters. The lower rate of plugging recorded in the second 

survey suggests that the high rate of initial plugging may have been 

caused by soil or foreign particles introduced into the system during 

installation or during fertilizer injection. 
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Comparing the results in Fig. 10 with those of the previous 

figures, over half (81 out of 142) of the emitters that were manually 

unplugged had become plugged again. This indicates that the method of 

unplugging is only partially effective and/or certain emitters are prone 

to plugging. If the latter is true, a study of the size and shape of 

emitters prone to plugging may prove profitable. 

To determine the number and relative position of plugged 

emitters after extended undisturbed use, a survey was made of plots 

that had been continuously cropped with six vegetable crops over an 

18-month period (Figs. 11 and 12). Of the tubes that were not subjected 

to compaction (see compaction studies described below), 23% of the 

emitters were plugged. Depth of burial did not have an effect on the 

number or distribution of plugged emitters (see depth/frequency 

studies discussed below). 

The distribution of the plugged emitters was different in 

these plots, however. Seventy-two percent of the plugged emitters were 

immediately adjacent to one or more plugged emitters, one-third of which 

(34.5% of all plugged emitters) were in groups of four or more. Four 

plugged emitters in a row represent a two-meter length without irriga

tion. Because of the short length of the plots (6 m), little can be 

said about plugging distribution in long laterals. 
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Figure 11. Location of plugged e~itters in a subsurface trickle 
irrigated experiment at Lalamilo farm 18 months after 
installation (Experiment t 3 , 416 of 468 total emitters). 
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Figure 12. Location of plugged emitters in a subsurface trickle 
irrigation experiment at Lalamilo farm 18 months after 
installation (Experiment L1, 456 of 468 total emitters). 
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b. Causes of emitter plugging 

An optical microscope was used to examine 20 plugged 

emitters taken from the Lalamilo plots. Particles of soil, approxi

mately the size of the orifice or slightly larger, caused 40% of the 

plugging. Another 40% was attributed to bacterial slime alone or slime 

combined with fine inorganic material. A mixture of larger particles 

and bacterial slime caused the remaining 20%. Although soil was often 

found clinging to the outside of plugged emitters, visual inspection 

indicated that plugging in all instances was from inside the lateral 

line. 

c. Effect of mechanical compaction on plugging 

To determine if compaction had an effect on the plugging rate 

of subsurface lateral line emitters, a survey of plugged emitters was 

taken after one-half of each plot in two experiments (18 plots each) 

had been compacted by 10 to 12 passes of a farm tractor. The influence 

of depth of lateral line placement and vehicular compaction on emitter 

plugging was also measured in this experiment (Table 9). These data 

show that mechanical compaction increased emitter plugging by more 

than 50% relative to that in non-compacted plots. Depth of lateral 

line burial had no effect on emitter plugging in this experiment. No 

distinct pattern on plugging was apparent, as might be expected if 

compaction pinched off entire sections of lateral line tubing. This 

suggests that plugging was caused by packing of the soil into individual 

emitters. 

C. Crop Performance in the Integrated System 

The previous experiments showed that, while natural compac

tion is slow in the upper 8 cm of the Waimea soil, this 



Table 9. Percentage of plugged emitters in compacted and non-compacted 
portions of experimental plots in Waimea. Compaction was ac
complished by 10 to 12 passes with a farm tractor 

Plugged Emitters 

Plot Parameters Number of 
Plots Mean Range 

(%) (%) 

A. Experiments 11 and 13 
Overall 72 29 0-59 
Compact 36 36 0-84 
(Bulk density = 0.92 g cm-3) 

Loose lanes 36 23 0-73 
(Bulk density = 0.69 g cm-3) 

B. Experiment 13 
.28-cm depth: Compact 9 30 8-69 

Loose 9 22 0-54 

13-cm depth: Compact 9 30 0-84 
Loose 9 20 0-73 
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process results in a relatively dense subsurface (>6 cm) later in the 

Waialua soil. Except for ant damage at the Waimanalo site and some 

emitter plugging in all experiments, the subsurface trickle irrigation 

system continued to perform well at both sites for nearly two years 

with no sign of deterioration. 
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Crops were planted in rapid succession, when possible, 

during the experimental period. Although the integrated system permits 

transplanting a crop the day after harvesting, only about one-half of 

the crops were transplanted within a week of harvest. 

1. Crop Growth in Protected Plots 

Up to seven successive transplanted vegetable crops were grown 

in three experiments conducted at the Lalamilo farm. Except for the 

first crop of head lettuce in the tandem experiments (L1 and L3) neither 

soil biotic factors nor natural compaction of the soil appeared to have 

any adverse effect on crop production (Table 10). The exception was 

apparently the result of previous methyl bromide soil sterilization 

immediately before planting. This procedure caused butt rot 

(Dr. John Cho, personal communication) which affected 86% of the over

sized lettuce plants. One rotation of head cabbage was then transplanted 

to permit the soil biota to re-establish natural competition with the 

Erwinia sp. bacteria which cause this disease. 

The last crop in the L4 experiment was exceptionally poor. 

This was the result of two weeks without irrigation (water inadvertently 

turned off) and severe weed infestation. Other than those exceptions, 

average yields fluctuated, but showed no trend that indicated a decline 

in the ability of the integrated system to support crop growth. 



Table 10. Mean crop yield in relation to harvest dates and soil bulk density in experiments 
at the Lalamilo farm 

A. Longevity and Depth/Frequency (L1 and 13) experiments 

Crop Harvest Mean Whole Plant Weight (kg) Weeks of Surface Bulk 
Number 

Crop Date Longevity Depth/Frequency Operation Density (g cm-3) 
(LI) (13) 

1 lettuce 6/27/79 2.02 1.67 9 0,54 
2 cabbage 10/2/79 3.14 2.20 24 0,59 
3 lettuce 12/26/79 1.17 0.91 35 0.58 
4 lettuce 3/25/80 1.66 1.66 48 0.57 
5 lettuce 5/29/80, 6/3/80 1.34 1.00 57 0.64 
6 lettuce 9/12/80 1.47 1. 32 72 0.69 
7 lettuce 12/26/80 1.17 87 

B. Phosphorus plots (L4) 

Crop Harvest Mean Whole Weeks of 
Number Date Plant Weight (kg) Operation 

1 9/19/78 1.31 7 
2 1/03/79 0.91 15 
3 4/04/79 0.98 28 
4 8/04/79 1.16 51 
5 3/08/80 0.59 76 
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Although vegetable crops did not grow well at the Waimanalo 

site, the last crop (20 months after the installation of the irrigation 

system) was judged to be excellent by local farmers (Table 11). There

fore, natural compaction and disease build-up were not identified as 

problems at this location either. Thus, even in this heavy soil the 

system operated adequately for nearly two years. 

2. Plant Growth in Mechanically Compacted Plots 

Two experimental approaches (half-plot compaction and single

row compacted strips between uncompacted strips) in five experiments 

(L1, L2, L4, W1 and W2) were used to study the effect of tractor 

traffic on crop growth. 

At the Lalamilo farm, the main effect of compaction on crop 

growth was on the size and shape of plant roots. Head lettuce roots 

were collected from all plants in two selected plots at the Lalamilo 

site. Differences in root weight were highly significant between 

compacted and non-compacted soils (Table 12). These differences were 

visually apparent with compaction resulting in deformed, short, 

thickened secondary roots. The roots were largely confined to the 

hole made by the planting tool. The yield reduction was not as pro

nounced as the root weight reduction. Plots a and b had yield reductions 

of 26.7 and 17.5%, respectively, relative to yields in the uncompacted 

portion of their respective plots. Although root development was 

reduced in all compacted rows, the average crop yield from 36 compacted 

plots was only 6% less than that for uncompacted plots. Yields were 

higher in 13 of the 36 compacted plots than in the adjacent non-compacted 

plots. Therefore, although compaction resulted in significantly reduced 

root size, yield was not significantly reduced. 
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Table 11. Mean yields of successive crops at the Waimanalo farm 

Crop Crop Harvest Mean Yield Weeks of 
Number Date (gm/plant) Operation 

1 Kai Choi 6/14/77 56 7 

2 Lettuce* 8/20/79 lost 16 

3 Kai Choi 12/17 /79 537 34 

4 Lettuce 2/20/80 96 43 

5 Lettuce 4/08/80 132 49 

6 Lettuce 6/03/80 183 57 

7 Kai Choi 9/30/80 lost 70 

8 Kai Choi 1/13/81 405 89 

*The Anuenue cultivar was used in all lettuce plantings. 



Table 12. Mean lettuce root weights from two selected plots, half of each plot being compacted 
just prior to planting 

Surface Plot a Plot b 
Bulk Crop Wet Whole Wet Dry Crop Wet Whole Wet Dry Density 

(g cm-3) 
Yield Root Rootlet Rootlet Yield Root Rootlet Rootlet 
(kg) (g) (g) (g) (kg) (g) (g) (g) 

Noncompact 0.65 1.61 29.9 21.6 2. 72 2.02 31.9 18.2 2.92 

Compact 0.92 1.18 16.9 9.6 1.28 1.67 19.6 8.7 1.39 

Difference 0.27** 0.43* 13.0** 12 . 0)"* 1.44** 0.35 ns 12 . 3** 9.5** 1.53** 

% difference 42.0% 26.7% 43.5% 55.6% 52.4% 17.3% 38.6% 52.2% 52.4% 

*,**Significant at 5% and 1% level, respectively, for 13 observations each. 



In the Waimanalo experiments, no significant differences in 

bulk density were found between compacted and non-compacted soil in 

either experiment. This may be attributed to the swelling nature of 

this soil. In both treatments root development was similar and no 

significant differences between crop yields were found. 

The results from the Waimea soil show that for lettuce grown 
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on this soil, poor root development due to compaction is not detrimental 

to yield if water and nutrients are adequately supplied. Although a 

trickle irrigation system can provide these requirements, compaction in 

the beds should be avoided for other practical reasons, including 

emitter location and accessibility as well as ease of transplanting 

crops. 

3. The Effect of Emitter Plugging on Crop Growth 

In experiments L1 and 13, emitter plugging in a given plot 

(26 emitters) was as high as 56% while single line plugging (13 emitters) 

was as high as 85% (Figs. 12 and 13). The weather during this period 

was dry (Appendix), providing44mm of the predicted 240 mm water 

requirement for optimum production at this site for the 63 day crops 

(Wu and Gitlin, 1977). Regardless of these facts, there was no 

statistically significant relationship between the percent of plugged 

emitters and lettuce yield. This lack of statistical significance may 

be due to a number of factors including a flat yield-response curve 

to water application (Wu and Gitlin, 1977), intermittent emitter plugging 

(discussed previously), water supplied from emitters adjacent to the 

plugged emitters (discussed below), and high natural yield variability. 
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D. Effects of High Frequency Irrigation ori Crop Yield 

One of the major advantages of the trickle irrigation system is 

its ability to provide high frequency irrigation, minimizing water stress 

in crops. High frequency irrigation usually refers to daily or alternate 

day scheduling, although higher frequencies are possible. To determine 

if lettuce would respond to high frequency irrigation, an experiment was 

installed at the Lalamilo farm to compare yields under frequencies of 

once every two days, daily and four times per day. Four crops were 

successfully grown under this irrigation regime. In three of the four 

crops, the highest frequency resulted in significantly poorer yields 

than the less frequent treatments (Table 13). The same results were 

found for wet and dry seasons (crops 2 and 4, respectively). These · 

data suggest that there is no advantage in irrigating head lettuce at 

this site more frequently than once every two days. 

E. Lateral Line Depth 

Depth of lateral line placement had no significant effect on size 

of mature plants. However, depth did make a substantial difference in 

field operations. The deeper (28 cm) lateral lines did not always 

result in a wetted surface area corresponding to each working emitter, 

making emitter location for planting, plugging surveys or repair more 

difficult. As a result, newly transplanted seedlings did not always 

receive a readily available supply of water, frequently resulting in 

heavy post-transplant seedling loss. Therefore, during dry periods, 

sprinkle irrigation was sometimes used during the first week after 

transplanting to permit proper root establishment. 



Table 13. The effect of irrigation frequency on whole plant yield of head lettuce 
from four successive crops at the Lalamilo farm 

Crop number 1 2 3 4 

Harvest date 12/26/79 3/25/80 6/3/80 9/12/80 

Effective rainfall* 183 mm 250 mm 175 mm 44 mm 

Treatments Yield Yield Yield Yield 
(kg/plant) (kg/plant) (kg/plant) (kg/plant) 

4 irrigations/day 0.69 b** 1.46 b* 0.86 b** 0.96 b** 

1 irrigation/day 0.93 a 1. 74 a 1.11 a 1.61 a 

1 irrigation/2 days 1.11 a 1. 79 a 1.03 ab 1.54 a 

Least significant 
difference 0.21 0.26 0.23 0.31 

*Soil water holding capacity= 50 mm. Rainfall in excess of this within a 2-day 
period is considered lost. 

**Treatments followed by the same letter are not different at the 5% level. 

0\ 
\JI 
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F. Phosphate Placement through the Subsurface Trickle Irrigation System 

1. Phosphate Distribution in the Soil 

Soil samples were taken in a grid pattern around the emitter at 

the Lalamilo site 55 days after phosphorus was applied as shown in 

Fig. 3. One plot was sampled a second time 15 weeks after the first 

sampling and 161 days after fertilizer application to determine the redis

tribution of phosphorus. Figures 13 to 17 show the distribution of modi

fied Truog extractable phosphorus in treatments where all phosphorus was 

applied through the trickle system. Figures 18 and 19 show phosphorus 

distribution in treatments where the phosphorus was applied by broadcast 

application as well as through the trickle system. Table 14 shows the 

modified Truog extractable phosphorus levels in the control and broad

cast-only plots 55 days after fertilizer application. Figures 18 and 19 

show that the broadcast fertilizer (as triple superphosphate) is 

concentrated near the surface and was incorporated in a soil volume 

approximately one-half that originally anticipated. 

These results show that in the Waimea soil, trickle applied 

phosphorus concentrates near the emitters at depths easily reached by 

the lettuce root system, and that there is considerable residual 

phosphorus within this zone nearly one-half year after application. 

The high phosphate zone remains intact in this no-till system and ranged 

in volume from an estimated 0.02 to 0.12 m3 for the 24 emitters in each 

plot. This is 5 to 30% of the 0.4 m3 volume occupied by the broadcast 

fertilizer. Even so, extractable phosphate levels near the emitters, 

although higher than levels in similar broadcast treatments, do not 

seem to reflect the magnitude of this concentration factor. Since these 

high concentration zones surrounding the emitters can easily be located, 
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Table 14. Modified Truog extractable phosphorus levels in single 
Waimea soil plots where phosphorus was applied only as 
a broadcast treatment 55 days before sampling 

Broadcast ppm P in Surface Soil 
Rate (kg P/ha) (0-3 cm) 

Control 79 

150 99 

600 141 

1200 207 
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subsequent transplants can be placed directly over each emitter, thus 

taking advantage of water availability and residual phosphate (Memon, 

1980). 

2. Crop Response to Phosphate Fertilizer Treatments 
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The Waimea soil is naturally fertile with adequate potassium, 

phosphorus and other nutrients for most crops (Dr. Bernard Kratky, 

personal counuunication). Therefore, an area of the Lalamilo farm thought 

to be low in phosphorus was chosen for this experiment. Although soil 

samples taken prior to the experiment showed low levels of 0.01 M Cac12 

extractable phosphorus (Fig. 1), the data from the previous section 

show background levels of 70 to 90ppmmodified Truog extractable 

phosphorus. Levels of 50 ppm modified Truog extractable phosphorus are 

considered sufficient for most agronomic crops (Tamimi, 1977),but higher 

levels are undoubtedly required for optimal production of lettuce. 

Lettuce, with its limited root system, shows a marked response to 

extractable soil phosphorus when compared with other crops (Fox et al., 

1977) and would therefore be expected to require high soil phosphorus 

levels for optimal growth. 

More information is available on critical levels of lettuce 

tissue phosphorus than for soil extractable phosphorus. Recounuended 

levels of tissue phosphorus differ depending on age of the plant (Zink 

and Yamaguchi, 1962), plant part sampled, method of analysis and other 

factors, but studies on mature leaf phosphorus suggest minimum levels 

of 0.2% with optimum yields obtained in the rage of 0.3-0.4% (Table 15). 

To determine the effect of two methods of fertilizer application on 
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Table 15. Critical phosphorus levels for lettuce. 

% p in Plant Tissue 
Tissue Sampled Source 

Low Sufficient High 

0.2 0.3 leaf Soil Improvement Conunittee 
(1973) 

0.35 wrapper leaf Nishimoto et al. (1977) 

0.19 0. 20-1. 50 151 base of mature Bauerle (1975) 
bottom leaves 

midrib of wrapper 
leaf: Lorenz and Maynard (1980) 

0.2 0.4 at heading 
o.25 at harvest 

o.35-0.10 wrapper leaf International Minerals 
and Chemical Corp. 

0.37 wrapper leaf this study 



crop growth, three consecutive crops of head lettuce were transplanted 

with each plant positioned directly over an emitter. 

a. Phosphorus in plant tissue 

77 

Data from the first crop planted one day after fertilizer 

application show that trickle application of 600 kg P/ha produced signif

icantly higher tissue phosphorus levels than those found in the 

600 kg P/ha broadcast treatment (Table 16). In the first crop, the 

highest tissue phosphorus levels were found in trickle application 

treatments. Response to low application rates were inconclusive due to 

the high native phosphorus level in one of the two control plots, high 

variability in the data and loss of one of the three replications. 

The second crop shows greatly depressed tissue P levels as 

a result of both water and nitrogen stress. This may also explain the 

mixed results obtained from tissue analysis. 

The third crop shows no significant differences in tissue 

phosphorus levels above the 150 kg P/ha application rate regardless of 

application method or rate, even though samples taken just prior to 

planting (Fig. 15) indicate high levels of residual soil phosphorus. 

Plants tend to respond to phosphorus applied early in their 

growth (Lochwing, 1951), therefore, the high levels of tissue phosphorus 

from the trickle applied treatments in the first crop was probably a 

response to readily avail~ble phosphorus immediately following its 

application. Since soil phosphate availability decreases substantially 

within a few months after application (Yost and Fox, 1977), the lower 

levels of tissue Pin the last crop is not unexpected and indicates the 

need for additional phosphorus. 



Table 16. Phosphorus levels in head lettuce (first wrapper leaf) tissue in response to phosphate 
application rate and method 

Crop 1 
53 days after 
fertilizer 
application 

LSD= 0.15 

Crop 2 
150 days after 
fertilizer 
application 

LSD= 0.05 

Crop 3 
250 days after 
fertilizer 
application 

LSD= 0,03 

·combinatiof Broadcast Mean% P Trickle Mean% P Mean% P 
(kg P/ha) in Tissue (kg P/ha) in Tissue Broadcast-tr ckle in Tissue 

(k P/ha) 

0 .30 c* 0 .30 C 0 .30 C 

150 .33 be 150 .30 C 

600 .35 be 600 .50 a 450 + 150 .39 abc 

1200 .38 abc 1200 .52 a i600 + 600 .45 ab 
1050+ 150 .42 abc 

0 .21 ef* 0 .21 ef 0 .21 ef 
150 .22 cdef 150 .20 f 
600 .25 bed 600 .26 abc 450 + 150 .25 bcde 

1200 .28 ab 1200 .26 bed { 600 + 600 .25 cdef 
1050 + 150 .30 a 

0 .30 d* 0 .30 d 0 .30 d 
150 .32 bed 150 .31 cd 
600 .36 a 600 .34 abc 450 + 150 .35 ab 

1200 .35 ab 1200 .34 abc f 600 + 600 .37 a 
1050 + 150 .35 a 

*Values followed by the same letter within any one crop are not significantly 
different at the .05 level by the least significant differences test. 

-.J 
00 
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b. Lettuce yield 

To establish the critical phosphorus level for lettuce, the 

relationship between yield and P concentration was examined (Fig. 20). 

Although the linear correlation is highly significant, the resulting 

regression line is not helpful in determining the critical phosphorus 

level. The Cate-Nelson method (Sanchez, 1976) provides an .estimate of 

the critical level of head lettuce at the Lalamilo farm. The latter 

analysis in Fig. 20 shows that the critical level for plant tissue 

phosphorus is about 0.37%. This level was only exceeded in the first 

crop. 

Table 17 shows lettuce yield response to the phosphate 

treatments in the three successive crops. As with tissue P, the yield 

of the trickle applied 600 kg P/ha application was significantly greater 

than the broadcast treatment at that level. 

The second crop was lost to nitrogen and water stress. 

The third crop, grown with proper care, showed no significant differ

ences in yield between the control and all but two of the other treat

ments. Apparently the differences in tissue P found six to eight months 

after fertilizer application (Table 15) are not sufficient to produce a 

yield response. 

The data in Table 15 show that the Waimea soil requires 

high phosphate fertilization. Further, considerable savings in 

fertilizer cost is possible by applying P through the trickle system 

into the root zone of a crop at moderate levels rather than by large 

broadcast applications. Although trickle applications resulted in high 

residual phosphorus near the emitter, it was not effective in increasing 

phosphorus uptake or crop yield six months after application of up to 
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Table 17. Whole plant yields in head lettuce in response to phosphate application rate and method 

Broadcast Mean Trickle Mean Combination Mean 
(kg P/ha) Yield (kg) (kg P/ha) Yield (kg) Broadcast-trickle Yield (kg) 

(k P/ha) 

Crop 1 0 1.16 fg* 0 1.16 fg 0 1.16 fg 
53 days after 150 1.20 cdefg 150 1.02 g 
fertilizer 600 1.10 fg 600 1.41 abed 450-150 1. 29 cdef 
application 1200 1.43 abc 1200 1.54 ab { 600- 600 1.58 a 

LSD= 0.50 .1050-150 1.35 bcde 

Crop 2 0 0.02 a* 0 0.82 a 0 0.82 a 159 days after 150 0.93 a 150 0.88 a fertilizer 600 0.76 a 600 1.06 a 450-150 0.93 a application £ 600-600 0.34 a 1200 1.00 a 1200 0.88 a 1050-150 0.91 a LSD= 0.69 

Crop 3 0 0.85 c* 0 0.85 C 0 0.85 C 

250 days after 150 1.01 abc 150 0.87 be 
fertilizer 600 1.01 abc 600 1.07 ab 450-150 1.01 abc 
application 

1200 1.03 abc 1200 0.92 abc £ 600-600 0.88 be 

LSD= 0 . 47 1050-150 1.12 a 

*Values followed by the same letter within any one crop are not significantly dif-
ferent at the .05 level by the least significant differences test. 
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1200 kg P/ha. This suggests that the high residual levels of extractable 

phosphorus near the emitters might best be exploited by subsequent 

applications in the same volume. 

G. Water Distribution in a Subsurface Trickle System 

A grid of resistance blocks was buried along and at right angles to 

a subsurface lateral line to study horizontal water movement from a 

single operating emitter. Readings showed that after 105 minutes, water 

from a single continuously functioning emitter had saturated soil 30 cm 

from the emitter downslope along the lateral line but had moved only 

8 cm perpendicular to the line. After five hours of irrigation, the 

wetting front perpendicular to the lateral line had not yet reached the 

sensor 24 cm from the emitter (Figs. 21 and 22). 

The tendency of the water to flow freely along the outer surface of 

the lateral line depends on soil permeability, soil moisture, lateral 

line slope within the soil and rate of water application. Even at the low 

flow rate of a single emitter (0.25 liter/min.) in a friable, moderately 

dry soil(~= 40 centibars), the difference between water movement per

pendicular to the lateral and along the lateral line was pronounced. 

At higher flow rates this effect may be much more pronounced. On 

several occasions, when a hole was dug to repair a damaged, leaking 

subsurface lateral line immediately following an irrigated cycle, water 

was observed flowing from around the lateral lines into the hole at 

substantial flow rates, indicating a large free-water reservoir along 

and innnediately adjacent to the lateral line. This is evidently due to 

water flowing freely along a soil surface formed around the subsurface 

lateral line by the expansion and contraction of the lateral during the 
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irrigation cycle. Preferential water movement of this type may permit 

considerable lateral movement, particularly in sloping fields. This may 

be important in supplying water to plants located near an adjacent 

plugged emitter and may reduce the damaging effects of plugging. 



CONCLUSION 

This study demonstrates that controlled traffic agriculture, 

already widely practiced in the United States, is readily adaptable to 

vegetable farming in Hawaiian soils. By restricting the tractor wheel 

to specific lanes, equipment can be operated under more adverse weather 

conditions and tillage requirements in the planting beds are substantially 

reduced. Both of these factors become increasingly important as the 

number of crops harvested each year increases. The major disadvantage 

of minimum tillage agriculture in Hawaii, as elsewhere, is the need to 

maintain more strict control over weeds. 

Because of the advantages of controlled traffic agriculture, this 

method of farming has its greatest potential in Hawaii in small farm 

vegetable production. Farmers who plow their fields four to five times 

a year may, under most conditions, reduce tillage to once every two or 

more years. 

Controlled traffic farming provides an additional advantage for 

trickle irrigated crops. Although trickle irrigation, once in place, 

provides optimal water management in the field with the minimum of 

labor, many vegetable farmers avoid its use because trickle lines must 

be removed and replaced with each harvest and planting operation to 

make way for tillage and traffic. This study shows that, with proper 

bed preparation, proper depth of lateral line placement, and by confining 

traffic to traffic lanes and thus eliminating the need for tillage, the 

time, expense and drudgery of removing and replacing the drip lines can 

also be eliminated. Subsurface placement of laterals also reduced rat 

damage, material degradation from solar radiation, and accidental damage 

to the lateral line. 
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Combining controlled traffic with a subsurface trickle irrigation 

system permits the farmer to take further advantage of the trickle 

irrigation system. A trickle irrigation line placed 13 cm below the 

surface can be used to distribute fertilizer within the root zone of 

each plant. Each emitter is readily located by a wet area that forms 

directly over it shortly after an irrigation cycle begins. By trans

planting directly over the emitter, a plant is assured of water and 

injected nutrient availability. The proximity of the plant roots to 

the fertilizer source permits nutrients immobilized by the soil, such 

as phosphorus, to be distributed through the trickle line and concen

trated near the emitter. Moderate levels of phosphorus applied in this 

manner provides significantly more phosphorus to the crop than if the 

same amount is broadcast-applied. 

Emitter plugging is a major problem associated with subsurface 

trickle irrigation. There are indications, however, that the inter

mittent nature of some plugged emitters and the flow of water and 

nutrients along the outer wall of the subsurface trickle tube may lessen 

crop water stress as determined by the number of plugged emitters or by 

flow rate. Plugged subsurface emitters can be located by the absence of 

the wetted area and, if desired, may easily be unplugged by digging 

through the soil which has been kept friable through controlled traffic 

management. 

Finally, in a well-fertilized field provided with adequate water, 

good crop performance can be attained even in compacted soils. Lettuce 

transplanted in rows compacted by 10 to 12 passes of a tractor wheel 

produced heads comparable in size and quality to those grown on the 

non-compacted control plots, even though root size and weight of plants 



in the compacted rows were significantly reduced by the compaction 

treatment. 
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This study indicates that there is great opportunity for exploiting 

controlled traffic farming in Hawaii. The small vegetable farmer who 

now practices continuous cropping can achieve greater economy of time 

and energy by adopting this system. 



APPENDIX 



APPENDIX A 

Table 18. Monthly temperature and rainfall data for the 
Lalamilo experimental farm, Kamuela, Hawaii 

Month Temperature (°C) Monthly 
Rainfall 

Max. Min. Avg. (mm~ 

July 1978 21.1 16.S 18.8 58 
Aug. 22.6 17.1 19.9 37 
Sept. 22.9 16.1 19.5 13 
Oct. 23.9 15.2 19.6 40 
Nov. 20.9 14.3 17.6 73 
Dec. 19.8 13.4 16.6 100 
Jan. 1979 19.0 11.4 15.2 
Feb. 19.8 12.4 16.1 175 
Mar. 20.4 11.5 16.0 47 
Apr. 21.4 13.0 17.2 88 
May 21.8 14.3 18.1 64 
June 19.6 15.2 17.4 49 
July 21.8 15.3 18.6 so 
Aug. 23.6 15.7 19.7 34 
Sept. 23.9 16.3 20.1 39 
Oct. 23.9 15.9 19.9 38 
Nov. 21.9 13.9 17.9 319 
Dec. 21.6 13.2 17.4 68 
Jan. 1980 21.4 10.8 16.1 280 
Feb. 21.6 12.2 16.9 80 
Mar. 19.4 14.6 17.0 349 
Apr. 19.8 14.7 17.3 161 
May 22.1 15.5 18.8 143 
June 22.1 15.9 19.0 40 
July 23 . 4 16.5 20.0 43 
Aug. 24.0 15.8 19.9 21 
Sept. 24.3 16.7 20.5 18 
Oct. 23.8 16.6 20.2 65 
Nov. 24.7 15.6 20.2 22 
Dec. 24.0 12.2 18.1 35 
Jan. 1981 23.1 10.9 17.0 18 
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APPENDIX B 

Table 19. Monthly temperature and rainfall data for the 
Waimanalo experimental farm, Waimanalo, Hawaii 

Temperature (OC) Monthly 
Month 

Max. Min. Avg. Rainfall 
(mm) 

May 1979 27.4 20.7 24.1 33 

June 27.9 21.9 24.9 14 

July 28.9 22.4 25.7 8 

Aug. 29.7 23.0 26.4 24 

Sept. 29.6 23.3 · 26.5 21 

Oct. 29.2 22.3 25.8 79 

Nov. 26.6 20.9 23.8 106 

Dec. 26.3 19.3 22.8 318 

Jan. 1980 25.6 18.6 22.1 373 

Feb. 25.7 17.4 21.6 137 

Mar. 25.1 20.2 22.7 36 

April 25.8 20.6 23.2 66 

May 27.2 21.4 24.3 244 

June 27.4 22.4 24.9 44 

July 28.2 22.8 25.5 37 

Aug. 28.6 22.8 25.7 65 

Sept. 28.9 23.2 26.1 41 

Oct. 28.7 22.1 25.4 25 

Nov. 27.8 20.8 24.3 21 

Dec. 27.1 18.9 23.0 349 
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